
Adafruit Gemma M0
Created by lady ada

Last updated on 2017-08-23 10:08:13 PM UTC

2
5
8

10
10
10
11
11
11

11
13
14
15
15
16
16
18
18

19
19
20
20
20

20
21
21
21
21
22

23
25
27
27

Guide Contents

Guide Contents
Overview
Guided Tour
Pinouts
JST Battery Input
Power Pads
Input/Output Pads

Common to all pads
Unique pad capabilities

Secret SWD and Reset Pads
Windows Driver Installation
Manual Driver Installation
CircuitPython
Reinstalling and Updating CircuitPython
Flashing
Flashing UF2
Flashing with BOSSAC

After flashing

CircuitPython Blinky
code.py
Status LED
Debugging
Libraries

More info
Serial Console (REPL)
Windows

Serial Drivers (for Windows 7)
Determine Your Serial Port
Install Serial Port Terminal Software

Mac OSX and Linux
Using the REPL
Installing Libraries

Installing the bundle

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 2 of 78

30
31
31
31
31
32
32

33

35
35
35
35

37
37
37
37

39
40
40
41
42
42

43
45
48
51
52
52

54
54
54
55
56

58
58
59
59
61

Out of space!
Delete something!
Use tabs
Mac OSX loves to add extra files.
Prevent & Remove Mac OSX Hidden Files
Copy Files on Mac OSX Without Creating Hidden Files
Other Mac OSX Tips

Continuing after copy

CircuitPython Analog In
Creating analog inputs
GetVoltage Helper
Main Loop

CircuitPython Analog Out
Creating an analog output
Setting the analog output
Main Loop

CircuitPython Cap Touch
Creating an capacitive touch input
Main Loop

Copper Foil Tape with Conductive Adhesive - 6mm x 15 meter roll
Copper Foil Tape with Conductive Adhesive - 25mm x 15 meter roll
Small Alligator Clip Test Lead (set of 12)

CircuitPython Touch-DotStar
CircuitPython UART Serial
CircuitPython I2C Scan
CircuitPython I2C Sensor

Small Alligator Clip to Male Jumper Wire Bundle - 12 Pieces
Adafruit Si7021 Temperature & Humidity Sensor Breakout Board

Handy Tips
Check Heap Memory Usage
Random Numbers
Arduino IDE Setup

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

Using with Arduino IDE
Install SAMD Support
Install Adafruit SAMD
Install Drivers (Windows 7 Only)
Blink

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 3 of 78

62
62
63
63
64
64
64
64
65
66
66
66
66
67
67
67
68
68
70
71
71
72
73

74
74
75
77
77
77

Sucessful Upload
Compilation Issues
Manually bootloading
Ubuntu & Linux Issue Fix
Adapting Sketches to M0
Analog References
Pin Outputs & Pullups
Serial vs SerialUSB
AnalogWrite / PWM on Feather/Metro M0
analogWrite() PWM range
Missing header files
Bootloader Launching
Aligned Memory Access
Floating Point Conversion
How Much RAM Available?
Storing data in FLASH
UF2 Bootloader Details
Entering Bootloader Mode
Using the Mass Storage Bootloader
Using the BOSSA Bootloader

Windows 7 Drivers
Verifying Serial Port in Device Manager
Running bossac on the command line

Updating the bootloader
Getting Rid of Windows Pop-ups
Making your own UF2
Downloads
Files:
Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 4 of 78

Overview

The Gemma M0 is a super small microcontroller board, with just enough to build many simple projects. It may look
small and cute: round, about the size of a quarter, with friendly alligator-clip sew pads. But do not be fooled! The
Gemma M0 is incredibly powerful! We've taken the same form factor we used for the original ATtiny85-based
Gemma (http://adafru.it/duB) and gave it a power up. The Gemma M0 has swapped out the lightweight ATtiny85 for
a ATSAMD21E18 powerhouse.

It will super-charge your wearables! It's just as small, and it's easier to use, so you can do more.

The most exciting part of the Gemma M0 is that while you can use it with the Arduino IDE, we are shipping it with
CircuitPython on board. When you plug it in, it will show up as a very small disk drive with main.py on it. Edit
main.py with your favorite text editor to build your project using Python, the most popular programming language.
No installs, IDE or compiler needed, so you can use it on any computer, even ChromeBooks or computers you can't
install software on. When you're done, unplug the Gemma M0 and your code will go with you.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 5 of 78

https://www.adafruit.com/product/1222

Here are some of the updates you can look forward to when using Gemma M0:

Same size, form-factor, and pinout as classic Gemma
Updating ATtiny85 8-bit AVR for ATSAMD21E18 32-bit Cortex M0+
256KB Flash - 8x as much as 8 KB on ATtiny85
32 KB RAM - 64x as much as 512 bytes on ATtiny85
48 MHz 32 bit processor - 6x as fast as ATtiny85 (not even taking into account 32-bit speedups)
Native USB supported by every OS - can be used in Arduino or CircuitPython as USB serial console,
Keyboard/Mouse HID, even a little disk drive for storing Python scripts. (ATtiny85 does not have native USB)
Can be used with Arduino IDE or CircuitPython
Built in RGB DotStar LED
Three big-hole sew-pads can be used for conductive thread or alligator-clips for fast prototyping

Each I/O pad can be used for 12-bit analog input, or digital input/output with internally connected
pullups or pulldowns
We gave the M0 pads the exact same names as the original Gemma so all your existing Arduino code
will work exactly the same as-is without changes
True analog output on one I/O pad - can be used to play 10-bit quality audio clips
Two high speed PWM outputs on other two I/O Pads - for servos, LEDs, etc
All three pads can also be used as hardware capacitive touch sensors with no additional components
required
Can drive NeoPixels or DotStars on any pins, with enough memory to drive 8000+ pixels. DMA-
NeoPixel support on one pin (http://adafru.it/xYD)so you can drive pixels without having to spend any
processor time on it.
Native hardware I2C or Serial available on two pads so you can connect to any I2C or Serial device with
true hardware support (no annoying bit-banging)

Same Reset switch for starting your project code over
On/Off switch built in
JST battery connector for plugging in AAA's or LiPoly battery (no built-in LiPoly charging so it is safe to use
with NiMH/Alkalines)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 6 of 78

file:///dma-driven-neopixels

Each order comes with one fully assembled and tested Gemma M0 with CircuitPython & example code
programmed in.

So what are you waiting for? Pick up a Gemma M0 today and be amazed at how easy and fast it is to get started
with Gemma and CircuitPython!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 7 of 78

Guided Tour

Let me take you on a tour of your Gemma M0! Each Gemma M0 is assembled here at Adafruit and comes chock-
full of good design to make it a joy to use.

