

Optoelectronics Bare Die Portfolio

Infrared Emitters and Photo Detectors

TABLE OF CONTENTS

Introduction to Bare Die	02
Die Portfolio.....	03
• Nomenclature.....	03
• Infrared Emitters.....	04
• Photodiodes.....	06
• Phototransistors.....	08
Custom Design.....	09
Packaging Options	10

RESOURCES

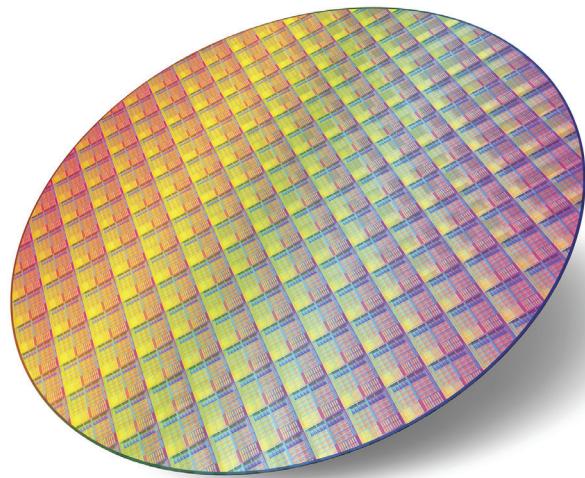
- Infrared emitter bare die product portfolio - www.vishay.com/die-wafer/ir-emitting-diodes/
- Photo detector bare die product portfolio - www.vishay.com/die-wafer/photo-detectors/
- For technical support contact - emittertechsupport@vishay.com or detectortechsupport@vishay.com
- Sales contacts - www.vishay.com/doc?99914

Introduction

Benefits of using bare die

- High design flexibility without package limitations
- High level of integration
- Temperature management with chip-on-board (COB) technology
- Highly accurate die placement
- Reduced system cost
- Customer specific design
- Possible process flow modification

Vishay service


- Design assistance
- Assembly assistance
- Die handling assistance

Wafer processing duty

- Wafer mapping/wafer inking
- Wafer thinning
- Wafer dicing
- Die sorting
- Visual inspection

Packaging and shipping methods

- Unsawn wafer: the wafers are delivered in a sealed bag and die are not singulated
- Sawn wafer on loose foil: the wafers are sawn and supplied on blue tape
- Sawn wafer on discoframe: the wafers are sawn and supplied on a blue tape in a plastic frame

Die Usage Basic Guidelines

Bare die products require careful handling and storage as well as optimized assembly processes and tools to avoid damage and deviations from the expected performance. The following guidelines are based on Vishay's many years of experience of manufacturing and assembling semiconductor devices.

Die Handling

To avoid contamination and damage die or wafers should never be handled by bare hands. Mechanical pressure has to be limited and special tweezers have to be used for grabbing a die from the packing.

Storage time for wafers in sealed condition shall not exceed 6 months (storage ambient conditions: $T_A = 15\ldots30^\circ\text{C}$; relative humidity: < 60 %).

Die Attach

To assure optimal electrical conductivity between silicon and copper, Vishay wafers are coated on the back side with two or three metallic solderable layers which are suitable for a wide range of solders, ranging from solder alloys to conductive epoxies. Fluxes are not recommended for solders because residuals can contaminate the surface of the die, and cause voids under the die, thus compromising heat dissipation and electrical performance.

Vishay experts are happy to advise you on which assembly materials are best suited to your specific requirements..

Wire Bonding

Vishay does not define absolute bonding parameters, since bonding equipment and materials vary greatly. Customers are advised to optimize bonding parameters according to their specific equipment.

Upon request, Vishay is ready to assist you in optimizing your wirebonding process.

