

ADuCM4050 User Guide
UG-1160

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

How to Set Up and Use the ADuCM4050

PLEASE SEE THE LAST PAGE FOR AN IMPORTANT
WARNING AND LEGAL TERMS AND CONDITIONS. Rev. A | Page 1 of 47

FEATURES
Up to 52 MHz ARM Cortex-M4F processor
512 kB of embedded flash memory with ECC
Optional 4 kB cache for lower active power
128 kB system SRAM with parity
Power management unit
Multilayer advanced microcontroller bus architecture bus

matrix
Central DMA controller
Beeper interface
SPORT, SPI, I2C, and UART peripheral interfaces
Cryptographic hardware support with AES-128, AES-256

along ECB mode, CBC mode, CTR mode, CCM mode,
modified CCM mode, and SHA-256

Protected key storage with key wrap and unwrap
Keyed HMAC with key unwrap
2 RTCs
3 general-purpose timers
1 watchdog timer
RGB timer for driving RGB LED
Programmable GPIO pins
Hardware CRC calculator with programmable generator

polynomial
Power-on reset and power supply monitor
12-bit successive approximation register ADC
True random number generator

GENERAL DESCRIPTION
This user guide provides detailed information on the ADuCM4050
microcontroller functionality and features. Each section describes a
different feature.

The ADuCM4050 processor is an ultra low power, integrated,
mixed-signal, microcontroller system used for processing, control,
and connectivity. The microcontroller unit (MCU) subsystem is
based on the ARM® Cortex-M4F processor, a collection of digital
peripherals, cache embedded static random access memory
(SRAM) and flash memory, and an analog subsystem that
provides clocking, reset, and power management capabilities
along with the analog-to-digital converter (ADC).

The ADuCM4050 processor provides a collection of power modes
and features, such as dynamic and software controlled clock
gating and power gating, to support extremely low dynamic and
hibernate power management.

Full specifications on the ADuCM4050 are available in the product
data sheet and the ADuCM4050 Ultra Low Power ARM Cortex-
M4F MCU with Integrated Power Management Hardware
Reference Manual.

UG-1160 ADuCM4050 User Guide

Rev. A | Page 2 of 47

TABLE OF CONTENTS
Features .. 1
General Description ... 1
Revision History ... 2
Getting Started .. 3

Software Installation .. 4
IAR Embedded Workbench Configuration 5

Power Optimization for the ADuCM4050 Processor 7
ADuCM4050 Processor Power Management 7
ADuCM4050 Processor Power Modes 7

Fast Wake Up from Hibernate Mode ... 13
Flash Memory and Instruction SRAM 13
Normal Wake Up .. 13
Fast Wake Up .. 13

Using the ADuCM4050 Processor Boot Kernel 17
Device Information Space Overview 17
Boot Kernel Overview ... 17
UART Downloader .. 20
Read Protection Key and Hashing ... 24
Memory Configuration ... 25
Handling CRC in the IAR Workbench 26
CrossCore Serial Flash Programmer 26

Cache Memory in the ADuCM4050 .. 28
Storage and Access Ecosystem Block Diagram 28
Flash Controller .. 28

Effects of Cache .. 28
Current Consumption Comparison .. 30

Dual RTC Feature in the ADuCM4050.. 31
Comparison of the RTC Features ... 31
Power Considerations .. 31
Conclusion .. 31

Benefits of ADuCM4050 the DC-to-DC Converter 32
DC-to-DC Basics .. 32
Capacitors vs. Inductor Converters ... 34
Conclusions ... 35

UART Software Flow Control ... 36
UART Flow Control ... 36
System Description .. 37
Data Capture ... 40

SPI Flow Control Methods .. 41
SPI Read Command Mode ... 41
Flow Control Modes .. 43
Conclusions ... 44

Sleep on Exit .. 46
Benefits .. 46
Enabling the Sleep on Exit Feature .. 46
System Control Register in the ADuCM4050 47

REVISION HISTORY
6/2018—Revision A: Initial Version

ADuCM4050 User Guide UG-1160

Rev. A | Page 3 of 47

GETTING STARTED
This section introduces the tools and support packages required to
develop an application for the ADuCM4050 microcontroller. This
section describes how to download, install, and configure the files
that program the ADuCM4050.

This section describes different steps in developing an
application by using the IAR Embedded Workbench® as an
integrated development environment (IDE). This section also
describes how to download and run sample codes provided
with the device family package (DFP) drivers.

 16
06

7-
00

2

Figure 1. IAR Embedded Workbench

UG-1160 ADuCM4050 User Guide

Rev. A | Page 4 of 47

SOFTWARE INSTALLATION
The software tools required to develop applications with the
ADuCM4050 are available for download on the EV-COG-
AD4050 page.

Table 1. Required Software Tools
Tool Functions
IAR Embedded

Workbench
Used for compiling, debugging, and code
development

Cross Core
Embedded
Studio

Used for compiling, debugging, and code
development

Segger J-Link
Software

J-Link software and documentation pack that
includes USB drivers for the emulator, J-Link
commander, and so on

ADuCM4050
Device
Family Pack
Drivers

Includes ADuCM4050 peripheral drivers and
libraries, IAR configuration files, and the
source and header files

Installing the Segger J-Link Driver

The Segger J-Link USB driver must be installed before using a
serial wire interface, such as the interface of the IAR Embedded
Workbench, to download and debug code.

Use the following procedure to install the J-Link USB driver:

1. Download the latest Segger J-Link software and
documentation pack from the Segger website.

2. Run the executable software installer within the download
directory.

3. Follow the on-screen instructions to complete the installation.
Ensure the Install USB Driver for J-Link option is
checked, as shown in Figure 2.

16
06

7-
00

3

Figure 2. Segger J-Link Driver Installation Options

4. Plug in the J-Link emulator board, and open the Device
Manager.

5. Check that the emulator board appears in the Windows®
Device Manager in the USB controllers lists (see Figure 3).

16
06

7-
00

4

Figure 3. Device Manager

After following the software installation procedures, the USB
driver for the J-Link is installed and verified.

IAR Tools Installation

The IAR Embedded Workbench and the included IAR C/C++
Compiler generates the fastest performing, most compact code
in the industry for ARM-based applications. Therefore, Analog
Devices, Inc., created the DFP drivers for the ADuCM4050 for
the IAR Embedded Workbench.

The KickStart edition is a free starter kit and evaluation version
of IAR. This edition has limitations, both in code size (32 kB)
and in the service and support provided.

The IAR KickStart software is available as a free trial to download
on the IAR website.

For a detailed procedure on installing the IAR Embedded
Workbench and adding license details, if required, refer to the
Installation and Licensing Guide for IAR Embedded Workbench,
which is available on the IAR website.

The DFP examples are for the IAR Embedded Workbench
Version 8.20.1 or later. Project compatibility issues may occur
when using different versions.

ADuCM4050 User Guide UG-1160

Rev. A | Page 5 of 47

ADuCM4050 Device Family Pack (DFP)

The ADuCM4050 DFP provides the configuration, support files,
and components required to ease the development of the
ADuCM4050.

The contents of the DFP are as follows:

• Source files for the device drivers and services for use on
the ADuCM4050 processor

• Tool chain support. These components are installed in the
IAR Embedded Workbench workspace to configure the
tool chain to recognize the ADuCM4050

• Documentation containing details about the present
version of DFP

The IAR Embedded Workbench must be installed before
installing the DFP.

Use the following procedure to install the DFP:

1. Download the ADuCM4050 DFP on the EV-COG-AD4050
page.

2. Select the ADuCM4x50 Device Family Pack, which leads
you to the page to download the latest version of the DFP.
This is a CMSIS pack file that must be installed in IAR
Embedded Workbench Version 8.11.3 and above.

3. Open the IAR Embedded Workbench IDE and select the
CMSIS Pack Installer, as shown in Figure 4.

16
06

7-
10

5

Figure 4. CMSIS Pack Installer

4. Click Install local pack file in the window that is shown in
Figure 5, and browse to the DFP CMSIS pack file
downloaded to install it.

16
06

7-
10

6

Figure 5. Install Local Pack File Button

5. After installation completes, the DFP displays installed (see
Figure 6).

16
06

7-
10

7

Figure 6. Completed Installation of the DFP

IAR EMBEDDED WORKBENCH CONFIGURATION
This section describes the IAR Embedded Workbench
configuration procedure for proper operation of the
ADuCM4050. Only the sections that must be modified from the
default values are described.

Take the following steps to configure the IAR:

1. In Options, ensure the Analog Devices ADuCM4050
device option is selected as the target.

2. Go to C/C++ Compiler > Optimizations, select from the
different optimization options for speed, code size, balance,
and so on, depending on your application needs. Sometimes,
the compiler identifies the writes of a register as eligible to
be optimized, which may cause unexpected behavior. In
such situations, it is recommended to protect configuration
functions from being optimized by using the following code:

#pragma optimize=none

3. Go to C/C++ Compiler > Preprocessor and include the
path of the included directories, depending on the code to be
run.

4. Go to Debugger and select CMSIS DAP as the debugger
within the Driver dropdown menu (see Figure 7). Verify
that both the Verify download and Use flash loader(s)
boxes are checked in the Debugger > Download menu, as
shown in Figure 8.

16
06

7-
20

7

Figure 7. Debugger > Setup Tab

16
06

7-
01

0

Figure 8. Debugger > Download Tab

5. Figure 9 shows the CMSIS DAP > Setup configuration. Be
sure to use the Hardware target reset strategy under the
Reset dropdown menu. Figure 10 shows the CMSIS DAP >
Interface configuration

UG-1160 ADuCM4050 User Guide

Rev. A | Page 6 of 47

16
06

7-
20

9

Figure 9. CMSIS DAP > Setup Configuration Tab

16
06

7-
21

0

Figure 10. CMSIS DAP > Interface Configuration Tab

ADuCM4050 User Guide UG-1160

Rev. A | Page 7 of 47

POWER OPTIMIZATION FOR THE ADuCM4050 PROCESSOR
Choosing a low power MCU is a difficult task because it involves
reviewing data sheets to analyze electrical specifications. It is often
difficult to relate these specifications to applicable, system level
use cases.

Evaluating various power modes while considering peripheral
operations emulating real use case scenarios is an essential step
in choosing the right MCU for a power sensitive application. Key
aspects to evaluate when choosing an MCU for low power
applications include the following:

• Availability of low power modes and the impact of these
modes on the ability to retain the contents of the SRAM.

• Power consumption with the real-time clock (RTC)
running while the rest of the system is in low power mode.

• Wake-up times from low power modes.
• Supply voltage range from an application standpoint. The

designer can adjust and select the system supply voltage,
depending on the component requirements.

• Power consumption in active mode.
• Core activity—example algorithm processing.
• Peripheral activity—direct memory access (DMA)

operations.
• Simultaneous core and peripheral activity.
• Flexibility in choosing core and peripheral clock frequencies

that meet system requirements while keeping the power
consumption low.

• Hardware DMA blocks that enable the CPU to be in low
power mode during peripheral activity.

The ADuCM4050 processor is an ultra low power, integrated,
mixed-signal, MCU system for processing, control, and
connectivity. The MCU system is based on an ARM Cortex-M4F
processor, offering 1.25 DMIPS per MHz of performance
running up to 52 MHz, combined with a collection of digital
peripherals, embedded SRAM and flash memories, and an
analog subsystem that provides clocking, reset, and power
management capabilities in addition to an ADC subsystem.

The ADuCM4050 processor is one of the few ultra low power
MCUs on the market that offers a cache controller. Programs
that repeatedly access the same data or instructions make

effective use of cache memory, thereby reducing overall power
consumption.

The power consumption of an MCU largely depends on two
factors: the operating voltage and the frequency at which the
system operates. The ADuCM4050 processor incorporates
several power modes that are useful in building battery-powered
or self-powered (energy harvesting) applications.

This section discusses the power modes of the ADuCM4050
processors in detail and provides example power measurements
for several scenarios, to help developers choose power modes
that best fit low power application requirements.

ADUCM4050 PROCESSOR POWER MANAGEMENT
The ADuCM4050 processor incorporates a highly customizable
power management and clocking system that offers application
developers the flexibility to balance power and performance. The
power management blocks consist of integrated regulators, a clock
gating scheme, and switches applicable to numerous application
scenarios.

The power management system features are as follows:

• An integrated 1.2 V low dropout (LDO) regulator and an
optional capacitive buck regulator.

• Integrated power switches for low standby current in
hibernate mode.

• Power gating to reduce leakage in sleep modes.
• A power supply monitor with a selectable voltage range.

ADUCM4050 PROCESSOR POWER MODES
The power management system provides the following low
power modes:

• Active mode with customized clock gating features.
• Flexi mode with smart peripherals.
• Hibernate mode with optional SRAM retention capability.
• Shutdown mode without SRAM retention.
• Shutdown fast mode without SRAM retention.

Each mode provides a low power benefit with potential
functionality trade-offs.

UG-1160 ADuCM4050 User Guide

Rev. A | Page 8 of 47

Table 2 summarizes the status of the system blocks in each low power mode.

Table 2. Power Mode System Block Status
Functional Block ARM Cortex-M4F Core Buck Peripheral/DMA HFXTAL HFOSC LFXTAL PLL LFOSC RTC0 RTC1 ADC SRAM Flash
Active Mode On User1 User1 User1 User1 User1 User1 On User1 User1 User1 On On
Flexi Mode Off User1 User1 User1 User1 User1 User1 On User1 User1 User1 On On
Hibernate

Mode
Off Off Off Off Off User Off On User1 User1 Off On2 Off

Shutdown
Mode

Off Off Off Off Off User Off Off User1 Off Off Off Off

Shutdown
Fast Mode

Off Off Off Off Off User Off Off User1 Off Off Off Off

1 In the user application code, this functional block can be configured on or off.
2 The retainable SRAM size is configurable.

Active Mode

In active mode (also called full on mode), the ARM Cortex-M4F is
active and executes instructions from flash memory and/or SRAM.
All peripherals can be enabled or disabled at the discretion of the
user, and active mode power can be enhanced by optimized
clock management.

Several power saving options are available in active mode:

• Using the buck converter.
• Enabling the cache.
• Using dynamic clock scaling.
• Using clock gating.

Buck Converter

The optional integrated buck converter feature saves power in
active mode. The buck converter powers the linear regulator,
which powers the digital core domain. The buck converter enters
bypass mode after the battery voltage (VBAT) falls below ~2.3 V.
After entering bypass mode, the buck converter output follows
the input.

For designs in which the optional buck converter is not used,
the VDCDC_CAP1P, VDCDC_CAP1N, VDCDC_OUT,
VDCDC_CAP2P, and VDCDC_CAP2N pins must be left
unconnected.

The buck converter is solely for processor usage. An external
load cannot be connected to the buck converter output.

Enable the buck converter by setting the HPBUCKEN bit in the
CTL1 register per the following code:
*pREG_PMG0_CTL1 |= (1<<BITP_PMG_CTL1_HPBUCKEN);

Figure 11 compares the power consumption of the ADuCM4050
processor when computing prime numbers with the following
conditions:

• VBAT = 3.0 V
• HCLK = PCLK = 26 MHz
• Cache memory disabled

The buck converter impacts current consumption positively at
higher VBAT values. Specifically, there is roughly a 50% decrease in
the active current when VBAT ≥ 3 V.

3.5

0

0.5

1.0

1.5

2.0

2.5

3.0

1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

I B
AT

 (m
A)

VBAT (V)

HP BUCK ON AT 26MHz
HP BUCK OFF AT 26MHz

16
06

7-
02

8

Figure 11. Impact of the Buck Converter on Active Mode Power Consumption

Enabling Cache Memory

Cache memory reduces the average time to access data from
flash memory. For scenarios in which the CPU is required to
run an algorithm or the same data must be accessed repeatedly,
cacheable memory can reduce the power consumption because
execution is from the internal instruction SRAM. When the cache
controller is enabled, 4 kB of instruction SRAM is reserved as
cache memory.

