
PSoC 4100/4200 TRM

PSoC 4100/4200 Family

PSoC® 4 Architecture TRM
(Technical Reference Manual)

Document No. 001-85634 Rev. *F

May 30, 2017

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

www.cypress.com

http://www.cypress.com

2 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or refer-
enced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as spe-
cifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organi-
zation, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resell-
ers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that
are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software
is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without fur-
ther notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weap-
ons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where
the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical
component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure
of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and
hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress
products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,
including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB,
F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respec-
tive owners.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 1

Content Overview

Section A: Overview 9

1. Introduction ... 11

2. Getting Started .. 17

3. Document Construction ... 19

Section B: CPU System 23
4. Cortex-M0 CPU ... 25

5. Interrupts .. 31

Section C: Memory System 41
6. Memory Map ... 43

Section D: System Resources Subsystem (SRSS) 45

7. I/O System .. 47

8. Clocking System.. 57

9. Power Supply and Monitoring .. 65

10. Chip Operational Modes .. 71

11. Power Modes .. 73

12. Watchdog Timer .. 79

13. Reset System .. 83

14. Device Security ... 87

Section E: Digital System 89

15. Serial Communications Block (SCB) .. 91

16. Universal Digital Blocks (UDB) ... 125

17. Timer, Counter, and PWM .. 167

Section F: Analog System 191
18. Precision Reference .. 193

19. SAR ADC .. 197

20. Low-Power Comparator ... 229

21. Continuous Time Block mini (CTBm) .. 235

22. LCD Direct Drive ... 243

23. CapSense ... 255

24. Temperature Sensor .. 265

Section G: Program and Debug 269

2 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Content Overview

25. Program and Debug Interface.. 271

26. Nonvolatile Memory Programming ... 279

Glossary 293

Index 309

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 1

Contents

Section A: Overview 9

1. Introduction ... 11
1.1 Top Level Architecture..11
1.2 Features..13
1.3 CPU System ...14

1.3.1 Processor ..14
1.3.2 Interrupt Controller ..14

1.4 Memory...14
1.4.1 Flash ...14
1.4.2 SRAM..14

1.5 System-Wide Resources ..14
1.5.1 Clocking System ...14
1.5.2 Power System...14
1.5.3 GPIO ...14

1.6 Programmable Digital ...14
1.7 Fixed-Function Digital ...15

1.7.1 Timer/Counter/PWM Block..15
1.7.2 Serial Communication Blocks ...15

1.8 Analog System..15
1.8.1 SAR ADC ..15
1.8.2 Continuous Time Block mini..15
1.8.3 Low-Power Comparators ..15

1.9 Special Function Peripherals ..15
1.9.1 LCD Segment Drive ..15
1.9.2 CapSense ...15

1.10 Program and Debug ...15
1.11 Device Feature Summary ...16

2. Getting Started .. 17
2.1 Support ...17
2.2 Product Upgrades...17
2.3 Development Kits..17
2.4 Application Notes..17

3. Document Construction ... 19
3.1 Major Sections ..19
3.2 Documentation Conventions...19

3.2.1 Register Conventions..19
3.2.2 Numeric Naming ...19
3.2.3 Units of Measure ...20
3.2.4 Acronyms ..20

2 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Section B: CPU System 23

4. Cortex-M0 CPU... 25
4.1 Features ...25
4.2 Block Diagram ..26
4.3 How It Works ..26
4.4 Address Map ..26
4.5 Registers ..27
4.6 Operating Modes..28
4.7 Instruction Set...28

