
Introduction
This document is intended to provide information on the use and configuration of ST’s LSM6DSO embedded Finite State
Machine.

The LSM6DSO can be configured to generate interrupt signals activated by user-defined motion patterns. For this purpose, up
to 16 embedded finite state machines can be programmed independently for motion detection.

LSM6DSO: Finite State Machine

AN5226

Application note

AN5226 - Rev 1 - January 2019
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/lsm6dso

1 Finite State Machine (FSM)

1.1 Finite State Machine definition
A Finite State Machine (FSM) is a mathematical abstraction used to design logic connections. It is a behavioral
model composed of a finite number of states and transitions between states, similar to a flowchart in which it is
possible to inspect the way logic runs when certain conditions are met. The state machine begins with a Start
state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state
(called Stop state). The current state is determined by the past states of the system. The following figure depicts
the flow of a generic state machine.

Figure 1. Generic state machine

START STATE

STATE #1
Condition 1 satisfied?

STATE #2
Condition 2 satisfied?

STATE #3
Condition 3 satisfied?

STOP STATE

Yes

Yes

Yes

Yes

No

No

No

AN5226
Finite State Machine (FSM)

AN5226 - Rev 1 page 2/67

1.2 Finite State Machine in the LSM6DSO
The LSM6DSO works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate
output data; it is also possible to connect an external sensor (e.g. magnetometer) by using the sensor hub feature
(Mode 2). All these data can be used as input of up to 16 programs in the embedded Finite State Machine (refer
to the following figure).

Figure 2. State machine in the LSM6DSO

ACC [LSB]
GYR [LSB]

EXT. SENSOR (MAG) [LSB]
(optional)

DEVICE SIGNAL
CONDITIONING FSM FSM Output

The FSM structure is highly modular: it is possible to easily write up to 16 programs, each one able to recognize a
specific gesture.
All 16 finite state machines are independent: each one has its dedicated memory area and it is independently
executed. An interrupt is generated when the end state is reached or when some specific command is performed.
Typically, the interrupt is generated when a specific gesture is recognized.

AN5226
Finite State Machine in the LSM6DSO

AN5226 - Rev 1 page 3/67

2 Signal Conditioning block

The Signal Conditioning block is shown in the following figure and it is used as the interface between incoming
sensor data and the FSM block. This block is needed to convert the output sensor data (represented in [LSB])
with the following unit conventions:
• accelerometer data in [g];
• gyroscope data in [rad/sec];
• external sensor: if it’s a magnetometer, data have to be converted to [G].

Figure 3. Signal Conditioning block

ACC [LSB]
GYR [LSB]

EXT. SENSOR (MAG) [LSB]

SENSITIVITIES NORM

SIGNAL CONDITIONING

ACCv [g]
GYRv [rad/sec]

EXT. SENSOR (MAG)v [G]

This block is intended to apply the sensitivity to [LSB] input data, and then convert these data in HFP format
before passing them to the FSM block. In greater detail:
• LSM6DSO's accelerometer data conversion factor is automatically handled by the device;
• LSM6DSO's gyroscope data conversion factor is automatically handled by the device;
• external sensor data conversion factor is not automatically handled by the device: the user has to follow the

procedure below in order to set properly the (e.g.) magnetometer conversion factor in the device. Please
note that magnetometer data have to be converted in [G], expressed in HFP format.

Example: LIS2MDL magnetometer sensitivity is 1.5 mG/LSB → 0.0015 G/LSB → 1624h HFP; this is the default
external sensor sensitivity value for the LSM6DSO device.
Procedure to apply the correct conversion factor for the external magnetometer data:

1. Write 80h to register 01h // Enable embedded function registers access

2. Write 40h to register 17h // PAGE_RW (17h) = ‘40h’: enable write operation

3. Write 01h to register 02h // PAGE_SEL (02h) = ‘01h’: select embedded advanced features registers page 0

4. Write BAh to register 08h // PAGE_ADDRESS (08h) = ‘BAh’ (MAG_SENSITIVITY_L address)

5. Write [LSB] conversion factor

(LIS2MDL example, 24h) to register 09h

// Write [LSB] conversion factor value to register MAG_SENSITIVITY_L (BAh)

6. Write [MSB] conversion factor

(LIS2MDL example, 16h) to register 09h

// Write [MSB] conversion factor value to register MAG_SENSITIVITY_H (BBh)

7. Write 01h to register 02h // PAGE_SEL (02h) = ‘01h’: select embedded advanced features registers page 0

8. Write 00h to register 17h // PAGE_RW (17h) = ‘00h’: disable read / write operation

9. Write 00h to register 01h // Disable embedded function registers access

In addition to the conversion to HFP format, the Signal Conditioning block computes the norm of the input data,
defined as follows: V = x2 + y2 + z2
The norm of the input data can be used in the state machine programs, in order to guarantee a high level of
program customization for the user.

AN5226
Signal Conditioning block

AN5226 - Rev 1 page 4/67

3 FSM block

Output data signals coming from the Signal Conditioning block are sent to the FSM block which is detailed in the
following figure. The FSM block is mainly composed of:
• a general FSM configuration block: it affects all programs and includes some registers that have to be

properly initialized in order to configure and customize the entire FSM block;
• a maximum of 16 configurable programs: each program processes input data and generates an output.

Figure 4. FSM block

ACCv [g]
GYRv [rad/sec]

EXT. SENSOR (MAG)v [G]

CONFIGURATION

FSM

PROGRAM16 Output

PROGRAM1
PROGRAM2 Output

PROGRAM1 Output

PROGRAM2

PROGRAM16

FSM configuration and program blocks are described in the following sections.

AN5226
FSM block

AN5226 - Rev 1 page 5/67

3.1 Configuration block
The Configuration block is composed of a set of registers involved in the FSM configuration (FSM ODR,
interrupts, programs configuration, etc.).
The embedded function registers can be used to properly configure the FSM: these registers are accessible when
the FUNC_CFG_EN bit is set to ‘1’ and the SHUB_REG_ACCESS bit is set to ‘0’ in the FUNC_CFG_ACCESS
(01h) register.
The LSM6DSO device is provided with an extended number of registers inside the embedded function register
set, called embedded advanced features registers, that are divided in pages. A specific read / write procedure
must be followed to access the embedded features registers. Registers involved in this specific procedure are the
following:
• PAGE_SEL (02h): it selects the desired page;
• PAGE_ADDRESS (08h): it selects the desired register address in the selected page;
• PAGE_VALUE (09h): it sets the value to be written in the selected register (only in write operation);
• PAGE_RW (17h): it is used to select the read / write operation.

The script below shows the generic procedure to write a YYh value in the register having address XXh inside the
page number Z of the embedded features registers set:

1. Write 80h to register 01h // Enable embedded function registers access

2. Write 40h to register 17h // PAGE_RW (17h) = ‘40h’: enable write operation

3. Write Z1h to register 02h // PAGE_SEL (02h) = ‘Z1h’: select embedded advanced features registers page Z

4. Write XXh to register 08h // PAGE_ADDRESS (08h) = ‘XXh’: XXh is the address of the register to be configured

5. Write YYh to register 09h // PAGE_VALUE (09h) = ‘YYh’: YYh is the value to be written

6. Write 01h to register 02h // PAGE_SEL (02h) = ‘01h’: select embedded advanced features registers page 0. This is
needed for the correct operation of the device.

7. Write 00h to register 17h // PAGE_RW (17h) = ‘00h’: disable read / write operation

8. Write 00h to register 01h // Disable embedded function registers access

Note: After a write transaction, the PAGE_ADDRESS (08h) register is automatically incremented.
Program configurations must be written in the embedded advanced features registers, starting from the register
address indicated by the FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh) registers. All programs
have to be written in consecutive registers, including two important aspects:
• both the PAGE_SEL (02h) register and PAGE_ADDRESS (08h) register have to be properly updated when

moving from one page to another (i.e. when passing from page 03h, address FFh to page 04h, address
00h). The LSM6DSO device provides 8 pages that can be addressed through the PAGE_SEL (02h) register.
To address the last page, PAGE_SEL (02h) has to be set to 71h;

• program SIZE byte must be an even number: if it is odd, an additional STOP state has to be added at the
end of the instruction section.

For a detailed example on how to configure the entire FSM, refer to Section 8 FSM configuration example.

AN5226
Configuration block

AN5226 - Rev 1 page 6/67

3.1.1 FSM registers
The table given below provides a list of the registers related to the FSM and the corresponding addresses.

Table 1. FSM registers

Register name Type Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

EMB_FUNC_STATUS
_MAINPAGE r 35h IS_FSM_LC 0 - - - 0 0 0

FSM_STATUS_A
_MAINPAGE r 36h IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

FSM_STATUS_B
_MAINPAGE r 37h IS_FSM16 IS_FSM15 IS_FSM14 IS_FSM13 IS_FSM12 IS_FSM11 IS_FSM10 IS_FSM9

3.1.1.1 EMB_FUNC_STATUS_MAINPAGE (35h)

The EMB_FUNC_STATUS_MAINPAGE (35h) register contains interrupt status information about the long
counter.

Table 2. EMB_FUNC_STATUS_MAINPAGE (35h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IS_FSM_LC 0 - - - 0 0 0

The IS_FSM_LC bit is automatically set to ‘1’ when the current long counter value, available in the embedded
functions FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) registers, is equal to the long
counter timeout value configured in the FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_ TIMEOUT_H (7Bh) registers.

3.1.1.2 FSM_STATUS_A_MAINPAGE (36h)
The FSM_STATUS_A_MAINPAGE (36h) register contains interrupt status information about programs 1-8.

Table 3. FSM_STATUS_A_MAINPAGE (36h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

The IS_FSMx bit is set to ‘1’ when the OUTC / CONT / CONTREL command is performed in FSM programX.
Refer to the dedicated chapter / paragraph for additional details about these commands.

3.1.1.3 FSM_STATUS_B_MAINPAGE (37h)
The FSM_STATUS_B_MAINPAGE (37h) register contains interrupt status information about programs 9-16.

Table 4. FSM_STATUS_B_MAINPAGE (37h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IS_FSM16 IS_FSM15 IS_FSM14 IS_FSM13 IS_FSM12 IS_FSM11 IS_FSM10 IS_FSM9

The IS_FSMx bit is set to ‘1’ when the OUTC / CONT / CONTREL command is performed in FSM programX.
Refer to the dedicated chapter / paragraph for additional details about these commands.

AN5226
Configuration block

AN5226 - Rev 1 page 7/67

3.1.2 FSM embedded function registers

Table 5. Embedded function registers

Register name Type Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

EMB_FUNC_EN_B r/w 05h 0(1) 0(1) 0(1) - - 0(1) 0(1) FSM_EN

EMB_FUNC_INT1 r/w 0Ah INT1_FSM _LC(2) 0(1) - - - 0(1) 0(1) 0(1)

FSM_INT1_A r/w 0Bh INT1_FSM8(2) INT1_FSM7(2) INT1_FSM6(2) INT1_FSM5(2) INT1_FSM4(2) INT1_FSM3(2) INT1_FSM2(2) INT1_FSM1(2)

FSM_INT1_B r/w 0Ch INT1_FSM16(2) INT1_FSM15(2) INT1_FSM14(2) INT1_FSM13(2) INT1_FSM12(2) INT1_FSM11(2) INT1_FSM10(2) INT1_FSM9(2)

EMB_FUNC_INT2 r/w 0Eh INT2_FSM_LC(3) 0(1) - - - 0(1) 0(1) 0(1)

FSM_INT2_A r/w 0Fh INT2_FSM8(3) INT2_FSM7(3) INT2_FSM6(3) INT2_FSM5(3) INT2_FSM4(3) INT2_FSM3(3) INT2_FSM2(3) INT2_FSM1(3)

FSM_INT2_B r/w 10h INT2_FSM16(3) INT2_FSM15(3) INT2_FSM14(3) INT2_FSM13(3) INT2_FSM12(3) INT2_FSM11(3) INT2_FSM10(3) INT2_FSM9(3)

EMB_FUNC_STATUS r 12h IS_FSM_LC 0 - - - 0 0 0

FSM_STATUS_A r 13h IS_FSM_8 IS_FSM_7 IS_FSM_6 IS_FSM_5 IS_FSM_4 IS_FSM_3 IS_FSM_2 IS_FSM_1

FSM_STATUS_B r 14h IS_FSM_16 IS_FSM_15 IS_FSM_14 IS_FSM_13 IS_FSM_12 IS_FSM_11 IS_FSM_10 IS_FSM_9

PAGE_RW r/w 17h EMB_FUNC_LIR - - 0 0 0 0 0

FSM_ENABLE_A r/w 46h FSM8_EN FSM7_EN FSM6_EN FSM5_EN FSM4_EN FSM3_EN FSM2_EN FSM1_EN

FSM_ENABLE_B r/w 47h FSM16_EN FSM15_EN FSM14_EN FSM13_EN FSM12_EN FSM11_EN FSM10_EN FSM9_EN

FSM_LONG_COUNTER_L r 48h FSM_LC7 FSM_LC6 FSM_LC5 FSM_LC4 FSM_LC3 FSM_LC2 FSM_LC1 FSM_LC0

FSM_LONG_COUNTER_H r 49h FSM_LC15 FSM_LC14 FSM_LC13 FSM_LC12 FSM_LC11 FSM_LC10 FSM_LC9 FSM_LC8

FSM_LONG_COUNTER_CLEAR r/w 4Ah 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) FSM_LC
_CLEARED(4)

FSM_LC
_CLEAR

FSM_OUTS1 r 4Ch P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS2 r 4Dh P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS3 r 4Eh P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS4 r 4Fh P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS5 r 50h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS6 r 51h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS7 r 52h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS8 r 53h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS9 r 54h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS10 r 55h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS11 r 56h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS12 r 57h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS13 r 58h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS14 r 59h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS15 r 5Ah P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS16 r 5Bh P_X N_X P_Y N_Y P_Z N_Z P_V N_V

EMB_FUNC_ODR_CFG_B r/w 5Fh 0(1) 1(5) 0(1) FSM_ODR1 FSM_ODR0 0(1) 1(5) 1(5)

FSM_INIT r/w 67h 0(1) 0(1) 0(1) 0(1) - 0(1) 0(1) FSM_INIT

1. This bit must be set to ‘0’ for the correct operation of the device.
2. This bit is effective if INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1’.
3. This bit is effective if INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to '1'.
4. Read-only bit.
5. This bit must be set to '1' for the correct operation of the device.

AN5226
Configuration block

AN5226 - Rev 1 page 8/67

3.1.2.1 EMB_FUNC_EN_B (05h)

The EMB_FUNC_EN_B (05h) register is used to enable the FSM embedded functionality.

Table 6. EMB_FUNC_EN_B (05h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 0 0 - - 0 0 FSM_EN

The FSM_EN bit is used to enable the FSM. When this bit is set to ‘1’, all enabled FSM programs start the
execution.

3.1.2.2 EMB_FUNC_INT1 (0Ah)
The EMB_FUNC_INT1 (0Ah) register is used to route the FSM long counter interrupt on the INT1 pin: set the
INT1_FSM_LC bit to ‘1’ in order to enable routing.

Table 7. EMB_FUNC_INT1 (0Ah) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

INT1_
FSM_LC 0 - - - 0 0 0

The INT1_FSM_LC bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1’.

3.1.2.3 FSM_INT1_A (0Bh)
The FSM_INT1_A (0Bh) register is used for routing the FSM program 1-8 interrupts on the INT1 pin.

Table 8. FSM_INT1_A (0Bh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

INT1_FSM8 INT1_FSM7 INT1_FSM6 INT1_FSM5 INT1_FSM4 INT1_FSM3 INT1_FSM2 INT1_FSM1

These bits are effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1’.
Each bit on this register enables a signal to be carried on INT1. The pin’s output will supply the OR combination of
the selected signals.