Bare Die Naming Rules for Infrared Emitters

T	B	94	14	VA	SF	F
Telefunken	Technology	Wavelength	Chip Size	Internal	Package Form	Status
(Now part of Vishay)	B: Bulk Emitter S: Surface Emitter	94: 940 nm 89: 890 nm 87: 870 nm 85: 850 nm 83: 830 nm	08: 08 mil 11: 11 mil 14: 14 mil 17: 17 mil	V: Emitter A: Version / Type	S: Sawn Wafer F: Placed on Foil	F: Finished Good

Bare Die Naming Rules for Photo Detectors

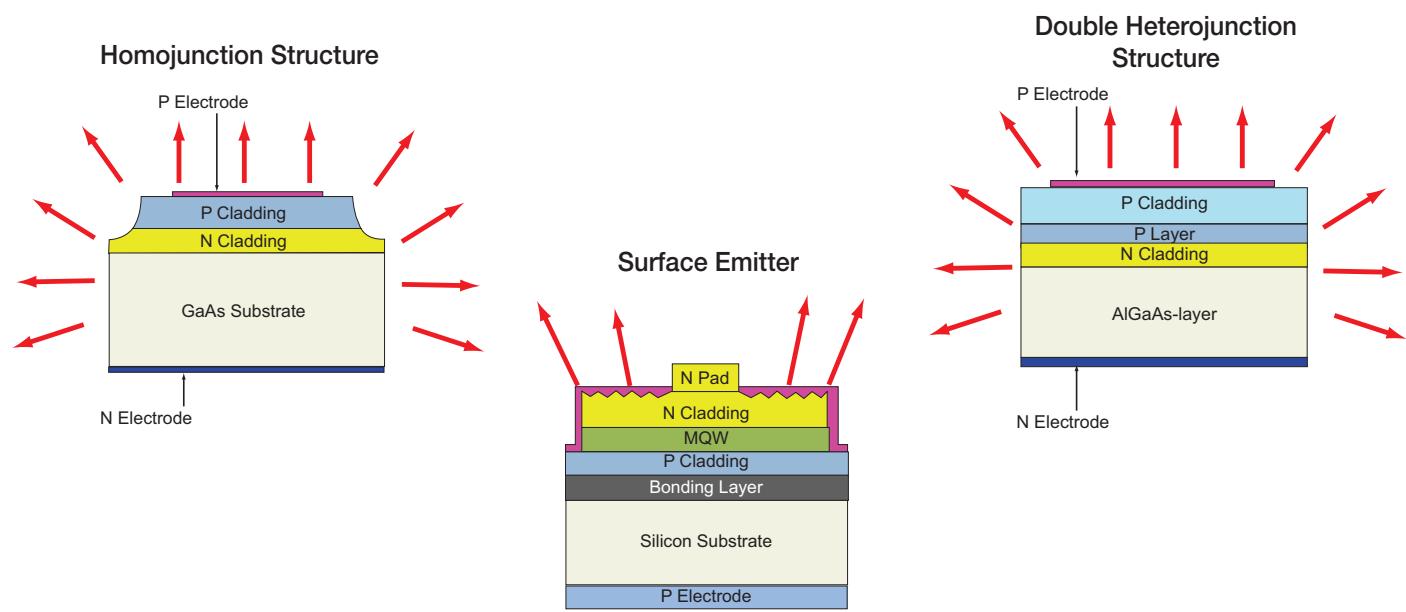
T	11	10	P6	SD	F
Telefunken	Technology	Size	Type	Package Form	Status
(Now part of Vishay)	11: Homogeneous 15: Epitaxial	Internal Classification	P: Photodetector 6: Internal Classification	S: Sawn Wafer D: Mounted on Discoframe	F: Finished Good

Infrared Emitters

Vishay offers a wide variety of high-power, high-speed infrared emitter chips for a broad range of applications. Vishay offers double heterojunction infrared emitters with the lowest forward voltages on the market; surface emitters that deliver the highest radiant intensities; and highly efficient homojunction emitters.

All Vishay emitter chips satisfy the requirements of AEC Q101.

Portfolio


Vishay offers a wide selection of chips, emitting at 830 nm, 850 nm, 870 nm, 890 nm, 940 nm and 950 nm.

