A,

w CYPRESS

N EMBEDDED IN TOMORROW™

AN90114

PSoC® 4000 Family Low-Power System Design Techniques

Authors: Ranjith M and Nidhin M S

Associated Project: Yes

Associated Part Family: CY8C40xx

Software Version: PSoC Creator™ 4.1

Related Application Notes: For a complete list of the application notes, click here.

To get the latest version of this application note, or the associated project file, please
visit http://www.cypress.com/go/AN90114.

AN90114 introduces the low-power modes offered by the PSoC® 4000 family and teaches the methods to design

low-power systems. Major topics include device power modes and system-level power reduction techniques. This
application note also includes an example project to demonstrate a low-power CapSense® system design.

Contents

1 INrOdUCHION......eiiiiiiiiiiiiec et 1 4 Low-Power System Design

2 POWET MOUES....cveeeeeeeeereeeeeeeeeeeereeeeeeeee s e eeeeeeee e s e 2 Considerations - CapSense..........ccovevrinnnnnnenennns 6
2.1 Active 4.1 Use Deep-Sleep Mode Between Scans.............. 6
2.2 Sleep 4.2 Enter and Remain in Sleep Mode
2.3 DEEP-SIBEP ..ot 2 During CapSense SCan ... 7
2.4 Mode Entry and Wakeup SOUFCESo..oovv... 3 4.3 Reduce. Scan TiIMe ..., 7

3 Low-Power System Design 5 Example Project: Low-Power CapSense
Considerations - GENEral..........c.coocoeeeveeeeeeeeeeeeenereen 4 With Perlqdlc SCAN ..
3.1 Turn Off Unused COMpONENtsc.c.cccoueveren... 4 5.1 Test!ng the Project :
3.2 GPIOS iN LOW POWETovveoeeeeeeereeeseee. 4 5.2 Modifying the Example Project 13
3.3 Is Your Debug Interface Running? 5 6 Summary S 14
3.4 Run Components at a Lower Speed................... 5 7 Related Application NOteScoceeeviivieiiieeeeiiiieene 14
3.5 Dynamically Switching the Power Modes 5

1 Introduction

This application note introduces the low-power modes available in the PSoC 4000 (CY8C40xx) family of devices and
the techniques to reduce overall system power consumption. PSoC 4000 is a cost-optimized, entry-level PSoC 4
device that offers 32-bit performance at 8-bit prices, along with PSoC value-added features such as CapSense and
programmable peripherals. See AN86233 — PSoC 4 Low-Power Modes and Power Reduction Techniques to learn
about the power modes and power reduction techniques for all the other devices in the PSoC 4 family.

This document assumes that you are familiar with the PSoC 4 architecture, PSoC 4 CapSense, and application
development for PSoC 4 using the Cypress PSoC Creator™ Integrated Design Environment (IDE). For an
introduction to PSoC 4, read AN79953 — Getting Started with PSoC 4. If you are new to PSoC 4 CapSense, refer to
the PSoC 4 CapSense Design Guide. If you are new to PSoC Creator, see the PSoC Creator home page.

The initial sections of this application note cover the PSoC 4000 power modes and power reduction techniques in
detail. If you are not interested in theoretical discussions and want to evaluate the example project, proceed to the
Example Project: Low-Power CapSense With Periodic Scan.

WWWw.Cypress.com Document No. 001-90114 Rev. *B 1

http://www.cypress.com/
http://www.cypress.com/go/AN90114
http://www.cypress.com/?rID=78797
http://www.cypress.com/?rID=78695
http://www.cypress.com/?rid=78578
http://www.cypress.com/psoccreator/

o CYPRESS

-

EMBEDDED IN TOMORROW PSoC® 4000 Family Low-Power System Design Techniques

2.1

2.2

2.3

Power Modes

This section explains in detail the power modes available in PSoC 4000 devices. The operation and power
consumption of these power modes are slightly different from those available in other PSoC 4 families because of
architectural differences in the PSoC 4000 power subsystem.

From here on, this document will use the term “PSoC 4” to refer to the PSoC 4000 family of devices, unless otherwise
specified.

PSoC 4 features three modes of operation: Active, Sleep, and Deep-Sleep. These power modes have different power
consumption and peripheral availability, as shown in Table 1.

Active

Active is the primary operating mode of the device and is the default mode at boot. In this power mode, the high-
frequency internal clock (HFCLK), which is derived from the internal main oscillator (IMO) is on, and the CPU and all
the peripherals are operational unless they are specifically disabled by firmware. Active mode typically consumes
more power than other modes, as all the blocks in the chip are operational.

Active mode can transition to any other mode. Any valid interrupt or reset event from the other modes returns the
PSoC 4 device to Active mode.

The device consumes approximately 3.2 mA in Active mode with the CPU running at 12 MHz. For more detailed
specifications on power, see the PSoC 4000 Family datasheet.

