

User Guide
BL654 smartBASIC Extensions
Release 29.0.0.3-ALPHA-1

This guide pertains to BL654-specific smartBASIC functions and routines. For information
on functions and routines that apply to all smartBASIC modules, see the smartBASIC Core
Manual.

http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf
http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

2

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

REVISION HISTORY

Version Date Notes Contributor(s) Approver

29.0.0.0 01 Feb 2018 Initial Release Youssif Saeed Jonathan Kaye

© Copyright 2017 Laird. All Rights Reserved. Any information furnished by Laird and its agents is believed to be accurate and reliable. All specifications are
subject to change without notice. Responsibility for the use and application of Laird materials or products rests with the end user since Laird and its agents
cannot be aware of all potential uses. Laird makes no warranties as to non-infringement nor as to the fitness, merchantability, or sustainability of any Laird
materials or products for any specific or general uses. Laird, Laird Technologies, Inc., or any of its affiliates or agents shall not be liable for incidental or
consequential damages of any kind. All Laird products are sold pursuant to the Laird Terms and Conditions of Sale in effect from time to time, a copy of
which will be furnished upon request. When used as a tradename herein, Laird means Laird PLC or one or more subsidiaries of Laird PLC (Laird
Technologies, Inc; Laird Technologies; Laird – Lenexa; Laird – Akron; Laird – Taiwan; Laird – Wooburn; Laird – Taiwan (or Zhubei City); Summit Data
Communications, Inc.; Ezurio, Ltd.; Aerocomm, Inc.). Laird™, Laird Technologies™, corresponding logos, and other marks are trademarks or registered
trademarks of Laird. Other marks may be the property of third parties. Nothing herein provides a license under any Laird or any third party intellectual
property right.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

3

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

CONTENTS
1 Introduction .. 9
2 Module Configuration ... 10
3 Interactive Mode Commands ... 10

 AT I or ATI or ATIX .. 10
AT+CFG .. 11
AT+CFGEX .. 15
AT+BTD * ... 16
AT+BLX .. 16
AT&F .. 17
AT+PROTECT ... 17
AT+EXTSUPPLY .. 18
AT+REGOUT0 .. 18

4 Core Language Built-in Routines ... 18
 Information Routines ... 19
SYSINFO ... 19
SYSINFO$... 22
 UART Interface ... 22
UartOpen .. 22
UartSetRTS .. 23
UartBREAK ... 23
 I2C – Two Wire Interface (TWI) ... 23
 SPI Interface ... 23
 Input/Output Interface Routines ... 23
Events and Messages .. 25
GpioSetFunc .. 25
GpioSetFuncEx .. 27
GpioConfigPwm .. 30
GpioRead ... 32
GpioWrite .. 33
GpioBindEvent/GpioAssignEvent .. 35
GpioUnbindEvent/GpioUnAssignEvent ... 38
 Miscellaneous Routines ... 38
ASSERTBL654... 38
ERASEFILESYSTEM ... 39

5 BLE Extensions Built-in Routines ... 40
 LE Privacy ... 40
BleSetAddressTypeEx .. 40
 Events and Messages ... 42
EVBLE_ADV_TIMEOUT .. 42
EVBLE_CONN_TIMEOUT ... 42
EVBLE_ADV_REPORT ... 43
EVBLE_FAST_PAGED ... 43
EVBLE_SCAN_TIMEOUT .. 43
EVBLEMSG ... 43
EVDISCON .. 46
EVCHARVAL ... 47
EVCHARVALUE .. 47
EVCHARHVC .. 49
EVCHARCCCD .. 50
EVCHARSCCD ... 53
EVCHARDESC ... 57

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

4

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EVAUTHVAL ... 60
EVAUTHVALEX ... 60
EVAUTHCCCD .. 63
EVAUTHSCCD .. 65
EVAUTHDESC ... 67
EVVSPRX .. 69
EVVSPTXEMPTY ... 69
EVCONNRSSI ... 69
EVNOTIFYBUF .. 70
EVCONNPARAMREQ ... 73
 Miscellaneous Functions ... 75
BleTxPowerSet .. 75
BleTxPwrWhilePairing ... 76
BleConfigDcDc ... 78
BleConfigHfClock ... 78
 Advertising Functions .. 78
BleAdvertStart ... 79
BleAdvertStop ... 81
BleAdvertConfig .. 82
BleAdvRptInit .. 83
BleScanRptInit ... 84
BleAdvRptGetSpace .. 84
BleAdvRptAddUuid16 ... 85
BleAdvRptAddUuid128 ... 86
BleAdvRptAppendAD .. 87
BleAdvRptsCommit ... 88
 Scanning Functions .. 89
BleScanStart .. 89
BleScanAbort ... 91
BleScanStop .. 92
BleScanFlush ... 93
BleScanConfig .. 95
BleScanGetAdvReport ... 96
BleScanGetAdvReportEx ... 99
BleGetADbyIndex .. 100
BleGetADbyTag ... 102
BleScanGetPagerAddr ... 104
 Connection Functions .. 105
Events and Messages .. 105
BleConnect .. 106
BleConnectCancel ... 108
BleConnectConfig .. 110
BleDisconnect ... 112
BleSetCurConnParms .. 113
BleGetCurConnParms ... 116
BleConnMngrUpdCfg .. 116
BleGetConnHandleFromAddr ... 117
BleGetAddrFromConnHandle ... 119
BleConnRssiStart ... 121
BleConnRssiStop ... 123
 Whitelist Management Functions ... 123
BleWhitelistCreate .. 123
BleWhitelistDestroy .. 126

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

5

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleWhitelistClear .. 127
BleWhitelistSetFilter ... 127
BleWhitelistAddAddr .. 128
BleWhitelistAddIndex ... 128
BleWhitelistInfo .. 129
 GATT Server Functions ... 129
Events and Messages .. 136
BleGapSvcInit .. 136
BleGetDeviceName$... 138
BleSvcRegDevInfo ... 138
BleHandleUuid16 .. 140
BleHandleUuid128 .. 141
BleHandleUuidSibling .. 142
BleServiceNew .. 143
BleServiceCommit ... 145
BleSvcAddIncludeSvc .. 145
BleAttrMetadataEx.. 147
BleCharNew .. 150
BleCharDescUserDesc ... 152
BleCharDescPrstnFrmt .. 153
BleCharDescAdd .. 155
BleCharCommit ... 157
BleCharValueRead ... 159
BleCharValueWrite .. 161
BleCharValueWriteEx .. 162
BleCharValueNotify ... 163
BleCharValueIndicate .. 165
BleCharDescRead .. 167
BleAuthorizeChar .. 169
BleAuthorizeDesc .. 170
BleServiceChangedNtfy ... 171
 GATT Client Functions .. 171
Events and Messages .. 173

EVGATTCTOUT ... 173

EVDISCPRIMSVC ... 174

EVDISCCHAR .. 175

EVDISCDESC ... 175

EVFINDCHAR .. 176

EVFINDDESC ... 176

EVATTRREAD .. 177

EVATTRWRITE .. 177

EVNOTIFYBUF .. 178

EVATTRNOTIFY ... 178

EVATTRNOTIFYEX ... 178

BleGattcOpen .. 179
BleGattcClose .. 180
BleDiscServiceFirst / BleDiscServiceNext .. 180
BleDiscCharFirst / BleDiscCharNext .. 184
BleDiscDescFirst /BleDiscDescNext ... 189
BleGattcFindChar .. 193
BleGattcFindDesc .. 198

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

6

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGattcRead/BleGattcReadData ... 202
BleGattcWrite ... 206
BleGattcWriteCmd .. 210
BleGattcWritePrepare ... 213
BleGattcWriteExecute ... 214
BleGattcNotifyRead ... 214

 Attribute Encoding Functions ... 218
BleEncode8 ... 218
BleEncode16 ... 219
BleEncode24 ... 220
BleEncode32 ... 221
BleEncodeFLOAT ... 222
BleEncodeSFLOATEX ... 223
BleEncodeSFLOAT ... 224
BleEncodeTIMESTAMP .. 226
BleEncodeSTRING ... 227
BleEncodeBITS ... 228

 Attribute Decoding Functions .. 229
BleDecodeS8 ... 229
BleDecodeU8 .. 230
BleDecodeS16 ... 232
BleDecodeU16 .. 233
BleDecodeS24 ... 234
BleDecodeU24 .. 236
BleDecode32 ... 237
BleDecodeFLOAT ... 238
BleDecodeSFLOAT ... 240
BleDecodeTIMESTAMP ... 241
BleDecodeSTRING ... 242
BleDecodeBITS .. 243

 Bonding and Bonding Database Functions ... 245
Bonding Functions... 245
Bonding Table Types: Rolling & Persist ... 245
Whisper Mode Pairing .. 246
BleBondingStats .. 247
BleBondingPersistKey ... 247
BleBondingIsTrusted ... 248
BleBondingEraseKey ... 249
BleBondingEraseAll ... 250
BleBondMngrGetInfo .. 251

 Security Manager Functions ... 252
Events and Messages .. 252

EVBLEMSG 252

EVLESCKEYPRESS .. 252

EVBLE_PASSKEY ... 253

BleSecMngrLescPairingPref... 254
BlePair ... 255
BleSecMngrIoCap .. 258
BleAcceptPairing ... 259
BleSecMngrPasskey .. 260
BleSecMngrLescKeypressEnable ... 262
BleSecMngrLescKeypressNotify .. 262

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

7

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleSecMngrOOBKey .. 264
BleSecMngrLescOwnOobDataGet .. 266
BleSecMngrLescPeerOobDataSet ... 267
BleSecMngrKeySizes ... 269
BleSecMngrBondReq .. 270
BleEncryptConnection ... 270

 Virtual Serial Port Service – Managed .. 273
VSP Configuration ... 275
Command and Bridge Mode Operation .. 280
VSP (Virtual Serial Port) Events ... 282
BleVSpOpen .. 283
BleVSpOpenEx ... 285
BleVSpClose .. 287
BleVSpInfo ... 289
BleVSpWrite .. 290
BleVSpRead ... 291
BleVSpUartBridge .. 294
BleVSpFlush ... 296

 Data Packet Length Extension .. 298
Overview ... 298

Data Packet Length Extension ... 298

ATT_MTU 299

CFG Keys Configuration ... 299
Maximum ATT_MTU .. 299

Maximum Attribute Data Length ... 300

Maximum Packet Length ... 300

Events and Messages .. 300
EVATTRIBUTEMTU ... 300

EVPACKETLENGTH ... 301

BleGattcAttributeMtuRequest .. 301
BleMaxPacketLengthSet ... 303
BleMaxPacketLengthGet ... 303

 LE Ping .. 304
Overview ... 304
Events and Messages .. 304

EVBLE_PING_AUTH_TIMEOUT .. 304

BlePingAuthTimeout ... 304
 LE 2M PHY .. 306

Events and Messages .. 306
EVBLE_PHY_REQUEST .. 306

EVBLE_PHY_UPDATED ... 306

BlePhySet .. 307
6 Other Extension Built-in Routines ... 309

 Near Field Communications (NFC) ... 309
Overview ... 309
NDEF Messages ... 310
Arduino Based NFC Reader ... 311
Sample Application 1 .. 311
Sample Application 2 .. 314
Wake-On-NFC ... 318
Events and Messages .. 319

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

8

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

NfcHardwareState ... 319
NfcOpen .. 320
NfcClose .. 321
NfcFieldSense .. 321
NfcNdefMsgNew ... 322
NfcNdefMsgDelete .. 323
NfcNdefMsgGetInfo .. 323
NfcNdefMsgReset ... 324
NfcNdefRecAddLeOob .. 325
NfcNdefRecAddGeneric .. 327
NfcNdefMsgCommit ... 328
 System Configuration Routines ... 329
SystemStateSet ... 329
 Flash Routines .. 329
Overview ... 329
FlashOpen ... 330
FlashRead .. 330
FlashWrite ... 331
FlashErase ... 332
FlashClose ... 332
 Cryptographic Routines ... 333
EccGeneratePubPrvKeys ... 333
EccCalcSharedSecret ... 333
EccHmacSha256 .. 335
 Miscellaneous Routines ... 336
ReadPwrSupplyMv .. 336
SetPwrSupplyThreshMv .. 336

Events & Messages .. 337

7 Events and Messages .. 338
8 Miscellaneous ... 339

 Bluetooth Result Codes ... 339
9 Acknowledgements ... 341

 AES Encryption ... 341
License Terms .. 341
Disclaimer.. 341
 Micro-ECC .. 341
License Terms .. 341
Disclaimer.. 342

10 INDEX ... 343

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

9

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1 INTRODUCTION

This user guide provides detailed information on BL654-specific smartBASIC extensions which provide a high-
level managed interface to the underlying Bluetooth stack in order to manage the following:

▪ Perform GAP functionality such as scanning, advertising and connections
▪ Perform GATT server functionality
▪ Perform GATT client functionality
▪ Perform pairing, bonding, and security manager functions
▪ Manage Tx power functionality
▪ Attribute encoding and decoding
▪ Perform NFC related functionality
▪ Events related to the above

 What Does a BLE Module Contain?

Our smart BASIC-based BLE modules are designed to provide a complete wireless processing solution. Each one
contains:

▪ A highly integrated radio with an integrated antenna (external antenna options are also available)
▪ BLE Physical and Link layer
▪ Higher level stack
▪ Multiple SIO and ADC
▪ Wired communication interfaces such as UART, I2C, and SPI
▪ A smart BASIC run-time engine
▪ Program accessible flash memory, which contains a robust flash file system exposing a conventional file

system and a database for storing user configuration data

For simple end devices, these modules can completely replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BLE smartBASIC module from a hardware
perspective on the left and a firmware/software perspective on the right.

Figure 1: Bluetooth smartBASIC module block diagram

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

10

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

2 MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate to interactive
mode operation or alter the behaviour of the smartBASIC runtime engine. These configuration objects are
stored in non-volatile flash and are retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in interactive
mode and the command AT+CFG must be used. To read current values of these objects use the command
AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

3 INTERACTIVE MODE COMMANDS

Below are some BL654-specific AT commands.

 AT I or ATI or ATIX

COMMAND

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules.

Note ‘ATIX’ will result in any integer values being displayed in hexadecimal.

AT I num

Returns \n10\tMM\tInformation\r
\n00\r

Where

\n = linefeed character 0x0A
\t = horizontal tab character 0x09
MM = a number (see below)
Information = string consisting of information requested associated with MM
\r = carriage return character 0x0D

Arguments

num Integer Constant
A number in the range of 0 to 65,535. Currently defined numbers are:

0 Device Name

1 BLE Stack Build Number

3 Version number of module firmware

4 Bluetooth Address

5 Chipset ID

6 File System Flash Segment Statistics

14 Static Random BLE address

16 NvRecords Flash Segment Statistics

24 If AT+MAC used to set IEEE address, then that mac address

26 BLE Bonding database segment

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

11

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

33 smartBASIC core version number

36 Config Keys Flash Serment Statistics

44 Current random BLE address

2080 Module startup time

2081
Get time in milliseconds since reset (will overflow as 32 bit
counter)

2083

Get High Voltage Mode as follows:-

0: Normal mode

1: High Voltage Mode

7001 Toolchain used to build firmware

0xC0FE Displays the licence

0xC12C CRC of most recent file downloaded since reset - volatile

Interactive
Command

Yes

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

‘Example:

AT i 3

10 3 28.6.1.2

00

AT I 4

10 4 01 D31A920731B0

AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are comparable to S registers
in modems. Their values are kept over a power cycle but are deleted if the AT&F* command is used to
clear the file system.

Unless otherwise stated, if a config key value is changed then a reset is required for it to take effect.

The “num value” syntax is used to set a new value and the “num ?” syntax is used to query the current
value. When the value is read the syntax of the response is:

27 0xhhhhhhhh (dddd)

…where 0xhhhhhhhh is an eight hexdigit number which is 0 padded at the left and dddd is the decimal
signed value.

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

num
Integer Constant
The ID of the required configuration key. All of the configuration keys are stored as an array of
16-bit words.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

12

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

value
Integer_constant
This is the new value for the configuration key and the syntax allows decimal, octal, hexadecimal,
or binary values.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

ID Definition

40 Maximum size of local simple variables

41 Maximum size of local complex variables

42 Maximum depth of nested user-defined functions and subroutines

43 The size of stack for storing user functions’ simple variables

44 The size of stack for storing user functions’ complex variables

45 The size of the message argument queue length

100 Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are:

0x0000 Disable

0x0001 Enable

0x81nn Enable ONLY if Signal Pin nn on module is HIGH

0xC1nn Enable ONLY if Signal Pin nn on module is LOW

ELSE Disable

101 In Virtual Serial Port Service, select either to use INDICATE or NOTIFY to send data to client.

0 Prefer Notify

ELSE Prefer Indicate

This is a preference and the actual value is forced by the property of the TX characteristic of the
service.

102 Advert interval in milliseconds when advertising for connections in interactive mode and AT Parse
mode.

Valid values: 20 to 10240 milliseconds

103 Advert timeout in milliseconds when advertising for connections in interactive mode and AT Parse
mode.

Valid values: 1 to 16383 seconds

104 Data transfer is managed in the Virtual Serial Port service manager.

When sending data using NOTIFIES, the underlying stack uses transmission buffers of which there is a
finite number. This specifies the number of transmissons to leave unused when sending a lot of data
and allows other services to send notifies without having to wait for them.
The total number of transmission buffers can be determined by calling SYSINFO(2014) or in
interactive mode submitting the command ATi 2014

105 When in interactive mode and connected for virtual serial port services, this is the minimum
connection interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms.

If a value of less than 8 is specified, then the minimum value of 7.5 is selected.

106 When in interactive mode and connected for virtual serial port services, this is the maximum
connection interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

13

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ID Definition

Note: If a value of less the minimum specified in 105, then it is forced to the value in
105 plus 2 milliseconds.

107 When in interactive mode and connected for virtual serial port services, this is the connection
supervision timeout in milliseconds to be negotiated with the master.

Valid range: 0 to 32000.

Note: If the value is less than the value in 106, then a value double the one in 106 is used.

108 When in interactive mode and connected for virtual serial port services, this is the slave latency to be
negotiated with the master. An adjusted value is used if this value times the value in 106 is greater
than the supervision timeout in 107

109 When in interactive mode and connected for virtual serial port services, this is the Tx power used for
adverts and connections. The main reason for setting a low value is to ensure that in production, if
smart BASIC applications are downloaded over the air, limited range allows many stations to be used
to program devices.

110 If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the
transmit ring buffer in the managed layer sitting above the service characteristic FIFO register.

Valid range: 32 to 256

111 If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the
receive ring buffer in the managed layer sitting above the service characteristic fifo register.

Valid range: 32 to 256

112 If set to 1, then the service UUID for the virtual serial port is as per Nordic’s implementation and any
other value is per Laird’s modified service.
See more details of the service definition here.

VSP can also be configured using a $autorun$ application which does not have a waitevent
statement so will exit as soon as the VSP is configured.

113 This is the advert interval in milliseconds when advertising for connections in interactive mode and
UART bridge mode.

VSP can also be configured using a $autorun$ application which does not have a waitevent
statement so will exit as soon as the VSP is configured.

Valid values: 0 to 16383 seconds, where 0 means forever.

114 This is the advert timeout in milliseconds when advertising for connections in interactive mode and
UART bridge mode.

VSP can also be configured using a $autorun$ application which does not have a waitevent
statement so will exit as soon as the VSP is configured.

Valid values: 0 to 16383 seconds. 0 disables the timer (makes it continuous)

115 This is used to specify the UART baudrate when Virtual Serial Mode Service is active and UART bridge
mode is enabled.

VSP can also be configured using a $autorun$ application which does not have a waitevent
statement so will exit as soon as the VSP is configured.

Valid values: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
230400, 250000, 460800, 921600, 1000000.

Note: If an invalid value is entered, then the default value of 9600 is used.

116 In VSP/UART bridge mode, this value specifies the latency in milliseconds for data arriving via the
UART and transfering to VSP and then onward on-air. This mechanism ensures that the underlying
bridging algorithm waits for up to this amount of time before deciding that no more data is going to
arrive to fill a BLE packet and so flushes the data onwards.

Note: Given that the largest packet size takes 20 bytes, if more than 20 bytes arrive then the

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

14

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ID Definition

latency timer is overridden and the data is immediately sent.

200 Maximum number of 128-bit, Vendor Specific UUID bases to allocate

204 Gatt Table : Attribute table size in bytes. The size must be a multiple of 4

205 Max number of connections acting as a peripheral (Can be up to 1)

206 Max number of connections acting as a central (Can be up to 8)

Note: In order to configure the device to be able to have 8 connections as central, CFG 205
should be set to 0, otherwise the device will auto-adjust to have 7 connections as
central and 1 as peripheral.

207 Max number of SMP instances for all connections acting as a central. It is recommended that this is
left to 1 as the stack will reserve memory for its use which will only be used occasionally

208 Include the Service Changed characteristic in the Attribute Table (default is included)

209 Security manager is placed in debug mode to use the SIG defined debug key for LE Secure
Connections pairing

210 Low Frequency Clock Configuration

The BL654 module does not have an onboard 32.768Khz low frequency crystal and that clock is
derived from an RC oscillator which is calibrated against the high frequency 32MHz crystal on a
periodic basis. However the user has access to the relevant pins (SIO0 and SIO1) to fit the 32K crystal
externally.

This register is used to configure the LF clock source to be either one or the other or even for
autodetection.

Note: Autodetection means there is a startup delay from reset of up to half a second as
opposed to about 1 to 2 milliseconds. This should be factored into any battery life
calculations.

This configuration register is a bitmask consisting of :

~~~ ~~~  ~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Bits    Len  Description 

~~~ ~~~  ~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0..7 (8) Calibration Time Interval in 1/4 second units

8..15 (8) How often (in number of calibration intervals) the RC oscillator shall be calibrated

 if the temperature hasn't changed.

16..26 (10) Crystal accuracy in ppm (0..1024ppm)

27..29 (3) Reserved for future use (set to 0)

30..31 (2) LF Clock Source : 00 - Autodetect

 01 - RC Oscillator with Calibration against HF Clock

 10 - Crystal

 11 - Synthesized from HF Clock (Very power inefficient)

Note: If bits 30-31 is ‘10’ then bits 0-15 are ignored and likewise if 30-31 is ‘01’ then bits 16..26 are
ignored.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

15

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ID Definition

The command AT I 2082 or from an application SYSINFO(2082) will return the actual parameters
installed at the instance. So for example if autodection is specified (bits 31..31 == 00) then the value
returned will be one of 01, 10 or 11. And similarly for the other parameters, if invalid values where
entered.

211 Maximum ATT_MTU size. Possible values are 23 – 247 Bytes.

212 Maximum Attribute data length. Possible values are 20 – 244 Bytes.

213 Use EVCHARVALUE and EVATTRNOTIFYEX instead of the default EVCHARVAL and EVATTRNOTIFY
respectively. These former events include all parameters in the event, including the string data, and
therefore provide improved throughputs. For more information, see EVCHARVALUE and
EVATTRNOTIFYEX.

214 0: Medium bandwidth (3 packets per connection interval) is used on all connections.

1: High bandwidth (6 packets per connection interval) is used on the FIRST connection. Other
connections will have medium bandwidth.

Note: when high bandwidth is used, the maximum number of connections that a device can have are
reduced from 8 to 6.

518 The default Uart TX ring buffer length

519 The default Uart RX ring buffer length

520 The baudrate to use for command mode on power up. This setting will be inherited by the $autorun$
application if a print happens before an explicit uartopen inside that application.

Note: These values revert to factory default values if the flash file system is deleted using the
AT & F * interactive command.

AT+CFGEX

COMMAND

AT+CFGEX is used to set a non-volatile string configuration key. Configuration keys are comparable to S
registers in modems. Their values are kept over a power cycle but are deleted if the AT&F* command is
used to clear the file system.

Unless otherwise stated, if a config key value is changed then a reset is required for it to take effect.

The “num value” syntax is used to set a new value and the “num ?” syntax is used to query the current
value. When the value is read the syntax of the response is:

27 string

…where string is the current value of the configuration key.

AT+CFGEX num value or AT+CFGEX num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

num
Integer Constant
The ID of the required configuration key. All of the configuration keys are stored as an array of
16-bit words.

value
String_constant
This is the new string value for the configuration key.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

16

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

ID Definition

117 VSP advertisement name, the name of the device which will be seen by scanning devices when the
module is in VSP mode (can be between 1-31 bytes in length).

Default value is: LAIRD BL654

Note: These values revert to factory default values if the flash file system is deleted using the
AT & F * interactive command.

AT+BTD *

COMMAND

Deletes the bonded device database from the flash.

AT+BTD*

Returns \n00\r

Arguments None

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

Example:

AT+BTD*

AT+BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is
particularly useful when the virtual serial port is enabled while in interactive mode.

AT+BLX

Returns \n00\r

Arguments: None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Example

AT+BLX

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

17

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

AT&F

COMMAND

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if flash is successfully erased

Arguments

Integermask Integer corresponding to a bit mask or the * character

The mask is an additive integer mask with the following acceptable values:

0x0000xxxx Also see core user guide

1 Erases Flash File System

0x100 Erase the System Config keys Flash segment (AT+CFG)

0x10000 Erase the BLE Bonding Manager

0x10 or
0x40000

Erase the NvRecords Flash Segment

* Erases all data segments

Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory default state by
erasing all flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

AT&F 1 ‘delete the file system

AT&F 16 ‘delete the user config keys

AT&F * ‘delete all data segments

AT+PROTECT

COMMAND

This command is used to enable readback protection of the flash. For this command to be issued correctly, the
readback protection flag should first be enabled using ‘AT+PROTECT “E”’ followed by setting the protection
using ‘AT+PROTECT “S”’.

WARNING: Enabling readback protection is a one time only command. Exiting this mode would completely
erase the firmware and would require the use of an nrfjprog command to be issued through the
JTAG interface. Once erased, a new license for the module will be needed. While this mode is
enabled, firmware upgrade can only be carried out over UART. DO NOT enable readback
protection unless absolutely necessary.

Notes: To make note of the license, keep a copy of the response to the command AT I 14 and AT I
0xC0FE

AT+PROTECT “Char”

Returns 00 for successful execution.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

18

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments:

“Char”

A character which could be one of the following values:-

E – Enable the readback protection flag.

D – Disable the readback protection flag.

S – Set readback protection on the module. This is an irreversible command.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

AT+EXTSUPPLY

COMMAND

This command is used to enable external circuitry to be supplied from VDD pin. This is applicable in high voltage
mode only. The amount to be supplied is determined throught the REGOUT0 UICR value which can be set using
the 'at+regout0' command.

AT+EXTSUPPLY nValue

Returns 00 for successful execution.

Arguments:

nValue
0: Disable: No current can be drawn from the VDD pin

1: Enable: It is allowed to supply external circuitry from the VDD pin

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

AT+REGOUT0

COMMAND

This command is used to set the external output/supply voltage in high voltage mode. This command must be
preceeded by an 'at+extsupply 1' command to ensure that the external supply is enabled.

AT+REGOUT0 nValue

Returns 00 for successful execution.

Arguments:

nValue

0: 1.8v

1: 2.1v

2: 2.4v

3: 2.7v

4: 3.0v

5: 3.3v

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

4 CORE LANGUAGE BUILT-IN ROUTINES

Core language built-in routines are present in every implementation of smartBASIC. These routines provide the
basic programming functionality. They are augmented with target-specific routines for different platforms which
are described in the extension manual for each target platform.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

19

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

All the core functionality is described in the document smartBASIC Core Functionality. Additional information is
also available from our Laird Embedded Wireless Solutions Support Center at http://ews-support.lairdtech.com.

Some functions have small behavioral differences from the core functionality; these are listed below.

 Information Routines

SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO (varId)

Returns INTEGER. Value of information corresponding to integer ID requested.

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments:

varId

byVal varId AS INTEGER
An integer ID which is used to determine which information is to be returned as described
below.

0 Device ID. Each platform type has a unique identifier.

3

Module firmware version number
Example:
W.X.Y.Z is returned as a 32-bit value made up as follows:
(W<<24) + (X<<18) + (Y<<6) + (Z)
where W is the platform and will always be 28 for the BL654 and X is changed
whenever 3rd party libraries are changed. In this case the Nordic Softdevice and Y is
the build number and Z is the sub-build number.
Note you can check the Softdevice build number in command mode by submitting
the command AT I 1

33

BASIC core version number
Example:
A.B is returned as a 32 bit value made up as follows:
(A<<8) + (B)
and note the string “A.B” is returned via command mode command AT I 33

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32 bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist

1002 Minimum baudrate

1003 Maximum baudrate

http://ews-support.lairdtech.com/
http://www.lairdtech.com/brandworld/library/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf
http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

20

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1004 Maximum STRING size

1005 Is 1 for run-time only implementation, 3 for compiler included

1010 Module Type

2000

Reset Reason

▪ 8 : Self-Reset due to Flash Erase
▪ 9 : ATZ
▪ 10 : Self-Reset due to smart BASIC app invoking function RESET()

2001

Cause of last reset. This is a bit mask where the bits are defined as follows:

Bit 0: Reset from pin-reset
Bit 1: Reset from watchdog
Bit 2: Reset from soft reset
Bit 3: Reset from CPU lockup
Bit 16: Reset due to wake up from System OFF mode when wakeup is triggered
from GPIO
Bit 19: Reset due to wake up from System OFF mode by NFC field detect

2002 Timer resolution in microseconds

2003 Number of timers available in a smart BASIC Application

2004 Tick timer resolution in microseconds

2005 LMP Version number for BT 4.0 spec

2006 LMP Sub Version number

2007 Chipset Company ID allocated by BT SIG

2008 Returns the current TX power setting (see also 2018)

2009 Number of devices in trusted device database

2010 Number of devices in trusted device database with IRK

2011 Number of devices in trusted device database with CSRK

2012 Max number of devices that can be stored in trusted device database

2013 Maximum length of a GATT Table attribute in this implementation

2016

Radio activity of the baseband and the BT allocation is as follows:-

▪ 0 : advertising
▪ 1 : connected as slave
▪ 2 : Initiating a connection
▪ 3 : scanning for adverts
▪ 4 : connected as master

2018 Returns the TX power while pairing in progress (see also 2008)

2021 Stack tide mark in percent. Values near 100 are not good.

2022 Stack size

2023 Initial Heap size

2024 The chipset temperature in tenth of a centigrade. E.g. 23.4 will be returned as 234

2025

Current free heap memory. Note this is the total of all free blocks and so it is
entirely possible to get a MALLOC_FAIL even though this indicates there is enough
memory for your need because there may not be a block large enough to
accommodate the request.
Although smartBASIC does not directly expose malloc/free, they are used
extensively in STRING variable operations.

2026 Supply voltage in millivolts

2040 Max number of devices that can be stored in trusted device database

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

21

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: SysInfo.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 PRINT "\nSysInfo 601 = ";SYSINFO(601) // Flash File System: Total Space (Data Segment)

 PRINT "\nSysInfo 2102 = ";SYSINFO(2102) // Default connect slave latency

 PRINT "\nSysInfo 1002 = ";SYSINFO(1002) // Minimum UART baud rate

Expected Output:

SysInfo 601 = 49152

SysInfo 2102 = 0

SysInfo 1002 = 1200

2041 Number of devices in trusted device database

2042 Number of devices in the rolling device database

2043
Maximum number of devices that can be stored in the rolling device
Database

2044 Returns a 16 bit hash of the current state of the Gatt Table Schema

2050 Will be 0 if NFC pins are disabled and 1 if enabled

2051 Maximum number of NDEF messages that can be created simultaneously

2052 Maximum size of an NDEF message in bytes

2080
The startup time from reset to just before the autorun application is launched in
milliseconds

2081 The current tick count in milliseconds

2082
This is a bitmask value
The actual Low Frequency Clock configuration submitted to the softdevice. See
AT+CFG 210 description for details about the 4 bit fields in the 32 bits

2083
Get High Voltage Mode as follows:-

0: Normal mode

1: High Voltage Mode

2100 Connect Scan Interval used when connecting, in milliseconds

2101 Connect Scan Window used when connecting, in milliseconds

2102 Connect Slave Latency default value in connection requests

2105 Connect Multi-Link Connection Interval periodicity in milliseconds

2150 Scan Interval used when scanning in milliseconds

2151 Scan Window used when scanning in milliseconds

2152 Scan Type Active or Passive (0=Passive, 1=Active)

2203 Advert Channel Mask

0x8000
–

0x87FF

Content of FICR register in the Nordic nrf52840 chipset. In the nrf52840 datasheet,
in the FICR section, all the FICR registers are listed in a table with each register
identified by an offset, so for example, to read the Code memory page size which is
at offset 0x010, call SYSINFO(0x8010) or in interactive mode use AT I 0x8010.

0x9000
-

0x9800

Content of UICR register in the Nordic nrf52 chipset. In the nrf52840 datasheet, in
the UICR section, all the UICR registers are listed in a table with each register
identified by an offset, so for example, to read the NFC pins functionality which is at
offset 0x20C, call SYSINFO(0x920C) or in interactive mode use AT I 0x920C.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

22

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varId argument.

SYSINFO$ (varId)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions ▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described
below.

4
The Bluetooth address of the module.

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public
address. Next six bytes are the address.

14

A random public address unique to this module. May be the same value as in 4 above
unless an IEEE Bluetooth address is set.

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public
address. Next six bytes are the address.

Example:

// Example :: SysInfo$.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 PRINT "\nSysInfo$(4) = ";SYSINFO$(4) // address of module

 PRINT "\nSysInfo$(14) = ";SYSINFO$(14) // public random address

 PRINT "\nSysInfo$(0) = ";SYSINFO$(0)

Expected Output:

SysInfo$(4) = \01\FA\84\D7H\D9\03

SysInfo$(14) = \01\FA\84\D7H\D9\03

SysInfo$(0) =

 UART Interface

UartOpen

FUNCTION

This function is used to open the main default UART peripheral using the parameters specified.

See core manual for further details.

UARTOPEN (baudrate, txbuflen, rxbuflen, stOptions)

stOptions byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character is used to

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

23

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

specify further comms parameters as follows.

Character Offset:

0
DTE/DCE role request:
▪ T – DTE
▪ C – DCE

1

Parity:
▪ N – None
▪ O – Odd (Not Available)
▪ E – Even (Not Available)

2 Databits: 8
3 Stopbits: 1

4

Flow Control:
▪ N – None
▪ H – CTS/RTS hardware
▪ X – Xon/Xof (Not Available)

The following baud rates are supported: 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
230400, 250000, 460800 and 921600 baud.

UartSetRTS

The BL654 module does not offer the capability to control the RTS pin as the underlying hardware does not
allow it.

UartBREAK

The BL654 module does not offer the capability to send a BREAK signal.

 I2C – Two Wire Interface (TWI)

The BL654 can be only be configured as an I2C master if it is the only master on the bus and only 7-bit slave
addressing is supported. See core user guide for API details.

When the I2C interface is opened using I2cOpen(), it takes a frequency parameter for the clock line. Valid values
are 100KHz, 250KHz and 400KHz.

 SPI Interface

The BL654 module can only be configured as a SPI master. See core user guide for API details.

 Input/Output Interface Routines

I/O and interface commands allow access to the physical interface pins and ports of the smartBASIC modules.
Most of these commands are applicable to the entire range of modules. However, some are dependent on the
actual I/O availability of each module.

There are 48 SIO (Special I/O) pins available on the BL654. All of these pins can be configured to provide
additional types of functionality. However, some of the pins have set functionality that should never be
changed.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

24

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: All of the pins can be configured as digital inputs or outputs, therefore these are not listed in the
table below.

Table 1: SIO pin functionality

SIO Functionality

0 XTAL1

1 XTAL2

2 Adc00, Vsp

3 Adc01

4 Adc02

5 UART_RTS/Adc03

6 UART_TX

7 UART_CTS

8 UART_RX

9 NFC1

10 NFC2

11 No alternate functionality

12 SFlashCS (Only when external serial SPI flash is connected, e.g. BL654 Devkit)

13 Autorun

14 SFlashMiso (Only when external serial SPI flash is connected, e.g. BL654 Devkit)

15 No alternate functionality

16 SFlashClock (Only when external serial SPI flash is connected, e.g. BL654 Devkit)

17 No alternate functionality

18 No alternate functionality

19 No alternate functionality

20 SFlashMosi (Only when external serial SPI flash is connected, e.g. BL654 Devkit)

21 Reset (Cannot be used as an SIO pin)

22 No alternative functionality

23 SpiMosi

24 SpiMiso

25 SpiClock

26 I2cData

27 I2cClock

28 Adc04

29 Adc05

30 Adc06

31 Adc07

Notes: Where Autorun or Vsp functionality is required, then that pin can only be used for that function
and cannot be changed.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

25

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Pwm option outputs a fully configurable waveform; Freq option outputs a 50:50 mark space ratio
waveform.

Events and Messages

EVGPIOCHANn Here n is from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-
generate is hardware dependent. For the BL654. N can be 0, 1, 2, or 3.

Use GpioBindEvent() to generate these events. See example for GpioBindEvent().

EVDETECTCHANn Here n is from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-
generate is hardware dependent. For the BL654, N can only be 0.

Use GpioAssignEvent() to generate these events.

GpioSetFunc

FUNCTION

This routine sets the function of the SIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special
I/O pin corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.

The bSubFunc argument defines the configuration of the requested function.

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSigNum byVal nSigNum AS INTEGER.
The signal number as stated in the pinout table of the module.

nFunction byVal nFunction AS INTEGER.

Specifies the configuration of the SIO pin as follows:

1 = DIGITAL_IN

2 = DIGITAL_OUT

3 = ANALOG_IN

nSubFunc byVal nSubFunc INTEGER

Configures the pin as follows:

If nFunction == DIGITAL_IN

Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors

Bits 4, 5

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

26

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode

Bits 8..31

Must be 0s

If nFuncType == DIGITAL_OUT

Values:

0 Initial output to LOW

1 Initial output to HIGH

2
Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for
more configuration. The duty cycle is set using function GpioWrite().

3
Output is FREQUENCY. The frequency is set using function GpioWrite() where 0
switches off the output; any value in range 1..4000000 generates an output signal with
50% duty cycle with that frequency.

Bits 4..6 (output drive capacity)

0 0 = Standard; 1 = Standard

1 0 = High; 1 = Standard

2 0 = Standard; 1 = High

3 0 = High; 1 = High

4 0 = Disconnect; 1 = Standard

5 0 = Disconnect; 1 = High

6 0 = Standard; 1 = Disconnect

7 0 = High; 1 = Disconnect

If nFuncType == ANALOG_IN

0 := Use Default for system.

0 Use the system default: 10-bit ADC, 1/6 scaling

0x16 10-bit ADC, 1/6 scaling

0x15 10-bit ADC, 1/5 scaling

0x14 10-bit ADC, 1/4 scaling

0x13 10-bit ADC, 1/3 scaling

0x12 10-bit ADC, 1/2 scaling

0x11 10-bit ADC, 1/1 scaling (Unity)

0x21 10-bit ADC, 2/1 scaling

0x41 10-bit ADC, 4/1 scaling

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example:

// Example :: GpioSetFunc.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

PRINT GpioSetFunc(15,1,2) //Digital In SIO 15, strong pull up resistor

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

27

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

PRINT GpioSetFunc(3,3,0) //Analog In SIO 3 (Temperature Sensor), default settings

PRINT GpioSetFunc(17,2,1) //SIO17 (LED0) digital out, initial output high

Expected Output:

000

GpioSetFuncEx

FUNCTION

This routine sets the function of the SIO pin identified by the nSigNum argument and provides for more
enhanced configurability compared to the legacy function GpioSetFunc().

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special
I/O pin corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.

The bSubFunc argument defines the configuration of the requested function.

GPIOSETFUNCEX (nSigNum, nFunction, subFunc$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSigNum
byVal nSigNum AS INTEGER.
The signal number as stated in the pinout table of the module.

nFunction

byVal nFunction AS INTEGER.
Specifies the configuration of the SIO pin as follows:
1 = DIGITAL_IN

2 = DIGITAL_OUT

3 = ANALOG_IN

subFunc$

byVal nSubFunc$ INTEGER

If nFunction == DIGITAL_IN

subFunc$ will be a string that has the following form:- “\Digital_In_Bitmask”, where
Digital_In_Bitmask bits can be as follows:-

Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors

Bits 4, 5

0x10 When in deep sleep mode, awake when this pin is LOW

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

28

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode

Bits 8..31

Must be 0s

If nFuncType == DIGITAL_OUT

subFunc$ will be a string that has the following form:- “\Digital_Out”, where Digital_Out
consists of the following:-

Bits 0-3: Values

Bits 4-6: Drive Capacity (Only for LOW and HIGH configuration. For PWM and FREQUENCY this is
always set to 0=Standard; 1=Standard)

Values:

0 Initial output to LOW

1 Initial output to HIGH

2
Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for
more configuration. The duty cycle is set using function GpioWrite().

3
Output is FREQUENCY. The frequency is set using function GpioWrite() where 0
switches off the output; any value in range 1..4000000 generates an output signal
with 50% duty cycle with that frequency.

Bits 4..6 (output drive capacity)

0 0 = Standard; 1 = Standard

1 0 = High; 1 = Standard

2 0 = Standard; 1 = High

3 0 = High; 1 = High

4 0 = Disconnect; 1 = Standard

5 0 = Disconnect; 1 = High

6 0 = Standard; 1 = Disconnect

7 0 = High; 1 = Disconnect

If nFuncType == ANALOG_IN

The reference voltage for the analog to digital converter is 0.6 volts.

subFunc$ will be a string that has the following form:-
“\Gain_hex\Resolution_hex\Acquisition_hex”

If the string is empty, then default values will be used. Otherwise, the values can be as follows:-

Gain_hex

0 Use the system default: 10-bit ADC, 1/6 scaling

0x16 1/6 scaling

0x15 1/5 scaling

0x14 1/4 scaling

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

29

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x13 1/3 scaling

0x12 1/2 scaling

0x11 1/1 scaling (Unity)

0x21 2/1 scaling

0x41 4/1 scaling

For example, if you have a maximum analog voltage of 1.7 volts, then select a gain of 1/3 so that
the maximum voltage into the convertor will be 1.7 * 1/3 = 0.57 which means it will not be
bigger than the reference voltage of 0.6v and it will be specified in subFunc$ so that the first
byte in the string is “\13”

Resolution_hex

0 Use the system default: 10-bit ADC

0x08 8-bit ADC resolution

0x0A 10-bit ADC resolution

0x0C 12-bit ADC resolution

Acquisition_hex

0 Use the system default: 10 microseconds

0x03 3 microseconds

0x05 5 microseconds

0x0A 10 microseconds

0x0F 15 microseconds

0x14 20 microseconds

0x28 40 microseconds

Any other value results in this function being rejected.

For example, selecting 1/5th scaling, 12 bit resolution and acquisition time of 20 microseconds
requires that the variable subFunc$ be initialised as “\15\0C\14”

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example:

// Example :: GpioSetFuncEx.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//Digital In SIO 15, strong pull up resistor

PRINT GpioSetFuncEx(15,1,"\02")

//Analog In SIO 3 (Temperature Sensor), default settings

PRINT GpioSetFuncEx(3,3,"")

//Analog In SIO 23, 1/6 scaling, 12-bit resolution, 3us acquisition time

PRINT GpioSetFuncEx(23,3,"\16\0C\03")

//SIO17 (LED0) digital out, initial output high

PRINT GpioSetFuncEx(17,2,"\01")

//SIO26 digital out, PWM

PRINT GpioSetFuncEx(26,2,"\02")

http://ews-support.lairdtech.com/
https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

30

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

00000

GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM
output using GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. It is advised
that this is called once at the beginning of your application and not changed again within the
application unless all PWM outputs are deconfigured and then re-enabled after this function is
called.

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1 MHz clock source.

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function and is defined
by the nMaxResolution parameter. For a given nMaxResolution value, given that the timer is clocked using a 1
MHz source, the frequency of the generated signal is 1000000 divided by nMaxResolution. Hence if nMinFreqHz
is more than the 1000000/nMaxResolution, this function will fail with a non-zero value.

The nMaxResolution can also be viewed as defining the resolution of the PWM output in the sense that the duty
cycle can be varied from 0 to nMaxResolution. The duty cycle of the PWM signal is modified using the
GpioWrite() command.

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a frequency of 2Khz
etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nMinFreqHz
byRef nMinFreqHz AS INTEGER.
The nominal frequency of the waveform.

nMaxResolution
byVal nMaxResolution AS INTEGER.
Set to same value as nMinFreqHz.

Example:

// Example :: GpioConfigPwm.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim retval

dim i

dim nFreq

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

31

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

dim nResolution

dim res[5] as integer

FUNCTION HandlerTimer1()

 dim TmpVal

 i=i+1

 if i==5 then

 i=0

 endif

 TmpVal = (res[i]*100/nFreq)

 PRINT "\nTimer event! PWM changed to "; TmpVal; "% duty cycle."

 GpioWrite(13,res[i])

ENDFUNC 1

i=0

nFreq=2048

nResolution=2048

res[0]=nResolution/2

res[1]=nResolution/4

res[2]=nResolution/8

res[3]=0

res[4]=nResolution

ONEVENT EVTMR1 CALL HandlerTimer1

//Configure PWM

retval = GpioConfigPWM(nFreq,nResolution)

retval = GpioSetFunc(13,2,2)

//Write the first value to the PWM out

GpioWrite(13,res[i])

PRINT "\nTimer started. PWM on 50% duty cycle."

//start a 5000 millisecond (5 second) recurring timer

TimerStart(1,5000,1)

WAITEVENT

Expected Output:

Timer started. PWM on 50% duty cycle.

Timer event! PWM changed to 25% duty cycle.

Timer event! PWM changed to 12% duty cycle.

Timer event! PWM changed to 0% duty cycle.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

32

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Timer event! PWM changed to 100% duty cycle.

GpioRead

FUNCTION

This routine reads the value from a SIO pin.

The module datasheet contains a pinout table which mentions SIO (Special I/O) pins and the number designated
for that SIO pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns INTEGER, the value from the signal.

If the signal number is invalid, then it returns a value of 0.

For digital pins, the value is 0 or 1. For ADC pins it is a value in the range 0 to M where M is the
maximum value based on the bit resolution of the analogue to digital converter.

Arguments:

nSigNum
byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

Refer to the example for GpioBindEvent.

Example:

// Example: GpioRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//This example reads from temperature sensor, for it to work, a jumper needs to be placed

on J6 between SIO_3 and TEMP_SENS

#define GPIO_TEMP_SENS 3

dim rc, adc

//Start timer to read temperature sensor

TimerStart(0,1000,1)

//Remove resistor

rc = GpioSetFunc(GPIO_TEMP_SENS, 1, 2)

//Analogue in

rc = GpioSetFunc(GPIO_TEMP_SENS, 3, 0)

FUNCTION HandlerTimer0()

 //Read the ADC

 adc = GpioRead(GPIO_TEMP_SENS)

 PRINT "\nRaw Temperature Sensor Reading: ";adc

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

33

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ENDFUNC 1

OnEvent EVTMR0 call HandlerTimer0

WAITEVENT

Expected output:

Raw Temperature Sensor Reading: 1943

Raw Temperature Sensor Reading: 1943

GpioWrite

FUNCTION

This function writes a new value to the SIO pin. If the pin number is invalid, nothing happens.

If the SIO pin is configured as a PWM output then the nNewValue specifies a value in the range 0 to N where N is
the nMinFreqHz set in the GpioConfigPwm command. The write value controls the mark space ratio of the
output waveform. A value of 0 outputs a low, a value of nMinFreqHz outputs a high, and a value in varies the
mark space ratio. The higher the value, the longer the mark period.

As with the GpioConfigPwm function the nNewValue is used to calculate a hardware register value. This value
must be less than the register value calculated from the GpioConfigPwm function that is used to set the PWM
output frequency. Again, care must be taken to avoid non integer results or the output waveform will not be
accurate.

As an indication if you divide the PWM output frequency by the value of the register calculated in the
GpioConfigPwm function above, then that result is the minimum nNewValue you can enter to get a mark:space
ratio. Other valid mark:space ratios are provided by integer multiples of this minimum value.

For example with a system frequency of 40 MHz and an output PWM frequency of 5 MHz then the register value
to provide the output frequency will be 8. So the minimum value of nNewValue is 0.625 MHz and the remaining
obtainable values are 4.375, 3.75, 3.125, 2.5, 1.875 and 1.25 MHz. Any other nNewValue entered will round
down to one of these values.

GPIOWRITE (nSigNum, nNewValue)

Returns

Arguments:

nSigNum
byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

nNewValue

byVal nNewValue INTEGER.
The value to be written to the port.
If the pin is configured as digital, then 0 clears the pin and a non-zero value sets it.
If the pin is configured as a PWM then this value sets the duty cycle.
If the pin is configured as a FREQUENCY then this value sets the frequency.

Example:

// Example :: GpioWrite.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

34

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

dim rc, i1, i2

i2 = 1

i1 = 1

//--

// For debugging

// --- rc = result code

// --- ln = line number

//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 endif

EndSub

rc=GpioSetFunc(17,2,1)

AssertRC(rc,20)

rc=GpioSetFunc(19,2,1)

AssertRC(rc,23)

function HandlerTmr0()

 i1=!i1

 GpioWrite(19,i1)

 AssertRC(rc,30)

endfunc 1

function HandlerTmr1()

 i2=!i2

 GpioWrite(17,i2)

 AssertRC(rc,42)

endfunc 1

function HandlerUartRx()

endfunc 0

TimerStart(0,500,1)

TimerStart(1,1000,1)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

35

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

onevent evuartrx call HandlerUartRx

onevent evtmr0 call HandlerTmr0

onevent evtmr1 call HandlerTmr1

print "\n\nPress any key to exit"

waitevent

print "\nExiting..."

Expected Output:

Press any key to exit

Exiting...

GpioBindEvent/GpioAssignEvent

FUNCTION

This routine binds an event to a level transition on a specified SIO line configured as a digital input so that
changes in the input line can invoke a handler in smartBASIC user code.

When this function is called on the BL654, the SIO pin specified by nSigNum is set up as a digital input in the
underlying firmware so GpioSetFunc() does not need to be called beforehand.

If this function is used in your smartBASIC application, we recommend that you unbind all bound events by
calling GpioUnbindEvent() at the end of the application. Likewise for all assigned events, GpioUnassignEvent
should be called.

Note: In the BL654 module an SIO pin can only be bound to one event at a time.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEventNu
m

byVal nEventNum INTEGER.
The SIO event number (in the range of 0 - N) which will result in the event EVGPIOCHANn being
thrown to the smart BASIC runtime engine.

nSigNum
byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

nPolarity

byVal nPolarity INTEGER.

States the transition as follows:

0 Low to high transition

1 High to low transition

2 (GpioBindEvent Only) Either a low to high or high to low transition

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

36

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: Using GpioBindEvent provides the capability to detect any transition. However, it results in slightly
higher power consumption. If power is of importance, GpioAssignEvent() should be used instead as
it uses other resources to expedite an event.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

37

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: GpioBindEvent.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc

function HandlerBtn0()

 dim i : i = GpioRead(11)

 '//if button 0 was pressed

 if i==0 then

 print "\nButton 0 Pressed"

 '//if button 0 was released

 elseif i==1 then

 print "\nButton 0 Released"

 endif

endfunc 1

function HandlerUartRx()

endfunc 0

rc= GpioBindEvent(0,11,2) //Bind event 0 to high or low transition on SIO11 (button

1)

if rc==0 then

 onevent evgpiochan0 call HandlerBtn0 //When event 0 happens, call Btn0Press

 print "\nSIO11 - Button 0 is bound to event 0. Press button 0"

else

 print "\nGpioBindEvent Err: ";integer.h'rc

endif

onevent evuartrx call HandlerUartRx

print "\n\nPress any key to exit"

waitevent

rc=GpioUnbindEvent(0)

if rc==0 then

 print "\n\nEvent 0 unbound\nExiting..."

endif

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

38

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

SIO11 - Button 0 is bound to event 0. Press button 0

Press any key to exit

Button 0 Pressed

Button 0 Released

Button 0 Pressed

Button 0 Released

Event 0 unbound

Exiting...

00

GpioUnbindEvent/GpioUnAssignEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().

GPIOUNBINDEVENT (nEventNum)

GPIOUNASSIGNEVENT (nEventNum)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEventNum
byVal nEventNum INTEGER.
The SIO event number (in the range of 0 - N) which will be disabled so that it no longer
generates run-time events in smart BASIC.

See example for GpioBindEvent.

 Miscellaneous Routines

This section describes all miscellaneous functions and subroutines.

ASSERTBL654

SUBROUTINE

This function’s main use case is during smartBASIC source compilation and the presence of at least one instance
of this statement will ensure that the smartBASIC application will only fully compile without errors on a BL654
module. This ensures that apps for other modules are not mistakenly loaded into the BL654.

AssertBL654 ()

Returns Not acceptable as it is a subroutine

Arguments: None

Example:

AssertBL654()//Ensure loading on BL654 only

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

39

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ERASEFILESYSTEM

FUNCTION

This function is used to erase the flash file system which contains the application that invoked this function, if
and only if, the SIO2 input pin is held high.

Given that SIO2 is high, after erasing the file system, the module resets and reboots into command mode with
the virtual serial port service enabled; the module advertises for a few seconds. See the virtual serial port service
section for more details.

This facility allows the current $autorun$ application to be replaced with a new one.

WARNING
If this function is called from within $autorun$, and the SIO2 input is high, then it will get erased and a fresh
download of the application is required which can be facilitated over the air.

ERASEFILESYSTEM (nArg)

Returns INTEGER Indicates success of command:

0 Successful erasure. The module reboots.

<>0 Failure.

Exceptions ▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments:

nArg byVal nArg AS INTEGER

This is for future use and MUST always be set to 1. Any other value will result in a failure.

Example:

DIM rc

 rc = EraseFileSystem(1234)

 IF rc!=0 THEN

 PRINT "\nFailed to erase file system because incorrect parameter"

 ENDIF

 //Input SIO2 is low

 rc = EraseFileSystem(1)

 IF rc!=0 THEN

 PRINT "\nFailed to erase file system because SIO19 is low"

 ENDIF

Expected Output:

Failed to erase file system because incorrect parameter

Failed to erase file system because SIO19 is low

00

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

40

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

5 BLE EXTENSIONS BUILT-IN ROUTINES

 LE Privacy

To address privacy concerns, there are four types of Bluetooth addresses in a BLE device which can change as
often as required. For example, an iPhone regularly changes its BLE Bluetooth address and it always exposes
only its resolvable random address.This feature is known as LE privacy. It allows the Bluetooth address within
advertising packets to be replaced with a random value that can change at different time intervals. Malicious
devices would not be able to track your device as it actually looks like a series of different devices.

To manage this, the usual six octet Bluetooth address is qualified on-air by a single bit which qualifies the
Bluetooth address as public or random:

▪ Public – The format is as defined by the IEEE organisation.
▪ Random – The format can be up to three types and this qualification is done using the upper two bits of the

most significant byte of the random Bluetooth address.

Address types:

00 Public

01 Random Static

02 Random Private Resolvable

03 Random Private Non-Resolvable

All other values are illegal

On the BL654, the address type can be set using the function BleSetAddressTypeEx(). On the other hand,
Sysinfo$(4) can be used to retrieve the Bluetooth address if it is public or random static. Due to LE privacy 1.2, if
the address type is random resolvable or random non-resolvable then it cannot be retrieved by the application
layer since it is fully controlled by the baseband layer.