Micro B USB connector - We went with the tried and true micro-B USB connector for power and/or USB
communication (bootloader, serial, HID, etc). Use with any computer with a standard data/sync cable.
RGB DotStar LED - Instead of an always-on green LED we provide a full RGB LED. You can set it to any
color in the rainbow. It will also help you know when the bootloader is running (it will turn green) or if it failed to
initialize USB when connected to a computer (it will turn green). By default after you boot up the Gemma M0 it
will turn a lovely violet color.
Red #13 LED - this LED does double duty. Its connected with a series resistor to the digital #13 GPIO pin. It
pulses nicely when the Gemma is in bootloader mode, and its also handy for when you want an indicator LED.
JST Battery Input - take your Gemma anywhere and power it from an external battery. This pin can take up
6V DC input, and has reverse-polarity, over-curent and thermal protections. The circuitry inside will use either
the battery or USB power, safely switching from one to the other. If both are connected, it will use whichever
has the higher voltage. Works great with a Lithium Polymer battery or our 3xAAA battery packs with a JST
connector on the end. There is no built in battery charging (so that you can use Alkaline or Lithium batteries
safely)
Vout (Voltage Output) - This pin will give you either the battery power or USB power, whichever has a higher
voltage. Its great when you want to power something like NeoPixels, that might use more than the 500mA
available from the onboard regulator
3V Regulator - The on-board voltage regulator can supply up to 500mA at a steady 3.3V from up to 6VDC
Sewing and Alligator clip friendly pads - You can easily sew to these pads, and they're gold plated so they
wont corrode (oxidize). You can also use alligator clips or solder directly to them.
3 General Purpose I/O (GPIO) Pads! - 3 GPIO pins, at 3V logic, check the next section for a detailed pinout

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 8 of 78

guide
Reset Button - an onboard reset button will launch the bootloader when pressed and the Gemma is plugged
into a computer. If it is not connected to a computer, it's smart enough to go straight to the program.
On/Off switch - Lets you turn on/off your project, it will control both the Gemma and the Vout pad. This switch
can switch up to about 500mA of current, so if you are driving a huge number of servos or NeoPixels, connect
power to those power-greedy parts externally.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 9 of 78

Pinouts

JST Battery Input
There is no battery INPUT pin on the Gemma. You can connect a battery via the JST jack. We have found that
Lipoly batteries (http://adafru.it/cFB), coin-cells (http://adafru.it/783), and AAA's (http://adafru.it/727) work great. You
can also make your own battery input pack using a plain JST cable (http://adafru.it/261). And use a JST extension
cable if necessary (http://adafru.it/1131).

You can plug anything from around 4 VDC up to 6 VDC. That means any single-cell LiPoly, or 3-4 AAA or AA
batteries. This input is polarity protected. Gemma and DotStar LED light up, you're good to go. You can turn off the
battery with the on/off switch, which will completely disconnect power on the Gemma M0.

Power Pads
Half of the pads on the Gemma M0 are related to power in and out: 3Vo , Vout and GND

Vout - This is a voltage OUTPUT pin, it will be connected to either the USB power or the battery input,
whichever has the higher voltage. This output does not connect to the regulator so you can draw as much
current as your USB port / Battery can provide (in general, thats about 500mA)
3Vo - This is the 3.3V OUTPUT pad from the voltage regulator. It can provide up to 500mA at a steady 3.3V.
Good for sensors or small LEDs or other 3V devices.
GND is the common ground pin, used for logic and power. It is connected to the USB ground and the power
regulator, etc. This is the pin you'll want to use for any and all ground connections

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 10 of 78

http://www.adafruit.com/category/44_138
http://www.adafruit.com/products/783
http://www.adafruit.com/products/727
http://www.adafruit.com/products/261
http://www.adafruit.com/products/1131

Input/Output Pads
Next we will cover the 3 GPIO (General Purpose Input Ouput) pins! For reference you may want to also check out
the datasheet-reference in the downloads section for the core ATSAMD21E18 pin. We picked pins that have a lot of
capabilities.

Common to all pads

All the GPIO pads can be used as digital inputs, digital outputs, for LEDs, buttons and switches. In additon,
all can be used as analog inputs (12-bit ADC) or hardware capacitive touch. All pads can also be used as hardware
interrupts inputs.

Each pad can provide up to ~20mA of current. Don't connect a motor or other high-power component directly to the
pins! Instead, use a transistor to power the DC motor on/off (http://adafru.it/aUD)

On a Gemma M0, the GPIO are 3.3V output level, and should not be used with 5V inputs. In general, most 5V
devices are OK with 3.3V output though.

The three pads are completely 'free' pins, they are not used by the USB connection, LEDs, DotStar, etc so you
never have to worry about the USB interface interfering with them when programming

Unique pad capabilities

Pad #0 / A2 - this is connected to PA04 on the ATSAMD21. This pin can be used as a digital I/O with
selectable pullup or pulldown, capacitive touch, analog input (use 'A2'), PWM output, and is also used for I2C
data (SDA), and hardware Serial RX.
Pad #1 / A0 - this is connected to PA02 on the ATSAMD21. This pin can be used as a digital I/O with
selectable pullup or pulldown, capacitive touch, analog input (use 'A0'), and true analog (10-bit DAC) output. It
cannot be used as PWM output.
Pad #2 / A1 - this is connected to PA05 on the ATSAMD21. This pin can be used as a digital I/O with
selectable pullup or pulldown, capacitive touch, analog input (use 'A1'), PWM output, and is also used for I2C
clock (SCL), and hardware Serial TX.

Secret SWD and Reset Pads
On the bottom of the Gemma M0 you will see three small pads. These are used for our programming/test but you
can use them too.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 11 of 78

http://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors

Starting from the pad closest to the edge there is:

SWDIO
SWCLK
Reset

On the off chance you want to reprogram your Gemma M0 or debug it using a Cortex M0 debug/programmer, you
will need to solder/connect to these pads. We use them for testing and you will likely never need it but they are
there if you do!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 12 of 78

Windows Driver Installation
Mac and Linux do not require drivers, only Windows folks need to do this step

Before you plug in your board, you'll need to possibly install a driver!

Click below to download our Driver Installer

Download Adafruit Windows Driver Installer v1.5
http://adafru.it/yDr

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the license

Select which drivers you want to install, we suggest selecting all of them so you don't have to do this again!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 13 of 78

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/1.5/adafruit_drivers.exe

By default, we install the Feather 32u4 , Feather M0, Flora, Gemma M0, Circuit Playground and Trinket / Pro
Trinket / Gemma / USBtinyISP drivers.

You can also, optionally, install the Arduino Gemma (different than the Adafruit Gemma!), Huzzah and Metro
drivers

Click Install to do the installin'

Manual Driver Installation
If windows needs the driver files (inf/cat) for some reason you can get all the drivers in a zip by clicking below:

Adafruit Windows Drivers
http://adafru.it/rEY

And point windows to the Drivers folder when it asks for the driver location

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 14 of 78

https://github.com/adafruit/Adafruit_Windows_Drivers/archive/master.zip

CircuitPython
CircuitPython is a derivative of MicroPython designed to simplify experimentation and education on low-cost
microcontrollers. It makes it easier than ever to get prototyping by requiring no upfront desktop software downloads.
The Gemma M0 is the first board that comes pre-loaded with CircuitPython. Simply copy and edit files on the
CIRCUITPY drive to iterate.

Your Gemma M0 already comes with CircuitPython but maybe there's a new version, or you overwrote your
Gemma M0 with Arduino code! In that case, see the below for how to reinstall or update CircuitPython. Otherwise
you can skip this and go straight to the next page

Reinstalling and Updating CircuitPython
The latest builds of CircuitPython are available from the GitHub release page. Binaries for different boards are listed
under the Downloads section. Pick the one that matches your board such as adafruit-circuitpython-gemma_m0-1.0.0.bin for
the Gemma M0.

Files ending in .uf2 can be flashed onto a virtual drive when in bootloader mode. Files that end with .bin can be
flashed with esptool.py or bossac.

Click here to see the latest CircuitPython Release
http://adafru.it/vlF

You will see a list of all available flavors of CircuitPython. Since we support a lot of different hardware, we have a
long list of available downloads!

See below for which file to download!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 15 of 78

https://github.com/adafruit/circuitpython
https://micropython.org
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/releases/latest
https://github.com/adafruit/circuitpython/releases/latest

Flashing
Flashing is the process of updating the CircuitPython core. It isn't needed for updating your own code. There are
two available methods: UF2 and bossac UF2 flashing is only available on newer boards including the Gemma
M0. Flashing via bossac is possible with both the UF2 bootloader and the original "Arduino" one. We recommend
using UF2 if you can. If UF2 fails, or is not available, try bossac.