Sleep

Sleep mode is a low-power mode similar to Active mode in that all the peripherals in the device are functional. The
clock to the CPU, system clock (SYSCLK), is off during Sleep mode. The CPU can wake up from Sleep mode on
interrupts. In this mode, all peripherals such as CapSense or I°C interface can operate while the CPU is off to reduce
the device power consumption. The device consumes approximately 1.4 mA in Sleep mode at 12-MHz HFCLK with
I’c wakeup and watchdog timer (WDT) enabled.

Deep-Sleep

Deep-Sleep is the lowest power mode available in the PSoC 4 device. In this mode, almost all peripherals including
CPU, IMO, CapSense, and TCPWM are either off or in retention state.

Basic peripherals such as I1°C, WDT, and GPIO, are operational in this mode. The 1°C block can wake up the device
from Deep-Sleep mode on an address match, depending on the configuration. The internal low-speed oscillator (ILO)
clock source is also functional in Deep-Sleep mode. A WDT implemented in the clock block allows periodic wake up
from Deep-Sleep. The device consumes about 2.5 pA in Deep-Sleep mode. Refer to the device datasheet for more
detailed power numbers.

Table 1. PSoC 4 Power Mode Peripheral Availability

Peripheral Active Sleep Deep-Sleep
CPU On
SRAM On Retention
SYSTICK timer On on Off
IMO On On Off
ILO On On On
WDT On On On
TCPWM On on Off
I’c On Oon Oon**
CapSense On On Off
GPIO Oon Oon On
Power consumption*** ~3.2mAatl12MHz [-1.4mAatl12MHz |~2.5pA

*Retention: The configuration and state of the peripheral are retained. The peripheral continues its operation when
the device enters Active mode.

WWW.Cypress.com Document No. 001-90114 Rev. *B 2

http://www.cypress.com/
http://www.cypress.com/?rID=94034

A

w# CYPRESS

> EMBEDDED IN TOMORROW PSoC® 4000 Family Low-Power System Design Techniques

**Only the I°C slave mode is available in the Deep-Sleep power mode.
*** Refer to the device datasheet for more detailed power numbers.

2.4 Mode Entry and Wakeup Sources

PSoC Creator provides a set of functions called “application programming interfaces (APIs)” that abstracts the
register-level operations to enter the low-power modes. Table 2 shows the different APIs to enter the low-power
modes explained in the previous section. The table also identifies wakeup sources to exit the low-power mode and
return to Active mode.

Figure 1 shows possible transitions between power modes.

See the PSoC 4000 Family Architecture TRM for more details on these low-power modes and wakeup sources. Refer
to AN90799 — PSoC 4 Interrupts for details on the interrupts available in PSoC 4.

Table 2. Mode Transition Details

Low-Power API to Enter Low-]
Mode Power Mode Wakeup Source Wakeup Action

Any interrupt source Interrupt

Sleep CySysPmSleep()
Any reset source Reset
GPIO interrupt Interrupt
I°C address match Interrupt

Deep-Sleep CySysPmDeepSleep()
Watchdog timer Interrupt/Reset
XRES (external reset pin), brownout | Reset

Figure 1.Power Mode Transitions

XRES / Brownout / (.)
KEY:
—
_—————

I — — — —p Internal Reset Event

————— P External Reset Event

-------------- # Firmware Action

—_— Other External Event
............ . _ J

H
Firmware
Action
T
H

ACTIVE

Wakeup
Interrupt

WWW.Cypress.com Document No. 001-90114 Rev. *B 3

http://www.cypress.com/
http://www.cypress.com/?rID=94025
http://www.cypress.com/?rID=95069

o CYPRESS

-

EMBEDDED IN TOMORROW PSoC® 4000 Family Low-Power System Design Techniques

3

3.1

3.2

Low-Power System Design Considerations - General

In many applications, you can gain additional current reductions by the proper usage of PSoC 4 peripherals. This
section presents these techniques.

Turn Off Unused Components
The easiest way to reduce power in active mode is to turn off unused components.

Any PSoC Creator Component that can be disabled in Active or Sleep mode has a Stop () function in its API. This
function immediately halts all operations of the Component and sets it to its lowest-power state. The Component may
be actively performing a task, so check its status before stopping it.

/* <Check task status here.> */

/* Stop the Component. */
Component Stop () ;

Restart a Component by calling its Start function:

/* Start the Component. */
Component Start();

Any PSoC Creator Component that must preserve its configuration data before powering down has a Sleep ()
function in its API. The Sleep () function saves all necessary Component settings and then calls the Stop ()
function. In some cases, the Sleep () function does nothing but call Stop ().

/* < Check task status here.> */

/* Sleep the Component. */
Component Sleep();

When a Component is put to sleep, it should be awakened again by calling its _wWakeup () function. This restores the
Component to its pre-sleep state. The Start () function also brings the Component back into operation, but it is
reinitialized to its default state.

/* Wake the Component. */
Component Wakeup () ;

_Sleep() and _Stop () functions both result in the same amount of power savings. The difference is whether the
Component needs to resume from exactly where it left off.