Note: The Bluetooth address portion in smartBASIC is always in big endian format. If you sniff on-air
packets, the same six packets will appear in little endian format, hence reverse order – and you will
not see seven bytes, but a bit in the packet somewhere which specifies it to be public or random.

BleSetAddressTypeEx

FUNCTION

This functions sets the current address type to be used by the LE radio scan/advert/connection requests. Type 2
and 3 can be set to be refreshed periodically.

BLESETADDRESSTYPEEX (nAddrType, nPeriodMS)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nAddrType

byVal nAddrType AS INTEGER.
Specifies the type of the LE address as follows:

0 Public address, same as Classic.

1 Random static address, generated first boot.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

41

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

2 Random address, resolvable with IRK, generated on call.

3 Random address, non resolvable, generation on call

nPeriodMS
The time period for changing resolvable and non-resolvable addresses in milliseconds. If the
nAddrType is 0 or 1 then this parameter is ignored. Negative values result in an error being
returned. A value of 0 means the address will not change

Example:

// Example: BleSetAddressTypeEx.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, addr$

// Set the address to pulic, nPeriodMS is ignored

rc = BleSetAddressTypeEx(0,0)

addr$ = SysInfo$(4)

PRINT "\nBluetooth Address - "; StrHexize$(addr$)

// Set the address to random static, nPeriodMS is ignored

rc = BleSetAddressTypeEx(1,0)

addr$ = SysInfo$(4)

PRINT "\nBluetooth Address - "; StrHexize$(addr$)

// Set the address to be random resolvable that changes every 30 seconds

rc = BleSetAddressTypeEx(2,30000)

addr$ = SysInfo$(4)

PRINT "\nCurrent Address - "; StrHexize$(addr$)

// Set the address to be random non-resolvable that changes every 1 seconds

rc = BleSetAddressTypeEx(3,1000)

addr$ = SysInfo$(4)

PRINT "\nBluetooth Address - "; StrHexize$(addr$)

Expected Output:

Bluetooth Address – 000016A4B75201

Bluetooth Address – 01D3B61EE3F699

Bluetooth Address – 01D3B61EE3F699

Bluetooth Address – 01D3B61EE3F699

Note: Even though Sysinfo$(4) returns the random static address after setting address types 2 and 3, the
actual address used by the radio packets are the random resolvable and the random non-
resolvable addresses respectively. The reason for this is that private addresses are only known to
the baseband.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

42

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 Events and Messages

EVBLE_ADV_TIMEOUT

This event is thrown when adverts that are started using BleAdvertStart() time out.

Example:

// Example :: EvBle_Adv_Timeout.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM peerAddr$

 //handler to service an advert timeout

 FUNCTION HndlrBleAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 //DbgMsg("\n - could use SystemStateSet(0) to switch off")

 //--

 // Switch off the system - requires a power cycle to recover

 //--

 // rc = SystemStateSet(0)

 ENDFUNC 0

 //start adverts

 //rc = BleAdvertStart(0,"",100,5000,0)

 IF BleAdvertStart(0,peerAddr$,100,2000,0)==0 THEN

 PRINT "\n Advert Started"

 ELSE

 PRINT "\n\nAdvert not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBleAdvTimOut

 WAITEVENT

Expected Output:

Advert Started

Advert stopped via timeout

EVBLE_CONN_TIMEOUT

This event is thrown when a BLE connection attempt initiated by the BleConnect() function times out.

See example for BleConnect.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

43

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EVBLE_ADV_REPORT

This event is thrown when an advert report is received whether successfully cached or not.

See example for BleScanGetAdvReport.

EVBLE_FAST_PAGED

This event is thrown when an advert report is received which is of type ADV_DIRECT_IND and the advert had a
target address (InitA in the spec) which matches the address of this module.

See example for BleScanGetPagerAddr.

EVBLE_SCAN_TIMEOUT

This event is thrown when a BLE scanning procedure initiated by the BleScanStart() function times out.

See example for BLESCANSTART.

EVBLEMSG

The BLE subsystem is capable of informing a smart BASIC application when a significant BLE related event has
occurred and it does so by throwing this message (as opposed to an EVENTTable 20, which is akin to an interrupt
and has no context or queue associated with it).

The message contains two parameters:

▪ msgID – Identifies what event was triggered
▪ msgCtx – Conveys some context data associated with that event.

The smartBASIC application must register a handler function which takes two integer arguments to be able to
receive and process this message.

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it and, unless
that queue is full, pends all messages until they are handled. Only messages that have handlers
associated with them are inserted into the queue. This prevents messages that will not get handled
from filling that queue. The following table lists the triggers and associated context parameters.

MsgID Description

0 A BLE connection is established and msgCtx is the connection handle.

1 A BLE disconnection event and msgCtx identifies the handle.

4 A BLE Service Error. The second parameter contains the error code.

9 Pairing in progress and displayed Passkey supplied in msgCtx.

10 A new bond has been successfully created.

11 Pairing in progress and authentication key requested. msgCtx is key type.

14 Connection parameters update and msgCtx is the conn handle.

15 Connection parameters update fail and msgCtx is the conn handle.

16 Connected to a bonded master and msgCtx is the conn handle.

17 A new pairing has replaced old key for the connection handle specified.

18 The connection is now encrypted and msgCtx is the conn handle.

20 The connection is no longer encrypted and msgCtx is the conn handle

21 The device name characteristic in the GAP service of the local GATT table has been written by the
remote GATT client.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

44

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

MsgID Description

22 Attempt to add a new bonding to the bonding database failed

23 On a BLE connection to a bonded device, if the current GATT table schema does not match what
existed at the last connection, then a GATT Service Change Indication is automatically sent and the
app is informed via this event

24 On a BLE connection to a bonded device, if the current gatt table schema does not match what
existed at the last connection, then a GATT Service Change Indication is automatically sent and the
app is informed when the client acknowledges that indication

Note: Message ID 13 is reserved for future use.

Example:

// Example :: EvBleMsg.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

DIM rc

//==

// This handler is called when there is a BLE message

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nBLE Connection ";nCtx

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 CASE 18

 PRINT "\nConnection ";nCtx;" is now encrypted"

 CASE 16

 PRINT "\nConnected to a bonded master"

 CASE 17

 PRINT "\nA new pairing has replaced the old key";

 CASE ELSE

 PRINT "\nUnknown Ble Msg"

 ENDSELECT

ENDFUNC 1

FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

45

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ENDFUNC 0

FUNCTION HndlrUartRx()

 rc=BleAdvertStop()

 PRINT "\nExiting..."

ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

ONEVENT EVUARTRX CALL HndlrUartRx

// start adverts

IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started"

 PRINT "\nPress any key to exit\n"

ELSE

 PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output (When connection made with the module):

Adverts Started

Press any key to exit

BLE Connection 3634

Connected to a bonded master

Connection 3634 is now encrypted

A new pairing has replaced the old key

Disconnected 3634

Exiting...

Expected Output (When no connection made):

Adverts Started

Press any key to exit

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

46

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EVDISCON

This event is thrown when there is a BLE disconnection. It comes with two parameters:

▪ Connection handle
▪ The reason for the disconnection.

The reason, for example, can be 0x08 which signifies a link connection supervision timeout which is used in the
Proximity Profile.

A full list of Bluetooth HCI result codes for the reason of disconnection is provided in this document here.

Example:

// Example :: EvDiscon.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM addr$: addr$=""

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 IF nMsgID==0 THEN

 PRINT "\nNew Connection ";nCtx

 ENDIF

 ENDFUNC 1

 FUNCTION Btn0Press()

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION HndlrDiscon(BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

 PRINT "\nConnection ";hConn;" Closed: 0x";nRsn

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 // start adverts

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

47

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Adverts Started

New Connection 2915

Connection 2915 Closed: 0x19

EVCHARVAL

This event is thrown when a characteristic is written to by a remote GATT client. It comes with three
parameters:

▪ Char Handle - Characteristic handle that was returned when the characteristic was registered using the
function BleCharCommit()

▪ Offset – Offset
▪ Length – Length of the data from the characteristic value

EVCHARVALUE

This event is thrown when the remote device writes to a characteristic value. It differs from EVCHARVAL in that
the event contains the parameters including the connection handle and the string data. If the write operation is
performed on a characteristic that requires authorisation, then EVAUTHVAL is thrown instead, and the user
should then authorize and read the value.

If the event is thrown with an empty string but the length has a non-zero value, then this indicates that there
was not enough memory to allocate to the event.

The event comes with the following parameters:-

▪ Connection Handle – The handle of the connection that wrote to the characteristic value.
▪ Char Handle - Characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit()
▪ Offset – The offset at which the characteristic data was written.
▪ Length – The length of the data that was written. This should be equal to StrLen$(Data$), and can be used

to detect if there was any data loss.
▪ Data$ - The string data that was written to the characteristic.

Example:

// Example :: EvCharVal.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

48

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

ENDFUNC 1

//==

// New char value handler – Thrown when AT+CFG 213=0

//==

FUNCTION HandlerCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from offset

";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 CloseConnections()

ENDFUNC 1

//==

// New char value handler – Thrown when AT+CFG 213=1

//==

FUNCTION HandlerCharValue(BYVAL nConnHandle, BYVAL charHandle, BYVAL offset, BYVAL len,

BYVAL Data$)

 DIM s$

 IF charHandle == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from offset

";offset

 PRINT "\nData written is :";Data$ PRINT "\nData written is :";Data$;" - Connection
Handle=";integer.h' nConnHandle

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

49

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 CloseConnections()

ENDFUNC 1

ONEVENT EVCHARVAL CALL HandlerCharVal // This event is thrown if AT+CFG 213 = 0

ONEVENT EVCHARVALUE CALL HandlerCharValue // This event is thrown if AT+CFG 213 = 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nThe characteristic's value is ";at$

 PRINT "\nWrite a new value to the characteristic\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output (AT+CFG 213=0):
The characteristic’s value is Hi

Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset 0

New Char Value: Hello

--- Disconnected from client

Exiting...

Expected Output (AT+CFG 213=1):
The characteristic’s value is Hi

Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset 0

Data written is :hello – Connection Handle=0001FF00

New Char Value: Hello

--- Disconnected from client

Exiting...

EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one
parameter:

▪ The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

Example:

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

50

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two
parameters:

▪ The characteristic handle returned when the characteristic was registered with BleCharCommit()
▪ The new 16-bit value in the updated CCCD attribute

Example:

// Example :: EvCharCccd.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM svcUuid : svcUuid=0x18EE

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(0,0,20,1,metaSuccess)

 DIM hSvcUuid : hSvcUuid = BleHandleUuid16(svcUuid)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Create service

 rc=BleServiceNew(1,hSvcUuid,hSvc)

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x20,charUuid,charMet,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

51

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Indication acknowledgement from client handler

 //==

 FUNCTION HndlrCharHvc(BYVAL charHandle AS INTEGER) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT "\nGot confirmation of recent indication"

 ELSE

 PRINT "\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 1

 //==

 // Called when data received via the UART

 //==

 FUNCTION HndlrUartRx() AS INTEGER

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

52

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x02 THEN

 PRINT "\nIndications have been enabled by client"

 value$="hello"

 IF BleCharValueIndicate(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to indicate new value"

 ENDIF

 ELSE

 PRINT "\nIndications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARHVC CALL HndlrCharHvc

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVUARTRX CALL HndlrUartRx

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$

 PRINT "\nYou can write to the CCCD characteristic."

 PRINT "\nThe BL652 will then indicate a new characteristic value\n"

 PRINT "\n--- Press any key to exit"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

53

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Value of the characteristic 1346437121 is: Hi

You can write to the CCCD characteristic.

The BL652 will then indicate a new characteristic value

--- Press any key to exit

--- Connected to client

Indications have been enabled by client

Got confirmation of recent indication

Exiting...

EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two
parameters:

▪ The characteristic handle that is returned when the characteristic is registered using the function
BleCharCommit()

▪ The new 16-bit value in the updated SCCD attribute

The SCCD is used to manage broadcasts of characteristic values.

Example:

// Example :: EvCharSccd.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM hMyChar,rc,chVal$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$,rc2

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,1,20,1,rc)

 //Create service

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise broadcast capable, readable, writeable

 rc=BleCharNew(0x0B,BleHandleUuid16(1),charMet,0,BleAttrMetadata(1,1,1,0,rc2))

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

54

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Broadcast characterstic value

 //==

 FUNCTION PrepAdvReport()

 dim adRpt$, scRpt$, svcDta$

 //initialise new advert report

 rc=BleAdvRptinit(adRpt$, 2, 0, 0)

 //encode service UUID into service data string

 rc=BleEncode16(svcDta$, 0x18EE, 0)

 //append characteristic value

 svcDta$ = svcDta$ + chVal$

 //append service data to advert report

 rc=BleAdvRptAppendAD(adRpt$, 0x16, svcDta$)

 //commit new advert report, and empty scan report

 rc=BleAdvRptsCommit(adRpt$, scRpt$)

 ENDFUNC rc

 //==

 // Reset advert report

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

55

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 FUNCTION ResetAdvReport()

 dim adRpt$, scRpt$

 //initialise new advert report

 rc=BleAdvRptinit(adRpt$, 2, 0, 20)

 //commit new advert report, and empty scan report

 rc=BleAdvRptsCommit(adRpt$, scRpt$)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 dim addr$

 rc=BleAdvertStart(0,addr$,20,300000,0)

 IF rc==0 THEN

 PRINT "\nYou should now see the new characteristic value in the advertisment

data"

 ENDIF

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Called when data arrives via UART

 //==

 FUNCTION HndlrUartRx()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharSccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

56

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF charHandle==hMyChar THEN

 IF nVal & 0x01 THEN

 PRINT "\nBroadcasts have been enabled by client"

 IF PrepAdvReport()==0 THEN

 rc=BleDisconnect(conHndl)

 PRINT "\nDisconnecting..."

 ELSE

 PRINT "\nError Committing advert reports: ";integer.h'rc

 ENDIF

 ELSE

 PRINT "\nBroadcasts have been disabled by client"

 IF ResetAdvReport()==0 THEN

 PRINT "\nAdvert reports reset"

 ELSE

 PRINT "\nError Resetting advert reports: ";integer.h'rc

 ENDIF

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HndlrCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 rc=BleCharValueRead(hMyChar,chVal$)

 PRINT "\nNew Char Value: ";chVal$

 ENDIF

 ENDFUNC 1

 //==

 // Called after a disconnection

 //==

 FUNCTION HndlrDiscon(hConn, nRsn)

 dim addr$

 rc=BleAdvertStart(0,addr$,20,300000,0)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

57

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARSCCD CALL HndlrCharSccd

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVCHARVAL CALL HndlrCharVal

 ONEVENT EVDISCON CALL HndlrDiscon

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,chVal$)

 PRINT "\nCharacteristic Value: ";chVal$

 PRINT "\nWrite a new value to the characteristic, then enable broadcasting.\nThe

module will then disconnect and broadcast the new characteristic value."

 PRINT "\n--- Press any key to exit\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

Write a new value to the characteristic, then enable broadcasting.

The module will then disconnect and broadcast the new characteristic

value.

--- Press any key to exit

--- Connected to client

New Char Value: hello

Broadcasts have been enabled by client

Disconnecting...

--- Disconnected from client

You should now see the new characteristic value in the advertisment data

Exiting...

EVCHARDESC

This event is thrown when the client writes to a writable descriptor of a characteristic which is not a CCCD or
SCCD (they are catered for with their own dedicated messages). It comes with two parameters: the
characteristic handle that was returned when the characteristic was registered using the function

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

58

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleCharCommit(), and an index into an opaque array of handles managed inside the characteristic handle. Both
parameters are supplied as-is as the first two parameters to the function BleCharDescRead().

Example:

// Example :: EvCharDesc.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM hMyChar,rc,at$,conHndl, hOtherDescr

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup$()

 DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$, rc2

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,0,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise characteristic - readable

 rc=BleCharNew(0x02,BleHandleUuid16(1),charMet,0,0)

 //Add user descriptor - variable length

 attr$="my char desc"

 rc=BleCharDescUserDesc(attr$,BleAttrMetadata(1,1,20,1,rc2))

 //commit char initialised above, with initial value "char value" to service 'hSvc'

 attr2$="char value"

 rc=BleCharCommit(hSvc,attr2$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC attr$

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

59

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Called when data arrives via UART

 //==

 FUNCTION HndlrUartRx()

 ENDFUNC 0

 //==

 // Client has written to writeable descriptor

 //==

 FUNCTION HndlrCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER) AS INTEGER

 dim duid,a$,rc

 IF hChar == hMyChar THEN

 rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$)

 IF rc ==0 THEN

 PRINT "\nNew value for desriptor ";hDesc;" with uuid ";integer.h'duid;" is

";a$

 ELSE

 PRINT "\nCould not read the descriptor value"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARDESC CALL HndlrCharDesc

 ONEVENT EVUARTRX CALL HndlrUartRx

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

60

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nOther Descriptor Value: ";OnStartup$()

 PRINT "\nWrite a new value \n--- Press any key to exit\n"

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

Other Descriptor Value: my char desc

Write a new value

--- Press any key to exit

--- Connected to client

New value for desriptor 0 with uuid FE012901 is hello

EVAUTHVAL

This event is thrown instead of EVCHARVAL when a characteristic with read and/or write authorisation is being
read or written to by a remote GATT client. It comes with three parameters:

• Connection handle – The connection handle of the GATT client

• Char handle –The characteristic handle that was returned when the characteristic was registered using
the function BleCharCommit()

• ReadWrite –Will be 0x00000000 when this is a read attempt and 0x00010000 when write attempt

Call BleAuthorizeChar() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseChar() returns the new
value is ready to be read using BleCharValueRead().

Note: When a characteristic requires authentication and the remote device reads from it or writes to it
using the WRITE_CMD (write without response), the event EVAUTHVALEX is thrown instead. The
user should therefore have both EVAUTHVAL and EVAUTHVALEX events in their app and service
the events appropriately. See the example below for more information.

EVAUTHVALEX

This event is thrown when the remote device writes to a characteristic value that requires authentication using
the WRITE_CMD (write without response) command. The user should then write the data using
BleCharValueWriteEx at the app layer, otherwise the value will not be updated. If the event is thrown with an
empty string but the length has a non-zero value, then this indicates that there was not enough memory to
allocate to the event. The event comes with three parameters:

• Connection handle – The connection handle of the GATT client

• Char handle –The characteristic handle that was returned when the characteristic was registered using
the function BleCharCommit()

• Offset – The offset of the characteristic at which the remote is attempting to write.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

61

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

• Length – The length of the data that the remote is attempting to write. This should be equal to
StrLen$(Data$) and can be used to verify that no data loss has occurred.

• Data$ – The string data that the remote device is attempting to write.

Note: When a characteristic requires authentication and the remote device reads from it or writes to it
using a noramal WRITE, the event EVAUTHVAL is thrown instead. The user should therefore have
both EVAUTHVAL and EVAUTHVALEX events in their app and service the events appropriately. See
the example below for more information.

Example:

// Example :: EvAuthVal.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

//--

// Initialise and instantiate service, characteristic, start adverts

//--

FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

 //Commit service

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //Initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaDataex(1,1,20,8,rc),0,0)

 //Commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //Commit changes to the service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //Commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

ENDFUNC rc

//--

// Close connections so that we can run another app without problems

//--

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//--

// Ble event handler

//--

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

ENDFUNC 1

//--

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

62

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// AUTHVAL - The remote has written to the characteristic using WRITE (write with response)

//--

FUNCTION HndlrAuthVal(BYVAL connHandle, BYVAL charHandle, BYVAL readWrite)

 DIM s$

 IF charHandle == hMyChar THEN

 IF readWrite!=0 THEN

 rc=BleAuthorizeChar(connHandle, charHandle, 3) //Grant access

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nAuthenticated char written using Write with response."

 PRINT "\nNew Char Value: ";s$

 ENDIF

 ENDIF

ENDFUNC 1

//--

// AUTHVALEX - The remote has written to the characteristic using WRITE_CMD (write without

response)

//--

FUNCTION HndlrAuthValEx(BYVAL connHandle, BYVAL charHandle, BYVAL offset, BYVAL length,

BYVAL data$ AS STRING)

 DIM s$

 IF charHandle == hMyChar THEN

 // We are OK with this connection handle, so write the characteristic

 rc = BleCharValueWriteEx(charHandle, offset, data$)

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nAuthenticated char written using Write without response."

 PRINT "\nNew Char Value: ";s$

 ENDIF

ENDFUNC 1

//--

// Enable synchronous event handlers

//--

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVAUTHVAL CALL HndlrAuthVal

ONEVENT EVAUTHVALEX CALL HndlrAuthValEx

IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nThe characteristic's value is ";at$

 PRINT "\nWrite a new value to the characteristic\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

Expected Output:

The characteristic's value is Hi

Write a new value to the characteristic

--- Connected to client

Authenticated char written using Write with response.

New Char Value: "Test"

Authenticated char written using Write without response.

New Char Value: "Test"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

63

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EVAUTHCCCD

This event is thrown instead of EVCHARCCCD when a CCCD descriptor of a characterisic with read and/or write
authorisation is being read or written to by a remote GATT client. It comes with three parameters as follows:

• The connection handle of the gatt client

• The characteristic handle returned when the characteristic was registered with BleCharCommit()

• Will be 0x00000000 when this is a read attempt and 0x0001HHHH when write attempt where the new
16-bit value to be written is 0xHHHH

Call BleAuthorizeDesc() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseDesc() returns the new
value 0xHHHH is assumed to be written to the descriptor.

Example:

// Example :: EvAuthCccd.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM svcUuid : svcUuid=0x18EE

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaDataex(1,1,20,0,metaSuccess)

 DIM hSvcUuid : hSvcUuid = BleHandleUuid16(svcUuid)

 DIM mdCccd : mdCccd = BleAttrMetadataex(1,1,2,8,rc) //CCCD metadata for char, write

auth

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,hSvcUuid,hSvc)

 //Initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x6A,charUuid,charMet,mdCccd,0)

 //Commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //Commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

ENDSUB

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

64

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

ENDFUNC 1

//==

// Indication acknowledgement from client handler

//==

FUNCTION HndlrCharHvc(BYVAL charHandle AS INTEGER) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT "\nGot confirmation of recent indication"

 ELSE

 PRINT "\nGot confirmation of some other indication: ";charHandle

 ENDIF

ENDFUNC 1

//==

// Handler to service button 0 pressed

//==

FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

ENDFUNC 1

//==

// CCCD descriptor authorisation

//==

FUNCTION HndlrAuthCccd(BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF readWrite != 0x0 THEN

 rc=BleAuthorizeDesc(connHandle,charHandle, -1 ,3) //grant access

 IF readWrite == 0x10002 THEN

 PRINT "\nSending indication..."

 value$="hello"

 IF BleCharValueIndicate(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to indicate new value"

 ENDIF

 ELSE

 PRINT "\nIndications were disabled"

 ENDIF

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCHARHVC CALL HndlrCharHvc

ONEVENT EVAUTHCCCD CALL HndlrAuthCccd

ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

65

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$

 PRINT "\nYou can write to the CCCD characteristic."

 PRINT "\nThe BL600 will then indicate a new characteristic value\n"

 PRINT "\n--- Press button 0 to exit"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Value of the characteristic 1818531328 is: Hi

You can write to the CCCD characteristic.

The BL600 will then indicate a new characteristic value

--- Press button 0 to exit

--- Connected to client

Sending indication...

Got confirmation of recent indication

EVAUTHSCCD

This event is thrown instead of EVCHARSCCD when a SCCD descriptor of a characterisic with read and/or write
authorisation is being read or written to by a remote GATT client. It comes with three parameters as follows:

1. The connection handle of the gatt client
1. The characteristic handle returned when the characteristic was registered with BleCharCommit()
2. Will be 0x00000000 when this is a read attempt and 0x0001HHHH when write attempt where the new

16-bit value to be written is 0xHHHH

Call BleAuthorizeDesc() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseDesc() returns the new
value 0xHHHH is assumed to be written to the descriptor.

The SCCD is used to manage broadcasts of characteristic values.

Example:

// Example :: EvAuthSccd.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$, rc2

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaDataex(1,1,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //Initialise char, read enabled, accept signed writes, broadcast capable

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

66

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

rc=BleCharNew(0x4B,BleHandleUuid16(1),charMet,0,BleAttrMetadataex(1,1,2,8,rc2))

 //Commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //Commit svc

 rc=BleServiceCommit(hSvc)

 rc=BleAdvRptInit(adRpt$,0x02,0,20)

 //Add 'hSvc' and 'hMyChar' to the advert report

 rc=BleAdvRptAddUuid16(adRpt$,hSvc,hMyChar,-1,-1,-1,-1)

 //Commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin

16

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

ENDFUNC 1

//==

//handler to service button 0 pressed

//==

FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

ENDFUNC 1

//==

// CCCD descriptor written handler

//==

FUNCTION HndlrAuthSccd(BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS

INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF readWrite != 0x0 THEN

 rc=BleAuthorizeDesc(connHandle,charHandle, -2 ,3) //grant access

 if readWrite == 0x10000 then

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

67

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nBroadcasts have been disabled by client"

 ELSE

 PRINT "\nBroadcasts have been enabled by client"

 endif

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVAUTHSCCD CALL HndlrAuthSccd

ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can write to the SCCD attribute."

 PRINT "\nThe BL600 will then indicate a new characteristic value"

 PRINT "\n--- Press button 0 to exit\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

You can write to the SCCD attribute.

The BL600 will then indicate a new characteristic value

--- Press button 0 to exit

--- Connected to client

Broadcasts have been enabled by client

EVAUTHDESC

This event is thrown instead of EVCHARDESC when a writable descriptor of a characteristic with read and/or
write authorisation is being read or written by a remote GATT client. It comes with four parameters:

1. The connection handle of the gatt client
3. The characteristic handle that was returned when the characteristic was registered using the function

BleCharCommit()
4. The descriptor Handle Index
5. Will be 0x00000000 when this is a read attempt and 0x00010000 when write attempt

Call BleAuthorizeChar() to either grant or deny access.

The first three parameters in the event are supplied as-is as the first three parameters to the function
BleAuthizeChar().

If this event is for a write then as soon as the function BleAuthorizeDesc() returns the descriptor contains the
value and so the function BleCharDescRead() can be called to read it.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

68

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: EvAuthDesc.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl, hOtherDescr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup$()

 DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //Initialise char, read/write enabled, accept signed writes

 rc=BleCharNew(0x4A,BleHandleUuid16(1),charMet,0,0)

 //Add another descriptor

 attr$="descr_value"

 rc=BleCharDescAdd(0x2905,attr$,BleAttrMetadataex(1,1,20,9,rc))

 //Commit char initialised above, with initial value "hi" to service 'hMyChar'

 attr2$="char value"

 rc=BleCharCommit(hSvc,attr2$,hMyChar)

 rc=BleServiceCommit(hSvc)

 rc=BleAdvRptInit(adRpt$,0x02,0,20)

 rc=BleScanRptInit(scRpt$)

 //Get UUID handle for other descriptor

 hOtherDscr=BleHandleUuid16(0x2905)

 //Add 'hSvc','hMyChar' and the other descriptor to the advert report

 rc=BleAdvRptAddUuid16(adRpt$,hSvc,hOtherDscr,-1,-1,-1,-1)

 rc=BleAdvRptAddUuid16(scRpt$,hOtherDscr,-1,-1,-1,-1,-1)

 //Commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

ENDFUNC attr$

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

ENDFUNC 1

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

69

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// Handler to service button 0 pressed

//==

FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

ENDFUNC 1

//==

// Client has written to writeable descriptor

//==

FUNCTION HndlrAuthDesc(BYVAL hConn AS INTEGER, BYVAL hChar AS INTEGER, BYVAL hDesc AS

INTEGER, BYVAL rw) AS INTEGER

 dim duid,a$,rc

 IF hChar == hMyChar THEN

 rc = BleAuthorizeDesc(hConn, hChar, hDesc, 3)

 rc = BleCharDescRead(hChar,hDesc,0,512,duid,a$)

 IF rc ==0 THEN

 PRINT "\nNew value for desriptor ";hDesc;" is ";a$

 ELSE

 PRINT "\nCould not access the uuid"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVAUTHDESC CALL HndlrAuthDesc

ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

PRINT "\nOther Descriptor Value: ";OnStartup$()

PRINT "\nWrite a new value \n--- Press button 0 to exit\n"

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Other Descriptor Value: descr_value

Write a new value

--- Press button 0 to exit

--- Connected to client

New value for desriptor 0 is cC

EVVSPRX

This event is thrown when the Virtual Serial Port service is open and data has arrived from the peer.

EVVSPTXEMPTY

This event is thrown when the Virtual Serial Port service is open and the last block of data in the transmit buffer
is sent via a notify or indicate. See VSP (Virtual Serial Port) Events

EVCONNRSSI

This event message is thrown when rssi reporting is enabled for specific connections using the function
BleConnRssiStart() which takes the connection handle.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

70

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

It consists of a two integers payload and the values are as follows:

▪ Integer 1 – The connection handle for which the rssi is being reported
▪ Integer 2 – The signed rssi value in units of dBm.

EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT Client using a notify procedure (for example using
the function BleCharValueNotify()) or when a Write_with_no_response is sent by the GATT Client to a remote
server, they are stored in temporary buffers in the underlying stack. There is a finite number of these temporary
buffers. If they are exhausted, the notify function or the write_with_no_resp command will fail with a result
code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute data is transmitted over the air, given there are no
acknowledges for Notify messages, the buffer is freed to be reused.

This event is thrown when at least one buffer has been freed and so the smartBASIC application can handle this
event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown because those messages have to be
confirmed by the client which results in a EVCHARHVC message to the smartBASIC application.
Likewise, writes which are acknowledged also do not consume these buffers.

Example:

// Example :: EvNotifyBuf.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM hMyChar,rc,at$,conHndl,ntfyEnabled

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvc'

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

71

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 SUB SendData()

 DIM tx$, count

 IF ntfyEnabled then

 PRINT "\n--- Notifying"

 DO

 tx$="SomeData"

 rc=BleCharValueNotify(hMyChar,tx$)

 count=count+1

 UNTIL rc!=0

 PRINT "\n--- Buffer full"

 PRINT "\nNotified ";count;" times"

 ENDIF

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ELSEIF nMsgID THEN

 PRINT "\n--- Disconnected from client"

 EXITFUNC 0

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

72

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDIF

 ENDFUNC 1

 //==

 // Tx Buffer free handler

 //==

 FUNCTION HndlrNtfyBuf()

 SendData()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$,tx$

 IF charHandle==hMyChar THEN

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 ntfyEnabled=1

 tx$="Hello"

 rc=BleCharValueNotify(hMyChar,tx$)

 ELSE

 PRINT "\nNotifications have been disabled by client"

 ntfyEnabled=0

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL652 will then send you data until buffer is full\n"

 ELSE

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

73

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

You can connect and write to the CCCD characteristic.

The BL652 will then send you data until buffer is full

--- Connected to client

Notifications have been disabled by client : Notifications have been

enabled by client

--- Notifying

--- Buffer full

Notified 1818505336 times

Exiting...

EVCONNPARAMREQ

This event is only thrown for a central role connection when a peripheral requests an update to the connection
parameters via BleSetCurConnParams(). The user must turn manual parameter control to receive this message
by using BleConnectConfig(8,1). In this case auto accept is disabled and full control is given to the user.

The event contains the following integer values:

nConnHandle: the handle of the connection where the peripheral is requesting a change.

nMinIntUs: The minimum acceptable connection interval in microseconds.

nMaxIntUs: The maximum acceptable connection interval in microseconds.

nSuprToutUs: The link supervision timeout for the connection in microseconds.

nSlaveLatency: The number of connection interval polls that may be ignored.

Example:

//Example :: EvConnParamReq.sb

// In order to get the expected output, this application should be run against

// a peripheral device. The peripheral device should request new connection

// parameters upon connection, which in turn will trigger EVCONNPARAMREQ on

// this device.

// This is the target Bluetooth device to connect to, 7 bytes in hex

#define BTAddr "000016A4B75202"

// BLE EVENT MSG IDs

#define BLE_EVBLEMSGID_CONNECT 0 // msgCtx = connection handle

#define BLE_EVBLEMSGID_DISCONNECT 1 // msgCtx = connection handle

#define BLE_EVBLEMSGID_CONN_PARMS_UPDATE 14 //nCtx = connection handle

#define BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL 15 //nCtx = connection handle

DIM rc

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

74

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// This handler is called when there is a BLE message

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE BLE_EVBLEMSGID_CONNECT

 PRINT "\nBLE Connection ";integer.h' nCtx;"\n"

 CASE BLE_EVBLEMSGID_DISCONNECT

 PRINT "\nDisconnected ";nCtx;"\n"

 CASE BLE_EVBLEMSGID_CONN_PARMS_UPDATE

 // The connection parameter has been updated. Read connection parameters

 dim intrvl,sprvto,slat

 rc= BleGetCurConnParms(nCtx,intrvl,sprvto,slat)

 print "--- Param Updated \n"

 print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n"

 CASE BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL

 print "--- Param Update Failed\n"

 print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n"

 CASE ELSE

 PRINT "\nUnknown Ble Msg"

 ENDSELECT

ENDFUNC 1

//==

// This handler is called when peripheral requests new parameter

//==

function HandlerParamReq(BYVAL hConn AS INTEGER, BYVAL intrvlmin AS INTEGER, BYVAL intrvlmax

AS INTEGER, BYVAL sprvto AS INTEGER, BYVAL slat AS INTEGER)

 print "--- Param Request \n"

 print "- intervalmin:";intrvlmin;" intervalmax:";intrvlmax;" supervision

timeout:";sprvto;" latency:";slat;"\n"

 // Accept the peripheral's request by changing the connection's conn parameters

 rc = BleSetCurConnParms(hConn, intrvlmin, intrvlmax, sprvto, slat)

endfunc 1

//==

// Program starts here

//==

// Disable auto accept so that we get an event when peripheral requests

// new connection parameteres. Set to 0 to re-enable auto accept

rc = BleConnectConfig(8,1)

// Connect to peripheral

DIM addr$: addr$ = BTAddr

addr$ = StrDehexize$(addr$)

rc = BleConnect(addr$, 5000, 7500, 7700, 500000)

//--

// Enable synchronous event handlers

//--

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCONNPARAMREQ CALL HandlerParamReq

WAITEVENT

Expected Output:
BLE Connection 0001FF00

--- Param Request

- intervalmin:45000 intervalmax:50000 supervision timeout:6000000 latency:0

--- Param Updated

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

75

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

- interval:50000 supervision timeout:6000000 latency:0

 Miscellaneous Functions

This section describes all BLE related functions that are not related to advertising, connection, security manager
or GATT.

BleTxPowerSet

FUNCTION

This function sets the power of all packets that are transmitted subsequently.

Although this function can accept any value, the actual transmit power is determined by the internal power
table which supports -40, -30, -20, -16, -12, -8, -4, 0, 2, 4, 5, 6, 7, 8, and 9 dBm. When a value is set, the highest
transmit power that is less than or equal to the desired power is used. SYSINFO(2008) and AT I 2008 can be used
to return the power level set.

BLETXPOWERSET (nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nTxPower
byVal nTxPower AS INTEGER.
Specifies the new transmit power in dBm units to be used for all subsequent tx packets.
The actual value is determined by the radios internal power table.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

76

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: BleTxPowerSet.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,dp

dp=1000 : rc = BleTxPowerSet(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

dp=8 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=2 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-10 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-25 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-45 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-1000 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

Expected Output:
rc = 0

Tx power : desired= 1000 actual= 4

Tx power : desired= 8 actual= 4

Tx power : desired= 2 actual= 0

Tx power : desired= -10 actual= -12

Tx power : desired= -25 actual= -40

Tx power : desired= -45 actual= -40

Tx power : desired= -1000 actual= -40

BleTxPwrWhilePairing

FUNCTION

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This mode
of pairing is referred to as Whisper Mode Pairing. The actual value is clipped to the transmit power for normal
operation which is set using BleTxPowerSet() function.

At any time SYSINFO(2018) returns the actual transmit power setting. Or when in command mode, uses the
command AT I 2018.

Although this function can accept any value, the actual transmit power is determined by the internal power
table which supports -40, -30, -20, -16, -12, -8, -4, 0, 2, 4, 5, 6, 7, 8 and 9 dBm, when a value is set the highest
transmit power that is less than or equal to the desired power is used. SYSINFO(2008) and AT I 2008 will return
the power level set, and does not reflect the transmit power level of the radio itself.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

77

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLETXPWRWHILEPAIRING (nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nTxPower

byVal nTxPower AS INTEGER.
Specifies the new transmit power in dBm units to be used for all subsequent Tx packets
while the pairing is in progress and normal power is resumed when the transaction is
complete. The actual value is determined by the radios internal power table.

Please note that the tx power will be reduced to nTxPower for ALL connections, even
on connections that there is no pairing in progress.

Example:

// Example :: BleTxPwrWhilePairing.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=8 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=2 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=-10 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-25 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-45 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

Expected Output:

rc = 0

Tx power while pairing: desired= 1000 actual= 10

Tx power while pairing: desired= 8 actual= 8

Tx power while pairing: desired= 2 actual= 2

Tx power while pairing: desired= -10 actual= -10

Tx power while pairing: desired= -25 actual= -20

Tx power while pairing: desired= -45 actual= -20

Tx power while pairing: desired= -1000 actual= -20

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

78

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleConfigDcDc

SUBROUTINE

This routine is used to configure the DC to DC converter to one of 2 states: ENABLED or DISABLED.

BLECONFIGDCDC (nNewState)

Returns None

Arguments

nNewState byVal nNewState AS INTEGER.
Configure the internal DC to DC converter as follows:

0 Disabled

All other values Enabled

BleConfigDcDc(2) //Set for automatic operation

BleConfigHfClock

SUBROUTINE

This routine is used to enable or disable using the external 10ppm crystal as the high frequency clock source. If it
is disabled, then it is auto-enabled only during a radio event. Using the external crystal increases current
consumption by about 25 microamps. When diabled, the internal RC oscillator is used.

You may want to enable the external crystal at all times if you see issues with baud rate generation using the
internal RC oscillator, which can be +/-2% out.

BLECONFIGHFCLOCK (nClockSource)

Returns None

Arguments

nClockSource byVal nClockSource AS INTEGER.
Enable/Dsiable the high frequency clock source as follows:

0
Use internal RC oscillator and get +/-2% accuracy on peripherals that use
clocks such as uart baudrate generator

1 Use external 10ppm crystal as clock source

All other values As per 1

BleConfigHfClock(1) //Use external crystal oscillator

 Advertising Functions

This section describes all the advertising-related routines.

An advertisement consists of a packet of information with a header identifying it as one of four types along with
an optional payload that consists of multiple advertising records, referred to as AD in the rest of this manual.

Each AD record consists of up to three fields:

▪ Field 1 – One octet in length and indicates the number of octets that follow it that belong to that record.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

79

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Field 2 – One octet in length and is a tag value which identifies the type of payload that starts at the next
octet. Hence the payload data is ‘length – 1’.

▪ Field 3 – A special NULL AD record that consists of one field (the length field) when it contains only the 00
value.

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which contains the latest list of all
AD records. You must register as at least an adopter, which is free, to gain access to this information. It is
available at https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BleAdvertStart

FUNCTION

This function causes a BLE advertisement event as per the Bluetooth specification. An advertisement event
consists of an advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is
initialised, created, and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT
functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_IND), then the peerAddr$ string must not
be empty and should be a valid address. When advertising with this packet type, the timeout is automatically set
to 1280 ms.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack
so that only those bonded masters result in scan and connection requests being serviced.

Note: nAdvTimeout is rounded up to the nearest 1000 msec.

BLEADVERTSTART (nAdvType, peerAddr$, nAdvInterval, nAdvTimeout, nFilterPolicy)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

If a 0x6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in
the advertising report is set for Limited and/or General Discoverability. The solution is to
resubmit a new advert report which is made up so that the nFlags argument to BleAdvRptInit()
function is 0.

The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement. See
Volume 3, Sections 9.2.3.2 and 9.2.4.2.

Arguments:

nAdvType

byVal nAdvType AS INTEGER.
Specifies the advertisement type as follows:

0 ADV_IND Invites connection requests

1 ADV_DIRECT_IND

Invites connection from addressed device.
nAdvertTimeout imust be <= 1280ms because
nAdvInterval is ignored and will advertise at a
rate of every 3.75milliseconds which means this
type of advert is not power efficient and will
impact battery life.
See ADV_DIRECT_LOW_DUTYCYCLE_IND for a
more power efficient alternative.

2 ADV_SCAN_IND Invites scan request for more advert data

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

80

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

3 ADV_NONCONN_IND Does not accept connections/active scans

4 ADV_DIRECT_LOW_DUTYCYCLE_IND

Invites connection from addressed device.
No limit on nAdvertTimeout as the advertising
interval is as per nAdvInterval, like a normal
advert but with the payload being the target
address.
See ADV_DIRECT_IND for an alternative.

peerAddr$

byRef peerAddr$ AS STRING
It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.
This is only required when nAdvType == 1. When not empty, a valid address string is exactly
seven octets long (for example: \00\11\22\33\44\55\66) where the first octet is the address
type and the rest of the six octets is the usual Bluetooth address in big endian format (so the
most significant octet of the address is at offset 1), whether public or random.

0 Public
1 Random Static
2 Random Private Resolvable
3 Random Private Non-Resolvable
All other values are illegal.

nAdvInterval

byVal nAdvInterval AS INTEGER.
The interval between two advertisement events (in milliseconds).

An advertisement event consists of a total of three packets being transmitted in the three
advertising channels.

Valid range is between 20 and 10240 milliseconds.

nAdvTimeout

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds). The range of this value is
between 0 and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).

A value of 0 means disable the timeout, but note that if limited advert modes was specified in
BleAdvRptInit() then this function fails. When the advert type specified is ADV_DIRECT_IND ,
the timeout is automatically set to 1280 ms as per the Bluetooth Specification.

WARNING: To save power, do not mistakenly set this to e.g. 100ms.

nFilterPolicy

byVal nFilterPolicy AS INTEGER.

Specifies the filter policy for the whitelist as follows:

0 Disable whitelist
1 Filter Policy – Filter scan request; allow connection request from any
2 Filter Policy – Filter connection request; allow scan request from any
3 Filter scan request and connection request

hhh
A whitelist handle (for more details see section “Whitelist
Management Functions)

If the filter policy is not 0, but 1,2 or 3 the whitelist is enabled and filled with first 8 addresses
and 8 identity resolving keys of devices in the trusted device database. Given the database can
accommodate more devices please note that if more than 8 devices exist than a partial
whitelist is activated.
To cater for that limitation, a whitelist can be manually created using the API described in the
section “Whitelist Management Functions” and the handle returned from a manually created
list can be supplied for this parameter

Example:

// Example :: BleAdvertStart.sb

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

81

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM addr$: addr$=""

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 //The advertising interval is set to 25 milliseconds. The module will stop

 //advertising after 60000 ms (1 minute)

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started"

 PRINT "\nIf you search for Bluetooth devices on your device, you should see 'Laird

BL652'"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 WAITEVENT

Expected Output:

Adverts Started

If you search for Bluetooth devices on your device, you should see 'Laird

BL652'

Advert stopped via timeout

Exiting...

BleAdvertStop

FUNCTION

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments None

Example:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

82

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Example :: BleAdvertStop.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

DIM rc

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press()

 IF BleAdvertStop()==0 THEN

 PRINT "\nAdvertising Stopped"

 ELSE

 PRINT "\n\nAdvertising failed to stop"

 ENDIF

 PRINT "\nExiting..."

 ENDFUNC 0

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started. Press button 0 to stop.\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 rc = GpioSetFunc(11,1,2)

 rc = GpioBindEvent(0,11,1)

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 WAITEVENT

Expected Output:

Adverts Started. Press button 0 to stop.

Advertising Stopped

Exiting...

BleAdvertConfig

FUNCTION

This function is used to modify the default parameters that are used when initiating an advertise operation using
BleAdvertStart().

The following lists the default values for the parameters:

Advert Channel Mask Bit field detailing the channels to advertise on.

Note: Set channel mask Bit 0 to enable advert channel 0, Bit 1 to enable advert channel 1, and Bit 2 to
enable advert channel 2.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

83

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEADVERTCONFIG (configID, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

configID

byVal configID AS INTEGER.
This identifies the value to update as follows:

0 Unused

1 Unused

2 Unused

3
Advert Channel Mask. Set to 0 to enable channel 37, bit 1 to enable channel 38,
and bit 2 to enable channel 39

For all other configID values the function returns an error.

configValue
byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

BleAdvRptInit

FUNCTION

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records) and
store it the string specified. It is not advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT (advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a
successful operation.

Arguments:

advRpt$
byRef advRpt$ AS STRING.
This contains an advertisement report.

nFlagsAD

byVal nFlagsAD AS INTEGER.

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit
1 is set for general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will
be forced to 0. Bits 3 to 7 are reserved for future use by the BT SIG and must
be set to 0.

nAdvAppearance

byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as
follows:

0 Omit appearance advert

1
Add appearance advert as specified in the GAP service which is
supplied via the BleGapSvcInit() function

nMaxDevName

byVal nMaxDevName AS INTEGER.

The n leftmost characters of the device name specified in the GAP service. If
this value is set to zero (0) then the device name is not included.

Example:

// Example :: BleAdvRptInit.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

84

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM advRpt$: advRpt$=""

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 IF BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)==0 THEN

 PRINT "\nAdvert report initialised"

 ENDIF

Expected Output:

Advert report initialised

BleScanRptInit

FUNCTION

This function is used to create and initialise a scan report which will be sent in a SCAN_RSP message. It will not
be used until BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT (scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

scanRpt
byRef scanRpt ASSTRING.
This contains a scan report.

Example:

// Example :: BleScanRptInit.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM scnRpt$: scnRpt$=""

 IF BleScanRptInit(scnRpt$)==0 THEN

 PRINT "\nScan report initialised"

 ENDIF

Expected Output:

Scan report initialised

BleAdvRptGetSpace

FUNCTION

This function returns the free space in the advert advRpt$.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

85

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEADVRPTGETSPACE(advRpt)

Returns INTEGER, the free space in bytes.

Arguments:

advRpt$
byRef advRpt$ AS STRING.
This contains an advert/scan report.

Example:

// Example :: BleAdvRptGetSpace.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc, s$, dn$

rc=BleScanRptInit(s$)

dn$ = BleGetDeviceName$()

//Add device name to scan report

rc=BleAdvRptAppendAD(s$,0x09,dn$)

print "\nFree space in scan report: "; BleAdvRptGetSpace(s$); " bytes"

Expected Output:

Free space in scan report: 18 bytes

BleAdvRptAddUuid16

FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This consists
of all the 16 bit service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16 (advRpt$, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

AdvRpt$
byRef AdvRpt AS STRING.
The advert report onto which the 16-bit uuids AD record is added.

nUuid1
byVal uuid1 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value
to -1 to have it ignored and then all further UUID arguments will also be ignored.

nUuid2
byVal uuid2 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value
to -1 to have it ignored and then all further UUID arguments will also be ignored.

nUuid3
byVal uuid3 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value
to -1 to have it ignored and then all further UUID arguments will also be ignored.

nUuid4
byVal uuid4 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value
to -1 to have it ignored and then all further UUID arguments will also be ignored.

nUuid5
byVal uuid5 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value
to -1 to have it ignored and then all further UUID arguments will also be ignored.

nUuid6
byVal uuid6 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

86

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

to -1 to have it ignored and then all further UUID arguments will also be ignored.

Example:

// Example :: BleAdvAddUuid16.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM advRpt$, rc

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 rc = BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)

 //BatteryService = 0x180F

 //DeviceInfoService = 0x180A

 IF BleAdvRptAddUuid16(advRpt$,0x180F,0x180A, -1, -1, -1, -1)==0 THEN

 PRINT "\nUUID Service List AD added"

 ENDIF

 //Only the battery and device information services are included in the advert report

Expected Output:

UUID Service List AD added

BleAdvRptAddUuid128

FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified.
Given that an advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless there
is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

advRpt
byRef AdvRpt AS STRING.
The advert report into which the 128-bit UUID AD record is to be added.

nUuidHandle
byVal nUuidHandle AS INTEGER
This is handle to a 128-bit UUID which was obtained using a function such as
BleHandleUuid128() or some other function which returns one.

Example:

// Example :: BleAdvAddUuid128.sb

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

87

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM uuid$, hUuidCustom

DIM tx$,scRpt$,adRpt$,addr$, hndl

 scRpt$=""

 PRINT BleScanRptInit(scRpt$)

//create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuidCustom = BleHandleUuid128(uuid$)

 //Advertise the 128 bit uuid in a scan report

 PRINT BleAdvRptAddUuid128(scRpt$, hUuidCustom)

 adRpt$=""

 PRINT BleAdvRptsCommit(adRpt$,scRpt$)

 addr$="" //because we are not doing a DIRECT advert

 PRINT BleAdvertStart(0,addr$,20,30000,0)

Expected Output:

00000

BleAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a
LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

AdvRpt
byRef AdvRpt AS STRING.

The advert report onto which the AD record is to be appended.

nTag
byVal nTag AS INTEGER

nTag should be in the range 0 to FF and is the TAG field for the record.

stData$
byRef stData$ AS STRING

This is an octet string which can be 0 bytes long. The maximum length is governed by
the space available in AdvRpt, a maximum of 31 bytes long.

Example:

// Example :: BleAdvRptAppendAD.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

88

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM scnRpt$,ad$

 ad$="\01\02\03\04"

 PRINT BleScanRptInit(scnRpt$)

 IF BleAdvRptAppendAD(scnRpt$,0x31,ad$)==0 THEN //6 bytes will be used up in the report

 PRINT "\nAD with data '";ad$;"' was appended to the advert report"

 ENDIF

Expected Output:

0

AD with data '\01\02\03\04' was appended to the advert report

BleAdvRptsCommit

FUNCTION

This function is used to commit one or both advert reports. If the string is empty then that report type is not
updated. Both strings can be empty. In that case, this call will have no effect.

The advertisements will not happen until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT (advRpt, scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

advRpt
byRef advRpt AS STRING.
The most recent advert report.

scanRpt
byRef scanRpt AS STRING.
The most recent scan report.

Note: If any one of the two strings is not valid then the call will be aborted without updating the other
report even if this other report is valid.

Tip: You can commit advert reports to update your advertisement data while advertising.

Example:

// Example :: BleAdvRptsCommit.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM advRpt$: advRpt$=""

 DIM scRpt$: scRpt$=""

 DIM discovMode : discovMode = 0

 DIM advApprnce : advApprnce = 1

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

89

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM maxDevName : maxDevName = 10

 PRINT BleAdvRptInit(advRpt$, discovMode, advApprnce, maxDevName)

 PRINT BleAdvRptAddUuid16(advRpt$, 0x180F,0x180A, -1, -1, -1, -1)

 PRINT BleAdvRptsCommit(advRpt$, scRpt$)

 // Only the advert report will be updated.

Expected Output:

000

 Scanning Functions

When a peripheral advertises, the advert packet consists type of advert, address, RSSI, and some user data
information.

A central role device enters scanning mode to receive these advert packets from any device that is advertising.

For each advert that is received, the data is cached in a ring buffer, if space exists, and the EVBLE_ADV_REPORT
event is thrown to the smartBASIC application so that it can invoke the function BleScanGetAdvReport() to read
it.

The scan procedure ends when it times out (timeout parameter is supplied when scanning is initiated) or when
explicity instructed to abort or stop.

Note: While scanning for a long period of time, it is possible that a peripheral device is advertising for a
connection to it using the ADV_DIRECT_IND advert type. When this happens, it is good practice for
the central device to stop scanning and initiate the connection. To cater for this specific scenario,
which would normally require the central device to look out for that advert type and the self
address, the EVBLE_FAST_PAGED event is thrown to the application. This means that all the user
app needs to do is to install a handler for that event which stops the scan procedure and
immediately starts a connection procedure.

For more information about adverts see the section Advertising Functions.

BleScanStart

FUNCTION

This function is used to start a scan for adverts which may result in at least one of the following events being
thrown:

EVBLE_SCAN_TIMEOUT End of scanning

EVBLE_ADV_REPORT Advert report received

EVBLE_FAST_PAGED Peripheral inviting a connection to this module

▪ EVBLE_ADV_REPORT – Received when an advert has been successfully cached in a ring buffer. The handler
should call the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been
cached until the cache is empty, otherwise there is a risk that advert reports will be discarded. The output
parameter nDiscarded returns the number of discarded reports, if any.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

90

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ EVBLE_FAST_PAGED – Received when a peripheral has sent an advert with the address of this module. The
handler should stop scanning using BleScanStop() and then initiate a connection using BleConnect().

There are three parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise
default values are used:

▪ Scan Interval – Specify the duty cycle for listening for adverts. Default value: 80 milliseconds.
▪ Scan Window – Specify the duty cycle for listening for adverts. Default value: 40 milliseconds.
▪ Scan Type – Default scan type: Active

Active scanning means that for each advert received (if it is ADV_IND or ADV_DISCOVER_IND) a SCAN_REQ
is sent to the advertising device so that the data in the scan response can be appended to the data that has
already been received for the advert.

The values for these default parameters can be changed prior to invoking this function by calling the function
BleScanConfig() appropriately.

Note: Be aware that scanning is a memory intensive operation and so heap memory is used to manage a
cache. If the heap is fragmented, it is likely this function will fail with an appropriate resultcode
returned. If that happens, call reset() and then attempt the scan start again. The memory that is
allocated to manage this scan process is NOT released when the scanning times out. To force
release of that memory, we recommend that you start the scan and then immediately call
BleScanStop().

 Connections may not be established during a scan operation. If a continued scan is required, stop
the scan or let it timeout, connect, then restart the scan.

BLESCANSTART (scanTimeoutMs, nFilterHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

scanTimeoutMs

byVAL scanTimeoutMs AS INTEGER.
The length of time in milliseconds the scan for adverts lasts. If the timer times out
then the event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application.
Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer
is not started and scanning can only be stopped by calling either BleScanAbort() or
Ble ScanStop().

nFilterHandle
byVAL nFilterHandle AS INTEGER
This must be zero (0) to specify no filtering of adverts.
Note: In this current firmware version, this is only a placeholder.

Example:

// Example :: BleScanStart.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

http://ews-support.lairdtech.com/
https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

91

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 WAITEVENT

Expected Output:

Scanning

Scan timeout

BleScanAbort

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters as
there can only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The
value is a bit mask where:

▪ bit 0 is set if advertising is in progress
▪ bit 1 is set if there is already a connection in a peripheral role
▪ bit 2 is set if there is a current ongoing connection attempt
▪ bit 3 is set when scanning
▪ bit 4 is set if there is already a connection to a peripheral

There is also BleScanStop() which cancels an ongoing scan. The difference is that, by calling BleScanAbort(), the
memory that was allocated from heap by BleScanStart() is not released back to the heap. The scan manager
retains it for the next scan operation.

BLESCANABORT ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments None

Example:

// Example :: BleScanAbort.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

92

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount()

 WHILE GetTickSince(startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo(2016) == 0x08 THEN

 PRINT "\nAborting scan"

 rc = BleScanAbort()

 IF SysInfo(2016) == 0 THEN

 PRINT "\nScan aborted"

 ENDIF

 ENDIF

Expected Output:

Scanning

Aborting scan

Scan aborted

BleScanStop

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters, as
there can only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The
value is a bit mask where:

▪ bit 0 is set if advertising is in progress
▪ bit 1 is set if there is already a connection in a peripheral role
▪ bit 2 is set if there is a current ongoing connection attempt
▪ bit 3 is set when scanning
▪ bit 4 is set if there is already a connection to a peripheral

There is also BleScanAbort() which cancels an ongoing scan. The difference is that, by calling BleScanStop(), the
memory that was allocated from heap by BleScanStart() is released back to the heap. The scan manager must
reallocate the memory if BleScanStart() is called again.

BLESCANSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments None

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

93

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: BleScanStop.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount()

 WHILE GetTickSince(startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo(2016) == 0x08 THEN

 PRINT "\nStop scanning. Freeing up allocated memory"

 rc = BleScanStop()

 IF SysInfo(2016) == 0 THEN

 PRINT "\nScan stopped"

 ENDIF

 ENDIF

Expected Output:

Scanning

Stop scanning. Freeing up allocated memory

Scan stopped

BleScanFlush

FUNCTION

This function is used to flush the ring buffer which stores incoming adverts which are later read.

BLESCANFLUSH ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments None

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

94

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: BleScanFlush.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount()

 WHILE GetTickSince(startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo(2016) == 0x08 THEN

 PRINT "\nAborting scan"

 rc = BleScanAbort()

 IF SysInfo(2016) == 0 THEN

 PRINT "\nScan aborted"

 ENDIF

 '//Free up memory

 rc = BleScanFlush()

 IF (rc == 0) THEN

 PRINT "\nScan results flushed."

 ENDIF

 ENDIF

Expected Output:

Scanning

Aborting scan

Scan aborted

Scan results flushed.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

95

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleScanConfig

FUNCTION

This function is used to modify the default parameters that are used when initiating a scan operation using
BleScanStart().

The following are the default values for the parameters:

Scan Interval 80 milliseconds

Scan Window 40 milliseconds

Scan Type (Active/Passive) Active

Minimum Reports in Cache 4

Note: The default Scan Window and Interval give a 50% duty cycle. The 50% duty cycle attempts to
ensure that connection events for existing connections are missed as infrequently as possible.

BLESCANCONFIG (configID, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

configID

byVal configID AS INTEGER.
This identifies the value to update as follows:

0 Scan Interval in milliseconds (range 0..10240)
1 Scan Window in milliseconds (range 0..10240)
2 Scan Type (0=Passive, 1=Active)
3 Advert Report Cache SIze

For all other configID values the function returns an error.

configValue
byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

Example:

// Example :: BleScanConfig.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, startTick

 PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval

 PRINT "\nScan Window: "; SysInfo(2151) //get current scan window

 PRINT "\nScan Type: ";

 IF SysInfo(2152)==0 THEN //get current scan type

 PRINT "Passive"

 ELSE

 PRINT "Active"

 ENDIF

 PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

96

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\n\nSetting new parameters..."

 rc = BleScanConfig(0, 100) //set scan interval to 100

 rc = BleScanConfig(1, 50) //set scan window to 50

 rc = BleScanConfig(2, 0) //set scan type to passive

 rc = BleScanConfig(3, 3) //set report cache size

 PRINT "\n\n--- New Parameters:"

 PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval

 PRINT "\nScan Window: "; SysInfo(2151) //get current scan window

 PRINT "\nScan Type: ";

 IF SysInfo(2152)==0 THEN //get current scan type

 PRINT "Passive"

 ELSE

 PRINT "Active"

 ENDIF

 PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

Expected Output:
Scan Interval: 80

Scan Window: 40

Scan Type: Active

Report Cache Size: 4

Setting new parameters..

--- New Parameters:

Scan Interval: 100

Scan Window: 50

Scan Type: Passive

Report Cache Size: 3

BleScanGetAdvReport

FUNCTION

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in
a queue buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the
handler for the EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the
number of adverts (all, not just from that peripheral) that have been discarded since the last time this function
was called and the RSSI value for that packet.

Note: The RSSI can be used to determine the closest device. However, due to fading and reflections, it is
possible that a device further away could result in a higher RSSI value.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

97

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLESCANGETADVREPORT (periphAddr$, advData$, nDiscarded, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

periphAddr$
byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the
advert.

advData$

byREF advData$ AS STRING

On return, this parameter is updated with the data payload of the advert which consists of
multiple AD elements.

nDiscarded

byREF nDiscarded AS INTEGER

On return, this parameter is updated with the number of adverts that were discarded
because there was no space in the internal queue.

nRssi

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is calculated by
the receiver in this module.

Note: This code snippet was tested with another BL652 running the iBeacon app (see in
smartBASIC_Sample_Apps folder) on peripheral firmware.

Example:

// Example :: BleScanGetAdvReport.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(5000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM periphAddr$, advData$, nDiscarded, nRssi

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

98

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 '//Read all cached advert reports

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 WHILE (rc == 0)

 PRINT "\n\nPeer Address: "; StrHexize$(periphAddr$)

 PRINT "\nAdvert Data: ";StrHexize$(advData$)

 PRINT "\nNo. Discarded Adverts: ";nDiscarded

 PRINT "\nRSSI: ";nRssi

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 ENDWHILE

 PRINT "\n\n --- No more adverts in cache"

 ENDFUNC 1

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 WAITEVENT

Expected Output:

Scanning

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -97

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -97

 --- No more adverts in cache

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -92

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -92

 --- No more adverts in cache

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

99

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Scan timeout

BleScanGetAdvReportEx

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in
a queue buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the
handler for the EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the
number of adverts (all, not just from that peripheral) that have been discarded since the last time this function
was called and the RSSI value for that packet, in addition to the advert type and the channel number on which
the advert was received.

BLESCANGETADVREPORTEX (nAdvertType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nAdvertType

byREF nAdvertType AS STRING
On return, this parameter will contain the type of the advert that was read. Possible values are
as follows:-

0 ADV_IND Invites connection requests
1 ADV_DIRECT_IND Invites connection from addressed device
2 ADV_SCAN_IND Invites scan request for more advert data
3 ADV_NONCONN_IND Does not accept connections/active scans

periphAddr$
byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the advert.

advData$

byREF advData $ AS STRING

On return, this parameter is updated with the data payload of the advert which consists of multiple AD
elements.

nDiscarded

byREF nDiscarded AS INTEGER

On return, this parameter is updated with the number of adverts that were discarded because there was
no space in the internal queue.

nRssi

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the receiver in
this module.

nChannel

byREF nChannel AS INTEGER

On return, this parameter is set to the channel on which the advert has arrived. Valid values are 0, 1, or
2.

//Example :: BleScanGetAdvReportEx.sb

DIM rc

'//Scan for 5 seconds with no filtering

rc = BleScanStart(5000, 0)

IF rc==0 THEN

 PRINT "\nScanning"

ELSE

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

100

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when scanning times out

FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

ENDFUNC 0

'//This handler will be called when an advert is received

FUNCTION HndlrAdvRpt()

 DIM nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel

 '//Read all cached advert reports

 rc=BleScanGetAdvReportEx(nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

 WHILE (rc == 0)

 PRINT "\n\nAdvert Type: "; nAdvType

 PRINT "\nPeer Address: "; StrHexize$(periphAddr$)

 PRINT "\nAdvert Data: ";StrHexize$(advData$)

 PRINT "\nNo. Discarded Adverts: ";nDiscarded

 PRINT "\nRSSI: ";nRssi

 PRINT "\nChannel: ";nChannel

 rc=BleScanGetAdvReportEx(nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

 ENDWHILE

 PRINT "\n\n --- No more adverts in cache"

ENDFUNC 1

ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

WAITEVENT

Scanning

Advert Type: 2

Peer Address: 01CDBD40C5A79A

Advert Data:

0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C40409526F6E

No. Discarded Adverts: 0

RSSI: -81

Channel: 1

 --- No more adverts in cache

Scan timeout

00

BleGetADbyIndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string which
is assumed to contain the data portion of an advert report, incoming or outgoing.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is malformed if
the length byte for that AD element suggests that more data bytes are required than actually exist
in the report string.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

101

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEGETADBYINDEX (nIndex, rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nIndex
byVAL nIndex AS INTEGER
This is a zero-based index of the AD element that is copied into the output data
parameter ADval$.

rptData$
byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which were either
constructed for an outgoing advert or were received in a scan.

nADTag
byREF nADTag AS INTEGER

When the nth index is found, the single byte tag value for that AD element is returned
in this parameter.

ADval$
byREF ADval$ AS STRING

When the nth index is found, the data excluding single byte the tag value for that AD
element is returned in this parameter.

Example:

// Example :: BleGetADbyIndex.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 rc=BleGetADbyIndex(0, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nFirst AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 rc=BleGetADbyIndex(1, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

102

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 '//Will fail because there are only 2 AD elements

 rc=BleGetADbyIndex(2, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nThird AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

Expected Output:

06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455

Second AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte specified
from a string which is assumed to contain the data portion of an advert report, incoming or outgoing. If multiple
instances of that AD tag type are suspected, then use the function BleGetADbyIndex to extract.

Note: If the last AD element is malformed, then it is treated as nonexistent. For example, it is malformed
if the length byte for that AD element suggests that more data bytes are required than actually
exist in the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

rptData$
byREF rptData$ AS STRING.
This parameter is a string that contains concatenated AD elements which were either
constructed for an outgoing advert or were received in a scan.

nADTag

byVAL nADTag AS INTEGER

This parameter specifies the single byte tag value for the AD element that is to returned
in the ADval$ parameter. Only the first instance can be catered for. If multiple instances
are suspected, then use BleAdvADbyIndex() to extract it.

ADval$
byREF ADval$ AS STRING

When the nth index is found, the data excluding single byte the tag value for that AT
element is returned in this parameter.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

103

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: BleGetADbyTag.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 nADTag = 0xDD

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 nADTag = 0xEE

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 nADTAG = 0xFF

 '//Will fail because no AD exists in 'fullAD$' with the tag 'FF'

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

104

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455

AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

BleScanGetPagerAddr

FUNCTION

When a scan is in progress after calling BleScanStart(), an EVBLE_FAST_PAGED event is thrown whenever an
ADV_DIRECT_IND advert is received with the address of this module, requesting a connection to it.

This function returns the address of the peripheral requesting a connection and the RSSI. It should be used in the
handler of the EVBLE_FAST_PAGED event to get the peripheral’s address. Scanning should then be stopped
using either BleScanAbort() or BleScanStop(). You can then use the address supplied by this function to connect
to the peripheral using BleConnect() if that is the desired use case. The Bluetooth specification does NOT
mandate a connection.

BLESCANGETPAGERADDR (periphAddr$, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

periphAddr$
byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the
advert.

nRssi

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that
advert.

Note: This is NOT a value that is sent by the peripheral but a value that is
calculated by the receiver in this module.

Example:

// Example :: BleScanGetPagerAddr.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(10000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

105

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 '//This handler will be called when an advert is received requesting a connection to this

module

FUNCTION HndlrFastPaged()

 DIM periphAddr$, nRssi

 rc = BleScanGetPagerAddr(periphAddr$, nRssi)

 PRINT "\nAdvert received from peripheral "; StrHexize$(periphAddr$); " with RSSI

";nRssi

 PRINT "\nrequesting a connection to this module"

 rc = BleScanStop()

 ENDFUNC 0

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 ONEVENT EVBLE_FAST_PAGED CALL HndlrFastPaged

 WAITEVENT

Expected Output:

Scanning

Advert received from peripheral 01D8CFCF14498D with RSSI -96

requesting a connection to this module

 Connection Functions

This section describes all the connection manager-related routines.

The Bluetooth specification stipulates that a peripheral cannot initiate a connection but can perform
disconnections. Only Central Role devices are allowed to connect when an appropriate advertising packet is
received from a peripheral.

Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when there is a
connection or disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

MsgId Description

0 There is a connection and the context parameter contains the connection handle.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

106

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1 There is a disconnection and the context parameter contains the connection handle.

14 New connection parameters for connection associated with connection handle.

15 Request for new connection parameters failed for connection handle supplied.

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key

18 The connection is encrypted

20 The connection is no longer encrypted

BleConnect

FUNCTION

This function is used to make a connection to a device in peripheral mode which is actively advertising.

Note: The peripheral device MUST be advertising with either ADV_IND or ADV_DIRECT_IND type of
advert to be able to successfully connect.

 In the case of multiple connections, it is recommended that this function is not called in quick
succession so that the underlying stack is given time to complete the setup of the new connection
before moving on to establish a new connection. Calling this function in quick succession may
cause newly established connections to be dropped.

When the connection is complete, a EVBLEMSG message with msgId = 0 and context containing the handle are
thrown to the smartBASIC runtime engine.

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

When a connection is attempted, there are other parameters that are used and the default values for those are
assumed; for example, scan window, scan interval, and periodicity. The default values for those can be changed
using the BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO()
command.

BLECONNECT (periphAddr$, connTimeoutMs, minConnIntUs, maxConnIntUs, nSuprToutUs)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

periphAddr$
byRef periphAddr$ AS STRING
The Bluetooth address of the device to connect to which MUST be properly
formatted and is exactly seven bytes long.

connTimeoutMs

byVal connTimeoutMs AS INTEGER.
The length of time in milliseconds that the connection attempt lasts. If the timer
times out then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC
application.

minConnIntUs
byVal minConnIntUs AS INTEGER.
The minimum connection interval in microseconds. Valid range is between 7500
and 4000000 microseconds.

maxConnIntUs
byVal maxConnIntUs AS INTEGER.
The maximum connection interval in microseconds. Valid range is between 7500
and 4000000 microseconds

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

107

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nSuprToutUs
byVal nSuprToutUs AS INTEGER.
The link supervision timeout for the connection in microseconds.

Example:

// Example :: BleConnect.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, periphAddr$

 '//Scan indefinitely

 rc=BleScanStart(0, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Connect to device with Bluetooth address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 ENDFUNC 1

 '//This handler will be called in the event of a connection timeout

 FUNCTION HndlrConnTO()

 PRINT "\n--- Connection timeout"

 rc=BleScanStart(0, 0)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

108

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDFUNC 1

 '//This handler will be called when there is a BLE message

 FUNCTION HndlrBleMsg(nMsgId, nCtx)

 IF nMsgId == 0 THEN

 PRINT "\n--- Connected to device with Bluetooth address "; StrHexize$(periphAddr$)

 PRINT "\n--- Disconnecting now"

 rc=BleDisconnect(nCtx)

 ENDIF

 ENDFUNC 1

 '//This handler will be called when a disconnection happens

 FUNCTION HndlrDiscon(nCtx, nRsn)

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO

 WAITEVENT

Expected Output:

Scanning

--- Connecting

--- Connected to device with Bluetooth address 01D8CFCF14498D

--- Disconnecting now

BleConnectCancel

FUNCTION

This function is used to cancel an ongoing connection attempt which has not timed out. It takes no parameters
as there can only be one attempt in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The
value is a bit mask where:

▪ bit 0 is set if advertising is in progress
▪ bit 1 is set if there is already a connection in a peripheral role
▪ bit 2 is set if there is a current ongoing connection attempt
▪ bit 3 is set when scanning
▪ bit 4 is set if there is already a connection to a peripheral

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

109

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLECONNECTCANCEL ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments None

Example:

// Example :: BleConnectCancel.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, periphAddr$

 '//Scan indefinitely

 rc=BleScanStart(0, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Wait until module stops scanning

 WHILE SysInfo(2016)==8

 ENDWHILE

 '//Connect to device with Bluetooth address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting \nCancel"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

110

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 '//Cancel current connection attempt

 rc=BleConnectCancel()

 PRINT "\n--- Connection attempt cancelled"

 ENDFUNC 0

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 WAITEVENT

Expected Output:

Scanning

--- Connecting

Cancel

--- Connection attempt cancelled

BleConnectConfig

FUNCTION

This function is used to modify the default parameters that are used when attempting a connection using
BleConnect(). At any time they can be read by adding the configID to 2100 and then passing that value to
SYSINFO().

When connecting, the central device must scan for adverts and then, when the particular peer address is
encountered, it can send the connection message to that peripheral.

Therefore, a connection attempt requires the underlying stack API to be supplied with a scan interval and scan
window. In addition, when multiple connections are in place, the radio has to be shared as efficiently as
possible; one potential scheme is to have all connection parmeters being integer multiples of a ‘base’ value. For
the purpose of this documentation, this parameter is referred to as multi-link connection interval periodicity.

The following are the default settings for these parameters:

Multi-link Connection Interval Periodicity 20 milliseconds

Scan Interval 80 milliseconds

Scan Window 40 milliseconds

Slave Latency 0

Notes: The Scan Window and Interval are multiple integers of the periodicity (although not required to be).
The scanning has a 50% duty cycle. The 50% duty cycle attempts to ensure that connection events
for existing connections are missed as infrequently as possible.

The Scan Window and Interval are internally stored in units of 0.625 milliseconds slots so reading
back via SYSINFO() does not accurately return the value you set.

BLECONNECTCONFIG (configID, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

111

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

operation.

Arguments:

configID

byVal configID AS INTEGER.
The following are the values to update:

0 Scan interval in milliseconds (range 0..10240)
1 Scan Window in milliseconds (range 0..10240)
2 Slave Latency (0..1000)
5 Multi-Link Connection Interval Periodicity (20..200)

8
Turn manual control for connection parameter update. See
EvConnParamReq for more details.

For all other configID values, the function returns an error.

configValue
byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

Example:

// Example :: BleConnectConfig.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, startTick

 SUB GetParms()

 //get default scan interval for connecting

 PRINT "\nConn Scan Interval: "; SysInfo(2100);"ms"

 //get default scan window for connecting

 PRINT "\nConn Scan Window: "; SysInfo(2101);"ms”

 //get default slave latency for connecting

 PRINT "\nConn slave latency: "; SysInfo(2102)

 //get current multi-link connection interval periodicity

 PRINT "\nML Conn Interval Periodicity: "; SysInfo(2105);"ms"

 ENDSUB

 PRINT "\n\n--- Current Parameters:"

 GetParms()

 PRINT "\n\nSetting new parameters..."

 rc = BleConnectConfig(0, 60) //set scan interval to 60

 rc = BleConnectConfig(1, 13) //set scan window to 13 (will round to 12)

 rc = BleConnectConfig(2, 3) //set slave latency to 1

 rc = BleConnectConfig(5, 30) //set ML connection interval periodicity to 30

 PRINT "\n"; integer.h'rc

 PRINT "\n\n--- New Parameters:"

 GetParms()

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

112

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

--- Current Parameters:

Conn Scan Interval: 80ms

Conn Scan Window: 40ms

Conn slave latency: 0

ML Conn Interval Periodicity: 20ms

Setting new parameters...

--- New Parameters:

Conn Scan Interval: 60ms

Conn Scan Window: 12ms

Conn slave latency: 3

ML Conn Interval Periodicity: 30ms

BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete, a EVBLEMSG message with msgId = 1 and context containing the handle is
thrown to the smartBASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must be disconnected.

Example:

// Example :: BleDisconnect.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nNew Connection ";nCtx

 rc = BleAuthenticate(nCtx)

 PRINT BleDisconnect(nCtx)

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 EXITFUNC 0

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

113

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF BleAdvertStart(0,addr$,100,30000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

Adverts Started

New Connection 35800

Disconnected 3580

BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection parameters. For
example: interval, slave latency, and link supervision timeout.

When the request is complete, a EVBLEMSG message with msgId = 14 and context containing the handle are
thrown to the smartBASIC runtime engine if it is successful. If the request to change the connection parameters
fails, an EVBLEMSG message with msgid = 15 is thrown to the smartBASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must have the connection parameters
changed.

nMinIntUs
byVal nMinIntUs AS INTEGER.
The minimum acceptable connection interval in microseconds.

nMaxIntUs
byVal nMaxIntUs AS INTEGER.
The maximum acceptable connection interval in microseconds.

nSuprToutUs
byVal nSuprToutUs AS INTEGER.
The link supervision timeout for the connection in microseconds. It should be greater than
the slave latency times that granted the connection interval.

nSlaveLatency
byVal nSlaveLatency AS INTEGER.
The number of connection interval polls that the peripheral may ignore. This times the
connection interval shall not be greater than the link supervision timeout.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

114

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: Slave latency is a mechanism that reduces power usage in a peripheral device and maintains short
latency. Generally, a slave reduces power usage by setting the largest connection interval possible.
This means the latency is equivalent to that connection interval. To mitigate this, the peripheral
can greatly reduce the connection interval and then have a non-zero slave latency.

 For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0. In
this case, key presses are reported to the central device once per second, a poor user experience.
Instead, the connection interval can be set to 50 msec, for example, and slave latency to 19. If
there are no key presses, the power use is the same as before because ((19+1) * 50) equals 1000.
When a key is pressed, the peripheral knows that the central device will poll within 50 msec, so it
can send that keypress with a latency of 50 msec. A connection interval of 50 and slave latency of
19 means the slave is allowed to NOT acknowledge a poll for up to 19 poll messages from the
central device.

Example:

// Example :: BleSetCurConnParms.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 DIM addr$: addr$=""

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 DIM intrvl,sprvTo,sLat

 SELECT nMsgId

 CASE 0 //BLE_EVBLEMSGID_CONNECT

 PRINT "\n --- New Connection : ","",nCtx

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\nConn Interval","","",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency","",slat

 PRINT "\n\nRequest new parameters"

 //request connection interval in range 50ms to 75ms and link

 //supervision timeout of 4seconds with a slave latency of 19

 rc = BleSetCurconnParms(nCtx, 50000,75000,4000000,19)

 ENDIF

 CASE 1 //BLE_EVBLEMSGID_DISCONNECT

 PRINT "\n --- Disconnected : ",nCtx

 EXITFUNC 0

 CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

115

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF rc==0 THEN

 PRINT "\n\nConn Interval",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency",slat

 ENDIF

 CASE 15 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL

 PRINT "\n ??? Conn Parm Negotiation FAILED"

 CASE ELSE

 PRINT "\nBle Msg",nMsgId

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BL652"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output (Unsuccessful Negotiation):

Adverts Started

Make a connection to the BL652

 --- New Connection : 1352

Conn Interval 7500

Conn Supervision Timeout 7000000

Conn Slave Latency 0

Request new parameters

 ??? Conn Parm Negotiation FAILED

 --- Disconnected : 1352

Expected Output (Successful Negotiation):

Adverts Started

Make a connection to the BL652

 --- New Connection : 134

Conn Interval 30000

Conn Supervision Timeout 720000

Conn Slave Latency 0

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

116

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Request new parameters

New conn Interval 75000

New conn Supervision Timeout 4000000

New conn Slave Latency 19

--- Disconnected : 134

Note: The first set of parameters differ depending on your central device.

BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the connection handle.
Given there are 3 connection parameters, the function takes three variables by reference so that the function
can return the values in those variables.

BLEGETCURCONNPARMS (nConnHandle, nIntervalUs, nSuprToutUs, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection to read the connection parameters of

nIntervalUs
byRef nIntervalUs AS INTEGER.
The current connection interval in microseconds

nSuprToutUs
byRef nSuprToutUs AS INTEGER.
The current link supervision timeout in microseconds for the connection.

nSlaveLatency

byRef nSlaveLatency AS INTEGER.
The current number of connection interval polls that the peripheral may ignore. This
value multiplied by the connection interval will not be greater than the link
supervision timeout.

Note: See Note on Slave Latency.

See previous example.

BleConnMngrUpdCfg

FUNCTION

This function is used to initialise the connection manager for slave/peripheral role.

BLECONNMNGRUPDCFG (nConnUpdateFirstDelay, nConnUpdateNextDelay, nConnUpdateMaxRetry)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nConnUpdateFirstDelay
byVal nConnUpdateFirstDelay AS INTEGER.
In milliseconds 100 to 32000

nConnUpdateNextDelay BYVAL nConnUpdateNextDelay AS INTEGER

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

117

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

In milliseconds 100 to 32000

nConnUpdateMaxRetry
BYVAL nConnUpdateMaxRetry AS INTEGER
In number of retries

Example:

dim rc

#define CONN_UPD_FIRST_DELAY 500

#define CONN_UPD_NEXT_DELAY 800

#define CONN_UPD_MAX_RETRY 800

rc=BleConnMngrUpdCfg(CONN_UPD_FIRST_DELAY, CONN_UPD_NEXT_DELAY, CONN_UPD_MAX_RETRY)

if rc == 0 then

 print "\nConnection manager successfully initialised"

else

 print "\nError: ";integer.h'rc

endif

Expected Output:

Connection manager successfully initialised

BleGetConnHandleFromAddr

FUNCTION

This function is used to get the connection handle from a specified Bluetooth address.

BLEGETCONNHANDLEFROMADDR (BtAddrBE$, nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

BtAddrBE$
byRef BtAddrBE$ AS STRING.
The Bluetooth address of the connected remote device.

nConnHandle
byRef nConnHandle AS INTEGER.
Returned connection handle.

Example:

// Example :: BleGetConnHandleFromAddr.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart(0, 0)

IF rc==0 THEN

 PRINT "\nScanning"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

118

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ELSE

 PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received

FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Connect to device with MAC address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

ENDFUNC 1

'//This handler will be called in the event of a connection timeout

FUNCTION HndlrConnTO()

 PRINT "\n--- Connection timeout"

 rc=BleScanStart(0, 0)

ENDFUNC 1

'//This handler will be called when there is a BLE message

FUNCTION HndlrBleMsg(nMsgId, nCtx)

 IF nMsgId == 0 THEN

 dim h

 rc=BleGetConnHandleFromAddr(periphAddr$, h)

 PRINT "\n--- Connected to device with MAC address "; StrHexize$(periphAddr$);"

Handle: ";h

 PRINT "\n--- Disconnecting now"

 rc=BleDisconnect(nCtx)

 ENDIF

ENDFUNC 1

'//This handler will be called when a disconnection happens

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

119

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION HndlrDiscon(nCtx, nRsn)

ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

--- Connected to device with MAC address 000016A4093A64 Handle: 261888

--- Disconnecting now

00

BleGetAddrFromConnHandle

FUNCTION

This function is used to get the Bluetooth address of a device from a connection handle.

BLEGETADDRFROMCONNHANDLE (nConnHandle, BtAddrBE$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byRef nConnHandle AS INTEGER.
Connection handle from which to get Bluetooth address

BtAddrBE$
byRef BtAddrBE$ AS STRING.
Returned Bluetooth address.

Example:

// Example :: BleGetAddrFromConnHandle.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart(0, 0)

IF rc==0 THEN

 PRINT "\nScanning"

ELSE

 PRINT "\nError: "; INTEGER.H'rc

ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

120

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

'//This handler will be called when an advert is received

FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Connect to device with MAC address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

ENDFUNC 1

'//This handler will be called in the event of a connection timeout

FUNCTION HndlrConnTO()

 PRINT "\n--- Connection timeout"

 rc=BleScanStart(0, 0)

ENDFUNC 1

'//This handler will be called when there is a BLE message

FUNCTION HndlrBleMsg(nMsgId, nCtx)

 IF nMsgId == 0 THEN

 dim addr$

 rc=BleGetAddrFromConnHandle(nCtx,addr$)

 PRINT "\n--- Connected to device with MAC address "; StrHexize$(addr$)

 PRINT "\n--- Disconnecting now"

 rc=BleDisconnect(nCtx)

 ENDIF

ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon(nCtx, nRsn)

ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

121

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

--- Connected to device with MAC address 000016A4093A64

--- Disconnecting now

00

BleConnRssiStart

FUNCTION

This function is used to enable RSSI reporting for a particular connection. Given an RSSI value is generated for
every connection event, this can result in a flood of events which will result in increased power consumption as
the CPU will need to be in active mode for longer to process them. To mitigate this, this function also takes a
threshold dBm value and a skipcount to reduce and manage these events.

The threshold dBm parameter ensures that a report is only generated if the change in detected RSSI value is
greater or less than the most reported value by this amount and the skipcount is how many times this condition
has to occur for the event to be thrown to the application.

BLECONNRSSISTART (nConnHandle, nThresholdDbm, nSkipCount)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection for which rssi reporting is to be enabled

nThresholdDbm
byVal nThresholdDbm AS INTEGER.
The minimum change in dBm before triggering the EVCONNRSSI event

nSkipCount
byRef nSkipCount AS INTEGER.

The number of RSSI samples with a change of nThresholdDbm or more before
triggering the EVCONNRSSI event

Example:

// Example :: BleConnRssiStart.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,conHndl

DIM addr$: addr$=""

//==

// Initialise

//==

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

122

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION OnStartup()

 rc=BleAdvertStart(0,addr$,50,0,0)

ENDFUNC rc

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 rc=BleConnRssiStart(conHndl,4,10)

 ENDIF

ENDFUNC 1

//==

// Connection related RSSI events

//==

FUNCTION HndlrConnRssi(BYVAL charHandle, BYVAL rssi) AS INTEGER

 PRINT "\nRSSI=";rssi;" for connection "; integer.h' charHandle

 IF rssi < -80 then

 //too far away so stop monitoring the rssi (this is just an example)

 //in reality use some other reason to stop

 rc=BleConnRssiStop(conHndl)

 ENDIF

ENDFUNC 1

//==

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCONNRSSI CALL HndlrConnRssi

IF OnStartup()!=0 THEN

 PRINT "\nFailure OnStartup"

ENDIF

//Wait for events

WAITEVENT

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

123

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleConnRssiStop

FUNCTION

This function is used to disable RSSI reporting for a particular connection which was enabled using the function
BleConnRssiStart described above.

On disconnection, reporting will automatically stop.

BLECONNRSSISTOP (nConnHandle)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection for which rssi reporting is to be enabled

For example, see description of BleConnRssiStart() above.

 Whitelist Management Functions

This section describes routines which are used to manage whitelists.

A whitelist is a list of Bluetooth addresses and Identity Resolving Keys (IRKs) which the baseband radio will use to
gate incoming packets upwards to the stack as they are received.

If the whitelist is active, then any radio packet whose source Bluetooth address is not in the list will be rejected.
However, note that in BLE for privacy reasons, resolvable Bluetooth addresses can be used and so the address
will not match with one in the list and so for that type of address the list of Indentity Resolving Keys in the
whitelist is also consulted to see if the resolvable address is a trusted device.

A trusted device by definition will have supplied its IRK key when the pairing and bonding happened in the past.

Hence treat this group of functions as a means of creating, maintaining and destroying that list of addresses and
IRKs.

The operation that enables whitelisting is the function that starts advertising and scanning. So refer to the
functions BleAdvertStart() and BleScanStart().

BleWhitelistCreate

FUNCTION

This function is used to create a new whitelist to which addresses and identity resolving keys can be added using
BleWhitelistAddAddr() or BleWhitelistAddIndex().

BLEWHITELISTCREATE (hWlist, nMaxAddrs, nMaxIrks, nPktFilterMask)

Returns

INTEGER, a result code.

Typical value:

0x0000 indicates a successful operation

0x605E indicates too many whitelists already created.

Arguments

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

124

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

hWlist
byRef hWlist AS INTEGER.
If an empty whitelist is successfully created then this will be updated with a valid
handle. If not then this will contain -1 (0xFFFFFFFF)

nMaxAddrs
byVal nMaxAddrs AS INTEGER.
Maximum addresses that will be stored in this whitelist

nMaxIrks
byVal nMaxIrks AS INTEGER.
Maximum Identity Resolving Keys (IRKs) that will be stored in this whitelist

nPktFilterMask

byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply
to, as follows:

▪ Bit 0 : Set to 1 for Scan Request packets
▪ Bit 1 : Set to 1 for Connection Request packets
▪ Bit 2 : Set to 1 for Advert Report Packets
▪ Bits 3 to 31 : reserved for future use

Note: If all bits are 0, then a default mask of 7 is used for the BL652.

Example:

// Example :: BleWhitelist.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,conHndl,hWlist, val

DIM addr$: addr$=""

//==

//==

sub AssertRC(byval tag as integer)

 if rc!=0 then

 print "\nFailed with ";integer.h' rc;" at tag ";tag

 endif

endsub

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

125

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\n--- Connected to client"

 ENDIF

ENDFUNC 1

//==

// This handler is called when there is an advert report waiting to be read

//==

function HandlerAdvRpt() as integer

 dim ad$,dta$,ndisc,rsi

 rc = BleScanGetAdvReport(ad$,dta$,ndisc,rsi)

 while rc==0

 print "\nADV:";strhexize$(ad$);" ";strhexize$(dta$);" ";ndisc;" ";rsi

 rc = BleScanGetAdvReport(ad$,dta$,ndisc,rsi)

 endwhile

endfunc 1

//==

// This handler is called when there is an advert report waiting to be read

//==

sub WhiteListInit()

 //set invalid whitelist handle

 hWlist=-1

 //now check maximum whitelists that can be defined and for that valid handle

 //is not required

 rc=BleWhiteListInfo(hWlist,0, val) //get max number of whitelists allowes

 AssertRC(100)

 print "\n Max allowed whitelists = "; val

 //create a whitelist

 rc=BleWhitelistCreate(hWlist,8,8,0)

 IF rc==0 THEN

 //Add address we want to specifically look for

 addr$="000016A40B1623"

 rc=BleWhitelistAddAddr(hWlist,addr$)

 AssertRC(110)

 //Made a mistake so clear it

 rc=BleWhitelistClear(hWlist)

 AssertRC(120)

 //now add the correct address

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

126

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 addr$="000016A40B1642"

 rc=BleWhitelistAddAddr(hWlist,addr$)

 AssertRC(130)

 //now add first one in the trusted database

 rc=BleWhitelistAddIndex(hWlist,0)

 AssertRC(140)

 //Change the filter property from default used in the create function

 //so that connection requests are disallowed

 rc=BleWhitelistSetFilter(hWlist,1)

 AssertRC(150)

 //now check the whitelist by interogating the whitelist handle

 rc=BleWhiteListInfo(hWlist,101, val) //get current number of mac addresses

 AssertRC(160)

 print "\n Current number of addresses = "; val

 ENDIF

endsub

//==

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVBLE_ADV_REPORT CALL HandlerAdvRpt

//Initiliase a whitelist

WhiteListInit()

//start adverts with whitelisting

addr$=""

rc=BleAdvertStart(0,addr$,50,0,hWlist)

AssertRC(910)

//Wait for events

WAITEVENT

//destroy the whitelist

BleWhitelistDestroy(hWlist)

BleWhitelistDestroy

FUNCTION

This function is used to destroy an existing whitelist identified by a valid handle previously returned from
BleWhitelistCreate() so that new addresses and Identity Resolving Keys (IRKs) can be added. This function

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

127

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

completely destroys the whitelist of the given handle, and a new one will need to be created if necessary (using
BleWhitelistCreate).

BLEWHITELISTDESTROY (hWlist)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist

byRef hWlist AS INTEGER.
This is the handle of the whitelist and is passed as a reference so that on exit it
will have an invalid handle value so cannot be used inadvertently. The handle will
have been returned by BleWhitelistCreate()

For example, see description of BleWhitelistCreate() above.

BleWhitelistClear

FUNCTION

This function is used to clear an existing whitelist identified by a valid handle previously returned from
BleWhitelistCreate() so that new addresses and Identity Resolving Keys (IRKs) can be added. The handle of the
whitelist is still valid so data can be added to the whitelist without having to call BleWhitelistCreate again.

BLEWHITELISTCLEAR (hWlist)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist
byVal hWlist AS INTEGER.
This is the handle of the whitelist to clear and will have been returned by
BleWhitelistCreate()

For example, see description of BleWhitelistCreate() above.

BleWhitelistSetFilter

FUNCTION

This function is used to change the filter policy mask associated with the whitelist object identified by the
handle.

BLEWHITELISTSETFILTER (hWlist, nPktFilterMask)

Returns
INTEGER, a result code.
Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist
byRef hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by
BleWhitelistCreate()

nPktFilterMask

byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply
to, as follows:
▪ Bit 0 : Set to 1 for Scan Request packets

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

128

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Bit 1 : Set to 1 for Connection Request packets
▪ Bit 2 : Set to 1 for Advert Report Packets
▪ Bits 3 to 31 : reserved for future use

Note: If all bits are 0, then a default mask of 7 is used for the BL652.

For example, see description of BleWhitelistCreate() above.

BleWhitelistAddAddr

FUNCTION

This function is used to add a 7 byte BT address to the whitelist identified by the handle supplied. The function
will automatically check if the BT address is trusted by interrogating the trusted device database and if it is, then
the address stored there along with the IRK is added instead of the address supplied. This means that in
smartphones with Android and iOS (which make heavy use of resolvable addresses) there is seemless and hassle
free integration.

BLEWHITELISTADDADDR (hWlist, addr$)

Returns
INTEGER, a result code.
Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist
byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by
BleWhitelistCreate()

addr$

byRef addr$ AS STRING.
This is the address that is to be added to the whitelist. It will be checked for
presence in trusted device database and if trusted, the IRK will also be added
automatically to the whitelist

For example, see description of BleWhitelistCreate() above.

BleWhitelistAddIndex

FUNCTION
This function is used to add the Nth indexed device in the trusted device database to the whitelist identified by
the handle supplied. If that Nth record exists in the database then the Identity Resolving Key will also be added
automatically.

BLEWHITELISTADDINDEX (hWlist, nIndex)

Returns
INTEGER, a result code.
Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist
byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by
BleWhitelistCreate()

nIndex

byVal nIndex AS INTEGER.
This is the Nth index (zero based) of the record in the trusted device database to
add to the whitelist. The IRK will also be added automatically to the whitelist.
The index is the same entity per the function BleBondMngrGetInfo()

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

129

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

For example, see description of BleWhitelistCreate() above.

BleWhitelistInfo

FUNCTION

This function is used to return information about the whitelist provided. This may be invalid for certain nInfoID
values, as that is information about the whitelist manager in general.

BLEWHITELISTINFO (hWlist, nInfoID, nValue)

Returns
INTEGER, a result code.
Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist
byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by
BleWhitelistCreate()

nInfoID

byVal nInfoID AS INTEGER.
This is ID of the information to be returned as follows:
▪ 0 : maximum number of whitelists (hWlist is ignored)
▪ 1 : maximum number of Bluetooth addresses (hWlist is ignored)
▪ 2 : maximum number of IRKs (hWlist is ignored)
▪ 101 : current number of addresses added
▪ 102 : current number of IRKs added

Note: For 101 and 102, the values will be cleared to 0 if BleWhitelistClear()
is called.

nValue
byRef nValue AS INTEGER.
The information value is returned in this variable

For example, see description of BleWhitelistCreate() above.

 GATT Server Functions

This section describes all functions related to creating and managing services that collectively define a GATT
table from a GATT server role perspective. These functions allow the developer to create any service that has is
described and adopted by the Bluetooth SIG or any custom service that implements some custom unique
functionality, within resource constraints such as the limited RAM and FLASH memory that is exist in the
module.

A GATT table is a collection of adopted or custom services which, in turn, are a collection of adopted or custom
characteristics. By definition, an adopted service cannot contain custom characteristics but the reverse is
possible where a custom service can include both adopted and custom characteristics.

Descriptions of services and characteristics are available in the Bluetooth Specification v4.0 or newer. Because
these descriptions are concise and difficult to understand, the following section attempts to familiarise you with
these concepts using the smartBASIC programming environment perspective.

To help understand service and characteristic better, think of a characteristic as a container (or a pot) of data
where the pot comes with space to store the data and a set of properties that are officially called Descriptors in
the BT spec. In the pot analogy, think of a descriptor as the color of the pot, whether it has a lid, whether the lid
has a lock, whether it has a handle or a spout, etc. For a full list of these descriptors online, see
http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

130

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

assigned 16-bit UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you decide
to add those to your characteristic definition.

You can consider a service as a carrier bag to hold a group of related characterisics together where the printing
on the carrier bag is a UUID. From a smartBASIC developer’s perspective, a set of characteristics is what you
need to manage and the concept of service is only required at GATT table creation time.

A GATT table can have many services, each containing one or more characteristics. The difference between
services and characteristics is expedited using an identification number called a UUID (Universally Unique
Identifier) which is a 128-bit (16-byte) number. Adopted services or characteristics have a 16-bit (2-byte)
shorthand identifier (which is an offset plus a base 128-bit UUID defined and reserved by the Bluetooth SIG);
custom service or characteristics have the full 128-bit UUID. The logic behind this is that a 16-bit UUID implies
that a specification has been published by the Bluetooth SIG whereas using a 128-bit UUID does NOT require any
central authority to maintain a register of those UUIDs or specifications describing them.

The lack of the requirement for a central register is important to understand in the sense that, if a custom
service or characteristic must be created, the developer can use any publicly available UUID (sometimes also
known as GUID) generation utility.

These utilities use entropy from the real world to generate a 128-bit random number that has an extremely low
probability to be the same as that generated by someone else at the same time or in the past or future.

As an example, at the time of writing this document, the following website
http://www.guidgenerator.com/online-guid-generator.aspx offers an immediate UUID generation service,
although it uses the term GUID. From the GUID Generator website:

How unique is a GUID?

128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000 GUIDs
per second were generated for 1 year the probability of a duplicate would be only 50%. Or if every
human on Earth generated 600,000,000 GUIDs there would only be a 50% probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central register
maintained by the Bluetooth SIG for custom UUIDs.

Please note that Laird does not guarantee that the UUID generated by this website or any other utility is unique.
It is left to the judgement of the developer whether to use it or not.

Note: If the developer intends to create custom services and/or characteristics then it is recommended that
a single UUID is generated and used from then on as a 128-bit (16 byte) company/developer unique
base along with a 16-bit (2-byte) offset, in the same manner as the Bluetooth SIG.

 This allows up to 65536 custom services and characteristics to be created, with the added
advantage that it is easier to maintain a list of 16-bit integers.

 The main reason for avoiding more than one long UUID is to keep RAM usage down given that 16
bytes of RAM is used to store a long UUID. smart BASIC functions have been provided to manage
these custom 2-byte UUIDs along with their 16-byte base UUIDs.

In this document, when a service or characteristic is described as adopted, it implies that the Bluetooth SIG
published a specification which defines that service or characteristic and there is a requirement that any device
claiming to support them has proof that the functionality has been tested and verified to behave as per that
specification.

http://ews-support.lairdtech.com/
http://www.guidgenerator.com/online-guid-generator.aspx

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

131

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Currently there is no requirement for custom service and/or characteristics to have any approval. By definition,
interoperability is restricted to the provider and implementer.

A service is an abstraction of some collectivised functionality which, if broken down further, would cease to
provide the intended behaviour. Two examples in the BLE domain that have been adopted by the Bluetooth SIG
are Blood Pressure Service and Heart Rate Service. Each have sub-components that map to characteristics.

Blood pressure is defined by a collection of data entities such as Systolic Pressure, Diastolic Pressure, and Pulse
Rate. Likewise, a Heart Rate service has a collection which includes entities such as the Pulse Rate and Body
Sensor Location.

A list of all the adopted services is at: http://developer.Bluetooth.org/GATT/services/Pages/ServicesHome.aspx.
Laird recommends that, if you decide to create a custom service, it should be defined and described in a similar
fashion; your goal should be to get the Bluetooth SIG to adopt it for everyone to use in an interoperable
manner.

These services are also assigned 16-bit UUIDs (value 0x18xx) and are referenced in some of the smart BASIC API
functions described in this section.

Services, as described above, are a collection of one or more characteristics. A list of all adopted characteristics
is found at: http://developer.Bluetooth.org/GATT/characteristics/Pages/CharacteristicsHome.aspx. You should
note that these descriptors are also assigned 16-bit UUIDs (value 0x2Axx) and are referenced in some of the API
functions described in this section. Custom characteristics have 128-bit (16-byte) UUIDs and API functions are
provided to handle those.

Note: If you intend to create a custom service or characteristic and adopt the recommendation of a
single 16-byte base UUID so that the service can be identified using a 2-byte UUID, then allocate a
16-bit value which is not going to coincide with any adopted values to minimise confusion.
Selecting a similar value is possible and legal given that the base UUID is different.

The remainder of this introduction focuses on the specifics of how to create and manage a GATT table from a
perspective of the smart BASIC API functions in the module.

Recall that a service was described as a carrier bag that groups related characteristics together and a
characteristic is a data container (pot). Therefore, a remote GATT client looking at the server which is presented
in your GATT table, sees multiple carrier bags each containing one or more pots of data.

The GATT client (remote end of the wireless connection) msut see those carrier bags to determine the groupings
and, once it has identified the pots, it only needs to keep a list of references to the pots it is interested in. Once
that list is made at the client end, it can ‘throw away the carrier bag’.

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

132

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 Yes

 Yes
Broadcastable

Create a metadata object which
defines the permissions for the

characteristic value attribute

Notifiable OR
Indicatable

BleHandleUuid()

BleSvcCommit()

BleAttrMetadata()

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

Start the definition of a new characteristic
which will be later commited to the GATT

table in a single transaction
BleCharNew()

 Yes User Desc
Descriptor?

BleAttrMetadata()

Create a metadata object which
defines the permissions for the

User Desc Descriptor

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc()

BleHandleUuid()

Create a UUID Handle for Service (16/128)

Create a UUID Handle for Characterisitic (16/128)

 Yes

BleAttrMetadata()

Add other
Descriptor?

Add parameters for creation of
other Descriptor

Create a metadata object which
defines the permissions for the

other Descriptor

BleCharDescAdd()

Commit the Characteristic to the
Gatt ServerTable in single transaction

BleCharCommit()

Commit a PRIMARY or SECONDARY
service which returns a service handle

 Yes

More
Services?

 Yes

More
Characteristics?

Save the handle

that is returned

as it is used to

interact with the

characteristic

 Yes Pres'tion Format
Descriptor?

Add parameters for creation of
Presentation Format Descriptor
BleCharDescPrstnFrmt()

Similarly in the module, once the GATT table
is created and after each service is fully
populated with one or more characteristics,
there is no need to keep that ‘carrier bag’.
However, as each characterstic is ‘placed in
the carrier bag’ using the appropriate
smartBASIC API function, a receipt is returned
and is referred to as a char_handle. The
developer must then keep those handles to
be able to interact with that characteristic.
The handle does not care whether the
characteristic is adopted or custom because,
from then on the firmware managing it
behind the scenes in smartBASIC does not
care.

From the smartBASIC application developer’s
logical perspective, a GATT table looks
nothing like the table that is presented in
most BLE literature. Instead, the GATT table is
simply a collection of char_handles that
reference the characteristics (data
containers) which have been registered with
the underlying GATT table in the BLE stack.

A particular char_handle is used to make
something happen to the referenced
characteristic (data container) using a smart
BASIC function and conversely, if data is
written into that characteristic (data
container) by a remote GATT client, then an
event is thrown in the form of a message,
into the smart BASIC runtime engine which is
processed if and only if a handler function
has been registered by the apps developer
using the ONEVENT statement.

With this simple model in mind, an overview
of how the smart BASIC functions are used to
register services and characteristics is
illustrated in the flowchart on the right and
sample code follows on the next page.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

133

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: ServicesAndCharacteristics.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 //==

 //Register two Services in the GATT Table. Service 1 with 2 Characteristics and

 //Service 2 with 1 characteristic. This implies a total of 3 characteristics to

 //manage.

 //The characteristic 2 in Service 1 will not be readable or writable but only

 //indicatable

 //The characteristic 1 in Service 2 will not be readable or writable but only

 //notifyable

 //==

 DIM rc //result code

 DIM hSvc //service handle

 DIM mdAttr

 DIM mdCccd

 DIM mdSccd

 DIM chProp

 DIM attr$

 DIM hChar11 // handles for characteristic 1 of Service 1

 DIM hChar21 // handles for characteristic 2 of Service 1

 DIM hChar12 // handles for characteristic 1 of Service 2

 DIM hUuidS1 // handles for uuid of Service 1

 DIM hUuidS2 // handles for uuid of Service 2

 DIM hUuidC11 // handles for uuid of characteristic 1 in Service 1

 DIM hUuidC12 // handles for uuid of characteristic 2 in Service 1

 DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

 //---Register Service 1

 hUuidS1 = BleHandleUuid16(0x180D)

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, hUuidS1, hSvc)

 //---Register Characteristic 1 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

134

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_READ + BLE_CHAR_PROPERTIES_WRITE

 hUuidC11 = BleHandleUuid16(0x2A37)

 rc = BleCharNew(chProp, hUuidC11,mdAttr,mdCccd,mdSccd)

 rc = BleCharCommit(shHrs,hrs$,hChar11)

 //---Register Characteristic 2 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_INDICATE

 hUuidC12 = BleHandleUuid16(0x2A39)

 rc = BleCharNew(chProp, hUuidC12,mdAttr,mdCccd,mdSccd)

 attr$="\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar21)

 rc = BleServiceCommit(hSvc)

 //---Register Service 2 (can now reuse the service handle)

 hUuidS2 = BleHandleUuid16(0x1856)

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, hUuidS2, hSvc)

 //---Register Characteristic 1 in Service 2

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_NONE,BLE_ATTR_ACCESS_NONE,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_NOTIFY

 hUuidC21 = BleHandleUuid16(0x2A54)

 rc = BleCharNew(chProp, hUuidC21,mdAttr,mdCccd,mdSccd)

 attr$="\00\00\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar12)

 rc = BleServiceCommit(hSvc)

 //===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client are detected and processed as follows:

 //--

 // To deal with writes from a GATT client into characteristic 1 of Service 1

 // which has the handle hChar11

 //--

 // This handler is called when there is a EVCHARVAL message

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

135

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 FUNCTION HandlerCharVal(BYVAL hChar AS INTEGER) AS INTEGER

 DIM attr$

 IF hChar == hChar11 THEN

 rc = BleCharValueRead(hChar11,attr$)

 print "Svc1/Char1 has been writen with = ";attr$

 ENDIF

 ENDFUNC 1

 //enable characteristic value write handler

 OnEvent EVCHARVAL call HandlerCharVal

 WAITEVENT

Assuming there is a connection and notify has been enabled, a value notification is expedited as follows:

 //--

 // Notify a value for characteristic 1 in service 2

 //--

 attr$="somevalue"

 rc = BleCharValueNotify(hChar12,attr$)

Assuming there is a connection and indicate has been enabled, a value indication is expedited as follows:

 //--

 // indicate a value for characteristic 2 in service 1

 //--

 // This handler is called when there is a EVCHARHVC message

 FUNCTION HandlerCharHvc(BYVAL hChar AS INTEGER) AS INTEGER

 IF hChar == hChar12 THEN

 PRINT "Svc1/Char2 indicate has been confirmed"

 ENDIF

 ENDFUNC 1

 //enable characteristic value indication confirm handler

 OnEvent EVCHARHVC CALL HandlerCharHvc

 attr$="somevalue"

 rc = BleCharValueIndicate(hChar12,attr$)

The rest of this section details all the smartBASIC functions that help create that framework.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

136

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Events and Messages

See also Events and Messages for the messages that are thrown to the application which are related to the
generic characteristics API. The relevant messages are those that start with EVCHARxxx.

BleGapSvcInit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose, with the
information provided. If it is not called before adverts are started, default values are exposed. Given this is a
mandatory service, unlike other services which must be registered, this one must only be initialised as the
underlying BLE stack unconditionally registers it when starting up.

The GAP service contains five characteristics as listed at the following site:
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.generic_acce
ss.xml

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConnInterval, nMaxConnInterval,
nSupervisionTout, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation

Arguments:

deviceName

byRef deviceName AS STRING
The name of the device (such as Laird_Thermometer) to store in the Device Name
characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT(), this field is
read from the service and an attempt is made to append it in the
Device Name AD. If the name is too long, that function fails to
initialise the advert report and a default name is transmitted. We
recommend that the device name submitted in this call be as short
as possible.

nameWritable
byVal nameWritable AS INTEGER

If non-zero, the peer device is allowed to write the device name. Some profiles
allow this to be made optional.

nAppearance

byVal nAppearance AS INTEGER

Field lists the external appearance of the device and updates the Appearance
characteristic of the GAP service. Possible values:
org.Bluetooth.characteristic.gap.appearance

nMinConnInterval

byVal nMinConnInterval AS INTEGER

The preferred minimum connection interval, updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be smaller than nMaxConnInterval.

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

137

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nMaxConnInterval

byVal nMaxConnInterval AS INTEGER

The preferred maximum connection interval, updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be larger than nMinConnInterval.

nSupervisionTimeout

byVal nSupervisionTimeout AS INTEGER

The preferred link supervision timeout and updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service.

Range is between 100000 to 32000000 microseconds (rounded to the nearest
10000 microseconds).

nSlaveLatency

byVal nSlaveLatency AS INTEGER

The preferred slave latency is the number of communication intervals that a slave
may ignore without losing the connection and updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service.

This value must be smaller than (nSupervisionTimeout/ nMaxConnInterval) -1. i.e.
nSlaveLatency < (nSupervisionTimeout / nMaxConnInterval) -1

Example:

// Example :: BleGapSvcInit.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL,s$

 dvcNme$= "Laird_TS"

 nmeWrtble = 0 //Device name will not be writable by peer

 apprnce = 768 //The device will appear as a Generic Thermometer

 MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds

 MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second

 ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

 sL = 0 //Slave latency--number of conn events that can be missed

 rc=BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc //Print result code as 4 hex digits

 ENDIF

Expected Output:

Success

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

138

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGetDeviceName$

FUNCTION

This function reads the device name characteristic value from the local GATT table. This value is the same as that
supplied in BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it may be different.

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the best time to
call this function.

BLEGETDEVICENAME$ ()

Returns STRING, the current device name in the local GATT table. It is the same as that
supplied in BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it
can be different. EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT
client writes a new value.

Arguments None

Example:

// Example :: BleGetDeviceName$.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL

 PRINT "\n --- DevName : "; BleGetDeviceName$()

 // Changing device name manually

 dvcNme$= "My BL652"

 nmeWrtble = 0

 apprnce = 768

 MinConnInt = 500000

 MaxConnInt = 1000000

 ConnSupTO = 4000000

 sL = 0

 rc = BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 PRINT "\n --- New DevName : "; BleGetDeviceName$()

Expected Output:

--- DevName : LAIRD BL652

--- New DevName : My BL652

BleSvcRegDevInfo

FUNCTION

This function is used to register the Device Information service with the GATT server. The Device Information
service contains nine characteristics as listed at the following website:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

139

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.device_infor
mation.xml

The firmware revision string is always set to BL654:vW.X.Y.Z where W,X,Y,Z are as per the revision information
which is returned to the command AT I 4.

BLESVCREGDEVINFO (manfName$, modelNum$, serialNum$, hwRev$, swRev$, sysId$, regDataList$,
pnpId$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

manfName$
byVal manfName$ AS STRING
The device manufacturer. Can be set empty to omit submission.

modelNum$
byVal modelNum$ AS STRING

The device model number. Can be set empty to omit submission.

serialNum$
byVal serialNum$ AS STRING

The device serial number. Can be set empty to omit submission.

hwRev$
byVal hwRev$ AS STRING

The device hardware revision string. Can be set empty to omit submission.

swRev$
byVal swRev$ AS STRING

The device software revision string. Can be set empty to omit submission.

sysId$

byVal sysId$ AS STRING

The device system ID as defined in the specifications. Can be set empty to omit submission.