Cache memory is disabled at startup by default. Use the following
procedure to enable the cache memory:

1. Read the cache enable status bit (Bit 0 in the FLCC_CACHE_
STAT register) to ensure cache memory is disabled. Poll
this bit until it clears.

2. Write the user key to the FLCC0_CACHE_KEY register.

*pREG_FLCC0_CACHE_KEY = 0xF123F456;

3. Set the instruction cache enable bit (ICEN in the FLCC0_
CACHE_SETUP register) as follows:

*pREG_FLCC0_CACHE_SETUP |= (1 <<
BITP_FLCC_CACHE_SETUP_ICEN);

ADuCM4050 User Guide UG-1160

Rev. A | Page 9 of 47

Figure 12 compares the power consumption of the ADuCM4050
processors when computing prime numbers with the following
conditions:

• VBAT = 3.0 V
• HCLK = PCLK = 26 MHz
• Buck converter disabled

3.3

2.6

2.7

2.8

2.9

3.0

3.1

3.2

1.7 2.2 2.7 3.2 3.7

I B
AT

 (m
A)

VBAT (V)

CACHE ON
CACHE OFF

16
06

7-
02

9

Figure 12. Impact of Cache Memory on Active Mode Power Consumption

Enabling the cache memory reduces the average active current
consumption by ~15%.

Dynamic Clock Scaling

Dynamic clock and/or frequency scaling is a proven method to
reduce power consumption. The ADuCM4050 processors have a
flexible clock architecture that allows dynamic modification of the
CPU and peripheral clock frequencies. A combination of clock
dividers and a phase-locked loop (PLL) provides flexibility in
deriving an optimum system clock frequency that guarantees
system performance while keeping the power consumption low,
as compared to a fixed clock scheme. Programmable clock dividers
are available to generate the clocks in the system, and the divisors
can be configured while the code is running.

Figure 13 plots the power consumption of the ADuCM4050
processors when computing prime numbers with the following
conditions:

• VBAT = 3.0 V
• HCLK = PCLK (the source of the root clock is HFOSC)
• Buck converter disabled
• Cache disabled

3.5

0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 205 15 25 30

I B
AT

 (m
A)

HCLK (MHz) 16
06

7-
03

0

Figure 13. Impact of Core Clock Frequency on Active Mode Power

Consumption

Figure 14 plots the power consumption of the ADuCM4050
processors when computing prime numbers with the following
conditions:

• VBAT = 3.0 V
• HCLK = PCLK (the source of the root clock is XTAL)
• Two wait state on the flash
• Buck converter disabled
• Cache disabled

Power dissipation decreases as core clock frequency decreases.
7

0

1

2

4

6

3

5

I B
AT

 (m
A)

VBAT (V)

26MHz
52MHz

1.5 2.0 2.5 3.0 3.5 4.0

16
06

7-
03

1

Figure 14. Impact of Core Clock Frequency on Active Mode Power
Consumption with the PLL

Clock Gating

The system is heavily clock gated and uses automatic clock gating
techniques. Most peripherals are automatically clock gated when
the peripheral is disabled, such that the clock runs only when
the peripheral is enabled. The exceptions are I2C, general-
purpose input/output (GPIO), and the general-purpose timer
(GPTMR). These blocks must be manually clock gated using the
CLKCON5 register. Gate the peripheral clock completely by
setting the CLKG_CLK_CTL5 bit. Any access to the clock gated
peripherals overrides the clock gate settings in the CLKCON5
register.

UG-1160 ADuCM4050 User Guide

Rev. A | Page 10 of 47

For application scenarios in which the core is processing data
and no peripheral activity is desired, the peripheral clock (PCLK)
can be turned off to save power. Figure 15 shows the power
consumption of the ADuCM4050 processors when computing
prime numbers with the following conditions:

• VBAT = 3.0 V
• Buck converter disabled
• Cache memory disabled
• HCLK = PCLK = 26 MHz

3.25

2.90

2.95

3.00

3.10

3.20

3.05

3.15

I B
AT

 (m
A

)

VBAT (V)

PCLK ON
PCLK OFF

16
06

7-
13

1

1.5 2.52.0 3.0 3.5 4.0

Figure 15. Impact of Peripheral Clock Gating on Active Mode Power Consumption

As shown in Figure 15, a ~0.2 mA reduction in the active current is
observed when the peripheral clock is gated.

In active mode, the four techniques described in this section
can be combined to achieve maximum power savings.

Flexi Mode

Flexi mode is a flexible sleep mode useful in scenarios in which the
core must wait for a peripheral data transfer to complete before
it can start processing. In flexi mode, the core is clock gated, and
the remainder of the system is active. Flexi mode substantially
reduces active power when low speed activity is expected to
complete (for example, reading a certain number of bytes from a
sensor) before the processor must be woken up to process the data.

Consider a scenario in which the CPU configures a serial
peripheral interface (SPI) DMA and must wait for the DMA to
complete. Figure 16 shows the power consumption of the
ADuCM4050 processors transferring data over the SPI using
DMA accesses with the following conditions:

• VBAT = 3.0 V
• Buck converter enabled
• Cache disabled
• PCLK = 26 MHz
• SPI_DIV = 49

4000

0

500

1000

1500

2500

3500

2000

3000

I B
AT

 (µ
A)

VBAT (V)

ACTIVE
FLEXI

1.5 2.0 2.5 3.0 3.5 4.0

16
06

7-
13

2

Figure 16. Impact of Flexi Mode on Power Consumption

As shown in Figure 16, there is nearly a 71% savings in power when
flexi mode is used while the DMA is ongoing, rather than keeping
the core in active mode.

A number of wake-up sources that exit flexi mode (for example,
DMA interrupts, external interrupts, timer interrupts, and so on),
and it typically takes only one CPU clock cycle to exit.

The buck converter can also be enabled in flexi mode to save
additional power. Figure 17 shows the power consumption of
the ADuCM4050 processor across VBAT in flexi mode with the
buck converter on while transferring data over the SPI using
DMA accesses with the following conditions:

• VBAT = 3.0 V
• Cache memory disabled
• PCLK = 26 MHz
• SPI_DIV = 49

900

800

700

600

500

400

300

200

100

0
1.5 2.0 2.5 3.0 3.5 4.0

I B
AT

 (µ
A)

VBAT (V)

HP BUCK ON
HP BUCK OFF

16
06

7-
13

3

Figure 17. Impact of the Buck Converter on Flexi Mode Power Consumption

As seen in Figure 17, a similar power improvement pattern to the
impact of the buck converter in active mode is shown in Figure 11.
Specifically, when VBAT ≥ 3 V, a 50% improvement in power is
observed.

ADuCM4050 User Guide UG-1160

Rev. A | Page 11 of 47

Hibernate Mode

In hibernate mode, the ARM Cortex-M4F core and all digital
peripherals are off with configurable SRAM retention, port pin
retention, a limited number of wake-up interrupts, and, optionally,
an active RTC. All GPIO pin states are retained in hibernate
mode. The ADuCM4050 processor also incorporates the
SensorStrobe™ mechanism in the RTC1 block, which enables
ultra low power sensor data measurement.

Before entering hibernate mode, most of the enabled peripherals
must be programmed to undergo a specific sequence to properly
enter or exit hibernate mode, and several system memory map
registers (MMRs) and peripheral registers are retained while in
hibernate mode. For more details, refer to the relevant peripheral
information in the ADuCM4050 Ultra Low Power ARM Cortex-
M4F MCU with Integrated Power Management Hardware
Reference Manual.

Configurable Retainable SRAM

The ADuCM4050 processor supports SRAM partitioned in
32 kB blocks. Several memory sizes can be retained from 16 kB
(default) up to 124 kB while in hibernate mode. The more SRAM
that must be retained, the higher the power consumption in
hibernate mode, as shown in Figure 18.

1800

1600

1400

1200

1000

800

600

400

200

0

I B
AT

 (n
A

)

VBAT (V)

16k
28k
60k
92k
124k

16
06

7-
13

4

1.5 2.52.0 3.0 3.5 4.0

Figure 18. Current on the VBAT Supply Pin (IBAT) for Various

Retained SRAM Values

The SRAM retention size can be configured by setting the
appropriate bits in the PMG0_SRAMRET register. For example,
to enable 124 kB of SRAM to be retained while in hibernate
mode, use the following code in the PMG0_SRAMRET register:
*pREG_PMG_PWRKEY = 0x4859;

*pREG_PMG_SRAMRET |=

((1 << BITP_PMG_SRAMRET_SRAM_RET1_EN)|

 (1 << BITP_PMG_SRAMRET_SRAM_RET2_EN)|

 (1 << BITP_PMG_SRAMRET_SRAM_RET3_EN)|

 (1 << BITP_PMG_SRAMRET_SRAM_RET4_EN));

If parity is enabled, initialization of nonretained SRAM regions
may be required upon waking from hibernate mode.

Wake-Up Sources

The following events are capable of waking the device up from
hibernate mode:

• External Interrupt 0 to External Interrupt 3
• RTC0 and RTC1 interrupt
• Battery voltage range interrupt
• Universal asynchronous receiver/transmitter (UART)

receiver (Rx) pin activity

Of the two real-time clocks, RTC1 is the recommended wake-
up source from hibernate mode because it consumes less power
than RTC0, and it provides more functionality. In an application
where both hibernate mode and shutdown mode must be used,
only RTC0 can be used. RTC0 is the only real-time clock that
can be used for exiting shutdown mode. See the Dual RTC
Feature in the ADuCM4050 section for more information.

The wake-up time from hibernate mode from any of these events is
~10 µs when executing from flash and ~5 µs when executing
from SRAM.

RTC Clock Sources

The ADuCM4050 processor offers two clock choices for the
RTC1 block:

• A low power internal RC oscillator (LFOSC).
• An external crystal oscillator (LFXTAL).

Consider that the input clock for RTC1 is LFMUX. Therefore, the
decision of choosing between LFOSC and LFXTAL must be made
while taking into account the requirements for the other
peripherals clocked by LFMUX.

Choosing to implement either LFOSC or LFXTAL is a trade-off
between accuracy and power consumption. LFXTAL is more
accurate (depending on the crystal manufacturer) compared to the
LFOSC, but LFOSC dissipates less power, as shown in Figure 19.

1400

1200

1000

800

600

400

200

0
1.5 2.0 2.5 3.0 3.5 4.0

I B
AT

 (n
A)

VBAT (V)

RTC1 LFOSC
RTC1 LFXTAL

16
06

7-
13

5

Figure 19. Hibernate Current with RTC1 as the Wake-Up Source

(LFOSC vs. LFXTAL)

UG-1160 ADuCM4050 User Guide

Rev. A | Page 12 of 47

SensorStrobe

The SensorStrobe mechanism allows the ADuCM4050 processor
to be used as a programmable clock generator in all power
modes, except in shutdown and shutdown fast modes. In this
way, the external sensors have their timing domains mastered
by the ADuCM4050 processors because the SensorStrobe output
is a programmable divider from RTC1, which can operate up to a
resolution of 30.7 µs. The sensors and microcontroller are
synchronous, which removes the need for additional resampling
of data to time align the microcontrollers and the sensors.

Shutdown Mode

Shutdown mode is the deepest sleep mode in which digital and
analog circuits are powered down. The state of the digital core
and the SRAM memory content is not retained. However, the state
of the pads is preserved, as is the wake-up interrupt configuration.

The configuration of the pads is preserved and locked after
waking up from shutdown mode. The user must unlock the
state of the pads by writing 0x58FA to the PGM_TST_CLR_
LATCH_GPIOS register, preferably inside the interrupt service
routine (ISR) routine:

*pREG_PMG0_TST_CLR_LATCH_GPIOS = 0x58FA;

Additionally, the user must configure the appropriate wake-up
source, choosing from the following options:

• External Interrupt 0 to External Interrupt 2
• External reset
• Battery falling below 1.6 V
• RTC0 timer

The RTC0 block can optionally be enabled in this mode, which
allows the processor to be periodically woken up by the RTC0
interrupt.

The clock source for RTC0 must be LFXTAL because LFOSC is
disabled in shutdown mode.

Because the RTC0 block must be powered to serve as a wake-up
source, it adds to the power dissipation while in shutdown mode,
as shown in Figure 20.

When the device wakes up from shutdown mode, the power-on
reset (POR) sequence is followed, and code execution starts from
the beginning.

700

600

500

400

300

200

100

0
1.5 2.52.0 3.0 3.5 4.0

I B
AT

 (n
A)

VBAT (V)

SHUTDOWN
SHUTDOWN + RTC

16
06

7-
03

6

Figure 20. Shutdown Mode Current (External Sources vs. RTC0)

Shutdown Mode—Fast Wake Up

Fast wake up mode has exactly the same behavior as the mode
described in the Shutdown Mode section, except for the faster
wake-up time at the expense of higher power consumption.

Figure 21 shows the power consumption in this power mode.
As shown, enabling the RTC0 adds extra power dissipation.

700

600

500

400

300

200

100

0
1.5 2.52.0 3.0 3.5 4.0

I B
AT

 (n
A)

VBAT (V)

FAST WAKE UP
FAST WAKE UP + RTC

16
06

7-
03

7

Figure 21. Shutdown Mode Current (External Sources vs. RTC0)

ADuCM4050 User Guide UG-1160

Rev. A | Page 13 of 47

FAST WAKE UP FROM HIBERNATE MODE
FLASH MEMORY AND INSTRUCTION SRAM
Flash memory is the long-term storage medium for any micro-
controller. Because the flash memory is nonvolatile, it is used
for the storage of constant data and program code of the
microcontroller. Due to the nature of flash memories, memory
access is slow compared to SRAM, cache, and other registers.
The latency takes effect during the execution of a looping code
that performs real-time calculations.

The ADuCM4050 microcontroller has the capacity to execute
instructions in SRAM. Instruction SRAM (iSRAM) is a portion
of the ADuCM4050 microcontroller dedicated to be a temporary
program code and instruction storage. It is used when the program
must execute a looping code faster and does not want the flash
latency to affect the execution. The iSRAM is small (up to 32 kB)
compared to the 512 kB flash memory. Therefore, only
important code and instructions must use the iSRAM.

NORMAL WAKE UP
Cortex-M4F core and all the digital peripherals (except some
user-selectable SRAM blocks) are turned off during hibernate
mode. The RTC can be configured by the user program to turn
off during hibernate. (RTC0 and/or RTC1 might be on depending
on the user configuration). Registers of the digital peripherals
are also turned off. This is to ensure the low current consumption
of the microcontroller during hibernate mode, although some
registers are retained to allow the device to wake up in the same
status it was in when it went to sleep.

An interrupt from one of the allowed wake-up sources boots
the microcontroller from hibernate to active mode to service
the interrupt. Refer to the ADuCM4050 Ultra Low Power ARM
Cortex-M4F MCU with Integrated Power Management
Hardware Reference Manual document for further information
about the possible interrupt wake-up sources. During the
transition from hibernate to active mode, the microcontroller
reinitializes the digital peripherals that are off during hibernate
before it executes the first instruction on the ISR.

The flash memory, where the program code is located, is also
off during hibernate mode. Upon microcontroller wake up, the
core turns on the flash memory. The flash memory initialization is
slow, and it takes about 5.7 μs to complete before it can take
commands from the controller.

Figure 22 shows the delay time from triggering an external
wake-up signal to microcontroller response by lighting up a
light emitting diode. The red trace is the signal from the push
button that triggers an external interrupt signal to wake up the
microcontroller. The blue trace is the GPIO toggling indicating
that the microcontroller is awake, that is, the first instruction
executed is a GPIO toggle (GPIO_TGL). The entire wake-up
process takes around 10 μs to complete.

2

16
06

7-
13

9

CH1 1.00V
0mV OFFSET

CH2 1.00V
0mV OFFSET

TIMEBASE –8.00µs
2.0µs/DIV

50.0kS 2.5GSPS

TRIGGER C1 DC
STOP 0.00V

EDGE NEGATIVE

1

Figure 22. Normal Wake Up from Hibernate Mode Response

FAST WAKE UP
One way to wake up from hibernate faster is to move the required
functions and instructions to iSRAM. The microcontroller code
starts earlier because the code must not wait for the completion
of the flash memory initialization.