3.1.2.4 FSM_INT1_B (0Ch)
The FSM_INT1_B (0Ch) register is used for routing the FSM program 9-16 interrupts on the INT1 pin.

Table 9. FSM_INT1_B (0Ch) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

INT1_FSM16 INT1_FSM15 INT1_FSM14 INT1_FSM13 INT1_FSM12 INT1_FSM11 INT1_FSM10 INT1_FSM9

These bits are effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1’.
Each bit on this register enables a signal to be carried on INT1. The pin’s output will supply the OR combination of
the selected signals.

AN5226
Configuration block

AN5226 - Rev 1 page 9/67

3.1.2.5 EMB_FUNC_INT2 (0Eh)
The EMB_FUNC_INT2 (0Eh) register is used for routing the FSM long counter interrupt on the INT2 pin: set the
INT2_FSM_LC bit to ‘1’ in order to enable routing.

Table 10. EMB_FUNC_INT2 (0Eh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

INT2_
FSM_LC 0 - - - 0 0 0

These bits are effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to ‘1’.

3.1.2.6 FSM_INT2_A (0Fh)
The FSM_INT2_A (0Fh) register is used for routing the FSM program 1-8 interrupts on the INT2 pin.

Table 11. FSM_INT2_A (0Fh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

INT2_FSM8 INT2_FSM7 INT2_FSM6 INT2_FSM5 INT2_FSM4 INT2_FSM3 INT2_FSM2 INT2_FSM1

These bits are effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to ‘1’.
Each bit on this register enables a signal to be carried on INT2. The pin’s output will supply the OR combination of
the selected signals.

3.1.2.7 FSM_INT2_B (10h)
The FSM_INT2_B (10h) register is used for routing the FSM program 9-16 interrupts on the INT2 pin.

Table 12. FSM_INT2_B (10h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

INT2_FSM16 INT2_FSM15 INT2_FSM14 INT2_FSM13 INT2_FSM12 INT2_FSM11 INT2_FSM10 INT2_FSM9

These bits are effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to ‘1’.
Each bit on this register enables a signal to be carried on INT2. The pin’s output will supply the OR combination of
the selected signals.

AN5226
Configuration block

AN5226 - Rev 1 page 10/67

3.1.2.8 EMB_FUNC_STATUS (12h)
The EMB_FUNC_STATUS (12h) register contains interrupt status information about the long counter.

Table 13. EMB_FUNC_STATUS (12h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IS_FSM_LC 0 - - - 0 0 0

The IS_FSM_LC bit is automatically set to ‘1’ when the current long counter value, available in the
FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) registers, is equal to the long counter
timeout value configured in the FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_ TIMEOUT_H (7Bh) registers.

3.1.2.9 FSM_STATUS_A (13h)
The FSM_STATUS_A (13h) register contains interrupt status information about programs 1-8.

Table 14. FSM_STATUS_A (13h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

The IS_FSMx bit is set to ‘1’ when the OUTC / CONT / CONTREL command is performed in FSM programX.
Refer to the dedicated chapter / paragraph for additional details about these commands.

3.1.2.10 FSM_STATUS_B (14h)
The FSM_STATUS_B (14h) register contains interrupt status information about programs 9-16.

Table 15. FSM_STATUS_B (14h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IS_FSM16 IS_FSM15 IS_FSM14 IS_FSM13 IS_FSM12 IS_FSM11 IS_FSM10 IS_FSM9

The IS_FSMx bit is set to ‘1’ when the OUTC / CONT / CONTREL command is performed in FSM programX.
Refer to the dedicated chapter / paragraph for additional details about these commands.

3.1.2.11 PAGE_RW (17h)
The PAGE_RW (17h) register is used to change the FSM interrupt from pulsed (default) to latched.

Table 16. PAGE_RW (17h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

EMB_
FUNC_LIR - - 0 0 0 0 0

AN5226
Configuration block

AN5226 - Rev 1 page 11/67

3.1.2.12 FSM_ENABLE_A (46h)
The FSM_ENABLE_A (46h) register is used for enabling programs 1-8 of the FSM.

Table 17. FSM_ENABLE_A (46h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM8_EN FSM7_EN FSM6_EN FSM5_EN FSM4_EN FSM3_EN FSM2_EN FSM1_EN

3.1.2.13 FSM_ENABLE_B (47h)
The FSM_ENABLE_B (47h) register is used for enabling programs 9-16 of the FSM.

Table 18. FSM_ENABLE_B (47h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM16_EN FSM15_EN FSM14_EN FSM13_EN FSM12_EN FSM11_EN FSM10_EN FSM9_EN

3.1.2.14 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)
The FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) registers are used to read / write the
long counter value. Refer to Section 3.1 Configuration block for information about how to access these registers.

Table 19. FSM_LONG_COUNTER_L (48h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_LC7 FSM_LC6 FSM_LC5 FSM_LC4 FSM_LC3 FSM_LC2 FSM_LC1 FSM_LC0

Table 20. FSM_LONG_COUNTER_H (49h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_LC15 FSM_LC14 FSM_LC13 FSM_LC12 FSM_LC11 FSM_LC10 FSM_LC9 FSM_LC8

3.1.2.15 FSM_LONG_COUNTER_CLEAR (4Ah)
The FSM_LONG_COUNTER_CLEAR (4Ah) register is used to reset the FSM long counter value.

Table 21. FSM_LONG_COUNTER_CLEAR (4Ah) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 0 0 0 0 0 FSM_LC_
CLEARED(1)

FSM_LC_
CLEAR

1. Read-only bit.

Set the FSM_LC_CLEAR bit to ‘1’ to reset the value of the FSM_LONG_COUNTER_L (48h) and
FSM_LONG_COUNTER_H (49h) registers the next time an INCR command is performed. When the long counter
reset is done, the FSM_LC_CLEARED bit is automatically set to ‘1’. Refer to Section 5.1 Long Counter.

AN5226
Configuration block

AN5226 - Rev 1 page 12/67

3.1.2.16 FSM_OUTS[1:16] (4Ch - 5Bh)
FSM[1:16] output register.

Table 22. FSM_OUTS[1:16] (4Ch - 5Bh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P_X N_X P_Y N_Y P_Z N_Z P_V N_V

These are read-only registers, one for each state machine, that contain the current active temporary mask value
updated when the OUTC / CONT / CONTREL command is performed.

3.1.2.17 EMB_FUNC_ODR_CFG_B (5Fh)
The EMB_FUNC_ODR_CFG_B (5Fh) register is used to configure the ODR of the FSM (FSM_ODR[1:0] bits).

Table 23. EMB_FUNC_ODR_CFG_B (5Fh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 1 0 FSM_ODR1 FSM_ODR0 0 1 1

All the programs are executed at this configured rate. See Section 6.6 Decimator in Section 6 Variable Data
section for information about how to run programs at different data rates.
Possible ODR configurations are listed in the following table.

Table 24. FSM output data rate

FSM_ODR[1:0] ODR [Hz]

00 12.5

01 26

10 52

11 104

3.1.2.18 FSM_INIT (67h)
The FSM_INIT (67h) register is used to reset the FSM programs to their default configuration.

Table 25. FSM_INIT (67h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 0 0 0 - 0 0 FSM_INIT

The FSM_INIT bit is used to trigger a new “Start Routine” request. When this bit is set to ‘1’, the device executes
the start routine, described in Section 9 Start routine. When the start routine is completed, the FSM_INIT bit is
automatically set to ‘0’.
In addition, this bit automatically goes to ‘1’ when the FSM_EN bit of EMB_FUNC_EN_B (05h) register is set to ‘0’
(and is reset to ‘0’ when the start routine is completed).

3.1.3 FSM embedded advanced features registers
The following table provides a list of the registers for the embedded advanced features pages 0 and 1 related to
the FSM. These registers are accessible by configuring PAGE_SEL[3:0] bits in PAGE_SEL (02h).

AN5226
Configuration block

AN5226 - Rev 1 page 13/67

Table 26. FSM embedded advanced features registers

Register name Page Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SENSITIVITY_L 0 BAh MAG_SENS_L7 MAG_SENS_L6 MAG_SENS_L5 MAG_SENS_L4 MAG_SENS_L3 MAG_SENS_L2 MAG_SENS_L1 MAG_SENS_L0

MAG_SENSITIVITY_H 0 BBh MAG_SENS_H7 MAG_SENS_H6 MAG_SENS_H5 MAG_SENS_H4 MAG_SENS_H3 MAG_SENS_H2 MAG_SENS_H1 MAG_SENS_H0

MAG_OFFX_L 0 C0h MAG_OFFX_L7 MAG_OFFX_L6 MAG_OFFX_L5 MAG_OFFX_L4 MAG_OFFX_L3 MAG_OFFX_L2 MAG_OFFX_L1 MAG_OFFX_L0

MAG_OFFX_H 0 C1h MAG_OFFX_H7 MAG_OFFX_H6 MAG_OFFX_H5 MAG_OFFX_H4 MAG_OFFX_H3 MAG_OFFX_H2 MAG_OFFX_H1 MAG_OFFX_H0

MAG_OFFY_L 0 C2h MAG_OFFY_L7 MAG_OFFY_L6 MAG_OFFY_L5 MAG_OFFY_L4 MAG_OFFY_L3 MAG_OFFY_L2 MAG_OFFY_L1 MAG_OFFY_L0

MAG_OFFY_H 0 C3h MAG_OFFY_H7 MAG_OFFY_H6 MAG_OFFY_H5 MAG_OFFY_H4 MAG_OFFY_H3 MAG_OFFY_H2 MAG_OFFY_H1 MAG_OFFY_H0

MAG_OFFZ_L 0 C4h MAG_OFFZ_L7 MAG_OFFZ_L6 MAG_OFFZ_L5 MAG_OFFZ_L4 MAG_OFFZ_L3 MAG_OFFZ_L2 MAG_OFFZ_L1 MAG_OFFZ_L0

MAG_OFFZ_H 0 C5h MAG_OFFZ_H7 MAG_OFFZ_H6 MAG_OFFZ_H5 MAG_OFFZ_H4 MAG_OFFZ_H3 MAG_OFFZ_H2 MAG_OFFZ_H1 MAG_OFFZ_H0

MAG_SI_XX_L 0 C6h MAG_SI_XX_L7 MAG_SI_XX_L6 MAG_SI_XX_L5 MAG_SI_XX_L4 MAG_SI_XX_L3 MAG_SI_XX_L2 MAG_SI_XX_L1 MAG_SI_XX_L0

MAG_SI_XX_H 0 C7h MAG_SI_XX_H7 MAG_SI_XX_H6 MAG_SI_XX_H5 MAG_SI_XX_H4 MAG_SI_XX_H3 MAG_SI_XX_H2 MAG_SI_XX_H1 MAG_SI_XX_H0

MAG_SI_XY_L 0 C8h MAG_SI_XY_L7 MAG_SI_XY_L6 MAG_SI_XY_L5 MAG_SI_XY_L4 MAG_SI_XY_L3 MAG_SI_XY_L2 MAG_SI_XY_L1 MAG_SI_XY_L0

MAG_SI_XY_H 0 C9h MAG_SI_XY_H7 MAG_SI_XY_H6 MAG_SI_XY_H5 MAG_SI_XY_H4 MAG_SI_XY_H3 MAG_SI_XY_H2 MAG_SI_XY_H1 MAG_SI_XY_H0

MAG_SI_XZ_L 0 CAh MAG_SI_XZ_L7 MAG_SI_XZ_L6 MAG_SI_XZ_L5 MAG_SI_XZ_L4 MAG_SI_XZ_L3 MAG_SI_XZ_L2 MAG_SI_XZ_L1 MAG_SI_XZ_L0

MAG_SI_XZ_H 0 CBh MAG_SI_XZ_H7 MAG_SI_XZ_H6 MAG_SI_XZ_H5 MAG_SI_XZ_H4 MAG_SI_XZ_H3 MAG_SI_XZ_H2 MAG_SI_XZ_H1 MAG_SI_XZ_H0

MAG_SI_YY_L 0 CCh MAG_SI_YY_L7 MAG_SI_YY_L6 MAG_SI_YY_L5 MAG_SI_YY_L4 MAG_SI_YY_L3 MAG_SI_YY_L2 MAG_SI_YY_L1 MAG_SI_YY_L0

MAG_SI_YY_H 0 CDh MAG_SI_YY_H7 MAG_SI_YY_H6 MAG_SI_YY_H5 MAG_SI_YY_H4 MAG_SI_YY_H3 MAG_SI_YY_H2 MAG_SI_YY_H1 MAG_SI_YY_H0

MAG_SI_YZ_L 0 CEh MAG_SI_YZ_L7 MAG_SI_YZ_L6 MAG_SI_YZ_L5 MAG_SI_YZ_L4 MAG_SI_YZ_L3 MAG_SI_YZ_L2 MAG_SI_YZ_L1 MAG_SI_YZ_L0

MAG_SI_YZ_H 0 CFh MAG_SI_YZ_H7 MAG_SI_YZ_H6 MAG_SI_YZ_H5 MAG_SI_YZ_H4 MAG_SI_YZ_H3 MAG_SI_YZ_H2 MAG_SI_YZ_H1 MAG_SI_YZ_H0

MAG_SI_ZZ_L 0 D0h MAG_SI_ZZ_L7 MAG_SI_ZZ_L6 MAG_SI_ZZ_L5 MAG_SI_ZZ_L4 MAG_SI_ZZ_L3 MAG_SI_ZZ_L2 MAG_SI_ZZ_L1 MAG_SI_ZZ_L0

MAG_SI_ZZ_H 0 D1h MAG_SI_ZZ_H7 MAG_SI_ZZ_H6 MAG_SI_ZZ_H5 MAG_SI_ZZ_H4 MAG_SI_ZZ_H3 MAG_SI_ZZ_H2 MAG_SI_ZZ_H1 MAG_SI_ZZ_H0

FSM_LC_TIMEOUT_L 1 7Ah FSM_LC_TIMEOUT
7

FSM_LC_TIMEOUT
6

FSM_LC_TIMEOUT
5

FSM_LC_TIMEOUT
4

FSM_LC_TIMEOUT
3

FSM_LC_TIMEOUT
2

FSM_LC_TIMEOUT
1

FSM_LC_TIMEOUT
0

FSM_LC_TIMEOUT_H 1 7Bh FSM_LC_TIMEOUT
15

FSM_LC_TIMEOUT
14

FSM_LC_TIMEOUT
13

FSM_LC_TIMEOUT
12

FSM_LC_TIMEOUT
11

FSM_LC_TIMEOUT
10

FSM_LC_TIMEOUT
9

FSM_LC_TIMEOUT
8

FSM_PROGRAMS 1 7Ch FSM_N_PROG7 FSM_N_PROG6 FSM_N_PROG5 FSM_N_PROG4 FSM_N_PROG3 FSM_N_PROG2 FSM_N_PROG1 FSM_N_PROG0

FSM_START_ADD_L 1 7Eh FSM_START7 FSM_START6 FSM_START5 FSM_START4 FSM_START3 FSM_START2 FSM_START1 FSM_START0

FSM_START_ADD_H 1 7Fh FSM_START15 FSM_START14 FSM_START13 FSM_START12 FSM_START11 FSM_START10 FSM_START9 FSM_START8

A
N

5226 - R
ev 1

page 14/67

A
N

5226

3.1.3.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)
External magnetometer sensitivity register (r/w).

Table 27. MAG_SENSITIVITY_L (BAh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SENS_
L7

MAG_SENS_
L6

MAG_SENS_
L5

MAG_SENS_
L4

MAG_SENS_
L3

MAG_SENS_
L2

MAG_SENS_
L1

MAG_SENS_
L0

Table 28. MAG_SENSITIVITY_H (BBh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SENS_
H7

MAG_SENS_
H6

MAG_SENS_
H5

MAG_SENS_
H4

MAG_SENS_
H3

MAG_SENS_
H2

MAG_SENS_
H1

MAG_SENS_
H0

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The
register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5
exponent bits; F: 10 fraction bits). Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015
gauss/LSB (LIS2MDL magnetometer sensitivity).