Regardless of what method you use, you must first get the board into the bootloader mode. This is done by double
clicking the reset button. The board is in bootloader mode when the red led fades in and out. Boards with the status
neopixel will also show USB status while the red led fades. Green means USB worked while red means the board
couldn't talk to the computer. The first step to troubleshooting a red neopixel is trying a different USB cable to make
sure its not a charge-only cable.

Flashing UF2
The Gemma M0 comes with a new bootloader called UF2 that makes flashing CircuitPython even easier than
before. This beta bootloader allows you to drag so-called ".uf2" type files onto the BOOT drive. For more
information, check out our UF2 bootloader page. (http://adafru.it/vQd)

Start by ejecting or "safely remove" the CIRCUITPY drive if its present, then double-clicking the reset button while it
is plugged into your computer. You should see a new disk drive 'pop up' called GEMMABOOT or similar, and the
DotStar on your board glow green.

The drive will contain a few files. If you want to make a 'backup' of the current firmware on the device, drag-off and
save the CURRENT.UF2 file. Other that that you can ignore the index.htm and info_uf2.txt files. They cannot be
deleted and are only for informational purposes.

Next up, find the Gemma M0 UF2 file in the github downloads list:

Click to download and save the file onto your Desktop or somewhere else you can find it

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 16 of 78

file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader

Then drag the uf2 file into the GEMMABOOT drive.

Once the full file has been received, the board will automatically restart into CircuitPython. Your computer may warn
about ejecting the drive early, if it does, simply ignore it because the board made sure the file was received ok.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 17 of 78

Flashing with BOSSAC
This method is only recommended if you can't use UF2 for some reason!

To flash with bossac (BOSSA's command line tool) first download the latest version from here. The mingw32 version is
for Windows, apple-darwin for Mac OSX and various linux options for Linux. Once downloaded, extract the files from
the zip and open the command line to the directory with bossac.

bossac -e -w -v -R ~/Downloads/adafruit-circuitpython-gemma_m0-1.0.0.bin

This will erase the chip, write the given file, verify the write and Reset the board. After reset, CircuitPython should be
running. Newer boards with the UF2 bootloader may cause a warning of an early eject of a USB drive but just ignore
it. Nothing important was being written to the drive.

After flashing

After a successful flash by bossac or UF2 you should see a CIRCUITPY drive appear.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 18 of 78

https://github.com/shumatech/BOSSA/releases/latest

CircuitPython Blinky
Let's get blinky going with CircuitPython to explore the way we can write code and confirm everything is working as
expected.

code.py

After plugging in a board with CircuitPython into your computer a CIRCUITPY drive will appear. At first, the drive
may be empty but you can create and edit files on it just like you would on a USB drive. On here, you can save a
code.py (code.txt and main.py also work) file to run every time the board resets. This is the CircuitPython equivalent
of an Arduino sketch. However, all of the compiling is done on the board itself. All you need to do is edit the file.

So, fire up your favorite text editor, such as Notepad on Windows, TextEdit on Mac or download Atom (my favorite),
and create a new file. In the file copy this:

import digitalio
import board
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT
while True:
 led.value = not led.value
 time.sleep(0.5)

Now, save the file to the drive as code.txt (code.py also works). After a brief time, the board's red LED should begin to
flash every second.

Do not click the RESET button after saving your code file! It could cause the computer to not-finish writing your
code to disk. Just wait a few seconds and it should automatically restart the python code for you!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 19 of 78

https://atom.io/

Status LED

While code.py is running the status neopixel will be solid green. After it is finished, the neopixel will fade green on
success or flash an error code on failure. Red flashes happen when data is written to the drive.

Debugging

Did the status LED flash a bunch of colors at you? You may have an error in your code. Don't worry it happens to
everyone. Python code is checked when you run it rather than before like Arduino does when it compiles. To see
the CircuitPython error you'll need to connect to the serial output (like Arduino's serial monitor).

See this guide for detailed instructions.

If you are new to Python try googling the error first, if that doesn't find an answer feel free to drop by the support
forum.

Libraries

Using libraries with CircuitPython is also super easy. Simply drag and drop libraries onto the CIRCUITPY drive or
into a lib folder on the drive to keep it tidy.

Find CircuitPython libraries on GitHub using the topic and through our tutorials.

Make sure the libraries are for CircuitPython and not MicroPython. There are some differences that may cause it to
not work as expected.

More info
Guides and Tutorials
API Reference
Adafruit forum
Libraries

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 20 of 78

https://learn.adafruit.com/micropython-basics-how-to-load-micropython-on-a-board/serial-terminal
https://forums.adafruit.com/viewforum.php?f=60
https://github.com/search?q=topic%3Acircuitpython
https://learn.adafruit.com/category/circuitpython
https://learn.adafruit.com/category/micropython
https://circuitpython.readthedocs.io/en/latest/
https://forums.adafruit.com/viewforum.php?f=60
https://github.com/search?q=topic%3Acircuitpython

Serial Console (REPL)
CircuitPython sends the output of the .py files it runs to the connected computer over USB serial. So, to view the
output of your code from print statements and any errors that occur you'll need to connect to the serial console.

Also, because CircuitPython is a variant of Python, it too has a read-evaluate-print-loop or 'REPL' for short. The
REPL lets you run individual commands and load up code interactively and is therefore great for testing a new idea.
However, the code typed into the REPL isn't saved anywhere so make sure and save it elsewhere (like code.py for
example.)

Windows

Serial Drivers (for Windows 7)

If you are using Windows 7 you will need to install drivers. Click below to download the driver package and install it!
This is not necessary for Mac, Linux or Windows 10+.

Download Adafruit Windows Driver Installer
http://adafru.it/yDr

Determine Your Serial Port

Next you must determine the name of the serial port for your board. It's easiest to look at the serial ports with the
board disconnected (on Windows check Device Manager under the Ports (COM/LPT) node

It will be named something like Adafruit Trinket M0 or Adafruit Feather M0

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 21 of 78

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/1.5/adafruit_drivers.exe

Install Serial Port Terminal Software

On Windows you'll want to use a tool like PuTTY (http://adafru.it/pNe) to connect to the serial port. Download and
run PuTTY, then configure it to use a serial connection to the board's COM port at 115200 baud similar to as shown
below:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 22 of 78

http://www.chiark.greenend.org.uk/~sgtatham/putty/

After clicking Open you should see a new window pop up with the current output from the running code. If no code
is running, it may be blank so hit Ctrl - C to get to the REPL prompt.

Mac OSX and Linux
Connecting to the serial terminal on is more straightforward than on Windows. Neither OS requires additional
drivers.

First open a terminal program. On Mac OSX, Terminal comes installed and iTerm2 (http://adafru.it/xZd) can be
downloaded. On Linux there are a variety available such as gnome-terminal (called Terminal) and Konsole on KDE.

Now before plugging in the board, type ls /dev/tty.* to view existing serial connections.

Next, plug in the board. There should be one new serial connection that is for your board. Typically on Mac OSX its
something like /dev/tty.usbmodem* and on Linux its /dev/ttyACM*.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 23 of 78

https://www.iterm2.com/

Now that we know the device name, the screen command can be used to connect to the serial port. Its installed on
Mac OSX by default but Linux users may need to install it using their package manager. Run the following
command to connect at 115200 baud:

screen /dev/tty.board_name 115200

Where /dev/tty.board_name is the name of the board's serial port.

When you're done using screen most versions of it allow you to exit by pressing Ctrl-a then k then y or pressing
Ctrl-a then typing :quit and pressing enter.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 24 of 78

Using the REPL
After you're connected to the serial REPL try pressing enter to confirm you see the >>> prompt. You can also type
help() and press enter on most boards to see basic usage information.

If you can't get a >>> prompt to appear try pressing Ctrl-c a couple times to interrupt any running program on the
board.