GPIOs in Low Power

GPIOs can continue to drive when the PSoC is in a low-power mode. This is helpful when you need to hold external
logic at a fixed level, but it can lead to wasted power if the pins needlessly source or sink current.

You should analyze your design and determine the best state for your GPIOs during low-power operations. If holding
a digital output pin at logic 1 or 0 is the best option, then use the Pin Component’'s _write () API function to set it.

/* Set MyPin to ‘0’ for low power. */

Pin Write(0);

Configure all unused GPIOs to Analog Hi-Z unless there is a specific reason to use a different drive mode. A Pin
Component’s port-wide drive mode may be set using the SetDriveMode () API function.

/* Set MyPin to Alg Hi-Z for low power. */

Pin SetDriveMode (MyPin DM ALG HIZ);

The flexibility of PSoC 4 makes it easy to manage GPIO drive modes to prevent unwanted current leakage. See
ANB6439- PSoC 4 -Using GPIO Pins for more information.

WWW.Cypress.com Document No. 001-90114 Rev. *B 4

http://www.cypress.com/
http://www.cypress.com/?rID=93401

A

ws CYPRESS

g~ EMBEDDED IN TOMORROW PSoC® 4000 Family Low-Power System Design Techniques

3.3 Is Your Debug Interface Running?

PSoC 4 supports on-chip debug. You may observe higher current consumption than you expect while in debug mode.
This is normal, because the programming and debug interfaces remains active in all low-power modes.

3.4 Run Components at a Lower Speed

Clocked integrated circuits consume more current as their clock rates increase. This is because parasitic and
designed capacitances are charged and discharged more rapidly, requiring more current. Reducing the operating
frequency of PSoC 4 components can greatly reduce current consumption. This technique can be applied to the
Cortex-M0 CPU and digital components such as TCPWM and 1°C.

However, in some cases, running the CPU faster can actually result in a lower average current consumption. An
example is in applications in which the CPU spends most of its time in Deep-Sleep mode and periodically wakes up
to Active mode to perform operations. This technique of dynamically switching the power modes is explained in the
next section.

In such applications, a higher CPU clock reduces the time spent in the Active mode, which in turn reduces the
average power consumption.

3.5 Dynamically Switching the Power Modes

This section explains the techniques to reduce the average power consumption of the device by dynamically
switching device power modes. Average power consumption is important in battery-powered applications to get long
battery life.

In certain voltage sources such as coin cells, peak power consumption is also equally important due to the output
impedance of the source. In such cases, you should also reduce the peak power using the techniques mentioned in
previous sections.

A system optimized for low average power spends most of the time in the lower-power modes, while ensuring reliable
operation. You can reduce the average power of PSoC 4 by ensuring that it is in the lowest-power mode (Deep
Sleep) during most of its operation. To perform the operations required by the system, the device must wake up from
Deep-Sleep mode. Typical applications use one of the following methods.

1. Periodically wake up and perform the required operations and remain in the lowest-power mode for most of the
time (See Figure 2). Watchdog timer is used to generate periodic wake-up events.

2. Remain in the lowest power mode unless an external event such as a GPIO interrupt or an I°C address match
needs attention.

Figure 2. Timing Diagram of a Typical Low-Power System

[Active
active - ey —
=
c
()
=
]
()
Average
Current
| Low power
Ip
b L Taciive

Time

If the device periodically wakes up from a low-power mode and spends a fixed amount of time in Active mode, you
can calculate the approximate average current consumed by the device as:

((tactive * lactive)t (tlp * iy)) _ (

Average current =
tactive + tlp

1

tacive = Time spent in Active mode

lactive = Active mode current

WWW.Cypress.com Document No. 001-90114 Rev. *B 5

http://www.cypress.com/

A

ws CYPRESS

EMBEDDED IN TOMORROW PSoC® 4000 Family Low-Power System Design Techniques

3.5.1

3.5.2

3.5.3

4.1

4.1.1

4.1.2

tip = Time spent in low-power mode
I, = Low-power mode current
You can use the following wake up sources to wake up the device from Deep Sleep.

Watchdog Timer

The watchdog timer is a free-running, 16-bit up-counter, which is clocked by the 40-kHz ILO. The counter has a 16-bit
match register and 4-bit ignore MSB bit fields associated with it. The WDT can generate an interrupt on every match,
but it does not reset the count to 0. You can configure the WDT to reset the device if three consecutive interrupts are
unserviced. To avoid a device reset, the firmware must clear the WDT interrupt before generation of the three
interrupts. The WDT in reset mode provides latch-up protection for the device.

You can also configure the WDT as a wakeup timer in applications where high accuracy of the timer is not required.
Use this WDT capability to put the PSoC 4 device into Deep-Sleep or Sleep for a specific amount of time and
periodically wake up the device to perform the required operations.