3.1.3.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)
Offset for X-axis hard-iron compensation register (r/w).

Table 29. MAG_OFFX_L (C0h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_OFFX_
L7

MAG_OFFX_
L6

MAG_OFFX_
L5

MAG_OFFX_
L4

MAG_OFFX_
L3

MAG_OFFX_
L2

MAG_OFFX_
L1

MAG_OFFX_
L0

Table 30. MAG_OFFX_H (C1h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_OFFX_
H7

MAG_OFFX_
H6

MAG_OFFX_
H5

MAG_OFFX_
H4

MAG_OFFX_
H3

MAG_OFFX_
H2

MAG_OFFX_
H1

MAG_OFFX_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)
Offset for Y-axis hard-iron compensation register (r/w).

Table 31. MAG_OFFY_L (C2h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_OFFY_
L7

MAG_OFFY_
L6

MAG_OFFY_
L5

MAG_OFFY_
L4

MAG_OFFY_
L3

MAG_OFFY_
L2

MAG_OFFY_
L1

MAG_OFFY_
L0

AN5226

AN5226 - Rev 1 page 15/67

Table 32. MAG_OFFY_H (C3h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_OFFY_
H7

MAG_OFFY_
H6

MAG_OFFY_
H5

MAG_OFFY_
H4

MAG_OFFY_
H3

MAG_OFFY_
H2

MAG_OFFY_
H1

MAG_OFFY_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)
Offset for Z-axis hard-iron compensation register (r/w).

Table 33. MAG_OFFZ_L (C4h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_OFFZ_
L7

MAG_OFFZ_
L6

MAG_OFFZ_
L5

MAG_OFFZ_
L4

MAG_OFFZ_
L3

MAG_OFFZ_
L2

MAG_OFFZ_
L1

MAG_OFFZ_
L0

Table 34. MAG_OFFZ_H (C5h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_OFFZ_
H7

MAG_OFFZ_
H6

MAG_OFFZ_
H5

MAG_OFFZ_
H4

MAG_OFFZ_
H3

MAG_OFFZ_
H2

MAG_OFFZ_
H1

MAG_OFFZ_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)
Soft-iron (3x3 symmetric) matrix row1 col1 correction register (r/w).

Table 35. MAG_SI_XX_L (C6h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_XX_
L7

MAG_SI_XX_
L6

MAG_SI_XX_
L5

MAG_SI_XX_
L4

MAG_SI_XX_
L3

MAG_SI_XX_
L2

MAG_SI_XX_
L1

MAG_SI_XX_
L0

Table 36. MAG_SI_XX_H (C7h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_XX_
H7

MAG_SI_XX_
H6

MAG_SI_XX_
H5

MAG_SI_XX_
H4

MAG_SI_XX_
H3

MAG_SI_XX_
H2

MAG_SI_XX_
H1

MAG_SI_XX_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

AN5226

AN5226 - Rev 1 page 16/67

3.1.3.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)
Soft-iron (3x3 symmetric) matrix row1 col2 (and row2 col1) correction register (r/w).

Table 37. MAG_SI_XY_L (C8h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_XY_
L7

MAG_SI_XY_
L6

MAG_SI_XY_
L5

MAG_SI_XY_
L4

MAG_SI_XY_
L3

MAG_SI_XY_
L2

MAG_SI_XY_
L1

MAG_SI_XY_
L0

Table 38. MAG_SI_XY_H (C9h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_XY_
H7

MAG_SI_XY_
H6

MAG_SI_XY_
H5

MAG_SI_XY_
H4

MAG_SI_XY_
H3

MAG_SI_XY_
H2

MAG_SI_XY_
H1

MAG_SI_XY_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)
Soft-iron (3x3 symmetric) matrix row1 col3 (and row3 col1) correction register (r/w).

Table 39. MAG_SI_XZ_L (CAh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_XZ_
L7

MAG_SI_XZ_
L6

MAG_SI_XZ_
L5

MAG_SI_XZ_
L4

MAG_SI_XZ_
L3

MAG_SI_XZ_
L2

MAG_SI_XZ_
L1

MAG_SI_XZ_
L0

Table 40. MAG_SI_XZ_H (CBh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_XZ_
H7

MAG_SI_XZ_
H6

MAG_SI_XZ_
H5

MAG_SI_XZ_
H4

MAG_SI_XZ_
H3

MAG_SI_XZ_
H2

MAG_SI_XZ_
H1

MAG_SI_XZ_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)
Soft-iron (3x3 symmetric) matrix row2 col2 correction register (r/w).

Table 41. MAG_SI_YY_L (CCh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_YY_
L7

MAG_SI_YY_
L6

MAG_SI_YY_
L5

MAG_SI_YY_
L4

MAG_SI_YY_
L3

MAG_SI_YY_
L2

MAG_SI_YY_
L1

MAG_SI_YY_
L0

AN5226

AN5226 - Rev 1 page 17/67

Table 42. MAG_SI_YY_H (CDh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_YY_
H7

MAG_SI_YY_
H6

MAG_SI_YY_
H5

MAG_SI_YY_
H4

MAG_SI_YY_
H3

MAG_SI_YY_
H2

MAG_SI_YY_
H1

MAG_SI_YY_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)
Soft-iron (3x3 symmetric) matrix row2 col3 (and row3 col2) correction register (r/w).

Table 43. MAG_SI_YZ_L (CEh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_YZ_
L7

MAG_SI_YZ_
L6

MAG_SI_YZ_
L5

MAG_SI_YZ_
L4

MAG_SI_YZ_
L3

MAG_SI_YZ_
L2

MAG_SI_YZ_
L1

MAG_SI_YZ_
L0

Table 44. MAG_SI_YZ_H (CFh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_YZ_
H7

MAG_SI_YZ_
H6

MAG_SI_YZ_
H5

MAG_SI_YZ_
H4

MAG_SI_YZ_
H3

MAG_SI_YZ_
H2

MAG_SI_YZ_
H1

MAG_SI_YZ_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

3.1.3.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)
Soft-iron (3x3 symmetric) matrix row3 col3 correction register (r/w).

Table 45. MAG_SI_ZZ_L (D0h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_ZZ_
L7

MAG_SI_ZZ_
L6

MAG_SI_ZZ_
L5

MAG_SI_ZZ_
L4

MAG_SI_ZZ_
L3

MAG_SI_ZZ_
L2

MAG_SI_ZZ_
L1

MAG_SI_ZZ_
L0

Table 46. MAG_SI_ZZ_H (D1h) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MAG_SI_ZZ_
H7

MAG_SI_ZZ_
H6

MAG_SI_ZZ_
H5

MAG_SI_ZZ_
H4

MAG_SI_ZZ_
H3

MAG_SI_ZZ_
H2

MAG_SI_ZZ_
H1

MAG_SI_ZZ_
H0

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).

AN5226

AN5226 - Rev 1 page 18/67

3.1.3.11 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)
The FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh) registers are used to set the long counter
timeout register value.

Table 47. FSM_LC_TIMEOUT_L (7Ah) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_LC_

TIMEOUT7

FSM_LC_

TIMEOUT6

FSM_LC_

TIMEOUT5

FSM_LC_

TIMEOUT4

FSM_LC_

TIMEOUT3

FSM_LC_

TIMEOUT2

FSM_LC_

TIMEOUT1

FSM_LC_

TIMEOUT0

Table 48. FSM_LC_TIMEOUT_H (7Bh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_LC_

TIMEOUT16

FSM_LC_

TIMEOUT15

FSM_LC_

TIMEOUT14

FSM_LC_

TIMEOUT13

FSM_LC_

TIMEOUT12

FSM_LC_

TIMEOUT11

FSM_LC_

TIMEOUT10

FSM_LC_

TIMEOUT9

3.1.3.12 FSM_PROGRAMS (7Ch)
The FSM_PROGRAMS (7Ch) register is used to set the number of configured state machines.

Table 49. FSM_N_PROG (7Ch) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_N_

PROG7

FSM_N_

PROG6

FSM_N_

PROG5

FSM_N_

PROG4

FSM_N_

PROG3

FSM_N_

PROG2

FSM_N_

PROG1

FSM_N_

PROG0

This register must be configured coherently with configured state machines for the correct operation of the device.
The maximum allowed value is 16 (0x10).

3.1.3.13 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)
The FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh) registers are used to set the FSM program start
address.

Table 50. FSM_START_ADD_L (7Eh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_START
7

FSM_START
6

FSM_START
5

FSM_START
4

FSM_START
3

FSM_START
2

FSM_START
1

FSM_START
0

The value of this register must be set equal to ‘00h’ for the correct operation of the device.

Table 51. FSM_START_ADD_H (7Fh) register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_START
16

FSM_START
15

FSM_START
14

FSM_START
13

FSM_START
12

FSM_START
11

FSM_START
10

FSM_START
9

The value of this register must be set equal to ‘04h’ for the correct operation of the device.

AN5226

AN5226 - Rev 1 page 19/67

3.2 Program block
Output data coming from the Signal Conditioning block are sent to the FSM block, composed of 16 Program
blocks. Each Program block, as shown in the following figure, consists of:
• an Input Selector block, that selects the desired input data signal that will be processed by the program;
• a Code block, composed of the data and the instructions that will be executed.

Figure 5. Program block

ACCv [g]
GYRv [rad/sec]

EXT. SENSOR (MAG)v [G]

INPUT
SELECTOR

PROGRAMx

PROGRAMx Input PROGRAMx Output

X = 1..16

CODE
SINMUX

3.2.1 Input Selector block
The Input Selector block allows the selection of the input data signal between the following physical sensor data
signals or internally calculated data signals:
• LSM6DSO accelerometer data, with pre-computed norm (V);
• LSM6DSO gyroscope data, with pre-computed norm (V);
• external sensor (e.g. magnetometer) data, with pre-computed norm;
• internally calculated angles, with pre-computed norm (V).

The signal bandwidth of the accelerometer and gyroscope depends on the device configuration. For additional
information, please refer to AN5192 available at www.st.com. The Program block executes the configured
program (Code block) by processing the selected input signal and generating the corresponding Program Output
signals, according to the purpose of the program.
Note: SINMUX command can be used by the user inside the program instructions section to dynamically switch
the desired input signal for the Program block. Refer to SINMUX (23h) for additional and detailed information
about SINMUX command.

3.2.2 Code block
The FSM Programx Code block contains the state machine program. The structure of a single program is shown
in the following figure; it is composed of:
• a Data section, composed of a fixed part (same size for all the FSMs), and a variable part (specific size for

each FSM);
• an Instruction section, composed of conditions and commands.

Each program can generate an Interruptx signal and modify the corresponding FSM_OUTSx register value,
according to processed sample sets coming from the Inputx signal.

AN5226
Program block

AN5226 - Rev 1 page 20/67

http://www.st.com

Figure 6. FSM Programx Code structure

Interruptx

FSM_OUTSx

CODE

X = 1..16

FIXED DATA SECTION

VARIABLE DATA SECTION
PROGRAMx Input

SINMUX
INSTRUCTIONS SECTION

All FSM programs are stored consecutively in a set of reserved embedded advanced features registers, as shown
in the following figure. The maximum allowed size for each program is 256 bytes.
Note: FSMs have to be reconfigured each time the device is powered on.

Figure 7. FSM Programx memory area

Interrupt1

FSM_OUTS1

FSM Program1 Code
FIXED DATA SECTION

VARIABLE DATA SECTION
PROGRAM1 Input

SINMUX
INSTRUCTIONS SECTION

Interrupt2

FSM_OUTS2

FSM Program2 Code
FIXED DATA SECTION

VARIABLE DATA SECTION

Interrupt16

FSM_OUTS16

FSM Program16 Code
FIXED DATA SECTION

VARIABLE DATA SECTION

PROGRAM2 Input

SINMUX
INSTRUCTIONS SECTION

PROGRAM16 Input

SINMUX
INSTRUCTIONS SECTION

AN5226
Program block

AN5226 - Rev 1 page 21/67

4 FSM Interrupt

The FSM interrupt signal is generated when the end state is reached or when some specific command is
performed (OUTC / CONT / CONTREL commands). When an interrupt is generated, the corresponding
temporary mask value is transmitted to its corresponding FSM_OUTS[1:6] embedded function register.
The FSM long counter interrupt signal is generated when the long counter value, stored in the
FSM_LONG_COUNTER_L/H embedded function register, reaches the configured long counter timeout value in
FSM_LC_TIMEOUT_L/H embedded advanced features register (page 1).
The FSM interrupt and the FSM long counter interrupt signals can be checked by reading the dedicated register:
• EMB_FUNC_STATUS_MAINPAGE (35h) register and EMB_FUNC_STATUS (12h) embedded function

register for the long counter interrupt status;
• FSM_STATUS_A_MAINPAGE (36h) and FSM_STATUS_B_MAINPAGE (37h) registers or FSM_STATUS_A

(13h) and FSM_STATUS_B (14h) embedded function register for FSM interrupt status.

The FSM interrupt signal can be driven to the INT1/INT2 interrupt pin by setting the dedicated bit:
• INT1_FSM_LC/INT2_FSM_LC bit of the EMB_FUNC_INT1/EMB_FUNC_INT2 embedded function register

to 1;
• INT1_FSM[1:16]/INT2_FSM[1:16] bit of the FSM_INT1_A/FSM_INT1_B/FSM_INT2_A/FSM_INT2_B

embedded function register to 1;

Note: In both of the above cases it is mandatory to also enable the routing of the embedded functions event to the
INT1/INT2 interrupt pin by setting the INT1_EMB_FUNC/INT2_EMB_FUNC bit of the MD1_CFG/MD2_CFG
register.
The behavior of the interrupt signal is pulsed by default. The duration of the pulse depends on the faster enabled
sensor:
• If the accelerometer ODR is greater than the gyroscope ODR, the pulse duration is equal to 1/ODRXL;
• If the gyroscope ODR is greater than the accelerometer ODR, the pulse duration is equal to 1/ODRG;

Note: Minimum pulse duration is 1/104 Hz (~9.6 msec).
Latched mode can be enabled by setting the EMB_FUNC_LIR bit of the PAGE_RW (17h) embedded functions
register to 1. In this case, the interrupt signal is reset by reading:
• EMB_FUNC_STATUS_MAINPAGE (35h) register and EMB_FUNC_STATUS (12h) embedded function

registers for long counter interrupt status;
• FSM_STATUS_A_MAINPAGE (36h) and FSM_STATUS_B_MAINPAGE (37h) registers or FSM_STATUS_A

(13h) and FSM_STATUS_B (14h) embedded function registers for FSM interrupt status.

AN5226
FSM Interrupt

AN5226 - Rev 1 page 22/67

5 Fixed Data section

The Fixed Data section stores information about the Variable Data section and the Instructions section: it is
composed of six bytes and it is located at the beginning of each program. The following figure shows the structure
of the Fixed Data section.

Figure 8. Fixed Data section

NAME 7 6 5 4 3 2 1 0
0 CONFIG A NR_THRESH(1:0) NR_MASK(1:0) NR_LTIMER(1:0) NR_TIMER(1:0)

1 CONFIG B DES HYST ANGLE PAS - STOPDONE LC JMP
2 SIZE PROGRAM SIZE(7:0)
3 SETTINGS MASKSEL(1:0) SIGNED R_TAM THRS3SEL IN_SEL(2:0)
4 RESET POINTER RESET POINTER(7:0)
5 PROGRAM POINTER PROGRAM POINTER(7:0)

Note: Green colored bits have to be set according to program purposes, while red bits have to be set to ‘0’ when
the program is loaded into the embedded advanced features registers page (they are automatically configured by
the FSM logic).
The first two bytes store the amount of resources used by the program, while other bytes are used by the device
to store the program status.
• With CONFIG_A it is possible to declare:

– up to 3 thresholds (NR_THRESH bits);
– up to 3 masks (NR_MASK bits);
– up to 2 long (16 bits) timers (NR_LTIMER bits);
– up to 2 short (8 bits) timers (NR_TIMER bits).

