

Thyristor High Voltage, Phase Control SCR, 50 A

PRODUCT SUMMARY	
Package	TO-247L
$I_T(AV)$	50 A
V_{DRM}/V_{RRM}	1200 V
V_T (typ.)	1.1 V
I_{GT} (typ.)	40 mA
T_J max.	150 °C
Diode variation	Single SCR

FEATURES

- Designed and qualified according to JEDEC®-JESD 47
- 150 °C maximum operating junction temperature
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS
COMPLIANT
HALOGEN
FREE

APPLICATIONS

Typical usage is in input rectification crowbar (soft start) and AC switch motor control, UPS, welding, and battery charge.

DESCRIPTION

The VS-50TPS12 high voltage series of silicon controlled rectifiers are specifically designed for medium power switching, and phase control applications. The glass passivation technology used, has reliable operation up to 150 °C junction temperature.

MAJOR RATINGS AND CHARACTERISTICS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Peak repetitive reverse voltage	V_{RRM}/V_{DRM}		1200	V
On-state voltage	V_T	50 A, $T_J = 125$ °C	1.1	
Average rectified forward current	$I_T(AV)$		50	A
Maximum continuous RMS on-state current	I_{RMS}		79	
Non-repetitive peak surge current	I_{TSM}		630	
Maximum rate of rise	dV/dt		1000	V/μs
Operating junction and storage temperature range	T_J, T_{Stg}		-40 to +150	°C

VOLTAGE RATINGS			
PART NUMBER	V_{RRM}/V_{DRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V_{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I_{RRM}/I_{DRM} AT 125 °C mA
VS-50TPS12L-M3	1200	1300	10

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNITS		
Maximum average on-state current	$I_{T(AV)}$	$T_J = 112^\circ\text{C}$, 180° conduction half sine wave			-	50	A		
Maximum continuous RMS on-state current as AC switch	$I_{T(RMS)}$				-	79			
Peak, one-cycle non-repetitive surge current	I_{TSM}	10 ms sine pulse, rated V_{RRM} applied		Initial $T_J = T_J$ maximum		530	A		
		10 ms sine pulse, no voltage reapplied				630			
I^2t for fusing	I^2t	10 ms sine pulse, rated V_{RRM} applied				1405	A^2s		
		10 ms sine pulse, no voltage reapplied				1986			
$I^2\sqrt{t}$ for fusing	$I^2\sqrt{t}$	$t = 0.1 \text{ ms to } 10 \text{ ms}$, no voltage reapplied, $T_J = 125^\circ\text{C}$			-	19 850	$\text{A}^2\sqrt{\text{s}}$		
Low level value of threshold voltage	$V_{T(TO)1}$	$T_J = 125^\circ\text{C}$			-	0.83	V		
High level value of threshold voltage	$V_{T(TO)2}$				-	0.95			
Low level value of on-state slope resistance	r_{t1}				-	0.58	$\text{m}\Omega$		
High level value of on-state slope resistance	r_{t2}				-	0.51			
On-state voltage	V_T	$50 \text{ A}, T_J = 25^\circ\text{C}$			1.2	1.32	V		
		$100 \text{ A}, T_J = 25^\circ\text{C}$			1.4	1.6			
Rate of rise of turned-on current	dI/dt	$T_J = 25^\circ\text{C}$			-	150	$\text{A}/\mu\text{s}$		
Holding current	I_H	Anode supply = 6 V, resistive load, $T_J = 25^\circ\text{C}$			-	300	mA		
Latching current	I_L				-	350			
Reverse and direct leakage current	I_{RRM}/I_{DRM}	$T_J = 25^\circ\text{C}$			-	0.05			
		$T_J = 125^\circ\text{C}$			-	10			
Rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, linear to 80 % V_{DRM} , $R_g-k = \infty \Omega$			-	1000	$\text{V}/\mu\text{s}$		

TRIGGERING									
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNITS		
Peak gate power	P_{GM}	10 ms sine pulse, no voltage reapplied			-	10	W		
Average gate power	$P_{G(AV)}$				-	2.5			
Peak gate current	I_{GM}				-	2.5	A		
Peak negative gate voltage	$-V_{GM}$				-	10	V		
Required DC gate voltage to trigger	V_{GT}	$T_J = -40^\circ\text{C}$		Anode supply = 6 V resistive load		1.6			
		$T_J = 25^\circ\text{C}$				1.5			
		$T_J = 150^\circ\text{C}$				1			
Required DC gate to trigger	I_{GT}	$T_J = -40^\circ\text{C}$		Anode supply = 6 V resistive load		160	mA		
		$T_J = 25^\circ\text{C}$				45			
		$T_J = 150^\circ\text{C}$				60			
DC gate voltage not to trigger	V_{GD}	$T_J = 150^\circ\text{C}$, V_{DRM} = rated value			-	0.2	V		
DC gate current not to trigger	I_{GD}				-	3	mA		