Otherwise it shall be a string exactly eight octets long, where:

 Byte 0..4 := Manufacturer Identifier

 Byte 5..7 := Organisationally Unique Identifier

If the string is one character long and contains @, the system ID is created from the
Bluetooth address if (and only if) an IEEE public address is set. If the address is the random
static variety, this characteristic is omitted.

regDataList$
byVal regDataList$ AS STRING

The device’s regulatory certification data list as defined in the specification. It can be set as
an empty string to omit submission.

pnpId$

byVal pnpId$ AS STRING

The device’s plug and play ID as defined in the specification. Can be set empty to omit
submission. Otherwise, it shall be exactly 7 octets long, where:

▪ Byte 0 := Vendor Id Source
▪ Byte 1,2 := Vendor Id (Byte 1 is LSB)
▪ Byte 3,4 := Product Id (Byte 3 is LSB)
▪ Byte 5,6 := Product Version (Byte 5 is LSB)

Example:

// Example :: BleSvcRegDevInfo.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc,manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

140

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 manfNme$ = "Laird Technologies"

 mdlNum$ = "BL652"

 srlNum$ = "" //empty to omit submission

 hwRev$ = "1.0"

 swRev$ = "1.0"

 sysId$ = "" //empty to omit submission

 regDtaLst$ = "" //empty to omit submission

 pnpId$ = "" //empty to omit submission

 rc=BleSvcRegDevInfo(manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc

 ENDIF

Expected Output:

Success

BleHandleUuid16

FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32-bit integer handle that associates
the integer as an offset into the Bluetooth SIG 128-bit (16-byte) base UUID which is used for all adopted
services, characteristics, and descriptors.

If the input value is not in the valid range, then an invalid handle (0) is returned.

The returned handle is treated by the developer as an opaque entity and no further logic is based on the bit
content, apart from all zeros which represent an invalid UUID handle.

BLEHANDLEUUID16 (nUuid16)

Returns INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle

Arguments:

nUuid16
byVal nUuid16 AS INTEGER
nUuid16 is first bitwise ANDed with 0xFFFF and the result is treated as an offset into the
Bluetooth SIG 128 bit base UUID

Example:

// Example :: BleHandleUuid16.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

141

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM uuid

 DIM hUuidHRS

 uuid = 0x180D //this is UUID for Heart Rate Service

 hUuidHRS = BleHandleUuid16(uuid)

 IF hUuidHRS == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;"(";hUuidHRS;")"

 ENDIF

Expected Output:

Handle for HRS Uuid is FE01180D (-33482739)

BleHandleUuid128

FUNCTION

This function takes a 16-byte string and converts it into a 32-bit integer handle. The handle consists of a 16-bit
(2-byte) offset into a new 128-bit base UUID.

The base UUID is created by taking the 16-byte input string and setting bytes 12 and 13 to zero after extracting
those bytes and storing them in the handle object. The handle also contains an index into an array of these 16-
byte base UUIDs which are managed opaquely in the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on
the bit content. However, note that a string of zeroes represents an invalid UUID handle.

Note: Ensure that you use a 16-byte UUID that has been generated using a random number generator
with sufficient entropy to minimise duplication and that the first byte of the array is the most
significant byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns INTEGER, A handle representing the shorthand UUID.
If zero, which is an invalid UUID handle, there is either no spare RAM memory to save the 16-
byte base or more than 253 custom base UUIDs have been registered.

Arguments:

stUuid$

byRef stUuid$ AS STRING
Any 16-byte string that was generated using a UUID generation utility that has enough entropy
to ensure that it is random. The first byte of the string is the MSB of the UUID (big endian
format).

Example:

//Example :: BleHandleUuid128.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM uuid$, hUuidCustom

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

142

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuidCustom = BleHandleUuid128(uuid$)

 IF hUuidCustom == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; "(";hUuidCustom;")"

 ENDIF

 // hUuidCustom now references an object which points to

 // a base uuid = ced9d91366924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

Expected Output:

Handle for custom Uuid is FC03D913 (-66856685)

BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously
created using BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references
the same 128 base UUID as the one referenced by the UUID handle supplied as the input parameter.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on
the bit content, apart from all zeroes (which represents an invalid UUID handle).

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid
UUID handle, if nUuidHandle is an invalid handle in the first place.

Arguments:

nUuidHandle
byVal nUuidHandle AS INTEGER
A handle that was previously created using either BleHandleUui16() or BleHandleUuid128().

nUuid16
byVal nUuid16 AS INTEGER

A UUID value in the range 0 t0 65535 which is treated as an offset into the 128-bit base UUID
referenced by nUuidHandle.

Example:

// Example :: BleHandleUuidSibling.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM uuid$,hUuid1, hUuid2 //hUuid2 will have the same base uuid as hUuid1

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

143

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 uuid$ = StrDehexize$(uuid$)

 hUuid1 = BleHandleUuid128(uuid$)

 IF hUuid1 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h' hUuid1;"(";hUuid1;")"

 ENDIF

 // hUuid1 now references an object which points to

 // a base uuid = ced9000066924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

 hUuid2 = BleHandleUuidSibling(hUuid1,0x1234)

 IF hUuid2 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "\nHandle for custom sibling Uuid is ";integer.h'hUuid2;"(";hUuid2;")"

 ENDIF

 // hUuid2 now references an object which also points to

 // the base uuid = ced9000066924a1287d56f2700004762 (note 0's in byte position 2/3)

 // and has the offset = 0x1234

Expected Output:

Handle for custom Uuid is FC03D913 (-66856685)

Handle for custom sibling Uuid is FC031234 (-66907596)

BleServiceNew

FUNCTION

As explained in GATT Server Functions, a service in the context of a GATT table is a collection of related
characteristics. This function is used to inform the underlying GATT table manager that one or more related
characteristics are going to be created and installed in the GATT table and that, until the next call of this
function, they will be associated with the service handle that it provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a
PRIMARY or a SECONDARY service. The value for this attribute is the UUID that identifies this service and in turn
have been precreated using one of the functions: BleHandleUuid16(), BleHandleUuid128(), or
BleHandleUuidSibling().

Note: When a GATT client queries a GATT server for services over a BLE connection, it only receives a list
of PRIMARY services. SECONDARY services are a mechanism for multiple PRIMARY services to
reference single instances of shared characteristics that are collected in a SECONDARY service. This
referencing is expedited within the definition of a service using the concept of INCLUDED SERVICE
which is an attribute that is grouped with the PRIMARY service definition. An Included Service is
expedited using the function BleSvcAddIncludeSvc() which is described immediately after this
function.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

144

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function now replaces BleSvcCom() and marks the beginning of a service definition in the GATT server table.
When the last descriptor of the last characteristic has been registered the service definition should be
terminated by calling BleServiceCommit().

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSvcType
byVal nSvcType AS INTEGER
This is zero for a SECONDARY service and 1 for a PRIMARY service. All other values are
reserved for future use and result in this function failing with an appropriate result code.

nUuidHandle

byVal nUuidHandle AS INTEGER

This is a handle to a 16-bit or 128-bit UUID that identifies the type of service function
provided by all the characteristics collected under it. It has been pre-created using one of
the three functions: BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling().

hService

byRef hService AS INTEGER

If the service attribute is created in the GATT table, then this contains a composite handle
which references the actual attribute handle. This is then subsequently used when adding
characteristics to the GATT table. If the function fails to install the service attribute for any
reason, this variable will contain 0 and the returned result code will be non-zero.

Example:

// Example :: BleServiceNew.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 DIM hUuidHT : hUuidHT = BleHandleUuid16(0x1809) //HT Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidHT,hHtsSvc)==0 THEN

 PRINT "\nHealth Thermometer Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidHT

 PRINT "\nService Attribute Handle value: ";hHtsSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

 //--

 //Create a Battery PRIMARY service attribute which has a uuid of 0x180F

 //--

 DIM hBatSvc //composite handle for battery primary service

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

145

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //or we could have reused nHtsSvc

 DIM hUuidBatt : hUuidBatt = BleHandleUuid16(0x180F) //Batt Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidBatt,hBatSvc)==0 THEN

 PRINT "\n\nBattery Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidBatt

 PRINT "\nService Attribute Handle value: ";hBatSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

Expected Output:

Health Thermometer Service attribute written to GATT table

UUID Handle value: -33482743

Service Attribute Handle value: 16

Battery Service attribute written to GATT table

UUID Handle value: -33482737

Service Attribute Handle value: 17

BleServiceCommit

This function in the BL654 is used to commit a defined service using BleServiceNew() to the GATT table and
should be called after the last characteristic/description has been created/commited for that service.

BLESERVICECOMMIT (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

hService
byVal hService AS INTEGER
This handle is returned from BleServiceNew().

See example for BleCharCommit().

BleSvcAddIncludeSvc

FUNCTION

Note: This function is currently not available for use on this module

This function is used to add a reference to a service within another service. This is usually, but not necessarily, a
SECONDARY service which is virtually identical to a PRIMARY service from the GATT server perspective. The only
difference is that, when a GATT client queries a device for all services, it does not receive mention of
SECONDARY services.

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service it performs a
sub-procedure to get handles to all the characteristics that are part of that INCLUDED service.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

146

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This mechanism is provided to allow for a single set of characteristics to be shared by multiple primary services.
This is most relevant if a characteristic is defined so that it can have only one instance in a GATT table but needs
to be offered in multiple PRIMARY services. A typical implementation, where a characteristic is part of many
PRIMARY services, installs that characteristic in a SECONDARY service (see BleSvcCommit()) and then uses the
function defined in this section to add it to all the PRIMARY services that want to have that characteristic as part
of their group.

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn can include
further PRIMARY or SECONDARY services. The only restriction to nested includes is that there cannot be
recursion.

Note: If a service has INCLUDED services, then they is installed in the GATT table immediately after a
service is created using BleSvcCommit() and before BleCharCommit(). The BT 4.0 specification
mandates that any ‘included service’ attribute be present before any characteristic attributes
within a particular service group declaration.

BleSvcAddIncludeSvc (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

hService
byVal hService AS INTEGER
This argument contains a handle that was previously created using the function
BleSvcCommit().

Example:

// Example :: BleSvcAddIncludeSvc.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 #define BLE_SERVICE_SECONDARY 0

 #define BLE_SERVICE_PRIMARY 1

 //--

 //Create a Battery SECONDARY service attribure which has a uuid of 0x180F

 //--

 dim hBatSvc //composite handle for batteru primary service

 dim rc //or we could have reused nHtsSvc

 dim metaSuccess

 DIM charMet : charMet = BleAttrMetaData(1,1,10,1,metaSuccess)

 DIM s$: s$ = "Hello" //initial value of char in Battery Service

 DIM hBatChar

 rc = BleServiceNew(BLE_SERVICE_SECONDARY, BleHandleUuid16(0x180F), hBatSvc)

 rc = BleCharNew(3,BleHandleUuid16(0x2A1C),charMet,0,0)

 rc = BleCharCommit(hBatSvc, s$,hBatChar)

 rc = BleServiceCommit(hBatSvc)

 //--

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

147

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //Create a Health Thermometer PRIMARY service attribure which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, BleHandleUuid16(0x1809), hHtsSvc)

 rc = BleServiceCommit(hHtsSvc)

 //Have to add includes before any characteristics are committed

 PRINT INTEGER.h'BleSvcAddIncludeSvc(hBatSvc)

BleAttrMetadataEx

FUNCTION

A GATT Table is an array of attributes which are grouped into Characteristics which in turn are further grouped
into Services. Each attribute consists of a data value which can be anything from 1 to 512 bytes long according to
the specification and properties such as read and write permissions, authentication and security properties.
When Services and Characteristics are added to a GATT server table, multiple attributes with appropriate data
and properties get added.

This function allows a 32 bit integer to be created, which is an opaque object, which defines those properties
and is then submitted along with other information to add the attribute to the GATT table.

When adding a Service attribute (not the whole service, in this present context), the properties are defined in
the BT specification so that it is open for reads without any security requirements but cannot be written and
always has the same data content structure. This implies that a metadata object does NOT need to be created.

However, when adding Characteristics, which consists of a minimum of 2 attributes, one similar in function as
the aforementioned Service attribute and the other the actual data container, then properties for the value
attribute must be specified. Here, ‘properties’ refers to properties for the attribute, not properties for the
Characteristic container as a whole. These also exist and must be specified, but that is done in a different
manner as explained later.

For example, the value attribute must be specified for read/write permission and whether it needs security and
authentication to be accessed.

If the Characteristic is capable of notification and indication, the client implicitly must be able to enable or
disable that. This is done through a Characteristic Descriptor which is also another attribute. The attribute will
also need to have a metadata supplied when the Characteristic is created and registered in the GATT table. This
attribute, if it exists, is called a Client Characteristic Configuration Descriptor or CCCD for short. A CCCD always
has two bytes of data and currently only two bits are used as on/off settings for notification and indication.

A Characteristic can also optionally be capable of broadcasting its value data in advertisements. For the GATT
client to be able to control this, there is yet another type of Characteristic Descriptor which also needs a
metadata object to be supplied when the Characteristic is created and registered in the GATT table. This
attribute, if it exists, is called a Server Characteristic Configuration Descriptor or SCCD for short. A SCCD always
has two bytes of data and currently only one bit is used as on/off settings for broadcasts.

Finally if the Characteristic has other Descriptors to qualify its behaviour, a separate API function is also supplied
to add that to the GATT table and when setting up a metadata object will also need to be supplied.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

148

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

In a nutshell, think of a metadata object as a note to define how an attribute will behave and the GATT table
manager will need that before it is added. Some attributes have those ‘notes’ specified by the BT specification
and so the GATT table manager will not need to be provided with any, but the rest require it.

This function helps write that metadata.

BLEATTRMETADATAEX (nReadRights, nWriteRights, nMaxDataLen, nFlags, resCode)

Returns INTEGER, a 32-bit opaque data object to be used in subsequent calls when adding
Characteristics to a GATT table.

Arguments:

nReadRights

byVal nReadRights AS INTEGER

This specifies the read rights and shall have one of the following values:

0 No access

1 Open

2 Encrypted with No Man-In-The-Middle (MITM) protection

3 Encrypted with Man-In-The-Middle (MITM) protection

4 Signed with No Man-In-The-Middle (MITM) protection (not available)

5 Signed with Man-In-The-Middle (MITM) protection (not available)

nWriteRights

byVal nWriteRights AS INTEGER

This specifies the write rights and shall have one of the following values:

0 No access

1 Open

2 Encrypted with No Man-In-The-Middle (MITM) protection

3 Encrypted with Man-In-The-Middle (MITM) protection

4 Signed with No Man-In-The-Middle (MITM) protection (not available)

5 Signed with Man-In-The-Middle (MITM) protection (not available)

nMaxDataLen

byVal nMaxDataLen AS INTEGER

This specifies the maximum data length of the VALUE attribute.

Range is from 1 to 512 bytes according to the BT specification; the stack implemented
in the module may limit it for early versions. At the time of writing the limit is 20
bytes.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

149

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nFlags

byVal nFlags AS INTEGER

This is a bit mask where the bits are defined as follows:

▪ Bit 0: Set this to 1 only if you want the attribute to automatically shorten it’s
length according to the number of bytes written by the client. For example, if the
initial length is 2 and the client writes only 1 byte, then if this is 0, then only the
first byte gets updated and the rest remain unchanged. If this parameter is set to
1, then when a single byte is written the attribute will shorten it’s length to
accommodate. If the client tries to write more bytes than the initial maximum
length, then the client will get an error response.

▪ Bit 1: Set this to 1 to ensure that the memory for the attribute is allocated from
User space (and hence less memory available for smartBASIC) so that a larger
gatt table can be created. This bit is ignored for all attributes other than for
characteristic value.

▪ Bit 2: Set this to 1 to require authorisation for reads. When an attempt to read is
made by the client then one of the events EVAUTHVAL, EVAUTHCCCD,
EVAUTHSCCD or EVAUTHDESC is thrown to the app and in the handler for that
event, either BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate
parameters to grant or deny access.

▪ Bit 3: Set this to 1 to require authorisation for writes. When an attempt to write
is made by the client then one of the events EVAUTHVAL, EVAUTHCCCD,
EVAUTHSCCD or EVAUTHDESC is thrown to the app and in the handler for that
event, either BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate
parameters to grant or deny access.

resCode

byRef resCode AS INTEGER

This variable is updated with a result code which is 0 if a metadata object was
successfully returned by this call. Any other value implies a metadata object did not
get created.

Example:

// Example :: BleAttrMetadata.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM mdVal //metadata for value attribute of Characteristic

 DIM mdCccd //metadata for CCCD attribute of Characteristic

 DIM mdSccd //metadata for SCCD attribute of Characteristic

 DIM rc

 //++++

 // Create the metadata for the value attribute in the characteristic

 // and Heart Rate attribute has variable length

 //++++

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

150

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //There is always a Value attribute in a characteristic

 mdVal=BleAttrMetadataEx(17,0,20,0,rc)

 //There is a CCCD and SCCD in this characteristic

 mdCccd=BleAttrMetadataEx(1,2,2,0,rc)

 mdSccd=BleAttrMetadataEx(0,0,2,0,rc)

 //Create the Characteristic object

 IF BleCharNew(3,BleHandleUuid16(0x2A1C),mdVal,mdCccd,mdSccd)==0 THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

Success

BleCharNew

FUNCTION

When a characteristic is to be added to a GATT table, multiple attribute objects must be precreated. After they
are created successfully, they are committed to the GATT table in a single atomic transaction.

This function is the first function that is called to start the process of creating those multiple attribute objects. It
is used to select the characteristic properties (which are distinct and different from attribute properties), the
UUID to be allocated for it and then up to three metadata objects for the value attribute, and CCCD/SCCD
Descriptors respectively.

BLECHARNEW (nCharProps, nUuidHandle, mdVal, mdCccd, mdSccd)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nCharProps

byVal nCharProps AS INTEGER

This variable contains a bit mask to specify the following high level properties for the
characteristic that is added to the GATT table:

Bit Description

0 Broadcast capable (SCCD descriptor must be present)

1 Can be read by the client

2 Can be written by the client without a response

3 Can be written

4 Can be notifiable (CCCD descriptor must be present)

5 Can be indicatable (CCCD descriptor must be present)

6 Can accept signed writes

7 Reliable writes

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

151

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nUuidHandle

byVal nUuidHandle AS INTEGER

This specifies the UUID that is allocated to the characteristic, either 16 or 128 bits.
This variable is a handle, pre-created using one of the following functions:
BleHandleUuid16(), BleHandleUuid128(), BleHandleUuidSibling().

mdVal

byVal mdVal AS INTEGER

This is the mandatory metadata used to define the properties of the Value attribute
that is created in the characteristic and is pre-created with help from function
BleAttrMetadata().

mdCccd

byVal mdCccd AS INTEGER

This is an optional metadata that is used to define the properties of the CCCD
descriptor attribute that is created in the characteristic and is pre-created using the
help of the function BleAttrMetadata() or set to 0 if CCCD is not to be created.

If nCharProps specifies that the characteristic is notifiable or indicatable and this
value contains 0, this function will treat the descriptor so that read and write access is
open.

mdSccd

byVal mdSccd AS INTEGER

This is an optional metadata that is used to define the properties of the SCCD
descriptor attribute that is created in the characteristic and is pre-created using the
help of the function BleAttrMetadata() or set to 0 if SCCD is not to be created.

If nCharProps specifies that the characteristic is broadcastable and this value contains
0, this function will treat the descriptor so that read and write access is open.

Example:

// Example :: BleCharNew.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 DIM charUuid : charUuid = BleHandleUuid16(2) //Characteristic's UUID

 DIM mdVal : mdVal = BleAttrMetadataEx(1,0,20,0,rc) //Metadata for value attribute

 DIM mdCccd : mdCccd = BleAttrMetadataEx(1,1,2,0,rc) //Metadata for CCCD attribute of

Characteristic

 //==

 // Create a new char:

 // --- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd)

 // --- Can be read, not written (shown in mdVal as well)

 //==

 IF BleCharNew(0x22,charUuid,mdVal,mdCccd,0)==0 THEN

 PRINT "\nNew Characteristic created"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

152

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

New Characteristic created

BleCharDescUserDesc

FUNCTION

This function adds an optional User Description Descriptor to a Characteristic and can only be called after
BleCharNew() starts the process of describing a new characteristic.

The BT 4.0 specification describes the User Description Descriptor as “.. a UTF-8 string of variable size that is a
textual description of the characteristic value.” It further stipulates that this attribute is optionally writable and
so a metadata argument exists to configure it as such. The metadata automatically updates the Writable
Auxilliaries properties flag for the characteristic. This is why that flag bit is NOT specified for the nCharProps
argument to the BleCharNew() function.

BLECHARDESCUSERDESC (userDesc$, mdUser)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

userDesc$

byRef userDesc$ AS STRING
The user description string with which to initiliase the descriptor. If the length of the string
exceeds the maximum length of an attribute then this function aborts with an error result
code.

mdUser

byVal mdUser AS INTEGER
This is a mandatory metadata that defines the properties of the User Description Descriptor
attribute created in the characteristic and pre-created using the help of BleAttrMetadata(). If
the write rights are set to 1 or greater, the attribute is marked as writable and the client is
able to provide a user description that overwrites the one provided in this call.

Example:

// Example :: BleCharDescUserDesc.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

153

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDIF

Expected Output:

Char created and User Description 'A description' added

BleCharDescPrstnFrmt

FUNCTION

This function adds an optional Presentation Format Descriptor to a characteristic and can only be called after
BleCharNew() has started the process of describing a new characteristic. It adds the descriptor to the GATT table
with open read permission and no write access, which means a metadata parameter is not required.

The BT 4.0 specification states that one or more presentation format descriptors can occur in a characteristic
and that if more than one, then an Aggregate Format description is also included.

The book Bluetooth Low Energy: The Developer's Handbook by Robin Heydon, says the following on the subject
of the Presentation Format Descriptor:

“One of the goals for the Generic Attribute Profile was to enable generic clients. A generic client is
defined as a device that can read the values of a characteristic and display them to the user without
understanding what they mean.
. . .
The most important aspect that denotes if a characteristic can be used by a generic client is the
Characteristic Presentation Format descriptor. If this exists, it’s possible for the generic client to display
its value, and it is safe to read this value.”

BLECHARDESCPRSTNFRMT (nFormat, nExponent, nUnit, nNameSpace, nNSdesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nFormat

byVal nFormat AS INTEGER
Valid range 0 to 255.
The format specifies how the data in the Value attribute is structured. A list of valid values
for this argument is found at http://developer.Bluetooth.org/GATT/Pages/FormatTypes.aspx
and the enumeration is described in the BT 4.0 spec, section 3.3.3.5.2.
The following is the enumeration list at the time of writing:

0x00 RFU 0x01 boolean
0x02 2bit 0x03 nibble
0x04 unit8 0x05 uint12
0x06 uint16 0x07 uint24
0x08 uint32 0x09 uint48
0x0A uint64 0x0B uint128
0x0C sint8 0x0D sint12
0x0E sint16 0x0F sint24
0x10 sint32 0x11 sint48
0x12 sint64 0x13 sint128
0x14 float32 0x15 float64
0x16 SFLOAT 0x17 FLOAT
0x18 duint16 0x19 utf8s
0x1A utf16s 0x1B struct

0x1C-0xFF RFU

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

154

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nExponent

byVal nExponent AS INTEGER
This value is used with integer data types given by the enumeration in nFormat to further
qualify the value so that the actual value is:
actual value = Characteristic Value * 10 to the power of nExponent.
Valid range -128 to 127

nUnit

byVal nUnit AS INTEGER
This value is a 16-bit UUID used as an enumeration to specify the units which are listed in the
Assigned Numbers document published by the Bluetooth SIG, found at:
http://developer.Bluetooth.org/GATT/units/Pages/default.aspx
Valid range 0 to 65535.

nNameSpace

byVal nNameSpace AS INTEGER
The value identifies the organization, defined in the Assigned Numbers document published
by the Bluetooth SIG, found at:
https://developer.Bluetooth.org/GATT/Pages/GATTNamespaceDescriptors.aspx
Valid range 0 to 255.

nNSdesc
byVal nNSdesc AS INTEGER
This value is a description of the organisation specified by nNameSpace.
Valid range 0 to 65535.

Example:

// Example :: BleCharDescPrstnFrmt.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

 ENDIF

 // ~ ~ ~

 // other optional descriptors

 // ~ ~ ~

 // 16 bit signed integer = 0x0E

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/units/Pages/default.aspx
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

155

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 // exponent = 2

 // unit = 0x271A (amount concentration (mole per cubic metre))

 // namespace = 0x01 == Bluetooth SIG

 // description = 0x0000 == unknown

 IF BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)==0 THEN

 PRINT "\nPresentation Format Descriptor added"

 ELSE

 PRINT "\nPresentation Format Descriptor not added"

 ENDIF

Expected Output:

Char created and User Description 'A description' added

Presentation Format Descriptor added

BleCharDescAdd

FUNCTION

This function is used to add any Characteristic Descriptor as long as its UUID is not in the range 0x2900 to
0x2904 inclusive, as they are treated specially using dedicated API functions. For example, 0x2904 is the
Presentation Format Descriptor and it is catered for by the API function BleCharDescPrstnFrmt().

Since this function allows existing /future defined Descriptors to be added that may or may not have write
access or require security requirements, a metadata object must be supplied allowing that to be configured.

BLECHARDESCADD (nUuid16, attr$, mdDesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nUuid16

byVal nUuid16 AS INTEGER

This is a value in the range 0x2905 to 0x2999

Note: This is the actual UUID value, NOT the handle.

The highest value at the time of writing is 0x290E, defined for the Report Reference
Descriptor.
See http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx
for a list of Descriptors defined and adopted by the Bluetooth SIG.

attr$
byRef attr$ AS STRING
This is the data that is saved in the Descriptor’s attribute

mdDesc

byVal n AS INTEGER
This is mandatory metadata that is used to define the properties of the Descriptor attribute
that is created in the Characteristic and was pre-created using the help of the function
BleAttrMetadata(). If the write rights are set to 1 or greater, then the attribute is marked as
writable and the client is able to modify the attribute value.

Example:

// Example :: BleCharDescAdd.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

156

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = charMet

 DIM mdSccd : mdSccd = charMet

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 rc=BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)

 // ~ ~ ~

 // other descriptors

 // ~ ~ ~

 //++++

 //Add the other Descriptor 0x29XX -- first one

 //++++

 DIM mdChrDsc : mdChrDsc = BleAttrMetadata(1,0,20,0,metaSuccess)

 DIM attr$: attr$="some_value1"

 rc=BleCharDescAdd(0x2905,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- second one

 //++++

 attr$="some_value2"

 rc=rc+BleCharDescAdd(0x2906,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- last one

 //++++

 attr$="some_value3"

 rc=rc+BleCharDescAdd(0x2907,attr$,mdChrDsc)

 IF rc==0 THEN

 PRINT "\nOther descriptors added successfully"

 ELSE

 PRINT "\nFailed"

 ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

157

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Other descriptors added successfully

BleCharCommit

FUNCTION

This function commits a characteristic which was prepared by calling BleCharNew() and optionally
BleCharDescUserDesc(),BleCharDescPrstnFrmt() or BleCharDescAdd().

It is an instruction to the GATT table manager that all relevant attributes that make up the characteristic should
appear in the GATT table in a single atomic transaction. If it successfully created, a single composite
characteristic handle is returned which should not be confused with GATT table attribute handles. If the
Characteristic was not accepted then this function returns a non-zero result code which conveys the reason and
the handle argument that is returned has a special invalid handle of 0.

The characteristic handle that is returned references an internal opaque object that is a linked list of all the
attribute handles in the characteristic which by definition implies that there is a minimum of 1 (for the
characteristic value attribute) and more as appropriate. For example, if the characteristic’s property specified is
notifiable then a single CCCD attribute also exists.

Note: In the GATT table, when a characteristic is registered, there are actually a minimum of two
attribute handles, one for the Characteristic Declaration and the other for the Value. However
there is no need for the smart BASIC apps developer to access it, so it is not exposed. Access is not
required because the characteristic was created by the application developer and so shall already
know its content – which never changes once created.

BLECHARCOMMIT (hService, attr$, charHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

hService
byVal hService AS INTEGER
This is the handle of the service to which the characteristic belongs, which in turn was
created using the function BleSvcCommit().

attr$

byRef attr$ AS STRING
This string contains the initial value of the value attribute in the characteristic. The content of
this string is copied into the GATT table and the variable can be reused after this function
returns.

charHandle

byRef charHandle AS INTEGER
The composite handle for the newly created characteristic is returned in this argument. It is
zero if the function fails with a non-zero result code. This handle is then used as an argument
in subsequent function calls to perform read/write actions, so it is must be placed in a global
smartBASIC variable. When a significant event occurs as a result of action by a remote client,
an event message is sent to the application which can be serviced using a handler. That
message contains a handle field corresponding to this composite characteristic handle.
Standard procedure is to select on that value to determine for which characteristic the

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

158

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

message is intended.
See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD, EVCHARDESC.

Example:

// Example :: BleCharCommit.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 DIM rc

 DIM attr$,usrDesc$: usrDesc$="A description"

 DIM hHtsSvc //composite handle for hts primary service

 DIM mdCharVal : mdCharVal = BleAttrMetaData(1,1,20,0,rc)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,rc)

 DIM hHtsMeas //composite handle for htsMeas characteristic

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 rc=BleServiceNew(BLE_SERVICE_PRIMARY, BleHandleUuid16(0x1809), hHtsSvc)

 //--

 //Create the Measurement Characteristic object, add user description descriptor

 //--

 rc=BleCharNew(0x2A,BleHandleUuid16(0x2A1C),mdCharVal,mdCccd,0)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 //--

 //Commit the characteristics with some initial data

 //--

 attr$="hello\00worl\64"

 IF BleCharCommit(hHtsSvc,attr$,hHtsMeas)==0 THEN

 PRINT "\nCharacteristic Commited"

 ELSE

 PRINT "\nFailed"

 ENDIF

 rc=BleServiceCommit(hHtsSvc)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

159

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //the characteristic will now be visible in the GATT table

 //and is refrenced by ‘hHtsMeas’for subsequent calls

Expected Output:

Characteristic Commited

BleCharValueRead

FUNCTION

This function reads the current content of a characteristic identified by a composite handle that was previously
returned by the function BleCharCommit().

In most cases a read will be performed when a GATT client writes to a characteristic value attribute. The write
event is presented asynchronously to the smart BASIC application in the form of EVCHARVAL event. This function
will most often be accessed from the handler that services that event.

BLECHARVALUEREAD (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle

byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be read which was returned when
BleCharCommit() was called.

attr$
byRef attr$ AS STRING
This string variable contains the new value from the characteristic.

Example:

// Example :: BleCharValueRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM hMyChar,rc, conHndl

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$: attr$="Hi"

 //commit service

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

160

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 //initialise scan report

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,150,0,0)

 ENDFUNC rc

 //==

 // New char value handler

 //==

 FUNCTION HndlrChar(BYVAL chrHndl, BYVAL offset, BYVAL len)

 dim s$

 IF chrHndl == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from offset

";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 rc=BleAdvertStop()

 rc=BleDisconnect(conHndl)

 ENDFUNC 0

 //==

 // Get the connnection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtn)

 conHndl=nCtn

 ENDFUNC 1

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BL652 and send a new

value\n"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

161

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVCHARVAL CALL HndlrChar

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

Characteristic value attribute: Hi

Connect to BL652 and send a new value

New characteristic value: Laird

Exiting...

BleCharValueWrite

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a
composite handle returned by the function BleCharCommit().

BLECHARVALUEWRITE (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle
byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was returned
when BleCharCommit() was called.

attr$
byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

Example:

// Example :: BleCharValueWrite.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM hMyChar,rc

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$: attr$="Hi"

 //commit service

 rc = BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x4A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

162

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc = BleServiceCommit(hSvc)

 ENDFUNC rc

 //==

 // Uart Rx handler - write input to characteristic

 //==

 FUNCTION HndlrUartRx()

 TimerStart(0,10,0)

 ENDFUNC 1

 //==

 // Timer0 timeout handler

 //==

 FUNCTION HndlrTmr0()

 DIM t$: rc=UartRead(t$)

 rc = BleCharValueWrite(hMyChar,t$)

 IF rc==0 THEN

 PRINT "\nNew characteristic value: ";t$

 ELSE

 PRINT "\nFailed to write new characteristic value ";integer.h'rc;"\n"

 ENDIF

 ENDFUNC 0

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nType a new value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVTMR0 CALL HndlrTmr0

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

Characteristic value attribute: Hi

Send a new value

Laird

New characteristic value: Laird

Exiting...

BleCharValueWriteEx

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a
composite handle returned by the function BleCharCommit(). It differs from the original BleCharValueWrite in
that the offset at which to write the data can now be specified.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

163

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLECHARVALUEWRITEEX (charHandle, offset, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle
byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was returned
when BleCharCommit() was called.

offset
byVal charHandle AS INTEGER

This is the offset at which to write the characteristic value.

attr$
byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

See example for EVAUTHVALEX
BleCharValueNotify

FUNCTION

If there is BLE connection, this function writes new data into the VALUE attribute of a characteristic so that it can
be sent as a notification to the GATT client. The characteristic is identified by a composite handle that is
returned by the function BleCharCommit().

A notification does not result in an acknowledgement from the client.

BLECHARVALUENOTIFY (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle
byVal charHandle AS INTEGER
This is the handle to the characteristic whose value must be updated which is returned
when BleCharCommit() is called.

attr$

byRef attr$ AS STRING
String variable containing new value to write to the characteristic and then send as a
notification to the client. If there is no connection, this function fails with an appropriate
result code.

Example:

// Example :: BleCharValueNotify.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

164

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 value$="hello"

 IF BleCharValueNotify(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to notify new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful notification of new value"

 EXITFUNC 0

 ENDIF

 ELSE

 PRINT " : Notifications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL652 will then notify your device of a new characteristic value\n"

 ELSE

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

165

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

You can connect and write to the CCCD characteristic.

The BL652 will then notify your device of a new characteristic value

--- Connected to client

CCCD Val: 0 : Notifications have been disabled by client

CCCD Val: 1 : Notifications have been enabled by client

Successful notification of new value

Exiting...

BleCharValueIndicate

FUNCTION

If there is BLE connection, this function is used to write new data into the VALUE attribute of a characteristic so
that it can be sent as an indication to the GATT client. The characteristic is identified by a composite handle
returned by the function BleCharCommit().

An indication results in an acknowledgement from the client and that is presented to the smartBASIC application
as the EVCHARHVC event.

BLECHARVALUEINDICATE (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle
byVal charHandle AS INTEGER
This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() was called.

attr$

byRef attr$ AS STRING
String variable containing new value to write to the characteristic and then to send as a
notification to the client. If there is no connection, this function fails with an appropriate
result code.

Example:

// Example :: BleCharValueIndicate.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

166

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x22,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal)

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Indications have been enabled by client"

 value$="hello"

 rc=BleCharValueIndicate(hMyChar,value$)

 IF rc!=0 THEN

 PRINT "\nFailed to indicate new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful indication of new value"

 EXITFUNC 1

 ENDIF

 ELSE

 PRINT " : Indications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //==

 // Indication Acknowledgement Handler

 //==

 FUNCTION HndlrChrHvc(BYVAL charHandle)

 IF charHandle == hMyChar THEN

 PRINT "\n\nGot confirmation of recent indication"

 ELSE

 PRINT "\n\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 0

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

167

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVCHARHVC CALL HndlrChrHvc

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL652 will then indicate a new characteristic value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

You can connect and write to the CCCD characteristic.

The BL652 will then indicate a new characteristic value

--- Connected to client

CCCD Val: 0 : Indications have been disabled by client

CCCD Val: 2 : Indications have been enabled by client

Successful indication of new value

Got confirmation of recent indication

Exiting...

BleCharDescRead

FUNCTION

This function reads the current content of a writable Characteristic Descriptor identified by the two parameters
supplied in the EVCHARDESC event message after a GATT client writes to it.

In most cases a local read is performed when a GATT client writes to a characteristic descriptor attribute. The
write event is presented asynchronously to the smartBASIC application in the form of an EVCHARDESC event and
so this function is most often accessed from the handler that services that event.

BLECHARDESCREAD (charHandle, nDescHandle, nOffset, nLength, nDescUuidHandle, attr$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle

byVal charHandle AS INTEGER
This is the handle to the characteristic whose descriptor must be read which is
returned when BleCharCommit() is called and is been supplied in the EVCHARDESC
event message.

nDescHandle
byVal nDescHandle AS INTEGER
This is an index into an opaque array of descriptor handles inside the charHandle and is
supplied as the second parameter in the EVCHARDESC event message.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

168

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nOffset
byVal nOffset AS INTEGER
This is the offset into the descriptor attribute from which the data shoud be read and
copied into attr$.

nLength
byVal nLength AS INTEGER
This is the number of bytes to read from the descriptor attribute from offset nOffset
and copied into attr$.

nDescUuidHandle
byRef nDescUuidHandle AS INTEGER
On exit, this is updated with the uuid handle of the descriptor that got updated.

attr$
byRef attr$ AS STRING

On exit, this string variable contains the new value from the characteristic descriptor.

Example:

// Example :: BleCharDescRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc,conHndl,hMyChar

 //--

 //Create some PRIMARY service attribure which has a uuid of 0x18FF

 //--

 SUB OnStartup()

 DIM hSvc,attr$,scRpt$,adRpt$,addr$

 rc=BleSvcCommit(1,BleHandleUuid16(0x18FF),hSvc)

 // Add one or more characteristics

 rc=BleCharNew(0x0a,BleHandleUuid16(0x2AFF),BleAttrMetadata(1,1,20,1,rc),0,0)

 //Add a user description

 DIM s$: s$="You can change this"

 rc=BleCharDescAdd(0x2999,s$,BleAttrMetadata(1,1,20,1,rc))

 //commit characteristic

 attr$="\00" //no initial alert

 rc = BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 char handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x2AFF,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,200,0,0)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler - Just to get the connection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 ENDFUNC 1

 //==

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

169

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 // Handler to service writes to descriptors by a GATT client

 //==

 FUNCTION HandlerCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)

 DIM instnc,nUuid,a$, offset,duid

 IF hChar == hMyChar THEN

 rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$)

 IF rc==0 THEN

 PRINT "\nRead 20 bytes from index ";offset;" in new char value."

 PRINT "\n ::New Descriptor Data: ";StrHexize$(a$);

 PRINT "\n ::Length=";StrLen(a$)

 PRINT "\n ::Descriptor UUID ";integer.h' duid

 EXITFUNC 0

 ELSE

 PRINT "\nCould not access the uuid"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //install a handler for writes to characteristic values

 ONEVENT EVCHARDESC CALL HandlerCharDesc

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 OnStartup()

 PRINT "\nWrite to the User Descriptor with UUID 0x2999"

 //wait for events and messages

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

Write to the User Descriptor with UUID 0x2999

Read 20 bytes from index 0 in new char value.

 ::New Descriptor Data: 4C61697264

 ::Length=5

 ::Descriptor UUID FE012999

Exiting...

BleAuthorizeChar

FUNCTION

This function is used to grant or deny a read or write access of characteristic and is called in the handler for the
event EVAUTHVAL. When the function returns and if write access was requested and granted then the
characteristic value is deemed to be updated and so function BleCharValueRead() can be used to get the new
value.

BLEAUTHORIZECHAR (connHandle, charHandle, readWrite)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

connHandle byVal connHandle AS INTEGER

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

170

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This is the connection handle of the gatt client requesting the read or write
access and will have been supplied in the EVAUTHVAL message.

charHandle

byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be read which was
returned when BleCharCommit() was called and will have been supplied in the
EVAUTHVAL event message.

readWrite

byVal readWrite AS INTEGER

This will be to

• 0 to deny read access
• 1 to allow read access
• 2 to deny write access
• 3 to allow write access

//Example :: See description for EVAUTHVAL

BleAuthorizeDesc

FUNCTION

This function is used to grant or deny a read or write access of characteristic descriptor and is called in the
handler for the three events EVAUTHCCCD, EVAUTHSCCD and EVAUTHDESC. When the function returns and if
write access was requested and granted then the characteristic descriptor value is deemed to be updated and so
function BleCharDescRead() can be used to get the new value of the descriptor when the event is EVAUTHDESC.
For events EVAUTHCCCD and EVAUTHSCCD the event itself will have supplied the new value.

BLEAUTHORIZEDESC (connHandle, charHandle, nDescType, readWrite)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

connHandle
byVal connHandle AS INTEGER

This is the connection handle of the gatt client requesting the read or write
access and will have been supplied in the EVAUTHVAL message.

charHandle

byVal charHandle AS INTEGER

This is the handle to the characteristic whose descriptor must be read which was
returned when BleCharCommit() was called and will have been supplied in the
EVAUTHVAL event message.

nDescType
byVal nDescType AS INTEGER

This is as was supplied in the EVAUTHDESC event

readWrite

byVal readWrite AS INTEGER

This will be to

• 0 to deny read access
• 1 to allow read access
• 2 to deny write access
• 3 to allow write access

//Example :: See description for EVAUTHCCCD, EVAUTHSCCD or EVAUTHDESC

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

171

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleServiceChangedNtfy

FUNCTION

This function causes an indication of the Service Changed Characteristic of the GATT Service and specifies a start
attribute handle and an end attribute handle, which the client shall mark as changed so that it can update it’s
cache if need be.

The EVBLEMSG event will be thown with subevent ID set to BLE_EVBLEMSGID_SRVCCHNG_IND_CNF when other
indications can be sent.

Note that if on connection to a bonded device the CCCD CRC does not match with the current GATT table then a
Service Change Indication is automatically sent to the client. Additionally, the local application is sent the event
BLE_EVBLEMSGID_SRVCCHNG_IND_SENT.

BLESERVICECHANGEDNTFY (nConnHandle, nStartHandle, nEndHandle)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must be disconnected.

nStartHandle
byVal nStartHandle AS INTEGER.
Specifies the start attribute handle of GATT table that has changed. Set to 0 to mark
the entire table as changed.

nEndHandle
byVal nEndHandle AS INTEGER.
Specifies the end attribute handle of GATT table that has changed. Set to 0 to mark
the entire table as changed.

 GATT Client Functions

This section describes all functions related to GATT client capability which enables interaction with GATT servers
of a connected BLE device. The Bluetooth Specification 4.0 and newer allows for a device to be a GATT server
and/or GATT client simultaneously; the fact that a peripheral mode device accepts a connection and has a GATT
server table does not preclude it from interacting with a GATT table in the central role device with which it is
connected.

These GATT client functions allow the developer to discover services, characteristics and descriptors, read and
write to characteristics and descriptors, and handle either notifications or indications.

To interact with a remote GATT server, it is important to have a good understanding of how it is constructed. It
is best to see it as a table consisting of many rows and three visible columns (handle, type, value) and at least
one more invisible column whose content affects access to the data column.

16 bit Handle Type (16 or 128 bit) Value (1 to 512 bytes) Permissions

These rows are grouped into collections called services and characteristics. The grouping is achieved by creating
a row with Type = 0x2800 or 0x2801 for services (primary and secondary respectively) and 0x2803 for
characteristics.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

172

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

A table should be scanned from top to bottom; the specification stipulates that the 16-bit handle field contains
values in the range 1 to 65535 and SHALL be in ascending order. Gaps are allowed.

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the Type column, then it is
understood as the start of a primary or secondary service which in turn contains at least one charactestic or one
‘included service’ which have Type=0x2803 and 0x2802 respectively.

When a row with Type = 0x2803 (a characteristic) is encountered, then the next row contains the value for that
characteristic; afterwards, there may be zero or more descriptors.

This means each characteristic consists of at least two rows in the table; and if descriptors exist for that
characteristic, then a single row per descriptor.

Handle Type Value Comments

0x0001 0x2800 UUID of the Service Primary Service 1 Start

0x0002 0x2803 Properties, Value Handle, Value UUID1 Characteristic 1 Start

0x0003 Value UUID1 Value : 1 to 512 bytes Actual data

0x0004 0x2803 Properties, Value Handle, Value UUID2 Characteristic 2 Start

0x0005 Value UUID2 Value : 1 to 512 bytes Actual data

0x0006 0x2902 Value Descriptor 1(CCCD)

0x0007 0x2903 Value Descriptor 2 (SCCD)

0x0008 0x2800 UUID of the Service Primary Service 2 Start

0x0009 0x2803 Properties, Value Handle, Value UUID3 Characteristic 1 Start

0x000A Value UUID3 Value : 1 to 512 bytes Actual data

0x000B 0x2800 UUID of the Service Primary Service 3 Start

0x000C 0x2803 Properties, Value Handle, Value UUID3 Characteristic 3 Start

0x000D Value UUID3 Value : 1 to 512 bytes Actual data

0x000E 0x2902 Value Descriptor 1(CCCD)

0x000F 0x2903 Value Descriptor 2 (SCCD)

0x0010 0x2904 Value (presentation format data) Descriptor 3

0x00111 0x2906 Value (valid range) Descriptor 4 (Range)

A colour highlighted example of a GATT server table is shown above. There are three services (at handles
0x0001,0x0008 and 0x000B) because there are three rows where the Type = 0x2800. All rows up to the next
instance of a row with Type=0x2800 or 2801 belong to that service.

In each group of rows for a service, there is one or more characteristics where Type=0x2803. For example the
service beginning at handle 0x0008 has one characteristic which contains two rows identified by handles 0x0009
and 0x000A and the actual value for the characteristic starting at 0x0009 is in the row identified by 0x000A.

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it (up to a row with type
= 0x2800/2801/2803) are considered belonging to that characteristic. For example, the characteristic at row
with handle = 0x0004 has the mandatory value row and then two descriptors.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

173

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The Bluetooth specification allows for multiple instances of the same service or characteristics or descriptors
and they are differentiated by the unique handle. This ensures no ambiguity.

Each GATT server table allocates the handle numbers, the only stipulation being that they be in ascending order
(gaps are allowed). This is important to understand because two devices containing the same services and
characteristic and in EXACTLY the same order may NOT allocate the same handle values, especially if one device
increments handles by 1 and another with some other arbitrary random value. The specification does stipulate
that once the handle values are allocated, they are fixed for all subsequent connections unless the device
exposes a GATT service which allows for indications to the client that the handle order has changed and thus
force it to flush its cache and rescan the GATT table.

When a connection is first established, there is no prior knowledge as to which services exist or their handles.
Therefore, the GATT protocol which is used to interact with GATT servers, provides procedures that allow for
the GATT table to be scanned so that the client can ascertain which services are offered. This section describes
smartBASIC functions which encapsulate and manage those procedures to enable a smartBASIC application to
map the table.

These helper functions have been written to help gather the handles of all the rows which contain the value
type for appropriate characteristics as those are the ones that will be read or written to. The smartBASIC
internal engine also maintains data objects so that it is possible to interact with descriptors associated with the
characteristic.

Basically, the table scanning process reveals characteristic handles (as handles of handles) which are used in
other GATT client related smartBASIC functions to interact with the table to, for example, read/write or accept
and process incoming notifications and indications.

This approach ensures that the least amount of RAM resource is required to implement a GATT client and, given
that these procedures operate at speeds many orders of magnitude slower compared to the speed of the CPU
and energy consumption is to be kept as low as possible, the response to a command is delivered
asynchronously as an event for which a handler must be specified in the user smartBASIC application.

The rest of this chapter details all GATT client commands, responses, and events along with example code
demonstrating usage and expected output.

Events and Messages

The nature of GATT client operation consists of multiple queries and acting on the responses. Because the
connection intervals are slower than the CPU speed, responses can arrive many tens of milliseconds after the
procudure is triggered; these are delivered to an application using an event or message. Since these
event/messages are tightly coupled with the appropriate commands, all but one is described when the
command that triggers them is described.

The event EVGATTCTOUT is applicable for all GATT client-related functions which result in transactions over the
air. The Bluetooth specification states that if an operation is initiated and is not completed within 30 seconds
then the connection is dropped as no further GATT client transaction can be initiated.

EVGATTCTOUT

This event message is thrown if a GATT client transaction takes longer than 30 seconds. It contains one INTEGER
parameter:

▪ Connection Handle

Example:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

174

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Example :: EVGATTCTOUT.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,conHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGATTcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected"

 ENDIF

ENDFUNC 1

'//==

'//==

FUNCTION HandlerGATTcTout(cHndl) AS INTEGER

 PRINT "\nEVGATTCTOUT connHandle=";cHndl

ENDFUNC 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVGATTCTOUT call HandlerGATTcTout

rc = OnStartup()

WAITEVENT

Expected Output:

. . .

. . .

EVGATTCTOUT connHandle=123

. . .

. . .

EVDISCPRIMSVC

This event message is thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a success. The
message contains the following four INTEGER parameters:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

175

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Connection Handle
▪ Service UUID Handle
▪ Start Handle of the service in the GATT table
▪ End Handle for the service

If no additional services were discovered because the end of the table was reached, then all parameters contain
zero apart from the Connection Handle.

EVDISCCHAR

This event message is thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success. The message
contains the following INTEGER parameters:

▪ Connection Handle
▪ Characteristic UUID Handle
▪ Characteristic properties
▪ Handle for the value attribute of the characteristic
▪ Included Service UUID Handle

If no more characteristics were discovered because the end of the table was reached, then all parameters
contain zero apart from the Connection Handle.

‘Characteristic Uuid Handle’ contains the UUID of the characteristic and supplied as a handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Bit 0 Set if BROADCAST is enabled

Bit 1 Set if READ is enabled

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled

Bit 3 Set if WRITE is enabled

Bit 4 Set if NOTIFY is enabled

Bit 5 Set if INDICATE is enabled

Bit 6 Set if AUTHENTICATED_SIGNED_WRITE is enabled

Bit 7 Set if RELIABLE_WRITE is enabled

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to
store to keep track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and is always 0.

EVDISCDESC

This event message is thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success. The message
contains the following INTEGER parameters:

▪ Connection Handle
▪ Descriptor Uuid Handle
▪ Handle for the Descriptor in the remote GATT Table

If no more descriptors were discovered because the end of the table was reached, then all parameters contain
zero apart from the Connection Handle.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

176

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

‘Descriptor Uuid Handle’ contains the UUID of the descriptor and is supplied as a handle.

‘Handle for the Descriptor in the remote GATT Table’ is the handle for the descriptor as well as the value to
store to keep track of important characteristics in a GATT server for later read/write operations.

EVFINDCHAR

This event message is thrown if BleGATTcFindChar() returns a success. The message contains the following
INTEGER parameters:

▪ Connection Handle
▪ Characteristic Properties
▪ Handle for the Value Attribute of the Characteristic
▪ Included Service Uuid Handle

If the specified instance of the service/characteristic is not present in the remote GATT server table, then all
parameters contain zero apart from the Connection Handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Bit Description

0 Set if BROADCAST is enabled

1 Set if READ is enabled

2 Set if WRITE_WITHOUT_RESPONSE is enabled

3 Set if WRITE is enabled

4 Set if NOTIFY is enabled

5 Set if INDICATE is enabled

6 Set if AUTHENTICATED_SIGNED_WRITE is enabled

7 Set if RELIABLE_WRITE is enabled

15 Set if the characteristic has extended properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to
store to keep track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and is always 0.

EVFINDDESC

This event message is thrown if BleGATTcFindDesc() returned a success. The message contains the following
INTEGER parameters:

▪ Connection Handle
▪ Handle of the Descriptor

If the specified instance of the service/characteristic/descriptor is not present in the remote GATT server table,
then all parameters contain zero apart from the Connection Handle.

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track of important
descriptors in a GATT server for later read/write operations – for example, CCCDs to enable notifications and/or
indications.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

177

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EVATTRREAD

This event message is thrown if BleGattcRead() returns a success. The message contains the following INTEGER
parameters:

▪ Connection Handle
▪ Handle of the Attribute
▪ GATT status of the read operation

‘GATT status of the read operation’ is one of the following values, where 0 implies the read was successfully
expedited and the data can be obtained by calling BlePubGattClientReadData().

Hex Dec Description

0x0000 0 Success

0x0001 1 Unknown or not applicable status

0x0100 256 ATT Error: Invalid Error Code

0x0101 257 ATT Error: Invalid Attribute Handle

0x0102 258 ATT Error: Read not permitted

0x0103 259 ATT Error: Write not permitted

0x0104 260 ATT Error: Used in ATT as Invalid PDU

0x0105 261 ATT Error: Authenticated link required

0x0106 262 ATT Error: Used in ATT as Request Not Supported

0x0107 263 ATT Error: Offset specified was past the end of the attribute

0x0108 264 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 265 ATT Error: Used in ATT as Prepare Queue Full

0x010A 266 ATT Error: Used in ATT as Attribute not found

0x010B 267 ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C 268 ATT Error: Encryption key size used is insufficient

0x010D 269 ATT Error: Invalid value size

0x010E 270 ATT Error: Very unlikely error

0x010F 271 ATT Error: Encrypted link required

0x0110 272 ATT Error: Attribute type is not a supported grouping attribute

0x0111 273 ATT Error: Encrypted link required

0x0112 274 ATT Error: Reserved for Future Use range #1 begin

0x017F 383 ATT Error: Reserved for Future Use range #1 end

0x0180 384 ATT Error: Application range begin

0x019F 415 ATT Error: Application range end

0x01A0 416 ATT Error: Reserved for Future Use range #2 begin

0x01DF 479 ATT Error: Reserved for Future Use range #2 end

0x01E0 480 ATT Error: Reserved for Future Use range #3 begin

0x01FC 508 ATT Error: Reserved for Future Use range #3 end

0x01FD 509 ATT Common Profile and Service Error: Client Characteristic Config Descriptor

 (CCCD)improperly configured

0x01FE 510 ATT Common Profile and Service Error:Procedure Already in Progress

0x01FF 511 ATT Common Profile and Service Error: Out Of Range

EVATTRWRITE

This event message is thrown if BleGattcWrite() returns a success. The message contains the following INTEGER
parameters:

▪ Connection Handle
▪ Handle of the Attribute
▪ GATT status of the write operation

‘GATT status of the write operation’ is one of the following values, where 0 implies the write was successfully
expedited.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

178

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Hex Dec Description

0x0000 0 Success

0x0001 1 Unknown or not applicable status

0x0100 256 ATT Error: Invalid Error Code

0x0101 257 ATT Error: Invalid Attribute Handle

0x0102 258 ATT Error: Read not permitted

0x0103 259 ATT Error: Write not permitted

0x0104 260 ATT Error: Used in ATT as Invalid PDU

0x0105 261 ATT Error: Authenticated link required

0x0106 262 ATT Error: Used in ATT as Request Not Supported

0x0107 263 ATT Error: Offset specified was past the end of the attribute

0x0108 264 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 265 ATT Error: Used in ATT as Prepare Queue Full

0x010A 266 ATT Error: Used in ATT as Attribute not found

0x010B 267 ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C 268 ATT Error: Encryption key size used is insufficient

0x010D 269 ATT Error: Invalid value size

0x010E 270 ATT Error: Very unlikely error

0x010F 271 ATT Error: Encrypted link required

0x0110 272 ATT Error: Attribute type is not a supported grouping attribute

0x0111 273 ATT Error: Encrypted link required

0x0112 274 ATT Error: Reserved for Future Use range #1 begin

0x017F 383 ATT Error: Reserved for Future Use range #1 end

0x0180 384 ATT Error: Application range begin

0x019F 415 ATT Error: Application range end

0x01A0 416 ATT Error: Reserved for Future Use range #2 begin

0x01DF 479 ATT Error: Reserved for Future Use range #2 end

0x01E0 480 ATT Error: Reserved for Future Use range #3 begin

0x01FC 508 ATT Error: Reserved for Future Use range #3 end

0x01FD 509 ATT Common Profile and Service Error: Client Characteristic Config Descriptor

 (CCCD)improperly configured

0x01FE 510 ATT Common Profile and Service Error:Procedure Already in Progress

0x01FF 511 ATT Common Profile and Service Error: Out Of Range

EVNOTIFYBUF

This event message is thrown if BleGattcWriteCmd() returned a success. The message contains no parameters.