• With CONFIG_B it is possible to declare:
– a decimation factor for incoming ODR (DES bit);
– a hysteresis value (HYST bit);
– usage of gyroscope angles, that have to be computed and stored (ANGLE bit);
– usage of previous axis signs, that have to be computed and stored (PAS bit);
– usage of the long counter, common to all state machines (LC bit).

• The SIZE parameter stores the length in bytes of the whole program (sum of Fixed Data section size,
Variable Data section size and Instruction section size). The SIZE byte must always be an even number. If
the size of the program is odd, an additional STOP state has to be added at the bottom of the Instruction
section.

• The SETTINGS parameter stores the current program status (selected mask, selected threshold, input
signal, etc…).

• The RESET POINTER (RP) and PROGRAM POINTER (PP) store respectively the reset pointer relative
address (jump address when a RESET condition is true) and the program pointer relative address (address
of the instruction under execution during the current sample time). Address 00h is referred to CONFIG_A
byte.

Note: When PP is equal to ‘0’, the device automatically runs the Start routine (refer to Section 9 Start routine for
additional information) in order to properly initialize the internal variables and parameters of the state machine.
This is mandatory for a correct operation of the device.

AN5226
Fixed Data section

AN5226 - Rev 1 page 23/67

5.1 Long Counter
The long counter is a temporary counter resource available to the user; it’s possible to increment its value, stored
in the FSM_LONG_COUNTER_L (47h) and FSM_LONG_COUNTER_H (48h) registers, by using the INCR
command.
This resource is common to all programs and does not need additional allocated resources in the Variable Data
section. In order to use the long counter resource, the LC bit of CONFIG_B byte must be set to ‘1’.
When the long counter value (FSM_LONG_COUNTER_L (47h) and FSM_LONG_COUNTER_H (48h) registers)
is equal to the configured long counter timeout value (FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H
(7Bh) registers), the IS_FSM_LC status bit of the EMB_FUNC_STATUS (12h) register is set to ‘1’.
It is possible to route this signal to the:
• INT1 pin if both the:

– INT1_FSM_LC bit of the EMB_FUNC_INT1 (0Ah) register is set to 1;
– INT1_EMB_FUNC bit of the MD1_CFG (5Eh) is set to ‘1’.

• INT2 pin if both the:
– INT2_FSM_LC bit of the EMB_FUNC_INT2 (0Eh) register is set to 1;
– INT2_EMB_FUNC bit of the MD2_CFG (5Fh) is set to ‘1’.

In order to clear the IS_FSM_LC status bit, it is necessary to set the FSM_LC_CLEAR bit of the
FSM_LONG_COUNTER_CLEAR (4Ah) register to ‘1’. The next time an INCR command is performed, the reset
procedure starts. When the reset procedure is completed, the FSM_LC_CLEARED bit of the
FSM_LONG_COUNTER_CLEAR (4Ah) register is automatically set to ‘1’. Finally, the FSM_LC_CLEAR bit of the
FSM_LONG_COUNTER_CLEAR (4Ah) register bit has to be manually reset to ‘0’.

AN5226
Long Counter

AN5226 - Rev 1 page 24/67

6 Variable Data section

The Variable Data section is located below the corresponding Fixed Data section of a program, and its size
depends on the amount of resources defined in the Fixed Data section.
Each resource enumerated in the Fixed Data section is then allocated in the Variable Data section, with proper
size and at the proper position. The following figure shows the structure of the Variable Data section.

Figure 9. Variable Data section

NAME 7 6 5 4 3 2 1 0
6

THRESH1 THRESH1(15:0)
7
8

THRESH2 THRESH2(15:0)
9
10

THRESH3 THRESH3(15:0)
11
12

HYST HYSTERESIS(15:0)
13
14 MASKA MASKA(7:0)
15 TMASKA TMASKA(7:0)
16 MASKB MASKB(7:0)
17 TMASKB TMASKB(7:0)
18 MASKC MASKC(7:0)
19 TMASKC TMASKC(7:0)
20

DELTAT DELTAT(15:0)
21
22

DX DX(15:0)
23
24

DY DY(15:0)
25
26

DZ DZ(15:0)
27
28

DV DV(15:0)
29
30

TC TC(15:0) or TC(7:0)
31
32

TIMER1 TIMER1(15:0)
33
34

TIMER2 TIMER2(15:0)
35
36 TIMER3 TIMER3(7:0)
37 TIMER4 TIMER4(7:0)
38 DEST DEST(7:0)
39 DESC DESC(7:0)
40 PAS SCTC CANGLE MSKIT MSKITEQ SIGN_X SIGN_Y SIGN_Z SIGN_V

As shown in the table above, the maximum size of the Variable Data section is 35 bytes. If the program requires
fewer resources, the size allocated for the Variable Data section is lower.
Note: The usage of the resources declared in the Fixed Data section starts always from the lowest resource
number. For example if the user defines NR_THRESH = ‘10’ in the Fixed Data section (two thresholds defined),
available thresholds that can be used in the program are THRESH1 and THRESH2, while THRESH3 is not
available and the bytes corresponding to THRESH3 are not allocated (all the resources below THRESH2 are
shifted up).

AN5226
Variable Data section

AN5226 - Rev 1 page 25/67

6.1 Thresholds
Threshold resources are used to check and validate values assumed by the selected input signal (through the
SINMUX command) and axis (through MASKS) in comparison conditions.
Thresholds can be signed or unsigned: it is possible to move from signed to unsigned mode by using the
SSIGN0 / SSIGN1 commands. In signed mode, signal and threshold keep their original sign in the comparison. In
unsigned mode, the comparison is performed between the absolute values of both signal and threshold.
By setting the NR_THRESH[1:0] bits of CONFIG_A byte, the corresponding number of thresholds can be
configured in the Variable Data section, as described below:
• NR_THRESH[1:0] = ‘00’: no thresholds are allocated in the Variable Data section.
• NR_THRESH[1:0] = ‘01’: only THRESH1[15:0] is allocated in the Variable Data section.
• NR_THRESH[1:0] = ‘10’: THRESH1[15:0] and THRESH2[15:0] are allocated in the Variable Data section.
• NR_THRESH[1:0] = ‘11’: THRESH1[15:0], THRESH2[15:0] and THRESH3[15:0] are allocated in the

Variable Data section.

Involved commands:
• STHR1 / STHR2;
• SELTHR1 / SELTHR3;
• SSIGN0 / SSIGN1.

Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1;
• LNTH1 / LNTH2 / LLTH1 / LRTH1.

6.2 Hysteresis
The hysteresis resource affects the current threshold value when a threshold comparison is performed. If the
hysteresis resource is used, the hysteresis value is automatically:
• added to the threshold used in all “GREATER THAN” conditions (GNTH1, GNTH2, GLTH1 and GRTH1);
• subtracted from the threshold used in all “LESS THAN” conditions (LNTH1, LNTH2, LLTH1 and LRTH1).

Examples:
• if “GNTH1” condition is performed, the threshold used is: THRESH1 + Hysteresis;
• if “LNTH2” condition is performed, the threshold used is: THRESH2 – Hysteresis.

By setting the HYST bit of CONFIG_B byte to ‘1’, the HYSTERESIS[15:0] resource can be properly configured in
the Variable Data section.
Involved commands:
• N/A.

Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1;
• LNTH1 / LNTH2 / LLTH1 / LRTH1.

Note: Hysteresis does not affect zero-crossing conditions.

AN5226
Thresholds

AN5226 - Rev 1 page 26/67

6.3 Masks / temporary masks
Mask resources are used to enable or disable mask action on the input data (X, Y, Z, V) when a condition is
performed. If a mask bit is set to 1, then the corresponding axis and sign is enabled, otherwise it is disabled.
Masks are used in threshold comparison conditions or zero-crossing detection. Masks allow inverting the sign of
the input signal by enabling the corresponding axis bit with a minus sign. Masks are composed of 8 bits (2 bits for
each axis), as shown below:

+X -X +Y -Y +Z -Z +V -V

For each axis, it is possible to configure four different mask settings:
1. Positive axis bit = 0 / Negative axis bit = 0, axis is disabled;
2. Positive axis bit = 0 / Negative axis bit = 1, axis with opposite sign is enabled;
3. Positive axis bit = 1 / Negative axis bit = 0, axis with current sign is enabled;
4. Positive axis bit = 1 / Negative axis bit = 1, axis with current sign and axis with opposite sign are enabled.
When a program is enabled, the value of each mask is copied inside the related temporary mask (TM), that will be
used during execution of conditions. Each time a condition is issued, the result of the condition is stored again in
the temporary mask (it affects also consecutive conditions).
Example:
• “GNTH1” condition;
• THRESH1 = 0.50 g;
• MASKA = 12h (00010010b) → -Y and +V are enabled;
• Current input accelerometer sample = [0.72 -0.45 0.77 1.15].

TM before the condition 0 0 0 1 0 0 1 0

Accelerometer sample 0.72 -0.72 -0.45 0.45 0.77 -0.77 1.15 -1.15
TM after the condition 0 0 0 0 0 0 1 0

It is possible to reset the temporary mask value to the mask value in following conditions:
• anytime there is a reset condition;
• when executing a CONTREL command;
• when executing a REL command;
• after each true next condition, if an SRTAM1 command has been previously issued.

By setting the NR_MASK[1:0] bits of CONFIG_A byte, the corresponding number of masks can be configured in
the variable data section, as described below:
• NR_ MASK[1:0] = ‘00’: no masks are allocated in the variable data section;
• NR_ MASK[1:0] = ‘01’: only MASKA[7:0]/TMASKA[7:0] are allocated in the variable data section;
• NR_ MASK[1:0] = ‘10’: MASKA[7:0]/TMASKA[7:0] and MASKB[7:0]/TMASKB[7:0] are allocated in the

variable data section;
• NR_ MASK[1:0] = ‘11’: MASKA[7:0]/TMASKA[7:0], MASKB[7:0]/TMASKB[7:0] and MASKC[7:0]/

TMASKC[7:0] are allocated in the variable data section.

Involved commands:
• SELMA / SELMB / SELMC;
• SMA / SMB / SMC;
• REL;
• SRTAM0 / SRTAM1;
• SWAPMSK;
• SISW.

Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1;
• LNTH1 / LNTH2 / LLTH1 / LRTH1;
• PZC / NZC.

AN5226
Masks / temporary masks

AN5226 - Rev 1 page 27/67

6.4 DeltaT, DX, DY, DZ, DV
Angle resources can be used instead of angular velocity data when a condition is issued. The angle computation
is performed internally: gyroscope data are automatically multiplied by the DELTAT value, and the results are
added to corresponding angle axis bytes (DX, DY, DZ and DV). This occurs when the program uses as input
signal the integrated gyroscope signal (SINMUX command, with ‘7’ as parameter).
There are two reset-angle modalities:
• by default, angular velocity integration is cleared each time a reset or next condition is true. In this case,

computed angles (DX, DY, DZ and DV bytes) will restart from zero when a new sample arrives;
• if the program contains a CANGLE command, a different reset-angle modality is used. In this case,

integrated angles are cleared:
– if a CANGLE command is performed (when a new sample arrives);
– only if a reset condition is true.

By setting the ANGLE bit of the CONFIG_B byte to ‘1’, 10 bytes (DELTAT, DX, DY, DZ and DV) are allocated in
the variable data sections: DELTAT resource has to be set equal to current FSM_ODR cycle time in seconds (half
floating point (16 bits) format). If a CANGLE command is expected to be used, also the PAS bit of the CONFIG_B
byte has to be set to ‘1’.
Involved commands:
• CANGLE.

Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1;
• LNTH1 / LNTH2 / LLTH1 / LRTH1;
• PZC / NZC.

6.5 TC and timers
Timer resources are used to manage event durations. It is possible to declare two kinds of timer resources: long
timers (16 bits) and short timers (8 bits). The time base is set by the FSM_ODR[1:0] bits of the
EMB_FUNC_ODR_CFG_B (5Fh) register, including the decimation factor if used. Long timer resources are called
TI1 and TI2, while short timer resources are called TI3 and TI4. An additional internal Timer Counter (TC) is used
as temporary counter to check if a timer has elapsed. The TC value can be preloaded with two different
modalities, selectable by using the SCTC0 / SCTC1 commands:
• SCTC0 mode (default): when the program pointer moves to a state with a timeout condition, the TC value is

always preloaded to the corresponding timer value. In this modality, the timer duration affects one state only.
• SCTC1 mode: when the program pointer moves to a state with a timeout condition, there are two different

scenarios depending on which timer is used in the new state:
– if the timer used in the new state is different from the timer used in the previous state, the TC value is

preloaded to the corresponding timer value. In this modality, the timer duration affects one state only
(same as SCTC0 mode);

– if the timer used in the new state is the same used in the previous state, the TC value is not preloaded.
The TC value continues to be decreased starting from its previous value. In this modality, the timer
duration could affect more states.

The TC value is decreased by 1 each time a new sample occurs: if TC reaches ‘0’, the condition is true.
Example:
• Timer TI3 is set equal to 10. Consider the following states:

– S0 - SCTC0 or SCTC1
– S1 - TI3 | GNTH1
– S2 - TI3 | LNTH2
– S3 - TI3 | GNTH1

• TI3 = 0Ah (10 samples);

Depending on S0, there are two different state machine behaviors:
• SCTC0 case: the TC byte is always preloaded (when the program pointer moves to states S1, S2 and S3)

and each condition is checked for a maximum of 10 samples. This means that all conditions can be verified
in a maximum of 30 samples;

AN5226
DeltaT, DX, DY, DZ, DV

AN5226 - Rev 1 page 28/67

• SCTC1 case: the TC byte is preloaded only when the program pointer moves to S1 (and is not preloaded
when it moves to S2 and S3), and all conditions have to be verified in a maximum of 10 samples.

SCTC1 modality is typically used when different conditions have to be verified in the same time window.
By setting the NR_LTIMER[1:0] bits of the CONFIG_A byte, the corresponding number of long timers can be
configured in the variable data section, as described below:
• NR_LTIMER[1:0] = ‘00’: no long timers are allocated in the variable data section;
• NR_LTIMER[1:0] = ‘01’: TIMER1[15:0] is allocated in the variable data;
• NR_LTIMER(1:0) = ‘10’: TIMER1[15:0] and TIMER2[15:0] are allocated in the variable data section.

By setting the NR_TIMER[1:0] bits of the CONFIG_A byte, the corresponding number of short timers can be
configured in the variable data section, as described below:
• NR_TIMER[1:0] = ‘00’: no short timers are allocated in the variable data section;
• NR_TIMER[1:0] = ‘01’: TIMER3[7:0] is allocated in the variable data;
• NR_TIMER[1:0] = ‘10’: TIMER3[7:0] and TIMER4[7:0] are allocated in the variable data section.

Below the size of the TC resource:
• if NR_LTIMER[1:0] = ‘00’ and NR_TIMER[1:0] = ‘00’, TC resource is not allocated;
• if NR_LTIMER[1:0] = ‘00’ and NR_TIMER[1:0] ≠ ‘00’, TC resource occupies one byte;
• if NR_LTIMER[1:0] ≠ ‘00’ and NR_TIMER[1:0] = ‘00’, TC resource occupies two bytes;
• if NR_LTIMER[1:0] ≠ ‘00’ and NR_TIMER[1:0] ≠ ‘00’, TC resource occupies two bytes;

Involved commands:
• STIMER3 / STIMER4;
• SCTC0 / SCTC1.

