

 www.cypress.com Document No. 001-99195 Rev. ** 1

AN99195

Programmer’s Guide for the Cypress HyperFlash Family

Author: Zhi Feng

Associated Part Family: HyperFlash

Associated Code Examples: None

Cypress HyperFlash memories use the low-signal-count, high-performance HyperBus™ interface. They are the

industry’s fastest NOR Flash devices that are able to transfer up to 333 Mbytes/s on the HyperBus interface. This

document describes, for software programmers and system engineers, how to use the HyperFlash family.

Contents

1 Introduction ... 1
2 Basic HyperFlash Characteristics 1

2.1 HyperFlash System Diagram 1
2.2 Memory Architecture .. 2
2.3 Comparison to Traditional

Parallel NOR Devices ... 2
2.4 Comparison to SPI NOR Devices 3

3 Configuring HyperFlash Devices 3
3.1 Before First Memory Array

Program or Erase .. 3
3.2 After All Configurations Are Set 4

4 Status Register ... 4

5 Reset .. 5
6 CFI / Device ID ... 5
7 Maximizing Read Performance 6
8 Programming .. 7
9 Erasing ... 7
10 Secure Silicon Region (SSR) 8
11 INT# Output Pin .. 8
12 Conclusion .. 8
13 References ... 8
Document History .. 9
Worldwide Sales and Design Support 10

1 Introduction

Cypress HyperFlash memories use the low-signal-count, high-performance HyperBusTM interface. They are the
industry’s fastest NOR Flash devices that are able to transfer up to 333 Mbytes/s on the HyperBus interface. This
document describes, for software programmers and system engineers, how to use the HyperFlash family. For
complete specifications of HyperFlash devices, see corresponding datasheets.

2 Basic HyperFlash Characteristics

The HyperFlash family consists of both 3.0-V KL-S and 1.8-V KS-S devices. Both 3-V and 1.8-V devices use the
same software command set. HyperFlash combines the advantages of a low-signal-count interface memory such as
SPI NOR with even higher read performance than Parallel NOR (PNOR) devices. This section compares HyperFlash
to traditional PNOR and SPI NOR devices.

2.1 HyperFlash System Diagram

The following diagram shows how a typical embedded system chipset connects to a HyperFlash device. It requires
the HyperBus memory controller that communicates with the HyperFlash device through a set of control and I/O pins.
The software low-level driver provides basic read, write and erase functions to the upper-level applications.

http://www.cypress.com/

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 2

2.2 Memory Architecture

HyperFlash has a uniform sector architecture with a sector size of 256 KB. A sector is the smallest erasable block in
a flash device. To give users the flexibility of having smaller sectors, there is a user configuration option to partially
overlay either the first or the last sector of the device. Those smaller sectors are called parameter sectors in which
users typically store system parameters.

When programming to the memory, HyperFlash provides a Write Buffer, which is aligned on a 512-byte boundary.
Therefore, the Write Buffer Programming command allows up to 512 bytes to be programmed in one operation.

Typically, device internal operations that take a period of time to complete, such as erasing a sector and
programming, are called embedded operations (EO). During an EO, the device is busy and most commands are
forbidden. Users can use the Read Status Register command to determine the completion of the EO.

Read commands are associated with pages. A page is a 16-word (32-byte) length and aligned unit internal to the
device. Additional latency may be inserted when reading across the page boundaries. Refer to Section 7 for more
details.

2.3 Comparison to Traditional Parallel NOR Devices

Software operations in HyperFlash are similar to traditional PNOR devices such as the Cypress GL-P and GL-S
families. Although the physical pin connection of HyperFlash is different from PNOR devices, it adopts the PNOR
command set as its baseline command set.

For example, to erase a sector of the device, users would issue a sequence of write commands identical to the erase
command sequence used by the Cypress GL-P and GL-S families. Each command is written to the device through a
different set of electrical signals and a signal protocol sequence compared to traditional PNOR. However, the
electrical signaling difference is transparent to the software. The HyperFlash memory controller in the host system
handles the translation of software write and read accesses into the HyperBus signaling protocol. Therefore, users
can make use of the same Low Level Driver (LLD) software for earlier generations of PNOR with HyperFlash devices.
HyperFlash devices have optional commands in addition to the baseline command set that enable additional features
of the devices.