Typical Applications

- IR touch display based devices such as printer displays, ebook reader, smart phones, tablets, and ultrabooks
- Navigation devices
- Automotive dashboard displays
- Data communication
- Illumination for cameras

Available Technologies

- Liquid Phase Epitaxy (LPE):
 - Homojunction structures on GaAs
 - Double heterojunction structures (DH) on GaAs/AlGaAs
- Metal Organic Vapor Phase Epitaxy (MOVPE):
 - High-power surface emitter
 - Bulk emitter

IR Surface Emitters

Part Number	Product Image	Type	Chip Dimensions L x W x H (mm)	Peak Wavelength (nm)	Radiant Power (mW)	Angle of Half Intensity (±°)	Surge Forward Current (A at $t_p = 100 \mu s$)	Rise Time (ns)
TS8542VA		Surface	1.066 x 1.066 x 0.17	850	350 ^A	55	5	15
TS8520VA		Surface	0.508 x 0.508 x 0.17	850	75 ^B	55	1.5	15
TS8514VA		Surface	0.355 x 0.355 x 0.17	850	30 ^C	55	1	15
TS8510VA		Surface	0.250 x 0.250 x 0.17	850	40 ^D	55	1	10
TS9414VA		Surface	0.355 x 0.355 x 0.17	940	35 ^C	60	1	10
TS9410VA		Surface	0.250 x 0.250 x 0.17	940	12 ^E	55	1	10
T8719VP			0.47 x 0.47 x 0.16	870	31	80	1	15
T8914VP			0.37 x 0.37 x 0.17	885	21	80	1	25
T8514VB			0.37 x 0.37 x 0.17	850	23	-	1	25
T8714VP			0.37 x 0.37 x 0.16	865	26	80	1	13
T163VU			0.37 x 0.37 x 0.265	950	22	-	1.5	800
TB9414VA		Bulk	0.37 x 0.37 x 0.19	940	21 ^C	80	1	15
TB9408VA		Bulk	0.2 x 0.2 x 0.19	940	22 ^C	80	0.5	15