Involved conditions:
• TI1 / TI2 / TI3 / TI4.

6.6 Decimator
The decimator resource is used to reduce the sample rate of the data going to the Finite State Machine.
By setting the DES bit of the CONFIG_B byte to ‘1’, the DEST and DESC bytes can be properly configured in the
variable data section. The DEST value is the desired decimation factor, while the DESC value is the internal
counter (automatically managed by the device). The decimation factor is related to the FSM_ODR[1:0] bits of the
EMB_FUNC_ODR_CFG_B (5Fh) register, according to following formula:
PROGRAM_ODR = FSM_ODR / DEST
At startup:
DESC = DEST (initial decimation value)
when sample clock occurs:
DESC = DESC - 1
When DESC is equal to 0, the current sample is used as the new input for the state machine, and the DESC
value is set to the initial decimation value again.
Commands involved:
• N/A.

Conditions involved:
• N/A.

Note: The minimum meaningful value for DEST is ‘2’.

AN5226
Decimator

AN5226 - Rev 1 page 29/67

6.7 Previous axis sign
The previous axis sign resource is used to store the sign of the previous sample: this information is used in zero-
crossing conditions.
By setting the PAS bit of the CONFIG_B byte to ‘1’, the PAS byte is allocated in the variable data section (the PAS
byte value is automatically managed by the device). This is mandatory if a zero-crossing condition (NZC or PZC)
is expected to be used in the program.
Involved commands:
• SSIGN0 / SSIGN1.

Involved conditions:
• PZC / NZC.

Note: If the SSIGN0 command is performed, NZC and PZC are used as a generic ZC condition.

AN5226
Previous axis sign

AN5226 - Rev 1 page 30/67

7 Instructions section

The Instructions section is defined below the variable data section and is composed of a series of states that
implement the algorithm logic. Each state is characterized by one 8-bit operation code (opcode), and each
opcode can implement a command or a RESET/NEXT condition:
1. Commands are used to perform special tasks for flow control, output and synchronization. Some commands

may have parameters, executed as one single-step command;
2. RESET/NEXT conditions are a combination of two conditions (4 bits for RESET condition and 4 bits for

NEXT condition) that are used to reset or continue the program flow.
The opcodes have a direct effect on registers and internal state machine memories. For some opcodes, additional
side effects can occur (such as update of status information).
A RESET/NEXT condition or a command, eventually followed by parameters, represents an instruction, also
called program state. They are the building blocks of the instructions section of a program.

7.1 Reset/Next conditions
RESET/NEXT conditions are used to reset or continue the program flow. RESET/NEXT conditions are executed
in one single state when a new sample set is ready.
The RESET condition is defined in the opcode MSB part while the NEXT condition is defined in the opcode LSB
part. As shown in the following figure, the RESET condition is always performed before the NEXT condition, that
is evaluated only when the RESET condition is not satisfied.
When both conditions (NEXT and RESET) are not satisfied, the state machine waits for a new sample set (X, Y,
Z, V) and starts the evaluation again in the same state.
A transition to the reset pointer occurs whenever the “RESET condition” is true (PP = RP).
A transition to the next step occurs whenever the “RESET condition” is false and “NEXT condition” is true and (PP
= PP + 1).

Figure 10. Single state description

State n

RESET
CONDITION
SATISFIED

go to Reset Pointer

NEXT
CONDITION
SATISFIED

from State n-1

go to State n+1

YES

YES

NO

NO

Note: The RESET condition is always evaluated before the NEXT condition. By default, the reset pointer (RP) is
set to the first state, but it is possible to dynamically change the reset pointer (RP) by using SRP/CRP commands.
Since a condition is coded over four bits, a maximum of sixteen different conditions can be coded: the list of
available conditions is shown in the following table. There are three types of conditions:
• timeouts: these conditions are true when the TC counter, preloaded with a timer value, reaches zero;

AN5226
Instructions section

AN5226 - Rev 1 page 31/67

• threshold comparisons: these conditions are true when enabled inputs such as accelerometer XYZ axis or
norm are higher (or lower) than a programmed threshold;V = x2 + y2 + z2

• zero-crossing detection: these conditions are true when an enabled input crosses the zero level.

Table 52. Conditions

OP code Mnemonic Description Note Resources needed

0h NOP No operation Execution moves to another condition N/A

1h TI1 Timer 1 (16-bit value) valid

No evaluation of data samples

TC, TIMER1

2h TI2 Timer 2 (16-bit value) valid TC, TIMER1, TIMER2

3h TI3 Timer 3 (8-bit value) valid TC, TIMER3

4h TI4 Timer 4 (8-bit value) valid TC, TIMER3, TIMER4

5h GNTH1 Any triggered axis > THRESH1

Input signal, triggered with mask,
compared to threshold

THRESH1, one MASK

6h GNTH2 Any triggered axis > THRESH2 THRESH1, THRESH2,
one MASK

7h LNTH1 Any triggered axis ≤ THRESH1 THRESH1, one MASK

8h LNTH2 Any triggered axis ≤ THRESH2 THRESH1, THRESH2,
one MASK

9h GLTH1 All triggered axes > THRESH1 THRESH1, one MASK

Ah LLTH1 All triggered axes ≤ THRESH1 THRESH1, one MASK

Bh GRTH1 Any triggered axis > -THRESH1 THRESH1, one MASK

Ch LRTH1 Any triggered axis ≤ - THRESH1 THRESH1, one MASK

Dh PZC Any triggered axis crossed zero
value, with positive slope Input signal, triggered with mask,

crossing zero value

PAS

Eh NZC Any triggered axis crossed zero
value, with negative slope PAS

Fh N/A N/A N/A N/A

The last column of the table above indicates the resource needed by the conditions. These resources are
allocated inside the Variable Data section and can be different between one FSM and another. For correct FSM
behavior, it is mandatory to set the amount of resources needed by each program in the fixed data section.
Note: Having the same condition for the NEXT and the RESET condition does not make sense. Consequently,
Opcodes such as 11h do not implement the TI1 | TI1 condition, but implement some commands: for example, the
opcode 11h implements the CONT command.

AN5226
Reset/Next conditions

AN5226 - Rev 1 page 32/67

7.1.1 NOP (0h)
Description: NOP (no operation) is used as filler for the RESET/NEXT pair for some particular conditions which
don’t need an active opposite condition.
Actions:
• If NOP is in RESET condition: when a new sample set is ready, evaluates only the NEXT condition;
• If NOP is in NEXT condition: when a new sample set is ready, evaluates only the RESET condition.

7.1.2 TI1 (1h)
Description: TI1 condition counts and evaluates the counter value of the TC bytes.
Action:
• When the program pointer moves to a state with a TI1 condition, TC = TIMER1;
• When a new sample set (X, Y, Z, V) occurs, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state (wait for new samples);
– If TC = 0, the condition is valid:

◦ If TI1 is in RESET position, PP = RP;
◦ If TI1 is in NEXT position, PP = PP + 1.

7.1.3 TI2 (2h)
Description: TI2 condition counts and evaluates the counter value of the TC bytes.
Action:
• When the program pointer moves to a state with a TI2 condition, TC = TIMER2;
• When a new sample set (X, Y, Z, V) occurs, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state (wait for new samples);
– If TC = 0, the condition is valid:

◦ If TI2 is in RESET position, PP = RP;
◦ If TI2 is in NEXT position, PP = PP + 1.

7.1.4 TI3 (3h)
Description: TI3 condition counts and evaluates the counter value of the TC byte.
Action:
• When the program pointer moves to a state with a TI3 condition, TC = TIMER3;
• When a new sample set (X, Y, Z, V) occurs, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state (wait for new samples);
– If TC = 0, the condition is valid:

◦ If TI3 is in RESET position, PP = RP;
◦ If TI3 is in NEXT position, PP = PP + 1.

7.1.5 TI4 (4h)
Description: TI4 condition counts and evaluates the counter value of the TC byte.
Action:
• When the program pointer moves to a state with a TI4 condition, TC = TIMER4;
• When a new sample set (X, Y, Z, V) occurs, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state (wait for new samples);
– If TC = 0, the condition is valid:

◦ If TI4 is in RESET position, PP = RP;
◦ If TI4 is in NEXT position, PP = PP + 1.

AN5226
Reset/Next conditions

AN5226 - Rev 1 page 33/67

7.1.6 GNTH1 (5h)
Description: GNTH1 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is greater than
threshold 1 level. Threshold is: THRESH1 + HYST.
Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in the variable data section is not ‘0’.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GNTH1 is valid and it is in RESET position, PP = RP;
– If GNTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.7 GNTH2 (6h)
Description: GNTH2 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is greater than
threshold 2 level. Threshold is: THRESH2 + HYST.
Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in the variable data section is not ‘0’.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GNTH2 is valid and it is in RESET position, PP = RP;
– If GNTH2 is valid and it is in NEXT position, PP = PP + 1.

7.1.8 LNTH1 (7h)
Description: LNTH1 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is lower than or equal
to threshold 1 level. Threshold is: THRESH1 - HYST.
Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LNTH1 is valid and it is in RESET position, PP = RP;
– If LNTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.9 LNTH2 (8h)
Description: LNTH2 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is lower than or equal
to threshold 2 level. Threshold is: THRESH2 - HYST.
Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LNTH2 is valid and it is in RESET position, PP = RP;
– If LNTH2 is valid and it is in NEXT position, PP = PP + 1.

7.1.10 GLTH1 (9h)
Description: GLTH1 condition is valid if all axes of the data sample set (X, Y, Z, V) are greater than threshold 1
level. Threshold is: THRESH1 + HYST.
Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GLTH1 is valid and it is in RESET position, PP = RP;
– If GLTH1 is valid and it is in NEXT position, PP = PP + 1.

AN5226
Reset/Next conditions

AN5226 - Rev 1 page 34/67

7.1.11 LLTH1 (Ah)
Description: LLTH1 condition is valid if all axes of the data sample set (X, Y, Z, V) are lower less than or equal to
threshold 1 level. Threshold is: THRESH1 - HYST.
Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LLTH1 is valid and it is in RESET position, PP = RP;
– If LLTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.12 GRTH1 (Bh)
Description: GRTH1 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is greater than
threshold 1 level. Threshold is: – (THRESH1 + HYST).
Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GRTH1 is valid and it is in RESET position, PP = RP;
– If GRTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.13 LRTH1 (Ch)
Description: LRTH1 condition is valid if any triggered axis of the data sample set (X, Y, Z, V) is less than or equal
to threshold 1 level. Threshold is: – (THRESH1 – HYST).
Note: The HYST value is involved in the threshold comparison only if the CONFIG_A(HYST) bit of the fixed data
section is set to ‘1’ and the HYST value in variable data section is not ‘0’.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LRTH1 is valid and it is in RESET position, PP = RP;
– If LRTH1 is valid and it is in NEXT position, PP = PP + 1.

7.1.14 PZC (Dh)
Description: PZC condition is valid if any triggered axis of the data sample set (X, Y, Z, V) crossed the zero level,
with a positive slope.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If a zero-crossing event with positive slope occurs and PZC is in RESET position, PP = RP;
– If a zero-crossing event with positive slope occurs and PZC is in NEXT position, PP = PP + 1.

7.1.15 NZC (Eh)
Description: NZC condition is valid if any triggered axis of the data sample set (X, Y, Z, V) crossed the zero level,
with a negative slope.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If a zero-crossing event with negative slope occurs and NZC is in RESET position, PP = RP;
– If a zero-crossing event with negative slope occurs and NZC is in NEXT position, PP = PP + 1.

AN5226
Reset/Next conditions

AN5226 - Rev 1 page 35/67

7.2 Commands
Commands are used to modify the program behavior in terms of flow control, output and synchronization.
Commands are immediately executed (no need for a new sample set): when a command is executed, the
program pointer is set to the next line, that is immediately evaluated:
• if new line is a command, it is immediately executed again;
• if new line is a condition, it will be executed when the next sample is processed.

Some commands may need parameters that must be defined (through dedicated opcodes reporting the
parameter value) just below the command opcode. Refer to the example below that shows three consecutive
opcodes used to dynamically change the value of the “THRESH1” resource when the STHR1 command is
executed:
“AAh” (STHR1 command)
“CDh” (1st parameter)
“3Ch” (2nd parameter)
When the program pointer reaches the “AAh” (STHR1 command) state, the device recognizes that this is a
command which requires two parameters: these three states are immediately executed without waiting for a new
sample set. After the command execution is completed, the THRESH1 resource value is set to “3CCDh”, equal to
“1.2”.

Table 53. List of commands

Opcode Mnemonic Description Parameter

00h STOP Stop execution, and wait for a new start from reset pointer None

11h CONT Continues execution from reset pointer None

22h CONTREL Continues execution from reset pointer, resetting temporary mask None

33h SRP Set reset pointer to next address/state None

44h CRP Clear reset pointer to first program line None

55h SETP Set parameter in program memory
Byte 1: address

Byte 2: value

66h SELMA Select MASKA and TMASKA as current mask None

77h SELMB Select MASKB and TMASKB as current mask None

88h SELMC Select MASKC and TMASKC as current mask None

99h OUTC Write the temporary mask to output registers None

AAh STHR1 Set new value to THRESH1 register
Byte 1: THRESH1 [LSB]

Byte 2: THRESH1 [MSB]

BBh STHR2 Set new value to THRESH2 register
Byte 1: THRESH2 [LSB]

Byte 2: THRESH2 [MSB]

CCh SELTHR1 Selects THRESH1 instead of THRESH3 None

DDh SELTHR3 Selects THRESH3 instead of THRESH1 None

EEh SISW Swaps sign information to opposite in selected mask None

FFh REL Reset temporary mask to default None

12h SSIGN0 Set UNSIGNED comparison mode None

13h SSIGN1 Set SIGNED comparison mode None

14h SRTAM0 Do not reset temporary mask after a next condition true None

21h SRTAM1 Reset temporary mask after a next condition true None

23h SINMUX Set input multiplexer Byte 1: input value for
multiplexer

AN5226
Commands

AN5226 - Rev 1 page 36/67

Opcode Mnemonic Description Parameter

24h STIMER3 Set new value to TIMER3 register Byte 1: TI3 value

31h STIMER4 Set new value to TIMER4 register Byte 1: TI4 value

32h SWAPMSK Swap mask selection MASKA <=> MASKB; MASKC unaffected None

34h INCR Increase long counter +1, check long counter timeout and clear None

41h JMP Jump address for two Next conditions

Byte 1: conditions

Byte 2: reset jump address

Byte 3: next jump address

42h CANGLE Clear angle

43h SMA Set MASKA and TMASKA Byte 1: MASKA value

DFh SMB Set MASKB and TMASKB Byte 1: MASKB value

FEh SMC Set MASKC and TMASKC Byte 1: MASKC value

5Bh SCTC0 Clear Time Counter TC on next condition true None

7Ch SCTC1 Don’t clear Time Counter TC on next condition true None

C7h UMSKIT Unmask interrupt generation when setting OUTS None

EFh MSKITEQ Mask interrupt generation when setting OUTS if OUTS does not
change None

F5h MSKIT Mask interrupt generation when setting OUTS None

7.2.1 STOP (00h)
Description: STOP command halts execution and waits for host restart. This command is used to control the end
of the program.
Parameters: None.
Actions:
• Outputs the resulting mask to OUTSx register;
• Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands);
• Stops itself by setting the CONFIG_B(STOPDONE) bit of the fixed data section to ‘1’. The user should

disable and enable the corresponding state machine bit in the FSM_ENABLE_A (46h) or FSM_ENABLE_B
(47h) register to restart the program. In this case, the Start Routine is performed. For additional information
about the Start Routine refer to Section 9 Start routine.