You might get a Traceback and KeyboardInterrupt that lets you know the current Python program has stopped,
and you'll get a prompt:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 25 of 78

That's all there is to connecting to the board's serial REPL, you're ready to start typing in and running CircuitPython
code!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 26 of 78

Installing Libraries
Part of what makes CircuitPython so awesome is its ability to store code separately from the firmware itself. Storing
code separately from the firmware makes it easier to update both the code you write and the libraries you depend.
So, instead of compiling libraries in, you simply place them into your lib directory on the CIRCUITPY drive.

Your board ships with a lib folder already, its in the base directory of the drive:

CircuitPython libraries work in the same was as regular Python modules so the Python docs are a great reference
for how it all should work. In Python terms, we can place our library files in the lib directory because its part of the
Python path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to copy
them to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension. These files take
less space on the drive and have a smaller memory footprint as they are loaded.

Installing the bundle

The board's tiny size means we weren't able to fit extra flash memory on it. Thats why the drive is less that 64kb
total! Its the microcontroller itself thats saving the data, in the internal 256KB flash space - about 192KB for the
bootloader and Python interpreter and about 64KB for user code.

We need to be selective about what libraries we load on the board because we can't simply fit them all like we can
on an Express board. So, lets take a look at this silly example below which uses a SI7021 I2C temperature sensor.

import adafruit_si7021
import busio

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 27 of 78

https://docs.python.org/3/tutorial/modules.html

import board

i2c = busio.I2C(board.SCL, board.SDA)
sensor = adafruit_si7021.SI7021(i2c)
print("Temperature:", sensor.temperature)
print("Humidity:", sensor.relative_humidity)

After saving that as code.py on the drive we see the status NeoPixel flashes that an error has occurred. Opening up
the serial console we see that an ImportError has occurred.

It says that no module exists named adafruit_si7021. Thats the library we need to download! Since we bought the
sensor from Adafruit its likely there is a library for in the official Adafruit bundle. If its not an Adafruit part or its
missing, we can also check the Community bundle which has libraries contributed by the community.

Click for the latest Adafruit Bundle release
http://adafru.it/y8E

Visiting the bundle release page will show us information on the latest release including a list of all the versions of
the included drivers. Scrolling to the bottom of the page will reveal the downloads. We'll download the first zip file
which starts with adafruit-circuitpython-bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 28 of 78

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
https://github.com/adafruit/CircuitPython_Community_Bundle/releases/latest
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac OSX as
I'm using, it places the file in the same directory as the zip. I usually sort my Downloads by file data so the lib
directory that was contained in the zip ends up next to the zip file.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 29 of 78

On Express boards, the lib directory can be copied directly to the CIRCUITPY drive. However, this board doesn't
have enough space for all of the libraries. So, we'll copy over just what we need as we need it. In the lib folder there
is an adafruit_si7021.mpy file. That matches the missing module! Python imports modules based on the filename so
they will always match up. Lets drag it over. If this works, skip to the next section. Keep reading if you have an error.

Out of space!

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of space
but don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have already
installed it. Its ~12KiB or so.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 30 of 78

https://learn.adafruit.com/adafruit-gemma-m0/installing-libraries#continuing-after-copy

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib that you
aren't using anymore or test code that isn't in use.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to indent code
with four spaces for every indent. In general, we recommend that too. However, one trick to storing more human-
readable code is to use a single tab character for indentation. This approach uses 1/4 of the space for indentation
and can be significant when we're counting bytes.

Mac OSX loves to add extra files.

Luckily you can disable some of the extra hidden files that Mac OSX adds by running a few commands to disable
search indexing and create zero byte placeholders. Follow the steps below to maximize the amount of space
available on OSX:

Prevent & Remove Mac OSX Hidden Files

First find the volume name for your board. With the board plugged in run this command in a terminal to list all the
volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full path to the volume is
the /Volumes/CIRCUITPY path.

Now follow the steps from this question (http://adafru.it/u1c) to run these terminal commands that stop hidden files
from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your board's volume if it's different. At
this point all the hidden files should be cleared from the board and some hidden files will be prevented from being
created.

However there are still some cases where hidden files will be created by Mac OSX. In particular if you copy a file
that was downloaded from the internet it will have special metadata that Mac OSX stores as a hidden file. Luckily
you can run a copy command from the terminal to copy files without this hidden metadata file. See the steps
below:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 31 of 78

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Copy Files on Mac OSX Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on Mac OSX you need to be careful to
copy files to the board with a special command that prevents future hidden files from being created. Unfortunately
you cannot use drag and drop copy in Finder because it will still create these hidden extended attribute files in
some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For example to copy a foo.mpy file to
the board use a command like:

cp -X foo.mpy /Volumes/CIRCUITPY

Or to copy a folder and all of its child files/folders use a command like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

Other Mac OSX Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to do so.
 First list the amount of space used on the CIRCUITPY drive with the df command:

Lets remove the ._ files first.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 32 of 78

Whoa! We have 13Ki more than before! Lets continue!

Continuing after copy

Woohoo! Everything copied over just fine. Lets check the serial terminal to see how things are going.

Oops! Another ImportError! Libraries can depend on other libraries so copying one file over may not be enough.
Looking in the bundle, there is an adafruit_bus_device directory. In Python terms this is a package. It contains module
files. Lets copy the folder over to make sure we get everything.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 33 of 78

If that fails due to out of space, see above. If not, continue on.

Lets check the serial connection again. Looks like it worked! We don't have any more ImportErrors and we can see the
temperature (in Celsius) and the relative humidity.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 34 of 78

https://learn.adafruit.com/adafruit-gemma-m0/installing-libraries#out-of-space

CircuitPython Analog In
This quick-start example shows how you can read the analog voltages on all three Gemma M0 pads.

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

Gemma IO demo - analog inputs

from digitalio import *
from analogio import *
from board import *
import time

led = DigitalInOut(L)
led.direction = Direction.OUTPUT

analog0in = AnalogIn(A0)
analog1in = AnalogIn(A1)
analog2in = AnalogIn(A2)

def getVoltage(pin):
 return (pin.value * 3.3) / 65536

while True:
 print("A0: %f \t\t A1: %f \t\t A2: %f" %
 (getVoltage(analog0in),
 getVoltage(analog1in),
 getVoltage(analog2in)))

 time.sleep(0.1)

Creating analog inputs

analog0in = AnalogIn(A0)
analog1in = AnalogIn(A1)
analog2in = AnalogIn(A2)

Creates three objects, one for each pad, and connects the objects to A0, A1 and A2 as analog inputs.

GetVoltage Helper

getVoltage(pin) is our little helper program. By default, analog readings will range from 0 (minimum) to 65535
(maximum). This helper will convert the 0-65535 reading from pin.value and convert it a 0-3.3V voltage reading.

Main Loop

The main loop is simple, it will just print out the three voltages as floating point values (the %f indicates to print as
floating point) by calling getVoltage on each of our analog objects.

If you connect to the serial port REPL, you'll see the voltages printed out. By default the pins are floating so the
voltages will vary. Try touching a wire from A0 to the GND or 3Vo pad to see the voltage change!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 35 of 78

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 36 of 78

CircuitPython Analog Out
This quick-start example shows how you can set the DAC (true analog voltage output) on all Gemma M0 pad A0.

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

Gemma IO demo - analog output

from digitalio import *
from analogio import *
from board import *
import time

aout = AnalogOut(A0)

while True:
 # Count up from 0 to 65535, with 64 increment
 # which ends up corresponding to the DAC's 10-bit range
 for i in range (0,65535,64):
 aout.value = i

Creating an analog output

aout = AnalogOut(A0)

Creates an object aout that is connected to the only DAC pin available - A0.

Setting the analog output

The DAC on the Gemma M0 is a 10-bit output, from 0-3.3V. So in theory you will have a resolution of 0.0032 Volts
per bit. To allow CircuitPython to be general-purpose enough that it can be used with chips with anything from 8 to
16-bit DACs, the DAC takes a 16-bit value and divides it down internally.

