SILICON LABS

AN496: HID USB-to-SMBus API
Specification

The Silicon Labs HID USB-to-SMBus interface library provides a
simple API to configure and operate CP2112 devices.

The library provides interface abstraction so that users can develop their application
without writing any USB HID Code. C libraries implementing the CP2112 Interface
Specification are provided for Windows 2000 and later and Mac OS X 10.5 and later.

Similarly, various include files are provided to import library functions into C# .NET, and
Visual Basic .NET. Refer to the table in 1. Include Files for complete details.

User Application

HID to SMBus Library

HID Driver
(Provided by OS)

USB Root Hub

CP2112 HID USB-to-
SMBus Bridge

SMBus Devices

silabs.com | Building a more connected world.

KEY POINTS

» The CP2112 library enables application
development and device configuration on
multiple platforms and operating systems.

AN496: HID USB-to-SMBus API Specification

Include Files
1. Include Files
The files required for application development using the CP2112 API are listed in the following table:
Table 1.1. CP2112 Include Files
Operating System Library Include Files Version
SLABCP2112. h (C/C++)
Windows 2000 and later SLABHI Dt oSMBus. dI | 1 SLABCP2112. cs (C# .NET) 1.2

SLABCP2112. vb(VB .NET)

SLABCP2112. h (C, C++, Obj-C)
Mac OS X 10.5 and later | i bSLABHI Dt 0SMBus. dyl i b 1.0
Types. h (Compatibility)

Linux? l'i bsl abhi dt osnbus. so. 1. 03 SLABCP2112. h (C, C++, Obj-C) 1.0

Note:
1.Requires SLABHI DDevi ce. dl | version 1.5 during runtime.

2. Library binaries are provided for Ubuntu 16.x for i386 and amd64 (32-bit and 64-bit x86 processors). Source packages are availa-
ble in the CP2112 Software Development Kit (www.silabs.com/interface-software), which can be modified and compiled for addi-
tional platforms.

3.Requires the | i bsl abhi ddevi ce. so. 1. 0 HID library during runtime.

silabs.com | Building a more connected world. Rev.0.3 | 1

http://www.silabs.com/interface-software

AN496: HID USB-to-SMBus API Specification
APl Functions

2. API Functions

Table 2.1. API Functions Table

Definition Description

HidSmbus_GetNumDevices()

Returns the number of devices connected

HidSmbus_GetString()

Returns a string for a device by index

HidSmbus_GetOpenedString()

Returns a string for a device by device object pointer

HidSmbus_GetIndexedString()

Returns an indexed USB string descriptor by index (Windows Only)

HidSmbus_GetOpenedindexedString()

Returns an indexed USB string descriptor by device object pointer
(Windows Only)

HidSmbus_GetAttributes()

Returns the VID, PID, and release number for a device by index

HidSmbus_GetOpenedAttributes()

Returns the VID, PID and release number for a device by device object pointer

HidSmbus_Open()

Opens a device and returns a device object pointer

HidSmbus_Close()

Cancels pending 10 and closes a device

HidSmbus_IsOpened()

Returns the device opened status

HidSmbus_ReadRequest()

Initiates a fixed length read request to the desired slave device

HidSmbus_AddressReadRequest()

Initiates a fixed length read request to the desired slave device specifying the memo-
ry address to read

HidSmbus_ForceReadResponse()

Forces the device to generate and send a read response

HidSmbus_GetReadResponse()

Returns a read response if available

HidSmbus_WriteRequest()

Initiates a write request to the desired slave device

HidSmbus_TransferStatusRequest()

Requests the status of the current read or write request

HidSmbus_GetTransferStatusResponse()

Returns the status of the current read or write request

HidSmbus_CancelTransfer()

Cancels the current read or write request

HidSmbus_Cancello()

Cancels pending HID reads and writes (Windows Only)

HidSmbus_SetTimeouts()

Sets the response timeouts for a device

HidSmbus_GetTimeouts()

Gets the response timeouts for a device

HidSmbus_SetSmbusConfig()

Sets the bit rate, master address, timeouts, and transfer settings

HidSmbus_GetSmbusConfig()

Gets the bit rate, master address, timeouts, and transfer settings

HidSmbus_Reset()

Resets the device with re-enumeration

HidSmbus_SetGpioConfig()

Sets GPIO direction and mode configuration

HidSmbus_GetGpioConfig()

Gets GPIO direction and mode configuration

HidSmbus_ReadLatch()

Gets the GPIO latch value

HidSmbus_WriteLatch()

Sets the GPIO latch value using a bitmask

HidSmbus_GetPartNumber()

Gets the device part number and version

HidSmbus_GetLibraryVersion()

Gets the DLL Library version

HidSmbus_GetHidLibraryVersion()

Gets the HID Device Interface Library version

HidSmbus_GetHidGuid()

Gets the HID GUID (Windows® only)

silabs.com | Building a more connected world.

Rev.0.3 | 2

AN496: HID USB-to-SMBus API Specification
APl Functions

2.1 HidSmbus_GetNumDevices

Description :

Prototype :

Parameters :

Return Value :

2.2 HidSmbus_GetString

Description :

Prototype :

Parameters :

Return Value :

This function returns the number of devices connected to the host with matching vendor and product
ID (VID, PID).

Hl D_SMBUS_STATUS Hi dSnbus_Get NunDevi ces (DWORD* numDevi ces, WORD vi d,
WORD pi d)

1. nunmDevi ces—returns the number of devices connected on return.

2.vi d—filters device results by vendor ID. If both vi d and pi d are set to 0x0000, then HID devices
will not be filtered by VID/PID.

3. pi d—filters device results by product ID. If both vi d and pi d are set to 0x0000, then HID devi-
ces will not be filtered by VID/PID.

H D_SMBUS_STATUS
+ HI D_SMBUS_SUCCESS
« HI D_SMBUS_| NVALI D_PARAVETER

This function returns a null-terminated vendor ID string, product ID string, serial string, device path
string, manufacturer string, or product string for the device specified by an index passed in devi ceNu
m The index for the first device is 0, and the last device is the value returned by Hi dSmbus_Get NunDe
vices() — 1.

HI D_SMBUS_STATUS Hi dSnmbus_Get String (DWORD devi ceNum WORD vi d,
WORD pi d, char* deviceString, DWORD options)

1.devi ceNum—is the index of the device for which the string is desired.

2.vi d—filters device results by vendor ID. If both vi d and pi d are set to 0x0000, then HID devices
will not be filtered by VID/PID.

3. pi d—filters device results by product ID. If both vi d and pi d are set to 0x0000, then HID devi-
ces will not be filtered by VID/PID.

4.devi ceSt ri ng—is a variable of type H D_SMBUS_DEVI CE_STR, which will contain a null-termina-
ted ASCII device string on return. The string is 260 bytes on Windows and Linux and 512 bytes
on Mac OS X.

5.opt i ons—determines if devi ceSt ri ng will contain a vendor ID string, product ID string, serial
string, device path string, manufacturer string, or product string.

Definition Value Length Description

HI D_SMBUS_GET_VI D_STR 0x01 5 Vendor ID

H D_SMBUS_GET_PI D_STR 0x02 5 Product ID

H D_SMBUS_GET_PATH_STR 0x03 260/512 | Device path

HI D_SMBUS_GET_SERI AL_STR 0x04 256 Serial string

H D_SMBUS_GET_MANUFACTURER_STR 0x05 256 Manufacturer string
H D SMBUS GET_PRODUCT_STR 0x06 256 Product string

H D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

+ HI D_SMBUS_DEVI CE_NOT_FOUND

+ HI D_SMBUS_| NVALI D_PARAVETER

+ HI D_SMBUS_DEVI CE_ACCESS_ERRCR

silabs.com | Building a more connected world. Rev.0.3 | 3

AN496: HID USB-to-SMBus API Specification
APl Functions

2.3 HidSmbus_GetOpenedString

Description : This function returns a null-terminated vendor ID string, product ID string, serial string, device path
string, manufacturer string, or product string for the device specified by devi ce.

Prototype : H D _SMBUS_STATUS Hi dSnbus_Get OpenedString (H D_SMBUS DEVI CE devi ce,
char* deviceString, DWORD options)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

2.devi ceSt ri ng—is a variable of type H D_SMBUS_DEVI CE_STR, which will contain a null-termina-
ted ASCII device string on return. The string is 260 bytes on Windows and Linux and 512 bytes
on Mac OS X.

3.opt i ons—determines if deviceString will contain a vendor ID string, product ID string, serial
string, device path string, manufacturer string, or product string.

Definition Value Length Description

H D_SMBUS_GET_VI D_STR 0x01 5 Vendor ID

HI D_SMBUS_GET_PI D_STR 0x02 5 Product ID

H D_SMBUS_GET_PATH_STR 0x03 260/512 | Device path

H D_SMBUS_GET_SERI AL_STR 0x04 256 Serial string

HI D_SMBUS_GET_MANUFACTURER_STR 0x05 256 Manufacturer string
H D_SMBUS_GET_PRODUCT_STR 0x06 256 Product string

Return Value : H D SMBUS_ STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
* H D _SMBUS_| NVALI D_PARAMETER
* H D _SMBUS_DEVI CE_ACCESS_ERROR

2.4 HidSmbus_GetindexedString

Description : This function returns a null-terminated USB string descriptor for the device specified by an index
passed in devi ceNum(Windows Only).