Figure 23 shows the delay time from triggering an external
wake-up signal to microcontroller response with the fast wake-
up procedure. The red trace is the signal from the push button,
and the blue trace is the GPIO toggled as first instruction after
waking up.

The wake-up time is reduced to around 4.5 μs. This time assumes a
50% improvement with respect to normal wake up.

2

16
06

7-
14

0

CH1 1.00V
0mV OFFSET

CH2 1.00V
0mV OFFSET

TIMEBASE –8.00µs
2.0µs/DIV

50.0kS 2.5GSPS

TRIGGER C1 DC
STOP 0.00V

EDGE NEGATIVE

1

Figure 23. Fast Wake Up from Hibernate Mode Response

UG-1160 ADuCM4050 User Guide

Rev. A | Page 14 of 47

Table 3. Wake-Up Times with Different Peripherals
ADuCM4050 Peripheral Activity Normal Wake-Up Time (µs) Fast Wake-Up Time (µs)
Pin Toggle (Lighting an LED) 9.7 4.4
I2C Clock (First Edge, 400 kHz) 12.3 7.0
SPI Clock (First Edge, 400 kHz) 12.5 7.2

Table 3 shows a comparison of the wake-up times to different
peripherals. The wake-up time is measured from the falling edge of
the external wake-up signal to the first rising edge of the serial
clocks (as for I2C and SPI) or the rising edge of the pin connected
to the light emitting diode.

To perform fast wake up from hibernate mode, use the
following procedure:

1. Initialize the iSRAM.
2. Modify the linker script to add sections for the functions

and to remap the addresses.
3. Relocate the interrupt vector table (VTOR) from flash to

SRAM.
4. Place the required functions and interrupt handlers in

iSRAM.

Initialization of the iSRAM

To use the iSRAM, take the following steps:

1. Enable the iSRAM bank by asserting the INSTREN bit field
in the PMG_TST_SRAM_CTL register.

2. Retain the half of the iSRAM by asserting the BNK2EN bit
in the PMG_TST_SRAM_CTL register.

Modification of the Linker Script

Modify the linker script to help the linker place the code in the
correct place in the memory map. Remap the addresses, and
add the required sections for the location of the program code
and interrupt handlers to iSRAM.

If using the IAR Embedded Workbench, apply the following
changes to the linker script:

1. Remap the SRAM addresses. Search for the following line
in the linker script:

define symbol USER_SRAM_MODE = 0;

Change the value of the USER_SRAM_MODE to 0 or 1.
2. Add sections for iSRAM. Search the linker script for the

following lines:

// iSRAM section for placing code in
SRAM

place in iRAM {section ISRAM_REGION };

initialize by copy {section ISRAM_REGION
};

Modify the lines to include the .textrw section. IAR linker
places the instructions for SRAM in the .textrw section.
// ISRAM section for placing code in SRAM

place in iRAM {section ISRAM_REGION,
section .textrw};

initialize by copy {section ISRAM_REGION,
section .textrw};

Interrupt Vector Table Relocation

The interrupt vector table (IVT) lists the different interrupt
sources for the ADuCM4050 microcontroller. The following
events are capable of waking the MCU up from hibernate mode:

• External Interrupt 0 to External Interrupt 3
• RTC0 and RTC1 interrupt
• Battery voltage range interrupt
• UART receiver (Rx) pin activity

For fast wake up, move the IVT from flash to SRAM. In this
way, the microcontroller does not need to wait for the flash
initialization to check the location of the interrupt handler of
the wake-up source.

Copy the IVT to SRAM and update the SCB register to the
VTOR of the address of the interrupt vector in SRAM.

The file system_ADuCM4050.c must be modified as follows:

1. Add multiple definitions before the SystemInit function

#ifdef RELOCATE_IVT

#include <assert.h>

#ifdef __GNUC__

#define ATTRIBUTE_INTERRUPT
__attribute__((__interrupt__))

#define KEEP_VAR(var) var
__attribute__((used))

#define WEAK_PROTO(proto)
__attribute__((weak)) proto

#define WEAK_FUNC(func)
__attribute__((weak)) func

#define VECTOR_SECTION ".isr_vector"

#define SECTION_PLACE(def,sectionname)
__attribute__ ((section(sectionname))) def

#define RESET_EXCPT_HNDLR ResetISR

#define COMPILER_NAME "GNUC"

#endif // __GNUC__

#ifdef USER_SPECIFIED_RTOS

#include <user_rtos_support.h>

#endif

#ifdef __ARMCC_VERSION

#define ATTRIBUTE_INTERRUPT

ADuCM4050 User Guide UG-1160

Rev. A | Page 15 of 47

#define KEEP_VAR(var) var
__attribute__((used))

#define WEAK_PROTO(proto) proto
__attribute__((weak))

#define WEAK_FUNC(func) func

#define VECTOR_SECTION "RESET"

#define SECTION_PLACE(def,sectionname)
__attribute__ ((section(sectionname))) def

#define RESET_EXCPT_HNDLR
__main

#define COMPILER_NAME
"ARMCC"

#endif // __ARMCC_VERSION

#ifdef __ICCARM__

/*

* Pm154 (rule 19.10): in the definition of a
function-like macro, each instance of a
parameter shall be enclosed in parentheses.
The parameters in the following macros
cannot be enclosed in parentheses.

*/

#pragma diag_suppress=Pm154

#define ATTRIBUTE_INTERRUPT

#define KEEP_VAR(var) __root var

#define WEAK_PROTO(proto) __weak proto

#define WEAK_FUNC(func) __weak func

#define VECTOR_SECTION ".intvec"

#define SECTION_PLACE(def,sectionname) def @
sectionname

#define RESET_EXCPT_HNDLR
__iar_program_start

#define COMPILER_NAME
"ICCARM"

#endif /* __ICCARM__ */

extern uint32_t __Vectors_Size;

#define RELOCATION_ADDRESS (0x20000000)

#define RELOCATION_ALIGNMENT (0x200)

#define LENGTHOF_IVT (88u)

#if defined (__ICCARM__)

 #pragma
data_alignment=RELOCATION_ALIGNMENT /* IAR
*/

#elif defined (__CC_ARM)

 __align(RELOCATION_ALIGNMENT)
/* Keil */

#else

 #pragma message("WARNING: NO ALIGHMENT
DEFINED FOR IVT RELOCATION")

#endif

/* reserve no-init aligned IVT space at top
of RAM */

SECTION_PLACE(KEEP_VAR(__no_init void *
__relocated_vector_table[LENGTHOF_IVT]),
RELOCATION_ADDRESS);

#endif

2. Replace this line

SCB->VTOR = (uint32_t) &__Vectors;

with these lines

#ifdef RELOCATE_IVT

 /* Copy the IVT (avoid use of memcpy
here so it does not become locked into
flash). */

 size_t i;

 //assert(
sizeof(__relocated_vector_table) ==
__Vectors_Size);

 for (i = 0u; i < LENGTHOF_IVT; i++) {

 __relocated_vector_table[i] =
__Vectors[i];

 }

 SCB->VTOR = (uint32_t)
&__relocated_vector_table;

#else

 /* Set the vector table address */

 SCB->VTOR = (uint32_t) &__Vectors;

#endif

3. Replace this line

extern uint32_t __Vectors;

with these lines

#ifdef RELOCATE_IVT

extern void* __Vectors[];

#else

extern uint32_t __Vectors;

#endif

UG-1160 ADuCM4050 User Guide

Rev. A | Page 16 of 47

Finally, it is necessary to declare the define RELOCATE_IVT by
adding it to the C/C++ Compiler/Preprocessor tab (see Figure 24)
to activate the relocation code built in the evaluation board support
package.

16
06

7-
14

1

Figure 24. IAR C/C++Compiler Options—RELOCATE_IVT Directive in the

Defined Symbols Textbox

Placement of Program Code to SRAM

The procedure of placing the program code to SRAM is
dependent on the compiler used.

For most compilers, use the following line before the function
definition to tell the location of the defined function:
#pragma location=”<linker_section>”

For the IAR Embedded Workbench, use the __ramfunc
keyword before the function (see Figure 25).

16
06

7-
14

2

Figure 25. Sample for Appending __ramfunc Directive to a Function

The amount of iSRAM retained depends on the PMG0_
SRAMRET register configuration. The RET1 bit field enables
the retention of the 12 kB in the range of 0x1000_0000 to
0x1000_2FFF. The RET2 bit field enables the retention of the 16 kB
in the range of 0x1000_3000 to 0x1000_6FFFF. Be sure that the
location of the code is in the retained region.

ADuCM4050 User Guide UG-1160

Rev. A | Page 17 of 47

USING THE ADuCM4050 PROCESSOR BOOT KERNEL
The ADuCM4050 processor features integrated flash memory
that contains the user application code (user space) and a dedicated
4 kB bank of memory, with the information space arranged as
shown in Figure 26. The total device storage is generally
described as the size of the user space.

INFORMATION SPACE
(4kB)

USER SPACE
(512kB)

DEVICE INFORMATION

BOOT KERNEL

USER APPLICATION
CODE

0x80FFF

0x80000
0x7FFFF

0x00000 16
06

7-
03

8

Figure 26. Flash Information Memory Space

The ADuCM4050 processor features 512 kB of user space.

As shown in Figure 26, the information space block is further
broken down into the boot kernel, residing in the upper 4 kB of
flash memory, and the device information space. The boot kernel is
responsible for implementing a secure environment, where the
user application code can optionally be read and/or write protected,
and executes the application from flash memory on reset. The
boot kernel also provides a mechanism to upgrade the firmware
through a UART downloader.

This section describes the information space region of the on-
chip flash memory, as well as both the boot process and how to
use the UART downloader to perform field upgrades to the
processor firmware.

DEVICE INFORMATION SPACE OVERVIEW
The device information space is reserved for use by Analog
Devices and stores several trim and calibration values and other
device specific metadata. The 256 bytes of device information
space in Address 0x0008_0F00 to Address 0x0008_0FFF are
protected and cannot be read by user code (attempted reads
return bus error). The 32 bytes of device information space in
Address 0x0008_0EE0 to Address 0x0008_0EFF can be read by
user code and Table 4 summarizes the information stored therein.
None of the device information space can be programmed or
erased by the user.

Table 4. List of User Accessible Parameters in Device
Information Space
Address Range Size Description
0x0008_0EF0 to
0x0008_0EFF

128 bits
(16 bytes)

Unique ID

0x0008_0EE4 to
0x0008_0EEF

96 bits
(12 bytes)

Manufacturer ID

0x0008_0EE0 to
0x0008_0EE3

32 bits
(4 bytes)

Revision number of kernel

BOOT KERNEL OVERVIEW
The boot kernel switches to the user application after performing
certain checks (including the CRC integrity of the user application),
or the boot kernel enters UART downloader mode to upgrade
the user application in flash memory, depending on the
SYS_BMODE0 boot mode pin state at reset.

The boot kernel supports in field updates to the user application
through the UART port. For security reasons, the boot kernel
itself does not provide the flash programming feature. However,
it allows the firmware update code, which has flash driver code
for updating the user flash, to be downloaded to the device over
the UART port. This code is referred to as a second stage loader
(SSL) and is run from SRAM. The SSL must be authenticated
before it can be provided run access. The security scheme
implemented is discussed in the Read Protection Key Hash
section and the Key Hash CRC section, describing the critical
part of the kernel to provide the secure environment in which
the user code can be read and/or write protected, allowing
intellectual property security.

The serial download capability allows developers to reprogram
the device while it is soldered directly onto the target system,
avoiding the need for an external device programmer and
removing the need to swap the device out of the system. The
serial download feature also enables system upgrades to be
performed in the field, provided the hardware infrastructure
involving the SYS_BMODE0 pin and the UART port are
implemented on the target board.

Configuring Security Options

The boot kernel provides the flexibility to configure the security
options of the device by allowing the user to program certain keys
and parameters in predefined locations in Page 0 of the user flash
memory. The kernel provides the user code security and integrity,
which depends on the number of user defined parameters in the
first page of the user flash memory. Table 5 summarizes the list
of keys and parameters, as well as their locations in the user flash
memory.

Table 5. List of Keys and Parameters
Address Range Size Description
0x0000_0180 to
0x0000_018F

128 bits
(16 bytes)

Read protection key hash

0x0000_0190 to
0x0000_0193

32 bits
(4 bytes)

CRC of read protection key hash

0x0000_0194 to
0x0000_0197

32 bits
(4 bytes)

Length of user boot loader or
entire user code (used for CRC
verification before boot)

0x0000_0198 to
0x0000_019B

32-bit
word

In circuit write protection if set
to no write (NOWR)

0x0000_019C to
0x0000_019F

32-bit
word

CPU write protection of
individual flash blocks

UG-1160 ADuCM4050 User Guide

Rev. A | Page 18 of 47

Read Protection Key Hash

Program the 128-bit read protection key hash at
Address 0x00000180 in the first page of the user flash memory.
The value of this hash depends on the kind of security desired
in the system, because this security defines the read accessibility
to the device. The key hash defines the state of the serial wire
debugger (SWD), as well as the access permission of the SSL
downloaded for upgrades via the UART.

The reset state of the flash memory of all logic high memory cells
(along with a valid key hash CRC) indicates that the user does
not desire read protection. In this case, the SWD interface is
automatically enabled during booting.

Any nonreset value results in the SWD being locked. Therefore,
there is no SWD access to the device.

The key hash is the 128-bit, truncated secure hash algorithm
(SHA-256) of the user key (which is 128 bits in length), which
can be sent along with the SSL during the UART download
phase. If the user key is valid, and the hash of the received key
matches the key hash stored, the SSL runs with all permissions.
If the user key fails the key hash check, the SSL only has write
permission to the user flash.

Key Hash CRC

The key hash has a 32-bit CRC checksum stored at
Address 0x00000190. The key hash is valid only if the associated
4-byte checksum is valid. The key hash has a separate key hash
to protect it against flash tempering attacks. The user must
ensure a valid CRC for the key hash is stored along with the key
hash itself.

In Circuit Write Protect Key

The 32-bit in circuit write protect key at Address 0x00000198 of
the user flash memory prevents in circuit programming of the
device. To disable in circuit reprogramming, program the
hexadecimal value of the NoWr ASCII string (without the
terminating null character) to this address. In this case, SWD
access to the device is locked, and the only way to update the
device code is via the UART downloader.

Use in circuit write protection along with read protection
(providing both read and write protection). In circuit write
protection alone does not have any significance.

Write Protection

Pages can be locked to prevent code from accidentally erasing
and reprogramming critical flash memory blocks (such as the
user code boot loader). There is a hardware register in the flash
controller that disables the programming of pages grouped into
blocks. This register is not automatically loaded via the hardware.
Rather, this register is written to via the kernel. The kernel reads
the write protection word from the user flash address,
Address 0x0000019C, and writes it to the write protection register
in the flash controller. The user can write the appropriate word to
this location, depending on the pages intended to be protected
against accidental writes. The pages are protected in groups of

four, with each bit in the 32-bit word corresponding to four
continuous flash pages. Refer to the ADuCM4050 Ultra Low
Power ARM Cortex-M4F MCU with Integrated Power
Management Hardware Reference Manual for details.

User Code Length

There is a 32-bit value stored at a flash memory address,
Address 0x00000194, that defines the CRC protected user code
length. The value programmed in this field defines the page
number of the user flash memory up to which the CRC protection
is desired by the user. The value of N means that CRC protection is
desired from Page 0 to Page N of the flash memory, protecting a
total of N + 1 pages.

Valid values for the field in Address 0x00000194 are 0 to 255 for
the 512 kB ADuCM4050 processor. Any value outside this range
is treated as invalid and results in a CRC check failure.

User Code CRC

The user code CRC is stored at the end of Page N. The 32-bit CRC
(MSB first) with a polynomial of 0x4C11DB7 is expected by the
kernel. If the page number is N, the CRC is expected to reside at
flash memory address (N × 0x800) + 0x7FC. For example, if N = 5,
a total of six pages are CRC protected, and the CRC is stored at
Address 0x2FFC. There is an option to disable the CRC check
by programming 0xFFFFFFFF to the expected CRC location.
After the kernel sees this value in the CRC location, it skips the
CRC check.