CPU
Core

HyperFlash

I/O Bus x8

Low Level
Driver

HyperBus
Controller

CS#

Clocks (x2)

RWDS

RESET#

RSTO#

INT#

http://www.cypress.com/

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 3

2.4 Comparison to SPI NOR Devices

The similarity between HyperFlash and SPI NOR devices is only in their signal pin physical placement on the
package. The command format on the I/O bus for HyperFlash is completely different from SPI devices. As mentioned
above, in terms of software command set, HyperFlash is backward-compatible with the Parallel NOR devices. That
means the PNOR software low level driver can be reused on HyperFlash without changes.

3 Configuring HyperFlash Devices

HyperFlash devices provide a Nonvolatile Configuration Register (NVCR), and its counterpart, Volatile Configuration
Register (VCR). The VCR is for users to temporarily change the configuration settings for testing. The VCR value will
be reset to the one held in the NVCR at the next power cycle. If a nonvolatile configuration is desired, the NVCR
should be updated to the desired value. The NVCR and VCR are collectively referred to as xVCR registers. Table 1
shows the bit assignments of the xVCRs.

Table 1. Volatile and Non-Volatile Configuration Registers

xVCR Bit Function Settings (Binary)

xVCR.15 Reserved 1 - Reserved (default)

xVCR14 – xVCR12 Drive Strength 000 - (default) (Refer to datasheet for actual device dependent impedance)

xVCR.11 xVCR Freeze
0 - VCR or NVCR Locked (No Programming or Erasing of NVCR, no changes to
VCR)

1 - VCR and NVCR Unlocked (factory default)

xVCR.10 SSR Freeze
0 - Secure Silicon Region Locked (Programming not allowed)

1 - Secure Silicon Region Unlocked (factory default)

xVCR.9 – xVCR.8
Parameter-Sector
Mapping

00 - Parameter-Sectors and Read Password Sectors mapped into lowest
addresses

01 - Parameter-Sectors and Read Password Sectors mapped into highest
addresses

10 - Uniform Sectors with Read Password Sector mapped into lowest addresses.
(factory default)

11 - Uniform Sectors with Read Password Sector mapped into highest addresses

xVCR.7 – xVCR.4 Read Latency
1011 - 16 Clock Latency (factory default)

(Refer to datasheet for actual device dependent impedance)

xVCR.3 Reserved 1 - Reserved (default)

xVCR.2 Reserved 0 - Reserved (default)

xVCR.1 – xVCR.0 Burst Length

00 – Reserved

01 - 64 bytes

10 - 16 bytes

11 - 32 bytes (factory default)

3.1 Before First Memory Array Program or Erase

The HyperFlash family has default uniform sector architecture with 256 KB sector size. A user configuration option is
available to partially overlay either the first sector or the last sector with eight 4-KB parameter sectors. This
configuration is controlled by the Non-Volatile Configuration Register Bit 9-8. See the above table for the actual
setting values.

If users want to configure parameter sectors, these two bits should be programmed to the desired values before any
programming or erasing of the Flash array; otherwise, the data in the overlay portion of the Flash array may be lost.

http://www.cypress.com/

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 4

3.2 After All Configurations Are Set

After the power-up default configuration has been determined and fully debugged, users may use the NVCR Bit 11 to
permanently lock the xVCR registers. After the bit is programmed to 0, no changes can be made to xVCRs. The
device configuration is permanently locked.

4 Status Register

HyperFlash has a single 16-bit Status Register (SR) that can be used to check the current state of the device,
embedded operation status, or previous erase status. Only the lower eight bits of the SR are defined.

Table 2. Status Register

Bit # 15:9 8 7 6 5 4 3 2 1 0

Bit
Description

Reserved Reserved
Device
Ready

Bit

Erase
Suspend
Status Bit

Erase
Status Bit

Program
Status Bit

Write
Buffer
Abort

Status Bit

Program
Suspend
Status Bit

Sector
Lock

Status Bit

Sector Erase
Status Bit

Bit Name DRB ESSB ESB PSB WBASB PSSB SLSB ESTAT

Reset Status X 0 1 0 0 0 0 0 0 0

Busy Status Invalid Invalid 0 Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Ready Status X
X

1

0 = No
Erase in

Suspension

1 = Erase in
Suspension

0 = Erase
Successful

1 = Erase
Fail

0 =
Program

Successful

1 =
Program

Fail

0 =
Program

Not
Aborted

1 =
Program
Aborted
during

Write to
Buffer

Command

0 = No
Program in
Suspension

1 = Program
in

Suspension

0 =
Sector

Not
Locked
during

Operation

1 =
Sector
Locked
Error

0 = Sector
Erase Status

Command
Result =

previous erase
did not

complete
successfully

1 = Sector
Erase Status

Command
Result =

previous erase
completed

successfully

After issuing a command that triggers an embedded operation, such as programming or easing a sector, users
should always check the SR to make sure that the embedded operation has completed before proceeding to the next
command. During an embedded operation, only the program/erase suspend1 command or the Status Register Read
command will be accepted. All other commands are ignored.