E.g. writing 0 will be the same as setting it to 0 - 0 Volts out

Writing 5000 is the same as setting it to 5000 / 64 = 78
And 78 / 1024 * 3.3V = 0.25V output

Writing 65535 is the same as 1023 which is the top range and you'll get 3.3V output

Main Loop

The main loop is fairly simple, it just goes through the entire range of the DAC, from 0 to 65535, but increments 64
at a time so it ends up clicking up one bit for each of the 10-bits of range available.

CircuitPython is not terribly fast, so at the fastest update loop you'll get 4 Hz. The DAC isn't good for audio outputs
as-is.

Bigger boards like the Metro or Feather M0 have more code space and can perform audio playback capabilities via
the DAC.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 37 of 78

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 38 of 78

CircuitPython Cap Touch
This quick-start example shows how you can read the capacitive touch sensors built into on all three Gemma M0
pads.

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

 # Gemma IO demo - captouch

import touchio
from board import *
import time

touch0 = touchio.TouchIn(A0)
touch1 = touchio.TouchIn(A1)
touch2 = touchio.TouchIn(A2)

while True:
 if touch0.value:
 print("A0 touched!")
 if touch1.value:
 print("A1 touched!")
 if touch2.value:
 print("A2 touched!")
 time.sleep(0.01)

You can open up the serial console to see the touches detected and printed out.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 39 of 78

Creating an capacitive touch input

All three pads can be used as capacitive TouchIn devices:

touch0 = touchio.TouchIn(A0)
touch1 = touchio.TouchIn(A1)
touch2 = touchio.TouchIn(A2)

Creates three objects, one connected to each of the Gemma M0 pads.

Main Loop

The main loop checks each sensor one after the other, to determine if it has been touched. If touch0.value returns
True, that means that that pad, A0, detected a touch. For each pad, if it has been touched, a message will print.

A small sleep delay is added at the end so the loop doesn't run too fast. You may want to change the delay from 0.1
seconds to 0 seconds to slow it down or speed it up.

Note that no extra hardware is required, you can touch the pads directly, but you may want to attach alligator clips
or foil tape to metallic or conductive objects. Try silverware, fruit or other food, liquid, aluminum foil, and items
around your desk!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 40 of 78

You may need to restart your code/board after changing the attached item because the capacitive touch code
'calibrates' based on what it sees when it first starts up. So if you get too many touch-signals or not enough, hit that
reset button!

Copper Foil Tape with Conductive Adhesive - 6mm x 15 meter roll

PRODUCT ID: 1128
Copper tape can be an interesting addition to your toolbox. The tape itself is made of thin pure copper so its
extremely flexible and can take on nearly any shape. You can easily solder...
http://adafru.it/eNZ
$5.95
IN STOCK

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 41 of 78

https://www.adafruit.com/product/1128

Copper Foil Tape with Conductive Adhesive - 25mm x 15 meter roll

PRODUCT ID: 1127
Copper tape can be an interesting addition to your toolbox. The tape itself is made of thin pure copper so its
extremely flexible and can take on nearly any shape. You can easily solder...
http://adafru.it/y8F
$19.95
IN STOCK

Small Alligator Clip Test Lead (set of 12)

PRODUCT ID: 1008
Connect this to that without soldering using these handy mini alligator clip test leads. 15" cables with alligator clip on
each end, color coded. You get 12 pieces in 6 colors....
http://adafru.it/dWJ
$3.95
IN STOCK

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 42 of 78

https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1008

CircuitPython Touch-DotStar
This quick-start example builds upon the previous example, but shows how you can create interactivity using
capacitive touch. It also demonstrates the built in DotStar LED and how you can change the color on your own.

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

 # Gemma IO demo - captouch to dotstar

import touchio
import busio
from board import *
import time

dotstar = busio.SPI(APA102_SCK, APA102_MOSI)
touch0 = touchio.TouchIn(A0)
touch1 = touchio.TouchIn(A1)
touch2 = touchio.TouchIn(A2)

r = g = b = 0

def setPixel(red, green, blue):
 if not dotstar.try_lock():
 return
 print("setting pixel to: %d %d %d" % (red, green, blue))

 data = bytearray([0x00, 0x00, 0x00, 0x00,
 0xff, blue, green, red,
 0xff, 0xff, 0xff, 0xff])
 dotstar.write(data)
 dotstar.unlock()
 time.sleep(0.01)

while True:
 if touch0.value:
 r = (r+1) % 256
 if touch1.value:
 g = (g+1) % 256
 if touch2.value:
 b = (b+1) % 256

 setPixel(r, g, b)

Each of the three pads will change the color of the built in mini DotStar LED. You can touch each pad in order to
see the LED change colors, or you can open up the serial console to see the touches detected and the pixel color
printed out.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 43 of 78

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 44 of 78

CircuitPython UART Serial
This quick-start example shows how you can create a UART device for communicating with hardware serial devices

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

Gemma IO demo - USB/Serial echo

from digitalio import *
from board import *
import busio
import time

led = DigitalInOut(D13)
led.direction = Direction.OUTPUT

uart = busio.UART(D0, D2, baudrate=9600)

while True:
 data = uart.read(32) # read up to 32 bytes
 #print(data) # this is a bytearray type

 if data != None:
 led.value = True

 datastr = ''.join([chr(b) for b in data]) # convert bytearray to string
 print(datastr, end="")

 led.value = False

In addition to the USB-serial connection you use for the REPL, there is also a hardware UART you can use. This is
handy to talk to UART devices like GPS's, some sensors, or other microcontrollers!

You can create a new UART object with uart = busio.UART(D0, D2, baudrate=9600) You can use only D0 and D2 as the
transmitting and receiving pins on the Gemma M0. Set the baudrate to whatever you like.

Once the object is created you read data in with read(numbytes) where you can specify the max number of bytes. It will
return a bytearray type object if anything was received already. Note it will always return immediately because there
is an internal buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None, so check for that before continuing.

The data that is returned is in a byte array, if you want to convert it to a string, you can use this handy line of code
which will run chr() on each byte:

datastr = ''.join([chr(b) for b in data]) # convert bytearray to string

For more UART details, check out the module documentation!
http://adafru.it/yCH

To run this demo, you'll need something to generate UART data. We connected up a GPS!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 45 of 78

https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/UART.html

gemma + gps Fritzing File
http://adafru.it/yCI

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 46 of 78

https://cdn-learn.adafruit.com/assets/assets/000/045/680/original/gemmagps.fzz?1503440092

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 47 of 78

CircuitPython I2C Scan
This quick-start example shows how you can use CircuitPython to scan the I2C bus for all connected devices

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

Gemma IO demo - I2C scan

from digitalio import *
from board import *
import busio
import time

led = DigitalInOut(D13)
led.direction = Direction.OUTPUT

i2c = busio.I2C(D2, D0)

while True:
 print("I2C addresses found:", [hex(i) for i in i2c.scan()])
 time.sleep(2)

You can also use the Gemma to chat with I2C sensors and devices. Before you start, we recommend connecting it
up and doing an I2C scan so you can tell if it was detected.

You can create the I2C devices on the Gemma M0's D2 (SCL) and D0 (SDA) pins.