GPIO Interrupt

PSoC 4 can wake up from an interrupt generated by the rising edge, the falling edge, or both the edges of an input
digital signal to a GPIO. Using the GPIO interrupt, a host processor or a user button can wake up the PSoC device by
providing a trigger on the GPIO. GPIO-based wakeup consumes the lowest possible current in Deep-Sleep mode.

I2C Address Match

The PSoC 4 device has a fixed-function 1°C block that can operate as a master or a slave. When the I°C is configured
as a slave, it can wake up the PSoC device from Deep-Sleep mode. This method allows a remote master to wake up
the target PSoC device through I°’C address match. PSoC can then complete the required operations in Active mode,
send the results to the 1°C master, and return to Deep-Sleep mode.

I°C communication allows the device to be in any power mode regardless of the power mode or operating mode of
the host controller. No sync is needed between the host and the slave (PSoC 4). The slave can wake up only when
needed, complete the action, and go back to Deep Sleep. It also helps to avoid unwanted wake up events when the
host is communicating with other devices on the I°C bus.

Refer to AN90799 — PSoC 4 Interrupts for details on how to configure these interrupt sources.
Low-Power System Design Considerations - CapSense

CapSense is one of the most important blocks in the PSoC 4 device. CapSense Ul may have stringent power
consumption regulations as the Ul is associated with a battery-powered device, in most cases.

This section explains techniques to achieve maximum efficiency in terms of power, while helping to ensure reliable
and glitch-free operation.

Use Deep-Sleep Mode Between Scans

CapSense sensors are typically scanned at a certain frequency depending on the required touch response. You can
reduce the average power by ensuring that the system is in the lowest power mode (Deep-Sleep) between the
CapSense scans, as described in the Dynamically Switching the Power Modes section. Following techniques show
how to use Deep-Sleep mode while proving good touch response.

Periodic Scan Using WDT

You can use the WDT to put the PSoC 4 device into Deep-Sleep for a specified amount of time and occasionally
wake up to scan the CapSense sensors. This technique is useful since human interaction with Ul systems is
generally slow, and the CapSense inactivity during the Deep-Sleep interval will not be recognizable by the user.

The frequency at which the system wakes up for a CapSense application is determined by the human response time.
Normally, a valid finger touch can last from several tens of milliseconds to several hundred milliseconds. For such a
system, PSoC 4 need not wake up every millisecond and scan for a finger touch.

Using Proximity Sensor or Ganged Sensors

You can use a dedicated proximity sensor or gang the existing sensors to create a proximity sensor to reduce the
power consumption further as follows. CapSense component allows you to combine multiple sensors to create a
ganged sensor.

WWW.Cypress.com Document No. 001-90114 Rev. *B 6

http://www.cypress.com/
http://www.cypress.com/?rID=95069

A

ws CYPRESS

EMBEDDED IN TOMORROW PSoC® 4000 Family Low-Power System Design Techniques

4.2

4.3

The device remains in Deep-Sleep mode for a specific amount of time and wakes up occasionally. On wakeup, the
device combines all the sensors and scans them together like a proximity sensor or uses a separate proximity sensor
to detect a finger in proximity. If proximity is detected, the device remains in the Active mode and scans individual
sensors to determine the source of touch. Otherwise, the device goes back into Deep-Sleep, reducing the average
power consumption.

When ganged sensor or the proximity sensor is being scanned, users may not frequently operate the panel.
Therefore, the device may scan sensors less frequently. Upon first touch, the device can switch to a different scan
frequency where the sensors are scanned at a faster rate.

There are advantages and disadvantages when using a dedicated proximity sensor instead of ganging the sensors
together and scanning.

Ganging multiple sensors together can significantly increase the parasitic capacitance, thereby increasing the
required resolution and scan time. This, in turn, increases the average power consumption. If the parasitic
capacitance exceeds 35 pF, tuning the sensors to detect finger proximity reliably becomes difficult. The dedicated
proximity sensor, on the other hand, is reliable and tuned easily.

The dedicated proximity sensor can surround the CapSense sensors and give a proximity range of approximately 1.5
to 2 times the diameter of the proximity loop. Using a dedicated proximity sensor consumes an additional pin.
Ganging the sensors removes that requirement.

You cannot use the proximity sensing technique if the sensors are physically at a great distance from one another. In
this case, ganging the sensors together is the best alternative for wakeup and the sensor scan approach. Using this
approach instead of scanning all the sensors at full resolution during each wakeup can significantly reduce the
system’s power consumption.

The Example Project: Low-Power CapSense With Periodic Scan demonstrates the technique of using a ganged
sensor to reduce the power consumption of a periodically scanned CapSense system.

Enter and Remain in Sleep Mode During CapSense Scan

CapSense scan is non-blocking. CPU intervention is not required between the start and end of a CapSense scan.
You can put the device into Sleep mode after initiating a scan to save power. When the CapSense Sigma Delta
(CSD) hardware completes the scan, it generates an interrupt to return the device to Active mode.