EVATTRNOTIFY

This event is thrown when an notification or an indication arrives from a GATT server. The event contains no
parameters. Please note that if one notification/indication arrives or many, like in the case of UART events, the
same event mask bit is asserted. The smartBASIC application is informed that it must go and service the ring
buffer using the function BleGattcNotifyRead. This event is only thrown if at+cfg 213=0. See BleGattcNotifyRead
for usage.

EVATTRNOTIFYEX

This message from the underlying BLE manager informs the app that the remote has sent characteristic
notifications/indications. The difference between this event and EVATTRNOTIFY is that this event contains the
paramers such as the connection handle and the notification data. Data_length and strLen(Data$) should be of
equal length. This event is only thrown if at+cfg 213=1. See BleGattcNotifyRead for usage.

The event comes with the following parameters:-

▪ Connection Handle – The handle of the connection that wrote to the characteristic value.
▪ Char Handle – Characteristic handle for which the value is being notified.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

179

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Type – 0: Invalid, 1: Notification, 2: Indication.
▪ Data_Length – The length of the data that was notified. If negative, then this value indicates the amount of

data lost.
▪ Data$ - The string data that was notified from the attribute.

BleGattcOpen

FUNCTION

This function is used to initialise the GATT client functionality for immediate use so that appropriate buffers for
caching GATT responses are created in the heap memory. About 300 bytes of RAM is required by the GATT client
manager; given that a majority of BL654 use cases do not use it, the sacrifice of 300 bytes is not worth the
permament allocation of memory.

There are various buffers that are needed for scanning a remote GATT table which are of fixed size. The ring
buffer can be configured by the smartBASIC apps developer; this buffer is used to store incoming notifiable and
indicatable characteristics. At the time of writing this user guide, the default minimum size is 64 unless a bigger
one is desired; in that case, the input parameter to this function specifies that size. A maximum of 2048 bytes is
allowed, but this can result in unreliable operation as the smartBASIC runtime engine is quickly starved of
memory.

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum allowed. The
same information can be obtained in interactive mode using the commands AT I 2019 and 2020 respectively.

Note: When the ring buffer for the notifiable and indicatable characteristics is full, then any new
messages are discarded. Depending on the flags parameter, the indicates are or are not confirmed.

This function is safe to call when the GATT client manager is already open. However, in that case, the
parameters are ignored and existing values are retained. Existing GATT client operations are not interrupted.

It is recommended that this function NOT be called when in a connection.

BLEGATTCOPEN (nNotifyBufLen, nFlags)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

nNotifyBufLen
byVal nNotifyBufLen AS INTEGER
This is the size of the ring buffer used for incoming notifiable and indicatable
characteristic data. Set to 0 to use the default size.

nFlags

byVal nFlags AS INTEGER
Bit 0 – Set to 1 to disable automatic indication confirmations. If the buffer is full then the
Handle Value Confirmation is only sent when BleGattcNotifyRead() is called to read the
ring buffer.
Bit 1..31 – Reserved for future use and must be set to 0s.

Example:

// Example :: BleGattcOpen.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

//open the GATT client with default notify/indicate ring buffer size

rc = BleGATTcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGATT Client is now open"

ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

180

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//open the client with default notify/indicate ring buffer size - again

rc = BleGattcOpen(128,1)

IF rc == 0 THEN

 PRINT "\nGATT Client is still open, because already open"

ENDIF

Expected Output:

GATT Client is now open

GATT Client is still open, because already open

BleGattcClose

SUBROUTINE

This function is used to close the GATT client manager and is safe to call if it is already closed.

It is recommended that this function NOT be called when in a connection.

BLEGATTCCLOSE ()

Returns

Arguments None

Example:

// Example :: BleGattcClose.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

//open the GATT client with default notify/indicate ring buffer size

rc = BleGattcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGATT Client is now open"

ENDIF

BleGattcClose()

PRINT "\nGATT Client is now closed"

BleGattcClose()

PRINT "\nGATT Client is closed - was safe to call when already closed"

Expected Output:

GATT Client is now open

GATT Client is now closed

GATT Client is closed - was safe to call when already closed

BleDiscServiceFirst / BleDiscServiceNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for all primary services with the help of the
EVDISCPRIMSVC message event. When called, a handler for the event message must be registered as the
discovered primary service information is passed back in that message.

A generic or UUID-based scan can be initiated. The former scans for all primary services and the latter scans for a
primary service with a particular UUID, the handle of which must be supplied and is generated by using either
BleHandleUuid16() or BleHandleUuid128().

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low
power state as the WAITEVENT statement is used as normal to wait for events and messages.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

181

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Depending on the size of the remote GATT server table and the connection interval, the scan of all primary may
take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations
such as servicing sensors and displays or any of the onboard peripherals.

BLEDISCSERVICEFIRST (connHandle, startAttrHandle, uuidHandle)

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(), then waiting for
the EVDISCPRIMSVC event message and depending on the information returned in that message calling
BleDiscServiceNext(), which in turn will result in another EVDISCPRIMSVC event message and typically is as
follows:

Register a handler for the EVDISCPRIMSVC event message

On EVDISCPRIMSVC event message

 If Start/End Handle == 0 then scan is complete

 Else Process information then

 call BleDiscServiceNext()

 if BleDiscServiceNext() not OK then scan complete

Call BleDiscServiceFirst()

If BleDiscServiceFirst() ok then Wait for EVDISCPRIMSVC

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.
This means an EVDISCPRIMSVC event message is thrown by the smartBASIC runtime
engine containing the results. A non-zero return value implies an EVDISCPRIMSVC
message is NOT thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT server can be accessed. This is returned in the EVBLEMSG event
message with msgId == 0 and msgCtx is the connection handle.

startAttrHandle
byVal startAttrHandle AS INTEGER
This is the attribute handle from where the scan for primary services will be started and
you can typically set it to 0 to ensure that the entire remote GATT Server is scanned

uuidHandle

byVal uuidHandle AS INTEGER
Set this to 0 if you want to scan for any service, otherwise this value will have been
generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

BLEDISCSERVICENEXT (connHandle)

Calling this assumes that BleDiscServiceFirst() was called at least once to set up the internal primary services
scanning state machine.

Returns INTEGER, a result code.
The typical value is 0x0000, indicating a successful operation and it means an EVDISCPRIMSVC
event message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVDISCPRIMSVC message is not thrown.

Arguments:

connHandle
byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

182

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

the remote GATT server can be accessed. This is returned in the EVBLEMSG event message
with msgId == 0 and msgCtx is the connection handle

Example:

// Example :: BleDiscServiceFirst.Next.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscPrimSvc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for ALL services"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 PRINT "\nScan for service with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

183

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nScan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscServiceNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nScan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

184

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE01 sHndl=1 eHndl=3

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9

EVDISCPRIMSVC : cHndl=2804 svcUuid=FB04BEEF sHndl=10 eHndl=12

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE03 sHndl=19 eHndl=21

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=24

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

Scan for service with uuid = 0xDEAD

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=65535

Scan abort

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

- Disconnected

Exiting...

BleDiscCharFirst / BleDiscCharNext

FUNCTIONS

These pair of functions are used to scan the remote GATT server for characteristics in a service with the help of
the EVDISCCHAR message event. When called, a handler for the event message must be registered because the
discovered characteristics information is passed back in that message.

A generic or UUID based scan can be initiated. The generic version scans for all characteristics; the UUID version
scans for a characteristic with a particular UUID, the handle of which must be supplied and is generated by using
either BleHandleUuid16() or BleHandleUuid128().

If a GATT table has a specific service and a specific characteristic, then it is more efficient to locate details of that
characteristic by using the function BleGATTcFindChar(). This function is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low
power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all
characteristics may take many hundreds of milliseconds. While this is in progress, it is safe to do other non-
GATT-related operations such as servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is planned for a
future release.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

185

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle, endAttrHandle)

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with information
obtained from a primary services scan, waiting for the EVDISCCHAR event message, and (depending on the
information returned in that message) calling BleDiscCharNext(). This in turn results in another EVDISCCHAR
event message and typically is as follows:

Register a handler for the EVDISCCHAR event message

On EVDISCCHAR event message
 If Char Value Handle == 0 then scan is complete
 Else Process information then
 call BleDiscCharNext()
 if BleDiscCharNext() not OK then scan complete

Call BleDiscCharFirst(--information from EVDISCPRIMSVC)
If BleDiscCharFirst() ok then Wait for EVDISCCHAR

Returns INTEGER, a result code.
The typical value is 0x0000, indicating a successful operation and it means an
EVDISCCHAR event message is thrown by the smartBASIC runtime engine containing the
results. A non-zero return value implies an EVDISCCHAR message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT server can be accessed. This is returned in the EVBLEMSG event
message with msgId == 0 and msgCtx is the connection handle.

charUuidHandle

byVal charUuidHandle AS INTEGER
Set this to 0 if you want to scan for any characteristic in the service, otherwise this value
is generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

startAttrHandle

byVal startAttrHandle AS INTEGER
This is the attribute handle from where the scan for characteristic is started and is
acquired by doing a primary services scan, which returns the start and end handles of
services.

endAttrHandle
byVal endAttrHandle AS INTEGER
This is the end attribute handle for the scan and is acquired by doing a primary services
scan, which returns the start and end handles of services.

BLEDISCCHARNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics
scanning state machine. It scans for the next characteristic.

Returns INTEGER, a result code.
The typical value is 0x0000, indicating a successful operation. It means an EVDISCCHAR event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVDISCCHAR message is not thrown.

Arguments:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

186

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT server can be accessed. This is returned in the EVBLEMSG event
message with msgId == 0 and msgCtx is the connection handle.

Example:

// Example :: BleDiscCharFirst.Next.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for characteristic with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc == 0 THEN

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

187

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc==0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscCharNext(conHndl)

 IF rc != 0 THEN

 PRINT "\nCharacteristics scan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

188

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event

EVDISCPRIMSVC : cHndl=3549 svcUuid=FE01FE02 sHndl=1 eHndl=17

Got first primary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3549 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FB04BEEF Props=2 valHndl=9 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01FC23 Props=2 valHndl=13 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

Scan for characteristic with uuid = 0xDEAD

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

189

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

- Disconnected

Exiting...

BleDiscDescFirst /BleDiscDescNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for descriptors in a characteristic with the help of
the EVDISCDESC message event. When called, a handler for the event message must be registered because the
discovered descriptor information is passed back in that message.

A generic or UUID-based scan can be initiated. The generic version scans for all descriptors; The UUID version
scans for a descriptor with a particular UUID, the handle of which must be supplied and is generated by using
either BleHandleUuid16() or BleHandleUuid128().

If a GATT table has a specific service, characteristic, and a specific descriptor, then it is more efficient to locate
the characteristic’s details by using the function BleGATTcFindDesc(). This is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low
power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all descriptors
may take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related
operations such as servicing sensors and displays or any of the onboard peripherals.

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle)

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with information
obtained from a characteristics scan and then waiting for the EVDISCDESC event message. Depending on the
information returned in that message, calling BleDiscDescNext() results in another EVDISCDESC event message
and typically is as follows:

Register a handler for the EVDISCDESC event message

On EVDISCDESC event message

 If Descriptor Handle == 0 then scan is complete

 Else Process information then

 call BleDiscDescNext()

 if BleDiscDescNext() not OK then scan complete

Call BleDiscDescFirst(--information from EVDISCCHAR)

If BleDiscDescFirst() ok then Wait for EVDISCDESC

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an
EVDISCDESC event message is thrown by the smartBASIC runtime engine
containing the results. A non-zero return value implies an EVDISCDESC message is
not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the
connection on which the remote GATT server can be accessed. This is returned in
the EVBLEMSG event message with msgId == 0 and msgCtx is the connection
handle.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

190

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

descUuidHandle

byVal descUuidHandle AS INTEGER
Set this to 0 if you want to scan for any descriptor in the characteristic, otherwise
this value is generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

charValHandle
byVal charValHandle AS INTEGER
This is the value attribute handle of the characteristic on which the descriptor scan
is to be performed. It will have been acquired from an EVDISCCHAR event.

BLEDISCDESCNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics
scanning state machine and that BleDiscDescFirst() has been called at least once to start the descriptor discovery
process.

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an
EVDISCDESC event message is thrown by the smartBASIC runtime engine containing
the results. A non-zero return value implies an EVDISCDESC message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection
on which the remote GATT server can be accessed. This is returned in the EVBLEMSG
event message with msgId == 0 and msgCtx is the connection handle.

Example:

// Example :: BleDiscDescFirst.Next.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics

// which contains 8 descriptors, that are ...

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr,cValAttr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

191

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for descritors with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc == 0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc==0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

192

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first characteristic service at handle ";hVal

 PRINT "\nScan for ALL Descs"

 cValAttr = hVal

 rc = BleDiscDescFirst(conHndl,0,cValAttr)

 IF rc != 0 THEN

 PRINT "\nScan descriptors failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCDESC event handler

'//==

function HandlerDescDisc(cHndl,cUuid,hndl) as integer

 print "\nEVDISCDESC"

 print " cHndl=";cHndl

 print " dscUuid=";integer.h' cUuid

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDescriptor Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscDescNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nDescriptor scan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

OnEvent EVDISCDESC call HandlerDescDisc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

193

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event

EVDISCPRIMSVC : cHndl=3790 svcUuid=FE01FE02 sHndl=1 eHndl=11

Got first primary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3790 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0

Got first characteristic service at handle 3

Scan for ALL Descs

EVDISCDESC cHndl=3790 dscUuid=FE01FD21 dscHndl=4

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6

EVDISCDESC cHndl=3790 dscUuid=FB04BEEF dscHndl=7

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=FE01FD23 dscHndl=9

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

Scan for descritors with uuid = 0xDEAD

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

- Disconnected

Exiting...

BleGattcFindChar

FUNCTION

This function facilitates an efficient way of locating the details of a characteristic if the UUID is known along with
the UUID of the service containing it. The results are delived in an EVFINDCHAR event message. If the GATT
server table has multiple instances of the same service/characteristic combination then this function works

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

194

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

because, in addition to the UUID handles to be searched for, it also accepts instance parameters which are
indexed from 0. This means the fourth instance of a characteristic with the same UUID in the third instance of a
service with the same UUID is located with index values 3 and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDCHAR
event.

Depending on the size of the remote GATT server table and the connection interval, the search of the
characteristic may take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-
related operations such as servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is a future
enhancement.

BLEGATTCFINDCHAR (connHandle, svcUuidHndl, svcIndex, charUuidHndl, charIndex)

A typical pseudo code for finding a characteristic involves calling BleGATTcFindChar() which in turn will result in
the EVFINDCHAR event message and typically is as follows:

Register a handler for the EVFINDCHAR event message

On EVFINDCHAR event message

 If Char Value Handle == 0 then

 Characteristic not found

 Else

 Characteristic has been found

Call BleGATTcFindChar()

If BleGATTcFindChar () ok then Wait for EVFINDCHAR

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an
EVFINDCHAR event message is thrown by the smartBASIC runtime engine containing
the results. A non-zero return value implies an EVFINDCHAR message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection
on which the remote GATT server can be accessed. This is returned in the EVBLEMSG
event message with msgId == 0 and msgCtx is the connection handle.

svcUuidHndl
byVal svcUuidHndl AS INTEGER
Set this to the service UUID handle which is generated either by BleHandleUuid16()
or BleHandleUuid128() or BleHandleUuidSibling().

svcIndex
byVal svcIndex AS INTEGER
This is the instance of the service to look for with the UUID handle svcUuidHndl,
where 0 is the first instance, 1 is the second, and so on.

charUuidHndl
byVal charUuidHndl AS INTEGER
Set this to the characteristic UUID handle which is generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

charIndex byVal charIndex AS INTEGER
This is the instance of the characteristic to look for with the UUID handle

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

195

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

charUuidHndl, where 0 is the first instance, 1 is the second, and so on.

Example:

// Example :: BleGATTcFindChar.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblFindChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

196

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for an instance of char"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1 //valHandle will be 32

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3 //does not exist

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindChar(cHndl,cProp,hVal,isUuid) as integer

 print "\nEVFINDCHAR "

 print " cHndl=";cHndl

 print " Props=";cProp

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

197

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nDid NOT find the characteristic"

 ELSE

 PRINT "\nFound the characteristic at handle ";hVal

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDCHAR call HandlerFindChar

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for an instance of char

EVFINDCHAR cHndl=866 Props=2 valHndl=32 ISvcUuid=0

Found the characteristic at handle 32

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

198

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Svc Idx=2 Char Idx=1

EVFINDCHAR cHndl=866 Props=0 valHndl=0 ISvcUuid=0

Did NOT find the characteristic

- Disconnected

Exiting...

BleGattcFindDesc

FUNCTION

This function facilitates an efficient way of locating the details of a descriptor if the UUID is known along with
the UUID of the service and the UUID of the characteristic containing it. The results are delivered in a
EVFINDDESC event message. If the GATT server table has multiple instances of the same
service/characteristic/descriptor combination then this function works because, in addition to the UUID handles
to be searched for, it accepts instance parameters which are indexed from 0. This means that the second
instance of a descriptor in the fourth instance of a characteristic with the same UUID in the third instance of a
service with the same UUID is located with index values 1, 3, and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDDESC
event.

Depending on the size of the remote GATT server table and the connection interval, the search of the
characteristic may take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-
related operations such as servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This planned for a future
release.

BLEGATTCFINDDESC (connHndl, svcUuHndl, svcIdx, charUuHndl, charIdx,descUuHndl, descIdx)

A typical pseudo code for finding a descrirptor involves calling BleGATTcFindDesc() which in turn results in the
EVFINDDESC event message and typically is as follows:

Register a handler for the EVFINDDESC event message

On EVFINDDESC event message

 If Descriptor Handle == 0 then

 Descriptor not found

 Else

 Descriptor has been found

Call BleGATTcFindDesc()

If BleGATTcFindDesc() ok then Wait for EVFINDDESC

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDDESC
event message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVFINDDESC message is not thrown

Arguments:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

199

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message
with msgId == 0 and msgCtx is the connection handle.

svcUuHndl
byVal svcUuHndl AS INTEGER

Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

svcIdx
byVal svcIdx AS INTEGER
This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is the
first instance, 1 is the second, and so on.

charUuHndl
byVal charUuHndl AS INTEGER
Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

charIdx
byVal charIdx AS INTEGER
This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where
0 is the first instance, 1 is the second, and so on.

descUuHndl
byVal descUuHndl AS INTEGER
Set this to the descriptor uuid handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

descIdx
byVal descIdx AS INTEGER
This is the instance of the descriptor to look for with the UUID handle charUuidHndl, where 0
is the first instance, 1 is the second, and so on.

Example:

// Example :: BleGATTcFindDesc.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblFindDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx,dIdx

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

200

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC,uHndD

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for ALL services"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 uu$ = "1122C0DE5566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndD = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1

 dIdx = 1 // handle will be 37

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

201

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3

 dIdx = 4 //does not exist

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindDesc(cHndl,hndl) as integer

 print "\nEVFINDDESC "

 print " cHndl=";cHndl

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDid NOT find the descriptor"

 ELSE

 PRINT "\nFound the descriptor at handle ";hndl

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;" desc Idx=";dIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDDESC call HandlerFindDesc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

202

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services

EVFINDDESC cHndl=1106 dscHndl=37

Found the descriptor at handle 37

Svc Idx=2 Char Idx=1 desc Idx=1

EVFINDDESC cHndl=1106 dscHndl=0

Did NOT find the descriptor

- Disconnected

Exiting...

BleGattcRead/BleGattcReadData

FUNCTIONS

If the handle for an attribute is known, then these functions are used to read the content of that attribute from
a specified offset in the array of octets in that attribute value.

Given that the success or failure of this read operation is returned in an event message, a handler must be
registered for the EVATTRREAD event.

Depending on the connection interval, the read of the attribute may take many hundreds of milliseconds. While
this is in progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or
any of the onboard peripherals.

BleGATTcRead is used to trigger the procedure and BleGattcReadData is used to read the data from the
underlying cache when the EVATTRREAD event message is received with a success status.

BLEGATTCREAD (connHndl, attrHndl, offset)

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in turn results in the
EVATTRREAD event message and typically is as follows:

Register a handler for the EVATTRREAD event message

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

203

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

On EVATTRREAD event message

 If GATT_Status == 0 then

 BleGattcReadData() //to actually get the data

 Else

 Attribute could not be read

Call BleGattcRead()

If BleGattcRead() ok then Wait for EVATTRREAD

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVATTRREAD
event message is thrown by the smartBASIC runtime engine containing the results. A non-
zero return value implies an EVATTRREAD message is not thrown.

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT server can be accessed. This is returned in the EVBLEMSG event
message with msgId == 0 and msgCtx is the connection handle.

attrHndl
byVal attrHndl AS INTEGER
Set to the handle of the attribute to read. It is a value in the range 1 to 65535.

offset
byVal offset AS INTEGER
This is the offset from which the data in the attribute is to be read.

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$)

This function is used to collect the data from the underlying cache when the EVATTRREAD event message has a
success GATT status code.

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection
on which the remote GATT server can be accessed. This is returned in the EVBLEMSG
event message with msgId == 0 and msgCtx is the connection handle.

attrHndl
byRef attrHndl AS INTEGER
The handle for the attribute that was read is returned in this variable. It is the same as
the one supplied in BleGATTcRead, but supplied here so that the code can be stateless.

offset

byRef offset AS INTEGER
The offset into the attribute data that was read is returned in this variable. It is the
same as the one supplied in BleGATTcRead, but supplied here so that the code can be
stateless.

attrData$
byRef attrData$ AS STRING
The attribute data which was read is supplied in this parameter.

Example:

// Example :: BleGATTcRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

204

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,nOff,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

205

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so read attibute handle 3"

 atHndl = 3

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nread attibute handle 300 which does not exist"

 atHndl = 300

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrRead(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRREAD "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute read OK"

 rc = BleGattcReadData(cHndl,nAhndl,nOfst,at$)

 print "\nData = ";StrHexize$(at$)

 print " Offset= ";nOfst

 print " Len=";strlen(at$)

 print "\nhandle = ";nAhndl

 else

 print "\nFailed to read attribute"

 endif

endfunc 0

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

206

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRREAD call HandlerAttrRead

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRREAD cHndl=2960 attrHndl=3 status=00000000

Attribute read OK

Data = 00000000 Offset= 0 Len=4

handle = 3

read attibute handle 300 which does not exist

EVATTRREAD cHndl=2960 attrHndl=300 status=00000101

Failed to read attribute

- Disconnected

Exiting...

BleGattcWrite

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute starting at offset 0.
The acknowledgement is returned via a EVATTRWRITE event message.

Given that the success or failure of this write operation is returned in an event message, a handler must be
registered for the EVATTRWRITE event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While
this is in progress, it is safe to do other non GATT related operations such as servicing sensors and displays or
any of the onboard peripherals.

BLEGATTCWRITE (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which results in the EVATTRWRITE event message and typically
is as follows:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

207

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Register a handler for the EVATTRWRITE event message

On EVATTWRITE event message

 If GATT_Status == 0 then

 Attribute was written successfully

 Else

 Attribute could not be written

Call BleGattcWrite()

If BleGattcWrite() ok then Wait for EVATTRWRITE

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message
with msgId == 0 and msgCtx is the connection handle.

attrHndl
byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$
byRef attrData$ AS STRING
The attribute data to write.

Example:

// Example :: BleGATTcWrite.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGATTcTblWrite.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

208

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attibute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attibute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

209

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRWRITE cHndl=2687 attrHndl=3 status=00000000

Attribute write OK

Write to attibute handle 300 which does not exist

EVATTRWRITE cHndl=2687 attrHndl=300 status=00000101

Failed to write attribute

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

210

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

- Disconnected

Exiting...

BleGattcWriteCmd

FUNCTION

If the handle for an attribute is known, then this function is used to write into an attribute at offset 0 when no
acknowledgment response is expected. The signal that the command has actually been transmitted and that the
remote link layer has acknowledged is by the EVNOTIFYBUF event.

Note: The acknowledgement received for the BleGattcWrite() command is from the higher level GATT
layer. Do not confuse this with the link layer ACK .

All packets are acknowledged at link layer level. If a packet fails to get through, then that condition
manifests as a connection drop due to the link supervision timeout.

Given that the transmission and link layer ACK of this write operation is indicated in an event message, a handler
must be registered for the EVNOTIBUF event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While
this is in progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or
any of the onboard peripherals.

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$)

The following is a typical pseudo code for writing to an attribute which results in the EVNOTIFYBUF event:

Register a handler for the EVNOTIFYBUF event message

On EVNOTIFYBUF event message

 Can now send another write command

Call BleGattcWriteCmd()

If BleGattcWrite() ok then Wait for EVNOTIFYBUF

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT Server can be accessed. This is returned in the EVBLEMSG event
message with msgId == 0 and msgCtx is the connection handle.

attrHndl
byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$
byRef attrData$ AS STRING
The attribute data to write.

Example:

// Example :: BleGATTcWriteCmd.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

211

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGATTcTblWriteCmd.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

212

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attribute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\05\06\07\08"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\09\0A\0B\0C"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attribute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 PRINT "\nEven when the attribute does not exist an event will occur"

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerNotifyBuf() as integer

 print "\nEVNOTIFYBUF Event"

endfunc 0 '//need to progress the WAITEVENT

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

213

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVNOTIFYBUF call HandlerNotifyBuf

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so write to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

write to attribute handle 300 which does not exist

Even when the attribute does not exist an event will occur

EVNOTIFYBUF Event

- Disconnected

Exiting...

BleGattcWritePrepare

FUNCTION

The Write Prepare and Write Execute functions are used to perform the Long Write procedure. Long Writes are
used when the value handle is known, but the length of the characteristic value is longer than can be sent in a
single Write Request message.

BleGattcWritePrepare requests that the GATT server prepares to write the attribute value. This function can be
used multiple times as long as a BleGattcWriteExecute function is used at the end to perform the full Long
Write.

BLEGATTCWRITEPREPARE (connHndl, attrHndl, offset, attrData$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

214

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT Server can be accessed. This is returned in the EVBLEMSG event
message with msgId == 0 and msgCtx is the connection handle.

attrHndl
byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

offset
byVal attrHndl AS INTEGER

This is the offset at which the data in the attribute is to be written.

attrData$
byRef attrData$ AS STRING
The attribute data to write.

BleGattcWriteExecute

FUNCTION

The BleGattcWriteExecute function is used by the GATT client to request the server to write or cancel the write
of all the values that have been prepare with the BleGattcWritePrepare function. It is used as the final step in a
long write operation.

BLEGATTCWRITEEXECUTE (connHndl, Flags)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT Server can be accessed. This is returned in the EVBLEMSG event
message with msgId == 0 and msgCtx is the connection handle.

Flags

byVal Flags AS INTEGER

0 Cancel all prepared writes

1 Immediately write all pending prepared values

BleGattcNotifyRead

FUNCTION

A GATT server has the ability to notify or indicate the value attribute of a characteristic when enabled via the
Client Characeristic Configuration Descriptor (CCCD). This means data arrives from a GATT server at any time and
must be managed so that it can synchronised with the smartBASIC runtime engine.

Data arriving via a notification does not require GATT acknowledgements, however indications require them.
This GATT client manager saves data arriving via a notification in the same ring buffer for later extraction using
the command BleGattcNotifyRead(); for indications, an automatic GATT acknowledgement is sent when the data
is saved in the ring buffer. This acknowledgment happens even if the data is discarded because the ring buffer is
full. If the data must not be acknowledged when it is discarded on a full buffer, set the flags parameter in the
BleGattcOpen() function where the GATT client manager is opened.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

215

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

In the case when an ACK is NOT sent on data discard, the GATT server is throttled and no further data is notified
or indicated by it until BleGattNotifyRead() is called to extract data from the ring buffer to create space and it
triggers a delayed acknowledgement.

When the GATT client manager is opened using BleGattcOpen(), it is possible to specify the size of the ring
buffer. If a value of 0 is supplied, then a default size is created. SYSINFO(2019) in a smartBASIC application or the
interactive mode command AT I 2019 returns the default size. Likewise SYSINFO(2020) or the command AT I
2020 returns the maximum size.

Data that arrives via notifications or indications get stored in the ring buffer. At the same time, a EVATTRNOTIFY
event is thrown to the smartBASIC runtime engine. This is an event, in the same way an incoming UART receive
character generates an event; that is, no data payload is attached to the event.

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount)

The following is a typical pseudo code for handling and accessing notification/indication data:

Register a handler for the EVATTRNOTIFY event message

On EVATTRNOTIFY event

 BleGattcNotifyRead() //to actually get the data

 Process the data

Enable notifications and/or indications via CCCD descriptors

Returns
INTEGER, a result code. The typical value is 0x0000, indicating data was successful
read.

Arguments:

connHndl
byRef connHndl AS INTEGER
On exit, this is the connection handle of the GATT server that sent the notification
or indication.

attrHndl
byRef attrHndl AS INTEGER

On exit, this is the handle of the characteristic value attribute in the notification or
indication.

attrData$
byRef attrData$ AS STRING
On exit, this is the data of the characteristic value attribute in the notification or
indication. It is always from offset 0 of the source attribute.

discardedCount

byRef discardedCount AS INTEGER
On exit, this should contain 0. It signifies the total number of notifications or
indications that got discared because the ring buffer in the GATT client manager
was full.
If non-zero values are encountered, it is recommended that the ring buffer size be
increased by using BleGattcClose() when the GATT client was opened using
BleGattcOpen().

Example:

// Example :: BleGATTcNotifyRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

// Charactersitic at handle 15 has notify (16==cccd)

// Charactersitic at handle 18 has indicate (19==cccd)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

216

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so enable notification for char with cccd at 16"

 atHndl = 16

 at$="\01\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- enable indication for char with cccd at 19"

 atHndl = 19

 at$="\02\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

 else

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

217

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 print "\nFailed to write attribute"

 endif

endfunc 0

'//==

'// Thrown when AT+CFG 213 = 0

'//==

function HandlerAttrNotify() as integer

 dim chndl,aHndl,att$,dscd

 print "\nEVATTRNOTIFY Event \n"

 rc=BleGattcNotifyRead(cHndl,aHndl,att$,dscd)

 print "\n BleGattcNotifyRead()"

 if rc==0 then

 print " Connection Handle=";cHndl

 print " Characteristic Handle=";aHndl

 print " Data=";StrHexize$(att$)

 print " Discarded=";dscd

 else

 print " failed with ";integer.h' rc

 endif

endfunc 1

'//==

'// Thrown when AT+CFG 213 = 1

'//==

function HandlerAttrNotifyEx(BYVAL hConn, BYVAL hChar, BYVAL nType, BYVAL nLen, BYVAL

Data$) as integer

 print "\nEVATTRNOTIFYEX Event :: "

 if nType == 1 then

 print "Notification\n"

 elseif nType == 2 then

 print "Indication\n"

 endif

 print " Connection Handle=";hConn

 print " Characteristic Handle=";hChar

 print " Data=";Data$

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

OnEvent EVATTRNOTIFY call HandlerAttrNotify // Thrown when AT+CFG 213 = 0

OnEvent EVATTRNOTIFYEX call HandlerAttrNotifyEx // Thrown when AT+CFG 213 = 1

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so enable notification for char with cccd at 16

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

218

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EVATTRWRITE cHndl=877 attrHndl=16 status=00000000

Attribute write OK

- enable indication for char with cccd at 19

EVATTRWRITE cHndl=877 attrHndl=19 status=00000000

Attribute write OK

EVATTRNOTIFY Event

 BleGATTcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0

EVATTRNOTIFY Event

 BleGATTcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

EVATTRNOTIFY Event

 BleGATTcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0

EVATTRNOTIFY Event

 BleGATTcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

 Attribute Encoding Functions

Data for characteristics are stored in value attributes, arrays of bytes. Multibyte Characteristic Descriptors
content is stored similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

The Bluetooth specification stipulates that multibyte data entities are stored in little endian format and so all
data manipulation is done similarly. Little endian means that a multibyte data entity is stored so that lowest
significant byte is positioned at the lowest memory address and likewise, when transported, the lowest byte is
on the wire first.

This section describes all the encoding functions which allow those strings to be written in smaller bytewise
subfields in a more efficient manner compared to the generic STRXXXX functions that are made available in
smartBASIC.

Note: CCCD and SCCD descriptors are special cases; they have two bytes which are treated as 16-bit
integers. This is reflected in smartBASIC applications so that INTEGER variables are used to
manipulate those values instead of STRINGS.

BleEncode8

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE8 (attr$, nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The least significant byte of this integer is saved. The rest is ignored.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

219

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nIndex

byVal nIndex AS INTEGER
This is the zero-based index into the string attr$ where the new data fragment is written to. If
the string attr$ is not long enough to fit the index plus the length of the fragment, it is extended.
If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncode8.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 DIM attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //Remember: - 4 bytes are used to store an integer on the BL652

 //write 'C' to index 2 -- '111' will be ignored

 rc=BleEncode8(attr$,0x11143,2)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'B' to index 1

 rc=BleEncode8(attr$,0x42,1)

 //write 'D' to index 3

 rc=BleEncode8(attr$,0x44,3)

 //write 'y' to index 7 -- attr$ will be extended

 rc=BleEncode8(attr$,0x67, 7)

 PRINT "\nattr$ now = ";attr$

Expected Output:

attr$=Laird

attr$ now = ABCDd\00\00g

BleEncode16

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

220

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEENCODE16 (attr$, nData, nIndex)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

attr$
byRef attr$ AS STRING

This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The two least significant bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the
length of the fragment, it is extended. If the extended length exceeds the maximum
allowable length of an attribute (see SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncode16.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //write 'CD' to index 2

 rc=BleEncode16(attr$,0x4443,2)

 //write 'AB' to index 0 - '2222' will be ignored

 rc=BleEncode16(attr$,0x22224241,0)

 //write 'EF' to index 3

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "\nattr$ now = ";attr$

Expected Output:

attr$=Laird

attr$ now = ABCDEF

BleEncode24

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

221

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEENCODE24 (attr$, nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The three least significant bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If
the string attr$ is not long enough to accommodate the index plus the length of the fragment,
it is extended. If the extended length exceeds the maximum allowable length of an attribute
(see SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncode24.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCD' to index 1

 rc=BleEncode24(attr$,0x444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'EF'to index 4

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "attr$=";attr$

Expected Output:

attr$=ABCDEF

BleEncode32

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE32(attr$,nData, nIndex)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

222

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The four bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is
written. If the string attr$ is not long enough to accommodate the index plus the length
of the fragment, it is extended. If the extended length exceeds the maximum allowable
length of an attribute (see SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncode32.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCDE' to index 1

 rc=BleEncode32(attr$,0x45444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 PRINT "attr$=";attr$

Expected Output:

attr$=ABCDE

BleEncodeFLOAT

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is extended
with the new extended block uninitialized and then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nMatissa

byVal nMantissa AS INTEGER
This value must be in the range -8388600 to +8388600 or the function fails. The data is written
in little endian so that the least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding the following 2 byte values

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

223

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

have special meaning:

0x007FFFFF NaN (Not a Number)
0x00800000 NRes (Not at this resolution)
0x007FFFFE + INFINITY
0x00800002 - INFINITY
0x00800001 Reserved for future use

nExponent
byVal nExponent AS INTEGER
This value must be in the range -128 to 127 or the function fails.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If
the string attr$ is not long enough to accommodate the index plus the length of the fragment,
it is extended. If the extended length exceeds the maximum allowable length of an attribute
(see SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncodeFloat.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 DIM attr$: attr$=""

 //write 1234567 x 10^-54 as FLOAT to index 2

 PRINT BleEncodeFLOAT(attr$,123456,-54,0)

 //write 1234567 x 10^1000 as FLOAT to index 2 and it will fail

 //because the exponent is too large, it has to be < 127

 IF BleEncodeFLOAT(attr$,1234567,1000,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

 //write 10000000 x 10^0 as FLOAT to index 2 and it will fail

 //because the mantissa is too large, it has to be < 8388600

 IF BleEncodeFLOAT(attr$,10000000,0,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

Expected Output:

0

Failed to encode to FLOAT

Failed to encode to FLOAT

BleEncodeSFLOATEX

FUNCTION

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

224

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not
long enough, it is extended with the extended block uninitialized. Then the bytes are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODESFLOATEX (attr$, nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute

nData

byVal nData AS INTEGER
The 32 bit value is converted into a 2-byte IEEE-11073 16-bit SFLOAT consisting of a 12-bit
signed mantissa and a 4-bit signed exponent. This means a signed 32-bit value always fits in
such a FLOAT enitity, but there is a loss in significance to 12 from 32.

nIndex

byVal nIndex AS INTEGER
This is the zero-based index into the string attr$ where the new fragment of data is written. If
the string attr$ is not long enough to accommodate the index plus the length of the fragment,
it is extended. If the new length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncodeSFloatEx.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, mantissa, exp

 DIM attr$: attr$=""

 //write 2,147,483,647 as SFLOAT to index 0

 rc=BleEncodeSFloatEX(attr$,2147483647,0)

 rc=BleDecodeSFloat(attr$,mantissa,exp,0)

 PRINT "\nThe number stored is ";mantissa;" x 10^";exp

Expected Output:

The number stored is 214 x 10^7

BleEncodeSFLOAT

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not
long enough, it is extended with the new block uninitialized. Then the byte specified is overwritten.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

225

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODESFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nMatissa

byVal nMantissa AS INTEGER
This must be in the range -2046 to +2046 or the function fails. The data is written in little
endian so the least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding, the following 2-byte values have
special meaning:

0x007FF NaN (Not a Number)

0x00800 NRes (Not at this resolution)

0x007FE + INFINITY

0x00802 - INFINITY

0x00801 Reserved for future use

nExponent
byVal nExponent AS INTEGER
This value must be in the range -8 to 7 or the function fails.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If
the string attr$ is not long enough to accommodate the index plus the length of the fragment,
it is extended. If the new length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncodeSFloat.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 DIM attr$: attr$=""

 SUB Encode(BYVAL mantissa, BYVAL exp)

 IF BleEncodeSFloat(attr$,mantissa,exp,2)!=0 THEN

 PRINT "\nFailed to encode to SFLOAT"

 ELSE

 PRINT "\nSuccess"

 ENDIF

 ENDSUB

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

226

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 Encode(1234,-4) //1234 x 10^-4

 Encode(1234,10) //1234 x 10^10 will fail because exponent too large

 Encode(10000,0) //10000 x 10^0 will fail because mantissa too large

Expected Output:

Success

Failed to encode to SFLOAT

Failed to encode to SFLOAT

BleEncodeTIMESTAMP

FUNCTION

This function overwrites a 7-byte string into the string at a specified offset. If the string is not long enough, it is
extended with the new extended block uninitialized and then the byte specified is overwritten.

The 7-byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year *
month) is zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example, 5 May 2013 10:31:24 is represented as \14\0D\05\05\0A\1F\18.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512.

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16-bit integer.
Hence \14\0D gets converted to \DD\07

BLEENCODETIMESTAMP (attr$, timestamp$, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

timestamp$
byRef timestamp$ AS STRING
This is a 7-byte string as described above. For example 5 May 2013 10:31:24 is entered
\14\0D\05\05\0A\1F\18.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If
the string attr$ is not long enough to accommodate the index plus the length of the fragment it
is extended. If the new length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncodeTimestamp.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, ts$

 DIM attr$: attr$=""

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

227

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //write the timestamp <5 May 2013 10:31:24>

 ts$="\14\0D\05\05\0A\1F\18"

 PRINT BleEncodeTimestamp(attr$,ts$,0)

Expected Output:

0

BleEncodeSTRING

FUNCTION

This function overwrites a substring at a specified offset with data from another substring of a string. If the
destination string is not long enough, it is extended with the new block uninitialized. Then the byte is
overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512.

BleEncodeSTRING (attr$, nIndex1 str$, nIndex2, nLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string is written to an attribute

nIndex1

byVal nIndex1 AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written If
the string attr$ is not long enough to accommodate the index plus the length of the fragment
it is extended. If the new length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

str$
byRef str$ AS STRING
This contains the source data which is qualified by the nIndex2 and nLen arguments that
follow.

nIndex2
byVal nIndex2 AS INTEGER
This is the zero based index into the string str$ from which data is copied. No data is copied if
this is negative or greater than the string.

nLen
byVal nLen AS INTEGER
This specifies the number of bytes from offset nIndex2 to be copied into the destination
string. It is clipped to the number of bytes left to copy after the index.

Example:

// Example :: BleEncodeString.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc, attr$, ts$: ts$="Hello World"

 //write "Wor" from "Hello World" to the attribute at index 2

 rc=BleEncodeString(attr$,2,ts$,6,3)

 PRINT attr$

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

228

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

\00\00Wor

BleEncodeBITS

FUNCTION

This function overwrites some bits of a string at a specified bit offset with data from an integer which is treated
as a bit array of length 32. If the destination string is not long enough, it is extended with the new extended
block uninitialized. Then the bits specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512; hence the (nDstIdx + nBitLen) cannot be
greater than the maximum attribute length times eight.

BleEncodeBITS (attr$, nDstIdx, srcBitArr , nSrcIdx, nBitLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This is the string written to an attribute. It is treated as a bit array.

nDstIdx

byVal nDstIdx AS INTEGER
This is the zero based bit index into the string attr$, treated as a bit array, where the new
fragment of data bits is written. If the string attr$ is not long enough to accommodate the
index plus the length of the fragment it is extended. If the new length exceeds the maximum
allowable length of an attribute (see SYSINFO(2013)), this function fails.

srcBitArr
byVal srcBitArr AS INTEGER
This contains the source data bits which is qualified by the nSrcIdx and nBitLen arguments
that follow.

nSrcIdx
byVal nSrcIdx AS INTEGER
This is the zero-based bit index into the bit array contained in srcBitArr from where the data
bits is copied. No data is copied if this index is negative or greater than 32.

nBitLen

byVal nBitLen AS INTEGER
This specifies the number of bits from offset nSrcIdx to be copied into the destination bit
array represented by the string attr$. It is clipped to the number of bits left to copy after the
index nSrcIdx.

Example:

// Example :: BleEncodeBits.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM attr$, rc, bA: bA=b'1110100001111

 rc=BleEncodeBits(attr$,20,bA,7,5) : PRINT attr$ //copy 5 bits from index 7 to attr$

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

229

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

\00\00\A0\01

 Attribute Decoding Functions

Data in a characteristic is stored in a value attribute, a byte array. Multibyte characteristic descriptors content is
stored similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

Attibute data is stored in little endian format.

This section describes decoding functions that allow attribute strings to be read from smaller bytewise subfields
more efficiently than the generic STRXXXX functions that are made available in smart BASIC.

Note: CCCD and SCCD descriptors are special cases as they are defined as having two bytes which are
treated as 16-bit integers mapped to INTEGER variables in smartBASIC.

BleDecodeS8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32-bit integer variable with sign extension.
If the offset points beyond the end of the string, then this function fails and returns zero.

BLEDECODES8 (attr$, nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 8-bit data from attr$, after sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which the data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

// Example :: BleDecodeS8.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 //create random service just for this example

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

230

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //create char and commit as part of service commited above

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read signed byte from index 2

 rc=BleDecodeS8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read signed byte from index 6 - two's complement of -122

 rc=BleDecodeS8(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00000002

data in Decimal = 2

data in Hex = 0xFFFFFF86

data in Decimal = -122

BleDecodeU8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32-bit integer variable without sign
extension. If the offset points beyond the end of the string, this function fails.

BLEDECODEU8 (attr$, nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 8-bit data from attr$, without sign
extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

231

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

fails.

Example:

// Example :: BleDecodeU8.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read unsigned byte from index 2

 rc=BleDecodeU8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read unsigned byte from index 6

 rc=BleDecodeU8(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00000002

data in Decimal = 2

data in Hex = 0x00000086

data in Decimal = 134

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

232

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleDecodeS16

FUNCTION

This function reads two bytes in a string at a specified offset into a 32-bit integer variable with sign extension. If
the offset points beyond the end of the string then this function fails.

BLEDECODES16 (attr$, nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 2-byte data from attr$, after sign
extension.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Example:

// Example :: BleDecodeS16.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 signed bytes from index 2

 rc=BleDecodeS16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

233

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //read 2 signed bytes from index 6

 rc=BleDecodeS16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00000302

data in Decimal = 770

data in Hex = 0xFFFF8786

data in Decimal = -30842

BleDecodeU16

This function reads two bytes from a string at a specified offset into a 32-bit integer variable without sign
extension. If the offset points beyond the end of the string, then this function fails.

BLEDECODEU16 (attr$, nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 2-byte data from attr$, without sign
extension.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Example:

// Example :: BleDecodeU16.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

234

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 unsigned bytes from index 2

 rc=BleDecodeU16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 2 unsigned bytes from index 6

 rc=BleDecodeU16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00000302

data in Decimal = 770

data in Hex = 0x00008786

data in Decimal = 34694

BleDecodeS24

FUNCTION

This function reads three bytes in a string at a specified offset into a 32-bit integer variable with sign extension.
If the offset points beyond the end of the string, this function fails.

BLEDECODES24 (attr$, nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from attr$, with sign extension.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function
fails.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

235

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: BleDecodeS24.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 signed bytes from index 2

 rc=BleDecodeS24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 signed bytes from index 6

 rc=BleDecodeS24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00040302

data in Decimal = 262914

data in Hex = 0xFF888786

data in Decimal = -7829626

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

236

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleDecodeU24

FUNCTION

This function reads three bytes from a string at a specified offset into a 32-bit integer variable without sign
extension. If the offset points beyond the end of the string, then this function fails.

BLEDECODEU24 (attr$, nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from attr$, without sign
extension.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Example:

// Example :: BleDecodeU24.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 unsigned bytes from index 2

 rc=BleDecodeU24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

237

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //read 3 unsigned bytes from index 6

 rc=BleDecodeU24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00040302

data in Decimal = 262914

data in Hex = 0x00888786

data in Decimal = 8947590

BleDecode32

FUNCTION

This function reads four bytes in a string at a specified offset into a 32-bit integer variable. If the offset points
beyond the end of the string, this function fails.

BLEDECODE32 (attr$, nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from attr$, after sign extension.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Example:

// Example :: BleDecode32.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

238

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 signed bytes from index 2

 rc=BleDecode32(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 4 signed bytes from index 6

 rc=BleDecode32(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x85040302

data in Decimal = -2063334654

data in Hex = 0x89888786

data in Decimal = -1987541114

BleDecodeFLOAT

FUNCTION

This function reads four bytes in a string at a specified offset into a couple of 32-bit integer variables. The
decoding results in two variables, the 24-bit signed mantissa and the 8-bit signed exponent. If the offset points
beyond the end of the string, this function fails.

BLEDECODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nMantissa

byRef nMantissa AS INTEGER
This is updated with the 24 bit mantissa from the 4-byte object.

If nExponent is 0, you must check for the following special values:

0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

0x00800002 - INFINITY

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

239

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x00800001 Reserved for future use

nExponent
byRef nExponent AS INTEGER
This is updated with the 8-bit mantissa. If it is zero, check nMantissa for special cases as
stated above.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Example:

// Example :: BleDecodeFloat.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 bytes FLOAT from index 2 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 4 bytes FLOAT from index 6 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

The number read is 262914*10^-123

The number read is -7829626*10^-119

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

240

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleDecodeSFLOAT

FUNCTION

This function reads two bytes in a string at a specified offset into a couple of 32-bit integer variables. The
decoding results in two variables, the 12-bit signed mantissa and the 4-bit signed exponent. If the offset points
beyond the end of the string then this function fails.

BLEDECODESFLOAT (attr$, nMantissa, nExponent, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nMantissa

byRef nMantissa AS INTEGER
This is updated with the 12-bit mantissa from the two byte object.
If the nExponent is 0, you must check for the following special values:

0x007FFFFF NaN (Not a Number)
0x00800000 NRes (Not at this resolution)
0x007FFFFE + INFINITY
0x00800002 - INFINITY
0x00800001 Reserved for future use

nExponent
byRef nExponent AS INTEGER
This is updated with the 4-bit mantissa. If it is zero, check the nMantissa for special cases as
stated above.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Example:

// Example :: BleDecodeSFloat.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

241

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //read 2 bytes FLOAT from index 2 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 2 bytes FLOAT from index 6 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

The number read is 770 x 10^0

The number read is 1926x 10^-8

BleDecodeTIMESTAMP

FUNCTION

This function reads seven bytes from string an offset into an attribute string. If the offset plus seven bytes points
beyond the end of the string then this function fails.

The seven byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year *
month) is zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example: 5 May 2013 10:31:24 is represented in the source as \DD\07\05\05\0A\1F\18 and the year is be
translated into a century and year so that the destination string is \14\0D\05\05\0A\1F\18.

BLEDECODETIMESTAMP (attr$, timestamp$, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

timestamp$
byRef timestamp$ AS STRING
On exit this is an exact 7-byte string as described above.
For example: 5 May 2013 10:31:24 is stored as \14\0D\05\05\0A\1F\18

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is
not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Example:

// Example :: BleDecodeTimestamp.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc, ts$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //5th May 2013, 10:31:24

 DIM attr$: attr$="\00\01\02\DD\07\05\05\0A\1F\18"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

242

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 7 byte timestamp from the index 3 in the string

 rc=BleDecodeTimestamp(attr$,ts$,3)

 PRINT "\nTimestamp = "; StrHexize$(ts$)

Expected Output:

Timestamp = 140D05050A1F18

BleDecodeSTRING

FUNCTION

This function reads a maximum number of bytes from an attribute string at a specified offset into a destination
string. Because the output string can handle truncated bit blocks, this function does not fail.

BLEDECODESTRING (attr$, nIndex, dst$, nMaxBytes)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into string attr$ from which data is read.

dst$
byRef dst$ AS STRING
This argument is a reference to a string that is updated with up to nMaxBytes of data from the
index specified. A shorter string is returned if there are not enough bytes beyond the index.

nMaxBytes
byVal nMaxBytes AS INTEGER
This specifies the maximum number of bytes to read from attr$.

Example:

// Example :: BleDecodeString.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

243

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 4 bytes from index 3 in the string

 rc=BleDecodeSTRING(attr$,3,decStr$,4)

 PRINT "\nd$=";decStr$

 //read max 20 bytes from index 3 in the string - will be truncated

 rc=BleDecodeSTRING(attr$,3,decStr$,20)

 PRINT "\nd$=";decStr$

 //read max 4 bytes from index 14 in the string - nothing at index 14

 rc=BleDecodeSTRING(attr$,14,decStr$,4)

 PRINT "\nd$=";decStr$

Expected Output:

d$=CDEF

d$=CDEFGHIJ

d$=

BleDecodeBITS

FUNCTION

This function reads bits from an attribute string at a specified offset (treated as a bit array) into a destination
integer object (treated as a bit array of fixed size of 32). This implies a maximum of 32 bits can be read. Because
the output bit array can handle truncated bit blocks, this function does not fail.

BLEDECODEBITS (attr$, nSrcIdx, dstBitArr, nDstIdx, nMaxBits)

Returns INTEGER, the number of bits extracted from the attribute string. Can be less than the size
expected if the nSrcIdx parameter is positioned towards the end of the source string or if
nDstIdx will not allow more to be copied.

Arguments:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

244

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

attr$
byRef attr$ AS STRING
This references the attribute string from which to read, treated as a bit array. Hence a string of
10 bytes is an array of 80 bits.

nSrcIdx
byVal nSrcIdx AS INTEGER
This is the zero based bit index into the string attr$ from which data is read. For example, the
third bit in the second byte is index number 10.

dstBitArr
byRef dstBitArr AS INTEGER
This argument references an integer treated as an array of 32 bits into which data is copied.
Only the written bits are modified.

nDstldx
byVal nDstIdx AS INTEGER
This is the zero based bit index into the bit array dstBitArr to where the data is written.

nMaxBits
byVal nMaxBits AS INTEGER
This argument specifies the maximum number of bits to read from attr$. Due to the destination
being an integer variable, it cannot be greater than 32. Negative values are treated as zero.

Example:

// Example :: BleDecodeBits.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM ba : ba=0

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 14 bits from index 20 in the string to index 10

 rc=BleDecodeBITS(attr$,20,ba,10,14)

 PRINT "\nbit array = ", INTEGER.B' ba

 //read max 14 bits from index 20 in the string to index 10

 ba=0x12345678

 PRINT "\n\nbit array = ",INTEGER.B' ba

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

245

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleDecodeBITS(attr$,14000,ba,0,14)

 PRINT "\nbit array now = ", INTEGER.B' ba

 //ba will not have been modified because index 14000

 //doesn't exist in attr$

Expected Output:

bit array = 00000000000100001101000000000000

bit array = 00010010001101000101011001111000

bit array now = 00010010001101000101011001111000

 Bonding and Bonding Database Functions

Bonding Functions

This section describes all functions related to the pairing and bonding manager which manages trusted devices.
The database stores information like the address of the trusted device along with the security keys. At the time
of writing this manual a maximum of 16 devices can be stored in the database and the command AT I 2012 or at
runtime SYSINFO(2012) returns the maximum number of devices that can be saved in the database

The type of information that can be stored for a trusted device is:

▪ The Bluetooth address of the trusted device (and it will be the non-resolvable address if the connection was
originally established by the central device using its resolvable key – like iOS devices).

▪ A 16 byte key, eDIV and eRAND for the long term key, called LTK. Up to 2 instances of this LTK can be
stored. One which is supplied by the central device and the other is the one supplied by the peripheral. This
means in a connection, the device will check which role (peripheral or central) it is connected as and pick
the appropriate key for subsequent encryption requests.

▪ The size of the long term key.
▪ A flag to indictate if the LTK is authenticated – Man-In-The-Middle (MITM) protection.
▪ A 16 byte Indentity Resolving Key (IRK).
▪ A 16 byte Connection Signature Resolving Key (CSRK)

Bonding Table Types: Rolling & Persist

The bonding database contains two tables of bonds where both tables have the same structure in terms of what
each record can store and from a BLE perspective are equal in meaning.

For the purpose of clarity both in this manual and in smartBASIC, one table is called the ‘Rolling’ table and the
other is called ‘Persistent’ table.

When a new bonding occurs the information is ALWAYS guaranteed to be saved in the ‘Rolling’ table, and if it is
full, then the oldest ‘Rolling’ bond is automatically deleted to make space for the new one.

The ‘Persistent’ table can only be populated by transferring a bond from the ‘Rolling’ table using the function
BleBondingPersistKey.

Use the function BleBondingEraseKey to delete a key and the function will look for it in both tables and when
found delete it. There is no need to know which table it belongs to when deleting. The database manager
ensures there is only one instance of a bond and so a device cannot occur in both.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

246

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The total number of bonds in the ‘Rolling’ and ‘Persistent’ tables will always be less than or equal to the capacity
of the database which is returned as explained above using AT I 2012 or SYSINFO(2012).

The number of ‘Rolling’ or ‘Persistent’ bonds (or maximum capacity) at any time can be obtained by calling the
function BleBondingStats. The ‘Persistent’ total is the difference between the ‘total’ and ‘rolling’ variables
returned by that routine.

At any time, the capacity of the ‘Rolling’ table is the difference between the absolute total capacity and the
number of bonds in the ‘Persistent’ table. See the function BleBondingStats which returns information that can
be used to determine this.

Bonds in the ‘Rolling’ table can be transferred to ‘Persistent’ unless the ‘Persist’ table is full. The capacity of the
‘Persistent’ table is returned by AT I 2043 or SYSINFO(2043) and at the time of writing this manual it is 12, which
corresponds to 75% of the total capacity.