Boot Code Flow

This section describes how the kernel operates, based on the user
programmable parameters described in the Read Protection Key
Hash section through the User Code CRC section. Figure 27 shows
a flowchart of the boot code.

After reset, the boot kernel inspects all the parameters stored in
Page 0 of the user flash memory. The user has not requested the
read protection if the user read protection key hash is not program-
med (meaning that it is set to all FFs) and the key hash CRC is
valid. As such, the SWD is enabled. However, flash access may
be protected, depending on the state of the user code CRC.

If the CRC is valid, access to user flash memory is unrestricted.

If the user disables the CRC by programming 0xFFFFFFFF to
the CRC location, access to the user flash memory is also
unrestricted.

If the CRC is invalid, the user flash memory is protected with
no read or write access allowed. Only the flash mass erase
command is allowed. In this case, user code execution is not
allowed.

Take care to program a valid CRC (or 0xFFFFFFFF) in the
defined CRC location. Otherwise, the user flash memory is read
protected by the kernel. In this case, flash-based applications
fail to load unless the user flash memory is mass erased.

If the user read protection key hash is programmed with a nonreset
value, meaning that the read protection is enabled, or if the key

ADuCM4050 User Guide UG-1160

Rev. A | Page 19 of 47

hash CRC is invalid, the SWD is disabled by the kernel and
SWD access to the device is not possible. Perform this
programming only after product development is complete and
SWD access is not intended in the field. However, when read
protection is enabled, the SWD is opened only if CRC protection is
enabled and the CRC is corrupted, which allows device recovery
when the CRC is accidentally corrupted. In this case, the SWD
opens, but the user flash memory is protected with no read, write,
or page erase accessibility (to maintain the user code confidentiality
while allowing device recovery). However, mass erase is still
possible, which results in the user flash memory being open again
(with read and write access).

The user flash memory (user space) is completely blank when
shipped. Therefore, none of the security keys and parameters
are programmed. Most of the parameters, such as the key hash
CRC and the user code length, have invalid values, meaning the
parameters are all set to 0xFF. In this case, the kernel performs a
check of the user flash memory to identify if it is blank or
completely unprogrammed. If the user flash is blank, the kernel

skips all the checks and opens the SWD. In addition to opening
the SWD, which allows users to connect to the device through
SWD for their development, the boot kernel also enters the
UART downloader mode and awaits reception of the SSL.

After the device is programmed via the SWD, the user flash
memory is no longer blank, and the kernel relies on the state of
the SYS_BMODE0 pin to decide if the user code must be executed
after performing all the checks explained in the Boot Code Flow
section, or if the boot kernel must enter the UART downloader
mode.

If the SYS_BMODE0 pin is asserted low, the kernel enters the
UART downloader and waits for the SSL to download.

If the SYS_BMODE0 pin is deasserted high, the kernel jumps to
the user reset vector in the user flash memory after performing
all security checks.

The only case where the kernel enters the UART download mode
without sampling the SYS_BMODE0 pin is when the user flash
memory is blank.

UG-1160 ADuCM4050 User Guide

Rev. A | Page 20 of 47

ADI
BOOT LOADER

ENTRY

POINT VTOR
TO INFO AREA, REMAP FLASH
AND ENABLE USER AREA ECC

KEY HASH
ALL ONES AND

HASH CRC
VALID?

BOOT PIN
ASSERTED?

CRC LENGTH
VALID?

CRC ALL ONES?

USER
BLOCK

CHECKSUM
VALID?

IN-CIRCUIT
WRITE PROTECT

ENABLED?
READ PROTECT

FLASH USER SPACE

ENABLE
SWD

ENABLE
SWD

WAIT FOR
SWD CONNECTION

LOAD FLASH
WRITE PROTECT

POINT VTOR
TO USER AREA

EXECUTE
USER CODE

ENTER UART
DOWNLOADER

USER FLASH
ENTIRELY
BLANK? BLANK

DUT

ENABLE
SWD

READ PROTECTION
NOT ENABLED

ENTER UART
DOWNLOADER

DISABLE ECC IRQ,
SET ECC

ERROR FLAG

ISSUE
SOFT RESET

BUS/HARD/MEMORY
FAULT ISR ENTRY

YES

YES

YES

YES

YES

SKIP
CRC CHECK

NO

NO

NO NO
BAD CRC
OR LEN

NO SWD ACCESS
IF ICWP IS
ENABLED

ENABLE SWD
TO CUSTOMERS
FOR RECOVERY

YES

YES

NO

2-BIT ECC
ERROR?

YES

NO

NO

NO

16
06

7-
03

9

Figure 27. Boot Kernel Flowchart

SSL code downloaded over the UART must be mapped to the
SRAM. In UART downloader mode, the SSL is loaded to the
SRAM and has flash programming capabilities. The kernel
authenticates the SSL and allows execution only if authentication is
successful. This code is responsible for downloading and upgrading
the actual firmware (for example, the user application) in the
user flash memory. The kernel does not support direct updates
to the user flash memory. Therefore, the SSL is required to
perform such actions.

The kernel follows a specific protocol to download the SSL to
the processor, which must be adhered to by the transmitting
host. If the SSL follows the same packet protocol as the kernel,
the host interface is simplified (for example, communication
with the kernel and the SSL is uniform). The details of the
protocol are discussed in the Protocol section.

UART DOWNLOADER
The ADuCM4050 processors enter UART downloader mode if
the SYS_BMODE0 pin (GPIO17) is pulled low. If this condition
is detected by the device at power-on or hard reset, the device
enters serial download mode. In this mode, an on-chip loader
routine in the kernel is initiated, which configures the UART port
of the device and, via a specific serial download protocol,
communicates with a host to manage the firmware upgrade
process. Figure 28 shows the UART downloader flow.

ADuCM4050 User Guide UG-1160

Rev. A | Page 21 of 47

ERROR
DETECTED?

(UART BREAK
OR FRAMING)

EMPTY
\r OR \n?

GET COMMAND

WAIT FOR
AUTOBAUD CHARACTER SEND

PART NUMBER,
SERIAL NUMBER,

KEY_HASH,
USER CODE STATUS

UART
DOWNLOADER

CONFIGURE UART

SEND NAK

READ PROTECT
USER FLASH

PROCESS Rx
COMMAND

GET
COMMANDEXECUTE CODE

IN SRAM
UNRESTRICTED

WAIT FOR START
(UART RE-AUTOBAUD) DOWNLOAD

CODE TO SRAM

IS ICWP
ENABLED?

INFO
COMMAND?

DOWNLOAD
COMMAND?

RUN
COMMAND?

PERMISSION
VALID?

EXECUTE CODE
IN SRAM

YES

NO

NO

YES

YES

SEND NAK
(INVALID

COMMAND)

NO

YES

NO

NO

SEND NAK
(INVALID

COMMAND)

 NO

YES

YES

NO

16
06

7-
04

0

Figure 28. UART Downloader Flowchart

UG-1160 ADuCM4050 User Guide

Rev. A | Page 22 of 47

Protocol

After the serial downloader is triggered by asserting the
SYS_BMODE0 pin, the kernel waits for the host to send a
carriage return character (ASCII 0x0D, as shown in Figure 29)
to initiate the UART autobaud process.

The kernel makes use of the UART autobaud feature to detect
the baud rate of the host and to subsequently configure the
UART port to transmit or receive, at the baud rate of the host,
with eight data bits and no parity. Due to the 6.5 MHz reset
peripheral clock (PCLK), the UART can be configured by the
kernel to support baud rates up to 230,400 bps. Baud rates greater
than this value contain more errors and may result in an unreliable
data transfer. However, after loading the SSL, higher baud rates
are possible if the SSL increases the PCLK (up to 52 MHz) and
performs a second autobaud detection via the UART.

After receiving the autobaud character, the kernel calculates the
required clock divisor values and configures the UART, at which
point the kernel sends the device information as part of a 57-byte
ID data packet, as shown in Figure 29, to acknowledge that the
autobaud detection process is successful.

Packet Structure

In addition to indicating to the host that the processor is now
ready to communicate, the autobaud acknowledgement also
contains information about the device, the state of the user flash
memory, and security restrictions. After the autobaud acknowl-
edgement, the data transfer itself can begin, as governed by the
communications data transport packet format shown in Table 16.

Packet Start ID Field, ID0 and ID1

The first transfer field is the 2-byte packet start ID field (ID0
and ID1), comprised of two start characters (0x07 for ID0 and
0x0E for ID1). These bytes are constant and are used by the loader
to detect the beginning of a valid data packet.

Number of Data Bytes Field

The next transfer field is the total number of data bytes field, which
includes the 1-byte command (CMD), the 4-byte address (value),
and the remaining payload (data). The minimum number of data
bytes is five, which corresponds to a command and address only.
The maximum number of data bytes is 255, supporting a
command, an address, and up to 250 bytes of data.

Command Function Field (CMD), Data Byte 1

The command function field describes the function of the data
packet. Three commands are supported by the kernel, represented
in ASCII format:

 W (0x57)—write command
 R (0x52)—run command
 I (0x45)—information command

CR = \r = 0x0D

8-BIT MEASUREMENT TIME

START D0 D1 D2 D3 D4 D5 D6 D7 STOP

16
06

7-
04

1

Figure 29. Autobaud Character

Table 6. Autobaud Response
Bytes Contents
1 to 15 Product identifier: ADuCM4050 and six spaces
16 to 18 Hardware and firmware version numbers
19 User code blank; x means the code to execute, and a dash (-) means the user code is blank
20 User code checksum; P means that the checksum passed, and F means that the checksum failed
21 Write protection enabled; W means that write protection is disabled, and a dash (-) means that the write protection is enabled
22 Read protection enabled; R means that read protection is disabled, and a dash (-) means that read protection is enabled
23 Space
24 to 55 128-bit serial number, as a 32-digit uppercase hexadecimal number (for example, 0123456789ABCDEF0123456789ABCDEF)
56 Line feed
57 Carriage return

Table 7. UART Packet Structure
ID0 ID1 Number of Data Bytes CMD Value Data Checksum
0x07 0x0E 5 to 255 W, R, or I h, u, m, l xx CS

ADuCM4050 User Guide UG-1160

Rev. A | Page 23 of 47

Write Command

The write command packet shown in Table 8 includes the number
of data bytes (5 + n, where n is the payload size in bytes), the write
command (W), the 32-bit start address to write to, and the n data
bytes in the payload.

When a write command packet is received by the kernel, the
payload bytes are placed sequentially in the SRAM as they arrive,
beginning at the start address. The kernel sends a no acknowledge
command if the checksum is incorrect or if the received address
is out of range. If the host receives a no acknowledge from the
loader, abort and restart the download process.

Run Command

After the host transmits all the data packets to the kernel, it can
send a final packet instructing the kernel to start executing code.

This final packet is achieved by sending the run command packet,
which is comprised of the run command (R) and the 32-bit
address to begin running from, as shown in Table 9.

When the kernel receives a run command packet, it jumps to
the address supplied in the packet only after the permission
checks pass.

Information Command

The host can send the information command packet shown in
Table 10 at any time. This packet is comprised of the command (I)
and a 32-bit address. Though the value field is required for the
packet to be properly received by the kernel, the content of the
value field is irrelevant.

When the kernel receives the information command packet, it
responds with the 57-byte ID packet (see Table 6).

Table 8. Write Command Packet
ID0 ID1 Number of Data Bytes CMD Value Data Checksum
0x07 0x0E 5 + n W (0x57) Start address n bytes CS

Table 9. Run Command Packet
ID0 ID1 Number of Data Bytes CMD Value Checksum
0x07 0x0E 5 R (0x52) Start address CS

Table 10. Information Command Packet
ID0 ID1 Number of Data Bytes CMD Value Checksum
0x07 0x0E 5 I (0x52) 0xXXXXXXXX CS

UG-1160 ADuCM4050 User Guide

Rev. A | Page 24 of 47

Value Field (Data Byte 2 to Data Byte 5)

The value field contains a 32-bit address that includes h, u, m,
and locations. The MSB is in the h location (Data Byte 2), and
the LSB is in the l location (Data Byte 5).

The significance of the packets associated are as follows:

• In a write command packet, the value field indicates the
start address in memory to which the data payload is written.

• In a run command packet, the value field indicates the
address in SRAM where the SSL code begins.

• In an information command packet, the value field has no
meaning.

Data Field (Data Byte 6 to Data Byte 255)

User code is downloaded one byte at a time, and the data field
can contain a maximum of 250 bytes. The data is normally stripped
out of the Intel® HEX extended 16-byte record format, reassembled
by the host, and then sent in packet form using a series of write
command packets to the ADuCM4050 processor.

Checksum Field (CS)

The data packet checksum is written to the checksum field. This
twos complement checksum is calculated from the summation
of the hexadecimal values that span the number of bytes field to
the end of the data field. Thus, the 8-bit LSB of the sum of all
the bytes in the packet from the number of data bytes field, up
to and including the checksum field, is 0.

Acknowledge of Command

The loader routine issues a no acknowledge command (0x07) as
a negative response, or an acknowledge command (0x06) as a
positive response to each data packet received.

The loader transmits a no acknowledge if it meets any of
following conditions:

• The loader receives an incorrect checksum.
• A UART framing or break error occurs (this error may not

reach the host if the UART link is invalid).
• The SRAM code verification fails.

If any one of these conditions is met, it is required to reset the
target and restart the firmware upgrade process. If none of these
conditions are met, an acknowledge command is transmitted.

READ PROTECTION KEY AND HASHING
The read protection key allows access to the device during failure
analysis. If the device is read protected and failure analysis of the
current flash memory content is necessary, enable the SWD
interface by sending the key corresponding to the hash stored in
the user flash memory. It is recommended that the key be
unique to the device and be based on the unique identifier of
the device (for example, the serial number stored in the
information space).

A hash is stored in the user flash memory after the interrupt
vectors. This is the hash of a secret customer key. It is strongly
recommended that this key be unique to the device for security

reasons, and that the unlock key is valid for that one specific
device. To maintain a unique key per device, there must be a
device identifier to associate which key belongs to a particular
device. For simple key management, it is advised to make the
key a hash of a master secret and the device identifier.

Read Protection Key = Hash (Master Secret || Unique
Device Identifier)

Key Hash = Hash (Read Protection Key)

When the kernel is in UART loader mode, it can accept the read
protection key. Then, the boot loader performs a hash of the read
protection key and compares it to the stored key hash. On a
successful match, the bootloader permits the downloaded SSL code
in the SRAM to be executed with all the permissions enabled. If the
key hash check fails, then the kernel checks the ICWP key in
the user flash memory. If ICWP is turned off by the user by
programming any value to Address 0x00000198 other than the
hexadecimal equivalent of the NoWr ASCII string, then the SSL
is allowed to run after protecting the flash against read and write
accesses. In this case, the SSL must first issue a mass erase of the
user flash memory before attempting to perform any access to
the user flash memory space. If ICWP is also enabled by the user,
then the SSL is not granted permission to run unless the key hash
authentication passes.

The 128-bit read protection key is passed as a part of the SRAM
code. This key must be stored in big endian format in the SRAM as
a data payload starting at Address 0x20000180 and must be
oriented is a specific fashion in the memory for the kernel to
parse it correctly. Specifically, if the read protection key is
represented as ABCDEFGHIJKLMNOP, where each letter
represents one byte (with A being the first byte and P being the
last byte), the required arrangement of the bytes in memory is
shown in Table 11.

Table 11. Read Protection in SRAM
Address Byte 0 Byte 1 Byte 2 Byte 3
0x20000180 D C B A
0x20000184 H G F E
0x20000188 L K J I
0x2000018C P O N M

For example, if the read protection key is 0x00010203040506070-
8090A0B0C0D0E0F, then Table 12 shows how the memory
must be written.