SWITCHING							
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNITS
Turn-on time	t_{gt}	$I_T = 50 \text{ A}$, $V_D = 50\% V_{DRM}$, $I_{gt} = 300 \text{ mA}$, $T_J = 25^\circ\text{C}$			1.5	-	μs
Turn-off time	t_q				92	-	

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T_J, T_{Stg}				-40	150	°C
Maximum thermal resistance, junction to case	R_{thJC}				-	0.35	°C/W
Maximum thermal resistance, junction to ambient	R_{thJA}				-	40	
Typical thermal resistance, case to heatsink	R_{thCS}	Mounting surface, smooth, and greased			0.2	-	kgf · cm (lbf · in)
Mounting torque	minimum				6 (5)	12 (10)	
	maximum				6 (5)	12 (10)	kgf · cm (lbf · in)
Marking device		Case style Super TO-247L			50TPS12L		

ΔR_{thJ-HS} CONDUCTION PER JUNCTION											
DEVICE	SINE HALF-WAVE CONDUCTION					RECTANGULAR WAVE CONDUCTION					UNITS
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
VS-50TPS12L-M3	0.143	0.166	0.208	0.299	0.490	0.099	0.168	0.223	0.311	0.494	°C/W

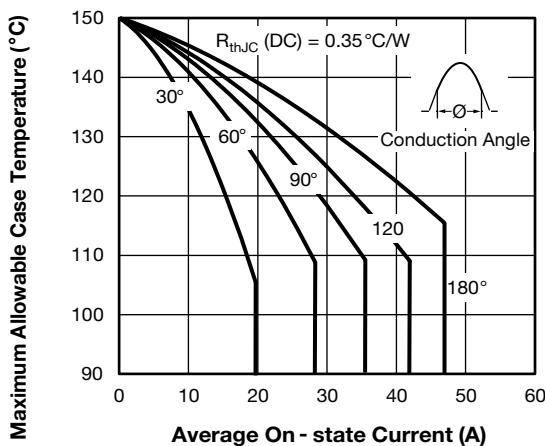


Fig. 1 - Current Rating Characteristics

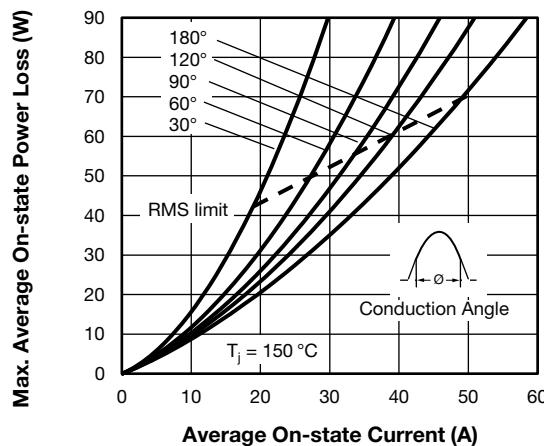


Fig. 3 - On-State Power Loss Characteristics