Prototype : H D _SMBUS_STATUS Hi dSnmbus_Get | ndexedString (DWORD devi ceNum WORD vi d,
WORD pid, DWORD stringlndex, char* deviceString)

Parameters : 1.devi ceNum—is the index of the device for which the string is desired.

2.vi d—filters device results by vendor ID. If both vi d and pi d are set to 0x0000, then HID devices
will not be filtered by VID/PID.

3. pi d—filters device results by product ID. If both vi d and pi d are set to 0x0000, then HID devi-
ces will not be filtered by VID/PID.

4.stri ngl ndex—specifies the device-specific index of the USB string descriptor to return.

5.devi ceStri ng—is a variable of type H D_SMBUS_DEVI CE_STR (260-byte ASCII string), which will
contain a null-terminated device descriptor string on return.

Return Value : HI D SMBUS STATUS
* H D_SMBUS_ SUCCESS
* H D_SMBUS_DEVI CE_NOT_FOUND
* H D_SMBUS | NVALI D_PARAMETER
* H D_SMBUS DEVI CE_ACCESS ERROR

silabs.com | Building a more connected world. Rev.0.3 | 4

AN496: HID USB-to-SMBus API Specification
APl Functions

2.5 HidSmbus_GetOpenedindexedString

Description :

Prototype :

Parameters :

Return Value :

2.6 HidSmbus_GetAttributes

Description :

Prototype :

Parameters :

Return Value :

This function returns a null-terminated USB string descriptor for the device specified by devi ce (Win-
dows Only).

HI D_SMBUS_STATUS Hi dSmbus_Get Openedl ndexedSt ri ng (H D_SMBUS_DEVI CE devi ce,
DWORD stringl ndex, char* deviceString)

1.devi ceNum—is the device object pointer as returned by H dSnbus_Open() .
2.st ri ngl ndex—specifies the device-specific index of the USB string descriptor to return.

3.devi ceSt ri ng—is a variable of type H D_SMBUS_DEVI CE_STR (260-byte ASCII string), which will
contain a NULL terminated device descriptor string on return.

H D_SMBUS_STATUS

+ HI D_SMBUS_SUCCESS

+ HI D_SMBUS_I NVALI D_DEVI CE_OBJECT
« HI D_SMBUS_I NVALI D_PARAVETER

« H D_SMBUS_DEVI CE_ACCESS_ERRCR

This function returns the device vendor ID, product ID, and release number for the device specified
by an index passed in devi ceNum

HI D_SMBUS_STATUS Hi dSnbus_Get Attri butes (DWORD devi ceNum WORD vi d,
WORD pi d, WORD* deviceVid, WORD* devicePid,
WORD* devi ceRel easeNunber)

1.devi ceNum—is the index of the device for which the string is desired.

2.vi d—filters device results by vendor ID. If both vi d and pi d are set to 0x0000, then HID devices
will not be filtered by VID/PID.

3. pi d—filters device results by product ID. If both vi d and pi d are set to 0x0000, then HID devi-
ces will not be filtered by VID/PID.

4.devi ceVi d—returns the device vendor ID.
5.devi cePi d—returns the device product ID.
6. devi ceRel easeNunber —returns the USB device release number in binary-coded decimal.

H D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

+ HI D_SMBUS_DEVI CE_NOT_FOUND

+ HI D_SMBUS_I NVALI D_PARAVETER

+ HI D_SMBUS_DEVI CE_ACCESS_ERROR

silabs.com | Building a more connected world. Rev.0.3 | 5

AN496: HID USB-to-SMBus API Specification
API Functions

2.7 HidSmbus_GetOpenedAttributes

Description :

Prototype :

Parameters :

Return Value :

2.8 HidSmbus_Open

Description :

Prototype :

Parameters :

Return Value :

Remarks :

This function returns the device vendor ID, product ID, and release number for the device specified
by devi ce.

Hl D_SMBUS_STATUS Hi dSnbus_Get OpenedAttri butes (H D_SMBUS _DEVI CE devi ce,
WORD* devi ceVid, WORD* devi cePid, WORD* devi ceRel easeNunber)

1.devi ce—is the device object pointer as returned by H dSnbus_0Open() .

2.devi ceVi d—returns the device vendor ID.

3.devi cePi d—returns the device product ID.

4.devi ceRel easeNunmber —returns the USB device release number in binary-coded decimal.

HI D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

« HI D_SMBUS_I NVALI D_DEVI CE_OBJECT
+ H D_SMBUS_| NVALI D_PARANMETER

« H D_SMBUS_DEVI CE_ACCESS_ERRCR

This function opens a device using a device number between 0 and H dSnbus_Get NunDevi ces() — 1
and returns a device object pointer that is used for subsequent accesses.

H D _SMBUS STATUS Hi dSnbus_Cpen (H D _SMBUS DEVI CE* devi ce,
DWORD devi ceNum WORD vid, WORD pi d)
1.devi ce—returns a pointer to an HID USB-to-SMBus device object. This pointer will be used by
all subsequent accesses to the device.

2.devi ceNum—is a zero-based device index, between 0 and (Hi dSnbus_Get NunDevi ces() — 1).

3.vi d—filters device results by vendor ID. If both vi d and pi d are set to 0x0000, then HID devices
will not be filtered by VID/PID.

4. pi d—filters device results by product ID. If both vi d and pi d are set to 0x0000, then HID devi-
ces will not be filtered by VID/PID.

HI D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

« HI D_SMBUS_| NVALI D_DEVI CE_OBJECT
+ HI D_SMBUS_DEVI CE_NOT_FOUND

+ HI D_SMBUS_I NVALI D_PARAMETER

« HI D_SMBUS_DEVI CE_| O FAI LED

« H D_SMBUS_DEVI CE_ACCESS ERROR
« H D_SMBUS_DEVI CE_NOT_SUPPORTED

Be careful when opening a device. Any HID device may be opened by this library. However, if the
device is not a CP2112, use of this library will cause undesirable results. The best course of action is
to designate a unique VID/PID for CP2112 devices only. The application should then filter devices
using this VID/PID.

silabs.com | Building a more connected world. Rev.0.3 | 6

AN496: HID USB-to-SMBus API Specification
API Functions

2.9 HidSmbus_Close

Description :

Prototype :

Parameters :

Return Value :

Remarks :

2.10 HidSmbus_lsOpened

Description :

Prototype :

Parameters :

Return Value :

2.11 HidSmbus_ReadRequest

Description :

Prototype :

Parameters :

Return Value :

Remarks :

silabs.com | Building a more connected world.

This function closes an opened device using the device object pointer provided by Hi dSmbus_COpen() .
H D_SMBUS_STATUS Hi dSnbus_Cl ose (H D_SMBUS_DEVI CE devi ce)

1.devi ce—is the device object pointer as returned by H dSnbus_Qpen() .

H D_SMBUS_STATUS
+ HI D_SMBUS_SUCCESS

+ HI D_SMBUS_I NVALI D_DEVI CE_OBJECT
+ HI D_SMBUS_| NVALI D_HANDLE

+ HI D_SMBUS_DEVI CE_ACCESS_ERROR

devi ce is invalid after calling Hi dSnbus_d ose() . Set devi ce to NULL.

This function returns the devi ce opened status.
HI D_SMBUS_STATUS Hi dSnbus_| sOpened (H D_SMBUS_DEVI CE devi ce,
BOOL* opened)

1.devi ce—is the device object pointer as returned by H dSnbus_0Open() .

2. opened—returns TRUE if the device object pointer is valid and the device has been opened us-
ing H dSnbus_Open() .

HI D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

+ HI D_SMBUS_| NVALI D_DEVI CE_OBJECT
+ HI D_SMBUS_| NVALI D_PARAMETER

This function intiates a read transfer to the specified slave device address. Read and write timeouts
as well as transfer retries can be set using H dSnbus_Set SmbusConfi g() as described in
2.22 HidSmbus_SetSmbusConfig.

H D_SMBUS_STATUS Hi dSnbus_ReadRequest (H D_SMBUS DEVI CE devi ce,

BYTE sl aveAddr ess, WORD nunByt esToRead)

1.devi ce—is the device object pointer as returned by H dSnbus_0Open() .

2.sl aveAddr ess—is the address of the slave device to read from. This value must be between
0x02—-0xFE. The least significant bit is the read/write bit for the SMBus transaction and must be
0.

3. nunByt esToRead—is the number of bytes to read from the device (1-512).

HI D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

« HI D_SMBUS_| NVALI D_DEVI CE_OBJECT
+ H D_SMBUS_| NVALI D_PARAMETER

« HI D_SMBUS_| NVALI D_REQUEST LENGTH
+ H D_SMBUS_DEVI CE_| O FAI LED

H dSmbus_ReadRequest () initiates a read transfer. SMBus is a half-duplex bus, which means that
only one read, address read, or write transfer can be active at a time. The device will attempt to read
up to t r ansf er Ret ri es number of times and for r eadTi neout milliseconds before timing out. See Hi
dSnmbus_Set SnbusConfi g() for more information on configuring read timeouts. If the aut oReadRespo
nd setting is enabled, then call H dSnmbus_Get ReadResponse() to return the results of the read trans-
fer.