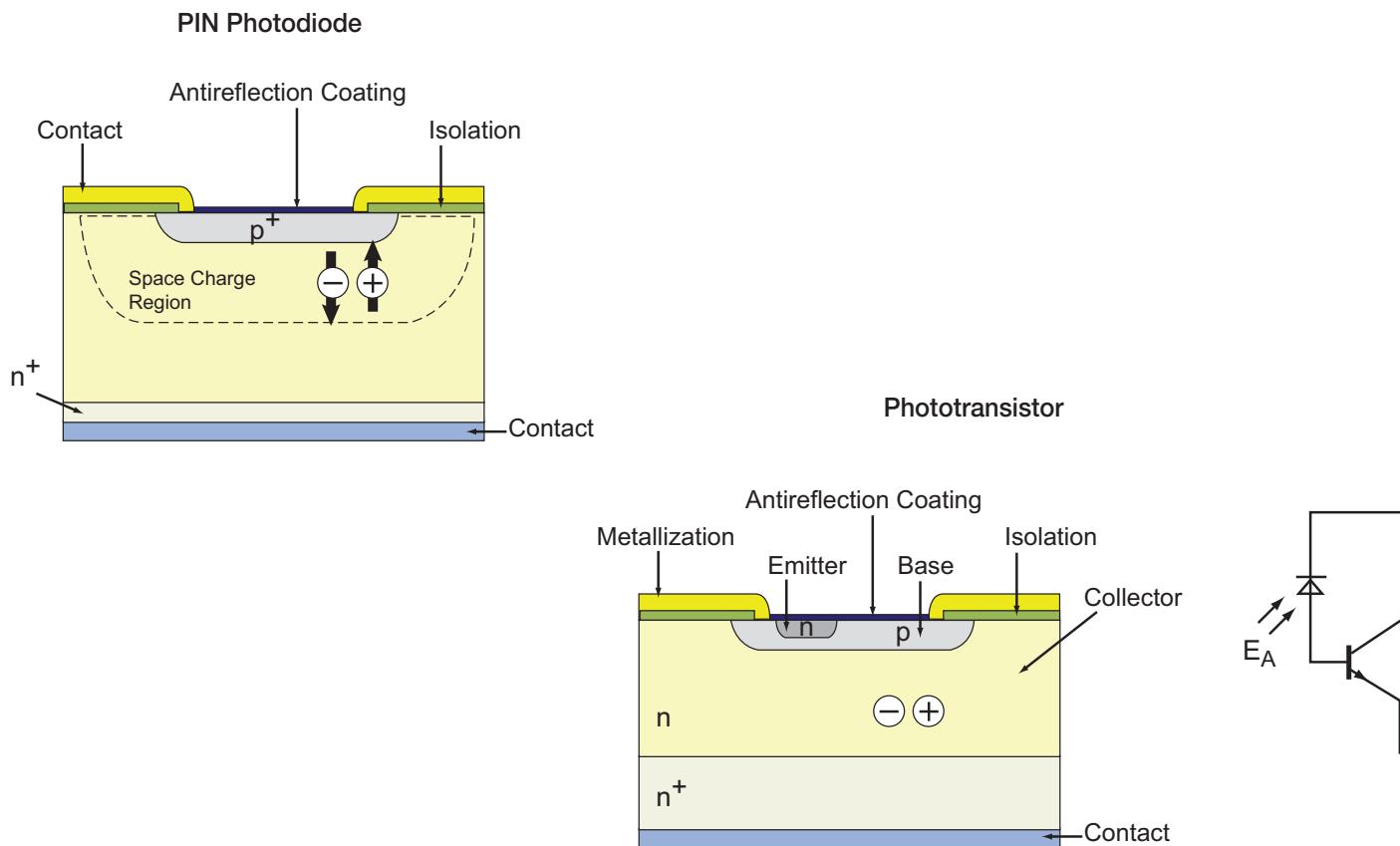
Note

The measurements are based on samples of die which are mounted on TO-18 gold header without resin coating.

A $I_p=1A$, B $I_p=250mA$, C $I_p=100mA$, D $I_p=70mA$, E $I_p=50mA$

Photo Detectors

Vishay offers the broadest selection of high-speed, low dark current PIN photodiode chips. They are specially designed to achieve excellent sensitivity together with high reliability. Vishay phototransistors are extremely sensitive and fast compared to other such devices on the market.


Portfolio

- Vishay offers the broadest selection of photo detector chips suitable for ambient light and IR detection
- Available technologies:
 - Epitaxial
 - Homogeneous

Typical Applications

- IR touch display based devices
- High-speed data transfer
- Light barriers
- Position sensing
- Alarm and safety equipment

Cross Section of PIN Photodiode and Phototransistor

PIN Photodiodes

Part Number	Product Image	Chip Dimensions L x W x H (mm)	Peak Wavelength (nm)	Spectral Bandwidth (nm) (50%)	Reverse Light Current ($E_A = 1 \text{ mW/cm}^2$ $\lambda = 950 \text{ nm}$ $V_R = 5 \text{ V}$)	Reverse Dark Current (nA)	Angle of Half Sensitivity ($\pm ^\circ$)	Rise Time/ Fall Time (ns)	Photo Sensitive Area (mm 2)
T1112P		3.05 x 2.1 x 0.28	970	640 to 1070	44 μA	0.1	60	130/130	5.5
T1113P		2.97 x 2.97 x 0.28	960	660 to 1050	55 μA	2	60	100/100	7.5
T1116P		2.97 x 2.97 x 0.28	940	500 to 1050	43 μA	2	60	40/40	7.7
T1110P6		2.97 x 2.97 x 0.28	940	600 to 1050	55 μA	2	60	100/100	7.5
T1120P		2.37 x 2.37 x 0.28	940	600 to 1050	35 μA	2	60	100/100	4.4
T1172P		1.47 x 1.07 x 0.28	960	640 to 1060	8.7 μA	< 1	60	625/670	1.06
T1170P		1.17 x 1.17 x 0.28	920	600 to 1040	7 μA	< 1	60	100/100	0.88
T330P		0.67 x 0.67 x 0.28	900	600 to 1050	2.3 μA	0.1	60	4/4	0.23
T337P		0.67 x 0.67 x 0.28	970	610 to 1080	2.3 μA	< 1	60	550/100	0.23
T1180P		0.67 x 0.3 x 0.28	810	590 to 1010	0.59 μA	< 1	60	530/170	0.055
T1187P		0.67 x 0.3 x 0.28	800	580 to 1070	0.66 μA	< 1	60	700/160	0.053