7.2.2 CONT (11h)
Description: CONT command loops execution to the reset point. This command is used to control the end of the
program.
Parameters: None.
Actions:
• Outputs the resulting mask to the OUTSx registers;
• Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands);
• PP = RP.

AN5226
Commands

AN5226 - Rev 1 page 37/67

7.2.3 CONTREL (22h)
Description: CONTREL command loops execution to the reset point. This command is used to control the end of
the program. In addition, it resets the temporary mask value to its default value.
Parameters: None.
Actions:
• Outputs the resulting mask to the OUTSx registers;
• Resets temporary mask to default value;
• Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands);
• PP = RP.

7.2.4 SRP (33h)
Description: SRP command sets the reset pointer to the next address/state. This command is used to modify the
starting point of the program.
Parameters: None.
Actions:
• RP = PP + 1;
• PP = PP + 1.

7.2.5 CRP (44h)
Description: CRP command clears the reset pointer to the start position (at the beginning of the program code).
Parameters: None.
Actions:
• RP = beginning of program code;
• PP = PP + 1.

7.2.6 SETP (55h)
Description: SETP command allows the configuration of the state machine currently used to be modified. This
command is used to modify a byte value at a desired address of the current state machine.
Parameters: two bytes.
• 1st parameter: address (8 bits) of the byte to be modified. This address is relative to the current state

machine (address 00h refers to CONFIG_A byte);
• 2nd parameter: new value (8 bits) to be written in the 1st parameter address.

Actions:
• byte value addressed by 1st parameter = 2nd parameter
• PP = PP + 3.

7.2.7 SELMA (66h)
Description: SELMA command sets MASKA / TMASKA as current mask.
Parameters: None.
Actions:
• MASK_A is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the fixed data section to ‘00’;
• PP = PP + 1.

7.2.8 SELMB (77h)
Description: SELMB command sets MASKB / TMASKB as current mask.
Parameters: None.
Actions:
• MASK_B is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the fixed data section to ‘01’;
• PP = PP + 1.

AN5226
Commands

AN5226 - Rev 1 page 38/67

7.2.9 SELMC (88h)
Description: SELMC command sets MASKC / TMASKC as current mask.
Parameters: None.
Actions:
• MASK_C is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the fixed data section to ‘10’;
• PP = PP + 1

7.2.10 OUTC (99h)
Description: OUTC stands for output command. This command is used to update the OUTS register value to the
current temporary mask value and to generate an interrupt (if enabled).
Parameters: None.
Actions:
• Updates the OUTS register of the current state machine to the selected temporary mask value;
• Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands);
• PP = PP + 1.

7.2.11 STHR1 (AAh)
Description: STHR1 command sets the THRESH1 value to a new desired value. THRESH1 is a half floating point
(16 bits) number.
Parameters: two bytes.
• 1st parameter: THRESH1 LSB value (8 bits);
• 2nd parameter: THRESH1 MSB value (8 bits).

Actions:
• Sets new value for THRESH1;
• PP = PP + 3.

7.2.12 STHR2 (BBh)
Description: STHR2 command sets the THRESH2 value to a new desired value. THRESH2 is a half floating point
(16bits) number.
Parameters: two bytes.
• 1st parameter: THRESH2 LSB value (8 bits);
• 2nd parameter: THRESH2 MSB value (8 bits).

Actions:
• Sets new value for THRESH2;
• PP = PP + 3.

7.2.13 SELTHR1 (CCh)
Description: after executing the SELTHR1 command, the THRESH1 value is used instead of the THRESH3 value
when the GNTH1, LNTH1, GLTH1, LLTH1, GRTH1, LRTH1 conditions are performed.
Parameters: None.
Actions:
• Selects THRESH1 instead of THRESH3. It sets the SETTINGS(THRS3SEL) bit of the fixed data section to

‘0’ ;
• PP = PP + 1.

AN5226
Commands

AN5226 - Rev 1 page 39/67

7.2.14 SELTHR3 (DDh)
Description: after executing the SELTHR3 command, the THRESH3 value is used instead of the THRESH1 value
when the GNTH1, LNTH1, GLTH1, LLTH1, GRTH1, LRTH1 conditions are performed.
Parameters: None.
Actions:
• Selects THRESH3 instead of THRESH1. It sets the SETTINGS(THRS3SEL) bit of the fixed data section to

‘1’ ;
• PP = PP + 1.

7.2.15 SISW (EEh)
Description: SISW command swaps the temporary axis mask sign to the opposite sign.
Parameters: None.
Actions:
• Changes selected temporary mask axis sign to the opposite:

– If sign(axis) is positive, new sign(axis) is negative;
– If sign(axis) is negative, new sign(axis) is positive;
– If axis information is zero, no changes.

• PP = PP + 1.

7.2.16 REL (FFh)
Description: REL command releases the temporary axis mask information.
Parameters: None.
Actions:
• Resets current temporary masks to the default value;
• PP = PP + 1.

7.2.17 SSIGN0 (12h)
Description: SSIGN0 command sets the comparison mode to “unsigned”.
Parameters: None.
Actions:
• Sets comparison mode to “unsigned”. It sets the SETTINGS(SIGNED) bit of the fixed data section to ‘0’;
• PP = PP + 1.

7.2.18 SSIGN1 (13h)
Description: SSIGN1 command sets the comparison mode to “signed” (default behavior).
Parameters: None.
Actions:
• Sets comparison mode to “signed”. It sets the SETTINGS(SIGNED) bit of the fixed data section to ‘1’;
• PP = PP + 1.

7.2.19 SRTAM0 (14h)
Description: SRTAM0 command is used to preserve the temporary mask value when a NEXT condition is true
(default behavior).
Parameters: None.
Actions:
• Temporary axis mask value does not change after valid NEXT condition. It sets the SETTINGS(R_TAM) bit

of the fixed data section to ‘0’;
• PP = PP + 1.

AN5226
Commands

AN5226 - Rev 1 page 40/67

7.2.20 SRTAM1 (21h)
Description: SRTAM1 command is used to reset the temporary mask when a NEXT condition is true.
Parameters: None.
Actions:
• Temporary axis mask value is reset after valid NEXT condition. It sets the SETTINGS(R_TAM) bit of the

fixed data section to ‘1’;
• PP = PP + 1.

7.2.21 SINMUX (23h)
Description: SINMUX command is used to change the input source for the current state machine. If the SINMUX
command is not performed, the accelerometer signal is automatically selected as the default input source.
Parameters: one byte.
• 1st parameter: value to select input source:

0: accelerometer [ax ay az av];
1: gyroscope [gx gy gz gv];
2: calibrated magnetometer [mx my mz mv];
3: Machine Learning Core Filter(*) 1 output signal [hx hy hz hv];
4: Machine Learning Core Filter(*) 2 output signal [lx ly lz lv];
5: Machine Learning Core Filter(*) 1 output signal [0 0 0 Vh];
6: Machine Learning Core Filter(*) 2 output signal [0 0 0 Vl];
7: integrated gyroscope signal [dx dy dz dv];

Actions:
• Selects input signal accordingly with set parameter. It configures the SETTINGS(IN_SEL[2:0]) bits of the

fixed data section accordingly to selected input source signal (it can be 000b, 001b, 010b or 111b);
• PP = PP + 2.

Note: (*) Filter type could be HP / LP / IIR1 / IIR2 depending on Machine Learning Core configuration.

7.2.22 STIMER3 (24h)
Description: STIMER3 command is used to set a new value for TIMER3.
Parameters: one byte.
• 1st parameter: new TIMER3 value.

Actions:
• Sets new TIMER3 value;
• PP = PP + 2.

7.2.23 STIMER4 (31h)
Description: STIMER4 command is used to set a new value for TIMER4.
Parameters: one byte.
• 1st parameter: new TIMER4 value.

Actions:
• Sets new TIMER4 value;
• PP = PP + 2.

7.2.24 SWAPMSK (32h)
Description: SWAPMSK command is used to swap MASKA and MASKB selection. MASKC is not affected.
Parameters: None.
Actions:
• Swaps MASKA with MASKB;
• PP = PP + 1.

AN5226
Commands

AN5226 - Rev 1 page 41/67

7.2.25 INCR (34h)
Description: INCR command is used to reset the long counter if the FSM_LC_CLEAR bit of the
FSM_LONG_COUNTER_CLEAR (4Ah) register is set to ‘1’, or to increase the long counter value by one. The
long counter value is stored in the FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)
registers.
Parameters: None.
Actions:
• Resets the long counter value if the FSM_LC_CLEAR bit of FSM_LONG_COUNTER_CLEAR (4Ah) register

is set to ‘1’, or increases the long counter value by one;
• PP = PP + 1.

7.2.26 JMP (41h)
Description: JMP command is a special command characterized by a “NEXT1 | NEXT2” condition, with two
different jump addresses.
Parameters: three bytes.
• 1st parameter: NEXT1 | NEXT2 condition;
• 2nd parameter: jump address if NEXT1 condition is true;
• 3rd parameter: jump address if NEXT2 condition is true.

The NEXT1 condition is evaluated before the NEXT2 condition. Jump addresses are relative to the current state
machine (address 00h refers to CONFIG_A byte).
Actions:
• It sets to ‘1’ the CONFIG_B(JMP) bit of the fixed data section. Evaluates the “NEXT1 | NEXT2” condition:

– If “NEXT1” condition is true, PP = 2nd parameter address;
– Else if “NEXT2” condition is true, PP = 3rd parameter address;
– Else waits for a new sample set and evaluates again the "NEXT1 | NEXT2" condition.

7.2.27 CANGLE (42h)
Description: CANGLE command is used to clear integrated gyroscope values. If this command is performed,
integrated angle values are no longer cleared when a next condition is true (default behavior), but in the following
cases:
• every time a CANGLE command is performed (when a new sample arrives);
• if a reset condition is true.

Parameters: None.
Actions:
• Clear angle values;
• PP = PP + 1.

7.2.28 SMA (43h)
Description: SMA command is used to set a new value for MASKA and TMASKA.
Parameters: one byte.
• 1st parameter: new MASKA and TMASKA value.

Actions:
• Set new MASKA and TMASKA value;
• PP = PP + 2.

7.2.29 SMB (DFh)
Description: SMB command is used to set a new value for MASKB and TMASKB.
Parameters: one byte.
• 1st parameter: new MASKB and TMASKB value.

Actions:
• Set new MASKB and TMASKB value;

AN5226
Commands

AN5226 - Rev 1 page 42/67

• PP = PP + 2.

7.2.30 SMC (FEh)
Description: SMC command is used to set a new value for MASKC and TMASKC.
Parameters: one byte.
• 1st parameter: new MASKC and TMASKC value.

Actions:
• Set new MASKC and TMASKC value;
• PP = PP + 2.

7.2.31 SCTC0 (5Bh)
Description: SCTC0 command is used to reset the TC byte (time counter) when a NEXT condition is true (default
behavior).
Parameters: None.
Actions:
• TC (time counter) byte value is reset after valid NEXT condition;
• PP = PP + 1.

7.2.32 SCTC1 (7Ch)
Description: SCTC1 command is used to preserve the TC byte (time counter) when a NEXT condition is true.
Parameters: None.
Actions:
• TC (time counter) byte value does not change after valid NEXT condition;
• PP = PP + 1.

7.2.33 UMSKIT (C7h)
Description: UMSKIT command is used to unmask interrupt generation when the OUTS register value is updated
(default behavior). Refer to the OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: None.
Actions:
• Unmask interrupt generation when setting the OUTS register;
• PP = PP + 1.

7.2.34 MSKITEQ (EFh)
Description: MSKITEQ command is used to mask interrupt generation when the OUTS register value is updated
but its value does not change (temporary mask value is equal to current OUTS register value). Refer to the
OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: None.
Actions:
• Mask interrupt generation when setting the OUTS register if OUTS does not change;
• PP = PP + 1.

7.2.35 MSKIT (F5h)
Description: MSKIT command is used to mask interrupt generation when the OUTS register value is updated.
Refer to the OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: None.
Actions:
• Mask interrupt generation when setting the OUTS register;
• PP = PP + 1.

AN5226
Commands

AN5226 - Rev 1 page 43/67

8 FSM configuration example

This section contains an example that explains all write operations that have to be done in order to configure the
LSM6DSO FSM. A few steps have to be followed:
• configure the FSM registers inside the embedded function registers set;
• configure the FSM registers inside the embedded advanced features registers set;
• configure the LSM6DSO sensor (accelerometer and / or gyroscope).

In this example, two simple programs are configured:
• PROGRAM 1: wrist tilt (around the x-axis) algorithm, routed on the INT1 pin;
• PROGRAM 2: wake-up algorithm, routed on the INT2 pin.

Both algorithms are intended to use accelerometer data only at a sample rate of 26 Hz.
Refer to the figure below for details about the program data section and the instructions section.

Figure 11. FSM configuration example

PAGE - ADDRESS NAME 7 6 5 4 3 2 1 0

PR
OG

RA
M

 1

4 - 00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 01 (1 short timer)
4 - 01h CONFIG B 0 0 0 0 - 0 0 0
4 - 02h SIZE 10h (16 bytes)
4 - 03h SETTINGS 00 0 0 0 00
4 - 04h RESET POINTER 00h
4 - 05h PROGRAM POINTER 00h
4 - 06h

THRESH1 B7AEh (-0.480)
4 - 07h
4 - 08h MASKA 80h (+X)
4 - 09h TMASKA 00h
4 - 0Ah TC 00h
4 - 0Bh TIMER3 10h (16 samples)
4 - 0Ch GNTH1 | TI3 53h
4 - 0Dh OUTC 99h
4 - 0Eh GNTH1 | NOP 50h
4 - 0Fh STOP 00h

PR
OG

RA
M

 2

4 - 10h CONFIG A 01 (1 threshold) 01 (1 mask) 00 00
4 - 11h CONFIG B 0 0 0 0 0 0 0 0
4 - 12h SIZE 0Ch (12 bytes)
4 - 13h SETTINGS 00 0 0 0 00
4 - 14h RESET POINTER 00h
4 - 15h PROGRAM POINTER 00h
4 - 16h

THRESH1 3C66h (1.100)
4 - 17h
4 - 18h MASKA 02h (+V)
4 - 19h TMASKA 00h
4 - 1Ah NOP | GNTH1 05h
4 - 1Bh CONTREL 22h

Refer to the following script for the complete device configuration:

1. Write 80h to register 01h // Enable access to embedded function registers

2. Write 01h to register 05h // EMB_FUNC_EN_B(FSM_EN) = '1'

3. Write 4Bh to register 5Fh // EMB_FUNC_ODR_CFG_B (FSM_ODR) = '01' (26Hz)

AN5226
FSM configuration example

AN5226 - Rev 1 page 44/67

4. Write 03h to register 46h // FSM_ENABLE_A = '03h'

5. Write 00h to register 47h // FSM_ENABLE_B = '00h'

6. Write 01h to register 0Bh // FSM_INT1_A = '01h'

7. Write 00h to register 0Ch // FSM_INT1_B = '00h'

8. Write 02h to register 0Fh // FSM_INT2_A = '02h'

9. Write 00h to register 10h // FSM_INT2_B = '00h'

10. Write 40h to register 17h // PAGE_RW: enable write operation

11. Write 11h to register 02h // Enable access to embedded advanced features registers, PAGE_SEL = 1

12. Write 7Ah to register 08h // PAGE_ADDRESS = 7Ah

13. Write 00h to register 09h // Write 00h to register FSM_LONG_COUNTER_L

14. Write 00h to register 09h // Write 00h to register FSM_LONG_COUNTER_H

15. Write 02h to register 09h // Write 02h to register FSM_PROGRAMS

16. Write 02h to register 09h // Dummy write in order to increment the write address

17. Write 00h to register 09h // Write 00h to register FSM_START_ADDRESS_L

18. Write 04h to register 09h // Write 04h to register FSM_START_ADDRESS_H

19. Write 41h to register 02h // PAGE_SEL = 4

20. Write 00h to register 08h // PAGE_ADDRESS = 00h

21. Write 51h to register 09h // CONFIG_A

22. Write 00h to register 09h // CONFIG_B

23. Write 10h to register 09h // SIZE

24. Write 00h to register 09h // SETTINGS

25. Write 00h to register 09h // RESET POINTER

26. Write 00h to register 09h // PROGRAM POINTER

27. Write AEh to register 09h // THRESH1 LSB

28. Write B7h to register 09h // THRESH1 MSB

29. Write 80h to register 09h // MASKA

30. Write 00h to register 09h // TMASKA

31. Write 00h to register 09h // TC

32. Write 10h to register 09h // TIMER3

33. Write 53h to register 09h // GNTH1 | TI3

34. Write 99h to register 09h // OUTC

35. Write 50h to register 09h // GNTH1 | NOP

36. Write 00h to register 09h // STOP (mandatory for having even SIZE bytes)

37. Write 50h to register 09h // CONFIG_A

38. Write 00h to register 09h // CONFIG_B

39. Write 0Ch to register 09h // SIZE

40. Write 00h to register 09h // SETTINGS

41. Write 00h to register 09h // RESET POINTER

42. Write 00h to register 09h // PROGRAM POINTER

43. Write 66h to register 09h // THRESH1 LSB

44. Write 3Ch to register 09h // THRESH1 MSB

45. Write 02h to register 09h // MASKA

46. Write 00h to register 09h // TMASKA

AN5226
FSM configuration example

AN5226 - Rev 1 page 45/67

47. Write 05h to register 09h // NOP | GNTH1

48. Write 22h to register 09h // CONTREL

49. Write 01h to register 02h // Disable access to embedded advanced features registers, PAGE_SEL = 0

50. Write 00h to register 17h // PAGE_RW: disable write operation

51. Write 00h to register 01h // Disable access to embedded function registers

52. Write 02h to register 5Eh // MD1_CFG(INT1_EMB_FUNC) = '1'

53. Write 02h to register 5Fh // MD2_CFG(INT2_EMB_FUNC) = '1'

54. Write 20h to register 10h // CTRL1_XL = '20h' (26 Hz, ±2 g)

AN5226
FSM configuration example

AN5226 - Rev 1 page 46/67

9 Start routine

When the FSM is enabled, a start routine is automatically executed. This routine performs the following tasks:
• the CONFIG_B(STOPDONE) and CONFIG_B(JMP) bits are reset;
• the PP and RP pointers are initialized to the first line of code;
• the SETTINGS field is initialized with default value 0x20 which means:

– MASKSEL = ‘00’;
– SIGNED = ‘1’;
– R_TAM = ‘0’;
– THRS3SEL = ‘0’;
– IN_SEL = ‘000’.

• the associated output register OUTS is cleared;
• assign to all declared temporary masks the value of the corresponding original mask (TMASKx = MASKx);
• if timers are declared, the time counter is initialized to 0 (TC = 0);
• if decimation is declared, the decimation counter is initialized with the programmed decimation time value

(DESC = DEST);
• if previous axis sign is declared, it is initialized to 0 (PAS = 0);
• if gyroscope angle computation is declared, the four angles are initialized to 0 (DX = DY = DZ = DV = 0);
• if CONFIG_B(LC) is active, the long counter is reset.

When the start routine is performed, the program always restarts from a known state, independently of the way it
was stopped. However it should be noted that the default mode implies:
• MASKA selected as running mask (MASKSEL = ‘00’);
• signed comparison mode (SIGNED = ‘1’);
• do not release temporary mask after a next condition is true (R_TAM = ‘0’);
• threshold1 selected instead of threshold3 for comparisons (THRS3SEL = ‘0’);
• input multiplexer set to select accelerometer data (IN_SEL = ‘000’).

AN5226
Start routine

AN5226 - Rev 1 page 47/67

10 Examples of state machine configurations

10.1 Toggle
Toggle is a simple state machine configuration that generates an interrupt every n sample.
The idea is to use a timer to count n samples.

Figure 12. Toggle state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 00 00 00 01 (1 short timer)
01h CONFIG B 0 0 0 0 - 0 0 0
02h SIZE 0Ah (10 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h TC 00h
07h TIMER3 10h (16 samples)
08h NOP | TI3 03h
09h CONTREL 22h

Instructions section description
PP = 08h: the first time this state is reached, TC = TI3. Each time a new sample set is generated, the TC byte is
decreased by one. When TC = 0, PP = PP + 1.
PP = 09h: CONTREL command is performed without needing a sample set: this generates an interrupt and resets
the program (PP = RP = 08h).
In the example, the interrupt is generated every 16 samples. TI3 can be configured in order to get the desired
toggle period which depends on the configured FSM_ODR.

AN5226
Examples of state machine configurations

AN5226 - Rev 1 page 48/67

10.2 Wake-up
For ultra-low-power applications it is desirable to have an interrupt signal that wakes up the system after a
movement.
The idea is to use the nominal gravity value of 1.0 g and apply a little hysteresis against the nominal gravity value.

Figure 13. Wake-up state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 00
01h CONFIG B 0 1 0 0 - 0 0 0
02h SIZE 12h (18 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h

THRESH1 3C00h (1.000)
07h
08h

HYST 27AEh (0.030)
09h
0Ah MASKA 02h (+V)
0Bh TMASKA 00h
0Ch JMP 41h
0Dh LNTH1 | GNTH1 75h
0Eh 10h 10h (jump address if LNTH1 condition is true)
0Fh 10h 10h (jump address if GNTH1 condition is true)
10h CONTREL 22h
11h STOP 00h

Instructions section description
PP = 0Ch: JMP command is performed without needing a sample set: the CONFIG_B(JMP) bit is set to ‘1’. PP =
PP + 1.
PP = 0Dh: a double condition against threshold 1 is performed (MASKA is selected by default). Since hysteresis
is used, thresholds for the comparison are:
• COND1 (LNTH1): THRESH1 – HYST. Jump address is 10h;
• COND2 (GNTH1): THRESH1 + HYST. Jump address is 10h.

When the vector (magnitude) is outside the hysteresis region (one of the above conditions is true), the PP is set to
address 10h.
PP = 10h: CONTREL command is performed without needing a sample set: this generates an interrupt and resets
the program (PP = RP = 0Ch).
In the example, the wake-up threshold is 1.0 g ± 30 mg. When configuring the hysteresis value, the accelerometer
offsets should be taken into account.

AN5226
Wake-up

AN5226 - Rev 1 page 49/67

10.3 Freefall
This feature is used to detect when a system is dropping (e.g. to protect data on the hard drive). If the object is in
freefall, the acceleration on the X-axis, Y-axis and Z-axis goes to zero.
To implement this function, acceleration on all axes should be less than a configured threshold, for a minimum
configured duration. When this condition is detected, an interrupt is generated.

Figure 14. Freefall state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 01 (1 short timer)
01h CONFIG B 0 0 0 0 - 0 0 0
02h SIZE 12h (18 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h

THRESH1 34CDh (0.300)
07h
08h MASKA A8h (+X, +Y, +Z)
09h TMASKA 00h
0Ah TC 00h
0Bh TIMER3 03h (3 samples)
0Ch SSIGN0 12h
0Dh SRP 33h
0Eh GNTH1 | TI3 53h
0Fh OUTC 99h
10h GNTH1 | NOP 50h
11h STOP 00h

Instructions section description
PP = 0Ch: SSIGN0 command is performed without needing a sample set: the SETTINGS(SIGNED) bit is set to
‘0’, indicating that unsigned comparison mode was set. PP = PP + 1.
PP = 0Dh: SRP command is performed without the need of sample set: the RESET POINTER is set to the next
state, 0Eh. PP = PP + 1.
PP = 0Eh: if acceleration on one axis is greater than THRESH1, then PP = RP. If acceleration on all axes is lower
than THRESH1 for 3 consecutives samples, then the PP is increased (PP = PP + 1).
PP = 0Fh: OUTC command is performed without needing a sample set: this generates an interrupt and increases
the PP (PP = PP + 1).
PP = 10h: if acceleration on one axis is greater than THRESH1, then PP = RP. This means that the device is no
longer in freefall, so the program has to be reset.
In the example, the freefall threshold is set to 0.3 g and the freefall duration is set to 3 samples.
Note: Freefall duration is strictly related to FSM_ODR: for example, if FSM_ODR is set to 26 Hz, the freefall
duration is 115 msec (3 samples / 26 Hz).

AN5226
Freefall

AN5226 - Rev 1 page 50/67

11 Finite State Machine tool

The Finite State Machine programmability in the device is allowed through a dedicated tool, available as an
extension of the Unico GUI.

11.1 Unico GUI
Unico is the Graphical User Interface for all the MEMS sensor demonstration boards available in the
STMicroelectronics portfolio. It has the possibility to interact with a motherboard based on the STM32
microcontroller (Professional MEMS Tool), which enables the communication between the MEMS sensor and the
PC GUI.
The details of the Professional MEMS Tool board can be found at the following page:
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-
eval-boards/steval-mki109v3.html
The Unico GUI is available in three software packages for the three operating systems supported.
• Windows

– https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-
mki109w.html

• Linux
– https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-

mki109l.html
• Mac OS X

– https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-
mki109m.html

Unico GUI allows visualization of sensor outputs in both graphical and numerical format and allows the user to
save or generally manage data coming from the device.
Unico allows access to the MEMS sensor registers, enabling a fast prototype of register setup and easy test of
the configuration directly in the device. It is possible to save the configuration of the current registers in a text file
and load a configuration from an existing file. In this way, the sensor can be re-programmed in few seconds.
The Finite State Machine tool available in the Unico GUI helps the process of register configuration by
automatically generating configuration files for the device. By clicking a few buttons, the configuration file is
available. From these configuration files, the user can create his own library of configurations for the device.
To execute the Finite State Machine tool, the user has to click on the dedicated “FSM” button that is available in
the left side of the main UNICO GUI window as shown in the following figure.

AN5226
Finite State Machine tool

AN5226 - Rev 1 page 51/67

https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-eval-boards/steval-mki109v3.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mems-motion-sensor-eval-boards/steval-mki109v3.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109w.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109w.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109l.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109l.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109m.html
https://www.st.com/content/st_com/en/products/embedded-software/evaluation-tool-software/stsw-mki109m.html

Figure 15. Running the Finite State Machine tool

When loaded, the main Finite State Machine tool window is shown.

Figure 16. Finite State Machine tool

In the top part of the Finite State Machine tool main window, the user can select which state machine is selected
(the selection is applied in both the Configuration tab and Debug tab). It is also possible to configure the FSM
ODR and the long counter parameters. Finally, a converter from float32 to float16 format and viceversa is
available. The converter is used to generate the value to be set in the threshold resources in the Variable Data
Section.
The Finite State Machine tool is mainly composed of three tabs which are detailed in dedicated sections:
• Configuration tab (the one selected by default);
• Interrupt tab;
• Debug tab.

AN5226
Unico GUI

AN5226 - Rev 1 page 52/67

11.1.1 Configuration tab
The configuration tab of the Finite State Machine tool allows the user to implement the program logic. The UI is
able to abstract the FSM program structure: for this reason, 4 group boxes are shown:
1. SMx Status;
2. SMx Fixed Data Section;
3. SMx Variable Data Section;
4. SMx Instructions Section.

Figure 17. Finite State Machine tool - Configuration tab

In the bottom part of the Configuration tab, the user can manage the device configuration using dedicated
buttons:
• Read FSM Configuration: it is used to read the FSM registers and to graphically build the UI based on

current FSM configuration and programs;
• Write FSM Configuration: it is used to write the entire FSM configuration (it includes FSM ODR, Long

Counter parameters, interrupt status and programs);
• Reset All: it is used to reset the entire Finite State Machine tool UI;
• Load Device Configuration: it is used to load a .ucf file;
• Save Device Configuration: it is used to generate a .ucf file which contains both sensor and FSM register

configurations.

AN5226
Unico GUI

AN5226 - Rev 1 page 53/67

11.1.1.1 SMx Status

The SMx Status groupbox is available in the top-right corner of the Configuration tab.

Figure 18. Configuration tab - SMx Status

The SMx Status groupbox allows the user to enable/disable the state machine and to route the interrupt status on
the INT1/INT2 pin. In detail:
• the “Enabled” checkbox is used to enable/disable the state machine. It is automatically set if the program

contains at least one instruction and it is automatically reset if the program does not contain any instruction;
• the “INT1” checkbox is used to enable the routing of the state machine interrupt on INT1 pin. This is effective

if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to ‘1’;
• the “INT2” checkbox is used to enable the routing of the state machine interrupt on the INT2 pin. This is

effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to ‘1’.

11.1.1.2 SMx Fixed Data Section
The SMx Fixed Data Section groupbox is available in the right part of the Configuration tab.

Figure 19. Configuration tab - SMx Fixed Data Section

The SMx Fixed Data Section groupbox allows the user to have information about the fixed data section bytes of
the program. These bytes are automatically managed by the Finite State Machine tool. It is also possible to
enable/disable hysteresis and the decimation resources depending on user needs. If enabled, the corresponding
resource will be shown in the SMx Variable Data Section groupbox.

AN5226
Unico GUI

AN5226 - Rev 1 page 54/67

11.1.1.3 SMx Variable Data Section
The SMx Variable Data Section groupbox is available in the bottom-right corner of the configuration tab.

Figure 20. Configuration tab – SMx Variable Data Section

The SMx Variable Data Section groupbox simplifies the resource allocation process: all the needed resources are
automatically shown or hidden in the SMx Variable Data Section groupbox depending on the instructions that
compose the SMx Instruction Section. The user has just to set the values of the shown resources.

11.1.1.4 SMx Instructions Section
The SMx Instructions Section groupbox is available in the left part of the Configuration tab.

Figure 21. Configuration tab – SMx Instructions Section

AN5226
Unico GUI

AN5226 - Rev 1 page 55/67

The SMx Instructions Section groupbox helps the user to build the algorithm logic. The SMx Variable Data Section
groupbox is dynamically updated depending on resources used in the SMx Instructions Section groupbox. In the
SMx Instructions Section groupbox, more actions can be taken:
1. Customize an existing state. The single state is composed of:

– state number Sx

– state program relative hexadecimal address (address 0x00 corresponds to CONFIG_A byte in the fixed
data section)

– state type and opcode: user can customize the state using radio buttons and drop-down lists as
described below:
◦ “RNC” radio button: the state is a RESET/NEXT condition. In this case, two drop-down lists are

shown. The left one is related to the RESET condition while the right one is related to the NEXT
condition;

◦ “CMD” radio button: the state is a Command. In this case, one drop-down list is shown.
Commands having one or more parameters (automatically displayed by the tool) require the user
to manually configure the parameter values.

– “Add” button is used to insert a new state just before the current one;
– “Remove” button is used to remove the current state.

2. “Add State” button is used to add a new state at the end of the state machine. This button is always
positioned at the bottom of the state machine states;

3. “Import / Export State Machine” buttons are used to import / export the state machine program in .fsm
format. The format .fsm is used to allow the user to build the entire FSM configuration starting from a set
of .fsm state machine programs.

4. “Reset State Machine” button is used to reset the state machine instructions section (only on UI, not in the
device).

AN5226
Unico GUI

AN5226 - Rev 1 page 56/67

11.1.2 Interrupt tab
The Interrupt tab of the Finite State Machine tool allows the user to check the functionality of the configured
programs at runtime of the program logic. The UI is composed of two parts as shown in Figure 22.
1. Signal plots: a plot of the accelerometer, gyroscope and interrupt signals is shown here based on enabled

sensors and interrupt configuration;
2. State Machine Interrupt status: in this groupbox, two columns of information are shown:

– a graphic green LED is linked to the corresponding state machine interrupt source bit. By default, the
LED is off. When the corresponding source bit is set to ‘1’, the LED is turned on for ~300 msec;

– the OUT_Sx register value and the long counter register value can be manually read by clicking on the
corresponding “Read” button.