Rev.0.3 | 7

AN496: HID USB-to-SMBus API Specification
API Functions

2.12 HidSmbus_AddressReadRequest

Description :

Prototype :

Parameters :

Return Value :

Remarks :

This function intiates a read transfer to the specified slave device address and specifies the address
to read from on the device. Read and write timeouts as well as transfer retries can be set using Hi dS
nmbus_Set SmbusConfi g() as described in 2.22 HidSmbus_SetSmbusConfig.

Hl D_SMBUS_STATUS Hi dSnbus_Addr essReadRequest (H D _SMBUS_DEVI CE devi ce,
BYTE sl aveAddr ess, WORD nunByt esToRead, BYTE tar get AddressSi ze,
BYTE t ar get Addr ess[16])

1.devi ce—is the device object pointer as returned by H dSnbus_QOpen() .

2.sl aveAddr ess—is the address of the slave device to read from. This value must be between
0x02—-0xFE. The least significant bit is the read/write bit for the SMBus transaction and must be
0.

3. nunByt esToRead—is the number of bytes to read from the device (1-512).
4.t ar get Addr essSi ze—is the size of the target address in bytes (1-16).
5.t ar get Addr ess—is the address to read from the slave device.

HI D_SMBUS_STATUS

« H D_SMBUS_SUCCESS

« HI D_SMBUS_| NVALI D_DEVI CE_OBJECT
+ HI D_SMBUS_I NVALI D_PARAMETER

+ HI D_SMBUS_I NVALI D_REQUEST LENGTH
+ HI D_SMBUS_DEVI CE_| O FAI LED

Hi dSmbus_Addr essReadRequest () initiates a read transfer. SMBus is a half-duplex bus which
means that only one read, address read, or write transfer can be active at a time. The device will at-
tempt to read up to tr ansf er Ret ri es number of times and for r eadTi neout milliseconds before tim-
ing out. See Hi dSnbus_Set SmbusConfi g() for more information on configuring read timeouts. If the a
ut oReadRespond setting is enabled, then call H dSnbus_Get ReadResponse() to return the results of
the read transfer. The device will transmit the target address on the bus after the slave device has
acknowledged its address. This function is designed to read from EEPROMSs with an SMBus inter-
face.

2.13 HidSmbus_ForceReadResponse

Description :

Prototype :

Parameters :

Return Value :

Remarks :

This function causes the device to send a read response to the host after a read transfer has been
issued.

Hl D_SMBUS_STATUS Hi dSnbus_For ceReadResponse (H D _SMBUS_DEVI CE devi ce,
WORD nunByt esToRead)

1.devi ce—is the device object pointer as returned by H dSnbus_Qpen() .
2. nunByt esToRead—is the number of bytes to read from the device (1-512).

H D_SMBUS_STATUS

+ HI D_SMBUS_SUCCESS

+ HI D_SMBUS_| NVALI D_DEVI CE_OBJECT
+ HI D_SMBUS_| NVALI D_REQUEST_LENGTH
+ HI D_SMBUS_DEVI CE_| O _FAI LED

H dSmbus_For ceReadResponse() should only be called if aut oReadRespond is disabled using H dSm
bus_Set SnbusConfi g() . This allows the user to read data in a polled mode. Call Hi dSnbus_ReadReq
uest () or Hi dSmbus_Addr essReadRequest () first. Next, call H dSnbus_Tr ansf er St at usRequest ()
and Hi dSnbus_Tr ansf er St at usResponse() to check if the device has received data. Next, call Hi dS
nbus_For ceReadResponse() . Finally, call Hi dSmbus_Get ReadResponse() repeatedly until all read
data is returned. Typically, this procedure is not necessary as users should enable the aut oReadResp
ond setting.

silabs.com | Building a more connected world. Rev.0.3 | 8

AN496: HID USB-to-SMBus API Specification
APl Functions

2.14 HidSmbus_GetReadResponse

Description : This function returns the read response to a read request. Read and write timeouts as well as trans-
fer retries can be set using Hi dSnbus_Set SnbusConfi g() as described in 2.22 HidSmbus_SetSm-
busConfig.

Prototype : H D SMBUS_STATUS H dSnbus_Get ReadResponse (H D_SMBUS_DEVI CE devi ce,
H D_SMBUS_SO* status, BYTE* buffer, BYTE bufferSize,
BYTE* nunByt esRead)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_Cpen() .
2.st at us—returns the status of the read request.

Definition Value Description

H D_SMBUS_SO_I DLE 0x00 No transfers are currently active on the
bus.

H D_SMBUS_SO_BUSY 0x01 A read or write transfer is in progress.

H D_SMBUS_SO_COWPLETE 0x02 A read or write transfer completed with-
out error and without retry.

HI D_SMBUS_S0_ERROR 0x03 A read or write transfer completed with
an error.

3.buf f er —returns up to 61 read data bytes.
4.buf f er Si ze—is the size of buffer and must be at least 61 bytes.
5. nunByt esRead—returns the number of valid data bytes returned in buf f er .

Return Value : H D SMBUS_ STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
* H D _SMBUS_| NVALI D_PARAMETER
* H D _SMBUS_READ TI MED OUT
* H D_SMBUS_READ ERROR

Remarks : Hi dSnbus_Get ReadResponse() waits for up to r eadTi neout milliseconds for the device to send a

read response interrupt report to the host. This function should be called repeatedly until all read data
has been received or an error occurs. Call H dSnbus_ReadRequest () or Hi dSnbus_Addr essReadReq
uest () followed by Hi dSmbus_Get ReadResponse() to read data when aut oReadResponse is enabled

using Hi dSmbus_Set SmbusConfi g() . Hi dSmbus_Get ReadResponse() will wait for up to r esponseTi m
eout milliseconds before returning H D_SMBUS_READ_TI MED_OUT.

silabs.com | Building a more connected world. Rev.0.3 | 9

AN496: HID USB-to-SMBus API Specification
API Functions

2.15 HidSmbus_WriteRequest

Description : This function writes the specified number of bytes from the supplied buffer to the specified slave de-
vice and returns immediately after sending the request to the CP2112. Read and write timeouts can
be set using Hi dSmbus_Set Ti neout s() as described in 2.20 HidSmbus_SetTimeouts.

Prototype : H D SMBUS_STATUS Hi dSnmbus_W it eRequest (H D_SMBUS DEVI CE devi ce,
BYTE sl aveAddress, BYTE* buffer, BYTE nunBytesToWite)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

2.sl aveAddr ess—is the address of the slave device to write to. This value must be between
0x02-0xFE. The least significant bit is the read/write bit for the SMBus transaction and must be
0.

3. buf f er —is the address of a buffer to be sent to the device.

4.nunByt esToW i t e—is the number of bytes to write to the device (1-61). This value must be less
than or equal to the size of buffer.

Return Value : H D _SMBUS_STATUS
* H D_SMBUS_SUCCESS
* H D_SMBUS_| NVALI D_DEVI CE_COBJECT
* H D _SMBUS_| NVALI D_PARANMVETER
* H D_SMBUS_| NVALI D_REQUEST_LENGTH
* H D_SMBUS_DEVI CE_| O FAI LED

Remarks : Call H dSmbus_Tr ansf er St at usRequest () / Hi dSmbus_Get Tr ansf er St at usResponse() to wait for
the write transfer to complete before issuing another transfer request. The device waits forup totran
sf er Ret ri es number of retries and wr i t eTi meout number of milliseconds before timing out.

2.16 HidSmbus_TransferStatusRequest

Description : This function requests the status of the current read or write transfer.
Prototype : H D _SMBUS_STATUS Hi dSmbus_Tr ansf er St at usRequest (H D_SMBUS_DEVI CE devi ce) |,

Parameters : 1.devi ce—is the device object pointer as returned by H dSnbus_0Open() .

Return Value : H D _SMBUS_STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_CBJECT
* H D _SMBUS_DEVI CE_| O FAI LED

Remarks : Call H dSnbus_Tr ansf er St at usRequest () followed by H dSnbus_Get Tr ansf er St at usResponse()
to get the status of the current read or write transfer.

silabs.com | Building a more connected world. Rev. 0.3 | 10

AN496: HID USB-to-SMBus API Specification
APl Functions

2.17 HidSmbus_GetTransferStatusResponse

Description : This function returns the status of the current read or write transfer.
Prototype : H D SMBUS_STATUS H dSnbus_Get Tr ansf er St at usResponse (H D_SMBUS_DEVI CE devi ce,
H D_SMBUS_SO* status, H D SMBUS S1* detail edStatus, WORD* nunRetries,
WORD* byt esRead)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .
2.st at us—returns the status of the read or write transfer.

Definition Value Description

H D_SMBUS_SO_I DLE 0x00 No transfers are currently active on the
bus.

H D_SMBUS_SO_BUSY 0x01 A read or write transfer is in progress.

HI D_SMBUS_SO0_COVPLETE 0x02 A read or write transfer completed with-

out error and without retry.

HI D_SMBUS_S0_ERROR 0x03 A read or write transfer completed with
an error. See the detailedStatus descrip-
tion for more details on the possible error
codes.

3.det ai | edSt at us—returns the extended status of the read or write transfer. See the following ta-
bles for more information.

During initialization, the CP2112-F03 device tests for SCL and/or SDA being stuck low. For more
information, see AN495: CP2112 Interface Specification.