If a bond exists and it happens to be in the ‘Persistent’ table and new bonding provides new information then
the record is updated.

If a bond exists and it happens to be in the ‘Rolling’ table and new bonding provides new information then the
record is updated and in addition, the age list is updated to that the device is marked the ‘youngest’ in the age
list.

It is expected that a smartBASIC application wanting to manage trusted device will use a combination of the
functions : BleBondMngrGetInfo, BleBondingIsTrusted, BleBondingPersistKey and BleBondingEraseKey.

Whisper Mode Pairing

BLE provides for simple secure pairing with or without man-in-the-middle attack protection. To enhance security
while a pairing is in progress the specification has provided for Out-of-Band pairing where the shared secret
information is exchanged by means other than the Bluetooth connection. That mode of pairing is currently not
exposed.

Laird have provided an additional mechanism for bonding using the standard inbuilt simple secure pairing which
is called Whisper Mode pairing. In this mode, when a pairing is detected to be in progress, the transmit power is
automatically reduced so that the ‘bubble’ of influence is reduced and thus a proximity based enhanced security
is achieved.

To take advantage of this pairing mechanism, use the function BleTxPwrWhilePairing() to reduce the transmit
power for the short duration that the pairing is in progress.

Events and Messages

The following bonding manager messages are thrown to the run-time engine using the EVBLEMSG message with
the following msgIDs:

MsgId Description

10 A new bond has been successfully created

16 The device has successfully connected to a bonded master

17 The bonding information in the bonding database have been updated

22 Adding the paired device and its information to the bonding database has failed

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

247

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleBondingStats

FUNCTION

This function retrieves statistics of the bonding manager which consists of the total capacity as the return value
and the rolling and total bonds via the arguments. By implication, the number of persistent bonds is the
difference between nTotal and nRolling.

BLEBONDINGSTATS (nRolling, nPersistent)

Returns The total capacity of the database

Arguments:

nRolling
byREF nRolling AS INTEGER
On return, this integer contains the total number of bonds in the rolling database.

nPersistent
byREF nPersistent AS INTEGER
On return, this integer contains the total number of bonds in the persistent database.

Example:

// Example :: BleBondingStats.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc, nRoll, nPers

print "\n:Bonding Manager Database Statistics:"

print "\nCapacity: ","", BleBondingStats(nRoll, nPers)

print "\nRolling: ","",nRoll

print "\nPersistent: ",nPers

Expected Output:

:Bonding Manager Database Statistics:

Capacity: 16

Rolling: 2

Persistent: 0

BLEBONDINGSTATS is a built-in function.

BleBondingPersistKey

FUNCTION

This function is used to make a bonding link key persistent. Its entry is moved from the rolling database to the
persistent database so that it is never automatically overwritten.

BLEBONDINGPERSISTKEY (bdAddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

bdAddr$
byREF bdAddr$ AS STRING
Bluetooth address in big endian. Must be exactly seven bytes long.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

248

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: BleBondingPersistKey.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc, i, j, k, adr$, inf

'//Loop through the bonding manager. Make all entries persistent

for i=0 to BleBondingStats(j,k)

 rc=BleBondMngrGetInfo(i,adr$,inf)

 if rc==0 then

 rc=BleBondingPersistKey(adr$)

 print "\n(";i;") : ";StrHexize$(adr$);" Now Persistent"

 endif

next

Expected Output:

(0) : 01F63627A60BEA Now Persistent

(1) : 01D8CFCF14498D Now Persistent

BLEBONDINGPERSISTKEY is a built-in function.

BleBondingIsTrusted

FUNCTION

This function is used to check if a device identified by the address is a trusted device which means it exists in the
bonding database.

BLEBONDINGISTRUSTED (addr$, fAsCentral, keyInfo, rollingAge, rollingCount)

Returns INTEGER: Is 0 if not trusted, otherwise it is the length of the long term key (LTK)

Arguments

addr$

byRef addr$ AS STRING
This is the address of the device for which the bonding information is to be checked.
If this a resolvable address and the device is trusted, then on exit this variable is replaced
with the static address that was supplied at pairing time.

fAsCentral Set to 0 if the device is to be trusted as a peripheral and non-zero if to be trusted as central.

keyInfo

This is a bit mask with bit meanings as follows:
This specifies the write rights and shall have one of the following values:

Bit 0 Set if MITM is authenticated
Bit 1 Set if it is a rolling bond and can be automatically deleted if the database is full and

a new bonding occurs
Bit 2 Set if an IRK (identity resolving key) exists
Bit 3 Set if a CSRK (connection signing resolving key) exists
Bit 4 Set if LTK as slave exists
Bit 5 Set if LTK as master exists

rollingAge
If the value is <= 0, this is not a rolling device.
1 implies it is the newest bond, 2 implies it is the second newest bond, and so on.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

249

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

rollingCount
On exit this will contain the total number of rolling bonds. This provides some context with
regards to how old this device is compared to other bonds in the rolling group.

Example:

// Example :: BleBondingIsTrusted.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, addr$, realaddr$, Central, KeyInfo, Age, Count

addr$ = "000016A4123456"

realaddr$ = strdehexize$(addr$)

print "Address: ";addr$;"\n"

rc = BleBondingIsTrusted(realaddr$, Central, KeyInfo, Age, Count)

print "Is Trusted: ";rc;"\n"

if (rc != 0) then

 //Output details

 if (Central == 0) then

 print "Peripheral"

 elseif (Central == 1) then

 print "Central"

 endif

 print " device, keyinfo: ";integer.b'KeyInfo

 print " Age: ";Age;" Count: ";count;"\n"

endif

Expected Output: (if bond is present)

Address: 000016A4123456

Is Trusted: 16

Peripheral device, keyinfo: 00000000000000000000000000110110 Age: 1 Count: 1

Expected Output: (if there is no bond)

Address: 000016A4123456

Is Trusted: 0

BLEBONDINGISTRUSTED is a built-in function.

BleBondingEraseKey

FUNCTION

This function is used to erase a link key from the database for the address specified.

BLEBONDINGERASEKEY (bdAddr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

bdAddr$ byREF bdAddr$ AS STRING
Bluetooth address in big endian. Must be exactly seven bytes long.

Example:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

250

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Example :: BleBondingEraseKey.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc, i, adr$, inf

//delete link key at index 0

rc=BleBondMngrGetInfo(0,adr$,inf) //get the BT address

rc=BleBondingEraseKey(adr$)

if rc==0 then

 print "\nLink key for device ";StrHexize$(adr$);" erased"

else

 print "\nError erasing link key ";integer.h'rc

endif

Expected Output:

Link key for device 01FA84D748D903 erased

BLEBONDINGERASEKEY is a built-in function.

BleBondingEraseAll

FUNCTION

This function is used to erase all bondings in the database.

Note: Calling this function when the connection supervision timeout is 100ms may cause a disconnection.
The reason for this is that calling this function may prevent the radio sending ACK packets to the
remote device within the supervision timeout. The supervision timeout is set at BleConnect or at
BleSetCurConnParams.

BLEBONDINGERASEALL ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Example:

// Example :: BleBondingEraseAll.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc

//Erase all bondings in database

rc=BleBondingEraseAll()

if rc==0 then

 print "\nBonding database cleared"

endif

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

251

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Bonding database cleared

BLEBONDINGERASEALL is a built-in function.

BleBondMngrGetInfo

FUNCTION

This function retrieves the Bluetooth address and other information from the trusted device database via an
index.

Note: Do not rely on a device in the database mapping to a static index. New bondings change the
position in the database.

BLEBONDMNGRGETINFO (nIndex, addr$, nExtraInfo)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nIndex byVal nIndex AS INTEGER
This is an index into the database, less than the value returned by SYSINFO(2012).

addr$ byRef addr$ AS STRING
On exit, if nIndex points to a valid entry in the database, this variable contains a Bluetooth
address exactly seven bytes long. The first byte identifies public or private random address.
The next six bytes are the address.

nExtraInfo byRef nExtraInfo AS INTEGER
On exit, if nIndex points to a valid entry in the database, this variable contains a composite
integer value where the lower 16 bits are for internal use and should be treated as opaque
data. Bit 17 is set if the IRK (Identity Resolving Key) exists for the trusted device and bit 18 is
set if the CSRK (Connection Signing Resolving Key) exists for the trusted device.

Example:

// Example :: BleBondMngrGetInfo.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 #define BLE_INV_INDEX 24619

 DIM rc, addr$, exInfo

 rc = BleBondMngrGetInfo(0,addr$,exInfo) //Extract info of device at index 0

 IF rc==0 THEN

 PRINT "\nBluetooth address: ";addr$

 PRINT "\nInfo: ";exInfo

 ELSEIF rc==BLE_INV_INDEX THEN

 PRINT "\nInvalid index"

 ENDIF

Expected Output when valid entry present in database:

Bluetooth address: \00\BC\B1\F3x3\AB

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

252

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Info: 97457

Expected Output with invalid index:

Invalid index

 Security Manager Functions

The following is a high level overview of Bluetooth Low Energy pairing/authentication and it is encouraged that
the reader access resources on the internet which give further details, like for example
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

Pairing is the process of exchanging security keys between two connected devices to establish trust and
authenticate the connection between the two devices. The exchanged keys can be used to encrypt the
connection to safeguard against passive eavesdropping. Pairing in versions 4.0 and 4.1 of the Buetooth core
specification is exposed through Secure Simple Pairing, which is now referred to as Legacy pairing. Security is
now greatly enhanced with the release of the 4.2 specification due to the introduction of the LE Secure
Connections pairing model. In this model, Elliptic Curve Diffie-Hellman (ECDH) algorithm is used for the key
exchange process where the two parties can compute a shared secret without exchanging it over the BLElink.

This section describes routines which manage all aspects of BLE security such as IO capabilities, Passkey
exchange, OOB data, and bonding requirements.

Events and Messages

EVBLEMSG

The following security manager messages are thrown to the run-time engine using the EVBLEMSG message with
the following msgIDs:

MsgId Description

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created

11 Pairing in progress and authentication key requested. Type of key is in msgCtx.
msgCtx is 1 for passkey_type which is a number in the range 0 to 999999 and 2 for OOB key
which is a 16 byte key.

18 The connection has been successfully encrypted

20 The connection has been unencrypted

26 Authentication/pairing has failed

27 LE Secure Connections pairing has been successfully established

28 OOB data has been requested by the peer device during LE Secure Connections pairing

To submit a passkey, use the function BLESECMNGRPASSKEY.

EVLESCKEYPRESS

This event message is thrown when the BL654 receives notifications that the peer device is performing
keypresses during passkey entry in an LE Secure Connections pairing. This event comes with two parameters:

▪ Connection handle
▪ Keypress type

http://ews-support.lairdtech.com/
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

253

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Keypress Type Description

0 Passkey entry started

1 Passkey digit entered

2 Passkey digit erased

3 Passkey cleared

4 Passkey entry completed

See example for BleSecMngrLescKeypressNotify.

EVBLE_PASSKEY

This event is thrown when there is BLE pairing in progress that requires the entry/acceptance of a passkey. The
event includes the following parameters:-

▪ Connection handle
▪ The passkey that is thrown by the stack, which should then be accepted or entered by the remote device.
▪ Flags parameter that is reserved for future use.

Example:

//Example :: BleSecMngrPasskey.sb

// Definitions

#define BLE_EVBLEMSGID_CONNECT 0 // nCtx = connection handle

#define BLE_EVBLEMSGID_DISCONNECT 1 // nCtx = connection handle

#define BLE_EVBLEMSGID_NEW_BOND 10 // nCtx = connection handle

#define BLE_EVBLEMSGID_UPDATED_BOND 17 // nCtx = connection handle

#define BLE_EVBLEMSGID_ENCRYPTED 18 // nCtx = connection handle

#define BLE_EVBLEMSGID_AUTHENTICATION_FAILED 26 // nCtx = connection handle

#define BLE_EVBLEMSGID_LESC_PAIRING 27 // nCtx = connection handle

// Variable Declaration

DIM rc, connHandle

DIM addr$: addr$=""

//--

// Ble event handler

//--

FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE BLE_EVBLEMSGID_CONNECT

 connHandle = nCtx

 PRINT "## Ble Connection :: Handle=";integer.h' nCtx;"\n"

 CASE BLE_EVBLEMSGID_DISCONNECT

 PRINT "## Disconnected :: Handle=";integer.h' nCtx;"\n"

 EXITFUNC 0

 CASE BLE_EVBLEMSGID_ENCRYPTED

 PRINT "## Encrypted Connection :: Handle=";integer.h' nCtx;"\n"

 CASE BLE_EVBLEMSGID_NEW_BOND

 PRINT "## New Bond :: Handle=";integer.h' nCtx;"\n"

 CASE BLE_EVBLEMSGID_LESC_PAIRING

 PRINT "## LESC Pairing :: Handle=";integer.h' nCtx;"\n"

 CASE BLE_EVBLEMSGID_AUTHENTICATION_FAILED

 PRINT "## Pairing Failed :: Handle=";integer.h' nCtx;"\n"

 CASE ELSE

 // Do nothing

 ENDSELECT

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

254

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ENDFUNC 1

//--

// Pairing attempt in progress - Passkey needs to be displayed

//--

Function HandlerBlePasskey(BYVAL nConnHandle, BYVAL nPasskey, BYVAL nFlags)

 // The following passkey should be entered by remote

 print "## Pairing Attempt :: Handle=";integer.h' nConnHandle;"\n"

 print "## Please enter the following passkey: ";nPasskey;"\n"

Endfunc 1

//--

// Enable synchronous event handlers

//--

ONEVENT EVBLEMSG CALL HandlerBleMsg

ONEVENT EVBLE_PASSKEY CALL HandlerBlePasskey

// Set pairing IO capability to Display.

// Remote pairing IO capability should be keyboard

rc = BleSecMngrIoCap(3)

// Start advertising

IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "## Adverts Started\n"

 PRINT "## Make a connection to the BL652\n"

ELSE

 PRINT "## Advertisement not successful\n"

ENDIF

WAITEVENT

Expected Output:
Adverts Started

Make a connection to the BL652

Ble Connection :: Handle=0001FF00

Pairing Attempt :: Handle=0001FF00

Please enter the following passkey: 242652

Encrypted Connection :: Handle=0001FF00

LESC Pairing :: Handle=0001FF00

New Bond :: Handle=0001FF00

BleSecMngrLescPairingPref

FUNCTION

This function is used to set LE Secure connections to be the preferred pairing model. Both devices must support
LE Secure Connections in order for it to be used during pairing.

BLESECMNGRLESCPAIRINGPREF (nLescPairingPref)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a
successful operation.

Arguments:

nLescPairingPre
f

byVal nJustWorksConf AS INTEGER.
If set to 0, legacy pairing is used. If set to 1, LE Secure Connections with diffie-
hellman key exchange is used as the pairing model. The default pairing model
is LE Secure Connections pairing.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

255

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

See example for BlePair().

BlePair

FUNCTION

This routine is used to induce the module to pair with the peer and to specify whether to bond with the peer by
storing pairing information in the bonding manager. This function is likely to be used if a write attempt to an
attribute fails with a status code such as 0x105. See EvAttrWrite and EvAttrRead.

BLEPAIR (hConn, nSave)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

hConn
byRef hConn AS INTEGER.
This is the connection handle provided in the EVBLEMSG(0) message which informs
the stack that a connection had been established.

nSave

byVal nSave AS INTEGER
This flag sets whether or not to bond.

Value Description
0 Do not store pairing information (don’t bond)
1 Store pairing information (bond)

Example:

// Example :: BlePair.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc, pr$, hC, hDesc

dim s$: s$ = "\02\00" //value to write to cccd to enable indications

//This example app was tested with a BL652 running the health thermometer sensor sample

app which requires bonding.

//It connects, tries to read from the temperature characteristic and then initiates a

bonding procedure when it fails.

#define GATT_SERVER_ADDRESS "\01\F6\36\27\A6\0B\EA"

#define AUTHENTICATION_REQUIRED 0x0105

#define SERVICE_UUID 0x1809

#define CHAR_UUID 0x2a1c

#define DESC_UUID 0x2902

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

256

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 endif

EndSub

'//--

'// This handler is called when there is a significant BLE event

'//--

function HndlrBleMsg(byval nMsgId as integer, byval nCtx as integer)

 select nMsgId

 case 0

 hC = nCtx

 print "\nConnected, Finding Temp Measurement Char"

 rc=BleGattcFindDesc(nCtx, BleHandleUuid16(SERVICE_UUID), 0,

BleHandleUuid16(CHAR_UUID), 0, BleHandleUuid16(DESC_UUID), 0)

 AssertRC(rc,35)

 case 1

 print "\n\n --- Disconnected"

 case 10

 print "\nNew bond created"

 print "\n\nAttempting to enable indications again"

 rc=BleGattcWrite(hC, hDesc, s$)

 AssertRC(rc,58)

 case 11

 print "\nPair request: Accepting"

 rc=BleAcceptPairing(hC,1)

 AssertRC(rc,52)

 print "\nPairing in progress"

 case 17

 print "\nNew pairing/bond has replaced old key"

 case 18

 print "\nConnection now encrypted"

 case else

 endselect

endfunc 1

'//--

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

257

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

'// Called after BleGattcFindDesc returns success

'//--

function HndlrFindDesc(hConn, hD)

 if hD==0 then

 print "\nCCCD not found"

 exitfunc 0

 endif

 hDesc = hD

 print "\nTemp Measurement Char CCCD Found. Attempting to enable indications"

 rc=BleGattcWrite(hConn, hDesc, s$)

 AssertRC(rc,58)

endfunc 1

'//--

'// Called after BleGattcRead returns success

'//--

function HndlrAttrWriteExit(hConn, hAttr, nSts)

endfunc 0

'//--

'// Called after BleGattcRead returns success

'//--

function HndlrAttrWrite(hConn, hAttr, nSts)

 if nSts == 0 then

 print "\nIndications enabled"

 print "\nDisabling indications"

 s$ = "\00\00"

 rc=BleGattcWrite(hC, hDesc, s$)

 onevent evattrwrite call HndlrAttrWriteExit

 exitfunc 1

 elseif nSts == AUTHENTICATION_REQUIRED then

 print "\n\nAuthentication required."

 '//bond with the peer

 rc=BlePair(hConn, 1)

 AssertRC(rc,75)

 print " Bonding..."

 endif

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

258

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

endfunc 1

//**

// Equivalent to main() in C

//**

rc=BleLescPairingPref(1) //set the pairing model to be LE Secire Connections

pairing

rc=BleSecMngrIoCap(1) //set io capability to Yes/No

rc=BleGattcOpen(0,0)

pr$ = GATT_SERVER_ADDRESS

rc=BleConnect(pr$, 10000, 25, 100, 30000000)

AssertRC(rc,91)

//--

// Enable synchronous event handlers

//--

onevent evblemsg call HndlrBleMsg

onevent evfinddesc call HndlrFindDesc

onevent evattrwrite call HndlrAttrWrite

waitevent

print "\nExiting..."

Expected Output:
Connected, Finding Temp Measurement Char

Temp Measurement Char CCCD Found. Attempting to enable indications

Authentication required. Bonding...

Pair request: Accepting

Pairing in progress

Connection now encrypted

New bond created

Attempting to enable indications again

Indications enabled

Disabling indications

Exiting...

BleSecMngrIoCap

FUNCTION

This function sets the user I/O capability for subsequent pairings and is used to determine if the pairing is
authenticated. This is described in the following whitepapers:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

259

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

In addition, the Security Manager Specification in the core 4.2 specification Part H provides a full description.
You must be registered with the Bluetooth SIG (www.Bluetooth.org) to get access to all these documents.

An authenticated pairing is deemed to be one with less than 1 in a million probability that the pairing was
compromised by a MITM (Man-in-the-middle) security attack.

The valid user I/O capabilities are as described below.

BLESECMNGRIOCAP (nIoCap)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nIoCap

byVal nIoCap AS INTEGER.
The user I/O capability for all subsequent pairings.

0 None; also known as Just Works (unauthenticated pairing)
1 Display with Yes/No input capability (authenticated pairing)
2 Keyboard Only (authenticated pairing)
3 Display Only (authenticated pairing – if other end has input cap)
4 Keyboard and Display (authenticated pairing)

Example:

// Example :: BleSecMngrIoCap.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 PRINT BleSecMngrIoCap(1)

Expected Output:

0

See also examples for BleSecMngrPasskey() and BlePair().

BleAcceptPairing

FUNCTION

In legacy pairing the device can choose from Just Works, Passkey Entry, and OOB as the method of pairing
depending on the input/output capabilities of the device. With Bluetooth v4.2, LE Secure connections adds the
numeric comparison method to the other three. This function is used to accept or decline numeric comparison
pairing.

BLEACCEPTPAIRING (nConnHandle, nAccept)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
The handle of the connection for which you are accepting or rejecting a pairing request.

nAccept
byVal nAccept AS INTEGER.

Set to 0 to reject the numeric comparison pairing request, set to 1 to accept the pairing

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173
http://www.bluetooth.org/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

260

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

request.

See example for BlePair().

BleSecMngrPasskey

FUNCTION

This function submits a passkey to the underlying stack during a pairing procedure when prompted by the
EVBLEMSG with msgId set to 11. See Events and Messages.

BLESECMNGRPASSKEY (connHandle, nPassKey)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

connHandle
byVal connHandle AS INTEGER.
The connection handle as received via the EVBLEMSG event with msgId set to 0.

nPassKey
byVal nPassKey AS INTEGER.
The passkey to submit to the stack. Submit a value outside the range 0 to 999999 to reject
the pairing.

Example:

// Example :: BleSecMngrPasskey.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, connHandle

DIM addr$: addr$=""

DIM i, pin$

'// Called when data arrives through the UART - PIN

FUNCTION HandlerUartRxPIN()

 i = UartReadMatch(pin$,13)

 if i !=0 then

 pin$ = StrSplitLeft$(pin$,i-1)

 if strcmp(pin$,"quit")==0 || strcmp(pin$,"exit")==0 then

 rc=BleDisconnect(connHandle)

 exitfunc 0

 elseif BleSecMngrPassKey(connHandle,StrValDec(pin$))==0 then

 print "\nPasskey: ";pin$

 OnEvent EVUARTRX disable

 endif

 pin$=""

 endif

ENDFUNC 1

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

261

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE 0

 connHandle = nCtx

 PRINT "\n--- Ble Connection, ",nCtx

 CASE 1

 PRINT "\n--- Disconnected ";nCtx;"\n"

 EXITFUNC 0

 CASE 10

 PRINT "\n--- New bond"

 CASE 11

 PRINT "\n +++ Auth Key Request, type=";nCtx

 PRINT "\nEnter the pass key and Press Enter:\n"

 onevent evuartrx call HandlerUartRxPIN

 CASE 17

 print "\nNew pairing/bond has replaced old key"

 CASE ELSE

 ENDSELECT

ENDFUNC 1

ONEVENT EVBLEMSG CALL HandlerBleMsg

rc=BleSecMngrIoCap(2) //Set i/o capability - Keyboard Only (authenticated pairing)

IF BleAdvertStart(0,addr$,25,0,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nPair with the module"

ELSE

 PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

Pair with the module

--- Ble Connection, 2782

 +++ Auth Key Request, type=1

Enter the pass key and Press Enter:

904096

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

262

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Passkey: 904096

--- New bond

--- Disconnected 2782

BleSecMngrLescKeypressEnable

FUNCTION

This function is used to enable keypress notifications so that during LE secure connections, when keys are
entered during passkey entry pairing, notifications can be sent or received to or from the peer device therefore
enhancing protection against man in the middle attacks.

BLESECMNGRLESCKEYPRESSENABLE (nEnable)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nEnable
byVal nEnable AS INTEGER.
0 to disable keypress notifications, 1 to enable keypress notifications

Example:

// Example :: BleSecMngrLescKeypressNotify.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

// Enable keypress notifications

rc = BLESECMNGRLESCKEYPRESSENABLE(1)

if rc == 0 THEN

 PRINT "Keypress notifications enabled\n"

endif

BleSecMngrLescKeypressNotify

FUNCTION

This function is used to send keypress notifications to the peer device during passkey entry in LE Secure
Connections pairing.

BLESECMNGRLESCKEYPRESSNOTIFY (connHandle, nKeypressType)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

connHandle
byVal connHandle AS INTEGER.
This is the handle of the connection on which pairing is being perfermed

nKeypressTyp
e

byRef nKeypressType AS STRING.

This is the type of the keypress, and can be one of the following values:

0 Passkey entry started

1 Passkey digit entered

2 Passkey digit erased

3 Passkey digit cleared

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

263

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

4 Passkey entry completed

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

264

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: BleSecMngrLescKeypressNotify.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

// Keypress Types

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_START 0x00 // Passkey entry started.

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_IN 0x01 // Passkey digit entered.

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_OUT 0x02 // Passkey digit erased.

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_CLEAR 0x03 // Passkey cleared.

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_END 0x04 // Passkey entry completed.

// Global variable

dim rc // Result Code

dim ghConn // Global connection handle

//==

// This handler is called when data has arrived at the serial port

//==

function HandlerUartRxCmd() as integer

 dim StrKey$ // key entered

 // Now read a single character from the UART buffer

 rc = UartReadN(StrKey$, 1)

 if (strcmp(StrKey$,"\r")==0) THEN

 // Let the user know that we are done with keypresses, then send passkey

 rc = BleSecMngrLescKeypressNotify(ghConn,BLE_GAP_KP_NOT_TYPE_PASSKEY_END)

 endif

endfunc 1

'//**

'// Equivalent to main() in C

'//**

//--

// Enable synchronous event handlers

//--

OnEvent EVUARTRX call HandlerUartRxCmd

// Enable keypress notifications

rc = BLESECMNGRLESCKEYPRESSENABLE(1)

// Set LE Secure Connections to be the preffered pairing model

rc = BLESECMNGRLESCPAIRINGPREF(1)

// Set IO capability to 2: Keyboard only

rc = BLESECMNGRIOCAP(2)

WaitEvent

BleSecMngrOOBKey

FUNCTION

This function submits an OOB (Out Of Band) key to the underlying stack during a legacy pairing procedure when
prompted by the EVBLEMSG with msgId set to 11 and the key type nCtx is 2, OOB. See Events & Messages.

BLESECMNGROOBKEY (connHandle, oobKey$)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

265

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

connHandle
byVal connHandle AS INTEGER.
This is the connection handle as received via the EVBLEMSG event with msgId set to 0.

oobKey$
byRef oobKey$ AS STRING.

This is the OOB key to submit to the stack. Submit a 16 byte string, or a string of a
different length to reject the request.

Example:

// Example :: BleSecMngrOOBKey.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, connHandle

DIM addr$: addr$=""

DIM oob$: oob$ = "\11\22\33\44\55\66\77\88\99\00\aa\cc\bb\dd\ee\ff"

#define OOB_KEY 2

FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE 0

 connHandle = nCtx

 PRINT "\nBle Connection ",nCtx

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 EXITFUNC 0

 CASE 10

 PRINT "\n--- New bond"

 CASE 11

 PRINT "\n +++ Auth Key Request, type=",nCtx

 if nCtx == OOB_KEY then

 rc=BleSecMngrOobKey(connHandle,oob$)

 print "\nOOB Key ";StrHexize$(oob$);" was used"

 endif

 CASE ELSE

 PRINT "\nUnknown Ble Msg"

 ENDSELECT

ENDFUNC 1

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

266

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ONEVENT EVBLEMSG CALL HandlerBleMsg

IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BL652"

ELSE

 PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

Make a connection to the BL652

Ble Connection, 1655

 +++ Auth Key Request, type=2

OOB Key 11223344556677889911AACCBBDDEEFF was used

--- New bond

Disconnected 1655

BleSecMngrLescOwnOobDataGet

FUNCTION

This function retrieves the OOB data that should be given to the peer device. The peer device should then use
this as the out of band data during LE Secure Connections pairing. The OOB data is regenerated everytime this
function is called.

BLESECMNGRLESCOWNOOBDATAGET (addr$ oobHash$, oobRand$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

addr$
byRef addr$ AS INTEGER.
The Bluetooth address of the local device that should be used by the remote device
during LE Secure Connections pairing

oobHash$
byRef oobHash$ AS STRING.

The OOB hash of the local device that should be used by the remote device during LE
Secure Connections pairing

oobRand$
byRef oobRand$ AS STRING.

The OOB randomiser of the local device that should be used by the remote device
during LE Secure Connections pairing

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

267

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleSecMngrLescPeerOobDataSet

FUNCTION

This function is used during the pairing process to send the remote OOB data via the Bluetooth link. When
EVBLEMSG is received with ID 28, indicating that the remote device is requesting it’s OOB data to be sent, this
function should be used to send the data that was previously exchanged out of band.

BLESECMNGRLESCPEEROOBDATASET (addr$ oobHash$, oobRand$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

addr$
byRef addr$ AS INTEGER.
The Bluetooth address of the remote device that was given out of band.

oobHash$
byRef oobHash$ AS STRING.

The OOB hash of the remote device that was given out of band.

oobRand$
byRef oobRand$ AS STRING.

The OOB randomiser of the remote device that was given out of band.

Example:

// Example :: BleSecMngrLescPeerOobDataSet.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

// In this example, the OOB data is exchanged over the UART in the form

// OOB_ADDRESS OOB_HASH OOB_RAND\r

// e.g. 000016A4B75201 63F6E834009C368612724FBC3253DDE2

8311CD946F30C785DD7EA83038A5221D\r

//BLE EVENT MSG IDs

#define BLE_EVBLEMSGID_CONNECT 0 // msgCtx = connection handle

#define BLE_EVBLEMSGID_DISCONNECT 1 // msgCtx = connection handle

13

#define BLE_EVBLEMSGID_ENCRYPTED 18 // msgCtx = connection handle

#define BLE_EVBLEMSGID_AUTHENTICATION_FAILED 26 // msgCtx = connection handle

#define BLE_EVBLEMSGID_LESC_PAIRING 27 // msgCtx = connection handle

#define BLE_EVBLEMSGID_LESC_OOB_REQUEST 28 // msgCtx = connection handle

//Global defines

DIM rc, stRsp$

//==

// This subroutine is called when Out of Band LESC pairing is in progress

//==

sub HandleOobReq()

 DIM OobData$, OobAddr$, OobHash$, OobRand$

 // Get our local OOB data

 rc = BleSecMngrLescOwnOobDataGet(OobAddr$, OobHash$, OobRand$)

 // Hexize the data

 OobAddr$ = StrHexize$(OobAddr$)

 OobHash$ = StrHexize$(OobHash$)

 OobRand$ = StrHexize$(OobRand$)

 // Construct a string of the retreived data

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

268

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 OobData$ = OobAddr$ + " " + OobHash$ + " " + OobRand$ + "\r"

 // Finally send the OOB data over UART

 rc = UartWrite(OobData$)

 print "Local OOB data sent over UART\n"

endsub

//==

// This handler is called when there is a BLE message

//==

function HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as integer

 dim hz

 select nMsgId

 case BLE_EVBLEMSGID_CONNECT

 print " --- Connect: (";integer.h' nCtx;")\n"

 case BLE_EVBLEMSGID_DISCONNECT

 print " --- Disconnect: (";integer.h' nCtx;")\n"

 case BLE_EVBLEMSGID_ENCRYPTED

 print " +++ Encrypted Connection: (";integer.h' nCtx;")\n"

 case BLE_EVBLEMSGID_LESC_PAIRING

 print " +++ LESC pairing: (";integer.h' nCtx;")\n"

 case BLE_EVBLEMSGID_LESC_OOB_REQUEST

 print " +++ LESC OOB Request: (";integer.h' nCtx;")\n"

 HandleOobReq()

 case BLE_EVBLEMSGID_AUTHENTICATION_FAILED

 print " +++ Auth Failed: (";integer.h' nCtx;"\n"

 case else

 endselect

endfunc 1

//==

// This handler is called when data has arrived at the serial port

//==

function HandlerUartRx() as integer

 dim nMatch

 dim OobData$, OobAddr$, OobHash$, OobRand$

 // read UART data until carriage return and save it into stRsp$

 nMatch=UartReadMatch(stRsp$,13)

 if nMatch!=0 then

 // Get the hash and randomiser from the input string

 OobData$ = strsplitleft$(stRsp$, nMatch)

 rc = ExtractStrToken(OobData$,OobAddr$)

 rc = ExtractStrToken(OobData$,OobHash$)

 rc = ExtractStrToken(OobData$,OobRand$)

 // Dehexize the data first

 OobAddr$ = StrDeHexize$(OobAddr$)

 OobHash$ = StrDeHexize$(OobHash$)

 OobRand$ = StrDeHexize$(OobRand$)

 // Now Send the remote OOB data over the BLE link

 rc = BleSecMngrLescPeerOobDataSet(OobAddr$, OobHash$, OobRand$)

 if rc==0 THEN

 print "Remote OOB data received from UART and sent over the BLE link\n"

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

269

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 endif

 endif

endfunc 1

//--

// Enable synchronous event handlers

//--

OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVUARTRX call HandlerUartRx

// Initialise LE adverts

dim addr$

rc = BleAdvertStart(0,addr$,100,30000,0)

// Enable LESC pairing

rc = BleSecMngrLescPairingPref(1)

//--

// Wait for a synchronous event.

// An application can have multiple <WaitEvent> statements

//--

WaitEvent

Expected Output:

 --- Connect: (0001FF00)

 +++ LESC OOB Request: (0001FF00)

 Local OOB data sent over UART

 Remote OOB data received from UART and sent over the BLE link

 +++ Encrypted Connection: (0001FF00)

 +++ LESC pairing: (0001FF00)

BleSecMngrKeySizes

FUNCTION

This function sets minimum and maximum long term encryption key size requirements for subsequent pairings.

If this function is not called, default values are 7 and 16 respectively. To ship your end product to a country with
an export restriction, reduce nMaxKeySize to an appropriate value and ensure it is not modifiable.

BLESECMNGRKEYSIZES (nMinKeysize, nMaxKeysize)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nMinKeysiz
byVal nMinKeysiz AS INTEGER.
The minimum key size. The range of this value is from 7 to 16.

nMaxKeysize
byVal nMaxKeysize AS INTEGER.

The maximum key size. The range of this value is from nMinKeysize to 16.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

270

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Example:

// Example :: BleSecMngrKeySizes.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 PRINT BleSecMngrKeySizes(8,15)

Expected Output:

0

BleSecMngrBondReq

FUNCTION

This function is used to enable or disable bonding when pairing. If enabled, and if your application requires
pairing, a peer device only needs to pair with this module once. If disabled, the device needs to pair every time it
connects to the module.

BLESECMNGRBONDREQ (nBondReq)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nBondReq
byVal nBondReq AS INTEGER.
0 – Disable
1 – Enable

Example:

// Example :: BleSecMngrBondReq.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 IF BleSecMngrBondReq(0)==0 THEN

 PRINT "\nBonding disabled"

 ENDIF

Expected Output:

Bonding disabled

BleEncryptConnection

FUNCTION

This function is used to encrypt a BLE connection with a device that the module has previously bonded with (the
device is present in the bonding manager). The function can only be issued by the central device (i.e. the device
that has initiated the connection request).

BLEENCRYPTCONNECTION (nConnHandle, nLtkMinSize, nMitmRequired)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

271

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
The handle of the connection which is obtained from an EVBLEMSG message with
ID 0 indicating that a connection had been established.

nLtkMinSize
byVal nLtkMinSize AS INTEGER.

The minimum long term key size which must be in the range 7-16.

nMitmRequired
byVal nMitmRequired AS INTEGER.

Set to 1 if MITM protection is required, 0 if not required.

Example:

dim rc, pr$, hC, hDesc

#define GATT_SERVER_ADDRESS "\01\F6\36\27\A6\0B\EA"

//This example app was tested with a BL652 running the health thermometer sensor sample

app

//which the module had previously bonded with.

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 endif

EndSub

'//--

'// This handler is called when there is a significant BLE event

'//--

function HndlrBleMsg(byval nMsgId as integer, byval nCtx as integer)

 select nMsgId

 case 0

 hC = nCtx

 print "\nConnected"

 rc=BleEncryptConnection(hC, 16, 0)

 if rc==0 then

 print "\nEncrypting connection"

 else

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

272

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 AssertRC(rc,28)

 endif

 case 1

 print "\n\n --- Disconnected"

 exitfunc 0

 case 10

 print "\nNew bond created"

 case 11

 print "\nPair request: Accepting"

 rc=BleAcceptPairing(hC,1)

 AssertRC(rc,52)

 print "\nPairing in progress"

 case 17

 print "\nNew pairing/bond has replaced old key"

 case 18

 print "\nConnection now encrypted"

 rc=BleDisconnect(hC)

 case else

 endselect

endfunc 1

rc=BleSecMngrIoCap(0) //set io capability to just works

rc=BleSecMngrJustWorksConf(0) //module will not wait for confirmation (EVBLEMSG 11)

before just works pairing

pr$ = GATT_SERVER_ADDRESS

rc=BleConnect(pr$, 10000, 25, 100, 30000000)

AssertRC(rc,91)

onevent evblemsg call HndlrBleMsg

waitevent

print "\nExiting..."

Expected Output:

Connected

Encrypting connection

Connection now encrypted

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

273

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 --- Disconnected

Exiting...

 Virtual Serial Port Service – Managed

This section describes all the events and routines used to interact with a managed virtual serial port service.

“Managed” means there is a driver consisting of transmit and receive ring buffers that isolate the BLE service
from the smartBASIC application. This in turn provides easy to use API functions.

Note: The driver makes the same assumption that the driver in a PC makes: If the on-air connection
equates to the serial cable, there is no assumption that the cable is from the same source as prior
to the disconnection. This is analogous to the way that a PC cannot detect such in similar cases.

The module can present a serial port service in the local GATT Table consisting of two mandatory characteristics
and two optional characteristics. One mandatory characteristic is the TX FIFO and the other is the RX FIFO, both
consisting of an attribute taking up to 20 bytes. Of the optional characteristics, one is the ModemIn which
consists of a single byte and only bit 0 is used as a CTS type function. The other is ModemOut, also a single byte,
which is notifiable only and is used to convey an RTS flag to the client.

By default, (configurable via AT+CFG 112), Laird’s serial port service is exposed with UUID’s as follows:

▪ The UUID of the service is: 569a1101-b87f-490c-92cb-11ba5ea5167c

▪ The UUID of the rx fifo characteristic is: 569a2001-b87f-490c-92cb-11ba5ea5167c

▪ The UUID of the tx fifo characteristic is: 569a2000-b87f-490c-92cb-11ba5ea5167c

▪ The UUID of the ModemIn characteristic is: 569a2003-b87f-490c-92cb-11ba5ea5167c

▪ The UUID of the ModemOut characteristic is: 569a2002-b87f-490c-92cb-11ba5ea5167c

Note: Laird’s Base 128bit UUID is 569aXXXX-b87f-490c-92cb-11ba5ea5167c where XXXX is a
16 bit offset. We recommend, to save RAM, that you create a 128 bit UUID of your own and
manage the 16 bit space accordingly, akin to what the Bluetooth SIG does with their 16 bit UUIDs.

If command AT+CFG 112 1 is used to change the value of the config key 112 to 1 then Nordic’s serial port service
is exposed with UUID’s as follows:

▪ The UUID of the service is: 6e400001-b5a3-f393-e0a9-e50e24dcca9e

▪ The UUID of the rx fifo characteristic is: 6e400002-b5a3-f393-e0a9-e50e24dcca9e

▪ The UUID of the tx fifo characteristic is: 6e400003-b5a3-f393-e0a9-e50e24dcca9e

Note: The first byte in the UUID’s above is the most significant byte of the UUID.

The ‘rx fifo characteristic’ is for data that comes to the module and the ‘tx fifo characteristic’ is for data that
goes out from the module. This means a GATT Client using this service will send data by writing into the ‘rx fifo
characteristic’ and will get data from the module via a value notification.

The ‘rx fifo characteristic’ is defined with no authentication or encryption requirements, a maximum of 20 bytes
value attribute. The following properties are enabled:

▪ WRITE
▪ WRITE_NO_RESPONSE

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

274

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The ‘tx fifo characteristic’ value attribute is with no authentication or encryption requirements, a maximum of
20 bytes value attribute. The following properties are enabled:

▪ NOTIFY (The CCCD descriptor also requires no authentication/encryption)

The ‘ModemIn characteristic’ is defined with no authentication or encryption requirements, a single byte
attribute. The following properties are enabled:

▪ WRITE
▪ WRITE_NO_RESPONSE

The ‘ModemOut characteristic’ value attribute is with no authentication or encryption requirements, a single
byte attribute. The following properties are enabled:

▪ NOTIFY (The CCCD descriptor also requires no authentication/encryption)

For ModemIn, only bit zero is used, which is set by 1 when the client can accept data and 0 when it cannot
(inverse logic of CTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.

For ModemOut, only bit zero is used which is set by 1 when the client can send data and 0 when it cannot
(inverse logic of RTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.

Note: Both flags in ModemIn and ModemOut are suggestions to the peer, just as in a UART scenario. If
the peer decides to ignore the suggestion and data is kept flowing, the only coping mechanism is to
drop new data as soon as internal ring buffers are full.

Given that the outgoing data is notified to the client, the ‘tx fifo characteristic’ has a Client Configuration
Characteristic (CCCD) which must be set to 0x0001 to allow the module to send any data waiting to be sent in
the transmit ring buffer. While the CCCD value is not set for notifications, writes by the smart BASIC application
result in data being buffered. If the buffer is full the appropriate write routine indicates how many bytes actually
got absorbed by the driver. In the background, the transmit ring buffer is emptied with one or more indicate or
notify messages to the client. When the last bytes from the ring buffer are sent, EVVSPTXEMPTY is thrown to
the smart BASIC application so that it can write more data if it chooses.

When GATT Client sends data to the module by writing into the ‘rx fifo characteristic’ the managing driver will
immediately save the data in the receive ring buffer if there is any space. If there is no space in the ring buffer,
data is discarded. After the ring buffer is updated, event EVVSPRX is thrown to the smart BASIC runtime engine
so that an application can read and process the data.

Similarly, given that ModemOut is notified to the client, the ModemOut characteristic has a Client Configuration
Characteristic (CCCD) which must be set to 0x0001. By default, in a connection the RTS bit in ModemOut is set to
1 so that the VSP driver assumes there is buffer space in the peer to send data. The RTS flag is affected by the
thresholds of 80 and 120 which means the when opening the VSP port the rxbuffer cannot be less than 128
bytes.

It is intended that in a future release it will be possible to register a ‘custom’ service and bind that with the
virtual service manager to allow that service to function in the managed environment. This allows the
application developer to interact with any GATT client implementing a serial port service, whether one currently
deployed or one that the Bluetooth SIG adopts.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

275

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

VSP Configuration

Given that VSP operation can happen in command mode the ability to configure it and save the new
configuration in non-volatile memory is available. For example, in bridge mode, the baudrate of the uart can be
specified to something other than the default 115200. Configuration is done using the AT+CFG command and
refer to the section describing that command for further details. The configuration id pertinent to VSP are 100 to
116 inclusive.

As of BL600 firmware development v1.8.85.0 it is possible to configure the command mode VSP by providing a
$autorun$ application which launchs after reset automatically. In this application the baudrate, GAP service, VSP
Service and advertising can be configured and adverts started. Once done, given the autorun application does
not have a WAITEVENT statement it falls into command mode and that VSP configuration will be operational.

A sample autorun application is as follows:

//**

// Laird (c) 2015

//

// This application is meant to autorun on power up and so is named apprpriately.

// It PURPOSELY does not have a WAITEVENT statement at the end and so will exit

// to command mode, where the VSP fucntionality will continue to operate.

//

// +++

// When UwTerminal downloads the app it will store it as $autorun$

// +++

//

//**

//**

// Debugging

//**

#set $cmpif,0xFFFFFFFF //set to 0 to disable all debugging

//**

// Definitions

//**

//--

// UART config

//--

#define UARTBAUD 9600

#define UARTBUFLENRX 0 //default

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

276

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

#define UARTBUFLENTX 0 //default

#define UARTOPTIONS "CN81H"

//--

// GAP Service

//--

//DeviceName

#define GAPDEVNAME "autoVSP"

//DeviceName Writeable in Gap Service

#define GAPNAME_WRITEABLE 0

//Appearance in Gap Service (see BT Spec for adopted values) 512=Custom

#define GAPAPPEARANCE 512

//Minimum Connection Interval in microseconds

#define GAPMINCONNINTus 7500

//Maximum Connection Interval in microseconds

#define GAPMAXCONNINTus 50000

//Link Supervision Timeout in microseconds

#define GAPLINKSUPRVSNTOUTus 2000000

//Slave Latency

#define GAPSLAVELATENCY 0

//--

// VSP Service

//--

#define VSPSECURITY 1 //1=Open, 2=NO_MITM, 3=WITH_MITM

#define VSPUUIDSERVICE "EADE1101B87f490C92CB11BA5EA5EFBE"

#define VSPUUIDRX 0x7001 //uses base of VSPUUIDSERVICE

#define VSPUUIDTX 0x7002 //uses base of VSPUUIDSERVICE

#define VSPUUIDMDMIN 0x7003 //uses base of VSPUUIDSERVICE

#define VSPUUIDMDMOUT 0x7004 //uses base of VSPUUIDSERVICE

#define VSPBUFLENRX 0 //default

#define VSPBUFLENTX 0 //default

//--

// Adverts

//--

#define ADVDISCOVERYFLAGS 2 //1=Limited,2=General,3=Both (0 do not define)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

277

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

#define ADVMAXDEVICENAMELEN 10

#define ADVINTERVALms 100

#define ADVTIMEOUTms 0 //0 means infinity

#define ADVFILTERPOLICY 0

//**

// Library Import

//**

//**

// Global Variable Declarations

//**

//--

// Misc variables

//--

dim rc //result code

dim hVspUuidSvc //Contains the uuid handle of the VSP service so that it

 //can be used to create an AD element in adverts

dim baud //the configured baudrate

//**

// Function and Subroutine definitions

//**

//==

// For debugging :: will inspect the global 'rc' variable

// --- ln = line number

//==

#cmpif 0x01 : sub DbgAssertRC(ln as integer)

#cmpif 0x01 : if rc!=0 then

#cmpif 0x01 : print "\nFail :";integer.h' rc;" at tag ";ln

#cmpif 0x01 : endif

#cmpif 0x01 : endsub

//==

//==

sub OpenUART()

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

278

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 baud=UARTBAUD

 rc=UartOpen(baud,UARTBUFLENTX,UARTBUFLENRX,UARTOPTIONS)

 #cmpif 0x01 : DbgAssertRC(1050)

endsub

//==

// Device Name (writable/not)

// Connection Parameters

//==

sub ConfigServiceGAP()

 dim devicename$: devicename$= GAPDEVNAME

rc=BleGapSvcInit(devicename$,GAPNAME_WRITEABLE,GAPAPPEARANCE,GAPMINCONNINTus,GAPMAXCONNINTus,

GAPLINKSUPRVSNTOUTus,GAPSLAVELATENCY)

 #cmpif 0x01 : DbgAssertRC(1150)

endsub

//==

// Security :: 1=Open, 2=NO_MITM, 3=WITH_MITM

//==

sub OpenVSP(vspSec)

 dim uuid$

 dim hVspUuidRx

 dim hVspUuidTx

 dim hVspUuidMdmIn

 dim hVspUuidMdmOut

 //create the advert & scan reports

 uuid$ = VSPUUIDSERVICE

 uuid$ = StrDehexize$(uuid$)

 hVspUuidSvc = BleHandleUuid128(uuid$)

 hVspUuidRx = BleHandleUuidSibling(hVspUuidSvc,VSPUUIDRX)

 hVspUuidTx = BleHandleUuidSibling(hVspUuidSvc,VSPUUIDTX)

 hVspUuidMdmIn = BleHandleUuidSibling(hVspUuidSvc,VSPUUIDMDMIN)

 hVspUuidMdmOut= BleHandleUuidSibling(hVspUuidSvc,VSPUUIDMDMOUT)

 vspSec = (vspSec & 0x7)<<2

 //finally open the VSP

rc=BleVspOpenEx(VSPBUFLENTX,VSPBUFLENRX,vspSec,hVspUuidSvc,hVspUuidRx,hVspUuidTx,hVspUuidMdmI

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

279

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

n,hVspUuidMdmOut)

 #cmpif 0x01 : DbgAssertRC(1410)

endsub

//==

//==

sub StartADVERTS()

 dim advReport$

 dim scnReport$

 dim peerAdr$: peerAdr$=""

 rc=BleAdvRptInit(advReport$,ADVDISCOVERYFLAGS,GAPAPPEARANCE,ADVMAXDEVICENAMELEN)

 #cmpif 0x01 : DbgAssertRC(1530)

 rc=BleScanRptInit(scnReport$)

 #cmpif 0x01 : DbgAssertRC(1550)

 rc=BleAdvRptAddUuid128(scnReport$,hVspUuidSvc)

 #cmpif 0x01 : DbgAssertRC(1570)

 rc=BleAdvRptsCommit(advReport$,scnReport$)

 #cmpif 0x01 : DbgAssertRC(1590)

 //finally start the adverts

 rc=BleAdvertStart(0,peerAdr$,ADVINTERVALms,ADVTIMEOUTms,ADVFILTERPOLICY)

 #cmpif 0x01 : DbgAssertRC(1630)

endsub

//**

// Handler definitions

//**

//**

// Equivalent to main() in C

//**

//--

//Config and open UART

// See UARTxxx #defines above

//--

OpenUART()

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

280

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//--

//Configure GAP Service

// See GAPxxx #defines above

//--

ConfigServiceGAP()

//--

//Config and open VSP

// See VSPxxx #defines above

//--

OpenVSP(VSPSECURITY)

//--

//Advertising

// See ADVxxx #defines above

//--

StartADVERTS()

//--

// PURPOSELY COMMENTED OUT AS WE WANT TO FALL INTO COMMAND MODE

//--

//waitevent

Command and Bridge Mode Operation

Just as the physical UART is used to interact with the module when it is not running a smart BASIC application, it
is also possible to have limited interaction with the module in interactive mode. The limitation applies to NOT
being able to launch smart BASIC applications using the AT+RUN command. If bridge mode is enabled then any
incoming VSP data is retransmitted out via the UART. Conversely, any data arriving via the UART is transmitted
out the VSP service. This latter functionality provides a cable replacement function.

Selection of Command or Bridge Mode is done using the nAutorun input signal. When nAutorun is low,
interactive mode is enabled. When it is high, and bit 8 in the config register 100 accessed by AT+CFG 100 is set,
bridge mode is selected the defaule value of config register 100 is 0x8102 which means by default, bridge mode
is enabled if SIO2 is held high and nAutorun is high too.

The operation of VSP command and bridge mode is illustrated as per the diagrams on the following page
(aknowledgments to Nicolas Mejia) .

The main purpose of interactive mode operation is to facilitate the download of an autorun smart BASIC
application. This allows the module to be soldered into an end product without preconfiguration and then the
application can be downloaded over the air once the product has been pre-tested. It is the smart BASIC
application that is downloaded over the air, NOT the firmware. Due to this principle reason for use in

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

281

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

production, to facilitate multiple programming stations in a locality the transmit power is limited to -12dBm. It
can be changed by changing the 109 config key using the command AT+CFG.

The default operation of this virtual serial port service is dependent on one of the digital input lines being pulled
high externally. Consult the hardware manual for more information on the input pin number. By default it is
SIO2 on the module, but it can be changed by setting the config key 100 via AT+CFG.

You can interact with the BL654 over the air via the Virtual Serial Port Service using the Laird iOS or Android
“BL6xx Serial” app, available free on the Apple App Store and Google Play Store respectively.

You may download smartBASIC applications onto the BL654 Over The Air using a BT900-US/BL652/BL654 devkit
and a smartBASIC application from GitHub. Contact your local FAE for details.

As most of the AT commands are functional, you may obtain information such as version numbers by sending
the command AT I 3 to the module over the air.

Note that the module enters interactive mode only if there is no autorun application or if the autorun
application exits to interactive mode by design. Hence in normal operation where a module is expected to have
an autorun application the virtual serial port service will not be registered in the GATT table.

http://ews-support.lairdtech.com/
https://github.com/LairdCP/BL652-Applications/blob/master/Applications/%24autorun%24.VSP.UART.bridge.outgoing.sb

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

282

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If the application requires the virtual serial port functionality then it shall have to be registered
programmatically using the functions that follow in subsequent subsections. These are easy to use high level
functions such as OPEN/READ/WRITE/CLOSE.

VSP (Virtual Serial Port) Events

In addition to the routines for manipulating the Virtual Serial Port (VSP) service, when data arrives via the
receive characteristic it is stored locally in an underlying ring buffer and then an event is generated.

Similarly when the transmit buffer is emptied, events are thrown from the underlying drivers so that user smart
BASIC code in handlers can perform user defined actions.

The following is a list of events generated by VSP service managed code which can be handled by user code.

EVVSPRX This event is generated when data has arrived and has been stored in the local ring
buffer to be read using BleVSpRead().

EVVSPTXEMPTY This event is generated when the last byte is transmitted using the outgoing data
characteristic via a notification or indication.

Use the iOS BL6xx Serial app and connect to your BL654 to test this sample app.

Example:

// Example :: VSpEvents.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM tx$,rc,x,scRpt$,adRpt$,addr$,hndl

 //handler for data arrival

 FUNCTION HandlerBleVSpRx() AS INTEGER

 //print the data that arrived

 DIM n,rx$

 n = BleVSpRead(rx$,20)

 PRINT "\nrx=";rx$

 ENDFUNC 1

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 IF x==0 THEN

 rc = BleVSpWrite(tx$)

 x=1

 ENDIF

 ENDFUNC 1

 PRINT "\nDevice name is "; BleGetDeviceName$()

 //Open the VSP

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

283

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc = BleVSpOpen(128,128,0,hndl)

 //Initialise a scan report

 rc = BleScanRptInit(scRpt$)

 //Advertise the VSP service in the scan report so

 //that it can be seen by the client

 rc = BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 rc = BleAdvRptsCommit(adRpt$,scRpt$)

 addr$="" //because we are not doing a DIRECT advert

 rc = BleAdvertStart(0,addr$,20,300000,0)

 //Now advertising so can be connectable

 ONEVENT EVVSPRX CALL HandlerBleVSpRx

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 tx$="tx buffer empty"

 PRINT "\nUse the iOS BL6xx Serial app to test this"

 //wait for events and messages

 WAITEVENT

BleVSpOpen

FUNCTION

This function opens the default VSP service using the parameters specified. The service’s UUID is: 569a1101-
b87f-490c-92cb-11ba5ea5167c

By default, ModemIn and ModemOut characteristics are registered in the GATT table with the Rx and Tx FIFO
characteristics. To suppress Modem characteristics in the GATT table, set bit 1 in the nFlags parameter (value 2).
If the virtual serial port is already open, this function fails.

Note that the parameters specified in the first call to this function are sticky. After calling BleVspClose() if this
function is recalled the parameters will be ignored and the internal state machine managing the VSP function
will resume from a suspended state. This is because on a close, it is not possible to remove the service from the
GATT table. If this is strictly required, perform a warm reset using RESET() and then action appropriately in the
new incarnation. One way of detection a new incarnation could be by using NvRecordSet()/NvRecordGet() as
that writes/reads to non-volatile memory.