4.7.1 Address Alignment..29
4.7.2 Memory Endianness ...29

4.8 Systick Timer ..29
4.9 Debug...29

5. Interrupts .. 31
5.1 Features ...31
5.2 How It Works ..31
5.3 Interrupts and Exceptions - Operation..32

5.3.1 Interrupt/Exception Handling ..32
5.3.2 Level and Pulse Interrupts ..32
5.3.3 Exception Vector Table ...33

5.4 Exception Sources..33
5.4.1 Reset Exception..33
5.4.2 Non-Maskable Interrupt (NMI) Exception ...34
5.4.3 HardFault Exception ...34
5.4.4 Supervisor Call (SVCall) Exception ..34
5.4.5 PendSV Exception..34
5.4.6 SysTick Exception...35

5.5 Interrupt Sources ..35
5.6 Exception Priority..36
5.7 Enabling and Disabling Interrupts...37
5.8 Exception States...37

5.8.1 Pending Exceptions ..37
5.9 Stack Usage for Exceptions ...38
5.10 Interrupts and Low-Power Modes...38
5.11 Exceptions – Initialization and Configuration..39
5.12 Registers ..39
5.13 Associated Documents...39

Section C: Memory System 41

6. Memory Map ... 43
6.1 Features ...43
6.2 How It Works ..43

Section D: System Resources Subsystem (SRSS) 45
7. I/O System .. 47

7.1 Features ...47
7.2 GPIO Interface Overview..47
7.3 I/O Cell Architecture ...48

7.3.1 Digital Input Buffer ..49
7.3.2 Digital Output Driver..49

7.4 High-Speed I/O Matrix ...52
7.5 I/O State on Power Up..52

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 3

7.6 Behavior in Low-Power Modes ...53
7.7 Input and Output Synchronization ..53
7.8 Interrupt ..53
7.9 Peripheral Connections ..55

7.9.1 Firmware Controlled GPIO..55
7.9.2 Analog I/O ...55
7.9.3 LCD Drive..55
7.9.4 CapSense ...55
7.9.5 Serial Communication Block (SCB) ..56

7.10 Port Restrictions ...56
7.11 Registers...56

8. Clocking System.. 57
8.1 Block Diagram ..57
8.2 Clock Sources...58

8.2.1 Internal Main Oscillator ...58
8.2.2 Internal Low-speed Oscillator..60
8.2.3 External Clock (EXTCLK)..60

8.3 Clock Distribution..61
8.3.1 HFCLK Input Selection..61
8.3.2 SYSCLK Prescaler Configuration ...61
8.3.3 Peripheral Clock Divider Configuration ...62
8.3.4 Peripheral Clock Configuration ...62

8.4 Low-Power Mode Operation ...64
8.5 Register List..64

9. Power Supply and Monitoring .. 65
9.1 Block Diagram ..66
9.2 Power Supply Scenarios...67

9.2.1 Single 1.8 V to 5.5 V Unregulated Supply...67
9.2.2 Direct 1.71 V to 1.89 V Regulated Supply...68

9.3 How It Works ..69
9.3.1 Regulator Summary ..69

9.4 Voltage Monitoring..70
9.4.1 Power-On-Reset (POR) ..70

9.5 Register List ...70

10. Chip Operational Modes .. 71
10.1 Boot ..71
10.2 User ..71
10.3 Privileged ..71
10.4 Debug ...71

11. Power Modes .. 73
11.1 Active Mode ..74
11.2 Sleep Mode...74
11.3 Deep-Sleep Mode...74
11.4 Hibernate Mode ..75
11.5 Stop Mode ..75
11.6 Power Mode Summary ...76
11.7 Low-Power Mode Entry and Exit ..77
11.8 Register List..78

12. Watchdog Timer .. 79
12.1 Features..79
12.2 Block Diagram ..79
12.3 How It Works ..80

4 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

12.3.1 Enabling and Disabling WDT..81
12.3.2 WDT Operating Modes ..81
12.3.3 WDT Interrupts and Low-Power Modes..82
12.3.4 WDT Reset Mode ...82