CapSense is a high-sensitivity analog system. Therefore, in PSoC 4000 devices, sudden changes in the device
current may increase the noise present in the CapSense raw counts. Any change in CPU activity, including mode
transitions, can cause noise in the raw counts. To avoid this noise, you should always use Sleep mode while a
CapSense scan is in progress. If an interrupt other than CapSense causes a wake-up from the Sleep mode during a
CapSense scan, discard the scan results and initiate another scan. The Example Project: Low-Power CapSense With
Periodic Scan illustrates this technique.

Reduce Scan Time
Reducing the scan time reduces power consumption, as the device can spend more time in low-power modes.

A sensor’s scan time depends on the required sensitivity and the sensor’s parasitic capacitance. Refer to the PSoC 4
CapSense Design Guide to learn how to reduce the parasitic capacitance and hence the scan time.

You can use manual tuning to optimize the scan time and get strict control over CapSense performance. The
example project in this application note use manual tuning. The CapSense Design Guide provides guidance to tune
CapSense manually.

WWW.Cypress.com Document No. 001-90114 Rev. *B 7

http://www.cypress.com/
http://www.cypress.com/?rid=78578
http://www.cypress.com/?rid=78578

A

w# CYPRESS

g~ EMBEDDED IN TOMORROW PSoC® 4000 Family Low-Power System Design Techniques

5 Example Project: Low-Power CapSense With Periodic Scan

An example project accompanies this application note, demonstrating the use of the concepts presented in this
document to reduce the average power consumption of a CapSense system. This section provides an overview of
the example project and methods to test the project and validate the results.

The following are required for testing the example project.

m CYB8CKIT-040: This is the PSoC 4 Development Kit with the PSoC 4000 part. The kit also comes with a touchpad
shield.

m PSoC Creator software installed on your PC: You can download the latest version of PSoC Creator from the
PSoC Creator web page.

= Ammeter with averaging capability for measuring power consumption

This project uses the touchpad shield available with the CY8CKIT-040 to simulate a wakeup on touch feature. Figure
3 shows the firmware flowchart of this project.

PSoC 4 spends most of the time in Deep-Sleep mode and periodically (at 200-ms intervals) wakes up to check for a
finger touch. To reduce the time spent by the PSoC device in Active mode, some of the touchpad sensors are
ganged together and scanned at a low resolution immediately after the device wakes up from Deep-Sleep mode. If
the PSoC device detects a touch or the proximity of finger, it scans all the touchpad sensors one by one to determine
the exact finger position. PSoC continues the scan at 30-ms periodic intervals to maintain a good touch response and
spends the time between two consecutive scans in Deep-Sleep mode. If the touchpad widget is inactive for 100
consecutive scans (about 3 seconds), the device halts the scan of the touchpad sensors and resumes the periodic
scan of the proximity sensor at 200-ms intervals.

This project uses Sleep mode during CapSense scans to reduce the power consumption and to help ensure reliable
CapSense operation. If an interrupt other than CapSense causes a wakeup from Sleep mode during a CapSense
scan, the firmware discards the scan results and initiates another scan. The project includes a GPIO interrupt input to
test this feature. The firmware uses a set of flags set in the interrupt service routines (ISRs) in main.c,
CapSense_INT.c, isr_pin.c, and isr_ WDT.c to detect if a non-CapSense interrupt caused the wakeup. Refer to
AN90799 — PSoC 4 Interrupts to learn more about the ISRs used in PSoC 4.

The touch data is encoded in the form of (x,y) coordinates, with the origin of the coordinate system starting at the top-
left corner of the touchpad shield and extending positively right and down. The maximum value of the touch
coordinate is (100, 100). The finger touch data is used to obtain the (x,y) coordinates of the touch on the touchpad.

This data is sent to the Bridge Control Panel (BCP) Ul through the software UART.

WWW.Cypress.com Document No. 001-90114 Rev. *B 8

http://www.cypress.com/
http://www.cypress.com/?rID=94456
http://www.cypress.com/psoccreator/
http://www.cypress.com/?rID=95069

CYPRESS

EMBEDDED IN TOMORROW

e
-

PSoC® 4000 Family Low-Power System Design Techniques

Figure 3. Firmware Flowchart of Example Project

Main code
Start CapSense_interrupt service
routine
- r - Interrupt
Initialize the CapSense baselines.

Enter and remain in Sleep mode while the
CapSense is busy.

a source other than
CapSense ?

No

WDT
wakeup

Scan the proximity sensor. Enter
and remain in Sleep mode as

Enter and remain in Deep-Sleep
mode for 200mS.

long as the CapSense is busy.

A

Wakeup caused b
a source other than
CapSense ?

Yes

Read the status of the proximity
sensor

No

Figure 4 and Figure 5 show the timing diagrams for the current consumption in the two scenarios: periodic scan of the
proximity sensor at 200-ms intervals when there is no touch, and periodic scan of the touchpad sensors at 30-ms

Finger detected ?
No

No

Non-CapSense interrupt
flag set during the previous
Sleep interval?