BLEVSPOPEN (txbuflen, rxbuflen, nFlags, svcUuid)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x604D Already open

0x604E Invalid Buffer Size

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

284

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x604C Cannot register Service in Gatt Table while BLE connected

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

txbuflen
byVal txbuflen AS INTEGER
Set the transmit ring buffer size to this value. If set to 0, a default value is used by
the underlying driver and use BleVspInfo(2) to determine the size.

rxbuflen
byVal rxbuflen AS INTEGER
Set the receive ring buffer size to this value. If set to 0, a default value is used by
the underlying driver and use BleVspInfo(1) to determine the size.

nFlags

byVal nFlags AS INTEGER
This is a bit mask to customise the driver as follows:

Bit 0

Set to 1 to try for reliable data transfer. This uses INDICATE
messages if allowed and if there is a choice. Some services
only allow NOTIFY and in that case, if set to 1, it is ignored.
This is deprecated – always set to 0

Bit 1 Set to 1 to suppress ModemIn and ModemOut characteristics

Bits Security Setting for accesing characteristics

4 3 2 Bit Number

0 0 0 Open

0 0 1 Open

0 1 0 ENCRYPTED_NO_MITM

0 1 1 ENCRYPTED_WITH_MITM

1 0 0 SIGNED_NO_MITM (reserved for future)

1 0 1 SIGNED_WITH_MITM (reserved for future)

1 1 0 ENCRYPTED_NO_MITM

1 1 1 ENCRYPTED_NO_MITM

Bit 5..31 Reserved for future use. Set to 0.

svcUuid

byRef svcUuid AS INTEGER
On exit, this variable is updated with a handle to the service UUID which can
then be subsequently used to advertise the service in an advert report. Given
that there is no BT SIG adopted Serial Port Service the UUID for the service is 128
bit, so an appropriate Advert Data element can be added to the advert or scan
report using the function BleAdvRptAddUuid128() which takes a handle of that
type.

Related Commands
BLEVSPINFO, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD,
BLEVSPFLUSH,BLEVSPOPENEX

Example:

// Example :: BleVspOpen.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM scRpt$,adRpt$,addr$,vspSvcHndl

 //Close VSP if already open

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

285

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF BleVSpInfo(0)!=0 THEN

 BleVSpClose()

 ENDIF

 //Open VSP

 IF BleVSpOpen(128,128,0,vspSvcHndl)==0 THEN

 PRINT "\nVSP service opened"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

VSP service opened

BleVSpOpenEx

FUNCTION

This function opens the a managed VSP service using the parameters specified. The service’s UUID and UUIDs for
the up to 4 characteristics can all be inidividually specified.

ModemIn and ModemOut characteristics are registered in the GATT table with the Rx and Tx FIFO
characteristics if both UUIDMdmIn and UUIDMdmOut are not invalid (invalid handle == 0).

Note that the parameters specified in the first call to this function are sticky. After calling BleVspClose() if this
function is recalled the parameters will be ignored and the internal state machine managing the VSP function
will resume from a suspended state. This is because on a close, it is not possible to remove the service from the
GATT table. If this is strictly required, perform a warm reset using RESET() and then action appropriately in the
new incarnation. One way of detection a new incarnation could be by using NvRecordSet()/NvRecordGet() as
that writes/reads to non-volatile memory.

BLEVSPOPENEX (txbuflen, rxbuflen, nFlags, hUuidSvc, hUuidRx, hUuidTx, hUuidMdmIn, hUuidMdmOut)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x604D Already open

0x604E Invalid Buffer Size

0x604C Cannot register Service in Gatt Table while BLE connected

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

txbuflen
byVal txbuflen AS INTEGER
Set the transmit ring buffer size to this value. If set to 0, a default value is used by
the underlying driver and use BleVspInfo(2) to determine the size.

rxbuflen
byVal rxbuflen AS INTEGER
Set the receive ring buffer size to this value. If set to 0, a default value is used by
the underlying driver and use BleVspInfo(1) to determine the size.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

286

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nFlags

byVal nFlags AS INTEGER
This is a bit mask to customise the driver as follows:

Bit 0

Set to 1 to try for reliable data transfer. This uses INDICATE
messages if allowed and if there is a choice. Some services
only allow NOTIFY and in that case, if set to 1, it is ignored.
This is deprecated – always set to 0

Bit 1
This bit is ignored. See hUuidMdmIn and hUuidMdmOut
instead to manage.

Bits Security Setting for accesing characteristics

4 3 2 Bit Number

0 0 0 Open

0 0 1 Open

0 1 0 ENCRYPTED_NO_MITM

0 1 1 ENCRYPTED_WITH_MITM

1 0 0 SIGNED_NO_MITM (reserved for future)

1 0 1 SIGNED_WITH_MITM (reserved for future)

1 1 0 ENCRYPTED_NO_MITM

1 1 1 ENCRYPTED_NO_MITM

Bit 5..31 Reserved for future use. Set to 0.

hUuidSvc

byVal hUuidSvc AS INTEGER
This is the handle for the service UUID which can then be subsequently used to
advertise the service in an advert report. Given that there is no BT SIG adopted
Serial Port Service the UUID for the service is 128 bit, so an appropriate Advert
Data element can be added to the advert or scan report using the function
BleAdvRptAddUuid128() which takes a handle of that type.

hUuidRx
byVal hUuidRx AS INTEGER
This is the handle for the Rx Characteristic UUID. It cannot be an invalid handle.

hUuidTx
byVal hUuidTx AS INTEGER
This is the handle for the Tx Characteristic UUID. It cannot be an invalid handle.

hUuidMdmIn
byVal hUuidMdmIn AS INTEGER
This is the handle for the MdmIn Characteristic UUID. Can be an invalid handle
(0) and in that case both modem characteristic are not registered.

uUuidMdmOut
byVal hUuidMdmOut AS INTEGER
This is the handle for the MdmOut Characteristic UUID. . Can be an invalid
handle (0) and in that case both modem characteristic are not registered.

Related Commands
BLEVSPINFO, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH,
BLEVSPOPEN

//Example

 DIM scRpt$,adRpt$,addr$,hUuidSvc,hUuidRx,hUuidTx,hUuidMdmIn,hUuidMdmOut,uuid$

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

287

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuidSvc = BleHandleUuid128(uuid$)

 hUuidRx = BleHandleUuidSibling(hUuid1,0x1234)

 hUuidTx = BleHandleUuidSibling(hUuid1,0x5678)

 hUuidMdmIn = BleHandleUuidSibling(hUuid1,0x9ABC)

 hUuidMdmOut = BleHandleUuidSibling(hUuid1,0xDEF0)

 //Open VSP

 IF BleVSpOpenEx(128,128,0, hUuidSvc,hUuidRx,hUuidTx,hUuidMdmIn,hUuidMdmOut)==0 THEN

 PRINT "\nVSP service opened with non-default UUIDs"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

VSP service opened with non-default UUIDs

BleVSpClose

SUBROUTINE

This subroutine closes the managed virtual serial port which had been opened with BLEVSPOPEN. This routine is
safe to call if it is already closed. When this subroutine is invoked both receive and transmit buffers are
flushed. If there is data in either buffer when the port is closed, it will be lost.

Note that the parameters specified in the first call of BleVspOpen() are sticky. After calling this function if
BleVspOpen() or BleVspOpenEx() is called again then the open parameters will be ignored and the internal state
machine managing the VSP function will resume from a suspended state. This is because on a close, it is not
possible to remove the service from the GATT table. If this is strictly required, perform a warm reset using
RESET() and then action appropriately in the new incarnation. One way of detection a new incarnation could be
by using NvRecordSet()/NvRecordGet() as that writes/reads to non-volatile memory.

BLEVSPCLOSE ()

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments None

Related Commands BLEVSPINFO, BLEVSPOPEN, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

Use the iOS “BL6xx Serial” app and connect to your BL654 to test this sample app.

Example:

// Example :: BleVspClose.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM tx$,rc,scRpt$,adRpt$,addr$,hndl

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

288

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 PRINT "\n\nVSP tx buffer empty"

 BleVspClose()

 ENDFUNC 0

 PRINT "\nDevice name is "; BleGetDeviceName$()

 //Open the VSP, advertise

 rc = BleVSpOpen(128,128,0,hndl)

 rc = BleScanRptInit(scRpt$)

 rc = BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 rc = BleAdvRptsCommit(adRpt$,scRpt$)

 addr$=""

 rc = BleAdvertStart(0,addr$,20,300000,0)

 //This message will send when connected to client

 tx$="send this data and will close when sent"

 rc = BleVSpWrite(tx$)

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

Device name is LAIRD BL652

VSP tx buffer empty

Exiting...

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

289

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleVSpInfo

FUNCTION

This function is used to query information about the virtual serial port, such as buffer lengths, whether the port
is already open or how many bytes are waiting in the receive buffer to be read.

BLEVSPINFO (infoId)

Returns INTEGER The value associated with the type of UART information requested

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

infoId

byVal infoId AS INTEGER

This specifies the information type requested as follows if the port is open:

0 0 if closed, 1 if open, 3 if open and there is a BLE connection and 7 if the
transmit fifo characteristic CCCD has been updated by the client to
enable notifies or indications.

1 Receive ring buffer capacity

2 Transmit ring buffer capacity

3 Number of bytes waiting to be read from receive ring buffer

4 Free space available in transmit ring buffer

5 Tx/Rx attribute size in bytes. Valid range is 20-244, and can be
configured using AT+CFG 212. See Data Packet Length Extension
section for more information.

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

Example:

// Example :: BleVspInfo.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hndl, rc

//Close VSP if it is open

BleVSpClose()

rc = BleVSpOpen(128,128,0,hndl)

PRINT "\nVsp State: "; BleVSpInfo(0)

PRINT "\nRx buffer capacity: "; BleVSpInfo(1)

PRINT "\nTx buffer capacity: "; BleVSpInfo(2)

PRINT "\nBytes waiting to be read from rx buffer: "; BleVSpInfo(3)

PRINT "\nFree space in tx buffer: "; BleVSpInfo(4)

PRINT "\nTx/Rx Characteristic Size: "; BleVSpInfo(5) // Changed using AT+CFG

212 xx

BleVspClose()

PRINT "\nVsp State: "; BleVSpInfo(0)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

290

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Vsp State: 1

Rx buffer capacity: 128

Tx buffer capacity: 128

Bytes waiting to be read from rx buffer: 0

Free space in tx buffer: 128

Tx/Rx Characteristic Size: 20

Vsp State: 0

BleVSpWrite

FUNCTION

This function is used to transmit a string of characters from the virtual serial port.

BLEVSPWRITE (strMsg)

Returns
INTEGER 0 to N : Actual number of bytes successfully written to local transmit
ring buffer.

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

strMsg

byRef strMsg AS STRING
The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit
ring buffer. If STRLEN(strMsg) and the return value are not the same, it implies that
the transmit buffer did not have enough space to accommodate the data.
If the return value does not match the length of the original string, use STRSHIFTLEFT
function to drop the data from the string, so subsequent calls to this function only
retry with data not placed in the output ring buffer.
Another strategy is to wait for EVVSPTXEMPTY events, then resubmit data.

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPREAD, BLEVSPFLUSH

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable. If you must use a
const string, first save it to a temp string variable and then pass it to the function.

Use Laird Toolkit app for iOS/Android and connect to your BL654 to test this sample app.

Example:

// Example :: BleVSpWrite.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM tx$,rc,scRpt$,adRpt$,addr$,hndl,cnt

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

291

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 cnt=cnt+1

 IF cnt<= 2 THEN

 tx$="then this is sent"

 rc = BleVSpWrite(tx$)

 ENDIF

 ENDFUNC 0

 rc = BleVSpOpen(128,128,0,hndl)

 rc = BleScanRptInit(scRpt$)

 rc = BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 rc = BleAdvRptsCommit(adRpt$,scRpt$)

 addr$=""

 rc = BleAdvertStart(0,addr$,20,300000,0)

 PRINT "\nDevice name is "; BleGetDeviceName$()

 cnt=1

 tx$="send this data and "

 rc = BleVSpWrite(tx$)

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 WAITEVENT

PRINT "\nExiting..."

Expected Output:

Device name is LAIRD BL654

Exiting...

BleVSpRead

FUNCTION

This function is used to read the content of the receive buffer and copy it to the string variable supplied.

BLEVSPREAD (strMsg, nMaxRead)

Returns INTEGER 0 to N : The total length of the string variable. This means the caller
does not need to call strlen() function to determine how many bytes in the string

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

292

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

must be processed.

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

strMsg
byRef strMsg AS STRING
The content of the receive buffer is copied to this string.

nMaxRead
byVal nMaxRead AS INTEGER
The maximum number of bytes to read.

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and. If you must
use a const string, first save it to a temp string variable and then pass it to the function

Use the Laird Toolkit app for iOS/Android with your BL654 to test this sample app.

Example:

// Example :: BleVSpRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM conHndl

 //Only 1 global variable because its value is used in more than 1 routine

 //All other variables declared locally, inside routine that they are used in.

 //More efficient because these local variables only exist in memory

 //when they are being used inside their respective routines

 //==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$: adRpt$="" : addr$=""

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 PRINT "\nDevice name is "; BleGetDeviceName$()

 tx$="\nSend me some text \nTo exit the app, just tell me\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

293

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 ENDSUB

 //==

 // VSP Rx buffer event handler

 //==

 FUNCTION HandlerVSpRx() AS INTEGER

 DIM rc, rx$, e$: e$="exit"

 rc=BleVSpRead(rx$,20)

 PRINT "\nMessage from client: ";rx$

 //If user has typed exit

 IF StrPos(rx$,e$,0) > -1 THEN

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 // BLE event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerVSpRx

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 OnStartup() //Calls first subroutine declared above

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

294

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

 PRINT "\nExiting..."

Expected Output:

Device name is LAIRD BL654

Messgae from client: (Whatever data you send from your device)

Message from client: exit

Exiting...

BleVSpUartBridge

SUBROUTINE

This function creates a bridge between the managed Virtual Serial Port Service and the UART when both are
open. Any data arriving from the VSP is automatically transferred to the UART for forward transmission. Any
data arriving at the UART is sent over the air.

It should be called either when data arrives at either end or when either end indicates their transmit buffer is
empty. The following events are examples: EVVSPRX, EVUARTRX, EVVSPTXEMPTY and EVUARTTXEMPTY.

Given that data can arrive over the UART a byte at a time, a latency timer specified by AT+CFG 116 command
may be used to optimise the data transfer over the air. This tries to ensure that full packets are transmitted over
the air. Therefore, if a single character arrives over UART, a latency timer is started. If it expires, that single
character (or any more that arrive but less than 20) will be forced onwards when that timer expires.

BLEVSPUARTBRIDGE ()

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments None

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH

Example:

// Example :: BleVSpUartBridge.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM conHndl

 //==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

295

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nDevice name is "; BleGetDeviceName$();"\n"

 tx$="\nSend me some text. \nPress button 0 to exit\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 ENDSUB

 //==

 // BLE event handler - connection handle is obtained here

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //just exit and stop waiting for events

 ENDFUNC 0

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

296

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 //handler to service an rx/tx event

 //==

 FUNCTION HandlerBridge() AS INTEGER

 // transfer data between VSP and UART ring buffers

 BleVspUartBridge()

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerBridge

 ONEVENT EVUARTRX CALL HandlerBridge

 ONEVENT EVVSPTXEMPTY CALL HandlerBridge

 ONEVENT EVUARTTXEMPTY CALL HandlerBridge

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup()

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

 PRINT "\nExiting..."

BleVSpFlush

SUBROUTINE

This subroutine flushes either or both receive and transmit ring buffers.

This is useful when, for example, you have a character terminated messaging system and the peer sends a very
long message, filling the input buffer. In that case, there is no more space for an incoming termination character.
A flush of the receive buffer is the best approach to recover from that situation.

BLEVSPFLUSH (bitMask)

Returns ▪ None

Arguments

bitMask
byVal bitMask AS INTEGER
Bit 0 is set to flush the Rx buffer. Bit 1 is set to flush the Tx buffer. Set both bits to
flush both buffers.

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPREAD

Example:

// Example :: BleVSpFlush.sb

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

297

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM conHndl

//==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$: adRpt$="" : addr$=""

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nDevice name is "; BleGetDeviceName$()

 tx$="\nSend me some text, I won't get it. \nTo exit the app press Button 0\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

//==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 BleVspFlush(3) //Flush both buffers

 ENDSUB

//==

 // VSP Rx buffer event handler

 //==

 FUNCTION HandlerVSpRx() AS INTEGER

 BleVspFlush(1)

 PRINT "\nRx buffer flushed"

 ENDFUNC 1

//==

 //handler to service button 0 pressed

 //==

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

298

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //stop waiting for events and exit app

 ENDFUNC 0

//==

 // BLE event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerVSpRx

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup() //Calls first subroutine declared above

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

 PRINT "\nExiting..."

Expected Output:

Device name is LAIRD BL654

Rx buffer flushed

Rx buffer flushed

Exiting...

 Data Packet Length Extension

This section describes all the events and functions used for Data Packet Length Extension and related features to
achieve higher throughputs.

Overview

Data Packet Length Extension

One of the major additions in Bluetooth v4.2 is LE Data Packet Length Extension. This feature allows the BLE
packet size to increase from 27 to 251 bytes at the link layer, thus increasing the capacity of the data channel by
approximately ten times. The benefits of of this include the following:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

299

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Higher Throughputs – Less time is required to transfer the same amount of data compared to Bluetooth
v4.1.

▪ Lower power consumption – Fewer transactions are required to transfer a given amount of data compared
to Bluetooth v4.1. This reduces the time for which the radio is active.

In order to take full advantage of packet length extension, the device should also have an ATT_MTU greater than
the default 23 bytes.

ATT_MTU

The attribute Maximum Transmission Unit (ATT_MTU) is the maximum size of any packet sent betweem a GATT
client and a GATT server. It determines the maximum amount of data that can be sent over the air for GATT
operations.

GATT Operation Attribute Size Example when ATT_MTU=23

Read 0 to (ATT_MTU-1)
The GATT client can only read 22 bytes from a GATT server’s attribute
data.

Write 0 to (ATT_MTU-3)
The GATT client can only write up to 20 bytes to a GATT server
attribute.

Notification 0 to (ATT_MTU-3) The GATT server can only send notifies of data up to 20 bytes long

Indications 0 to (ATT_MTU-3) The GATT server can only send indications of data up to 20 bytes long

The MTU exchange is a subprocedure used by the GATT client to set the connection’s ATT_MTU to the maximum
possible value that can be supported by both devices. This means that if the ATT_MTU is set to a value larger
than the default 23 bytes, larger amounts of data can be sent between the GATT server and the GATT client per
transaction, therefore resulting in higher throughput. For example, when the ATT_MTU is set to 247, single
read/write/notifies/indicates can be performed on attributes that are 244 bytes long.

CFG Keys Configuration

Maximum ATT_MTU

The maximum ATT_MTU value that the BL654 supports can be set using AT+CFG 211 num. Once this value is set,
the BL654 should be reset (e.g. via ATZ command or a UART BREAK) for the configuration to take effect. When
the smartBASIC application is running and if the BL654 is acting as a GATT client, the function
BleGattcAttributeMtuRequest should be used to request the ATT_MTU size to change to its maximum
supported value. If the BL654 is acting as a GATT server, when it receives the request it automatically responds
with its maximum ATT_MTU. The connection’s MTU is the minimum value between the client’s and server’s
maximum ATT_MTU.

ID Definition

211 Maximum ATT_MTU in bytes

Example:

AT+CFG 211 247

00

ATZ

00

AT+CFG 211 ?

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

300

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

27 0x000000F7 (247)

00

Maximum Attribute Data Length

In order to take full advantage of the increased ATT_MTU and packet length extension, the BL654 now supports
attribute data lengths of up to 244 bytes. The maximum attribute data length is set using AT+CFG 212 num. The
default value is 20 bytes. Once this is set, the BL654 should be reset (e.g. via ATZ command or a UART BREAK) for
the configuration to take effect. At runtime, the function BleAttrMetaDataEx can then be used to create
characteristic values larger than 20 bytes.

ID Definition

212 Maximum Attribute Data Length Length

Example:

AT+CFG 212 244

00

ATZ

00

AT+CFG 212 ?

27 0x000000F4 (244)

00

Maximum Packet Length

The BL654 supports a packet size of 27 bytes by default, and can be configured to support packet sizes up to
251 bytes, which is the maximum that is allowed by the Bluetooth specification. In order to increase the packet
size supported by the device, the command AT+CFG 216 num should be called, where num should be in the
range of 27-251 bytes long. For values less than or greater than the range, the packet length will be capped to 27
bytes or 251 bytes respectively.

Note: This function only sets the maximum packet length supported by the device. To actually change the
packet length for a connection, the function BleGattcAttributeMtuRequest() during the
connection, and the packet length requested will be ‘ATT_MTU + 4’. For more information, refer to
the example for BleGattcAttributeMtuRequest().

Events and Messages

EVATTRIBUTEMTU

This event is thrown when the ATT_MTU of a connection is changed. It occurs after an MTU exchange procedure
has been intiated from the GATT client. The event comes with the following parameters:

▪ Connection handle – The handle of the connection for which the attribute MTU has changed.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

301

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Attribute MTU – The new attribute size. This is in the range of 23-247 bytes.

For usage, see example for BleGattcAttributeMtuRequest.

EVPACKETLENGTH

This event message is thrown when the connection’s data packet length changes. It is only thrown after a
negotiation of the attribute MTU via the BleAttributeMtuRequest smartBASIC function. The event comes with
the following parameters:

▪ Connection handle – The handle of the connection for which the packet length has changed.
▪ Maximum Tx Octets – The maximum number of bytes that the BL654 sends on this connection. The valid

range is between 27-251 bytes.
▪ Maximum Tx Time – The maximum time that the BL654 takes to send one byte on this connection. The

valid range is between 328-2120 microseconds. This value cannot be controlled by the smartBASIC
application and is only provided for informative purposes.

▪ Maximum Rx Octets – The maximum number of bytes that the BL654 receives on this connection. The valid
range is between 27-251 bytes. The default value is 27 bytes.

▪ Maximum Rx Time – The maximum time that the BL654 takes to send one byte on this connection. The
valid range is betweem 328-2120 microseconds. This value cannot be controlled by the smartBASIC
application and is only provided for informative purposes.

For usage, see example for BleGattcAttributeMtuRequest.

BleGattcAttributeMtuRequest

This function is used by the GATT client to request a new attribute MTU from the remote GATT server. On the
BL654, the default ATT_MTU is 23 bytes. The maximum value that the BL654 can support is 247 bytes. This can
be set using the config key 211.

Note: The ATT_MTU value is set using the interactive command AT+CFG 211 num. This value is then
always used when the BleGattcAttributeMtuRequest is called.

BLEGATTCATTRIBUTEMTUREQUEST(nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byVal nEnable AS INTEGER.
The connection handle for which the ATT_MTU should change

// Example :: BleGattcAttributeMtuRequest.sb

// IMPORTANT: before running this application, the ATT_MTU and maximum packet

// length are set using the interactive commands:

//

// AT+CFG 211 247 (This is to set the maximum ATT_MTU)

// AT+CFG 216 251 (This is to set the maximum packet length)

// ATZ (This is to reset the device for value to take effect)

//

// In order to achieve an ATT_MTU larger than the default 23, the remote device

// should also have its maximum ATT_MTU set to a value greater than 23. If the

// remote device is a BL652, the same AT+CFG command should be used

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

302

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//BLE EVENT MSG IDs

#define BLE_EVBLEMSGID_CONNECT 0 // msgCtx = connection handle

#define BLE_EVBLEMSGID_DISCONNECT 1 // msgCtx = connection handle

DIM rc, stRsp$, addr$

//==

// This handler is called when there is a BLE message

//==

function HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as integer

 dim hz

 select nMsgId

 case BLE_EVBLEMSGID_CONNECT

 print " --- Connect: (";integer.h' nCtx;")\n"

 // Upon connection, request a new attribute length. The value used will be that

 // whcih was set using 'AT+CFG 211 num' before running the program

 rc = BleGattcAttributeMtuRequest(nCtx)

 case BLE_EVBLEMSGID_DISCONNECT

 print " --- Disconnect: (";integer.h' nCtx;")\n"

 // Upon disconnection, start advertising again

 rc = BleAdvertStart(0,addr$,100,0,0)

 case else

 endselect

endfunc 1

//==

// This handler is called when the packet length is changed

//==

function HandlerPacketLength(BYVAL hConn, BYVAL Tx_Octets, BYVAL Tx_Time, BYVAL

Rx_Octets, BYVAL Rx_Time)

 print "Packet Length Change: \n"

 print "Handle: ";integer.h' hConn;"\n"

 print "Tx_Octets=";Tx_Octets;" Tx_Time =";Tx_Time;"\n"

 print "Rx_Octets=";Rx_Octets;" Rx_Time =";Rx_Time;"\n"

endfunc 1

//==

// This handler is called when there is an event that the attribute MTU has changed

//==

function HandlerAttrMTU(BYVAL hCOnn AS INTEGER, BYVAL nSize AS INTEGER)

 print "Attribute MTU Changed - Handle:";integer.h' hConn;" Size:";nSize;"\n"

endfunc 1

//--

// Enable synchronous event handlers

//--

OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVATTRIBUTEMTU call HandlerAttrMTU

OnEvent EVPACKETLENGTH call HandlerPacketLength

// Initialise LE routines

rc = BleAdvertStart(0,addr$,100,0,0)

// Open the gatt client. Specify the buffer size to be 251 to be able to receive

// notifications up to 244 bytes long (maximum supported by BL652 when ATT_MTU = 247)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

303

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

rc = BleGattcOpen(251, 0)

//--

// Wait for a synchronous event.

// An application can have multiple <WaitEvent> statements

//--

WAITEVENT

Expected Output:

AT+CFG 211 247

00

AT+CFG 216 251

00

ATZ

00

AT+RUN “BleGattcAttributeMtuReq”

--- Connect: (0001FF00)

Attribute MTU Changed - Handle:0001FF00 Size:247

Packet Length Change:

Handle: 0001FF00

Tx_Octets=251 Tx_Time =2120

Rx_Octets=251 Rx_Time =2120

BleMaxPacketLengthSet

This function has been removed and replaced with the config key 216. To set the maximum packet length, either
call ‘AT+CFG 216 nSize’ (followed by ‘ATZ’ for the value to take effect), or at runtime calling NvCfgKeySet(216,
nSize) (followed by reset(0) for the value to take effect.

BleMaxPacketLengthGet

This function is used to get the preferred maximum packet length on the BL654. The actual packet length change
only occurs when when the attribute MTU for the connection is changed via the BleGattcAttributeMtuRequest
function.

BLEMAXPACKETLENGTHSET (nSize)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSize byRef nSize AS INTEGER.
When the function is used, this value will contain the maximum packet length preferred by the

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

304

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

device.

Example:

// Example :: BleMaxPacketLengthSet.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

// Before running the example, issue ‘at+cfg 216 155’ followed by ‘atz’

dim rc, nSize

// Now get the maximum packet length

rc = BleMaxPacketLengthGet(nSize)

PRINT "\nThe maximum packet size is ";nSize

The maximum packet size is 155

 LE Ping

Overview

The LE Ping feature can be used to verify the existence of an encrypted link with the remote device. When
enabled, the BL654 sends a request to the remote device to send an encrypted packet. If a timeout occurs
without the reception of a packet, an event is triggered on the BL654.

Events and Messages

EVBLE_PING_AUTH_TIMEOUT

This event is thrown when the ping authenticated payload timer has expired without receiving an encrypted
packet. The event comes with the following parameter:-

Connection Handle – The handle of the connection for which the timeout has occurred.

For usage, see example for BlePingAuthTimeout.

BlePingAuthTimeout

On an encrypted connection, this function is used to monitor the time since the last reception of an encrypted
packet. If the timeout is exceeded without receiving a packet, then the EVBLE_PING_AUTH_TIMEOUT is
triggered. This can be used to detect if there is something wrong with the encrypted link, and therefore if the
event is received, a safe action would be to disconnect.

Note: Setting nAuthTimeOut to a value less than (2*Connection Interval) will always cause the
EVBLE_PING_AUTH_TIMEOUT event to be triggered. The reason for this is that two connection
events are required for a packet to be sent to the remote device and then sent back, therefore
having nAuthTimeout smaller than (2*Connection Interval) means that the timer will always expire
before the response is received from the remote device, causing the event to be triggered.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

305

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEPINGAUTHTIMEOUT (hConnHanlde, nAuthTimeout)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byVal hConnHandle AS INTEGER.
The connection handle for which the authenticated payload timer is to start.

nAuthTimeout
byVal nAuthTimeout AS INTEGER.

The authentication timeout in microseconds. The range of this value is between 10000 and
480000 microseconds, and is rounded up to the nearest 10000us (10ms).

Example:

//Example :: BlePingAuthTimeout.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

// Set BLE_PING_TIMEOUT to a value more than (2*connection interval)

// for the feature to work. Otherwise the event will be triggered

// because two connection events are required for a packet to be

// sent back and forth.

#define BLE_PING_TIMEOUT 10000

#define BTAddr "000016A4B75204"

// Variable declaration

DIM hndl, rc, intrvl,sprvto,slat, pingTO

//--

// Function to handle Ble event messages

//--

#define BLE_EVBLEMSGID_CONNECT 0 //nCtx = connection handle

#define BLE_EVBLEMSGID_DISCONNECT 1 //nCtx = connection handle

#define BLE_EVBLEMSGID_ENCRYPTED 18 //nCtx = connection handle

//--

FUNCTION HandlerBleMsg(nMsgId, nCtx)

 select nMsgId

 case BLE_EVBLEMSGID_CONNECT

 print "## Connected!\n"

 // Read connection interval

 rc = BleGetCurConnParms(nCtx,intrvl,sprvto,slat)

 print "## Connection Interval=";intrvl;"\n"

 // Pair to the remote device

 rc = BlePair(nCtx, 0)

 case BLE_EVBLEMSGID_DISCONNECT

 print "## Disconnected!\n"

 case BLE_EVBLEMSGID_ENCRYPTED

 print "## Encrypted Connection!\n"

 // Start LE Ping Authenticated Timeout

 pingTO = BLE_PING_TIMEOUT

 rc = BlePingAuthTimeout(nCtx, pingTO)

 if rc == 0 then

 print "## Ping auth timeout enabled :: Timeout=";pingTO;"\n"

 endif

 case else

 endselect

ENDFUNC 1

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

306

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//--

// This handler is called when the LE Ping authentication has timed out

//--

function HandlerLePingTimeout(BYVAL hConn AS INTEGER)

 print "## LE Ping Timeout : ";integer.h' hConn;"\n"

 // Disconnect as this is not safe, check timeout is more than 2*connection interval

 rc = BleDisconnect(hConn)

endfunc 1

//--

// Enable synchronous event handlers

//--

OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVBLE_PING_AUTH_TIMEOUT call HandlerLePingTimeout

//Connect to remote device

DIM addr$

addr$ = BTAddr

addr$ = StrDehexize$(addr$)

rc = BleConnect(addr$, 5000, 27000, 30000, 500000)

//--

// Wait for a synchronous event.

//--

WaitEvent

 LE 2M PHY

Events and Messages

EVBLE_PHY_REQUEST

This event is thrown when there is a request from the remote device to switch the PHY modulation. In the
function handler for this event, the function BlePhySet should be used to respond with the module’s PHY
preferences. The event comes with the following parameters:-

Connection Handle – The handle of the connection for which there is a PHY modulation request.

BlePhyTx – The transmission PHY preference of the remote device. 1 for 1MPHY, 2 for 2MPHY, and 4 for coded
PHY.

BlePhyRx – The reception PHY preference of the remote device. 1 for 1MPHY, 2 for 2MPHY, and 4 for coded
PHY.

For usage, see example for BlePhyReq.

EVBLE_PHY_UPDATED

This event is thrown when the PHY modulation of the underlying connection has been updated. The event
contains the following parameters:-

Connection Handle – The handle of the connection for which there is a PHY modulation has been updated.

Status – The HCI status code of the operation. 0x00 indicates a successful command. 0x00 – 0xFF indicates that
the command has failed. A full list of HCI status codes can be found at the end of this document.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

307

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BlePhyTx – The new value of the transmission PHY. 1 for 1MPHY, 2 for 2MPHY, 4 for coded PHY.

BlePhyRx – The new value of the transmission PHY. 1 for 1MPHY, 2 for 2MPHY, 4 for coded PHY.

For usage, see example for BlePhyReq.

BlePhySet

This function is used to set the PHY preferences of a connection, or reply to PHY request from a remote device.
When this command is initiated from the module, it triggers an EVBLE_PHY_REQUEST on the remote device, and
if successful, EVBLE_PHY_UPDATED event is thrown to indicate that the PHY configuration of the connection has
changed.

BLEPHYSET (hConn, nPhyTx, nPhyRx, nOptions)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

hConn
byVal hConn AS INTEGER.
The handle of the connection for which a PHY modulation update is taking place.

nPhyTx

byVal nPhyTx AS INTEGER.

A bit field that indicates the transmission PHYs that the host prefers

▪ Bit 0 : The host prefers to use the LE 1M transmission PHY (possibly among others).
▪ Bit 1 : The host prefers to use the LE 2M transmission PHY (possibly among others).
▪ Bit 2 : The host prefers to use the LE CODED transmission PHY (possibly among others).
▪ Bit 3-7: Reserved for future use.

nPhyRx

byVal nPhyRx AS INTEGER.

A bit field that indicates the reception PHYs that the host prefers

▪ Bit 0 : The host prefers to use the LE 1M reception PHY (possibly among others).
▪ Bit 1 : The host prefers to use the LE 2M reception PHY (possibly among others).
▪ Bit 2 : The host prefers to use the LE CODED transmission PHY (possibly among others).
▪ Bit 3-7: Reserved for future use.

nOptions
byVal nPhyRx AS INTEGER.

This is reserved for future use and should always be set to 0.

//Example :: BlePhySet.sb

// Ensure that the remote device is advertising

#define BTAddr "000016A4B75202"

// Variable declaration

DIM rc, hConn

//--

// Function to handle Ble event messages

//--

#define BLE_EVBLEMSGID_CONNECT 0 //nCtx = connection handle

#define BLE_EVBLEMSGID_DISCONNECT 1 //nCtx = connection handle

//--

FUNCTION HandlerBleMsg(nMsgId, nCtx)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

308

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 select nMsgId

 case BLE_EVBLEMSGID_CONNECT

 print "## Connected!\n"

 // Upon connection, request a change to 2MPHY

 hConn = nCtx

 dim nPhyTx : nPhyTx = 2

 dim nPhyRx : nPhyRx = 2

 dim nOptions : nOptions = 0

 rc = BlePhySet(hConn, nPhyTx, nPhyRx, nOptions)

 case BLE_EVBLEMSGID_DISCONNECT

 print "## Disconnected!\n"

 case else

 endselect

ENDFUNC 1

//--

// This handler is called when there is a connection attempt timeout

//--

function HandlerBleConnTimOut() as integer

 print "## Connection attempt stopped via timeout\n"

endfunc 1

//--

// This handler is called when remote is requesting a switch to a different PHY

//--

function HandlerPhyRequest(BYVAL hConn, BYVAL PhyTx, BYVAL PhyRx)

 print "## BLE PHY REQUEST: \n"

 print "Handle: ";integer.h' hConn;"\n"

 print "PhyTx=";PhyTx;" PhyRx =";PhyRx;"\n"

endfunc 1

//--

// This handler is called when the BLE PHY is updated

//--

function HandlerPhyUpdated(BYVAL hConn, BYVAL nStatus, BYVAL PhyTx, BYVAL PhyRx)

 print "## BLE PHY CHANGED: \n"

 print "Handle: ";integer.h' hConn;"\n"

 print "Status: ";integer.h' nStatus;"\n"

 print "PhyTx=";PhyTx;" PhyRx =";PhyRx;"\n"

endfunc 1

//--

// Enable synchronous event handlers

//--

OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVBLE_CONN_TIMEOUT call HandlerBleConnTimOut

OnEvent EVBLE_PHY_REQUEST call HandlerPhyRequest

OnEvent EVBLE_PHY_UPDATED call HandlerPhyUpdated

//Connect to remote device

DIM addr$

addr$ = BTAddr

addr$ = StrDehexize$(addr$)

rc = BleConnect(addr$, 30000, 27000, 30000, 500000)

//--

// Wait for a synchronous event.

//--

WaitEvent

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

309

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

Connected!

BLE PHY CHANGED:

Handle: 0001FF00

Status: 00000000

PhyTx=2 PhyRx =2

6 OTHER EXTENSION BUILT-IN ROUTINES

This chapter describes non BLE-related extension routines that are not part of the core smartBASIC language.

 Near Field Communications (NFC)

This chapter provides details of all the smartBASIC functions and subroutines that expose the NFC functionality
and also the events that are generated when in operation.

Overview

This section describes all the events and routines used to interact with the NFC peripheral on the BL654 which is
a passive device which means it is not possible to establish NFC communications between two BL654 devices. In
any NFC communications, one device shall be an Active device.

On the BL654 the NFC is exposed as a Tag Type 2 Passive interface which means it can only offer tags to be read
from an Active NFC reader (for example, a smartphone or an Arduino based shield).

The NFC Forum has agreed on four tag types and a good definition of those NFC Tag Types is provided at
http://www.nfc.cc/technology/nfc-tag-types which is reproduced as follows:

▪ Type 1 – Type 1 Tag is based on ISO/IEC 14443A. This tag type is read and re-write capable. The memory of
the tags can be write protected. Memory size can be between 96 bytes and 2 Kbytes. Communication
Speed with the tag is 106 kbit/sec. Example: Innovision Topaz

▪ Type 2 – Type 2 Tag is based on ISO/IEC 14443A. This tag type is read and re-write capable. The memory of
the tags can be write protected. Memory size can be between 48 bytes and 2 Kbytes. Communication
Speed with the tag is 106 kbit/sec. Example: NXP Mifare Ultralight, NXP Mifare Ultralight

▪ Type 3 – Type 3 Tag is based on the Japanese Industrial Standard (JIS) X 6319-4. This tag type is pre-
configured at manufacture to be either read and re-writable, or read-only. Memory size can be up to 1
Mbyte. Communication Speed with the tag is 212 kbit/sec. Example: Sony Felica

▪ Type 4 – Type 4 is fully compatible with the ISO/IEC 14443 (A \& B) standard series. This tag type is pre-
configured at manufacture to be either read and re-writable, or read-only. Memory size can be up to 32
KBytes; For the communication with tags APDUs according to ISO 7816-4 can be used. Communication
speed with the tag is 106 kbit/sec. Example: NXP DESfire, NXP SmartMX with JCOP.)

Mifare Classic is not an NFC forum compliant tag, although reading and writing of the tag is supported by
most of the NFC devices as they ship with an NXP chip. The specifications for the tag types are available for
free from the NFC-Forum website.

The following is a high level overview of NFC communications and it is encouraged that the reader access
resources on the internet which give further details, like for example http://www.nfc.cc/technology/nfc/.

http://ews-support.lairdtech.com/
http://www.nfc.cc/technology/nfc-tag-types
http://www.nfc.cc/technology/nfc/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

310

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ The NFC physical layer is a half-duplex, bi-directional pipe with a typical datarate of 106kbps and can be 212
or 424 kbps. (The BL654 only provides a 106kbps datarate)

▪ The data is carried on a 13.56MHz carrier wave which is provided by one of the active devices in the peer to
peer link. The signalling in the carrier is done using load modulation. “The term load modulation describes
the influence of load changes on the initiators carrier field’s amplitude”
<credit: http://www.nfc.cc/technology/nfc/>

▪ There is Active mode and Passive mode. At least one device (the initiator) has to be an active device which
provides the 13.56MHz carrier wave.

▪ The data layer for Tags consists of NDEF messages. NDEF = NFC Data Exchange Format.
Each NDEF message consists of one or more NDEF records.
Each NDEF record consists of a well defined variable length header and a payload which can be anything
and the NFC forum does not specify any format.

▪ An NDEF Record header consists of a payload length, a Type field and an optional ID Field.
The Type field is used to qualify the payload so that the recipient can interpret it appropriately.
The optional ID field is typically used to give a ‘name’ to the record which allows other records in the
message to link to.

▪ NFC provides for three types of communications over the physical channel and they are; Reader/Writer
mode, Card Emulation mode and Peer-To-Peer mode. In the context of BL654, only reader/writer mode
functionality is made available and initially only passive Tags Type 2 which means Tags can be read but not
written.
Future enhancments to the BL654 firmware may provide Tag Type 4 (which can be read or written) but that
is dependent on the chipset vendor providing an appropriate stack.

The Tag Type 2 functionality exposed in the BL654 is nicely illustrated by the following diagram, for which Laird
acknowledges Nordic Semiconductor, the chipset vendor.

In the diagram the ‘Polling device’ is an active device like an NFC enabled smartPhone or an Arduino with an
Adafruit NFC shield.

NDEF Messages

NDEF is the acronym for “NFC Data Exchange Format”

NDEF Messages, in the context of Tags of any type, are simply an array of 1 or more NDEF Records.

A Tag of any type is simply an NDEF message.

http://ews-support.lairdtech.com/
http://www.nfc.cc/technology/nfc/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

311

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Each NDEF record consists of a header and a payload both being variable length and the length of the payload in
each record can be up to 2^32 bytes long.

The header consists of:

Byte 0 : A bit mask which contains a 3 bit TNF (Type Name Format) and 5 other single bit fields. One of which
specifies if the Payload length field is 1 or 4 bytes and another which specifies if the ID field in the header is
present. The rest of the bits are used to specify if the record is the first, last or an in-between record in the
overall NDEF message.

Byte 1 – Specifies the length of the Type field in the header which can be up to 255 bytes

Next Byte (or next 4 Bytes) – The payload length.

Next Byte – The ID Length (if the ID bit in the first byte is set)

Next N bytes – Where N is specified by Byte 1 is the the Type field

Next N Bytes – Where N is specified by the ‘ID length’ field and only if the ID bit in Byte 0 is set, used for the ID.

For full details please refer to the NFC Forum technical specification titled NFC Data Exchange Foramt (NDEF)
and there are various resources online which have good explanations.

Arduino Based NFC Reader

The API presented in this section was tested using an Arduino Uno
(www.arduino.cc/en/Main/ArduinoBoardUno) fitted with an Adafruit ‘PN532 RFID/NFC Shield’
(www.adafruit.com/products/789) and an Arduino application which is also available as-is without warranty and
it can be freely modified called NfcCli.ino.

It is assumed that the reader is familiar with how to use an Arduino especially how to load apps into a target
board. Please refer to online resources if not.

The Arduino application presents a uart based command line interface and currently has three commands :

▪ open\r – This opens the NFC interface
▪ scan\r – This forces a scan for tags and will timeout after about 5 seconds. If a tag is read, then it is

interpreted and displayed in textual manner
▪ close\r – This closes the NFC interface

The command set allows for keeping the Arduino NFC antenna constantly in contact with the module’s antenna
and then allows the field to be enabled or disabled.

Sample Application 1

The following example application, for which the source available, shows how to create an NDEF message for a
Tag which has two text records where the Type is “T.”

//**

// Example App File : nfc1.text.tag.sb

//

// This application commits an NDEF message with two text tag of type 'T' with

// a "Hello World" and "Welcome" message. Which can be read with an Arduino +

// Adafruit NFC shield running an arduino app written by Laird which is availble

// on request.

//

//**

//**

http://ews-support.lairdtech.com/
http://www.arduino.cc/en/Main/ArduinoBoardUno
http://www.adafruit.com/products/789

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

312

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Definitions

//**

#define INVALID_NDEF_HANDLE 0xFFFFFFFF

//**

// Register Error Handler as early as possible

//**

sub HandlerOnErr()

 print "\n OnErr - ";GetLastError();"\n"

endsub

onerror next HandlerOnErr

//**

// Debugging resource as early as possible

//**

//==

//==

sub AssertResCode(byval rc as integer,byval tag as integer)

 if rc!=0 then

 print "\nFailed with ";integer.h' rc;" at tag ";tag

 endif

endsub

//**

// Global Variable Declarations

//**

dim rc

dim nfcHandle //returned by NfcOpoen

dim ndefHandle //returned by NfcNdefMsgNew

dim type$

dim id$

dim engLang$

dim payload$

dim records,memTotal,memUsed

//**

// Initialisse Global Variable

//**

type$="T" : id$=""

engLang$=" en"

rc=strsetchr(engLang$,strlen(engLang$),0) //prepend the language code length + UTF type

//**

// Function and Subroutine definitions

//**

//**

// Handler definitions

//**

//==

// This handler is called when data has arrived at the serial port

#define NFC_MSGIN_NFCFIELDOFF (2)

#define NFC_MSGIN_NFCFIELDON (3)

#define NFC_MSGIN_NFCTAGREAD (7)

//==

function HandlerNfc(msgid) as integer

 print "\nEVNFC "

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

313

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 select(msgid)

 case NFC_MSGIN_NFCFIELDOFF

 print "FIELD OFF"

 case NFC_MSGIN_NFCFIELDON

 print "FIELD ON"

 case NFC_MSGIN_NFCTAGREAD

 print "TAG READ"

 case else

 endselect

endfunc 1

//**

//**

// Equivalent to main() in C

//**

//--

// Enable synchronous event handlers

//--

OnEvent EVNFC call HandlerNfc

//--

// Initialise and then wait for events

//--

//Enable NFC hardware interface, it already is, so will succeed

rc=NfcHardwareState(0,1)

AssertResCode(rc,20000)

//Open NFC and return the handle

rc=NfcOpen(0,"\00",nfcHandle)

AssertResCode(rc,20005)

//Create a new NDEF message object that has a maximum size of 16 bytes

rc=NfcNdefMsgNew(32,ndefHandle)

AssertResCode(rc,20010)

//Oops, buffer will be too small do delete and create a new one

rc=NfcNdefMsgDelete(ndefHandle)

AssertResCode(rc,20012)

//Create a new NDEF message object that has a maximum size of 128 bytes

rc=NfcNdefMsgNew(128,ndefHandle)

AssertResCode(rc,20014)

//Add a NDEF Record of type "T" and message "My World" in english language code

payload$="My World"

rc=NfcNdefRecAddGeneric(ndefHandle,1,type$,id$,engLang$,INVALID_NDEF_HANDLE,payload$)

AssertResCode(rc,20020)

//Oops, changed my mind about message so reset the ndef buffer

rc=NfcNdefMsgReset(ndefHandle)

AssertResCode(rc,20022)

//Add a NDEF Record of type "T" and message "Hello World" in english language code

payload$="Hello World"

rc=NfcNdefRecAddGeneric(ndefHandle,1,type$,id$,engLang$,INVALID_NDEF_HANDLE,payload$)

AssertResCode(rc,20024)

//Add a NDEF Record of type "T" and message "Welcome" in english language code

payload$="Welcome"

rc=NfcNdefRecAddGeneric(ndefHandle,1,type$,id$,engLang$,INVALID_NDEF_HANDLE,payload$)

AssertResCode(rc,20040)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

314

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//Inspect the status of the ndef message object

rc=NfcNdefMsgGetInfo(ndefHandle,records,memTotal,memUsed)

if rc==0 then

 print "\nNDEF Info: Records=";records;" TotalMem=";memTotal;" UsedMem=";memUsed

endif

//Commit the NDEF message to the stack

rc=NfcNdefMsgCommit(nfcHandle,ndefHandle)

AssertResCode(rc,20060)

//Enable field Sense

rc=NfcFieldSense(nfcHandle,1)

AssertResCode(rc,20080)

//--

// Wait for an event.

//--

WaitEvent

The output from the Arduino reader is as follows:

open

OK

scan

++ NDEF MESSAGE ++

NFC Forum Type 2

UID: 5F 59 28 A2 AB C6 79

Contains (2) NDEF Records.

NDEF Record 1 (Payload Length=: 14 (0xE))

 TNF: 1

 Type: T

 03656E48656C6C6F20576F726C64 .enHello World

NDEF Record 2 (Payload Length=: 10 (0xA))

 TNF: 1

 Type: T

 03656E57656C636F6D65 .enWelcome

-- NDEF MESSAGE --

OK

Sample Application 2

The following example application, for which the source available, shows how to create an NDEF message for a
Tag which has a single record defined as a ‘Simplified Tag Format for a Single Bluetooth Carrier Record’ as
specified in the Bluetooth SIG specification “Bluetooth Secure Simple Pairing Using NFC” dated 2014-01-09.

//**

// Example App File : nfc2.text.ble.connection.handover.sb

//

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

315

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// This application commits an NDEF message with a "Simplified Tag Format for a

// single Bluetooth Carrier Record" which will result in a connection and a just

// works pairing from an android device like Nexus 7 tablet.

//

// It have only been tested against a Nexus 7 (newest model)

//

//**

//**

// Definitions

//**

#define INVALID_NDEF_HANDLE 0xFFFFFFFF

//**

// Register Error Handler as early as possible

//**

sub HandlerOnErr()

 print "\n OnErr - ";GetLastError();"\n"

endsub

onerror next HandlerOnErr

//**

// Debugging resource as early as possible

//**

//==

//==

sub AssertResCode(byval rc as integer,byval tag as integer)

 if rc!=0 then

 print "\nFailed with ";integer.h' rc;" at tag ";tag

 endif

endsub

//**

// Global Variable Declarations

//**

dim rc

dim nfcHandle //returned by NfcOpoen

dim ndefHandle //returned by NfcNdefMsgNew

dim payload$

dim records,memTotal,memUsed

dim maxdevname : maxdevname = 12

dim appearance : appearance = 0x512

dim flags : flags = 0x2

dim role : role=2

dim oobKey$: oobKey$="" //no TK

dim devname$: devname$="LAIRD BL652"

dim advRpt$, scnRpt$

dim peerAd$: peerAd$=""

dim hConn : hConn=0xFFFFFFFF

//**

// Function and Subroutine definitions

//**

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

316

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//**

// Handler definitions

//**

//==

// This handler is called when data has arrived at the serial port

#define NFC_MSGIN_NFCFIELDOFF (2)

#define NFC_MSGIN_NFCFIELDON (3)

#define NFC_MSGIN_NFCTAGREAD (7)

//==

function HandlerNfc(msgid) as integer

 print "\nEVNFC "

 select(msgid)

 case NFC_MSGIN_NFCFIELDOFF

 print "FIELD OFF"

 case NFC_MSGIN_NFCFIELDON

 print "FIELD ON"

 case NFC_MSGIN_NFCTAGREAD

 print "TAG READ"

 case else

 endselect

endfunc 1

//==

// This handler is called when there is a BLE message

//--

#define BLE_EVBLEMSGID_CONNECT 0

#define BLE_EVBLEMSGID_NEW_BOND 10

#define BLE_EVBLEMSGID_ENCRYPTED 18

//==

function HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as

integer

 select nMsgId

 case BLE_EVBLEMSGID_CONNECT

 hConn=nCtx

 print "\n +++ Connect: (";integer.h' hConn;")"

 case BLE_EVBLEMSGID_NEW_BOND

 print "\n +++ New Bond"

 //Disable field Sense

 rc=NfcFieldSense(nfcHandle,0)

 AssertResCode(rc,20080)

 print "\n --- NFC Field OFF"

 case BLE_EVBLEMSGID_ENCRYPTED

 print "\n +++ Encrypted Connection"

 case else

 endselect

endfunc 1

//==

// This handler is called when there is a EVDISCON message

#define ADVTYPE 0 //ADV_IND

#define ADVINTVTL 100 //andvert interval in milliseconds

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

317

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

#define ADVTOUT 0 //no timoeut

//==

function HandlerDisconnect(BYVAL nConnH AS INTEGER, BYVAL nReas AS INTEGER) as

integer

 print "\n +++ Disconnect: (";integer.h' nConnH;") reason=";nReas

 rc=BleAdvertStart(ADVTYPE,peerAd$,ADVINTVTL,ADVTOUT,0)

 AssertResCode(rc,10000)

endfunc 1

//**

//**

// Equivalent to main() in C

//**

//--

// Enable synchronous event handlers

//--

OnEvent EVNFC call HandlerNfc

OnEvent EVBLEMSG call HandlerBleMsg

OnEvent EVDISCON call HandlerDisconnect

//--

// Initialise and then wait for events

//--

//Open NFC and return the handle

rc=NfcOpen(0,"\00",nfcHandle)

AssertResCode(rc,20005)

//Create a new NDEF message object that has a maximum size of 128 bytes

rc=NfcNdefMsgNew(128,ndefHandle)

AssertResCode(rc,20014)

//Add "Simplified Tag Format for a single Bluetooth Carrier" Record

rc=NfcNdefRecAddLeOob(ndefHandle,maxdevname,appearance,role,flags,oobKey$)

AssertResCode(rc,20020)

//Inspect the status of the ndef message object

rc=NfcNdefMsgGetInfo(ndefHandle,records,memTotal,memUsed)

if rc==0 then

 print "\n *** NDEF Info: Records=";records;" TotalMem=";memTotal;"

UsedMem=";memUsed

endif

//Commit the NDEF message to the stack

rc=NfcNdefMsgCommit(nfcHandle,ndefHandle)

AssertResCode(rc,20060)

//Initialise the GAP service

rc=BleGapSvcInit(devname$,0,appearance,7500,100000,2000000,0)

AssertResCode(rc,20100)

//Initialise adverts and commit

rc=BleAdvRptInit(advRpt$,flags,appearance,maxdevname)

AssertResCode(rc,20200)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

318

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

rc=BleScanRptInit(scnRpt$)

AssertResCode(rc,20210)

rc=BleAdvRptsCommit(advRpt$,scnRpt$)

AssertResCode(rc,20220)

//Start Adverts

rc=BleAdvertStart(ADVTYPE,peerAd$,ADVINTVTL,ADVTOUT,0)

AssertResCode(rc,20300)

print "\n --- Adverts ON"

//Enable field Sense

rc=NfcFieldSense(nfcHandle,1)

AssertResCode(rc,20400)

print "\n --- NFC Field ON"

//--

// Wait for an event.

//--

WaitEvent

The output from the Arduino reader is as follows:

open

OK

scan

++ NDEF MESSAGE ++

NFC Forum Type 2

UID: 5F 59 28 A2 AB C6 79

Contains (1) NDEF Record.

NDEF Record 1 (Payload Length=: 32 (0x20))

 TNF: 2

 Type: application/vnd.bluetooth.le.oob

 021C02081B83160BA416000003191205

 0201060C094C4149524420424C363532 LAIRD BL652

-- NDEF MESSAGE --

OK

Where the payload 021C02…. 363532 is an array of BLE Advert Data Elements which have format Len:Tag:Data.
For example 021C02 implies an AD element of length 2 and tag 1C and since 1C means ‘LE Role’ it corresponds
to the value 2 that was passed in the variable ‘role’ in the function call NfcNdefRecAddLeOob() in the sample
app 2 above.

Wake-On-NFC

When the module is in deep sleep, it is possible to wake it up when an NFC field energises it’s antenna when an
active reader comes into the zone.

By default this does not happen; it only wakes up if the field sense is switched on via NfcFieldSense(). To do that,
a ‘dummy’ tag needs to be commited. The following sequence is necessary to enable this feature:

1. NfcOpen()
2. NfcNdefMsgNew()

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

319

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

3. NfcNdefRecAddLeOob() or NfcNdefRecAddGeneric()
4. NfcNdefMsgCommit()
5. NfcFieldSense()
6. SystemStateSet(0)

Once SystemStateSet() is processed, the module enters deep sleep unless the reader is already energising the
NFC field which will prevent deep sleep to persist.

Please note that when the system wakes up, it is assumed that in a normal deployed scenario there will be an
$autorun$ application so after reset your application will automatically restart. In your application you could call
SYSINFO(2001) which will tell you what was the reason for waking up from reset. If you logically AND the result
with the value 0x80000 and you end up with 0x80000, then it implies the wakeup was due to Wake-On-NFC.