Phototransistors

Part Number	Product Image	Chip Dimensions L x W x H (mm)	Peak Wavelength (nm)	Spectral Bandwidth (nm) (50%)	Collector Light Current ($E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $V_{CE} = 5 \text{ V}$)	Collector Emitter Dark Current (nA)	Angle of Half Sensitivity ($\pm \text{ }^\circ$)	Rise Time/ Fall Time (ns)	Photo Sensitive Area (mm ²)
T1090P6		0.53 x 0.53 x 0.185	840	440 to 1070	65-750 μA^{**}	1	60	4300/7700	0.14
T5096P		0.39 x 0.39 x 0.185	910	660 to 1030	72-600 μA^{**}	< 1	60	3800/3500	0.057

Note

*The measurements are based on samples of die which are mounted on TO- header without resin coating

**Binning is available

Ambient Light PIN Photodiodes

Part Number	Product Image	Chip Dimensions L x W x H (mm)	Peak Wavelength (nm)	Spectral Bandwidth (nm) (50%)	Reverse Light Current ($E_v = 100 \text{ lx}$, CIE illuminant A, $V_R = 5 \text{ V}$)	Reverse Dark Current (nA)	Angle of Half Sensitivity ($\pm \text{ }^\circ$)	Rise Time/ Fall Time (ns)	Photo Sensitive Area (mm ²)
T1610P		2.97 x 2.97 x 0.28	560	390 to 800	2.9 μA	2	60	100/100	7.7
T1670P		0.72 x 0.72 x 0.28	560	390 to 800	138 nA	0.1	60	100/100	0.27
T1677P		0.72 x 0.72 x 0.28	570	430 to 700	87 nA	0.1	60	100/100	0.27
T1678P		0.72 x 0.72 x 0.2	570	440 to 700	87 nA	0.1	60	100/100	0.34

Ambient Light Phototransistors

Part Number	Product Image	Chip Dimensions L x W x H (mm)	Peak Wavelength (nm)	Spectral Bandwidth (nm) (50%)	Collector Light Current ($E_v = 100 \text{ lx}$, CIE illuminant A, $V_{CE} = 5 \text{ V}$)	Collector Emitter Dark Current (nA)	Angle of Half Sensitivity ($\pm \text{ }^\circ$)	Rise Time/ Fall Time (ns)	Photo Sensitive Area (mm ²)
T1070P		0.72 x 0.72 x 0.22	570	440 to 800	50 μA	3	60	-	0.25

Note

*The measurements are based on samples of die which are mounted on TO- header without resin coating

Custom Design

Vishay offers highly flexible design and fabrication of semi- and full custom specific photodiode and emitter chips. The huge variety of applications and assembly options requires bare die that are tailored to the specific application to keep the full potential of the device. A good fit between chip, assembly, and packaging is becoming ever more important with tighter space and power requirements.

Vishay's flexible technology base allows customization for a range of parameters and features as listed below:

Emitters

- **Geometrical Design**

Chip outside dimensions, thickness, pad size, and shape and pad positions can be adjusted according to the customer specification.

- **Pad Topology**

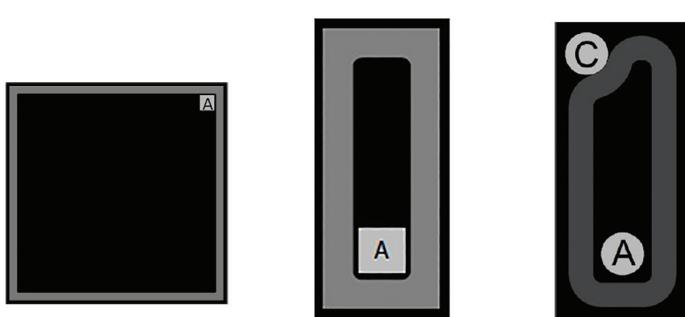
Chip topology can be customized with respect to interconnect technology.