Set another flag to indicate a
Sleep-wakeup caused by a source
other than CapSense

\J
Remaining
ISR code

Other _interrupt service
routines

Interrupt

Set an interrupt flag to indicate a
non-CapSense interrupt

|

Remaining

Scan the touchpad. Enter and
remain in Sleep mode while the
CapSense is busy.

Wakeup

Wakeup caused b
a source other than
CapSense ?
WDT
wakeup

ISR code

Send the touchpad status to
Bridge Control Panel using the
UART.

Enter and remai

mode for 30mS.

n in Deep-Sleep

Any touch detected on the Yes

touchpad during the previous 100

A

consecutive scans ?

intervals after the proximity sensor detects a finger touch.

Www.Cypress.com

Document No. 001-90114 Rev. *B

http://www.cypress.com/

~

ws CYPRESS

- EMBEDDED IN TOMORROW

PSoC® 4000 Family Low-Power System Design Techniques

Figure 4. Timing Diagram in the Absence of Touch

Scan
Start scan complete

1 Active

Current

—| Sleep

Average current
~ 6.4 uA

Deep-Sleep

~135mS ~ 285 us
Time

When there is no touch, the device spends approximately 2 ms in Active and Sleep modes, and approximately

200 ms in Deep-Sleep mode during one scan cycle, as Figure 4 shows. The average current consumption is
approximately 6.5 pA.

Figure 5. Timing Diagram With Touch

Active --- --- ---
=
g
5 Sleep_ Ul
(]
Average
current
~220 uA
Deep-Sleep
~20 mS

~1.8mS
Time

Note: PSoC 4000 devices have ILO tolerance ranging from -50% to 100%. Therefore, Deep-Sleep times mentioned

in Figure 4 and Figure 5 may vary from device to device. Also, if SmartSense is used, Active times vary depending on
the sensor parasitic capacitance (Cp).

Since the touchpad comprises multiple row and column sensors, the device periodically switches between Active and

Sleep modes during the scan of the touchpad widget. The average current consumption is approximately 220 pA
when a finger is present on the touchpad.

The actual power consumption depends on the percentage of time a finger is present on the widgets. For example if

this project spends 1% of time with finger touch and 99% of time on standby, the average current consumption
becomes 28.5 pA.

WWW.Cypress.com Document No. 001-90114 Rev. *B 10

http://www.cypress.com/

& CYPRESS

-

EMBEDDED IN TOMORROW ™ PSoC® 4000 Family Low-Power System Design Techniques

5.1

Note: The touchpad widget has inherently high scan times due to the large number of sensors and high-parasitic
capacitance. The power numbers can vary depending on the type of sensors used in a design. For example, if you
use four buttons instead of the touchpad, the current consumption (for 1% finger touch) can be lower than 15 pA.

A Ul with just one button can have a current consumption lower than 5 pA. In this case, extra widgets such as
proximity sensors or ganged sensors are not required.

Testing the Project

You can test this project using CY8CKIT-040, which comes with a baseboard and a 6x5 trackpad shield. The
trackpad is assigned a resolution of 100 in x and y directions. This means that CapSense can recognize 100 different
points of touch in each direction (x and y).

PSoC sends the output data using a software UART component. You can use the Bridge Control Panel (BCP)
software provided with PSoC Creator, along with the KitProg USB-UART bridge in CY8CKIT-040, to view the output.

1. Open, build, and program the project “Low-Power CapSense with Periodic Scan” to CY8CKIT-040.
2. Open the BCP by choosing Start menu > Programs > Cypress > Bridge Control Panel > Bridge Control

Panel.
3. Connect to the COM port with the highest number, displayed in the Connected I2C/SPI/RX8 Ports, as Figure 6
shows.
Figure 6. Connecting to the USB-UART Bridge
Select Port in the PortList, then try to connect =

Opening Port
Successfully Connected to COM24
COM24 Serial Port

| Connected 126/SPIRXE Pors: | o orotocol
- KitProg/191607A0032C2400 ower EEE
4] B 7 e OM?24 4p
[IE @ @) RX8 (UART)
i=1 | Syntax : OK ‘ _ _______ : _______ Voltage: -

4. Open the UART configuration window from the menu by choosing Tools > Protocol Configuration and select
the RX8 (UART) tab. Configure the parameters as Figure 7 shows.

Figure 7. UART Protocol Configuration

E
SPI | 2C | RX8(UART)
Bit rate (bps): [115.200 |
Data bits: [8 vl
Parity type: [None vl
Stop bit [One ~|
Flow control: None -
l OK] l Cancel]

5. Open the variable configuration window from the menu by choosing Chart > Variable Settings and configure
two variables, xPos and yPos, as Figure 8 shows.