12.4 Register List ...82

13. Reset System ... 83
13.1 Reset Sources..83

13.1.1 Power-on Reset ..83
13.1.2 Brownout Reset ..83
13.1.3 Watchdog Reset ...83
13.1.4 Software Initiated Reset..84
13.1.5 External Reset ..84
13.1.6 Protection Fault Reset ..84
13.1.7 Hibernate Wakeup Reset..84
13.1.8 Stop Wakeup Reset ..84

13.2 Identifying Reset Sources...84
13.3 Register List..85

14. Device Security ... 87
14.1 Features ...87
14.2 How It Works ..87

14.2.1 Device Security ...87
14.2.2 Flash Security ...88

Section E: Digital System 89

15. Serial Communications Block (SCB) .. 91
15.1 Features ...91
15.2 Serial Peripheral Interface (SPI)...91

15.2.1 Features..91
15.2.2 General Description ..92
15.2.3 SPI Modes of Operation ...93
15.2.4 SPI Registers..97
15.2.5 SPI Interrupts ..98
15.2.6 Enabling and Initializing SPI ...98
15.2.7 Internally and Externally Clocked SPI Operations ..100

15.3 UART..102
15.3.1 Features..102
15.3.2 General Description ..102
15.3.3 UART Modes of Operation..102
15.3.4 UART Registers ..109
15.3.5 UART Interrupts .. 110
15.3.6 Enabling and Initializing UART ... 110

15.4 Inter Integrated Circuit (I2C) ...112
15.4.1 Features.. 112
15.4.2 General Description .. 112
15.4.3 Terms and Definitions ... 113
15.4.4 I2C Modes of Operation.. 113
15.4.5 I2C Registers .. 115
15.4.6 I2C Interrupts .. 116
15.4.7 Enabling and Initializing the I2C ... 116
15.4.8 Internal and External Clock Operation in I2C ... 117
15.4.9 Wake up from Sleep ... 118
15.4.10Master Mode Transfer Examples ... 119

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 5

15.4.11Slave Mode Transfer Examples ..121
15.4.12Multi-Master Mode Transfer Example...123

16. Universal Digital Blocks (UDB) ... 125
16.1 Features..125
16.2 How It Works ..126

16.2.1 PLDs ...126
16.2.2 Datapath..128
16.2.3 Status and Control Module..147
16.2.4 Reset and Clock Control Module ..154
16.2.5 UDB Addressing..162
16.2.6 System Bus Access Coherency ..162

16.3 Port Adapter Block..163
16.3.1 PA Data Input Logic ..163
16.3.2 PA Port Pin Clock Multiplexer Logic..164
16.3.3 PA Data Output Logic..164
16.3.4 PA Output Enable Logic ..165
16.3.5 PA Clock Multiplexer ...166
16.3.6 PA Reset Multiplexer...166

17. Timer, Counter, and PWM .. 167
17.1 Features..167
17.2 Block Diagram ..168

17.2.1 Enabling and Disabling Counter in TCPWM Block ...168
17.2.2 Clocking ..168
17.2.3 Events Based on Trigger Inputs ..170
17.2.4 Output Signals...171
17.2.5 Power Modes ..172

17.3 Modes of Operation ..173
17.3.1 Timer Mode ...174
17.3.2 Capture Mode ...177
17.3.3 Quadrature Decoder Mode ...179
17.3.4 Pulse Width Modulation Mode ..182
17.3.5 Pulse Width Modulation with Dead Time Mode...186
17.3.6 Pulse Width Modulation Pseudo-Random Mode ..188

17.4 TCPWM Registers ..190

Section F: Analog System 191

18. Precision Reference .. 193
18.1 Features..193
18.2 Block Diagram ..193
18.3 How it Works...194

18.3.1 Precision Bandgap..194
18.3.2 Trim Buffer...194
18.3.3 Low-Power Buffers..194
18.3.4 Current Mirrors ..195
18.3.5 Temperature-Controlled Voltage Generator ..195
18.3.6 Temperature-Controlled Current Generator ..195