Figure 22. Finite State Machine tool - Interrupt tab

AN5226
Unico GUI

AN5226 - Rev 1 page 57/67

11.1.3 Debug tab
The debug tab can be used to inject data into the device in order to check the functionality of the configured
programs.
The UNICO GUI Load/Save tab, shown in Figure 23, allows the user to take properly formatted log files for the
data injection procedure. These log files have to contain [LSB] data only (accelerometer and/or gyroscope
depending on user needs and program logic).

Figure 23. UNICO GUI – Load/Save tab

The debug tab window is shown in the following figure.

Figure 24. Finite State Machine tool – Debug tab

AN5226
Unico GUI

AN5226 - Rev 1 page 58/67

The debug tab is mainly composed of three UI parts:
1. State machines flows: the state machine is graphically shown here. When the debug mode is enabled, the

current state is highlighted and it is dynamically updated based on the injected sample and program
behavior.

2. Debug commands: by default, the debug mode is off. When a log file is loaded, the debug mode is
automatically turned on and the user can start to inject data into the device in order to verify the program
functionalities. Injected sample data and the number of detected interrupts are shown here.

3. Output results: after injecting a sample into the device, a new line is added to the table depending on the
“Print Results” checkbox status. Table columns represent the state machine parameters and resources,
while table rows are related to the injected sample. When a parameter or a resource value is changed, the
corresponding cell is highlighted. Finally, it is possible to export the table results in a text file format.

AN5226
Unico GUI

AN5226 - Rev 1 page 59/67

Revision history

Table 54. Document revision history

Date Version Changes

14-Jan-2019 1 Initial release

AN5226

AN5226 - Rev 1 page 60/67

Contents

1 Finite State Machine (FSM). .2

1.1 Finite State Machine definition. 2

1.2 Finite State Machine in the LSM6DSO. 3

2 Signal Conditioning block .4

3 FSM block .5

3.1 Configuration block . 6

3.1.1 FSM registers . 7

3.1.2 FSM embedded function registers. 7

3.1.3 FSM embedded advanced features registers . 13

3.2 Program block . 20

3.2.1 Input Selector block. 20

3.2.2 Code block . 20

4 FSM Interrupt .22

5 Fixed Data section .23

5.1 Long Counter . 23

6 Variable Data section .25

6.1 Thresholds . 26

6.2 Hysteresis . 26

6.3 Masks / temporary masks . 27

6.4 DeltaT, DX, DY, DZ, DV . 28

6.5 TC and timers . 28

6.6 Decimator. 29

6.7 Previous axis sign . 30

7 Instructions section .31

7.1 Reset/Next conditions. 31

7.1.1 NOP (0h). 33

7.1.2 TI1 (1h) . 33

7.1.3 TI2 (2h) . 33

7.1.4 TI3 (3h) . 33

AN5226
Contents

AN5226 - Rev 1 page 61/67

7.1.5 TI4 (4h) . 33

7.1.6 GNTH1 (5h) . 34

7.1.7 GNTH2 (6h) . 34

7.1.8 LNTH1 (7h) . 34

7.1.9 LNTH2 (8h) . 34

7.1.10 GLTH1 (9h) . 34

7.1.11 LLTH1 (Ah) . 35

7.1.12 GRTH1 (Bh) . 35

7.1.13 LRTH1 (Ch). 35

7.1.14 PZC (Dh). 35

7.1.15 NZC (Eh). 35

7.2 Commands. 36

7.2.1 STOP (00h). 37

7.2.2 CONT (11h). 37

7.2.3 CONTREL (22h) . 38

7.2.4 SRP (33h) . 38

7.2.5 CRP (44h). 38

7.2.6 SETP (55h) . 38

7.2.7 SELMA (66h) . 38

7.2.8 SELMB (77h) . 38

7.2.9 SELMC (88h) . 39

7.2.10 OUTC (99h) . 39

7.2.11 STHR1 (AAh) . 39

7.2.12 STHR2 (BBh) . 39

7.2.13 SELTHR1 (CCh) . 39

7.2.14 SELTHR3 (DDh) . 40

7.2.15 SISW (EEh) . 40

7.2.16 REL (FFh) . 40

7.2.17 SSIGN0 (12h) . 40

7.2.18 SSIGN1 (13h) . 40

7.2.19 SRTAM0 (14h) . 40

7.2.20 SRTAM1 (21h) . 41

AN5226
Contents

AN5226 - Rev 1 page 62/67

7.2.21 SINMUX (23h). 41

7.2.22 STIMER3 (24h) . 41

7.2.23 STIMER4 (31h) . 41

7.2.24 SWAPMSK (32h) . 41

7.2.25 INCR (34h) . 41

7.2.26 JMP (41h) . 42

7.2.27 CANGLE (42h) . 42

7.2.28 SMA (43h). 42

7.2.29 SMB (DFh) . 42

7.2.30 SMC (FEh) . 43

7.2.31 SCTC0 (5Bh) . 43

7.2.32 SCTC1 (7Ch) . 43

7.2.33 UMSKIT (C7h) . 43

7.2.34 MSKITEQ (EFh) . 43

7.2.35 MSKIT (F5h) . 43

8 FSM configuration example .44

9 Start routine .47

10 Examples of state machine configurations .48

10.1 Toggle . 48

10.2 Wake-up . 49

10.3 Freefall . 50

11 Finite State Machine tool. .51

11.1 Unico GUI. 51

11.1.1 Configuration tab. 52

11.1.2 Interrupt tab . 57

11.1.3 Debug tab . 58

Revision history .60

AN5226
Contents

AN5226 - Rev 1 page 63/67

List of tables
Table 1. FSM registers . 7
Table 2. EMB_FUNC_STATUS_MAINPAGE (35h) register . 7
Table 3. FSM_STATUS_A_MAINPAGE (36h) register . 7
Table 4. FSM_STATUS_B_MAINPAGE (37h) register . 7
Table 5. Embedded function registers . 8
Table 6. EMB_FUNC_EN_B (05h) register . 9
Table 7. EMB_FUNC_INT1 (0Ah) register . 9
Table 8. FSM_INT1_A (0Bh) register . 9
Table 9. FSM_INT1_B (0Ch) register . 9
Table 10. EMB_FUNC_INT2 (0Eh) register . 10
Table 11. FSM_INT2_A (0Fh) register . 10
Table 12. FSM_INT2_B (10h) register. 10
Table 13. EMB_FUNC_STATUS (12h) register . 11
Table 14. FSM_STATUS_A (13h) register . 11
Table 15. FSM_STATUS_B (14h) register . 11
Table 16. PAGE_RW (17h) register . 11
Table 17. FSM_ENABLE_A (46h) register . 12
Table 18. FSM_ENABLE_B (47h) register . 12
Table 19. FSM_LONG_COUNTER_L (48h) register . 12
Table 20. FSM_LONG_COUNTER_H (49h) register. 12
Table 21. FSM_LONG_COUNTER_CLEAR (4Ah) register . 12
Table 22. FSM_OUTS[1:16] (4Ch - 5Bh) register . 13
Table 23. EMB_FUNC_ODR_CFG_B (5Fh) register . 13
Table 24. FSM output data rate . 13
Table 25. FSM_INIT (67h) register . 13
Table 26. FSM embedded advanced features registers . 14
Table 27. MAG_SENSITIVITY_L (BAh) register . 15
Table 28. MAG_SENSITIVITY_H (BBh) register. 15
Table 29. MAG_OFFX_L (C0h) register . 15
Table 30. MAG_OFFX_H (C1h) register . 15
Table 31. MAG_OFFY_L (C2h) register . 15
Table 32. MAG_OFFY_H (C3h) register . 16
Table 33. MAG_OFFZ_L (C4h) register . 16
Table 34. MAG_OFFZ_H (C5h) register . 16
Table 35. MAG_SI_XX_L (C6h) register . 16
Table 36. MAG_SI_XX_H (C7h) register . 16
Table 37. MAG_SI_XY_L (C8h) register . 17
Table 38. MAG_SI_XY_H (C9h) register . 17
Table 39. MAG_SI_XZ_L (CAh) register . 17
Table 40. MAG_SI_XZ_H (CBh) register . 17
Table 41. MAG_SI_YY_L (CCh) register . 17
Table 42. MAG_SI_YY_H (CDh) register. 18
Table 43. MAG_SI_YZ_L (CEh) register . 18
Table 44. MAG_SI_YZ_H (CFh) register . 18
Table 45. MAG_SI_ZZ_L (D0h) register . 18
Table 46. MAG_SI_ZZ_H (D1h) register . 18
Table 47. FSM_LC_TIMEOUT_L (7Ah) register . 19
Table 48. FSM_LC_TIMEOUT_H (7Bh) register. 19
Table 49. FSM_N_PROG (7Ch) register . 19
Table 50. FSM_START_ADD_L (7Eh) register. 19
Table 51. FSM_START_ADD_H (7Fh) register . 19
Table 52. Conditions . 32

AN5226
List of tables

AN5226 - Rev 1 page 64/67

Table 53. List of commands. 36
Table 54. Document revision history . 60

AN5226
List of tables

AN5226 - Rev 1 page 65/67

List of figures
Figure 1. Generic state machine. 2
Figure 2. State machine in the LSM6DSO . 3
Figure 3. Signal Conditioning block. 4
Figure 4. FSM block . 5
Figure 5. Program block . 20
Figure 6. FSM Programx Code structure . 21
Figure 7. FSM Programx memory area . 21
Figure 8. Fixed Data section . 23
Figure 9. Variable Data section. 25
Figure 10. Single state description . 31
Figure 11. FSM configuration example . 44
Figure 12. Toggle state machine example . 48
Figure 13. Wake-up state machine example . 49
Figure 14. Freefall state machine example . 50
Figure 15. Running the Finite State Machine tool . 52
Figure 16. Finite State Machine tool . 52
Figure 17. Finite State Machine tool - Configuration tab. 53
Figure 18. Configuration tab - SMx Status . 54
Figure 19. Configuration tab - SMx Fixed Data Section . 54
Figure 20. Configuration tab – SMx Variable Data Section . 55
Figure 21. Configuration tab – SMx Instructions Section . 55
Figure 22. Finite State Machine tool - Interrupt tab . 57
Figure 23. UNICO GUI – Load/Save tab . 58
Figure 24. Finite State Machine tool – Debug tab . 58

AN5226
List of figures

AN5226 - Rev 1 page 66/67

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

AN5226

AN5226 - Rev 1 page 67/67

	1 Finite State Machine (FSM)
	1.1 Finite State Machine definition
	1.2 Finite State Machine in the LSM6DSO

	2 Signal Conditioning block
	3 FSM block
	3.1 Configuration block
	3.1.1 FSM registers
	3.1.1.1 EMB_FUNC_STATUS_MAINPAGE (35h)
	3.1.1.2 FSM_STATUS_A_MAINPAGE (36h)
	3.1.1.3 FSM_STATUS_B_MAINPAGE (37h)

	3.1.2 FSM embedded function registers
	3.1.2.1 EMB_FUNC_EN_B (05h)
	3.1.2.2 EMB_FUNC_INT1 (0Ah)
	3.1.2.3 FSM_INT1_A (0Bh)
	3.1.2.4 FSM_INT1_B (0Ch)
	3.1.2.5 EMB_FUNC_INT2 (0Eh)
	3.1.2.6 FSM_INT2_A (0Fh)
	3.1.2.7 FSM_INT2_B (10h)
	3.1.2.8 EMB_FUNC_STATUS (12h)
	3.1.2.9 FSM_STATUS_A (13h)
	3.1.2.10 FSM_STATUS_B (14h)
	3.1.2.11 PAGE_RW (17h)
	3.1.2.12 FSM_ENABLE_A (46h)
	3.1.2.13 FSM_ENABLE_B (47h)
	3.1.2.14 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)
	3.1.2.15 FSM_LONG_COUNTER_CLEAR (4Ah)
	3.1.2.16 FSM_OUTS[1:16] (4Ch - 5Bh)
	3.1.2.17 EMB_FUNC_ODR_CFG_B (5Fh)
	3.1.2.18 FSM_INIT (67h)

	3.1.3 FSM embedded advanced features registers
	3.1.3.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)
	3.1.3.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)
	3.1.3.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)
	3.1.3.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)
	3.1.3.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)
	3.1.3.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)
	3.1.3.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)
	3.1.3.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)
	3.1.3.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)
	3.1.3.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)
	3.1.3.11 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)
	3.1.3.12 FSM_PROGRAMS (7Ch)
	3.1.3.13 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

	3.2 Program block
	3.2.1 Input Selector block
	3.2.2 Code block

	4 FSM Interrupt
	5 Fixed Data section
	5.1 Long Counter

	6 Variable Data section
	6.1 Thresholds
	6.2 Hysteresis
	6.3 Masks / temporary masks
	6.4 DeltaT, DX, DY, DZ, DV
	6.5 TC and timers
	6.6 Decimator
	6.7 Previous axis sign

	7 Instructions section
	7.1 Reset/Next conditions
	7.1.1 NOP (0h)
	7.1.2 TI1 (1h)
	7.1.3 TI2 (2h)
	7.1.4 TI3 (3h)
	7.1.5 TI4 (4h)
	7.1.6 GNTH1 (5h)
	7.1.7 GNTH2 (6h)
	7.1.8 LNTH1 (7h)
	7.1.9 LNTH2 (8h)
	7.1.10 GLTH1 (9h)
	7.1.11 LLTH1 (Ah)
	7.1.12 GRTH1 (Bh)
	7.1.13 LRTH1 (Ch)
	7.1.14 PZC (Dh)
	7.1.15 NZC (Eh)

	7.2 Commands
	7.2.1 STOP (00h)
	7.2.2 CONT (11h)
	7.2.3 CONTREL (22h)
	7.2.4 SRP (33h)
	7.2.5 CRP (44h)
	7.2.6 SETP (55h)
	7.2.7 SELMA (66h)
	7.2.8 SELMB (77h)
	7.2.9 SELMC (88h)
	7.2.10 OUTC (99h)
	7.2.11 STHR1 (AAh)
	7.2.12 STHR2 (BBh)
	7.2.13 SELTHR1 (CCh)
	7.2.14 SELTHR3 (DDh)
	7.2.15 SISW (EEh)
	7.2.16 REL (FFh)
	7.2.17 SSIGN0 (12h)
	7.2.18 SSIGN1 (13h)
	7.2.19 SRTAM0 (14h)
	7.2.20 SRTAM1 (21h)
	7.2.21 SINMUX (23h)
	7.2.22 STIMER3 (24h)
	7.2.23 STIMER4 (31h)
	7.2.24 SWAPMSK (32h)
	7.2.25 INCR (34h)
	7.2.26 JMP (41h)
	7.2.27 CANGLE (42h)
	7.2.28 SMA (43h)
	7.2.29 SMB (DFh)
	7.2.30 SMC (FEh)
	7.2.31 SCTC0 (5Bh)
	7.2.32 SCTC1 (7Ch)
	7.2.33 UMSKIT (C7h)
	7.2.34 MSKITEQ (EFh)
	7.2.35 MSKIT (F5h)

	8 FSM configuration example
	9 Start routine
	10 Examples of state machine configurations
	10.1 Toggle
	10.2 Wake-up
	10.3 Freefall

	11 Finite State Machine tool
	11.1 Unico GUI
	11.1.1 Configuration tab
	11.1.1.1 SMx Status
	11.1.1.2 SMx Fixed Data Section
	11.1.1.3 SMx Variable Data Section
	11.1.1.4 SMx Instructions Section

	11.1.2 Interrupt tab
	11.1.3 Debug tab

	Revision history