Table 12. Example Read Protection Key in SRAM
Address Byte 0 Byte 1 Byte 2 Byte 3
0x20000180 0x03 0x02 0x01 0x00
0x20000184 0x07 0x06 0x05 0x04
0x20000188 0x0B 0x0A 0x09 0x08
0x2000018C 0x0F 0x0E 0x0D 0x0C

ADuCM4050 User Guide UG-1160

Rev. A | Page 25 of 47

The kernel computes the SHA-256 hash of this key, truncates it
to a 128-bit hash, and then compares it to the hash stored in
Page 0 of the user flash memory at Address 0x00000180. The
user must store the 128-bit truncated hash of the key to the
flash memory using a similar pattern. The SHA-256 hash for the
example key shown in Table 12 is 0xBE45CB2605BF36BEBDE68-
4841A28F0FD43C69850A3DCE5FEDBA69928EE3A8991,
which means the 128-bit truncated hash that must be stored
properly to the user flash memory space is 0x43C69850A3DCE-
5FEDBA69928EE3A8991, arranged as shown in Table 13.

Table 13. Example Read Protection Key Hash in Flash Memory
Address Byte 0 Byte 1 Byte 2 Byte 3
0x00000180 0x50 0x98 0xC6 0x00
0x00000184 0xFE 0xE5 0xDC 0xA3
0x00000188 0x28 0x99 0xA6 0xDB
0x0000018C 0x91 0x89 0x3A 0xEE

The CRC32 of the key hash is calculated with a polynomial of
0x04C11DB7 and a seed value of 0xFFFFFFFF, and it is stored
in LSB format in the flash memory space at Address 0x00000190.

MEMORY CONFIGURATION
Table 14 summarizes the different keys and parameters stored
in Page 0 of the user flash memory, the associated addresses,
and the values programmed to Page 0 when creating a project
with the default start-up file.

Table 14. Page 0 Memory Configuration

Content
Address Range

Size (Bytes) Section Name Default Content Start Address End Address
Vector Table 0x0000_0000 0x0000_017F 384 .intvec Vector table
Read Protection Key Hash 0x0000_0180 0x0000_018F 16 ReadProtection KeyHash 0xFFFFFFFF
 0xFFFFFFFF
 0xFFFFFFFF
 0xFFFFFFFF
CRC of Read Protection Key 0x0000_0190 0x0000_0193 4 CRC_ReadProtection KeyHash 0xA79C3203
Number of Pages the CRC Computes 0x0000_0194 0x0000_0197 4 NumCRCPages 0
Checksum 0x0000_07FC 0x0000_07FF 4 Checksum Checksum of 0 to

0x7FB (if enabled
in tools by the
user)

Page 0 User Memory 0x0000_01A0 0x0000_07FC 1628 Page0_region User application

UG-1160 ADuCM4050 User Guide

Rev. A | Page 26 of 47

HANDLING CRC IN THE IAR WORKBENCH
Calculate the CRC from part of the application image to be loaded
into the first several pages of the flash memory. Store the page
number of the last page involved in the CRC calculation at
Address 0x194 as a 32-bit integer. For example, if only Page 0 is
involved in the CRC calculation, store the value of 0x00 at
Address 0x194. If the CRC is calculated for the first three pages,
the value must be 0x02.

When the CRC is calculated, the last four bytes of the last page
included in the CRC calculation are excluded. These four bytes
are used for storing the CRC value itself. For example, if the last
page is Page 0, the CRC is calculated from Address 0x000 up to
and including Address 0x7FB. The tool stores the calculated
CRC value at Address 0x7FC as a 32-bit integer.

The standard CRC calculation is CRC32 with a polynomial of
0x04C11DB7, stored in MSB first format, with an initial value
of 0xFFFFFFFF. The unit size is 32 bits, which means the tool
must read 32 bits at one time from the image when calculating
the CRC.

Checksum Tab

There is a Checksum tab under the Linker category in the IAR
tools, which generates the CRC of the user application code. To
store the correct CRC, the following settings must be used (see
Figure 30):

• Check the Fill unused code memory box.
• Set the End address: field to 0x7FB (this value changes

depending on the page number).
• Check the Generate checksum box.
• Select the 4 bytes option from the Checksum size: pull-

down menu
• Set the Alignment: field to 4 (which indicates 4 bytes).
• Select the CRC32 option from the Algorithm: pull-down

menu.
• Set the Initial value field to 0xFFFFFFFF and ensure the

Use as input box is not checked.
• Select the 32-bit option from the Checksum unit size:

pull-down menu.
16

06
7-

04
2

Figure 30. Checksum Settings

CROSSCORE SERIAL FLASH PROGRAMMER
The CrossCore® Serial Flash Programmer (CCSFP) is a PC-based
host utility, provided by Analog Devices that upgrades the user
code over the UART port. CCSFP provides a graphical user
interface (GUI) to provide the following options for the UART
upgrade:

• Target processor
• UART PC port number
• Baud rate
• SSL hexadecimal file to be used for the upgrade
• User application hexadecimal file to be upgraded
• Key to authenticate the SSL

ADuCM4050 User Guide UG-1160

Rev. A | Page 27 of 47

Figure 31 shows the GUI for the CCSFP. The user must provide
the SSL in the Second stage kernel field, which is first downloaded
into the SRAM of the processor and then is executed before the
user application in the File to download field is sent to flash,
based on the authentication. The 128-bit key for the authentication
can be entered in the Key field.

16
06

7-
04

3

Figure 31. CrossCore Serial Flash Programmer GUI

The Status window shows the state of the UART download
process, device related information, and the status of the
commands as returned by the kernel. As shown in Figure 31,
the Status window shows the device information sent by the
kernel, showing the product ID, serial number, and user code
status. After the SSL is downloaded, as indicated by the Download
completed message displayed in the Status window, the SSL is
then authenticated by the kernel and the actual user application
is sent.

Figure 32 shows the SSL executing on the device, receiving the
user application, and writing it to the user flash memory space.

16
06

7-
04

4

Figure 32. User Application Code Being Written by the SSL to User Flash

Memory via the CCSFP

UG-1160 ADuCM4050 User Guide

Rev. A | Page 28 of 47

CACHE MEMORY IN THE ADuCM4050
The memory in the ADuCM4050 has 512 kB of embedded flash
memory within the error correction code (ECC), a 96 kB data
SRAM with parity, and 32 kB user configurable instruction and
data SRAM with parity. Four kB of SRAM can be used as cache
memory to reduce active power consumption by reducing access
to the flash memory.

The cache in the ADuCM4050 consists of a low power cache
controller for the instruction code (ICODE) and data code
(DCODE) accesses, a 4 kB instruction cache with two way
associativity, and a line size of 256 bits. The instruction cache has
a least recently used replacement policy. The cache writes to flash,
and the core can issue writes to the flash only through the advanced
peripheral bus (APB) interface of the flash controller. If the code is
placed in the flash, enabling the cache helps the speed of execution.
For more information, see the Effects of Cache on the Speed of
Execution section. For details on current consumption, see the
Current Consumption Comparison section.

This section discusses the use of an on-board cache controller to
use a portion of the SRAM as instruction and data cache for
user code that otherwise executes from the flash memory.

STORAGE AND ACCESS ECOSYSTEM BLOCK
DIAGRAM
The ADuCM4050 cache architecture consists of a digital cache
controller, a cache memory implemented as part of the system
SRAM, a digital flash controller, and a flash memory. The cache
architecture decreases the average latency of instruction and data
accesses by utilizing the faster SRAM memory, and decreases
the frequency of accesses to the relatively higher power flash
memory.

When code is executed from the flash memory with the cache
enabled, frequently used instructions are automatically cached
in a dedicated region of the SRAM. In most applications, no further
user effort is required, though locking and control features are
provided.

MICROPROCESSOR

FLASH

CACHE

SRAM

16
06

7-
04

5

Figure 33. Storage and Access Ecosystem Block Diagram

FLASH CONTROLLER
The flash controller is coupled with a cache controller module,
which provides two advanced microcontroller bus architecture
high performance bus (AMBA AHB) ports: one port for reading
data (DCODE), the other for reading instructions (ICODE). The
flash controller supports simultaneous ICODE and DCODE read
accesses. DCODE has priority on contention.

The flash controller implements a prefetch mechanism to optimize
ICODE read performance. This mechanism provides optimal
performance when reading consecutive addresses on the ICODE
interface. Simultaneous reads are possible if the ICODE read
returns buffered data from prefetch.

CUSTOM
INTERFACE

AHB ICODE

AHB DCODE

APB

READ PATH

WRITE PATH

CACHE
CONTROLLER

FLASH
CONTROLLER

16
06

7-
04

6

Figure 34. Flash and Cache Controllers

EFFECTS OF CACHE
Effects of Cache on the Speed of Execution

The flash memory and the SRAM memory have distinct power
and performance profiles.

The cache architecture copies a portion of user code into the SRAM
during execution where instruction and data read latency is lower.
For every instruction or data read that is satisfied by the cache
memory, the overall system performance is improved.

Using the cache generally increases the speed of execution. The
extent of increase depends on the type of code used. If the code has
loops that fit completely into the cache, the speed of execution
increases significantly, because the majority of instruction
accesses is served from the faster SRAM memory. For a loop
code that fits into the cache completely, the speed of access is 15%
to 20% faster than using only flash. If the code is generally linear
and/or jumps between segments too large to fit into the cache, the
speed of execution is not significantly improved, because the
majority of instruction accesses is served from the slower flash
memory.

Each cache miss results in a cache line fill consisting of four 64-bit
reads from the flash memory.

ADuCM4050 User Guide UG-1160

Rev. A | Page 29 of 47

When the core is running at 52 MHz, the flash needs an extra
two wait states to be enabled. As a result, flash accesses consume
more cycles compared to that at 26 MHz. Thus, cache may have
more of an advantage in this case. A comparison table of the
cycle count consumption for a prime number code (loop code
that can fit in the cache) is as shown in Table 15.

Table 15. Cycle Count Comparison

Code Executing
Cycle Bount at
26 MHz

Cycle Count at
52 MHz

Flash Only 68,875 107,676
Flash + Cache 57,137 57,137

As shown in Table 15, there is about a 17% decrease in the cycle
consumption in flash and cache compared to flash only at 26 MHz
and about a 47% decrease in the cycle consumption in flash and
cache compared to flash only at 52 MHz, due to the extra two
wait states of flash.

The details of the FLCC0_CACHE_SETUP register are shown
this section. Follow these instructions to enable or disable the
cache:

1. The instruction cache (ICACHE) is disabled by default. To
enable the ICACHE or toggle, the 0xF123F456 key must to
be written into the FLCC0_CACHE_KEY register.

*pREG_FLCC0_CACHE_KEY = 0xF123F456;

2. To enable the ICACHE, set the ICEN bit in the FLCC0_
CACHE_SETUP register. Clear this bit to disable the
ICACHE.

*pREG_FLCC0_CACHE_SETUP |= (1 <<
BITP_FLCC_CACHE_SETUP_ICEN);

Cache Key Register

Address: 0x40018060, Reset: 0x00000000, Name: FLCC0_CACHE_KEY

Cac he Ke y Re g is te r

Cac he Ke y Re g is te r

[1 5 : 0] V A L U E[1 5 : 0] (W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

[3 1 : 1 6] V A L U E[3 1 : 1 6] (W)

0
3 1

0
3 0

0
2 9

0
2 8

0
2 7

0
2 6

0
2 5

0
2 4

0
2 3

0
2 2

0
2 1

0
2 0

0
19

0
18

0
17

0
16

Table 16. Bit Descriptions for FLCC0_CACHE_KEY
Bits Bit Name Description Reset Access
[31:0] VALUE Cache Key Register. Enter 0xF123_F456 to set the user key. Returns 0x0 if read. The key is cleared

automatically after writing to FLCC_SETUP register.
0x0 W

Cache Setup Register

Address: 0x04001805C, Reset: 0x00000000, Name: FLCC0_CACHE_SETUP

The cache user key is required to enable a write to this location. The key is cleared after a write to this register.

I- Cac he Enab le
[0] IC EN (R /W)[1 5 : 1] R ES ER V ED

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

[3 1 : 1 6] R ES ER V ED

0
3 1

0
3 0

0
2 9

0
2 8

0
2 7

0
2 6

0
2 5

0
2 4

0
2 3

0
2 2

0
2 1

0
2 0

0
19

0
18

0
17

0
16

Table 17. Bit Descriptions for FLCC0_CACHE_SETUP
Bits Bit Name Description Reset Access
[31:1] RESERVED Reserved. 0x0 R
0 ICEN I-Cache Enable. If this bit is set, then I-Cache is enabled for AHB accesses. If 0, then I-Cache is

disabled, and all AHB is accessed via flash memory.
0x0 R/W

UG-1160 ADuCM4050 User Guide

Rev. A | Page 30 of 47

Effects of Cache on Current

When it comes to current consumption, SRAM accesses consume
less current than flash accesses. Therefore, when the cache is
enabled during the execution of code from the flash memory, the
current consumption is generally between that of code executing
directly from the flash or directly from the SRAM, unless the
code is such that every cache access is a miss. In this case, the
current is higher than executing from flash alone. Cache line
fills result in approximately 2× more flash reads than occur if
executing directly from the flash. This read rate is 4× more, if
not for the prefetch buffer in the flash also performing a read,
which must miss too, if the cache misses.

CurrentSRAM ≤ CurrentCACHE

When using the cache, the current consumption is proportional to
the cache miss rate. This result is because of a scalar current
reduction for each cache hit, because the data or code access is
served from the lower current SRAM, rather than the higher
current flash memory. Therefore, code consisting of many small
loops is more greatly affected than linear code or code consisting of
segments too large to fit into the cache memory.

The cache usage can also be inferred from the current
consumption. If the current consumption using cache and flash
is nearer to the current consumption when using the SRAM, the

cache hit rate must be high. If the current consumption using cache
and flash is nearer to the current consumption when using only
the flash, the cache hit rate must be low.

CURRENT CONSUMPTION COMPARISON
For a loop code (prime number code in this example), it is seen that
the current consumption using the flash and cache (1.47 mA) is
close to the current consumption in the SRAM (1.30 mA). This
result is because the code consists of many loops, each small
enough to fit into the cache. Therefore, the accesses to the flash
are relatively rare, and the code mostly executes from the relatively
low power cache. Accesses are minimal and, consequently, a
minimal increase in the current consumption in flash and cache
compared to the current consumption using the SRAM is seen.

For a linear code (ULPBench code in this example), it is seen that
the current consumption using the flash and cache deviates away
from the current consumption seen using only the SRAM. This
is because the ULPBench code is mostly linear and does not fit
well into the cache. Therefore, there is still a similar number of
accesses into the flash memory as there are when executing
directly from the flash. The cache misses are too high. As a
result, the current consumption deviates away to a greater extent.
The measurements shown in Table 18 are with HCLK at
26 MHz, peripheral clock off an HP buck switched on.

Table 18. Current Consumption Comparison
Type of Code SRAM (mA) Flash (mA) Flash and Cache (mA) Cache Misses (~12 sec of Execution)
Loop Code (Prime Number) 1.30 1.85 1.47 24
Linear Code (ULPBench) 2.83 3.34 3.12 ~800,000

ADuCM4050 User Guide UG-1160

Rev. A | Page 31 of 47

DUAL RTC FEATURE IN THE ADuCM4050
In many applications, an RTC time stamps sensor data. The RTC
must run even when the MCU is in a deep sleep mode. A low
power RTC is crucial to achieving a long battery life.

Notable features of ADuCM4050 RTCs include the following:

• A dual RTC (RTC0 and RTC1). Both RTCs can be used as
wake-up timers.

• SensorStrobe and input capture features.

This section provides guidelines for choosing between RTC0
and RTC1, depending on the power modes and functionality
required.

COMPARISON OF THE RTC FEATURES
The ADuCM4050 has two RTCs, RTC0 and RTC1 (also named
FLEX_RTC). Table 19 shows differences between both RTCs.

POWER CONSIDERATIONS
Table 20 shows current consumption when using RTC0 and
RTC1 in different use cases. Four scenarios are considered as
follows:

• Scenario 1. The device switches between the active and
hibernate power modes, and the application requires high
time accuracy. Either RTC0 or RTC1 can be used in this
scenario, but using RTC1 is recommended from a power
point of view, because RTC1 uses less power.