Then run a scan with i2c.scan() It will return an array of addresses, but since usually they are referred to in hex
format, you may want to convert the array to hexadecimals with [hex(i) for i in i2c.scan()])

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 48 of 78

We wired up a Flora TSL2561 breakout with address 0x39 to test it!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 49 of 78

Gemma + TSL Fritzing File
http://adafru.it/yCJ

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 50 of 78

https://cdn-learn.adafruit.com/assets/assets/000/045/684/original/gemmatsl.fzz?1503441416

CircuitPython I2C Sensor
Gemma M0 IO Demo - I2C demo

from digitalio import *
from board import *
import busio
import adafruit_si7021
import time

led = DigitalInOut(D13)
led.direction = Direction.OUTPUT

i2c = busio.I2C(D2, D0)
print("I2C addresses found:", [hex(i) for i in i2c.scan()])

si7021 = adafruit_si7021.SI7021(i2c)

while True:
 print("Temp: %0.2F *C Humidity: %0.1F %%" % (si7021.temperature, si7021.relative_humidity))
 time.sleep(1)

We used our Alligator-to-breadboard wires to connect up the Gemma to a Si7021 breakout

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 51 of 78

Small Alligator Clip to Male Jumper Wire Bundle - 12 Pieces

PRODUCT ID: 3255
For bread-boarding with unusual non-header-friendly surfaces, these cables will be your best friends! No longer will
you have long strands of alligator clips that are grabbing little...
http://adafru.it/xAV
$7.95
IN STOCK

Adafruit Si7021 Temperature & Humidity Sensor Breakout Board

PRODUCT ID: 3251
It's summer and you're sweating and your hair's all frizzy and all you really want to know is why the weatherman
said this morning that today's relative humidity would max...
http://adafru.it/y6F
$6.95
IN STOCK

Then check the REPL. If you have not yet used this chip you may get an ImportError: no module named
'adafruit_si7021'

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 52 of 78

https://www.adafruit.com/product/3255
https://www.adafruit.com/product/3251

That means you need to install the Adafruit_Si7021 library that gives you the friendly interface we use above.

Check out our page on Installing Libraries to learn how to download the driver bundle and drag the driver you
need to the lib folder (http://adafru.it/yCK)

You will also need the adafruit_bus_device library folder - that will give you I2C access in a nice manner!

Once you're done you'll see you have the libraries installed:

Finally if you re-run you will be able to see the temperature and humidity data from the sensor:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 53 of 78

file:///adafruit-gemma-m0/installing-libraries

Handy Tips

Check Heap Memory Usage
import gc

gc.free_mem()

Will give you the number of bytes available for use.

Random Numbers
import urandom

urandom.random() will give a floating point number from 0 to 1.0

urandom.randint(min, max) will give you an integer number between min and max

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 54 of 78

Arduino IDE Setup
The first thing you will need to do is to download the latest release of the Arduino IDE. You will need to be using
version 1.8 or higher for this guide

Arduino IDE Download
http://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will need to start the IDE and
navigate to the Preferences menu. You can access it from the File menu in Windows or Linux, or the Arduino
menu on OS X.

A dialog will pop up just like the one shown below.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 55 of 78

http://www.arduino.cc/en/Main/Software

We will be adding a URL to the new Additional Boards Manager URLs option. The list of URLs is comma
separated, and you will only have to add each URL once. New Adafruit boards and updates to existing boards will
automatically be picked up by the Board Manager each time it is opened. The URLs point to index files that the
Board Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party board URLs on the Arduino
IDE wiki (http://adafru.it/f7U). We will only need to add one URL to the IDE in this example, but you can add
multiple URLS by separating them with commas. Copy and paste the link below into the Additional Boards
Manager URLs option in the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 56 of 78

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Here's a short description of each of the Adafruit supplied packages that will be available in the Board Manager
when you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4, Trinket, & Trinket Pro.
Adafruit SAMD Boards - Includes support for Feather M0, Metro M0, Circuit Playground Express, Gemma
M0 and Trinket M0
Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the Flora, Feather 32u4, Micro
and Leonardo using the arcore project (http://adafru.it/eSI).

If you have multiple boards you want to support, say ESP8266 and Adafruit, have both URLs in the text box
separated by a comma (,)

Once done click OK to save the new preference settings. Next we will look at installing boards with the Board
Manager.

Now continue to the next step to actually install the board support package!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 57 of 78

https://github.com/rkistner/arcore

Using with Arduino IDE
Since the Feather/Metro/Gemma/Trinket M0 use an ATSAMD21 chip running at 48 MHz, you can pretty easily get it
working with the Arduino IDE. Most libraries (including the popular ones like NeoPixels and display) will work with
the M0, especially devices & sensors that use i2c or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the previous page, you can open
the Boards Manager by navigating to the Tools->Board menu.

Once the Board Manager opens, click on the category drop down menu on the top left hand side of the window and
select Contributed. You will then be able to select and install the boards supplied by the URLs added to the
prefrences.

Install SAMD Support
First up, install the Arduino SAMD Boards version 1.6.15 or later

You can type Arduino SAMD in the top search bar, then when you see the entry, click Install

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 58 of 78

Install Adafruit SAMD
Next you can install the Adafruit SAMD package to add the board file definitions

You can type Adafruit SAMD in the top search bar, then when you see the entry, click Install

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly installed. You should now be able to
select and upload to the new boards listed in the Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)
Feather M0 Express
Metro M0 Express
Circuit Playground Express
Gemma M0
Trinket M0

Install Drivers (Windows 7 Only)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 59 of 78

When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

Download Adafruit Driver Installer v1.5
http://adafru.it/yDr

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the license

Select which drivers you want to install, the defaults will set you up with just about every Adafruit board!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 60 of 78

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/1.5/adafruit_drivers.exe

Click Install to do the installin'

Blink
Now you can upload your first blink sketch!

Plug in the Gemma M0, Trinket M0, Metro M0 or Feather M0 and wait for it to be recognized by the OS (just takes a
few seconds). It will create a serial/COM port, you can now select it from the dropdown, it'll even be 'indicated' as
Trinket/Gemma/Metro/Feather M0!

Now load up the Blink example

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

And click upload! That's it, you will be able to see the LED blink rate change as you adapt the delay() calls.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 61 of 78

If you are having issues, make sure you selected the matching Board in the menu that matches the hardware you
have in your hand.

Sucessful Upload
If you have a successful upload, you'll get a bunch of red text that tells you that the device was found and it was
programmed, verified & reset

Compilation Issues
If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Arduino & Adafruit SAMD board
packages

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 62 of 78

Manually bootloading
If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that crashes and doesn't auto-reboot
into the bootloader, click the RST button twice (like a double-click)to get back into the bootloader.

The red LED will pulse, so you know that its in bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want to use the normal upload.

Ubuntu & Linux Issue Fix
Note if you're using Ubuntu 15.04 (or perhaps other more recent Linux distributions) there is an issue with the
modem manager service which causes the Bluefruit LE micro to be difficult to program. If you run into errors like
"device or resource busy", "bad file descriptor", or "port is busy" when attempting to program then you are hitting
this issue. (http://adafru.it/sHE)

The fix for this issue is to make sure Adafruit's custom udev rules are applied to your system. One of these rules is
made to configure modem manager not to touch the Feather board and will fix the programming difficulty issue.
 Follow the steps for installing Adafruit's udev rules on this page. (http://adafru.it/iOE)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 63 of 78

https://bugs.launchpad.net/ubuntu/+source/modemmanager/+bug/1473246
file:///adafruit-arduino-ide-setup/linux-setup#udev-rules

Adapting Sketches to M0
The ATSAMD21 is a very nice little chip but its fairly new as Arduino-compatible cores go. Most sketches & libraries
will work but here's a few things we noticed!

The below note are for all M0 boards, but not all may apply (e.g. Trinket and Gemma M0 do not have ARef so you
can skip the Analog References note!)

Analog References
If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is analogReference(AR_EXTERNAL) (it's
AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups
The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)
digitalWrite(pin, HIGH)

This is because the pullup-selection register is the same as the output-selection register.

For the M0, you can't do this anymore! Instead, use

pinMode(pin, INPUT_PULLUP)

which has the benefit of being backwards compatible with AVR.