Return Value : H D _SMBUS_STATUS
« HI D_SMBUS_SUCCESS
« HI D_SMBUS_I NVALI D_DEVI CE_OBJECT
 HI D_SMBUS_| NVALI D_PARANMETER
« HI D_SMBUS_READ_TI MED_OUT
« HI D_SMBUS_READ ERRCR
Remarks : Call H dSnbus_Tr ansf er St at usRequest () followed by H dSnbus_Get Tr ansf er St at usResponse()

to get the status of the current read or write transfer. H dSnbus_Get Tr ansf er St at usResponse() will
wait for up to r esponseTi meout milliseconds before returning H D_SMBUS_READ_TI MED_OUT.

det ai | edSt at us values for a status value of H D_SVBUS_SO_| DLE are:

Definition Value (binary) Description

Initial (first) Transfer Status Request TXXX XXXX SDA line is stuck low.

XTXX XXXX SCL line is stuck low.

Subsequent Transfer Status Requests XXXX XXXX detailedStatus value is undefined.

det ai | edSt at us values for a status value of H D_SMBUS_S0_BUSY are:

Definition Value Description

H D_SMBUS_S1_BUSY_ADDRESS_ACKED 0x00 The slave address was acknowledged.

HI D_SMBUS_S1_BUSY_ADDRESS_ NACKED 0x01 The slave address has not been acknowledged.
HI D_SMBUS_S1_BUSY_READI NG 0x02 Read data phase in progress.

HI D_SMBUS_S1_BUSY_WRI TI NG 0x03 Write data phase in progress.

det ai | edSt at us values for a status value of H D_SMBUS_S0_ERRCR are:

silabs.com | Building a more connected world. Rev. 0.3 | 11

AN496: HID USB-to-SMBus API Specification
APl Functions

Definition Value Description

H D SMBUS S1_ERROR TI MEOUT _NACK 0x00 Tranfer timeout: SMBus slave address was
NACKed

HI D_SMBUS_S1_ERROR_TI MEOQUT_BUS NOT_FREE 0x01 Tranfser timeout: SMBus not free (or SCL low
timeout occurred)

H D_SMBUS_S1_ERROR ARB_LOST 0x02 Bus arbitration was lost

HI D_SMBUS_S1_ERROR READ | NCOVPLETE 0x03 Read was incomplete

HI D_SMBUS_S1_ERROR WRI TE_I NCOVPLETE 0x04 Write was incomplete

H D SMBUS S1_ERROR SUCCESS AFTER RETRY 0x05 Transfer completed after numRetries number of
retries

2.18 HidSmbus_CancelTransfer

Description : This function cancels the current read or write transfer.
Prototype : H D _SMBUS_STATUS Hi dSmbus_Tr ansf er St at usRequest (H D_SMBUS_DEVI CE devi ce)

Parameters : 1.devi ce—is the device object pointer as returned by H dSmbus_Open() .

Return Value : H D SMBUS_ STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
» H D_SMBUS DEVI CE_| O FAI LED

Remarks : This function will clear any read responses received.

2.19 HidSmbus_Cancello

Description : This function cancels any pending HID reads and writes (Windows Only).
Prototype : H D SMBUS_STATUS Hi dSmbus_Cancel 1 o (H D_SMBUS_DEVI CE devi ce)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

Return Value : H D SMBUS_ STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
* H D _SMBUS_DEVI CE_| O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 12

AN496: HID USB-to-SMBus API Specification
APl Functions

2.20 HidSmbus_SetTimeouts

Description :

Prototype :

Parameters :

Return Value :

Remarks :

2.21 HidSmbus_GetTimeouts

Description :

Prototype :

Parameters :

Return Value :

Remarks :

This function sets the response timeouts. Response timeouts are used by H dSnbus_Get ReadRespon
se() and Hi dSmbus_Get Tr ansf er St at usResponse() . The default value for response timeouts is
1000 ms, but timeouts can be set to wait for any number of milliseconds between 1 and
OxFFFFFFFF. Specifying a response timeout of 0, will wait indefinitely.

Hl D_SMBUS_STATUS Hi dSnbus_Set Ti neouts (H D_SMBUS DEVI CE devi ce,
DWORD r esponseTi meout)

1.devi ce—is the device object pointer as returned by H dSnbus_0Open() .

2.responseTi meout —is the Hi dSnbus_CGet ReadResponse() and Hi dSnbus_Get Tr ansf er St at usR
esponse() timeout.

H D_SMBUS_STATUS
+ HI D_SMBUS_SUCCESS
« HI D_SMBUS_| NVALI D_DEVI CE_OBJECT

If timeouts are set to a large value and no data is received, the application may appear unresponsive.
It is recommended to set timeouts appropriately before using the device. Typically, users will want to
specify a response timeout that is greater than the read and write timeouts.

This function returns the current response timeouts specified in milliseconds. A response timeout val-
ue of 0 indicates an infinite timeout.

H D_SMBUS_STATUS H dSmbus_Get Ti neouts (H D_SMBUS_DEVI CE devi ce,
DWORD* r esponseTi meout)

1.devi ce—is the device object pointer as returned by H dSnbus_0Open() .
2.responseTi meout —is the response operation timeout in milliseconds.

HI D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

« H D_SMBUS_I NVALI D_DEVI CE_OBJECT
« HI D_SMBUS_I NVALI D_PARAMETER

Timeouts are maintained for each device but are not persistent across Hi dSmbus_Qpen() /H dSnbus_
C ose().

silabs.com | Building a more connected world. Rev. 0.3 | 13

AN496: HID USB-to-SMBus API Specification
API Functions

2.22 HidSmbus_SetSmbusConfig

Description : This function sets the SMBus bit rate, address, and transfer settings such as timeouts and retries.
Refer to the device data sheet for a list of supported configuration settings.

Prototype : H D_SMBUS_STATUS Hi dSmbus_Set SmbusConfi g (H D_SMBUS_DEVI CE devi ce,
DWORD bi t Rate, BYTE address, BOOL aut oReadRespond, WORD writeTi neout,
WORD r eadTi meout, BOOL scl LowTi neout, WORD transferRetries)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

2.bi t Rat e—is the bit rate for SMBus communication. The default is 100 kHz. This value must be
non-zero.

3. addr ess—is the device’s slave address (0x02—-0xFE) address. The device will only acknowledge
this address. The default is 0x02. The least significant bit is the read/write bit for the SMBus
transaction and must be 0.

4. aut oReadRespond—controls the read response behavior of the device. If enabled, the device will
automatically send read response interrupt reports to the device after initiating a read transfer. If
disabled, the user must call H dSmbus_For ceReadResponse() before read response interrupt re-
ports will be sent to the host. The default is FALSE (0).

5.wri t eTi meout —is the time limit in milliseconds (0-1000) before the device will automatically
cancel a write transfer. A value of 0 indicates an infinite timeout. In this case, a write transfer will
wait indefinitely for a write to complete or until H dSnbus_Cancel Transfer () is called. The de-
fault is 0.

6.readTi meout —is the time limit in milliseconds (0 - 1000) before the device will automatically
cancel a read transfer. A value of 0 indicates an infinite timeout. In this case, a read transfer will
wait indefinitely for a read to complete or until H dSnbus_Cancel Transfer () is called. The de-
fault is 0.

7.scl LowTi meout —is a timeout that will reset the SMBus if the SCL line is held low for more than
25 ms. If enabled and an SCL Low Timeout occurs, the status byte of the Transfer Status Re-
sponse command will be set appropriately. The default is FALSE (0).

8.t ransf er Ret ri es—is the number of times to retry (0 - 1000) a failed read or write transfer. A
value of 0 indicates an infinite number of retries until the specified read or write timeout has
elapsed. The default is 0.

Return Value : H D SMBUS_ STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
* H D _SMBUS_| NVALI D_PARAMETER
« H D _SMBUS_DEVI CE_| O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 14

AN496: HID USB-to-SMBus API Specification
API Functions

2.23 HidSmbus_GetSmbusConfig

Description :

Prototype :

Parameters :

Return Value :

2.24 HidSmbus_Reset

Description :

Prototype :

Parameters :

Return Value :

Remarks :

This function gets the SMBus bit rate, address, and transfer settings such as timeouts and retries.
Refer to the device data sheet for a list of supported configuration settings.

H D_SMBUS_STATUS Hi dSnbus_Get SnbusConfig (H D _SMBUS _DEVI CE devi ce,
DWORD* bi t Rate, BYTE* address, BOOL* aut oReadRespond,

WORD* writeTimeout, WORD* readTi meout, BOOL* scl LowTi meout,

WORD* transferRetries)

1.devi ce—is the device object pointer as returned by H dSnbus_Qpen() .

2. bi t Rat e—returns the bit rate for SMBus communication. The default is 100 kHz. this value must
be non-zero.

3. addr ess—returns the device’s slave address (0x02—-0xFE) address. The device will only ac-
knowledge this address. The default is 0x02.

4. aut oReadRespond—returns the read response behavior of the device. If auto read respond is en-
abled, then the device will automatically send read response interrupt reports to the device after
initiating a read transfer. If disabled, the user must call H dSnmbus_For ceReadResponse() before
read response interrupt reports will be sent to the host. The default is FALSE (0).

5.wri t eTi meout —returns the time limit in milliseconds (0—1000) before the device will automati-
cally cancel a write transfer. A value of 0 indicates an infinite timeout. In this case, a write trans-
fer will wait indefinitely for a write to complete or until H dSnbus_Cancel Transfer () is called.
The default is 0.