• Scenario 2. The device switches between the active and
hibernate power modes, and the application does not
require high time accuracy. Either RTC0 or RTC1 can be
used in this scenario, but using RTC1 is recommended
from a power point of view, because RTC1 uses less power.

• Scenario 3. The device switches between the active and
shutdown power modes. Only RTC0 can be used in this
scenario, because RTC1 is not active in shutdown mode.

• Scenario 4. The device switches between the active, shutdown,
and hibernate power modes. Only RTC0 can be used, in
this scenario, because RTC1 is not active in shutdown mode.

A basic program comprised of an RTC alert to wake up the
ADuCM4050 microcontroller from low power mode and to
toggle an LED measured the deep sleep power modes current.

CONCLUSION
Use RTC0 in applications that use shutdown mode and require
an RTC.

RTC1 is a feature rich RTC that enables ultra low power
consumption in applications that do not use shutdown mode.
Typical applications for which RTC1 is suited are applications in
which the ADuCM4050 microcontroller sends output pulses to
external sensors via a general-purpose input/output. The
SensorStrobe mechanism is only available in RTC1.

Table 19. Summary of the Differences Between RTC0 and RTC1
Feature RTC0 RTC1
Resolution of the Time

Base (Prescaling)
RTC0 counts time at 1 Hz in units of
seconds only.

RTC1 can prescale the clock by any power of 2 from 1 to 15, counting
time in units of any of these 15 possible prescale settings.

Wake-Up Timer The wake-up time is specified in
units of seconds.

The wake-up time can be specified in units of any power of 2 multiple
of 30.7 µs up to 1 second.

Number of Alarms One alarm only, which uses an
absolute, nonrepeating alarm time.

Two alarms: one absolute alarm time and one periodic alarm,
repeating every 60 prescaled time units.

Power Domain Powered off VBAT domain and is
always on; RTC0 can function in all
power modes.

Powered off 1.2 V (VREG) domain; RTC1 can function in all power
modes except shutdown mode.

SensorStrobe and Input
Capture Features

Not supported. Supports four input capture channels and four SensorStrobe channels.

Source Clock Low frequency crystal (LFXTAL). Depending on the low frequency multiplexer (LFMUX) configuration, the
RTC is clocked by LFXTAL or the low frequency oscillator (LFOSC).

Table 20. Comparison of Current Consumption in Different Use Case Scenarios
Scenario Number Use Case1 Recommended RTC Sleep Mode Current (nA)
1 Active to hibernate RTC1 (LFXTAL) 783
2 Active to hibernate RTC1 (LFOSC) 720
3 Active to shutdown RTC0 (LFXTAL) 387
4 Active to hibernate RTC0 (LFXTAL) 783

1 The device switches between the modes listed in this column.

UG-1160 ADuCM4050 User Guide

Rev. A | Page 32 of 47

BENEFITS OF ADuCM4050 THE DC-TO-DC CONVERTER
This section discusses the advantages and disadvantages of charge
pump converters vs. inductor converters, the latter of which are
frequently used. This section demonstrates why this architecture is
used on the ADuCM4050 microcontroller, accounting for
advantages in many aspects including price, area, simplicity, and
ease of use.

Direct current-to-direct current (dc-to-dc) converters are key
blocks in designs where it is required to manage different voltage
domains, such as in the ADuCM4050 microcontroller.

Methods of dc-to-dc conversion are briefly explained in this
section to provide users with context. A charge pump converter
is chosen for use in the ADuCM4050 because of its advantages
when compared to other configurations.

The purpose of this section is to help users understand why the
capacitive dc-to-dc converter is a better alternative to inductive
conversion solutions in the ultra low power applications for
which the ADuCM4050 is intended.

This section provides details and examples to prove the qualities
and benefits of this charge pump converter solution. Figure 35
shows the buck enabled design present in the ADuCM4050
microcontrollers. The ADuCM4050 uses a charge pump converter,
which is not used in the majority of microcontrollers with similar
characteristics available on the market. Other microcontrollers
usually use traditional inductor converter architectures.

BUCK
(ENABLED)

LDO

VBAT
0.1µF

VDCDC_CAP1P

VDCDC_CAP1N

0.1µF

VDCDC_CAP2P

VDCDC_OUT

1µF

VDCDC_CAP2N

VLDO_OUT

0.47µF

16
06

7-
04

7

Figure 35. ADuCM4050 Buck Enabled Design

DC-TO-DC BASICS
The ADuCM4050 processor is intended for ultra low power
applications. Power efficiency is one of the key considerations
in such applications. Therefore, using a dc-to-dc converter is
crucial in designs in which power must be used as efficiently as
possible.

There are different ways to perform dc-to-dc voltage conversions.
Such conversions involve stepping up or stepping down the dc
voltage that power the device.

DC-to-DC Conversion Methods

The most extensively used methods for regulating the different
power domains of a system are switching conversion and linear
regulation. Select the method that best meets the requirements
of the design or application.

Linear Regulators

Linear regulators consist of a network of resistive dividers that
dissipate excess voltage. Linear regulators are widely used due to
the ease of use and implementation, as well as the low cost.

In ultra low power applications, linear regulators are less efficient
when compared to switching converters. In a linear regulator,
the output current is approximately the same as the input current,
and its operating principle is to dissipate any leftover voltage.
Switching converters perform the same action more efficiently.

The ADP165/ADP166 devices are very low quiescent current,
LDO, linear regulators. The ground current represents the
difference between input and output currents. Figure 36 represents
the ADP165/ADP166 ground current vs. the load current (ILOAD),
showing the small difference in currents in a linear regulator.

100

10

G
R

O
U

N
D

 C
U

R
R

EN
T

(µ
A

)

1

0.1
0.001 0.01 0.1 1 10 100 1000

ILOAD (mA)

16
06

7-
04

8

Figure 36. ADP165/ADP166 Ground Current vs. Load Current (ILOAD)

ADuCM4050 User Guide UG-1160

Rev. A | Page 33 of 47

To analyze the power efficiency of the solution, consider a typical
application based on linear regulators. For an input voltage of
3 V, an output voltage of 1 V, and an output current of 1 µA, the
input current is approximately 1 µA. This scenario results in
33% efficiency (see Equation 3).

Efficiency =
InputEnergy

OutputEnergy
 × 100% (1)

Efficiency =
tVI

tVI

ININ

OUTOUT

××

××
 × 100% (2)

where:
IOUT is output current.
VOUT is output voltage.
t is time.
IIN is input current.
VIN is input voltage.

Linear Regulator Efficiency =
t
t

××

××

31
11

 × 100% = 33% (3)

Using a switching converter instead of a linear regulator, the input
current is 1/3 µA, leading to 100% efficiency in an ideal
performance, as shown in Equation 4.

Efficiency =
t

t
××

××

33/1
11

 × 100% = 100% (4)

In general, switching converters are more efficient than linear
regulators. Moreover, losses in efficiency produce an increase in
temperature that is much higher in linear regulators because their
dissipation must be larger to achieve the same conversion.
Additionally, linear regulators require more investment in
management to reduce temperature.

Traditionally, Analog Devices uses linear regulators in designs
that precede the ADuCM4050 microcontrollers because of their
simplicity and low cost. Currently, it is common to locate linear
regulators at the output of charge pump converters to stabilize
their rippled output.

Switching Converters

Switching converters use switches and components with low
losses, such as inductors or capacitors, to regulate voltage.
Typically, these components are charged and discharged by
switching transistors. This section discusses two types of
switching converters: charge pump converters and inductor
converters.

Inductor converters are among the most commonly used
converters in microcontroller designs to achieve ultra low
power with high efficiency. This efficiency and the wide gain
range make this architecture desirable.

The charge pump, or switched capacitor converter, is an alternative
to inductive converters. The charge pump process is performed
by connecting and disconnecting switches to charge and discharge
capacitors. This process is achieved without inductors, which
saves space and costs.

The ADP2503/ADP2504 are high efficiency inductor converters
that can operate at input voltages greater than, less than, or equal to
the regulated output voltage. The ADM660/ADM8660 are charge
pump voltage converters that can achieve efficiency greater
than 90% with low output currents (up to 50 mA). Figure 37 and
Figure 38 show the efficiency for a given input voltage and output
currents for the ADP2503/ADP2504 devices and
ADM660/ADM8660 devices, respectively.

As observed in these Figure 37 and Figure 38, charge pump
converters are less efficient than inductor converters due to the
output shape for output load currents. In contrast, charge pump
converters are an appropriate solution to low load current
applications.

EF
FI

CI
EN

CY
 (%

)

100

40

50

60

70

10

20

30

80

90

0
0.001 0.01 0.1 1

IOUT (A)

VIN = 5.5V
VIN = 4.2V
VIN = 3.6V
VIN = 2.3V

16
06

7-
04

9

Figure 37. ADP2503/ADP2504 Efficiency vs. Output Current (IOUT)

120

0

20

40

60

80

100

0 20 40 60 80 100

EF
FI

C
IE

N
C

Y
(%

)

LOAD CURRENT (mA)

V+ = +6.5V V+ = +5.5V

V+ = +4.5V

V+ = +3.5V
V+ = +2.5V

V+ = +1.5V

16
06

7-
05

0

Figure 38. ADM660/ADM8660 Efficiency vs. Load Current

The ADuCM4050 microcontrollers have a linear regulator at the
charge pump converter output to adjust and stabilize the supply
of the digital core and memories. Furthermore, the devices have
the ability to bypass the charge pump converter to only use the
linear regulator to reduce and adjust the voltage. This feature
allows the user to decide between using a traditional solution or to
improve efficiency and increase power savings using the charge
pump block at the expense of two extra 0.1 µF capacitors.

UG-1160 ADuCM4050 User Guide

Rev. A | Page 34 of 47

In general, inductor converters do not require a linear regulator
at their output, which is inconvenient in charge pump converter
designs. However, some microcontrollers available on the market
that use an inductor converter solution include a linear regulator in
the inductor converter. Despite this disadvantage, charge pump
converters offer a breadth of advantages to be considered, as
follows:

• Area
• Thickness
• Price
• Design simplicity
• Ease of use
• Electromagnetic interference (EMI)

The Capacitors vs. Inductor Converters section discusses each
advantage of charge pump converters when compared to
inductor converters.

CAPACITORS VS. INDUCTOR CONVERTERS
Area

Charge pump converters do not require inductors to accomplish
dc-to-dc voltage conversion, whereas inductor converters
require inductors, capacitors, and other components, such as
resistors, to fulfill this task. This fact allows the design of
smaller printed circuit boards (PCBs), saving area and cost.

This section compares the components required for using the
ADuCM4050 charge pump converter against inductor converters
used in other similar solutions available on the ultra low power
microcontroller market. The components required in these
architectures are included in their respective data sheets or user
guides. In case of microcontrollers with on-chip inductor based
converter(s), 0806 package inductor(s) are typically
recommended for maximum power efficiency.

The two bill of materials shown in Table 21 and Table 22
demonstrate that charge pump converter covers less area than
the inductive converters. The dimensions of a 0402 (1005
metric) package capacitor (length × width × thickness) are
1 mm × 0.5 mm × 0.55 mm. The dimensions for an 0806 (2016
metric) package inductor are 2 mm × 1.6 mm × 1 mm.

Table 21. Area of Charge Pump Converter Components in
the ADuCM4050
Component Value Package Quantity Area (mm2)
Capacitor 0.1 µF 0402 2 1
Capacitor 1 µF 0402 1 0.5
Total 1.5

Table 22. Area of Inductor Converters Components
Component Value Package Quantity Area (mm2)
Capacitor 1 µF 0402 2 1
Inductor 2.2 µH 0806 2 6.4
Total 7.4

The area in a charge pump converter is smaller, because this
type of converter employs fewer and smaller components than
inductive solutions. Inductor converters use nearly five times
the area of charge pump converters in terms of external
components used.

In inductor converters solutions, the thickness of the circuit
board is often determined by the inductors, because inductors
are thicker than capacitors—1 mm vs. 0.55 mm.

Price

Issues to consider when working with inductor converters include
the large number of components and the cost of these components.

Table 23 and Table 24 show the Bill of Materials (BOM) cost of
the ADuCM4050 solution and an inductor based solution,
respectively. Prices listed are indicative and at order quantities
of 1 component.

Table 23. Price of Charge Pump Converter Components for
the ADuCM4050
Component Value (µF) Quantity Price (USD)
Capacitor 0.1 2 0.26
Capacitor 1 1 0.21
Total 0.47

Table 24. Price of Inductor Converters Components
Component Value Quantity Price (USD)
Capacitor 1 µF 2 0.42
Inductor 2.2 µH 2 0.70
Total 1.12

When considering both lists of materials, the difference in the
total BOM is around 70 cents (USD). This amount, though
seemingly small, produces a notable impact when multiplying
the cost across many products; the difference in price is
incremented because, in inductor designs, more components
are present, and the engaged area is wider. Allowing smaller
PCB designs reduces cost.

Compromising on inductor quality is possible to reduce cost,
but doing so may lead to increased power dissipation and a
degradation in efficiency.

There are clear advantages in both area and BOM cost when
comparing charge pump converters and conventional inductor-
based solutions.

Efficiency

As with the opportunity to reduce area, there also exists an
opportunity to improve integration employing embedded
components. This is a suitable scenario for charge pump
converters to enhance efficiency, rather than inductors.

It is thought that charge pump converters are less efficient than
inductor converters, which can be true when input voltages and
loads change.

In charge pump converters, load changes are not a problem in
ultra low power applications where low loads are managed.

ADuCM4050 User Guide UG-1160

Rev. A | Page 35 of 47

Optimal efficiency is achieved with low load currents. Charge
pump converters perform proper efficiencies with low loads,
which is easily achieved by applying integration in an ultra low
power application. The lower the required load, the better
integration and efficiency are in charge pump converters.

By setting the appropriate configuration, charge pump converters
are able to change their gain according to the input/output voltage
ratio (VIN/VOUT). This process improves efficiency to achieve the
same performance available with inductor converters.

Inductor based solutions use pulse-width modulation (PWM)
to adjust the duty cycle to achieve suitable gain. Through this
regulation, high efficiency is obtained, which decreases when
the load lowers. Noise effects also appear during PWM, which
results in increased cost for more expensive inductors.

If integration is required in inductor converter designs, embedded
inductors require high frequency switching to work. High
frequency switching results in power dissipation and efficiency
losses, which is an undesirable outcome.

Electromagnetic Interference (EMI)

In charge pump converters, electromagnetic emissions are not
relevant. Such radiation is not a cause for concern, unlike inductor
magnetic radiation.

EMI is inconvenient when using inductors, even more so if they
are switched inductors with behavior similar to an emitting
antenna. Unpredictable interferences can occur in other parts of

the design or the evaluation board. Furthermore, it becomes a
sensitive problem if radio frequency tasks are being performed.

Inductor converters replace PWM with pulse frequency
modulation (PFM) when low loads are required to improve
efficiency. If PWM is performed, switching noise and output
voltage ripple are easily improved by a simple filter at the output
voltage of the converter. However, the PFM method has a variable
frequency band and may produce the resonance frequency of the
filter. This wide frequency spectrum also results in high EMI.

CONCLUSIONS
Inductor converters are not suitable solutions in many senses
when considering ultra low power applications. Inductor
converters lose efficiency as load decreases. Their area is larger,
which can lead to expensive components and greater costs.
Inductor radiation poses a problem because EMI is more likely
to occur at low loads, and so on.

Table 25 summarizes the advantages and disadvantages of three
types of dc-to-dc converters. Evaluate the specific type of converter
that best suits the application in question.

In conclusion, charge pump converters are the best solution in
ultra low power applications. While other solutions worsen with
low loads, charge pump converters are even better than in other
situations.