Serial vs SerialUSB
99.9% of your existing Arduino sketches use Serial.print to debug and give output. For the Official Arduino
SAMD/M0 core, this goes to the Serial5 port, which isn't exposed on the Feather. The USB port for the Official
Arduino M0 core, is called SerialUSB instead.

In the Adafruit M0 Core, we fixed it so that Serial goes to USB when you use a Feather M0 so it will automatically
work just fine.

However, on the off chance you are using the official Arduino SAMD core not the Adafruit version (which
really, we recommend you use our version because as you can see it can vary) & you want your Serial
prints and reads to use the USB port, use SerialUSB instead of Serial in your sketch

If you have existing sketches and code and you want them to work with the M0 without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)
 // Required for Serial on Zero based boards
 #define Serial SERIAL_PORT_USBVIRTUAL
#endif

right above the first function definition in your code. For example:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 64 of 78

AnalogWrite / PWM on Feather/Metro M0
After looking through the SAMD21 datasheet, we've found that some of the options listed in the multiplexer table
don't exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The Timer/Counter (TC) and
Timer/Counter for Control Applications (TCC). Each SAMD21 has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output channels. Either channel can be
enabled and disabled, and either channel can be inverted. The pins connected to a TC instance can output identical
versions of the same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and output channels. There are
options for different kinds of waveform, interleaved switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two 'waveform output' (WO) channels, and
three TCC instances with eight WO channels:

TC[0-4],WO[0-1]
TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output channels, and three TCC
instances with eight output channels:

TC[3-5],WO[0-1]
TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as the SPI, I2C, and UART pins
keep their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13
Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the following pins:

TX and SDA (Digital pins 1 and 20)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 65 of 78

analogWrite() PWM range
On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully HIGH. On the ARM cortex, it will set it
to be 255/256 so there will be very slim but still-existing pulses-to-0V. If you need the pin to be fully on, add test
code that checks if you are trying to analogWrite(pin, 255) and, instead, does a digitalWrite(pin, HIGH)

Missing header files
there might be code that uses libraries that are not supported by the M0 core. For example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory
 #include <util/delay.h>
 ^
compilation terminated.
Error compiling.

In which case you can simply locate where the line is (the error will give you the file name and line number) and
'wrap it' with #ifdef's so it looks like:

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)
 #include <util/delay.h>
#endif

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching
For most other AVRs, clicking reset while plugged into USB will launch the bootloader manually, the bootloader will
time out after a few seconds. For the M0, you'll need to double click the button. You will see a pulsing red LED to let
you know you're in bootloader mode. Once in that mode, it wont time out! Click reset again if you want to go back to
launching code

Aligned Memory Access
This is a little less likely to happen to you but it happened to me! If you're used to 8-bit platforms, you can do this
nice thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];
float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer might not be aligned to a 2 or 4-
byte boundary. The ARM Cortex-M0 can only directly access data on 16-bit boundaries (every 2 or 4 bytes). Trying
to access an odd-boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU. Thankfully,
there's an easy work around ... just use memcpy!

uint8_t mybuffer[4];
float f;
memcpy(f, mybuffer, 4)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 66 of 78

Floating Point Conversion
Like the AVR Arduinos, the M0 library does not have full support for converting floating point numbers to ASCII
strings. Functions like sprintf will not convert floating point. Fortunately, the standard AVR-LIBC library includes the
dtostrf function which can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some references to using #include
<avr/dtostrf.h> to get dtostrf in your code. And while it will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in your code:

http://forum.arduino.cc/index.php?topic=368720.0 (http://adafru.it/lFS)

How Much RAM Available?
The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some reason. You can do so with this
handy function:

extern "C" char *sbrk(int i);

int FreeRam () {
 char stack_dummy = 0;
 return &stack_dummy - sbrk(0);
}

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 (http://adafru.it/m6D) for the tip!

Storing data in FLASH
If you're used to AVR, you've probably used PROGMEM to let the compiler know you'd like to put a variable or
string in flash memory to save on RAM. On the ARM, its a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the compiler will automatically read
from FLASH so you dont need special progmem-knowledgeable functions.

You can verify where data is stored by printing out the address:
Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000 and $3FFFF Then it is in FLASH

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 67 of 78

http://forum.arduino.cc/index.php?topic=368720.0
http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879

UF2 Bootloader Details
This is an information page for advanced users who are curious how we get code from your computer into your
Express board!

Adafruit Express and Gemma/Trinket M0 boards feature an improved bootloader that makes it easier than ever to
flash different code onto the microcontroller. This bootloader makes it easy to switch between Microsoft MakeCode,
CircuitPython and Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac, jlink or avrdude), one can simply drag a file
onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just drag a binary or hex file (trust
us, we tried it, it isn't cross-platform compatible). Instead, the format of the file has extra information to help the
bootloader know where the data goes. The format is called UF2 (USB Flashing Format). Microsoft MakeCode
generates UF2s for flashing and CircuitPython releases are also available as UF2. You can also create your own
UF2s from binary files using uf2tool, available here. (http://adafru.it/vPE)

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE which expects a BOSSA
bootloader on ATSAMD-based boards

For more information about UF2, you can read a bunch more at the MakeCode blog (http://adafru.it/w5A), then
check out the UF2 file format specification (http://adafru.it/vPE) and to build your own bootloader for ATSAMD-
based boards, visit Microsoft UF2-SAMD github repository (http://adafru.it/vPF).

The bootloader is not needed when changing your CircuitPython code. Its only needed when upgrading the
CircuitPython core or changing between CircuitPython, Arduino and Microsoft MakeCode.

Entering Bootloader Mode
The first step to loading new code onto your board is triggering the bootloader. It is easily done by double tapping
the reset button. Once the bootloader is active you will see the small red LED fade in and out and a new drive will
appear on your computer with a name ending in BOOT. For example, feathers show up as FEATHERBOOT, while
the new CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up as TRINKETBOOT, and Gemma
M0 will show up as GEMMABOOT

Furthermore, when the bootloader is active, it will change the color of one or more onboard neopixels to indicate the
connection status, red for disconnected and green for connected. If the board is plugged in but still showing that its
disconnected, try a different USB cable. Some cables only provide power with no communication.

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When the reset button is double
clicked (about half second between each click) the NeoPixel will stay green to let you know the bootloader is active.
When the reset button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 68 of 78

https://github.com/Microsoft/uf2
https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://github.com/Microsoft/uf2-samd21/

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or maybe the drivers could not
enumerate. Try a new USB cable first. Then try another port on your computer!

Once the bootloader is running, check your computer. You should see a USB Disk drive...

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 69 of 78

Once the bootloader is successfully connected you can open the drive and browse the virtual filesystem. This isn't
the same filesystem as you use with CircuitPython or Arduino. It should have three files:

 CURRENT.UF2 - The current contents of the microcontroller flash.
 INDEX.HTM - Links to Microsoft MakeCode.
 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug reports.

Using the Mass Storage Bootloader
To flash something new, simply drag any UF2 onto the drive. After the file is finished copying, the bootloader will
automatically restart. This usually causes a warning about an unsafe eject of the drive. However, its not a problem.
The bootloader knows when everything is copied successfully.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 70 of 78

You may get an alert from the OS that the file is being copied without it's properties. You can just click Yes

You may also get get a complaint that the drive was ejected without warning. Don't worry about this. The drive only
ejects once the bootloader has verified and completed the process of writing the new code

Using the BOSSA Bootloader
As mentioned before, the bootloader is also compatible with BOSSA, which is the standard method of updating
boards when in the Arduino IDE. It is a command-line tool that can be used in any operating system. We won't
cover the full use of the bossac tool, suffice to say it can do quite a bit! More information is available at
ShumaTech (http://adafru.it/vQa).

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial Port driver file. Windows 10
users do not need this so skip this step.