6.r eadTi meout —returns the time limit in milliseconds (0—1000) before the device will automatically
cancel a read transfer. A value of 0 indicates an infinite timeout. In this case, a read transfer will
wait indefinitely for a read to complete or until H dSmbus_Cancel Transfer () is called. The de-
fault is 0.

7.scl LowTi neout —is a timeout that will reset the SMBus if the SCL line is held low for more than
25 ms. If enabled and an SCL Low Timeout occurs, the status byte of the Transfer Status Re-
sponse command will be set appropriately. The default is FALSE (0).

8.transf er Ret ri es—returns the number of times to retry (0—1000) a failed read or write transfer.
A value of 0 indicates an infinite number of retries until the specified read or write timeout has
elapsed. The default is 0.

HI D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

« HI D_SMBUS_I NVALI D_DEVI CE_OBJECT
+ H D_SMBUS_I NVALI D_PARAMETER

+ HI D_SMBUS_DEVI CE_| O FAI LED

This function initiates a full device reset. All configuration settings will be reset to their default values
after the device re-enumerates.

H D_SMBUS_STATUS Hi dSnbus_Reset (H D_SMBUS_DEVI CE devi ce)

1.devi ce—is the device object pointer as returned by H dSnbus_Qpen() .

H D_SMBUS_STATUS

* H D _SMBUS_SUCCESS

* H D _SMBUS_| NVALI D_DEVI CE_OBJECT

* H D _SMBUS_DEVI CE_| O FAI LED

Resetting the device will make the device’s handle stale. Users must close the device using the old

handle before proceeding to reconnect to the device. See more information on surprise removal. See
H dSmbus_Set SmbusConfi g() and H dSmbus_Set Gpi oConfi g() for default configuration settings.

silabs.com | Building a more connected world. Rev. 0.3 | 15

AN496: HID USB-to-SMBus API Specification
APl Functions

2.25 HidSmbus_SetGpioConfig

Description : This function configures the GPIO pins’ directions and modes.
Prototype : H D _SMBUS_STATUS Hi dSnbus_Set Gpi oConfi g (H D _SMBUS DEVI CE devi ce,
BYTE direction, BYTE node, BYTE special, BYTE cl kD v)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .
2.di recti on—is a bitmask that specifies each GPIO pin’s direction.

Definition Bit Value Description
H D_SMBUS_DI RECTI ON_I NPUT 0 Input
H D_SMBUS_DI RECTI ON_OUTPUT 1 Output

3. mode—is a bitmask that specifies each GPIO pin’s mode.

Definition Bit Value Description
HI D_SMBUS_MODE_OPEN_DRAI N 0 Open-Drain
H D_SMBUS_MODE_PUSH_PULL 1 Push-Pull ‘

4.speci al —is a bitmask that specifies the special behavior of GP10.0, GPIO.1, and GPIO.7.

Definition Value Description

HI D_SMBUS_MASK_FUNCTI ON_GPI O 7_CLK 0x00 Enables or disables the
clock output function of
GPIO.7

HI D_SMBUS_NMASK_FUNCTI ON_GPI O 0_TXT 0x01 Enables or disables the
TX toggle function of
GPIO.0

H D _SMBUS MASK_FUNCTI ON_GPI O 1_RXT 0x04 Enables or disables the
RX toggle function of
GPIO.1

Definition Bit Value Description

H D_SMBUS_GPI O_FUNCTI ON 0 GPIO function as config-
ured using direction and
mode.

H D_SMBUS_SPECI AL_FUNCTI ON 1 Special function:

GPIO.0 - TX Toggle
(push-pull output)

GPIO.1 - RX Toggle
(push-pull output)

GPIO.7 - Clock Output
(push-pull output)

5.cl kDi v—is the clock output divider value used for GP10.7 when configured in clock output
mode. The frequency is equal to 48 MHz / (2 x ¢l kDi v) when cl kDi v is between 1 and 255 and
equal to 48 MHz when cl kDi v is 0.

Return Value : H D SMBUS_ STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
« H D _SMBUS_DEVI CE_| O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 16

AN496: HID USB-to-SMBus API Specification
APl Functions

2.26 HidSmbus_GetGpioConfig

Description : This function returns the GPIO pins’ directions and modes.
Prototype : H D _SMBUS_STATUS Hi dSnbus_Get Gpi oConfi g (H D _SMBUS DEVI CE devi ce,
BYTE* direction, BYTE* node, BYTE* special, BYTE* cl kDiv)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .
2.di recti on—returns a bitmask that specifies each GPIO pin’s direction.
3.mode—returns a bitmask that specifies each GPIO pin’s mode.

Definition Bit Value Description
H D_SMBUS_MODE_OPEN_DRAI N 0 Open-Drain
H D_SMBUS_MODE_PUSH_PULL 1 Push-Pull ‘

4.speci al —returns a bitmask that specifies the special behavior of GP10.0, GPIO.1, and GPIO.7.

Definition Value Description

HI D_SMBUS_MASK_FUNCTI ON_GPI O 7_CLK 0x00 Enables or disables the
clock output function of
GPIO.7

H D _SMBUS MASK_FUNCTI ON_GPI O 0_TXT 0x01 Enables or disables the
TX toggle function of
GPIO.0

H D_SMBUS MASK_FUNCTI ON_GPI O 1_RXT 0x04 Enables or disables the
RX toggle function of
GPIO.1

Definition Bit Value Description

H D _SMBUS_GPI O FUNCTI ON 0 GPIO function as config-
ured using direction and
mode.

H D _SMBUS SPECI AL_FUNCTI ON 1 Special function:

GPIO.0 - TX Toggle
(push-pull output)

GPIO.1 - RX Toggle
(push-pull output)

GPIO.7 - Clock Output
(push-pull output)

5.cl kDi v—returns the clock output divider value used for GPIO.7 when configured in clock output
mode. The frequency is equal to 48 MHz / (2 x cl kDi v) when cl kDi v is between 1 and 255 and
equal to 48 MHz when cl kDi v is 0.

Return Value : HI D SMBUS STATUS
* H D_SMBUS_ SUCCESS
* HI D_SMBUS | NVALI D_DEVI CE_OBJECT
* H D_SMBUS | NVALI D_PARAMETER
» H D_SMBUS DEVI CE_I O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 17

AN496: HID USB-to-SMBus API Specification
API| Functions

2.27 HidSmbus_ReadLatch

Description :

Prototype :

Parameters :

Return Value :

Remarks :

2.28 HidSmbus_WriteLatch

Description :

Prototype :

Parameters :

Return Value :

Remarks :

This function returns the current GPIO latch value.
H D_SMBUS_STATUS Hi dSnbus_ReadLat ch (H D_SMBUS_DEVI CE devi ce,
BYTE* | at chVal ue)

1.devi ce—is the device object pointer as returned by H dSnbus_0Open() .
2.1 at chval ue—returns the current GPIO latch value.

HI D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

« HI D_SMBUS_| NVALI D_DEVI CE_OBJECT
+ H D_SMBUS_| NVALI D_PARAMETER

« HI D_SMBUS_DEVI CE_| O FAI LED

If a pin is configured as an input, then the | at chVval ue bit represents the logical voltage level re-
ceived on the pin. If a pin is configured as an output, then the | at chVal ue bit represents the logical
voltage level driven on the pin.

This function sets the current GPIO latch value for the specified bits.
H D_SMBUS STATUS Hi dSnbus_WitelLatch (H D SMBUS DEVI CE devi ce,
BYTE | at chVal ue, BYTE | at chMask)

1.devi ce—is the device object pointer as returned by H dSnbus_0Open() .
2.1 at chVval ue—is the output value to drive on GPIO pins configured as outputs.
3.1 at chvask—is the bitmask specifying which bits to modify.

Definition Bit Value

HI D_SMBUS_MASK_GPI O 0 0x01
HI D_SMBUS_MASK_GPI O 1 0x02
H D_SMBUS_MASK_GPI O 2 0x04
H D_SMBUS_MASK_GPI O 3 0x08
HI D_SMBUS_MASK_GPI O 4 0x10
HI D_SMBUS_MASK_GPI O 5 0x20
HI D_SMBUS_MASK_GPI O 6 0x40
HI D_SMBUS_MASK_GPI O 7 0x80

HI D_SMBUS_STATUS

+ H D_SMBUS_SUCCESS

« HI D_SMBUS_I NVALI D_DEVI CE_OBJECT
« HI D_SMBUS_DEVI CE_| O FAI LED

Only GPIO pins configured as outputs with their corresponding | at chMask bits set can be written to.

silabs.com | Building a more connected world. Rev. 0.3 | 18

AN496: HID USB-to-SMBus API Specification
APl Functions

2.29 HidSmbus_GetPartNumber

Description : This function retrieves the part number and version of the CP2112 device.
Prototype : H D _SMBUS_STATUS Hi dSmbus_Get Part Nunber (H D_SMBUS_DEVI CE devi ce,
BYTE* part Nunber, BYTE* version)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .
2. par t Number —returns the device part number.

Definition Value Description

HI D_SMBUS_PART_CP2112 0x0C | CP2112

3.ver si on—returns the version. This value is not user-programmable.