Table 25. Comparison of Different Types of DC-to-DC Converters
Type of Converter Advantages Disadvantages
LDO Simple Less efficient than charge pumps and inductives
 Low cost
 No inductor
 No EMI
Charge Pump Simple Less efficient than inductive at high loads
 Low cost EMI (less than inductive)
 No inductor
 Cheaper than inductive
 Low loads
 Small area
 More efficient than LDO
 Low EMI
Inductive Most efficient (not in low loads) EMI
 Area
 Cost
 Poor efficiency at low loads
 Complex design

UG-1160 ADuCM4050 User Guide

Rev. A | Page 36 of 47

UART SOFTWARE FLOW CONTROL
Flow control is the process of managing the rate of data
transmission between two nodes to prevent a fast transmitter from
overwhelming a slow receiver. Flow control provides a mechanism
for the receiver to control the transmission speed, so that the
receiving node is not overwhelmed with data from the
transmitting node.

UART flow control is a method for slow and fast devices to
communicate with each other over the UART without the risk of
losing data. Consider the case in which two units communicate
over the UART. A Tx sends a long stream of bytes to a Rx. Rx is a
slower device than Tx, and at some point, Rx cannot keep up with
the speed of the data being transmitted. Therefore, Rx must
either process some of the data or empty buffers before it can
continue to receive data. Rx must instruct Tx to stop
transmitting until Rx is ready to accept data. This method of
waiting to transmit is known as flow control.

Flow control requires extra signaling to inform the transmitter
to stop (pause) or start (resume) the transmission. The traditional
hardware flow control in UART requires two extra signals: request
to send (RTS) and clear to send (CTS). The logic level on these
signals defines whether the transmitter continues to send data
or must stop sending data. With software flow control, special
characters are sent over the normal data lines to start or stop the
transmission, thus using fewer signals.

This section describes the UART software flow control mechanism
using the ADuCM4050.

UART FLOW CONTROL
Hardware Flow Control

The hardware flow control mechanism uses out of band signaling
to control the flow of data. In addition to the data signals, two
extra signals—RTS and CTS—are required. These flow control
signals are cross coupled between the two devices, with RTS on

one device being connected to CTS on the remote device, and
vice versa as shown in Figure 40.

Each device uses the RTS to signal if it is ready to accept new data
and reads the CTS signal to check if it is allowed to send data to
the other device. As long as a device is ready to accept more data,
the RTS signal is kept asserted. The device deasserts the RTS
signal when its receive buffer is full.

The other device is required to respect the flow control signal
and pause the transmission until the RTS signal is asserted again.

The flow control is bidirectional, meaning that both devices can
request a halt in transmission. If one of the devices never requests a
stop in transmission (for example, if the device is fast enough to
always receive data), the CTS signal on the other device can be
tied to the asserted logic level. Thus, the RTS pin on the fast device
can become free to perform other functions.

Software Flow Control Using the XON and XOFF Signals

Software flow control does not require extra out of band signals.
Only three signals are required: Rx, Tx and ground as shown in
Figure 39. Software flow control is achieved by using special
control flow characters. The control flow characters are sent over
the normal Tx and Rx lines. These characters are typically ASCII
codes, specifically XON (0x11) and XOFF (0x13), for resuming
and halting the transfer, respectively.

If Device A sends XOFF to Device B, Device B halts transmission
to Device A until Device B receives an XON character from
Device A. If the data contains the XON and/or XOFF character,
insert an escape character before the XON and/or XOFF character.
The escape character used in this case is \ with ASCII Value 92
(0x5C). When this escape character is encountered, the character
following it is considered to be a data character, not a flow control
signal. If the data itself contains an escape character, ensure
another escape character precedes the present escape character
that is present in the data.

Tx

RxDEVICE A DEVICE B

GROUND

Tx

Rx

GROUND

16
06

7-
05

3

Figure 39. Software Flow Control Block Diagram

DEVICE A DEVICE B

GROUND GROUND

CTS

RTS

CTS

RTS

Tx

Rx

Tx

Rx

16
06

7-
05

4

Figure 40. Hardware Flow Control

ADuCM4050 User Guide UG-1160

Rev. A | Page 37 of 47

Sequence Diagram

Consider data communication between two devices—the
ADuCM4050 MCU and a peer—where the MCU is transmitting
and the peer is receiving. If the peer is slower than the MCU, the
data transmission overwhelms the peer. At this stage, the peer
sends an XOFF character to pause the transmission until the peer is
able to process the data again. The MCU waits to receive a XON
character from the peer. When the peer is ready to receive the
data, it sends an XON character, instructing the MCU to resume
transmission. In this way, using software flow control ensures
that no data is lost. Figure 41 shows the sequence diagram of
this described communication.

WAIT FOR
XON

TRANSMITTING
DATA

TRANSMITTING
DATA

ADuCM4050

DATA

DATA

DATA

COLLECT DATA

XOFF

OVERWHELMED
BY DATA

DATA

PEER

COLLECT DATA

COLLECT DATA

COLLECT DATA

SEND XOFF

XON

PAUSE
TRANSMISSION

RESUME
TRANSMISSION

READY TO
ACCEPT DATA

SEND XON

16
06

7-
05

5

Figure 41. Software Flow Control Sequence Diagram

SYSTEM DESCRIPTION
Demonstration of UART software flow control using the
ADuCM4050 is performed using the EV-COG-AD4050
evaluation kit. A PC with a terminal program running (such as
HyperTerminal) is connected to the EV-COG-AD4050 UART
port.

ADZS-U4050WL-EZKIT PC RUNNING
TERMINAL PROGRAM

UART

16
06

7-
05

6

Figure 42. Connection Diagram

Handling Flow Control Signals from a Peer Device

The ADuCM4050 BSP contains drivers for all the peripherals,
including UART. The software flow control mechanism is
implemented in addition to the available UART driver functions.

The adi_uart_Write_fc function sends the XOFF and XON
characters, and the UART interrupt service routine processes
the XON and XOFF signals received from the PC.

adi_uart_Write_fc Function

When a write is issued using the adi_uart_Write_fc function, the
global RECV_XON flag is checked to be aware whether the peer is
ready to accept data. If the RECV_XON flag is false, it means that
an XOFF signal is received, the peer cannot accept data, and,
therefore, a failure is returned. If the RECV_XON flag is true, the
peer is ready to accept data. The data is transmitted and a
success is returned.

Example Code for Flow Control

The following code is transmits data using flow control:
ADI_UART_RESULT adi_uart_Write_fc(

ADI_UART_HANDLE const hDevice, void *const
pBuffer, uint32_t nBufSize)

{

 /* Return code */

 ADI_UART_RESULT eResult;

 /* If there is no XOFF received, safe to
transmit data */

 if(RECV_XON == true)

 eResult = adi_uart_Write (hDevice,
pBuffer, nBufSize);

 /* If XOFF is received, return fail */

 else

 eResult = ADI_UART_FAILED;

 return eResult;

}

UG-1160 ADuCM4050 User Guide

Rev. A | Page 38 of 47

Figure 43 shows the design of adi_uart_Write_fc function. When a
write is issued, the RECV_XON flag is checked and, if the flag is
true, the write is processed. If the flag is not true, it returns a
failure. The RECV_XON == TRUE block in Figure 43 indicates
the checking of the RECV_XON flag.

RETURN
SUCCESS

WRITE
REQUEST

RECV_XON == TRUE

TRANSMIT
DATA

RETURN
FAILURE

NO

YES

16
06

7-
05

7

Figure 43. Flowchart of the adi_uart_Write_fc Function

Processing Control Signals from the Peer Through an
Interrupt Service Routine (ISR)

The data received through the UART is monitored to check if it
is a control signal or data. If the data received is an escape character,
an escape flag (bEscFlag) is asserted so that the data following it
is to be considered data and not as a control signal. If an XOFF
or XON signal is received, it is checked to confirm if the escape
flag is set. If the escape flag is not set, a global flag (RECV_XON) is
updated.

When receiving an XOFF signal without the escape flag set, the
RECV_XON flag is deasserted, meaning that it received an XOFF
signal and data transmission must not happen. In the same way,
the RECV_XON flag is asserted when receiving an XON signal
without the escape flag set.

Data Processing Code Example

The following code processes the data that is received:
switch (readVal)

{

 /* If an escape is received */

 case FCESCAPE:

 /* If escape already received,

 consider it as data */

 if(bEscFlag == true)

 bEscFlag = false;

 else

 bEscFlag = true;

 break;

 /* If an XON is received */

 case XON:

 /* If escape received before,

 consider it as data */

 if(bEscFlag == true)

 bEscFlag = false;

 /* Valid control signal,

 update send flag */

 else

 RECV_XON = true;

 break;

 /* If an XOFF is received */

 case XOFF:

 /* If escape received before,

 consider it as data */

 if(bEscFlag == true)

 bEscFlag = false;

 /* Valid control signal,

 update send flag */

 else

 RECV_XON = false;

 break;

 default:

 break;

}

ADuCM4050 User Guide UG-1160

Rev. A | Page 39 of 47

Figure 44 shows the design of the algorithm that handles and
processes the flow control signals from the peer. The data received
is first checked for an escape character. If an escape character is
found, the data following it is considered to be data and not a

control signal. The received data is then checked for XON and
XOFF control signals and the global RECV_XON flag is updated
accordingly. The gray blocks in Figure 44 indicate the updating
of the RECV_XON flag.

READ
REQUEST

Readval =
read_data_from_uart_rx()

readVal ==
ESC_CHAR bEscFlag = TRUE

YES

RETURN

RETURN
readVal

RETURN
Readval

RETURN
readVal

readVal ==

XOFF

YES

YES

YES

YES

NO

NO

NO

NO

NO

readVal ==
XON

bEscFlag
== TRUE

bEscFlag
== TRUE

RETURN

RECV_XON
= TRUE

RECV_XON
=FALSE

16
06

7-
05

8

Figure 44. Flowchart of the Control Signals in the ISR Being Processed

UG-1160 ADuCM4050 User Guide

Rev. A | Page 40 of 47

DATA CAPTURE
In the setup for data capture, the MCU is connected to a PC and
communicates with a terminal program running on the PC. A
UART sniffer, such as the serial port monitor, monitors the data
communication occurring at a Baud rate of 9600. The data capture
is performed using the sniffer, as discussed in this section.

Handling Flow Control Characters in the ADuCM4050

Figure 45 shows an example of handling the flow control signals
from the peer.

XOFF RECEIVED

NO TRANSMISSION
BY MCU UNTIL
ANXON IS RECEIVED

TRANSMISSION
CONTINUES AFTER
XON IS RECEIVED

ESCAPE
RECEIVED

XOFF RECEIVED
BUT TRANSMISSION
IS NOT STOPPED

ESCAPE
RECEIVED

XON RECEIVED
BUT TRANSMISSION
IS UNALTERED

XON RECEIVED

DATA SENT
CONTINUOUSLY
BY MCU

16
06

7-
05

9

Figure 45. Data Capture Using a Sniffer Program

Controlling the Received Data Flow

A simple procedure is implemented when controlling the
received data flow to send the control signals from the
ADuCM4050 MCU. In this case, the MCU is slower compared to
the peer. The mechanism to send the control signals from the
MCU is application specific, and the user can write an
algorithm for sending the control signals.

As shown in Figure 46, an XOFF signal is sent after every five
transmissions sent from the MCU. An XON signal is sent after a
short interval of time. This implementation is an example, and it is
described only for demonstration purposes. The user can develop a
mechanism to handle the data and to send XON and XOFF signals.

DATA SENT
CONTINUOUSLY
BY MCU

XOFF SENT
AFTER EVERY
5 TRANSMITS

XON SENT AFTER A
SMALL WAIT PERIOD

NO DATA CAN BE
RECEIVED

DATA
TRANSMISSION
CONTINUES

16
06

7-
06

0

Figure 46. ADuCM4050 Transmitting Control Signals

ADuCM4050 User Guide UG-1160

Rev. A | Page 41 of 47

SPI FLOW CONTROL METHODS
The SPI is an industry standard, synchronous serial link that
allows full duplex operation to other SPI-compatible devices.

The ADuCM4050 SPI has enhanced modes of operation that
provide the user the flexibility of half duplex operation and flow
control options. The SPI data transfers use DMA transactions,
allowing the ADuCM4050 core to be in sleep mode. Along with
multibyte transfers in half duplex mode, this reduction in power
consumption offers power savings that are essential for battery-
powered designs, such as in wireless sensor networks.

Some notable features of the ADuCM4050 SPI are as follows:

 Continuous transfer mode.
 Read command mode for half duplex operation.
 Flow control.
 CS software override.
 Support for 3-pin SPI master or slave mode.
 LSB first transfer option.
 Interrupt mode. An interrupt is available after 1, 2, 3, 4, 5,

6, 7, or 8 bytes.

This section provides an understanding of the read command
mode and flow control methods. These methods help lower the
system power consumption when used with SPI slaves such as
sensors, serial flash devices, ADCs, and RF transceivers.

SPI READ COMMAND MODE
Standard SPI masters communicate with slaves using the serial
clock (SCK), master out, slave in (MOSI), master in, slave out
(MISO), and chip select (CS) lines as shown in Figure 47. The
SCK, MOSI, and MISO signals can be shared by slaves, whereas
each slave has a unique CS line. During an SPI transfer, data is
simultaneously transmitted and received. The serial clock line
synchronizes shifting and sampling of the information on the
two serial data lines.

SPI transfers are typically full duplex. The transfers are controlled
by the master. To receive data from the slave, the master must
provide the clock, which is typically initiated when the data
must be sent on the MOSI line.

Most SPI slaves mandate a protocol that must be used by the
mater for successful communication. The protocol can be as
simple as a command, followed by an address (optional) and
data (optional).

For example, a write command is unidirectional and typically
involves the master transmitting the command, address (optional),
and the data to be written to the address in the slave.

A read command requires the master to transmit the command
and address (optional) and then reads the data associated with
the address from the slave. If the data is multibyte, then the
software on the master must write dummy data on the MOSI,
which keeps the clock alive, to successfully read all the data
bytes.

However, some SPI slaves require that, after the transmission of
the read command byte on the MOSI, the data be read on MISO in
a single CS transaction. An example of this requirement is shown
in Figure 49.

The ADuCM4050 provides the read command mode to support
such half duplex operations. The read command mode helps
reduce the burden on the software and thereby the core execution
cycles. In this mode, the user must specify the number of bytes to
be transmitted and the number of bytes to be received in a
transaction. It is also possible to specify if the data on the MISO
must be ignored when the transmission on MOSI is in progress.

Using the read command mode allows the user to transmit a
single byte and receive a set of data bytes from the slave, which
is useful when the slave is a sensor or ADC providing a set of
measured and processed data.

An application scenario is described in the System Description
section, wherein the ADuCM4050 is the SPI master and a serial
flash, W25Q32, is the SPI slave, as shown in Figure 48. Read
command mode is helpful when pages of data must be read
from the flash memory.

CS

SCK

MOSI

MISO/RDY

SPI
MASTER

CS

SCK

MOSI

MISO/RDY

SPI
SLAVE

16
06

7-
06

1

Figure 47. SPI Signals

ADuCM4050 SERIAL FLASH
W25Q32SPI

16
06

7-
06

2

Figure 48. Application Block Diagram

UG-1160 ADuCM4050 User Guide

Rev. A | Page 42 of 47

0

CS

SCK

MOSI

MISO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 1 0

INSTRUCTION 8-BIT ADDRESS

DATA OUT

1 1 7 6 5 4 3 2 1 0

16 17 18 19 20 21 22 23

16
06

7-
06

3

Figure 49. Read Command Mode

System Description

To showcase the read command mode, the following setup is used:

 Firmware—power-on self test application from the
ADuCM4050 BSP for IAR.

 Hardware—EV-COG-AD4050 board.

An oscilloscope is connected to the SPI lines to capture the signals.
The oscilloscope plots, Figure 50 to Figure 54, show the SPI
transfer between the ADuCM4050 as the SPI master, and a serial
flash W25Q32 as the SPI slave.

It is up to the user application to decide the transactions in which to
use the read command mode.

Without Read Command Mode

In the reference application, the erase process of a 4 kB sector of
the flash memory does not use read command mode. The absence
of this mode can be observed from the transfer of the erase
command and the address in individual chip select frames in
Figure 50 and Figure 51.