Photodetectors

- **Geometrical Design**

Almost all geometrical parameters of a photodiode can be customized. This includes chip outside dimensions, chip thickness, pad size and shape, pad positions, photodiode position in an array, and alignment marks.

- **AR Coating / Optical Filters**

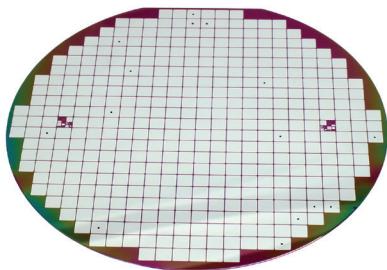

Depending on impinging wavelength and application all photodiodes are equipped with an AR coating. Customization allows us to match the AR coating to the wavelength needed by the customer.

- **Pad Topology**

Depending on interconnect technology pad topology can be also optimized.

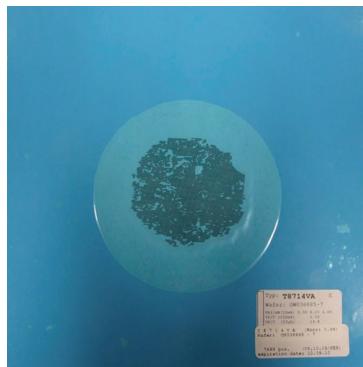
- **Pitch**

Linear or two-dimensional arrays with customizable pitch.



Packing Options

Vishay provides you with several packing options which can fit with virtually any assembly line. Parts are 100 % probed and inspected.


Unsawn wafer

Die are not singulated, wafers are provided in box.

Sawn wafer on loose foil

The wafer is provided on blue film where dies are singulated, ready for pick and place, bad chips are removed, and measurement data is attached.

Sawn wafer on discoframe

Wafer is provided on blue foil; probed and inked; measurement data is attached.

Upon request chips can also be delivered on plastic frames.

For shipment, the wafers are arranged in stacks. The stacks are hermetically sealed in plastic bags to ensure protection against environmental influence (humidity and contamination).

The following documents are available upon the request:

- Material content certificate
 - RoHS (DIN EN 62321)
- Halogen free (DIN EN 14582)
 - SGA reports
 - Failure catalogue
 - ESD test results (according to the JEDEC standards)

WORLDWIDE SALES CONTACTS

THE AMERICAS

UNITED STATES

VISHAY AMERICAS
ONE GREENWICH PLACE
SHELTON, CT 06484
UNITED STATES
PH: +1-402-563-6866
FAX: +1-402-563-6296

ASIA

SINGAPORE

VISHAY INTERTECHNOLOGY ASIA PTE LTD.
37A TAMPINES STREET 92 #07-00
SINGAPORE 528886
PH: +65-6788-6668
FAX: +65-6788-0988

P.R. CHINA

VISHAY CHINA CO., LTD.
15D, SUN TONG INFOPORT PLAZA
55 HUAI HAI WEST ROAD
SHANGHAI 200030
P.R. CHINA
PH: +86-21-22315555
FAX: +86-21-22315551

JAPAN

VISHAY JAPAN CO., LTD.
SHIBUYA PRESTIGE BLDG. 4F
3-12-22, SHIBUYA
SHIBUYA-KU
TOKYO 150-0002
JAPAN
PH: +81-3-5466-7150
FAX: +81-3-5466-7160

EUROPE

GERMANY

VISHAY ELECTRONIC GMBH
DR.-FELIX-ZANDMAN-PLATZ 1
95100 SELB
GERMANY
PH: +49-9287-71-0
FAX: +49-9287-70435

FRANCE

VISHAY S.A.
199, BD DE LA MADELEINE
06003 NICE, CEDEX 1
FRANCE
PH: +33-4-9337-2727
FAX: +33-4-9337-2726

UNITED KINGDOM

VISHAY LTD.
SUITE 6C, TOWER HOUSE
ST. CATHERINE'S COURT
SUNDERLAND ENTERPRISE PARK
SUNDERLAND SR5 3XJ
UNITED KINGDOM
PH: +44-191-516-8584
FAX: +44-191-549-9556