WWW.Cypress.com Document No. 001-90114 Rev. *B 11

http://www.cypress.com/
http://www.cypress.com/?rID=94456

w# CYPRESS

> EMBEDDED IN TOMORROW™ PSoC® 4000 Family Low-Power System Design Techniques

Figure 8. Variable Configuration

{i Variable Settings g X
Variables Flags

N Active WVariable Name Tvoe
xPos int

yPos int

War3 byte
Vard byte
Varb byte
Varb byte
Var? byte
Vard byte
Vard byte
Varll byte

Print packet every @) AxisXis a count Auto Range of AxisY

Seroll () AxisX is atime Min |D ‘ Max ‘599

Colar
Black
Blue
Lime
Red
BlueViolet
LawnGreen
Magenta
Qlive
MidnightBlue
Oranage

<

2
3
4
5
6
7
3
9

i
0000000 0OF Ele
o oo oo oo ofleo

-
(=]

Load...] ’ Save.. l ’ g/ OK l IXCancei]

6. Type the command rx8 [h=c8] @xPos @yPos in the BCP Editor window, and click the Repeat button, as
Figure 9 shows.

Figure 9. Entering and Sending a Command

m Bridge Control Pan: =

File Editor Chart Execute Tools Help
SeWERR | CEEEE
| Editor [Chan | Table| File |

rx8 [h=cB8] (@xPos @QyPos I o

Opening Port
Successfully Connected to COM24
COM24 Serial Port

Connected I2C/SPI/RX8 Ports:

ce Power Pratocol
‘ @ Reset oy m p— ‘ Send all srlllnga D KnPrui;ﬂNSD?A(}DBZCZM}D “’ =rn @ 12c
‘ [Stop IH ¥ Repeat || &) Tofile] R : ——— (o)l

Scan period, ms: ‘ @ ‘ - (@) RX8 (UART)
1:23 | syntax: oK [ctoess Rate-12 smpys [ICONRGGRAY Vottage: - A

7. Select the Chart Mode Bar Graph in the BCP Chart window, as Figure 10 shows. Touch the trackpad shield to
observe the (x,y) coordinates of the finger touch on the BCP.

WWW.Cypress.com Document No. 001-90114 Rev. *B 12

http://www.cypress.com/

~

w# CYPRESS

> EMBEDDED IN TOMORROW™ PSoC® 4000 Family Low-Power System Design Techniques

Figure 10. Viewing the Output

File Editor Chart Execute Tools Help
FRE AR CE|EER
|[Editor | Chart | Table [File

100 Select All
¥ ——xPos
a0
v yPos
80

70

60

50

40

30

@) Linear
(©) Log10

w w
o o
o o
E3 >
Flags Chart Quality Chart Mode
gf0 gfl gf2 gf3 gf4 gf5 gfé6 gf7 gf8 gf? gfA gfB gfc gfD gfE gfF (@ High () Line Plot
() Normal @ Bar Graph
Connected [2C/SPI/RXS Poris:
KitProg/191607A0032C2400
@ = B e EE———
Froes | ® %
[1:23 [syntax: 0k [Ct-1018 Rate=39 smp/ACORReGtedl | Votage: -

5.1.1 Kit Settings for Power Measurement
CY8CKIT-040 provides a power measurement jumper, J13, to measure the power consumed by the PSoC 4 device
exclusively. You can remove this jumper and connect an ammeter across its terminals to measure the power
consumed by the device.

5.2 Modifying the Example Project

You can easily modify the example project to suit your application. If you are using a custom PCB with a widget other
than touchpad, follow these steps:

1.

Open the CapSense Component, remove the touchpad widget, and add the required widgets. Refer to Section
5.1.2 of the PSoC 4 CapSense Design Guide to understand the configuration of CapSense widgets.

Reassign the pins in the PSoC Creator design-wide resources (cydwr) file according to the PCB you are using.

Retune the CapSense widgets including any ganged sensors in the project. Refer to Section 5.2 of the
CapSense Design Guide to understand how to tune CapSense widgets.

Replace CapSense widget APIs according to the widgets used. See the CapSense Component datasheet (right
click on the Component and select “Open Datasheet”) for a list of APIs related to each widget.

Follow these steps to use a dedicated proximity sensor instead of a ganged sensor:

1.

2.
3.

Open the CapSense Component, select the proximity widget, and set the number of dedicated proximity
elements to '1’.. Uncheck all the other sensors that are included in the proximity widget. Refer to sections 5.1.2
and 5.1.3 of the CapSense Design Guide for more details.

Reassign the pins in the PSoC Creator design-wide resources (cydwr) file according to the PCB you are using.

Retune the proximity sensor.

Follow these steps to interface the project with a host that uses an I°C master:

1.

Go to the “I°C” tab in the TopDesign window and configure the 1°C component according the requirements of the
host that you are using.