CH1 2.00V CH2 2.00V M2.00ms CH4 0V

1

2

3

4

T 16µs
Ω

CH3 2.00V CH4 2.00V Ω

CS

MOSI

MISO

SCK

16
06

7-
06

4

Figure 50. Sector Erase

Figure 51 shows a single CS frame capture in the entire erase
sequence. The CS line is toggled for the transfer of every
command byte.

CH1 2.00V CH2 2.00V M40.0µs CH4 0V

1

2

3

4

T 16µsCH3 2.00V CH4 2.00V

MOSI

MISO

SCK

CS

16
06

7-
06

5

Figure 51. Sector Erase—Single CS Frame Capture

With Read Command Mode

Figure 52 shows one page read from the external flash. The size of
one page of the flash is 256 bytes. This read sequence uses the read
command mode and the entire read of the page happens in one
CS transaction.

CH1 2.00V CH2 2.00V M4.00ms CH4 0V

1

2

3

4

T 16µsCH3 2.00V CH4 2.00V

MOSI

MISO

SCK

CS
16

06
7-

06
6

Figure 52. Page Read Sequence

Figure 53 shows the start of the page read sequence where the
ADuCM4050 transfers the command and address bytes. This
transfer is followed by the page data from the serial flash
memory.

ADuCM4050 User Guide UG-1160

Rev. A | Page 43 of 47

CH1 2.00V CH2 2.00V M100µs CH4 0V

1

2

3

4

T 16µs
Ω

CH3 2.00V CH4 2.00V Ω

MISO

SCK

MOSI

CS

16
06

7-
06

7

Figure 53. Page Read Start Sequence (Command and Address Bytes)

Figure 54 shows a single byte read, which is part of the page
read sequence.

CH1 2.00V CH2 2.00V M10.0µs CH4 0V

1

2

3

4

T 16µsCH3 2.00V CH4 2.00V

MOSI

SCK

MISO

CS

16
06

7-
06

8

Figure 54. Page Read—Single Data Byte

FLOW CONTROL MODES
Flow control is necessary to synchronize the data flow between
a master and slave. The ADuCM4050 provides flow control as a
differentiating feature in the SPI. Along with read command mode,
flow control can receive multiple data bytes.

With flow control, the data transfer between the SPI master and
slave is controlled based on the application requirements in terms
of periodic data or demand-based data read.

The SPI master in the ADuCM4050 supports the following modes
of flow control.

 Pin-based flow control, controlled by the SPI slave.
 Timer-based flow control, controlled by the SPI master.

The flow control modes are described in more detail in the Pin-
Based Flow Control section and the Timer-Based Flow Control
section. The mode field in the SPI flow control register
(SPI_FLOW_CTL) configures the flow control mode to any one
of the three modes.

Flow control mechanisms can be used only when the ADuCM4050
is configured as an SPI master.

Pin-Based Flow Control

Using a Separate RDY Pin

Some SPI slaves have a dedicated RDY pin that is connected to
the RDY pin of the SPI master, which in this case is the
ADuCM4050. The RDY pin is a dedicated pin (as an alternate
functionality to a GPIO) for every SPI instance.

For example, the CAT64LC40 serial flash uses a dedicated
RDY pin to signal the availability of data to the SPI master.

The RDY pin of the ADuCM4050 can be wired to an interrupt
pin of the SPI slave in case the slave does not support a dedicated
RDY pin. The slave uses the RDY pin to indicate that the
acquisition and data processing is complete. The master does not
provide SPI clock until it sees an active level on this pin.

The user can configure the number of bytes to be read when the
RDY pin is asserted. Perform this configuration by setting the
RDBURSTSZ field in the SPI flow control register (SPI_FLOW_
CTL). After receiving this burst of bytes on MISO, the SPI master
continues to wait for the next RDY pin assertion to receive the
next set of bytes. This process is repeated until all bytes as set in
the SPI count register (SPI_CNT) are received.

Using read command mode, a maximum of 16 bytes can be
transmitted. This transmission is configured using the TXBYTES
field of the SPI read control register (SPI_RD_CTL). The number
of bytes received in one burst when using flow control is set in
the RDBURSTSZ field of the SPI flow control register (SPI_
FLOW_CTL). However, the total number of bytes to be
received does not have an imposed maximum limit.

Using the MISO Pin

Some SPI slaves do not have a dedicated RDY pin but have a
provision to reuse the MISO pin to inform the SPI master that
the data is ready to be sent on MISO.

The ADuCM4050 SPI master waits for an active level transition
on the MISO line and, when this is detected, reads
RDBURSTSZ + 1 number of bytes and then goes back to a wait
state until another active level is detected on MISO.

The polarity of the MISO/RDY pin can be configured using the
POL field of the SPI flow control register (SPI_FLOW_CTL).

Timer-Based Flow Control

For slaves that do not have a dedicated pin to inform the availability
of data to the master, the microcontroller uses a 16-bit timer to
introduce wait states while reading data. When the timer triggers,
the master reads a burst of bytes (RDBURSTSZ + 1) and then
restarts the timer. The timer is clocked at the SPI clock rate (SCK),
and the number of SCK cycles to wait before the timer is triggered
can be set using the SPI_WAIT_TMR register. An example of
this operation is shown in Figure 55.

When this scheme stalls and drives SCK for flow control, take care
to ensure the last SCK edge is a sampling edge. After the stall
period is over, an SCK driving edge then causes the next data
transfer.

UG-1160 ADuCM4050 User Guide

Rev. A | Page 44 of 47

System Description

This section uses the hardware flow control mode to demonstrate
how the flow control feature can contribute to power savings in
a system.

The system that demonstrates this process consists of the
ADuCM4050 MCU and a sensor (such as an accelerometer)
connected over the SPI.

To design a power efficient system, it is essential to put the core
in sleep mode whenever there is no processing required. In such
a system, after a sensor reading is available, the core is woken up to
receive and process the data from the sensor.

The flow control and read command modes in the ADuCM4050
enhances the efficiency of this process by offloading the MCU
further. The system is put into Flexi mode, which keeps the core
asleep and the SPI peripheral and the DMA active.

The sensor measures the data and uses the RDY pin to strobe
the SPI peripheral of the data availability. There is a dedicated
SPI_RDY pin (alternate functionality of a GPIO) for every SPI
instance in the ADuCM4050 MCU.

Without waking up the MCU, the SPI then reads the data set
using the read command mode. The sensor must be capable of
multibyte data transfer to use this scheme effectively. In case of
an accelerometer sensor, the x-, y-, and z-axis readings are sent
as six bytes over the SPI.

DMA transfers the data into an allocated memory space
without CPU intervention.

The application can collect the data instantaneously after every
measurement, or can collect buffered data from the slave after a
configured number of bytes are collected by the sensor.

After the user defined set of bytes are collected, the SPI peripheral
or the DMA can wake up the MCU to process the sensor data.

Figure 56 shows the application flow diagram for an SPI data read
from an accelerometer every time an activity is detected. In
sensors such as the ADXL345, the data ready interrupt reads the
x-, y-, and z-axis readings in one SPI transaction. In other sensors,
a FIFO configuration can be performed to store a number of
samples in the sensor until the master reads the FIFO.

CONCLUSIONS
The different features of the ADuCM4050 SPI, such as read
command mode and flow control, make the devices ideal for use in
battery-powered systems where the SPI peripheral offloads the
MCU and can be independently used for data collection.

This device suitability a significant advantage in wireless sensor
networks where the battery life of the sensor is critical in system
design. This also serves as a building block for designing smart
sensors with on-board data acquisition, as well as sensor data
analytics.

0x9F

SCK

SPI_WAIT_TMR
SCK CYCLES

MOSI

MISO

0x00 0x000x00 0x05

0xFF 0xEF 0x160x40 0xFF

SPI_WAIT_TMR
SCK CYCLES

16
06

7-
06

9

Figure 55. Software Flow Control with Timer

ADuCM4050 User Guide UG-1160

Rev. A | Page 45 of 47

POWER UP
DEVICE INITIALIZATION

POWER UP
DEVICE INITIALIZATION

SETUP SENSOR
(CONFIGURE FIFO MODE,

SAMPLES, MEASUREMENT
MODE AND RANGE)

CONFIGURE INT2 TO
GENERATE DATA READY/
WATERMARK INTERRUPT

CONFIGURE SPI WITH FLOW
CONTROL AND IN READ

COMMAND MODE

ENTER FLEXI MODE SENSOR SETUP

MEASURE DATA

SPI READ AND DMA
TRANSFER

ENTER ACTIVE MODE

ADuCM4050 SENSOR

SIGNAL ON SPI_RDY

SPI

ACTIVITY DETECTED

MEASURE DATA

SPI READ AND DMA
TRANSFER

SIGNAL ON SPI_RDY

ACTIVITY DETECTED

DMA DONE IRQ
WAKE UP MCU

16
06

7-
07

0

Figure 56. Application Flowchart

UG-1160 ADuCM4050 User Guide

Rev. A | Page 46 of 47

SLEEP ON EXIT
The ARM® Cortex™-M processors are ideal for low power
applications due to their balance between energy and efficiency.
These processors have a feature known as sleep on exit that allows
saving clock cycles and energy.

The MCU subsystem of the ADuCM4050 processor is based on
the ARM® Cortex™-M4F processor. The sleep on exit feature
saves power when the microcontroller is sleeping and in interrupt
handlers.

When sleep on exit is enabled, the processor enters directly to sleep
when the ISR is finished. Interrupts are nested in case there is more
than one interrupt. After the execution of these interrupts, the
processor returns automatically to sleep mode.

BENEFITS
The sleep on exit feature presents some benefits in interrupt
driven applications, in which the system is sleeping and it only
wakes up to run interrupts.

When sleep on exit is disabled, the workflow when an interrupt
arrives involves more time spent executing instructions.

The steps to perform the interrupt with sleep on exit feature
disabled are as follows:

1. Wake up the processor.
2. Push all the necessary information and the current state on

the stack.
3. Pun the interrupt code.
4. Pop the information on the stack to restore the registers.
5. Return to sleep mode.

There are many instructions to run an interrupt. Therefore, on
interrupt driven applications, the time spent on context switching
is not optimal because the core pushes instructions in the stack
and, subsequently, the core pops them again.

The process is simplified by enabling the sleep on exit feature.
The processor immediately goes to sleep after finishing the
interrupt. The device does not return to the normal thread and
keeps the interrupt configuration, which avoids including push
and pop tasks into the stack, saving the energy and clock cycles
necessary to execute unnecessary instructions.

Figure 57 shows the flowchart when using the sleep on exit feature.
The procedure for using this feature is as follows:

1. The program starts.
2. Sleep mode is invoked by a wait for interrupt (WFI) or a

wait for events (WFE) instruction.
3. The system enters sleep mode.
4. The device is woken up by an interrupt or an event.
5. The system returns automatically to sleep mode when the

interrupt is finished if the SLEEPONEXIT bit is set.

START

WFI/WFE

SLEEP

YES

NO

WAKE UP TO
EXECUTE THE INTERRUPT

SLEEPONEXIT = 1?

NEXT INSTRUCTION 16
06

7-
07

1

Figure 57. Sleep on Exit Flowchart

ENABLING THE SLEEP ON EXIT FEATURE
The ARM® Cortex™-M nested vector interrupt controller (NVIC)
has a system control register with a bit field called SLEEPONEXIT.
To enable the sleep on exit feature, it is only necessary to set the
SLEEPONEXIT bit.

The address of the system control register is 0xE000ED10. The
System Control Register in the ADuCM4050 section shows this
register and its bit fields in the ADuCM4050 microcontroller.

ADuCM4050 User Guide UG-1160

Rev. A | Page 47 of 47

SYSTEM CONTROL REGISTER IN THE ADUCM4050
Address: 0xE000ED10, Reset: 0x0000, Name: NVIC0_INTCON0

Table 26. Bit Descriptions for NVIC0_INTCON0
Bits Bit Name Description Reset Access
[15:3] RESERVED Reserved. 0x0 R
2 SLEEPDEEP Deep sleep flag for hibernate mode. 0x0 R/W
 0: sleep deep is not enabled.
 1: sleep deep is enabled.
1 SLEEPONEXIT Sleeps the core on exit from an ISR. 0x0 R/W
 0: sleep on exit is not enabled.
 1: sleep on exit is enabled.
0 RESERVED Reserved. 0x0 R

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions
By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set
forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have
read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”),
with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary,
non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole
and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations:
Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party”
includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the
Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or
transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the
Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any
modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation
Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees
to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF
ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS
LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT
LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS
($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations
relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any
legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such
courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2018 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 UG16067-0-6/18(A)

	Features
	General Description
	Revision History
	Getting Started
	Software Installation
	Installing the Segger J-Link Driver
	IAR Tools Installation
	ADuCM4050 Device Family Pack (DFP)

	IAR Embedded Workbench Configuration

	Power Optimization for the ADuCM4050 Processor
	ADuCM4050 Processor Power Management
	ADuCM4050 Processor Power Modes
	Active Mode
	Buck Converter

	Enabling Cache Memory
	Dynamic Clock Scaling
	Clock Gating

	Flexi Mode
	Hibernate Mode
	Configurable Retainable SRAM
	Wake-Up Sources
	RTC Clock Sources
	SensorStrobe

	Shutdown Mode
	Shutdown Mode—Fast Wake Up

	Fast Wake Up from Hibernate Mode
	Flash Memory and Instruction SRAM
	Normal Wake Up
	Fast Wake Up
	Initialization of the iSRAM
	Modification of the Linker Script
	Interrupt Vector Table Relocation
	Placement of Program Code to SRAM

	Using the ADuCM4050 Processor Boot Kernel
	Device Information Space Overview
	Boot Kernel Overview
	Configuring Security Options
	Read Protection Key Hash
	Key Hash CRC
	In Circuit Write Protect Key
	Write Protection
	User Code Length
	User Code CRC

	Boot Code Flow

	UART Downloader
	Protocol
	Packet Structure
	Packet Start ID Field, ID0 and ID1
	Number of Data Bytes Field
	Command Function Field (CMD), Data Byte 1
	Write Command
	Run Command
	Information Command
	Value Field (Data Byte 2 to Data Byte 5)
	Data Field (Data Byte 6 to Data Byte 255)
	Checksum Field (CS)
	Acknowledge of Command

	Read Protection Key and Hashing
	Memory Configuration
	Handling CRC in the IAR Workbench
	Checksum Tab

	CrossCore Serial Flash Programmer

	Cache Memory in the ADuCM4050
	Storage and Access Ecosystem Block Diagram
	Flash Controller
	Effects of Cache
	Effects of Cache on the Speed of Execution
	Cache Key Register
	Cache Setup Register

	Effects of Cache on Current

	Current Consumption Comparison

	Dual RTC Feature in the ADuCM4050
	Comparison of the RTC Features
	Power Considerations
	Conclusion

	Benefits of ADuCM4050 the DC-to-DC Converter
	DC-to-DC Basics
	DC-to-DC Conversion Methods
	Linear Regulators
	Switching Converters

	Capacitors vs. Inductor Converters
	Area
	Price
	Efficiency
	Electromagnetic Interference (EMI)

	Conclusions

	UART Software Flow Control
	UART Flow Control
	Hardware Flow Control
	Software Flow Control Using the XON and XOFF Signals
	Sequence Diagram

	System Description
	Handling Flow Control Signals from a Peer Device
	adi_uart_Write_fc Function
	Example Code for Flow Control
	Processing Control Signals from the Peer Through an Interrupt Service Routine (ISR)
	Data Processing Code Example

	Data Capture
	Handling Flow Control Characters in the ADuCM4050
	Controlling the Received Data Flow

	SPI Flow Control Methods
	SPI Read Command Mode
	System Description
	Without Read Command Mode
	With Read Command Mode

	Flow Control Modes
	Pin-Based Flow Control
	Using a Separate RDY Pin
	Using the MISO Pin

	Timer-Based Flow Control
	System Description

	Conclusions

	Sleep on Exit
	Benefits
	Enabling the Sleep on Exit Feature
	System Control Register in the ADuCM4050