You can download our full driver package here:

Download Adafruit Driver Installer v1.5
http://adafru.it/yDr

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 71 of 78

http://www.shumatech.com/web/products/bossa
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/1.5/adafruit_drivers.exe

Download and run the installer. We recommend just selecting all the serial port drivers available (no harm to do so)
and installing them.

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your Device Manager from the
control panel and look under Ports (COM & LPT) for a device called Feather M0 or Circuit Playground or
whatever!

If you see something like this, it means you did not install the drivers. Go back and try again, then remove and re-
plug the USB cable for your board

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 72 of 78

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to read/write custom binary files,
say for loading CircuitPython or your own code. We recommend using bossac v 1.7.0 (or greater), which has been
tested. The Arduino branch is most recommended (http://adafru.it/vQb).

You can download the latest builds here. (http://adafru.it/s1B) The mingw32 version is for Windows, apple-darwin for
Mac OSX and various linux options for Linux. Once downloaded, extract the files from the zip and open the
command line to the directory with bossac

For example here's the command line you probably want to run:

bossac -e -w -v -R ~/Downloads/adafruit-circuitpython-feather_m0_express-0.9.3.bin

This will -erase the chip, -write the given file, -verify the write and -Reset the board. After reset, CircuitPython should
be running. Express boards may cause a warning of an early eject of a USB drive but just ignore it. Nothing
important was being written to the drive. A hard power-reset is also recommended after bossac, just in case.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 73 of 78

https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/releases

Updating the bootloader
The UF2 bootloader is a new bootloader, and while we've done a ton of testing, it may contain bugs. Usually these
bugs effect reliability rather than fully preventing the bootloader from working. If the bootloader is flaky then you can
try updating the bootloader itself to potentially improve reliability.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode. Simply enter the bootloader as
above and then drag the update bootloader uf2 file below. This uf2 contains a program which will unlock the
bootloader section, update the bootloader, and re-lock it. It will overwrite your existing code such as CircuitPython or
Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The INFO_UF2.TXT file should show
the newer version number inside.

For example:

UF2 Bootloader v1.20.0 SFHR
Model: Adafruit Feather M0
Board-ID: SAMD21G18A-Feather-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython core (http://adafru.it/tBa).

The latest updater for Feather M0 Express:

Circuit Playground Express v1.23 update-bootloader.uf2
http://adafru.it/yDv
Feather M0 Express v1.23 update-bootloader.uf2
http://adafru.it/yDw
Metro M0 Express v1.23 update-bootloader.uf2
http://adafru.it/yDx
Gemma M0 v1.23 update-bootloader.uf2
http://adafru.it/yDy
Trinket M0 v1.23 update-bootloader.uf2
http://adafru.it/yDz

Getting Rid of Windows Pop-ups

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 74 of 78

https://github.com/adafruit/circuitpython/releases
https://cdn-learn.adafruit.com/assets/assets/000/045/717/original/update-bootloader.uf2?1503523524
https://cdn-learn.adafruit.com/assets/assets/000/045/718/original/update-bootloader.uf2?1503523551
https://cdn-learn.adafruit.com/assets/assets/000/045/719/original/update-bootloader.uf2?1503523594
https://cdn-learn.adafruit.com/assets/assets/000/045/720/original/update-bootloader.uf2?1503523609
https://cdn-learn.adafruit.com/assets/assets/000/045/721/original/update-bootloader.uf2?1503523622

If you do a lot of development on Windows with the UF2 bootloader, you may get annoyed by the constant "Hey you
inserted a drive what do you want to do" pop-ups.

Go to the Control Panel. Click on the Hardware and
Sound header

Click on the Autoplay header

Uncheck the box at the top, labeled Use Autoplay for all
devices

Making your own UF2
Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash and the Python conversion

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 75 of 78

https://learn.adafruit.com/assets/41276
https://learn.adafruit.com/assets/41277
https://learn.adafruit.com/assets/41278
https://github.com/Microsoft/uf2/blob/master/utils/uf2conv.py

script (http://adafru.it/vZb). Make sure that your program was compiled to start at 0x2000 (8k) because the
bootloader takes the first 8k. CircuitPython's linker script (http://adafru.it/vZc) is an example on how to do that.

Once you have a .bin file, you simply need to run the Python conversion script over it. Here is an example from the
directory with uf2conv.py:

uf2conv.py -c -o build-circuitplayground_express/revg.uf2 build-circuitplayground_express/revg.bin

This will produce a revg.uf2 file in the same directory as the source revg.bin. The uf2 can then be flashed in the
same way as above.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 76 of 78

https://github.com/adafruit/circuitpython/blob/master/atmel-samd/boards/samd21x18-bootloader.ld

Downloads

Files:
ATSAMD21 Datasheet (http://adafru.it/xZe)
Webpage for the ATSAMD21E18 (main chip used) (http://adafru.it/xZf)
EagleCAD files on GitHub (http://adafru.it/xZA)
Fritzing object in Adafruit Fritzing library (http://adafru.it/aP3)

Default CircuitPython files included on-chip
http://adafru.it/yb8

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 77 of 78

https://cdn-learn.adafruit.com/assets/assets/000/044/363/original/samd21.pdf?1501106093
http://www.microchip.com/wwwproducts/en/ATSAMD21E18
https://github.com/adafruit/Adafruit-Gemma-M0-PCB
https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/044/655/original/releasefiles-55c8eb5.zip?1501621643

© Adafruit Industries Last Updated: 2017-08-23 10:08:12 PM UTC Page 78 of 78

	Guide Contents
	Overview
	Guided Tour
	Pinouts
	JST Battery Input
	Power Pads
	Input/Output Pads
	Common to all pads
	Unique pad capabilities

	Secret SWD and Reset Pads
	Windows Driver Installation
	Manual Driver Installation
	CircuitPython
	Reinstalling and Updating CircuitPython
	Flashing
	Flashing UF2
	Flashing with BOSSAC
	After flashing

	CircuitPython Blinky
	code.py
	Status LED
	Debugging
	Libraries

	More info
	Serial Console (REPL)
	Windows
	Serial Drivers (for Windows 7)
	Determine Your Serial Port
	Install Serial Port Terminal Software

	Mac OSX and Linux
	Using the REPL
	Installing Libraries
	Installing the bundle
	Out of space!
	Delete something!
	Use tabs
	Mac OSX loves to add extra files.
	Prevent & Remove Mac OSX Hidden Files
	Copy Files on Mac OSX Without Creating Hidden Files
	Other Mac OSX Tips

	Continuing after copy

	CircuitPython Analog In
	Creating analog inputs
	GetVoltage Helper
	Main Loop

	CircuitPython Analog Out
	Creating an analog output
	Setting the analog output
	Main Loop

	CircuitPython Cap Touch
	Creating an capacitive touch input
	Main Loop
	Copper Foil Tape with Conductive Adhesive - 6mm x 15 meter roll
	Copper Foil Tape with Conductive Adhesive - 25mm x 15 meter roll
	Small Alligator Clip Test Lead (set of 12)

	CircuitPython Touch-DotStar
	CircuitPython UART Serial
	CircuitPython I2C Scan
	CircuitPython I2C Sensor
	Small Alligator Clip to Male Jumper Wire Bundle - 12 Pieces
	Adafruit Si7021 Temperature & Humidity Sensor Breakout Board

	Handy Tips
	Check Heap Memory Usage
	Random Numbers
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 Only)
	Blink
	Sucessful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Adapting Sketches to M0
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	UF2 Bootloader Details
	Entering Bootloader Mode
	Using the Mass Storage Bootloader
	Using the BOSSA Bootloader
	Windows 7 Drivers
	Verifying Serial Port in Device Manager
	Running bossac on the command line

	Updating the bootloader
	Getting Rid of Windows Pop-ups
	Making your own UF2
	Downloads
	Files:
	Schematic & Fabrication Print