If an error happens during an embedded operation, users need to clear the error bit by using the Clear Status
Register command before proceeding to the next command.

The following diagram shows a polling function that uses the Status Register to determine the device status after
starting an embedded operation such as programing or erasing a sector. The algorithm here has the assumption that
the type of the most recent operation, shown in the four large diamonds in the middle of the diagram, is passed into
this software polling function. This implementation simplifies the software flow. It is feasible to design an algorithm
that does not need to know the type of operation it is polling for; however, it will be more complicated.

1 During program or erase operation, users may issue a suspend command to suspend the EO in order to quickly go back to read
mode. The operation will be suspended till the resume command is entered.

http://www.cypress.com/

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 5

Embedded

Operation

Started

Write Status

Read Command
Read Bit 7 = 0 ?

Actively

Programming or

Erasing

Operation = Erase

Suspend?

Operation =

Erase?
Operation =

Program Suspend?

Operation =

Program?

Bit 6 = 0 ?

Erase

Completed Not

Suspended

Bit 5 = 0 ?

Erase in

Suspension
Erase Failed

Erase Successful

Bit 2 = 0 ?

Program

Suspension

Program

Completed Not

Suspended

Bit 1 = 0 ?

Sector Locked

Error

Sector Not

Locked

Invalid Operation

Bit 4 = 0 ?

Program Failed

Program

Succcessful

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes Yes

Yes

No

No

No

No No

No

No

No

No No

5 Reset

There are three kinds of resets in HyperFlash device: Power on Reset (POR), also called cold reset; Hardware Reset,
also called warm reset triggered by the RESET# signal; and the Software Reset triggered by the Software Reset
Command (F0h).

Upon cold and warm resets, all VCR bits are loaded from the corresponding NVCR bit values.

The RSTO# pin can be used on the system to indicate the completion of a POR. The pin will transition from low to
high state after the device completes the power-up stage, plus a user defined timeout period.

Software Reset is typically used to clear the Status Register or get the device back to Read Array Mode from an ASO
state or an unknown state. Software reset will not affect ongoing embedded operations, or any Configuration Register
values.

6 CFI / Device ID

Similar to earlier PNOR devices, the HyperFlash family follows the JEDEC Common Flash Interface (CFI)
specification to provide a standardized data structure that may be read by a command. The data structure contains
information such as various electrical and timing parameters, and special functions supported by the device. Software
support can then be device-independent, Device ID-independent, and forward-and-backward-compatible for entire
Flash device families.

Both ID (Autoselect) and CFI commands in HyperFlash allow users to access the combined ID/CFI data set. All data
contained within the ID/CFI data set is available after using either the ID (Autoselect) or CFI Entry sequence.

See the HyperFlash family datasheet (referenced at the end of the App Note) for a complete explanation of the
ID/CFI data structure.

http://www.cypress.com/

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 6

7 Maximizing Read Performance

The HyperFlash memory array initial access time is defined as tACC at about 96 ns. This time is required to move the
data from the Flash array to the data I/O; tACC is independent of the clock frequency the user has chosen to run at.
The higher the clock frequency, the more clock cycles are required for the data to reach the device outputs. This time
duration in terms of clock cycles is called latency clocks.

In HyperFlash, the number of latency clocks is controlled by four Latency Code Configuration Register bits: xVCR Bit
7-4. The following table shows the relationship between the latency code, latency clocks, and the maximum clock
frequency that will satisfy the tACC requirement for initial read latency.