WWW.Cypress.com Document No. 001-90114 Rev. *B 13

http://www.cypress.com/
http://www.cypress.com/?rid=78578

A

w# CYPRESS

- EMBEDDED IN TOMORROW

PSoC® 4000 Family Low-Power System Design Techniques

2. Change the value of “I2C_ENABLE” macro in the main.h file to ’1’.

The project is configured to interrupt the host after a scan is finished. The host can then read the touch
coordinates as two 8-bit integers, from the I2C buffer. You can modify the main.c according to the requirements
of the host used.

Note: Unlike other interrupts, the 1°c component uses the [12C_Slave_SetCustominterruptHandler() API for
entering user code into the I°C ISR. Refer to the 1°C component datasheet (right click on the Component and
select “open datasheet”) for more details.

You can also refer to the 1°C example projects (right click on the Component and select “find example project”)
for firmware examples.

3. Reassign the pins in the PSoC Creator design-wide resources (cydwr) file if required. Make sure that host
interrupt and I°Cc pins are properly connected to the host.

6 Summary

AN90114 introduced the low-power modes offered by the PSoC 4000 family and explained the methods to design
low-power systems. Major topics included device power modes and system-level power reduction techniques.

Finally, the example project demonstrated how to achieve very low-power consumption while maintaining a good
touch response in CapSense based applications.

Power consumption can make the difference between a good idea and a successful design. By taking advantage of
the many power-saving features available in PSoC 4, you can optimize your design and help ensure that it consumes
the lowest amount of power possible.

7 Related Application Notes

B AN86233 — PSoC® 4 Low-Power Modes and Power Reduction Techniques

m AN77900 — PSoC® 3 and PSoC 5LP Low-Power Modes and Power Reduction Techniques
m AN79953 — Getting Started with PSoC® 4

B AN90799 — PSoC® 4 Interrupts

m PSoC 4® CapSense Design Guide

About the Authors

Name: Nidhin M S
Title: Applications Engineer
Background: Nidhin graduated from GEC Thrissur with a Bachelor's degree in Electronics and

Communication Engineering. His technical interests are analog signal processing, low-power
design, and capacitive touch sensing.

Name: Ranjith M
Title: Applications Engineer Senior
Background: Ranjith graduated from GEC, Thrissur with a Bachelor's Degree in Electronics and

Communications Engineering.

WWW.Cypress.com Document No. 001-90114 Rev. *B 14

http://www.cypress.com/
http://www.cypress.com/?rID=78797
http://www.cypress.com/?rID=64554
http://www.cypress.com/?rID=78695
http://www.cypress.com/?rID=95069
http://www.cypress.com/?rid=78578

& CYPRESS

> EMBEDDED IN TOMORROW® PSoC® 4000 Family Low-Power System Design Techniques

Document History

Document Title: AN90114 - PSoC® 4000 Family Low-Power System Design Techniques
Document Number: 001-90114

Revision ECN Orig. of Submission Description of Change
Change Date
ki 4396284 RNJT 06/05/2014 New Application Note
*A 5700260 RNJT 04/26/2017 Updated logo and copyright
*B 5767361 VKVK 06/13/2017 Added a note to Figure 5
Updated template

WWW.Cypress.com Document No. 001-90114 Rev. *B 15

http://www.cypress.com/

EMBEDDED IN TOMORROW™

& CYPRESS

PSoC® 4000 Family Low-Power System Design Techniques

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products PSoC® Solutions

ARM® Cortex® Microcontrollers cypress.com/arm PSoC 1| PSoC 3| PSoC 4 | PSoC 5LP | PSoC 6
Automotive cypress.com/automotive Cypress Developer Community
Clocks & Buffers cypress.com/clocks ‘ _
Interface cypress.com/interface -Fr?;;,lim]z || VCVé(rlnignleOn'lt'sForums | Projects | Videas | Blogs |
Internet of Things cypress.com/iot .

Memory cypress.com/memory Technical Support

Microcontrollers cypress.com/mcu cypress.com/support

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

A 0 Cypress Semiconductor
- CYP R E S s 198 Champion Court
y 4 San Jose, CA 95134-1709

- EMBEDDED IN TOMORROW™

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmaodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

WWWw.Cypress.com Document No. 001-90114 Rev. *B 16

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	Power Modes
	Active
	Sleep
	Deep-Sleep
	Mode Entry and Wakeup Sources

	Low-Power System Design Considerations - General
	Turn Off Unused Components
	GPIOs in Low Power
	Is Your Debug Interface Running?
	Run Components at a Lower Speed
	Dynamically Switching the Power Modes
	Watchdog Timer
	GPIO Interrupt
	I2C Address Match

	Low-Power System Design Considerations - CapSense
	Use Deep-Sleep Mode Between Scans
	Periodic Scan Using WDT
	Using Proximity Sensor or Ganged Sensors

	Enter and Remain in Sleep Mode During CapSense Scan
	Reduce Scan Time

	Example Project: Low-Power CapSense With Periodic Scan
	Testing the Project
	Kit Settings for Power Measurement

	Modifying the Example Project

	Summary
	Related Application Notes
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