Return Value : HI D SMBUS STATUS
* H D_SMBUS_SUCCESS
* HI D_SMBUS | NVALI D_DEVI CE_OBJECT
* H D_SMBUS | NVALI D_PARAMETER
» H D_SMBUS DEVI CE_I O FAI LED

2.30 HidSmbus_GetLibraryVersion

Description : This function returns the HID USB-to-SMBus Interface Library version.
Prototype : H D _SMBUS_STATUS H dSnbus_Get Li braryVersi on (BYTE* maj or, BYTE* ninor,
BOOL* rel ease)

Parameters : 1.maj or —returns the major library version number. This value ranges from 0 to 255.
2.mi nor —returns the minor library version number. This value ranges from 0 to 255.
3.r el ease—returns TRUE if the library is a release build; otherwise, the library is a Debug build.

Return Value : H D _SMBUS_STATUS
* H D_SMBUS_SUCCESS
¢ H D_SMBUS_| NVALI D_PARAMETER

2.31 HidSmbus_GetHidLibraryVersion

Description : This function returns the version of the HID Device Interface Library that is currently in use.
Prototype : H D _SMBUS_STATUS H dSnmbus_Get Hi dLi braryVersi on (BYTE* major,
BYTE* m nor, BOOL* rel ease)

Parameters : 1.maj or —returns the major library version number. This value ranges from 0 to 255.
2.mi nor —returns the minor library version number. This value ranges from 0 to 255.
3.r el ease—returns TRUE if the library is a release build; otherwise, the library is a Debug build.

Return Value : H D _SMBUS_STATUS
* H D_SMBUS_SUCCESS
¢ H D_SMBUS_| NVALI D_PARAMETER

silabs.com | Building a more connected world. Rev. 0.3 | 19

AN496: HID USB-to-SMBus API Specification
APl Functions

2.32 HidSmbus_GetHidGuid

Description : This function obtains the HID GUID. This can be used to register for surprise removal notifications
(Windows Only).
Prototype : H D _SMBUS_STATUS H dSnbus_Get H dGui d (voi d* gui d)

Parameters : 1.gui d—returns the HID GUID.
Return Value : H D SMBUS_ STATUS

+ HI D_SMBUS_SUCCESS
+ HI D_SMBUS_| NVALI D_PARANMETER

silabs.com | Building a more connected world.

Rev. 0.3 | 20

AN496: HID USB-to-SMBus API Specification
User Customization API Functions

3. User Customization API Functions

The following parameters are programmable on the device. Different functions are provided to program these parameters. Each param-
eter may only be programmed once and only if the parameter is not locked.

Name Size Short Description
VID 2 USB Vendor ID
PID 2 USB Product ID

Power 1 Power request in mA/2

Bus Powered
Power Mode 1 Self Powered - Regulator Off

Self Powered - Regulator On

Release Version 2 Major and Minor release version
Manufacturer String 60 Product Manufacturer (English Unicode)
Product Description String 60 Product Description (English Unicode)
Serial String 60 Serialization String (English Unicode)

The following API functions are provided to allow user customization/one-time programming:

Definition Description

HidSmbus_SetLock() Prevents further OTP programming/customization
HidSmbus_GetLock() Gets the OTP lock status
HidSmbus_SetUsbConfig() Sets VID, PID, power, power mode, and release version
HidSmbus_GetUsbConfig() Gets VID, PID, power, power mode, and release version
HidSmbus_SetManufacturingString() Sets the USB manufacturing string
HidSmbus_GetManufacturingString() Gets the USB manufacturing string
HidSmbus_SetProductString() Sets the USB product string
HidSmbus_GetProductString() Gets the USB product string
HidSmbus_SetSerialString() Sets the USB serial string
HidSmbus_GetSerialString() Gets the USB serial string

silabs.com | Building a more connected world. Rev. 0.3 | 21

AN496: HID USB-to-SMBus API Specification
User Customization API Functions

3.1 HidSmbus_SetLock

Description : This function permanently locks/disables device customization.
Prototype : H D _SMBUS_STATUS Hi dSnbus_Set Lock (H D_SMBUS_DEVI CE devi ce, BYTE | ock)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_Cpen() .

2.1 ock—is the bitmask specifying which fields can be customized/programmed and which fields
are already customized.

Definition Description

0 H D_SMBUS_LOCK_VI D 0x01 |VID

1 H D_SMBUS_LOCK_PI D 0x02 |PID

2 H D_SMBUS_LOCK_POWER 0x04 | Power

3 H D_SMBUS_LOCK_POWER MODE 0x08 | Power Mode

4 HI D_SMBUS_LOCK_RELEASE_VERSI ON 0x10 Release Version

5 H D_SMBUS_LOCK_MFG_STR 0x20 Manufacturing String

6 H D_SMBUS_LOCK_PRODUCT_STR 0x40 Product String

7 H D_SMBUS_LOCK_SERI AL_STR 0x80 | Serial String

H D_SMBUS_LOCK_UNLOCKED 0 Field can be customized

H D_SMBUS_LOCK_LOCKED 1 Field has already been
customized or has been
locked

Return Value : H D SMBUS_STATUS
+ HI D_SMBUS_SUCCESS
* HI D_SMBUS | NVALI D_DEVI CE_OBJECT
+ HI D _SMBUS DEVI CE_| O FAI LED

Remarks : When this function is successfully called, the specified fields are fully locked and cannot be further
customized. The user customization functions can be called and may return H D_SMBUS_SUCCESS
even though the device was not programmed. Call the function’s corresponding get function to verify
that customization was successful. Each field is stored in one time programmable memory (OTP) and
can only be customized once. After a field is customized, the corresponding lock bits are set to 0.

silabs.com | Building a more connected world. Rev. 0.3 | 22

AN496: HID USB-to-SMBus API Specification
User Customization API Functions

3.2 HidSmbus_GetLock

Description : This function returns the device customization lock status.
Prototype : H D _SMBUS_STATUS Hi dSnbus_Get Lock (H D_SMBUS DEVI CE devi ce, BYTE* | ock)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_Cpen() .
2.1 ock—returns a bitmask specifying which fields are locked.

Definition Description

0 H D_SMBUS_LOCK_VI D 0x01 |VID

1 H D_SMBUS_LOCK_PI D 0x02 |PID

2 H D_SMBUS_LOCK_POWER 0x04 | Power

3 H D_SMBUS_LOCK_POWER MODE 0x08 | Power Mode

4 HI D_SMBUS_LOCK_RELEASE_VERSI ON 0x10 Release Version

5 H D_SMBUS_LOCK_MFG_STR 0x20 Manufacturing String

6 H D_SMBUS_LOCK_PRODUCT_STR 0x40 Product String

7 H D_SMBUS_LOCK_SERI AL_STR 0x80 | Serial String

H D_SMBUS_LOCK_UNLOCKED 0 Field can be customized

H D_SMBUS_LOCK_LOCKED 1 Field has already been
customized or has been
locked

Return Value : H D SMBUS_STATUS
+ HI D_SMBUS_SUCCESS
* HI D_SMBUS | NVALI D_DEVI CE_OBJECT
* HI D SMBUS | NVALI D_PARANETER
* HI D _SMBUS DEVI CE_| O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 23

AN496: HID USB-to-SMBus API Specification
User Customization API Functions

3.3 HidSmbus_SetUsbConfig

Description : This function allows one-time customization of the USB configuration, which includes vendor ID,
product ID, power, power mode, and release version settings. Each field can be independently pro-
grammed one time via the mask field.

Prototype : H D_SMBUS_STATUS Hi dSmbus_Set UsbConfig (H D_SMBUS_DEVI CE devi ce,
WORD vid, WORD pid, BYTE power, BYTE power Mode, WORD rel easeVersi on,
BYTE mask)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .
2.vi d—is the vendor ID.
3. pi d—is the product ID.

4. power —specifies the current requested by the device in milliamps/2. The maximum power set-
ting is 500 mA or 250 (0OxFA). This value only applies when the device is configured to be bus-
powered.

5. power Mode—configures the device as bus-powered or self-powered.

Definition Value Description

H D_SMBUS_BUS_POWER 0x00 Device is bus powered

H D_SMBUS_SELF_POWER VREG DI S 0x01 Device is self powered
(voltage regulator disa-
bled)

H D_SMBUS_SELF _POWER VREG EN 0x02 Device is self powered
(voltage regulator ena-
bled)

6.r el easeVer si on—is the user-programmable release version. The MSB is the major revision and
the LSB is the minor revision. Both revisions can be programmed to any value from 0 to 255.
This version is not the same as the device release number described in the USB device descrip-
tor.

7. mask—is the bitmask specifying which fields to customize.

Definition Description
0 H D_SMBUS_SET_VI D 0x01 | VID
1 H D_SMBUS_SET_PI D 0x02 |PID
2 H D_SMBUS_SET_POWER 0x04 Power
3 H D SMBUS_SET POWER MODE 0x08 Power Mode
4 H D _SMBUS_ SET RELEASE VERSI ON 0x10 Release Version
HI D_SMBUS_SET_| GNORE 0 Field will be unchanged
H D_SMBUS_ SET PROGRAM 1 Fieléi will be program-
me

Return Value : H D SMBUS_ STATUS
* H D _SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
* H D _SMBUS_| NVALI D_PARAMETER
* H D_SMBUS DEVI CE_|I O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 24

AN496: HID USB-to-SMBus API Specification
User Customization API Functions

3.4 HidSmbus_GetUsbConfig

Description : This function retrieves USB configuration, which includes vendor ID, product ID, power, power mode,
release version, and flush buffers settings.