Table 3. Latency Settings

Latency Code Latency Clocks Maximum Operating Frequency (MHz)

0000 5 52

0001 6 62

0010 7 72

0011 8 83

0100 9 93

0101 10 104

0110 11 114

0111 12 125

1000 13 135

1001 14 145

1010 15 156

1011 16 166

1100 Reserved NA

1101 Reserved NA

1110 Reserved NA

1111 Reserved NA

Notes:

1. Default NVCR latency setting when the device is shipped from the factory is 16 clocks.

2. The Latency Code is the value loaded into (Non) Volatile Configuration Register bits xVCR[7:4].

3. Maximum Operating Frequency assumed to be using a device with tACC = 96 ns.

In order to maximize the read performance, users would want to read the maximum length of contiguous data in a
single read command sequence to avoid multiple initial latency periods. That means the host controller is preferable
to hold CS# LOW until all data is read. In order to achieve this, users cannot simply use memcpy() or similar read
functions that reads one word at a time. Users will need to implement a controller-specific function to read multiple
words of contiguous data for the application-level software. This function should accept data length as one of the
parameters and have the host memory controller-specific register settings necessary for the memory controller to
send the correct signal protocol sequence to the HyperFlash memory.

In HyperFlash, one full read page is 32 bytes. Users can configure the burst length of a read operation to be 16-, 32-,
64-byte wrapped sequence, or in a linear read sequence.

http://www.cypress.com/

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 7

If the read is configured to be linear and the read address does not start on a 16-byte alignment boundary (0h or 8h
word address multiple offset), in addition to the initial latency, the user may need to insert a page-crossing latency
when crossing the first 32-byte alignment boundary (to the second page). The initial and first page-crossing latency
cycles depend on the clock frequency and the starting address offset. See tables in the datasheet for the actual
counts.

Note that all subsequent page crossings within the same linear access will not require any additional latency clocks.
Wrapped read transactions of 16-byte and 32-byte bursts do not cross page boundaries and do not incur inter-page-
boundary-crossing latencies. For a 64-byte wrapped burst read, additional latency may need to be inserted during the
page boundary crossing, depending on the starting address.

8 Programming

HyperFlash family devices have a 512-byte write buffer, which is aligned on 512-byte boundaries. Programming data
to the Flash is most efficient when writing in 512-byte length and aligned increments. Although smaller writes are
allowed, for best performance, software should, whenever possible, program data in full, address-aligned, write buffer
increments.

In HyperFlash, the Flash memory array is structured in 16-byte length and aligned Half-Pages. While multiple
program operations within a Half-Page are not recommended, they are allowed for backwards compatibility with
traditional Parallel NOR products. Programming more than once within the same Half-Page, per erase of the sector in
which the Half-Page resides, reduces the data integrity of the Half-Page. If it is required to program in less than Half-
Page multiples such that Half-Pages are programmed more than once per erase, it is recommended to add software
error correction information for the data in such Half-Pages.

For example, a simple Flash file system may write 512-byte file records, each with 30-byte metadata. If the user
programs the next file sector immediately after the 30-byte metadata, it would cause misalignments to all subsequent
sectors, as shown in Table 4. In this case, it would be highly recommended that the user insert 2-byte padding data at
the end of the 30-byte metadata structure so that all files sectors and metadata are aligned with the internal 16-byte
Half-Pages, and 512-byte Write Buffer pages.

Table 4. Misaligned Data Storage

File
sector

1st record 512 Bytes 1st
metadata
30 Bytes

2nd record 512 Bytes 2nd
metadata
#0 Bytes

Flash
Page

HP 0 … … HP 31 HP
32

HP
33

HP 34 … … HP 64 HP 65 HP 66

Note: HP: Half Page (16-byte)

Table 5. Aligned Data Storage

File
sector

1st sector 512 Bytes 1st metadata
30 + 2 pad

Bytes

2nd sector 512 Bytes 2nd
metadata 30

+ 2 pad
Bytes

Flash
Page

HP 0 … … HP 31 HP
32

HP
33

HP 34 … … HP 65 HP
66

HP
67

9 Erasing

To erase a sector in a HyperFlash device, issue the Erase command stated in the datasheet with the sector base
address.

HyperFlash family devices have uniform sector size 256 KB. The first (Sector 0) or the last sector can be partially
overlaid by eight parameter sectors each with 4-KB size. Users need to pay attention to the fact that in such overlay
configuration, there is a sector above or below the parameter sectors (224 KB in size) between the parameter sectors
and the remaining uniform 256-KB sectors. When issuing an erase command, the address used must be within the
intended sector.

http://www.cypress.com/

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 8

10 Secure Silicon Region (SSR)

HyperFlash family devices provide 1024 bytes of Secure Silicon Region (SSR) that is a One Time Programmable
(OTP) area separated from the main Flash array. The area is divided into 32 individually lockable, 32-byte aligned
regions. (32 × 32 bytes = 1024 bytes). Users can access the SSR by entering the SSR Address Space Overlay
(ASO).