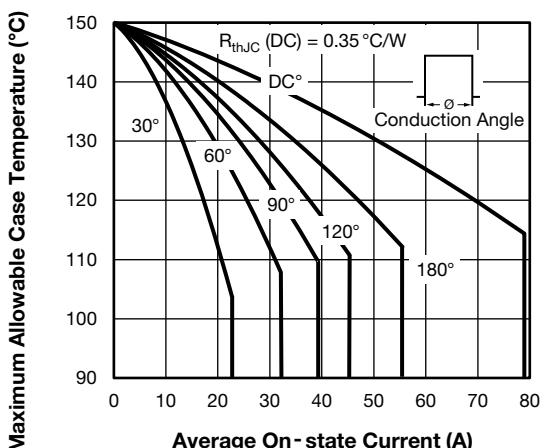


Fig. 2 - Current Rating Characteristics

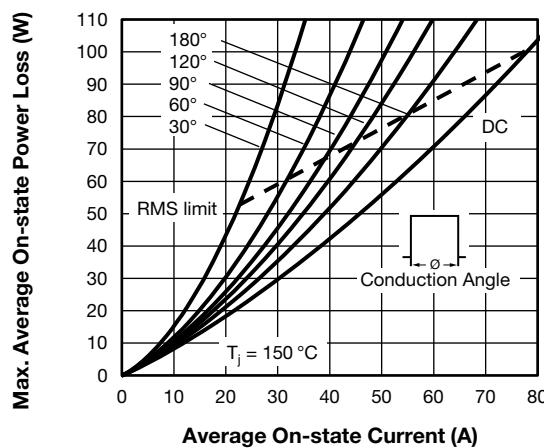


Fig. 4 - On-State Power Loss Characteristics

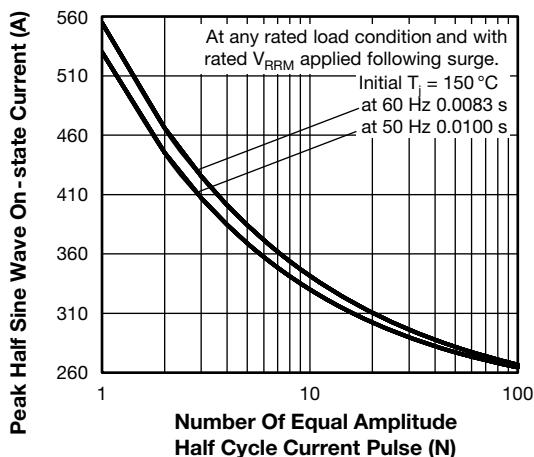


Fig. 5 - Maximum Non-Repetitive Surge Current

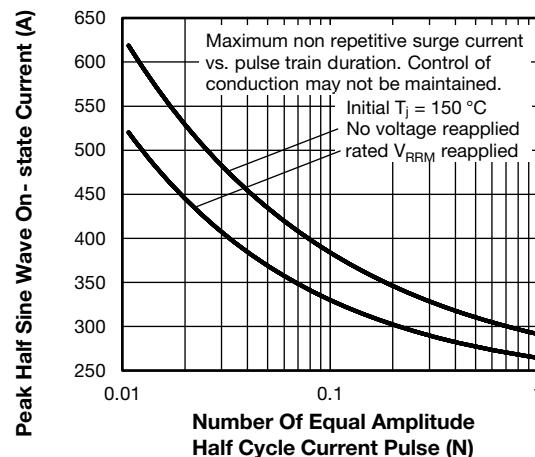


Fig. 6 - Maximum Non-Repetitive Surge Current

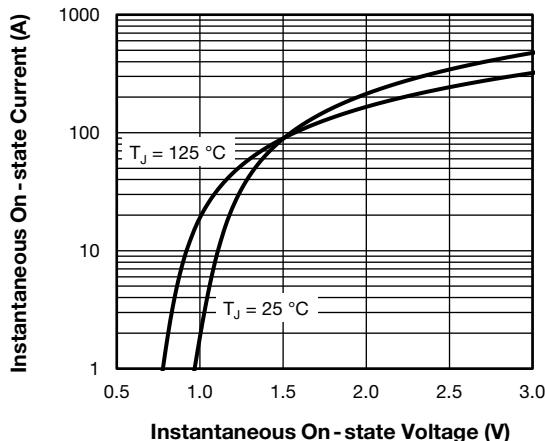


Fig. 7 - On-State Voltage Drop Characteristics

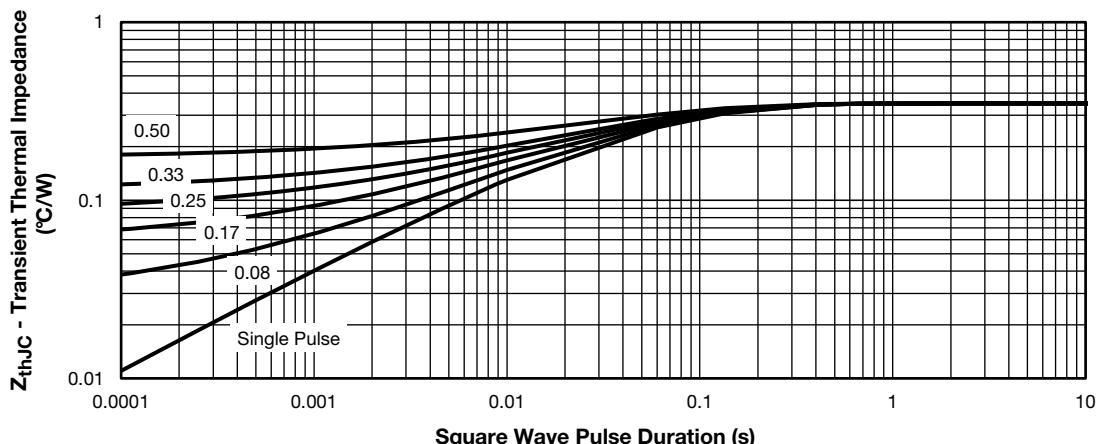
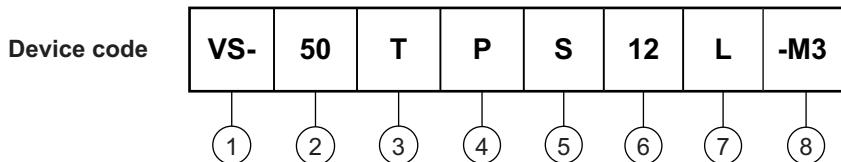
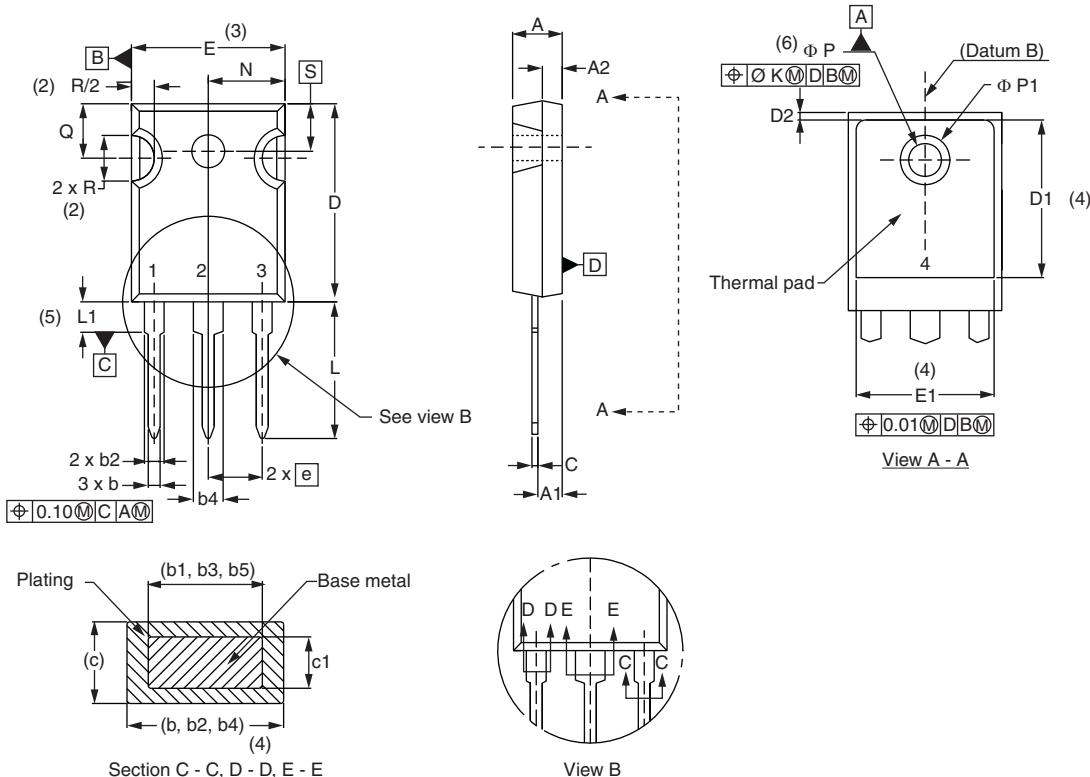



Fig. 8 - Gate Characteristics

ORDERING INFORMATION TABLE


- (1)** - Vishay Semiconductors product
- (2)** - Current code (50 = 50 A)
- (3)** - Circuit configuration:
T = thyristor
- (4)** - P = TO-247 package
- (5)** - Type of silicon:
S = standard recovery rectifier
- (6)** - Voltage code (12 = 1200 V)
- (7)** - Package L = long lead
- (8)** - -M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

ORDERING INFORMATION (example)			
PREFERRED P/N	QUANTITY PER TUBE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-50TPS12L-M3	25	contact factory	Antistatic plastic tubes

LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95626
Part marking information	www.vishay.com/doc?95007

TO-247L 3 Pins

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES	View A-A	SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.				MIN.	MAX.	MIN.	MAX.	
A	4.65	5.31	0.183	0.209			D2	0.51	1.30	0.020	0.051	
A1	2.21	2.59	0.087	0.102			E	15.29	15.87	0.602	0.625	3
A2	1.50	2.49	0.059	0.098			E1	13.46	-	0.53	-	
b	0.99	1.40	0.039	0.055			e	5.46 BSC		0.215 BSC		
b1	0.99	1.35	0.039	0.053			Ø K	2.54		0.010		
b2	1.65	2.39	0.065	0.094			L	19.81	20.32	0.780	0.800	
b3	1.65	2.34	0.065	0.092			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			N	7.62 BSC		0.3		
b5	2.59	3.38	0.102	0.133			Ø P	3.56	3.66	0.14	0.144	
c	0.38	0.89	0.015	0.035			Ø P1	-	6.98	-	0.275	
c1	0.38	0.84	0.015	0.033			Q	5.31	5.69	0.209	0.224	
D	19.71	20.70	0.776	0.815	3		R	4.52	5.49	0.178	0.216	
D1	13.08	-	0.515	-	4		S	5.51 BSC		0.217 BSC		

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC® outline TO-247 with exception of dimension c and Q

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.