 IF (SYSINFO(2001) & 0x80000)==0x80000 THEN

 PRINT “We woke up because of NFC”

 ENDIF

Events and Messages

In addition to the routines for manipulating the NFC interface, when an active reader generates a carrier field
around the module’s antenna and FIELD-ON event is generated, and conversely when the carrier field collapses
because the active device moves away, a FIELD-OFF event is generated. When the Tag exposed by the module is
actually read, then a TAG-READ event is generated.

The following is a list of events generated by the NFC manager which can be handled by user code.

EVNFC This is an event message with one INTEGER payload which identifies the event that
happened as follows:
 2 FIELD OFF (reader carrier has collapsed)
 3 FIELD ON (reader carrier is active)
 7 TAG READ (reader has finished reading the commited NDEF message)

NfcHardwareState

FUNCTION

This function is used to enable or disable the NFC hardware on the device.

Note: On the BL654 the 2 pins used for the NFC antenna are multifunction so that they are either for NFC
or plain GPIO. However, this is set via a non-volatile configuration register in a special region of the
onchip flash. These pins are by default set for NFC functionality and have appropriate protection
from over energisation from an active field. Given this is a flash register, once the NFC functionality
is disabled using this function, it can only be reactivated by reloading the entire firmware using the
JLINK interface. It is not possible to reset this register when firmware is uploaded using the UART
interface.

NFCHARDWARESTATE (interfaceNum, newState)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x5A00 Invalid interface number

0x5A06 Enable Fail

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

320

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

interfaceNum

byVal interfaceNum AS INTEGER
For platforms that have multiple NFC interfaces, this identifies the interface to
enable or disable and for platforms with only one interface specify 0 for this
argument

newState
byVal newState AS INTEGER
Set to 0 to disable NFC functionality. Non-zero to enable.

Related Commands NFCFIELDSENSE, NFCCLOSE, NFCNDEFMSGCOMMIT

Example:

//See subsection ‘Sample Application 1’

NfcOpen

FUNCTION

This function opens the NFC interface identified by the ‘interfaceNum’ parameter, configure it as specified in the
‘config$’ future extensible string parameter and will return a handle which is used in appropriate subsequent
NFC related function calls.

The ‘interfaceNum’ parameter exists as in future other smartBASIC based can potentially have multiple physical
NFC interfaces.

NFCOPEN (interfaceNum, config$, nfcHandle)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x5A00 Invalid interface number

0x5A04 NFC hardware not available

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

interfaceNum
byVal interfaceNum AS INTEGER
For platforms that have multiple NFC interfaces, this identifies the interface to
open and for platforms with only one interface specify 0 for this argument

config$

byVal config$ AS STRING
This is an extensible argument with 0 or more bytes which is used to configure
the NFC interface as follows:
Byte Value Description
0 0 Tag Type 2 Functionality

A 0 value specifies default functionality, and more bytes will be allocated as
needed to define appropriate new functionality

nfcHandle
byRef nfcHandle AS INTEGER
If the function fails, then on exit this parameter is set to INVALID_HANDLE
(which is 0xFFFFFFFF), and if successful a valid handle to be used in susbsequent

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

321

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

appropriate NFC related function calls.

Related Commands NFCFIELDSENSE, NFCCLOSE, NFCNDEFMSGCOMMIT

Example:

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’

NfcClose

SUBROUTINE

This function closes the NFC interface identified by the ‘nfcHandle’ parameter and on exit the handle will be set
to 0xFFFFFFFF so that it cannot be mistakenly used.

NFCCLOSE (nfcHandle)

Returns None

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

nfcHandle
byRef nfcHandle AS INTEGER
If the function is successful then on exit this variable will be set to 0xFFFFFFFF

Related Commands NFCFIELDSENSE, NFCOPEN, NFCNDEFMSGCOMMIT

Example:

//See subsection ‘Sample Application 2’

NfcFieldSense

FUNCTION

This function is used when the device is in passive mode to enable or disable field sensing so that an active
device can communicate with it.

NFCFIELDSENSE (nfcHandle, fNewState)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x020C Invalid handle

0x5A03 NFC interface is not open

 0x5AEx An underlying stack related error

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

nfcHandle
byVal nfcHandle AS INTEGER
This is the handle returned by a prior call of NfcOpen()

fNewState byVal fNewState AS INTEGER

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

322

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Specify 0 to disable field sensing and non-zero to enable it

Related Commands NFCOPEN, NFCCLOSE, NFCNDEFMSGCOMMIT

Example:

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’

NfcNdefMsgNew

FUNCTION

An NDEF record can be as long as 4.2 billion bytes and since an NDEF message is an array of NDEF records the
whole message can theoretically be multiples of 4.2 billion bytes.

In practice most tags only have a limited amount of memory (typically less than 32K). Most messages are less
than a kilobyte in the context of the smartBASIC based device.

All the NDEF messages that will be created using the API exposed in this device will not be of the same length,
but the memory must be persistent so that it can be delivered to a reader when required.

Therefore, this smartBASIC implementation, requires that the creation of an NDEF message starts with
dynamically allocated memory which can be released as and when required.

This function is used to create a dynamic buffer in RAM. This buffer is of the minimum length specified by the
‘maxMSgLen’ parameter and is associated with a ‘ndefHandle’ for which a valid handle value is returned if the
memory requested was successfully acquired from the underlying memory manager. There is also an absolute
limit on this implementation with regards to maximum amount of memory that can be allocated and that value
can be obtained via AT I 2052 command or from within a running app using SYSINFO(2052).

The ‘ndefHandle’ is subsequently used for various API calls to make up the full message by writing single records
at a time.

Note that NDEF records are added to this buffer using variious NfcNdefRecAddXXXX() functions and at any time
the function NfcNdefMsgGetInfo() can be used to see how big the buffer is and how much of that is used.

NFCNDEFMSGNEW (maxMsgLen, ndefHandle)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x5A09 Invalid max memory required

0x5A0A
Memory could not be acquired
SYSINFO(2052) returns max len allowed in this system

 0x5A0B
No spare handles as available
SYSINFO(2051) returns max ndef handles in this system

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

maxMsgLen

byVal masxMsgLen AS INTEGER
This specifies the maximum expected length of the NDEF message that will be
stored in the memory acquired. If, while adding a record, it does not fit, use
NfcNdefMsgDelete() function to release that memory and call this function again

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

323

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

with a larger value and try again.

ndefHandle

byRef ndefHandle AS INTEGER
If the function fails, then on exit this parameter is set to INVALID_HANDLE
(which is 0xFFFFFFFF), and if successful a valid handle to be used in susbsequent
appropriate NDEF related function calls.

Related Commands
NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGGETINFO,
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Example:

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’

NfcNdefMsgDelete

FUNCTION

This function is used to release the memory block associated with an ndefHandle that was aquired using
NfcNdefMsgNew().

NFCNDEFMSGDELETE (ndefHandle)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x5A20
Cannot be deleted as it has been commited and locked to
the stack using NfcNdefMsgCommit()

0x5A0C The handle is not valid

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

ndefHandle
byVal ndefHandle AS INTEGER
The handle of the memory block that was acquired using NfcNdefMsgNew

Related Commands
NFCNDEFMSGCOMMIT, NFCNDEFNEW, NFCDEFMSGGETINFO,
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Example:

//See subsections ‘Sample Application 1’

NfcNdefMsgGetInfo

FUNCTION

After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to see how
much of the memory is used after adding records.

This function is particularly useful during the smartBASIC app development as it allows the optimisation of
memory usage after all testing has been done to then reduce the size of the buffer for final deployment.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

324

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

NFCNDEFMSGGETINFO (ndefHandle, records, memTotal, memUsed)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x5A0C The handle is not valid

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

ndefHandle
byRef ndefHandle AS INTEGER
The handle of the memory block that was acquired using NfcNdefMsgNew.

records
byRef records AS INTEGER
If the ndefHandle is valid, then on exit this will be updated with the number of
records currently added to the message.

memTotal

byRef MemTotal AS INTEGER
If the ndefHandle is valid, then on exit this will be updated with the total
memory allcocated for this message (value that was specified in
NfcNdefMsgNew()) when the handle was acquired.

memUsed

byRef MemUsed AS INTEGER
If the ndefHandle is valid, then on exit this will be updated with the memory that
has been used in the buffer. For deployed systems, you want this to be as close
to memTotal as possible to optimise memory usage.

Related Commands
NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW,
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Example:

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’

NfcNdefMsgReset

FUNCTION

After an ndef message has been used, this function can be used to reset the record count and memory used to 0
so that a new message with new records can be created without releasing the memory. It eliminates a heap free
and malloc and so helps mitigate heap fragmentation.

NFCNDEFMSGRESET (ndefHandle)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x5A20
Cannot be deleted as it has been commited and locked to
the stack using NfcNdefMsgCommit()

0x5A0C The handle is not valid

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

ndefHandle byVal ndefHandle AS INTEGER

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

325

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The handle of the memory block that was acquired using NfcNdefMsgNew

Related Commands
NFCNDEFMSGCOMMIT, NFCNDEFNEW, NFCDEFMSGGETINFO,
NFCNDEFMSGDELETE,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Example:

//See subsections ‘Sample Application 1’

NfcNdefRecAddLeOob

FUNCTION

This function is used to add an NDEF record to a NDEF Message.

After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to add a
‘Simplified Tag Format for a Single Bluetooth Carrier Record’ as specified in the Bluetooth SIG specification
“Bluetooth Secure Simple Pairing Using NFC” dated 2014-01-09.

This tag is a single record in the NDEF message and will contain the following BLE AD elements (same format as
in BLE adverts).

▪ LE Bluetooth Local Device Address
▪ LE Role
▪ Appearance
▪ Local Name
▪ (Optional) Security Manager TK Value

Please note that due to the inclusion of the local device address LE Privacy should not be enabled otherwise the
NFC record will soon contain a stale address and so the smartphone/tablet will not be able to make a connection
and pair.

Note: The Local Device Address and Local Name is not provided in this function call as the underlying
service routine will obtain both information from the stack. With regards to the Local Name, only
the maximum characters you want to add to the record need be specified. Depending on the actual
device name registered with the stack using BleGapSvcInit() function the appropriate AD element
tag will be automatically used.

Warning:
This function adds an NDEF record as per the specification mentioned above and publishes it as a
Type 2 tag. You will not be able to interact with it using any iOS devices even when the iOS device
(like the iPhone 6S) has NFC which is only used for Apple Pay. With Android, you will see
inconsistent behaviour between different brands and OS versions. Hence any testing you perform is
best done using something like an Arduino Uno and an Adafruit NFC Shield as shown above in the
context of the two sample apps.

If you wish to experiment, use the function NfcNdefRecAddGeneric() which will allow you to create
NDEF records of any type and payload.

NFCNDEFRECADDLEOOB (ndefHandle, maxDevName, appearance, role, flags, oobKey$)

Returns INTEGER, indicating the success of command:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

326

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0 Opened successfully

 0x5A0C The handle is not valid

 0x5A13 Invalid Device Name Length

 0x5A14 Invalid Appearance (has to be 0 .. 0xFFFF)

 0x5A15 Invalid Role

 0x5A16 Invalid OobKey (must be 0 or 16 bytes long)

 0x5A17 Invalid Flags value

 0x5A11 Inconsistent records in message (lengths don’t make sense)

 0x5AEC Not enough space in msg buffer

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

ndefHandle
byRef ndefHandle AS INTEGER
The handle of the memory block that was acquired using NfcNdefMsgNew.

maxDevName

byVal maxDevName AS INTEGER
This specifies the maximum length of the device name to be added to the record.
The appropriate AD type tag will automatically used if the length is shorter than
the actuall name registered using BleGapSvcInit().

appearance

byVal appearance AS INTEGER
To be consistent, this should be the same ‘appearance’ that was provided when
BleGapSvcInit() was called. This value can be used by the phone/tablet to
present an icon after it reads the NFC tag.

role

byVal role AS INTEGER
This is the BLE role that this device prefers and the value to specify is as follows:
 0 Only Peripheral Supported
 1 Only Central Supported
 2 Both, Peripheral Preferred
 3 Both, Central Preferred

flags

byVal flags AS INTEGER
This should be the same flags value as was supplied in the most recent call of the
function BleAdvRptInit().

Reproduced from BleAdvRptInit() ..

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is
set for general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be
forced to 0. Bits 3 to 7 are reserved for future use by the BT SIG and must be set
to 0.

oobkey$
byRef oobKey$ AS STRING
If this string is empty then then Security Manager TK Value AD element is not
added to the record. If it is exactly 16 bytes long then it will be added.

Related Commands
NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW,
NFCNDEFMSGRESET, NFCNDEFRECADDGENERIC, NFCNDEFMSGGETINFO

Example:

//See subsection ‘Sample Application 2’

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

327

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

NfcNdefRecAddGeneric

FUNCTION

This function is used to add an NDEF record to a NDEF Message.

 After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to add any
record of your choice where you can specify the Type, ID and Payload.

The payload can even be another NDEF message, which means you can create records where the payload is an
embedded NDEF record. That schema has been seen in few implementations. This is why the payload is
specified using a prepend string parameter ‘payload0$’, followed by a ndef handle ‘ndefHandlePayload’, and
lastly a postpend string parameter ‘payload1$’.

It is perfectly valid for any two out of <payload0$, ndefHandlePayload, payload1$> to be empty strings or an
invalid handle.

NFCNDEFRECADDGENERIC (ndefHandle, tnf, type$, id$, payload0$, ndefHandlePayload, payload1$)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

 0x5A0C Either ndefHandle or ndefHandlePayload is not valid

 0x5A18 Invalid TNF value

 0x5A12 ndefHandlePayload is valid but is empty

 0x5A11
Inconsistent records in message (lengths don’t make
sense)

 0x5A21 type$ is empty

 0x5A22 type$ is too big

 0x5A23 id$ is too big

 0x5AEC Not enough space in message buffer

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

ndefHandle
byRef ndefHandle AS INTEGER
The handle of the memory block that was acquired using NfcNdefMsgNew.

tnf
byVal tnf AS INTEGER
This can only be in the range 0 to 7 as it needs to fit in the 3 bit field of the first
byte of the record.

type$
byRef type$ AS STRING
This is string that has to be between 1 and 255 bytes long and specifies the
content of the Type field in the record header.

id$

byRef id$ AS STRING
This is string that has to be between 0 and 255 bytes long and specifies the
content of the ID field in the record header. If the string is empty, then the ID
field, which is optional, is not added to the record header.

Payload0$
byRef payload0$ AS STRING
This is string can be empty. If not it is added to the payload of the record.

ndefHandlePayload
byVal ndefHandlePayload AS INTEGER
This can be 0xFFFFFFFF which is designated as an invalid handle and in that is

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

328

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ignored. If it is not 0xFFFFFFFF and not a valid handle then this routine will exit
with an error.
If a valid handle, but the message buffer is empty then routine will exit with an
error.

Finally if the message is not empty, then it is copied in its entirety to this record
(including the header, not just the payload in that message)
This allows a nested mechanism and as deep as the number of ndef message
handles that can be created.
Note that once, the content of this embedded message is copied, this embedded
handle message can be reset to create yet another message for embedding.

Payload1$
byRef payload1$ AS STRING
This is string can be empty. If not it is added to the payload of the record

Related Commands
NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW,
NFCNDEFMSGRESET, NFCNDEFRECADDLEOOB, NFCNDEFMSGGETINFO

Example:

//See subsections ‘Sample Application 1’

NfcNdefMsgCommit

FUNCTION

After a message has been created and records added, it needs to be commited so that it can be served as a tag
for an active reader to access.

This function is used to do that and if successfully commited, then the ndefHandle is locked and cannot be
deleted or reset using the NfcNdefMsgDelete() or NfcNdefMsgReset() function respectively.

When the tag is read, an EVNFC message is thrown with context NFC_READ.

NFCNDEFMSGCOMMIT (nfcHandle, ndefHandle)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x5A0C The handle is not valid

Exceptions
▪ Local Stack Frame Underflow
▪ Local Stack Frame Overflow

Arguments

ndefHandle
byRef ndefHandle AS INTEGER
The handle that was returned by NfcOpen().

ndefHandle
byRef ndefHandle AS INTEGER
The handle of the memory block that was acquired using NfcNdefMsgNew.

Related Commands
NFCNDEFDELETE, NFCDEFMSGNEW, NFCNDEFMSGGETINFO,
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC

Example:

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

329

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’

 System Configuration Routines

SystemStateSet

FUNCTION

This function is used to alter the power state of the module as per the input parameter.

SYSTEMSTATESET (nNewState)

Returns
INTEGER, a result code. The typical value is 0x0000, indicating a successful
operation.

Arguments

nNewState byVal nNewState AS INTEGER

New state of the module as follows:
0 System OFF (Deep Sleep Mode)

Note: You may also enter this state when UART is open and a BREAK
condition is asserted. Deasserting BREAK makes the module
resume through reset i.e. power cycle.

Example:

// Example :: SystemStateSet.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 //Put the module into deep sleep

 PRINT "\n"; SystemStateSet(0)

 Flash Routines

Overview

smartBASIC language provides high level API for accessing the flash, if both of these requirements are met:-

1. The external serial (SPI) flash must be connected to BL654 SIO_12 (SFLASH_CS), SIO_14 (SFLASH_MISO),
SIO_16 (SFLASH_CLK), and SIO_20 (SFLASH_MOSI)

2. The external flash connected must be one of the two:-

• 4 Mbit Macronix MX25R4035F

• 8 Mbit Macronix MX25R8035F

The smartBASIC Flash routines can then be used for fast access using open/read/write API functions as described
in the following sections.

Note: By default the BL654 devkit contains an optional SPI Flash (4 Mbit Macronix MX25R4035F) which
can be used to demonstrate the Flash routines. However, the SPI flash is not connected. To
connect the optional flash, solder bridges SB4, SB5, SB6, SB7 must be individually shorted.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

330

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FlashOpen

This function is used to open access to the flash memory in raw mode. It returns the total size of the memory
accessible and the sector size.

FLASHOPEN (totalSize, sectorSize)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments

totalSize
byRef totalSize AS INTEGER
The total memory in bytes available (will be 0 if flash is not detected).

sectorSize
byRef sectorSize AS INTEGER
The sector sizes in this block on memory in bytes.

Example:

//Example :: FlashOpen.sb

DIM rc, nTotalSize, nSectorSize

//open the flash memory in raw mode

rc = FlashOpen(nTotalSize,nSectorSize)
IF rc == 0 THEN

 PRINT "\nOpened flash successfully"

 PRINT "\nTotal Size=";nTotalSize;" Sector Size=";nSectorSize

ENDIF

Expected Output:

Opened flash successfully

Total Size=524288 Sector Size=4096

00

FlashRead

This function is used to read from the flash exposed by a previous FlashOpen() call. The number of actual bytes s
returned – which is the same as strlen(data$) and will be less than or equal to nReadLen.

FLASHREAD (nOffset, nReadLen, data$)

Returns Will return the length of data$ on exit.

Arguments

nOffset
byVal nOffset AS INTEGER
The offset to read from.

nReadLen
byVal nReadLen AS INTEGER
The number of bytes to read (the maximum allowed value is 1024 bytes).

Data$
byRef data$ AS INTEGER
The data will be read into this string.

Example:

//Example :: FlashRead.sb

DIM rc, nTotalSize, nSectorSize, nOffset, nReadLen, data$

//open the flash memory in raw mode

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

331

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

rc = FlashOpen(nTotalSize,nSectorSize)

IF rc == 0 THEN

 PRINT "\nOpened flash successfully"

ENDIF

data$ = ""

nOffset = 4088 : nReadLen = 4

rc = FlashRead(nOffset,nReadLen,data$)

PRINT "\nRead flash data: "

PRINT "\ndata=";StrHexize$(data$);" nReadLen=";nReadLen

Expected Output:

Opened flash successfully

Read flash data:

data=FFFFFFFF nReadLen=4

00

FlashWrite

This function is used to write to the bank of flash previously exposed by FlashOpen(). Please note that if the new
data results in a bit reversal from 0 to 1 then the write will fail. A bit reversal from 0 to 1 can only be achieved by
erasin a full sector using the function FlashErase().

FLASHWRITE (nOffset, data$, nExitInfo)

Returns

INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

If FDV_VERIFY_FAIL is returned, then nExitInfo is equal to the offset that does
not verify.

Arguments

nOffset
byVal nOffset AS INTEGER
The offset to write to.

Data$
byRef data$ AS INTEGER
The data will be written from this string

nExitInfo
byVal nExitInfo AS INTEGER
If the return value is not 0x0000 (indicating success), then nExitInfo will contain
further information about the reason of unsuccessful operation.

Example:

//Example :: FlashWrite.sb

DIM rc, nTotalSize, nSectorSize, nOffset, nReadLen, data$, nExitInfo

//open the flash memory in raw mode

rc = FlashOpen(nTotalSize,nSectorSize)

IF rc == 0 THEN

 PRINT "\nOpened flash successfully"

ENDIF

// Write some data

nOffset = 4088 : data$ = "ABCD"

rc = FlashWrite(nOffset,data$,nExitInfo)

IF rc == 0 THEN

 PRINT "\nWrote data to the flash successfully"

ENDIF

// clear the data$ variable before reading

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

332

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

data$ = ""

nOffset = 4088 : nReadLen = 4

rc = FlashRead(nOffset,nReadLen,data$)

PRINT "\nRead flash data: "

PRINT "\ndata=";data$;" nReadLen=";nReadLen

Expected Output:

Opened flash successfully

Wrote data to the flash successfully

Read flash data:

data=ABCD nReadLen=4

00

FlashErase

This function is used to erase a sector in the bank specified. The sector size in the block will have been returned
in the FlashOpen function.

FLASHERASE (nOffset)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments

nOffset
byVal nOffset AS INTEGER
The offset in the sector with the block to erase. Any offset in that sector will
suffice.

Example:

//Example :: FlashErase.sb

DIM rc, nOffset, nTotalSize, nSectorSize

//open the flash memory in raw mode

rc = FlashOpen(nTotalSize,nSectorSize)

IF rc == 0 THEN

 PRINT "\nOpened flash successfully"

ENDIF

// Erase flash at offset 4088

nOffset = 4088

rc = FlashErase(nOffset)

IF rc == 0 THEN

 PRINT "\nFlash erased successfully"

ENDIF

 Expected Output:

Opened flash successfully

Total Size=524288 Sector Size=4096

00

FlashClose

This subroutine is used to close access to a block of flash in raw mode.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

333

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FLASHCLOSE()

Returns Not acceptable as it is a subroutine

Arguments: None

Example:

//Example :: FlashClose.sb

DIM rc, nTotalSize, nSectorSize

//open the flash memory in raw mode

rc = FlashOpen(nTotalSize,nSectorSize)

IF rc == 0 THEN

 PRINT "\nOpened flash successfully"

ENDIF

// Close access to the flash

FlashClose()

PRINT "\nClosed flash"

Expected Output:

Opened flash successfully

Closed flash

00

 Cryptographic Routines

EccGeneratePubPrvKeys

This functions is used to generate public/private keypair based on the algorithm (ECC type) provided.

ECCGENERATEPUBPRVKEYS (nEccType, privKey$, pubKey$)

Returns

INTEGER, a result code. The most typical values are:-

0x0000 – Keys created successfully

0x5907 – CRYPTO_ECC_TYPE_UNKNOWN (Unknown ECC type)

0x0201 – MALLOC_FAIL (not enough memory to return the keys)

Arguments

nEccType

byVal nEccTypeAS INTEGER
The ECC type to be used when calculating and generating the shared key.
Possible values:-

0x10000 : Algorithm Curve 25519 (used in Eddystone EID)

privKey$
byRef privKey$ AS STRING
On exit, will contain the generated private key, size as appropriate for algorithm

pubKey$
byRef pubKey$ AS STRING
On exit, will contain the generated public key, size as appropriate for algorithm

See example for EccCalcSharedSecret().

EccCalcSharedSecret

This function is used to create a shared scalar value which will have the same value when the remote performs
an equivalent calculation with its own local private key and this side’s public key.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

334

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Essentially, calling EccGeneratePubPrvKeys() twice to create two sets of private and public keys and then calling
EccPubSharedSecret() twice with the private from one and public from the other will generate the same
sharedSecret$.

ECCCALCSHAREDSECRET (nEccType, privKey$, pubKey$, sharedSecret$)

Returns

INTEGER, a result code. The most typical values are:-

0x0000 – Keys created successfully

0x5907 – CRYPTO_ECC_TYPE_UNKNOWN (Unknown ECC type)

0x0201 – MALLOC_FAIL (not enough memory to return the keys)

Arguments

nEccType

byVal nEccTypeAS INTEGER
The ECC type to be used when generating the public/private keypair. Possible
values:-

0x10000 : Algorithm Curve 25519 (used in Eddystone EID)

privKey$
byRef privKey$ AS STRING
On entry contains the local private key, untouched on exit

pubKey$
byRef pubKey$ AS STRING
On entry contains the remote public key, untouched on exit

sharedSecret$
byRef sharedSecret$ AS STRING

On exit will contain the shared secret key

// Example :: EccCalcSharedSecret.sb

// Note: In real world scenarios, two devices generate their private/public

// key pair separately, then exchange the public key. Using the remote's

// public key and the own private key, the shared secret is generated, therefore

// ending with the same shared secret without exposing material that could be used to

// by a third party to decrypt in a reasonable amount of time.

// For simplicity, this example shows this process performed on one device only

dim rc, EccType : EccType = 0x10000

dim prvKey_A$, pubKey_A$, Secret_A$

dim prvKey_B$, pubKey_B$, Secret_B$

// Generate first Public/Private keypair

rc = EccGeneratePubPrvKeys(EccType, prvKey_A$, pubKey_A$)

if rc == 0 then

 PRINT "\rPrv Key A: "; strhexize$(prvKey_A$)

 PRINT "\rPub Key A: "; strhexize$(pubKey_A$)

endif

// Generate second Public/Private keypair

rc = EccGeneratePubPrvKeys(EccType, prvKey_B$, pubKey_B$)

if rc == 0 then

 PRINT "\rPrv Key B: "; strhexize$(prvKey_B$)

 PRINT "\rPub Key B: "; strhexize$(pubKey_B$)

endif

// Compute first shared secret using private key A and public key B

rc = EccCalcSharedSecret(EccType, prvKey_A$, pubKey_B$, Secret_A$)

if rc == 0 then

 PRINT "\rShared Secret 1: "; strhexize$(Secret_A$)

endif

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

335

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Compute second shared secret using private key B and public key A

rc = EccCalcSharedSecret(EccType, prvKey_B$, pubKey_A$, Secret_B$)

if rc == 0 then

 PRINT "\rShared Secret 2: "; strhexize$(Secret_B$)

endif

// Compare keys to check if they are the same

If StrCmp(Secret_A$, Secret_B$)==0 then

 PRINT "\rThe generated shared secret keys are identical"

else

 PRINT "\rThe generated shared secret keys do not match"

Endif

Expected Output:

Prv Key A: 3A803352CFBBE969C28952C9950706A7F807C3B3974B65FEFD69C15A258C56EF

Pub Key A: 92F2589A0B08F0A1ADBC42F38FFB3093823257607C5DC0F4AF9DDEFE85E34030

Prv Key B: 10C9D43736EC510DE317732EF1C057954EB11FBD7800B1C6D827E63FB2657B5F

Pub Key B: 91FADCE2BD6E2FE7DF7F3251B2879753753D8F7F7D85978E2F0743DB3AE20577

Shared Secret 1: 3666BE535446B3E8A99970982EB2CE79C2501312CE2D30872DDB540A46453D23

Shared Secret 2: 3666BE535446B3E8A99970982EB2CE79C2501312CE2D30872DDB540A46453D23

The generated shared keys are identical

EccHmacSha256

This function is used to generate a HMAC-SHA256 authenticated hash of the content of data$ using the key
supplied which can be from 0 to 64 bytes in length.

ECCHMACSHA256 (key$, data$, hmacOut$)

Returns

INTEGER, a result code. The most typical values are:-

0x0000 – Keys created successfully

0x0201 – MALLOC_FAIL (not enough memory to return the keys)

Arguments

Key$
byRef key$ AS STRING
On entry contains a key from 0 to 64 bytes long and untouched on exit

data$
byRef data$ AS STRING
On entry contains the data to be hashed and untouched on exit

hmacOut$
byRef hmacOut$ AS STRING
On exit will contain the hmac output, use strlen() to determine length

//Example :: EccHmacSha256.sb

dim rc, key$

dim data_A$, hmacOut_A$

dim data_B$, hmacOut_B$

key$ = "KEY"

data_A$ = "AAAAB"

data_B$ = "AAAAA"

// Generate the HMAC-SHA256 for the first data

rc = EccHmacSha256(key$, data_A$, hmacOut_A$)

if rc == 0 then

 PRINT "\rHMAC of data_A: "; strhexize$(hmacOut_A$)

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

336

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

endif

// Generate the HMAC-SHA256 for the second data

rc = EccHmacSha256(key$, data_B$, hmacOut_B$)

if rc == 0 then

 PRINT "\rHMAC of data_A: "; strhexize$(hmacOut_B$)

endif

// Compare the HMAC-SHA256 outputs

if StrCmp(hmacOut_A$, hmacOut_B$) == 0 then

 PRINT "\rData A matches Data B"

else

 PRINT "\rData A does not match Data B"

endif

Expected Output:

HMAC of data_A: 7DB831431B6B7CDACE411C9F51CCC550EF1C20FB0812A24B7BBE12AE4332BB20

HMAC of data_A: 7DBF238349A98AB446AB8B4596E12E3729653ADA1E1A4B9ADA57C507E2021034

Data A does not match Data B

 Miscellaneous Routines

ReadPwrSupplyMv

FUNCTION

This function is used to read the power supply voltage and the value will be returned in millivolts.

READPWRSUPPLYMV ()

Returns INTEGER, the power supply voltage in millivolts.

Arguments None

Example:

// Example :: ReadPwrSupplyMv.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 //read and print the supply voltage

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV"

Expected Output:

Supply voltage is 3343mV

SetPwrSupplyThreshMv

FUNCTION

This function sets a supply voltage threshold. If the supply voltage drops below this then the BLE_EVMSG event
is thrown into the run time engine with a MSG ID of BLE_EVBLEMSGID_POWER_FAILURE_WARNING (19) and
the context data will be the current voltage in millivolts.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

337

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Please note that when the power supply rises above this value and then drops again, the power fail warning
event will NOT be thrown again, unless this function is called explicitly again in the event handler.

In addition, if the event is enabled by calling this function AND the supply voltage is still below the threshold
then all flash write and erase operations will fail silently (for example, like pairing [with bonding] will fail to
retain the keys). Likewise NvRecordSet (and all other operations that involve writing to flash memory) will
silently fail and nothing will be written.

Events & Messages

MsgId Description

19 The supply voltage has dropped below the value specified as the argument to this function
in the most recent call. The context data is the current reading of the supply voltage in
millivolts

SETPWRSUPPLYTHRESHMV (nThreshMv)

Returns
INTEGER, 0 if the threshold is successfully set, 0x6605 if the value cannot be
implemented.

Arguments

nThreshMv byVal nThresMv AS INTEGER
The BLE_EVMSG event is thrown to the engine if the supply voltage drops below
this value. Valid values are 2100, 2300, 2500 and 2700.
If 0 is supplied then low supply voltage notification is disabled which implies
flash operation is no longer affected.

Example:

// Example :: SetPwrSupplyThreshMv.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

 DIM rc

 DIM mv

 //==

 // Handler for generic BLE messages

 //==

 FUNCTION HandlerBleMsg(BYVAL nMsgId, BYVAL nCtx) AS INTEGER

 SELECT nMsgId

 CASE 19

 PRINT "\n --- Power Fail Warning ",nCtx

 //mv=ReadPwrSupplyMv()

 PRINT "\n --- Supply voltage is "; ReadPwrSupplyMv();"mV"

 CASE ELSE

 //ignore this message

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

338

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDSELECT

 ENDFUNC 1

 //==

 // Handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //just exit and stop waiting for events

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV\n"

 mv=2700

 rc=SetPwrSupplyThreshMv(mv)

 PRINT "\nWaiting for power supply to fall below ";mv;"mV"

 //wait for events and messages

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

Supply voltage is 3343mV

Waiting for power supply to fall below 2700mV

Exiting…

7 EVENTS AND MESSAGES

smartBASIC is designed to be event driven, which makes it suitable for embedded platforms where it is normal
to wait for something to happen and then respond.

The event handling is done synchronously, meaning the smartBASIC runtime engine has to process a
WAITEVENT statement for any events or messages to be processed. This guarantees that smartBASIC never
needs the complexity of locking variables and objects.

The subsystems which generate events and messages relevant to the routines described in this guide are as
follows:

▪ BLE events and messages as described here.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

339

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Generic Characteristics events and messages as described here.

8 MISCELLANEOUS

 Bluetooth Result Codes

There are some operations and events that provide a single byte Bluetooth HCI result code (such as the
EVDISCON message). The meaning of the result code is as per the list reproduced from the Bluetooth
Specifications below. No guarantee is supplied as to its accuracy. Consult the specification for more.

Result codes in grey are not relevant to Bluetooth Low Energy operation.

BT_HCI_STATUS_CODE_SUCCESS 0x00

BT_HCI_STATUS_CODE_UNKNOWN_BTLE_COMMAND 0x01

BT_HCI_STATUS_CODE_UNKNOWN_CONNECTION_IDENTIFIER 0x02

BT_HCI_HARDWARE_FAILURE 0x03

BT_HCI_PAGE_TIMEOUT 0x04

BT_HCI_AUTHENTICATION_FAILURE 0x05

BT_HCI_STATUS_CODE_PIN_OR_LINKKEY_MISSING 0x06

BT_HCI_MEMORY_CAPACITY_EXCEEDED 0x07

BT_HCI_CONNECTION_TIMEOUT 0x08

BT_HCI_CONNECTION_LIMIT_EXCEEDED 0x09

BT_HCI_SYNC_CONN_LIMI_TO_A_DEVICE_EXCEEDED 0x0A

BT_HCI_ACL_COONECTION_ALREADY_EXISTS 0x0B

BT_HCI_STATUS_CODE_COMMAND_DISALLOWED 0x0C

BT_HCI_CONN_REJECTED_DUE_TO_LIMITED_RESOURCES 0x0D

BT_HCI_CONN_REJECTED_DUE_TO_SECURITY_REASONS 0x0E

BT_HCI_BT_HCI_CONN_REJECTED_DUE_TO_BD_ADDR 0x0F

BT_HCI_CONN_ACCEPT_TIMEOUT_EXCEEDED 0x10

BT_HCI_UNSUPPORTED_FEATURE_ONPARM_VALUE 0x11

BT_HCI_STATUS_CODE_INVALID_BTLE_COMMAND_PARAMETERS 0x12

BT_HCI_REMOTE_USER_TERMINATED_CONNECTION 0x13

BT_HCI_REMOTE_DEV_TERMINATION_DUE_TO_LOW_RESOURCES 0x14

BT_HCI_REMOTE_DEV_TERMINATION_DUE_TO_POWER_OFF 0x15

BT_HCI_LOCAL_HOST_TERMINATED_CONNECTION 0x16

BT_HCI_REPEATED_ATTEMPTS 0x17

BT_HCI_PAIRING_NOTALLOWED 0x18

BT_HCI_LMP_PDU 0x19

BT_HCI_UNSUPPORTED_REMOTE_FEATURE 0x1A

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

340

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BT_HCI_SCO_OFFSET_REJECTED 0x1B

BT_HCI_SCO_INTERVAL_REJECTED 0x1C

BT_HCI_SCO_AIR_MODE_REJECTED 0x1D

BT_HCI_STATUS_CODE_INVALID_LMP_PARAMETERS 0x1E

BT_HCI_STATUS_CODE_UNSPECIFIED_ERROR 0x1F

BT_HCI_UNSUPPORTED_LMP_PARM_VALUE 0x20

BT_HCI_ROLE_CHANGE_NOT_ALLOWED 0x21

BT_HCI_STATUS_CODE_LMP_RESPONSE_TIMEOUT 0x22

BT_HCI_LMP_ERROR_TRANSACTION_COLLISION 0x23

BT_HCI_STATUS_CODE_LMP_PDU_NOT_ALLOWED 0x24

BT_HCI_ENCRYPTION_MODE_NOT_ALLOWED 0x25

BT_HCI_LINK_KEY_CAN_NOT_BE_CHANGED 0x26

BT_HCI_REQUESTED_QOS_NOT_SUPPORTED 0x27

BT_HCI_INSTANT_PASSED 0x28

BT_HCI_PAIRING_WITH_UNIT_KEY_UNSUPPORTED 0x29

BT_HCI_DIFFERENT_TRANSACTION_COLLISION 0x2A

BT_HCI_QOS_UNACCEPTABLE_PARAMETER 0x2C

BT_HCI_QOS_REJECTED 0x2D

BT_HCI_CHANNEL_CLASSIFICATION_UNSUPPORTED 0x2E

BT_HCI_INSUFFICIENT_SECURITY 0x2F

BT_HCI_PARAMETER_OUT_OF_MANDATORY_RANGE 0x30

BT_HCI_ROLE_SWITCH_PENDING 0x32

BT_HCI_RESERVED_SLOT_VIOLATION 0x34

BT_HCI_ROLE_SWITCH_FAILED 0x35

BT_HCI_EXTENDED_INQUIRY_RESP_TOO_LARGE 0x36

BT_HCI_SSP_NOT_SUPPORTED_BY_HOST 0x37

BT_HCI_HOST_BUSY_PAIRING 0x38

BT_HCI_CONN_REJ_DUETO_NO_SUITABLE_CHN_FOUND 0x39

BT_HCI_CONTROLLER_BUSY 0x3A

BT_HCI_CONN_INTERVAL_UNACCEPTABLE 0x3B

BT_HCI_DIRECTED_ADVERTISER_TIMEOUT 0x3C

BT_HCI_CONN_TERMINATED_DUE_TO_MIC_FAILURE 0x3D

BT_HCI_CONN_FAILED_TO_BE_ESTABLISHED 0x3E

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

341

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

9 ACKNOWLEDGEMENTS

 AES Encryption

The following are required acknowledgements to address our use of open source code on the BL654 to
implement AES encryption. Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

License Terms

The redistribution and use of this software (with or without changes) is allowed without the payment of fees
or royalties providing the following:

▪ Source code distributions include the above copyright notice, this list of conditions and the following
disclaimer;

▪ Binary distributions include the above copyright notice, this list of conditions and the following
disclaimer in their documentation;

▪ The name of the copyright holder is not used to endorse products built using this software without
specific written permission.

Disclaimer

This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including,
but not limited to, correctness and/or fitness for purpose.

Issue 09/09/2006

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there are options to
use 32-bit types if available).

The combination of mix columns and byte substitution used here is based on that developed by Karl
Malbrain. His contribution is acknowledged.

 Micro-ECC

The following are required acknowledgements to address our use of open source code on the BL654 to
implement Elliptic-Curve Diffie Hellman cryptography . Laird’s implementation includes the following files:
uECC.c and uECC.h.

Copyright (c) 2014, Kenneth MacKay

License Terms

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

342

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Disclaimer

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

343

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

10 INDEX

Arduino Based NFC Reader 313
ASSERTBL652 .. 40
AT + BLX * ... 19
AT + BTD * .. 19
AT I .. 14
AT&F ... 20
AT+CFG ... 15
BleAcceptParing .. 261
BleAdvertConfig .. 84
BleAdvertStart .. 81
BleAdvertStop ... 83
BleAdvRptAddUuid128 ... 88
BleAdvRptAddUuid16 ... 87
BleAdvRptAppendAD .. 89
BleAdvRptGetSpace .. 86
BleAdvRptInit .. 85
BleAdvRptsCommit ... 90
BleAttrMetadataEx ... 149
BleAuthorizeChar .. 171
BleAuthorizeDesc ... 172
BleBondingEraseAll ... 252
BleBondingEraseKey ... 251
BleBondingIsTrusted ... 250
BleBondingPersistKey ... 249
BleBondingStats .. 249
BleBondMngrGetInfo ... 253
BleCharCommit... 159
BleCharDescAdd ... 157
BleCharDescPrstnFrmt.. 155
BleCharDescRead .. 169
BleCharDescUserDesc... 154
BleCharNew .. 152
BleCharValueIndicate ... 167
BleCharValueNotify .. 165
BleCharValueRead .. 161
BleCharValueWrite 163, 164
BleConfigDcDc .. 80
BleConfigHfClock .. 80
BleConnect ... 108
BleConnectCancel ... 110
BleConnectConfig ... 112
BleConnMngrUpdCfg .. 118
BleConnRssiStart .. 123
BleConnRssiStop ... 125
BleDecode32 ... 239
BleDecodeBITS .. 245

BleDecodeFLOAT ... 240
BleDecodeS16 .. 234
BleDecodeS24 .. 236
BleDecodeS8 .. 231
BleDecodeSFLOAT .. 242
BleDecodeSTRING .. 244
BleDecodeTIMESTAMP .. 243
BLEDECODEU16 ... 235
BleDecodeU24 ... 238
BleDecodeU8 ... 232
BleDiscCharFirst ... 186
BleDiscCharNext .. 186
BleDiscDescFirst ... 191
BleDiscDescNext .. 191
BleDisconnect .. 114
BleDiscServiceFirst ... 182
BleDiscServiceNext .. 182
BleEncode16 .. 221
BleEncode24 .. 222
BleEncode32 .. 223
BleEncode8 .. 220
BleEncodeBITS ... 230
BleEncodeFLOAT .. 224
BleEncodeSFLOAT .. 226
BleEncodeSFLOATEX .. 225
BleEncodeSTRING .. 229
BleEncodeTIMESTAMP .. 228
BleEncryptConnection ... 272
BleGapSvcInit ... 138
BleGattcClose ... 182
BleGattcFindChar ... 195
BleGattcFindDesc ... 200
BleGattcNotifyRead ... 216
BleGattcOpen .. 181
BleGattcRead ... 204
BleGattcReadData.. 204
BleGattcWrite .. 208
BleGattcWriteCmd 212, 215, 216
BleGetADbyIndex ... 102
BleGetADbyTag .. 104
BleGetAddrFromConnHandle 121
BleGetConnHandleFromAddr 119
BleGetCurConnParms .. 118
BleGetDeviceName .. 140
BleHandleUuid128 ... 143
BleHandleUuid16 ... 142

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

344

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleHandleUuidSibling ... 144
BlePair ... 257
BleScanAbort .. 93
BLESCANABORT .. 93
BleScanConfig ... 97
BLESCANCONFIG ... 85
BleScanFlush ... 95
BleScanGetAdvReport .. 98
BLESCANGETADVREPORT 101
BleScanGetPagerAddr .. 106
BleScanRptInit .. 86
BleScanStart .. 91
BLESCANSTART ... 92
BleScanStop .. 94
BleSecMngrBondReq .. 272
BleSecMngrIoCap ... 260
BleSecMngrKeySizes ... 271
BleSecMngrLescKeypressEnable 264
BleSecMngrLescKeypressNotify 264
BleSecMngrLescOwnOobDataGet 268
BleSecMngrLescPairingPref 256
BleSecMngrLescPeerOobDataSet 269
BleSecMngrOOBKey ... 266
BleSecMngrPasskey .. 262
BleServiceChangedNtfy .. 173
BleServiceCommit .. 147
BleServiceNew .. 145
BleSetAddressTypeEx ... 42
BleSetCurConnParms .. 115
BleSvcAddIncludeSvc .. 147
BleSvcRegDevInfo ... 140
BleTxPowerSet .. 77
BleTxPwrWhilePairing .. 78
BleVSpClose .. 289
BleVSpFlush .. 298
BleVSpInfo .. 291
BleVSpOpen .. 285
BleVSpOpenEx .. 287
BleVSpRead ... 293
BleVSpUartBridge ... 296
BleVSpWrite .. 292
BleWhitelistAddAddr .. 130
BleWhitelistAddIndex ... 130
BleWhitelistClear .. 129
BleWhitelistCreate .. 125
BleWhitelistDestroy .. 128
BleWhitelistInfo .. 131
BleWhitelistSetFilter ... 129

Bonding Functions ... 247
Bonding Table Types: Rolling & Persist 247
Command & Bridge Mode Operation 282
Decoding Functions ... 231
Encoding Functions .. 220
ERASEFILESYSTEM .. 41
EVATTRNOTIFY ... 180
EVATTRREAD .. 179
EVATTRWRITE .. 179
EVAUTHCCCD ... 65
EVAUTHDESC ... 69
EVAUTHSCCD ... 67
EVAUTHVAL ... 62
EVBLE_ADV_REPORT ... 45
EVBLE_ADV_TIMEOUT ... 44
EVBLE_CONN_TIMEOUT44, 108
EVBLE_FAST_PAGED .. 45
EVBLE_SCAN_TIMEOUT ... 45
EVBLEMSG ... 45
EVBLEMSG ... 254
EVCHARCCCD ... 52
EVCHARDESC ... 59
EVCHARHVC ... 51
EVCHARSCCD ... 55
EVCHARVAL .. 49
EVCONNRSSI .. 71
EVDISCCHAR .. 177
EVDISCDESC ... 177
EVDISCON ...48, 255
EVDISCPRIMSVC ... 176
EVFINDCHAR .. 178
EVFINDDESC ... 178
EVGATTCTOUT ... 175
EVLESCKEYPRESS .. 254, 303
EVNOTIFYBUF .. 72
EVNOTIFYBUF .. 180
EVVSPRX ... 71
EVVSPTXEMPTY ... 71
GpioAssignEvent .. 38
GpioBindEvent ... 38
GpioConfigPwm ... 32
GpioRead ... 34
GpioSetFunc ... 27
GpioSetFuncEx ... 29
GpioUnAssignEvent ... 40
GPIOUNBINDEVENT ... 40
GpioWrite .. 35
NDEF Messages .. 312

http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

345

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

NfcClose .. 323
NfcFieldSense ... 323
NfcHardwareState .. 321
NfcNdefMsgCommit ... 330
NfcNdefMsgDelete ... 325
NfcNdefMsgGetInfo .. 325
NfcNdefMsgNew .. 324
NfcNdefMsgReset ... 326
NfcNdefRecAddGeneric .. 328
NfcNdefRecAddLeOob .. 327
NfcOpen .. 322

ReadPwrSupplyMv ... 338
SetPwrSupplyThreshMv 338
SYSINFO ... 21
SYSINFO$... 24
SYSTEMSTATESET ... 331
UartOpen .. 25, 26
VSP (Virtual Serial Port) Events 284
VSP Configuration .. 277
Wake-On-NFC .. 320
Whisper Mode Pairing ... 248

http://ews-support.lairdtech.com/

	1 Introduction
	1.1 What Does a BLE Module Contain?

	2 Module Configuration
	3 Interactive Mode Commands
	3.1 AT I or ATI or ATIX
	AT+CFG
	AT+CFGEX
	AT+BTD *
	AT+BLX
	AT&F
	AT+PROTECT
	AT+EXTSUPPLY
	AT+REGOUT0

	4 Core Language Built-in Routines
	4.1 Information Routines
	SYSINFO
	SYSINFO$

	4.2 UART Interface
	UartOpen
	UartSetRTS
	UartBREAK

	4.3 I2C – Two Wire Interface (TWI)
	4.4 SPI Interface
	4.5 Input/Output Interface Routines
	Events and Messages
	GpioSetFunc
	GpioSetFuncEx
	GpioConfigPwm
	GpioRead
	GpioWrite
	GpioBindEvent/GpioAssignEvent
	GpioUnbindEvent/GpioUnAssignEvent

	4.6 Miscellaneous Routines
	ASSERTBL654
	ERASEFILESYSTEM

	5 BLE Extensions Built-in Routines
	5.1 LE Privacy
	BleSetAddressTypeEx

	5.2 Events and Messages
	EVBLE_ADV_TIMEOUT
	EVBLE_CONN_TIMEOUT
	EVBLE_ADV_REPORT
	EVBLE_FAST_PAGED
	EVBLE_SCAN_TIMEOUT
	EVBLEMSG
	EVDISCON
	EVCHARVAL
	EVCHARVALUE
	EVCHARHVC
	EVCHARCCCD
	EVCHARSCCD
	EVCHARDESC
	EVAUTHVAL
	EVAUTHVALEX
	EVAUTHCCCD
	EVAUTHSCCD
	EVAUTHDESC
	EVVSPRX
	EVVSPTXEMPTY
	EVCONNRSSI
	EVNOTIFYBUF
	EVCONNPARAMREQ

	5.3 Miscellaneous Functions
	BleTxPowerSet
	BleTxPwrWhilePairing
	BleConfigDcDc
	BleConfigHfClock

	5.4 Advertising Functions
	BleAdvertStart
	BleAdvertStop
	BleAdvertConfig
	BleAdvRptInit
	BleScanRptInit
	BleAdvRptGetSpace
	BleAdvRptAddUuid16
	BleAdvRptAddUuid128
	BleAdvRptAppendAD
	BleAdvRptsCommit

	5.5 Scanning Functions
	BleScanStart
	BleScanAbort
	BleScanStop
	BleScanFlush
	BleScanConfig
	BleScanGetAdvReport
	BleScanGetAdvReportEx
	BleGetADbyIndex
	BleGetADbyTag
	BleScanGetPagerAddr

	5.6 Connection Functions
	Events and Messages
	BleConnect
	BleConnectCancel
	BleConnectConfig
	BleDisconnect
	BleSetCurConnParms
	BleGetCurConnParms
	BleConnMngrUpdCfg
	BleGetConnHandleFromAddr
	BleGetAddrFromConnHandle
	BleConnRssiStart
	BleConnRssiStop

	5.7 Whitelist Management Functions
	BleWhitelistCreate
	BleWhitelistDestroy
	BleWhitelistClear
	BleWhitelistSetFilter
	BleWhitelistAddAddr
	BleWhitelistAddIndex
	BleWhitelistInfo

	5.8 GATT Server Functions
	Events and Messages
	BleGapSvcInit
	BleGetDeviceName$
	BleSvcRegDevInfo
	BleHandleUuid16
	BleHandleUuid128
	BleHandleUuidSibling
	BleServiceNew
	BleServiceCommit
	BleSvcAddIncludeSvc
	BleAttrMetadataEx
	BleCharNew
	BleCharDescUserDesc
	BleCharDescPrstnFrmt
	BleCharDescAdd
	BleCharCommit
	BleCharValueRead
	BleCharValueWrite
	BleCharValueWriteEx
	BleCharValueNotify
	BleCharValueIndicate
	BleCharDescRead
	BleAuthorizeChar
	BleAuthorizeDesc
	BleServiceChangedNtfy

	5.9 GATT Client Functions
	Events and Messages
	EVGATTCTOUT
	EVDISCPRIMSVC
	EVDISCCHAR
	EVDISCDESC
	EVFINDCHAR
	EVFINDDESC
	EVATTRREAD
	EVATTRWRITE
	EVNOTIFYBUF
	EVATTRNOTIFY
	EVATTRNOTIFYEX

	BleGattcOpen
	BleGattcClose
	BleDiscServiceFirst / BleDiscServiceNext
	BleDiscCharFirst / BleDiscCharNext
	BleDiscDescFirst /BleDiscDescNext
	BleGattcFindChar
	BleGattcFindDesc
	BleGattcRead/BleGattcReadData
	BleGattcWrite
	BleGattcWriteCmd
	BleGattcWritePrepare
	BleGattcWriteExecute
	BleGattcNotifyRead

	5.10 Attribute Encoding Functions
	BleEncode8
	BleEncode16
	BleEncode24
	BleEncode32
	BleEncodeFLOAT
	BleEncodeSFLOATEX
	BleEncodeSFLOAT
	BleEncodeTIMESTAMP
	BleEncodeSTRING
	BleEncodeBITS

	5.11 Attribute Decoding Functions
	BleDecodeS8
	BleDecodeU8
	BleDecodeS16
	BleDecodeU16
	BleDecodeS24
	BleDecodeU24
	BleDecode32
	BleDecodeFLOAT
	BleDecodeSFLOAT
	BleDecodeTIMESTAMP
	BleDecodeSTRING
	BleDecodeBITS

	5.12 Bonding and Bonding Database Functions
	Bonding Functions
	Bonding Table Types: Rolling & Persist
	Whisper Mode Pairing
	Events and Messages

	BleBondingStats
	BleBondingPersistKey
	BleBondingIsTrusted
	BleBondingEraseKey
	BleBondingEraseAll
	BleBondMngrGetInfo

	5.13 Security Manager Functions
	Events and Messages
	EVBLEMSG
	EVLESCKEYPRESS
	EVBLE_PASSKEY

	BleSecMngrLescPairingPref
	BlePair
	BleSecMngrIoCap
	BleAcceptPairing
	BleSecMngrPasskey
	BleSecMngrLescKeypressEnable
	BleSecMngrLescKeypressNotify
	BleSecMngrOOBKey
	BleSecMngrLescOwnOobDataGet
	BleSecMngrLescPeerOobDataSet
	BleSecMngrKeySizes
	BleSecMngrBondReq
	BleEncryptConnection

	5.14 Virtual Serial Port Service – Managed
	VSP Configuration
	Command and Bridge Mode Operation
	VSP (Virtual Serial Port) Events
	BleVSpOpen
	BleVSpOpenEx
	BleVSpClose
	BleVSpInfo
	BleVSpWrite
	BleVSpRead
	BleVSpUartBridge
	BleVSpFlush

	5.15 Data Packet Length Extension
	Overview
	Data Packet Length Extension
	ATT_MTU

	CFG Keys Configuration
	Maximum ATT_MTU
	Maximum Attribute Data Length
	Maximum Packet Length

	Events and Messages
	EVATTRIBUTEMTU
	EVPACKETLENGTH

	BleGattcAttributeMtuRequest
	BleMaxPacketLengthSet
	BleMaxPacketLengthGet

	5.16 LE Ping
	Overview
	Events and Messages
	EVBLE_PING_AUTH_TIMEOUT

	BlePingAuthTimeout

	5.17 LE 2M PHY
	Events and Messages
	EVBLE_PHY_REQUEST
	EVBLE_PHY_UPDATED

	BlePhySet

	6 Other Extension Built-in Routines
	6.1 Near Field Communications (NFC)
	Overview
	NDEF Messages
	Arduino Based NFC Reader
	Sample Application 1
	Sample Application 2
	Wake-On-NFC
	Events and Messages
	NfcHardwareState
	NfcOpen
	NfcClose
	NfcFieldSense
	NfcNdefMsgNew
	NfcNdefMsgDelete
	NfcNdefMsgGetInfo
	NfcNdefMsgReset
	NfcNdefRecAddLeOob
	NfcNdefRecAddGeneric
	NfcNdefMsgCommit

	6.2 System Configuration Routines
	SystemStateSet

	6.3 Flash Routines
	Overview
	FlashOpen
	FlashRead
	FlashWrite
	FlashErase
	FlashClose

	6.4 Cryptographic Routines
	EccGeneratePubPrvKeys
	EccCalcSharedSecret
	EccHmacSha256

	6.5 Miscellaneous Routines
	ReadPwrSupplyMv
	SetPwrSupplyThreshMv
	Events & Messages

	7 Events and Messages
	8 Miscellaneous
	8.1 Bluetooth Result Codes

	9 Acknowledgements
	9.1 AES Encryption
	License Terms
	Disclaimer

	9.2 Micro-ECC
	License Terms
	Disclaimer

	10 INDEX