Prototype : H D_SMBUS_STATUS Hi dSmbus_Get UsbConfi g (H D_SMBUS_DEVI CE devi ce,
WORD* vid, WORD* pid, BYTE* power, BYTE* power Mbde,
WORD* r el easeVer si on)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .
2.vi d—returns the vendor ID.
3. pi d—returns the product ID.

4. power —returns the current requested by the device in milliamps / 2. This value only applies
when the device is bus-powered.

5. power Mode—returns the device power mode.

Definition Value Description

H D_SMBUS_BUS_POWER 0x00 Device is bus powered

H D_SMBUS_SELF_POWER VREG DI S 0x01 Device is self powered
(voltage regulator disa-
bled)

H D_SMBUS_SELF _POWER VREG EN 0x02 Device is self powered
(voltage regulator ena-
bled)

6.r el easeVer si on—returns the user-programmable release versionrevision, and the LSB is the
minor revision. Both revisions can be programmed to any value from 0 to 255. This version is not
the same as the device release number described in the USB device descriptor.

Return Value : H D SMBUS_ STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
* H D _SMBUS_| NVALI D_PARAMETER
* H D _SMBUS_DEVI CE_| O FAI LED

3.5 HidSmbus_SetManufacturingString

Description : This function allows one-time customization of the USB manufacturing string.
Prototype : H D _SMBUS_STATUS H dSmbus_Set Manuf act uri ngString (H D_SMBUS_DEVI CE devi ce,
char* manufacturingString, BYTE strlen)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSnbus_COpen() .

2. manuf act uri ngSt ri ng—is a variable of type H D_SMBUS_CP2112_MFG_STR, a 30-byte character
buffer containing the ASCIl manufacturing string.

3.strl en—is the length of manuf act uri ngSt ri ng in bytes.

Return Value : H D SMBUS STATUS
* H D _SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_OBJECT
* H D _SMBUS_| NVALI D_PARAMETER
« H D _SMBUS_DEVI CE_| O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 25

AN496: HID USB-to-SMBus API Specification
User Customization API Functions

3.6 HidSmbus_GetManufacturingString

Description : This function retrieves the USB manufacturing string.
Prototype : H D SMBUS_STATUS H dSnbus_Get Manuf act uri ngString (H D_SMBUS_DEVI CE devi ce,
char* manufacturingString, BYTE* strlen)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

2.manuf act uri ngSt ri ng—is a variable of type H D_SMBUS_CP2112_MFG_STR, a 30-byte character
buffer that will contain the ASCII manufacturing string.

3.st rl en—returns the length of the string in bytes.

Return Value : H D _SMBUS_STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_CBJECT
* H D_SMBUS_| NVALI D_PARANMVETER
* H D_SMBUS_DEVI CE_| O FAI LED

3.7 HidSmbus_SetProductString

Description : This function allows one-time customization of the USB product string.
Prototype : H D _SMBUS_STATUS Hi dSnbus_Set Product String (H D _SMBUS DEVI CE devi ce,
char* productString, BYTE strlen)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

2.product St ri ng—is a variable of type H D_SMBUS_CP2112_PRODUCT_STR, a 30-byte character
buffer containing the ASCII product string.

3.strl en—is the length of product St ri ng in bytes. The maximum string length is 30 bytes.

Return Value : H D_SMBUS_STATUS
+ HI D_SMBUS_SUCCESS
* HI D_SMBUS | NVALI D_DEVI CE_OBJECT
* HI D _SMBUS | NVALI D_PARAMETER
+ HI D _SMBUS DEVI CE | O FAI LED

3.8 HidSmbus_GetProductString

Description : This function retrieves the USB product string.
Prototype : H D_SMBUS_STATUS Hi dSmbus_Get Product String (H D_SMBUS_DEVI CE devi ce,
char* productString, BYTE* strlen)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

2.product St ri ng—is a variable of type H D_SMBUS_CP2112_PRODUCT_STR, a 30-byte character
buffer that will contain the ASCII product string.

3.str | en—returns the length of the string in bytes.

Return Value : H D SMBUS_STATUS
* H D_SMBUS_SUCCESS
* HI D SMBUS | NVALI D DEVI CE_OBJECT
* HI D SMBUS | NVALI D_PARANETER
* HI D _SMBUS DEVI CE_| O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 26

AN496: HID USB-to-SMBus API Specification
User Customization API Functions

3.9 HidSmbus_SetSerialString

Description : This function allows one-time customization of the USB serial string.
Prototype : H D _SMBUS_STATUS Hi dSnbus_Set Seri al String (H D_SMBUS _DEVI CE devi ce,
char* serial String, BYTE strlen)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

2.seri al String—is a variable of type H D_SMBUS_CP2112_SERI AL_STR, a 30-byte character buf-
fer containing the ASCII serial string.

3.strl en—is the length of seri al Stri ng in bytes. The maximum string length is 30 bytes.

Return Value : H D_SMBUS_STATUS
* H D_SMBUS_SUCCESS
* H D _SMBUS_| NVALI D_DEVI CE_CBJECT
* H D _SMBUS_| NVALI D_PARANVETER
* HI D_SMBUS_DEVI CE_|I O FAI LED

3.10 HidSmbus_GetSerialString

Description : This function retrieves the USB product string.
Prototype : H D_SMBUS_STATUS Hi dSmbus_Get Seri al String (H D_SMBUS_DEVI CE devi ce,
char* serial String, BYTE* strlen)

Parameters : 1.devi ce—is the device object pointer as returned by Hi dSmbus_COpen() .

2.serial String—is a variable of type H D_SMBUS_CP2112_SERI AL_STR, a 30-byte character buf-
fer that will contain the ASCII product string.

3.st rl en—returns the length of the string in bytes.

Return Value : H D _SMBUS_STATUS
+ HI D_SMBUS_SUCCESS
* HI D_SMBUS_ | NVALI D_DEVI CE_OBJECT
* HI D _SMBUS | NVALI D_PARANETER
* HI D_SMBUS DEVI CE_|I O FAI LED

silabs.com | Building a more connected world. Rev. 0.3 | 27

AN496: HID USB-to-SMBus API Specification
HID_SMBUS_STATUS Return Codes

4. HID_SMBUS_STATUS Return Codes

Each library function returns an H D_SMBUS_STATUS return code to indicate that the function returned successfully or to describe an er-
ror. The following table describes each error code.

Table 4.1. Error Code Descriptions

Definition Value Description
H D_SMBUS_SUCCESS 0x00 Function returned successfully.
H D SVBUS_DEVI CE_NOT_FOUND 0X01 Ipdlcate§ that no dewcgs are connected or that the speci-
fied device does not exist.
Indicates that the handle value is NULL or | NVALI D_HANDL
HI D_SMBUS_I NVALI D_HANDLE 0x02 E_VALLUE or that the device with the specified handle does
not exist.
Indicates that the device object pointer does not match the
H D_SMBUS_| NVALI D_DEVI CE_CBIECT 0x03 address of a valid HID USB-to-SMBus device.
H D_SVBUS_| NVALI D_PARAMETER 0x04 Indl_cates that a pqlnter value is NULL or that an invalid
setting was specified.
Indicates that the specified number of bytes to read or
H D_SMBUS_| NVALI D_REQUEST_LENGTH 0x05 write is invalid. Check the read and write length limits.
Indicates that the read was not successful and did not time
H D _SMBUS READ ERRCR 0x10 out. This means that the host could not get an input inter-
rupt report.
H D SVBUS WRI TE_ERROR 0x11 Indicates that the write was not successful. This means

that the output interrupt report failed or timed out.

Indicates that a read failed to return the number of bytes
H D_SMBUS_READ TI MED_OUT 0x12 requested before the read timeout elapsed. The read time-
out should be increased.

Indicates that a write failed to complete sending the num-
H D_SMBUS_WRI TE_TI MED_OUT 0x13 ber of bytes requested before the write timeout elapsed.
The write timeout should be increased.

Indicates that the host was unable to get or set a feature

H D_SMBUS DEVI CE_| O_FAI LED 0x14 report. The device might be disconnected.
Indicates that the device or device property could not be
H D_SVBUS DEVI CE_ACCESS_ERRCR 0x15 accessed. Either the device is not opened, already opened

when trying to open, or an error occurred while trying to
get HID information.

Indicates that the current device does not support the cor-
H D_SMBUS_DEVI CE_NOT_SUPPORTED 0x16 responding action. Functions listed in this document are
for the CP2112 only.

This is the default return code value. This value should

HI D_SMBUS_UNKNOAN_ERROR OxFF
never be returned.

Note:
1. Set functions may return success, indicating that the device received the request; however, there is no indication that the device
actually performed the request (i.e., the setting was invalid). The user must call the corresponding get function to verify that the
settings were properly configured.

silabs.com | Building a more connected world. Rev. 0.3 | 28

AN496: HID USB-to-SMBus API Specification
Thread Safety

5. Thread Safety

The HID USB-to-SMBus library and associated functions are not thread safe. This means that calling library functions simultaneously
from multiple threads may have undesirable effects.