When reading from the SSR, enter SSR ASO and perform a read to an SSR address offset. If the address entered is
outside of the 1024-byte SSR address range, main array data will be retrieved.

When programming the SSR, enter SSR ASO and perform Write Buffer or Word programming the same as in normal
array programming.

The SSR is protected by the FREEZE bit in xVCR Bit10. If FREEZE is set, the program command will be ignored. No
error is reported.

The Region 0 of the SSR (first 32 bytes) is a special region. The first 16 bytes of Region 0 are reserved for Cypress
to program in a Random Number that can be used as a unique device identification such as a serial number. The
next four bytes are the Lock Bits. Each lock bit controls the corresponding 32 SSR regions, from Region 0 to Region
31. Users can program these bits to individually lock any SSR regions. Once the region is locked, it is permanently
locked.

Any attempt to program to the Random Number area will result in a program error. If an SSR region is locked by its
lock bit, any attempt to program into the region will result in a program error.

When programming the SSR, the program page size is the same as the normal Flash array page program; that is,
512 bytes. That means the user can program multiple SSR regions in the same program command.

If the program data entered is more than the page size, the data will be wrapped to the beginning of the page, just
like a normal page programming command. In this case, the wrapped data may coincide with Region 0, which is a
special region as mentioned above. In this case, the program command may fail if it contains some data intended for
the first 16 bytes of Region 0. Loading data beyond the end of the page programming buffer is not recommended.

11 INT# Output Pin

HyperFlash family devices offer an INT# output pin that users can configure to generate an interrupt to the system
when transitioning from BUSY to READY state, for example, completion of an embedded operation.

Users can read the Interrupt Status Register (ISR) to verify a Busy-to-Ready event has occurred, or that the last POR
was completed successfully, and then reset the ISR by writing the corresponding bits to 1.

12 Conclusion

Cypress HyperFlash family offers the same physical footprint as SPI devices, and the same software command
interface as the Parallel NOR devices. It also combines advantages of low pin count of the SPI devices and a high
throughput of NOR devices. In fact, its performance is even higher than Parallel NOR devices.

The HyperFlash family provides easy transition for users who have used SPI NOR or Parallel NOR devices in their
systems, reduces the system cost, and helps achieve better system performance.

Contact Cypress Customer Support for additional help when using HyperFlash family devices.

13 References

 S26KL/KSxxxS datasheet

 S26KL/KSxxxS Low Level Driver

http://www.cypress.com/
http://www.spansion.com/Support/Pages/Support.aspx
http://www.spansion.com/Support/Datasheets/S26KL_KS-S.pdf

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 9

Document History

Document Title: AN99195 - Programmer’s Guide for the Cypress HyperFlash Family

Document Number: 001-99195

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4852549 ZHFE 08/07/2015 New Application Note

http://www.cypress.com/

Programmer’s Guide for the Cypress HyperFlash Family

 www.cypress.com Document No. 001-99195 Rev.** 10

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/?id=1062&source=anxxxxx
http://www.cypress.com/?id=1936&source=anxxxxx
http://www.cypress.com/?id=24&source=anxxxxx
http://www.cypress.com/?id=1933&source=anxxxxx
http://www.cypress.com/?id=2308&source=anxxxxx
http://www.cypress.com/?id=64
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1932&source=anxxxxx
http://www.cypress.com/?id=167&source=anxxxxx
http://www.cypress.com/?id=10&source=anxxxxx
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1573&source=anxxxxx
http://www.cypress.com/?id=2232&source=anxxxxx
http://www.cypress.com/?id=4749&source=anxxxxx
http://www.cypress.com/?id=4562&source=anxxxxx
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203&source=anxxxxx
http://www.cypress.com/?app=forum&source=anxxxxx
http://www.cypress.com/?id=2200&source=anxxxxx
http://video.cypress.com/video-library/video/PSoC
http://www.cypress.com/?id=1162&source=anxxxxx
http://www.cypress.com/?id=4&source=anxxxxx
http://www.cypress.com/