To use the library functions in more than one thread, the user should do the following:

1. Call library functions from within a critical section such that only a single function is being called at any given time. If a function is
being called in one thread, then the user must prevent another thread from calling any function until the first function returns.

2. Hi dSnbus_Get ReadResponse(), H dSnbus_Get Tr ansf er St at usResponse(), Hi dSmbus_Tr ansf er St at usRequest (), and H dSnb
us_Cancel Transf er () issue pending read requests that cannot be canceled from another thread. If the user calls H dSnbus_Cl os
e() in a different thread than the thread in which the read request was created, then the device will not be accessible after calling H
i dSmbus_Cl ose() . The thread that issued the pending read request must return/terminate successfully before the device can be
accessed again. See 6. Thread Read Access Models for Windows for more information.

Rev. 0.3 | 29

silabs.com | Building a more connected world.

AN496: HID USB-to-SMBus API Specification
Thread Read Access Models for Windows

6. Thread Read Access Models for Windows

There are several common read access models when using the HID USB-to-SMBus library. There are some restrictions on the valid
use of a device handle based on these models. Cancel 1 o() can only cancel pending I/O (reads/writes) issued in the same thread in
which Cancel I o() is called. Due to this limitation, the user is responsible for cancelling pending 1/O before closing the device. Failure to
do so will result in an inaccessible HID USB-to-SMBus device until the thread releases access to the device handle. The following ta-
bles describe five common access models and the expected behavior.

Note:
1. H dSnbus_dCl ose() calls Cancel 1 o() prior to calling Cl oseHandl e() .

2.Queuel nterrupt Reports() issues a pending interrupt report read request. The request completes if at least one input report is
read. The request is still pending if the operation times out. The following functions call Queuel nt er r upt Reports():

* Hi dSnbus_Get ReadResponse()

* Hi dSnbus_Get Tr ansf er St at usResponse()

* Hi dSnbus_Tr ansf er St at usRequest ()

* Hi dSnbus_Cancel Transfer ()
3. Hi dSnbus_Cancel | o() forces any pending requests issued by the same thread to complete (cancelled).
4.* indicates that a read is still pending and was issued in the specified thread.
5.7 indicates that a read is still pending and was issued in one of the threads (indeterminate).

Table 6.1. Single Thread Access Model (Safe)

Thread A Thread B Result

Hi dSmbus_QOpen() — _

Queuel nterrupt Reports()”* — —

Hi dSnbus_Cl ose() — OK

Table 6.2. Split Thread Access Model (Unsafe)

Thread A Thread B Result

Hi dSmbus_Open() — —

— Queuel nterrupt Reports()* —

Hi dSnbus_Cl ose() — Error: Device inaccessible

— Terminate Thread OK: Thread relinquishes device access

Table 6.3. Split Thread Access Mode (Safe)

Thread A Thread B Result

H dSnbus_Open() — —

— Queuel nterrupt Reports()* —

— Hi dSnmbus_Cancel | o() —

Hi dSnbus_Cl ose() — OK

silabs.com | Building a more connected world. Rev. 0.3 | 30

AN496: HID USB-to-SMBus API Specification
Thread Read Access Models for Windows

Thread A

Hi dSmbus_QOpen()

Table 6.4. Multi-Thread Access Model (Unsafe)

Thread B

Result

Queuel nterrupt Reports()?

Queuel nterrupt Reports() ?

Hi dSnmbus_d ose()

Queuel nt errupt Reports() * Thread A: OK
Queuel nt er rupt Report s() * Thread B:

Error: Device inaccessible

Terminate Thread

OK: Thread relinquishes device access

Table 6.5. Multi-Thread Access Model (Safe)

Thread A Thread B Result
Hi dSmbus_CQOpen() — —
Queuel nt errupt Reports() ? Queuel nt errupt Reports() ? —
— Hi dSmbus_Cancel | o() —
Hi dSnmbus_dl ose() — OK

silabs.com | Building a more connected world.

Rev. 0.3 | 31

AN496: HID USB-to-SMBus API Specification
Surprise Removal (For Windows)

7. Surprise Removal (For Windows)

H dSmbus_Get Hi dGui d() returns the HID GUID so that Windows applications or services can register for the Wv DEVI CECHANGE Win-
dows message. Once registered, the application will receive device arrival and removal notices for HID devices. The application must
retrieve the device path to filter devices based on VID/PID. Similarly, if a DBT_DEVI CEREMOVECOVPLETE message is received, the appli-
cation must check to see if the device path matches the device path of any connected devices. If this is the case, then the device was
removed and the application must close the device. Also, if a DBT_DEVI CEARRI VAL message is received, the application might add the
new device to a device list so that users can select any HID device matching the required VID/PID. See accompanying example code
for information on how to implement surprise removal and device arrival. The following KnowledgeBase articles include programming
examples for C++, Visual Basic .NET, and Visual C#:

o C++—

* http://community.silabs.com/t5/Interface-Knowledge-Base/Obtaining-Device-Notification-for-USB-Device-Arrival-and/ta-p/111035
» Visual Basic .NET—

* http://community.silabs.com/t5/Interface-Knowledge-Base/Obtaining-Device-Notification-for-USB-Device-Arrival-and/ta-p/137957
* Visual C#—

« http://community.silabs.com/t5/Interface-Knowledge-Base/Obtaining-Device-Notification-for-USB-Device-Arrival-and/ta-p/137956

« http://community.silabs.com/t5/Interface-Knowledge-Base/Obtaining-Device-Notification-for-USB-Device-Arrival-and/ta-p/114055

silabs.com | Building a more connected world. Rev. 0.3 | 32

http://community.silabs.com/t5/Interface-Knowledge-Base/Obtaining-Device-Notification-for-USB-Device-Arrival-and/ta-p/111035
http://community.silabs.com/t5/Interface-Knowledge-Base/Obtaining-Device-Notification-for-USB-Device-Arrival-and/ta-p/137957
http://community.silabs.com/t5/Interface-Knowledge-Base/Obtaining-Device-Notification-for-USB-Device-Arrival-and/ta-p/137956
http://community.silabs.com/t5/Interface-Knowledge-Base/Obtaining-Device-Notification-for-USB-Device-Arrival-and/ta-p/114055

AN496: HID USB-to-SMBus API Specification
Document Change List

8. Document Change List

8.1 Revision 0.3

March 17th, 2017

Updated formatting.

Added the Linux library to 1. Include Files.

Updated the links to the KnowledgeBase articles discussing Surprise Removal in 7. Surprise Removal (For Windows).

Updated 2.17 HidSmbus_GetTransferStatusResponse to define detailedStatus behavior for CP2112-F03 devices.

8.2 Revision 0.2

November 2010

Added 1. Include Files.

Added support for the Mac OS X dynamic library.

Removed Appendix.

8.3 Revision 0.1
May 2010

Initial release.

silabs.com | Building a more connected world. Rev. 0.3 | 33

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

loT Portfolio SW/HW Quality Support and Community
www.silabs.com/loT www.silabs.com/simplicity www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

9 34

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin. TX 78701

	1. Include Files
	2. API Functions
	2.1 HidSmbus_GetNumDevices
	2.2 HidSmbus_GetString
	2.3 HidSmbus_GetOpenedString
	2.4 HidSmbus_GetIndexedString
	2.5 HidSmbus_GetOpenedIndexedString
	2.6 HidSmbus_GetAttributes
	2.7 HidSmbus_GetOpenedAttributes
	2.8 HidSmbus_Open
	2.9 HidSmbus_Close
	2.10 HidSmbus_IsOpened
	2.11 HidSmbus_ReadRequest
	2.12 HidSmbus_AddressReadRequest
	2.13 HidSmbus_ForceReadResponse
	2.14 HidSmbus_GetReadResponse
	2.15 HidSmbus_WriteRequest
	2.16 HidSmbus_TransferStatusRequest
	2.17 HidSmbus_GetTransferStatusResponse
	2.18 HidSmbus_CancelTransfer
	2.19 HidSmbus_Cancello
	2.20 HidSmbus_SetTimeouts
	2.21 HidSmbus_GetTimeouts
	2.22 HidSmbus_SetSmbusConfig
	2.23 HidSmbus_GetSmbusConfig
	2.24 HidSmbus_Reset
	2.25 HidSmbus_SetGpioConfig
	2.26 HidSmbus_GetGpioConfig
	2.27 HidSmbus_ReadLatch
	2.28 HidSmbus_WriteLatch
	2.29 HidSmbus_GetPartNumber
	2.30 HidSmbus_GetLibraryVersion
	2.31 HidSmbus_GetHidLibraryVersion
	2.32 HidSmbus_GetHidGuid

	3. User Customization API Functions
	3.1 HidSmbus_SetLock
	3.2 HidSmbus_GetLock
	3.3 HidSmbus_SetUsbConfig
	3.4 HidSmbus_GetUsbConfig
	3.5 HidSmbus_SetManufacturingString
	3.6 HidSmbus_GetManufacturingString
	3.7 HidSmbus_SetProductString
	3.8 HidSmbus_GetProductString
	3.9 HidSmbus_SetSerialString
	3.10 HidSmbus_GetSerialString

	4. HID_SMBUS_STATUS Return Codes
	5. Thread Safety
	6. Thread Read Access Models for Windows
	7. Surprise Removal (For Windows)
	8. Document Change List
	8.1 Revision 0.3
	8.2 Revision 0.2
	8.3 Revision 0.1