18.4 Configuration ..195

19. SAR ADC .. 197
19.1 Features..197
19.2 Block Diagram ..198
19.3 How it Works...199

19.3.1 SAR ADC Core ...199

6 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

19.3.2 SARMUX ..202
19.3.3 SARREF ...209
19.3.4 SARSEQ...210
19.3.5 Interrupt ..212
19.3.6 Trigger...214
19.3.7 SAR ADC Status...215
19.3.8 Low-Power Mode..215
19.3.9 System Operation ...215
19.3.10Register Mode ..217
19.3.11DSI Mode..220
19.3.12Analog Routing Configuration Example..223
19.3.13Temperature Sensor Configuration...226

19.4 Registers ..227

20. Low-Power Comparator ... 229
20.1 Features ...229
20.2 Block Diagram ..230
20.3 How It Works ..230

20.3.1 Input Configuration ...230
20.3.2 Output and Interrupt Configuration ...231
20.3.3 Power Mode and Speed Configuration ...232
20.3.4 Hysteresis ...233
20.3.5 Wakeup from Low-Power Modes..233
20.3.6 Comparator Clock ...233
20.3.7 Offset Trim ..233

20.4 Register Summary ...234

21. Continuous Time Block mini (CTBm).. 235
21.1 Features ...235
21.2 Block Diagram ..236
21.3 How It Works ..236

21.3.1 Power Mode Configuration ...237
21.3.2 Output Strength Configuration ..237
21.3.3 Compensation...238
21.3.4 Switch Control...238

21.4 Register Summary...242

22. LCD Direct Drive ... 243
22.1 Features ...243
22.2 LCD Segment Drive Overview..243

22.2.1 Drive Modes..244
22.2.2 Recommended Usage of Drive Modes...252
22.2.3 Digital Contrast Control...252

22.3 Block Diagram ..253
22.3.1 How it Works...253
22.3.2 High-Speed and Low-Speed Master Generators ..253
22.3.3 Multiplexer and LCD Pin Logic ...254
22.3.4 Display Data Registers ...254

22.4 Register List ...254

23. CapSense ... 255
23.1 Features ...255
23.2 Block Diagram ..255
23.3 How It Works ..256
23.4 CapSense CSD Sensing ..257

23.4.1 GPIO Cell Capacitance to Current Converter ...257

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 7

23.4.2 CapSense Clock Generator ..259
23.4.3 Sigma Delta Converter..259

23.5 CapSense CSD Shielding...261
23.5.1 CMOD Precharge..262

23.6 General-Purpose Resources: IDACs..263
23.7 Register List..263

24. Temperature Sensor .. 265
24.1 Features..265
24.2 How it Works...265
24.3 Temperature Sensor Configuration ..266
24.4 Algorithm...267
24.5 Registers...268

Section G: Program and Debug 269

25. Program and Debug Interface .. 271
25.1 Features..271
25.2 Functional Description ..271
25.3 Serial Wire Debug (SWD) Interface..272

25.3.1 SWD Timing Details ..273
25.3.2 ACK Details...273
25.3.3 Turnaround (Trn) Period Details..273

25.4 Cortex-M0 Debug and Access Port (DAP) ...274
25.4.1 Debug Port (DP) Registers ...274
25.4.2 Access Port (AP) Registers ..274

25.5 Programming the PSoC 4 Device...275
25.5.1 SWD Port Acquisition..275
25.5.2 SWD Programming Mode Entry..275
25.5.3 SWD Programming Routines Executions ...275

25.6 PSoC 4 SWD Debug Interface ...276
25.6.1 Debug Control and Configuration Registers ...276
25.6.2 Breakpoint Unit (BPU)...276
25.6.3 Data Watchpoint (DWT) ..276
25.6.4 Debugging the PSoC 4 Device ...276

25.7 Registers...277

26. Nonvolatile Memory Programming.. 279
26.1 Features..279
26.2 Functional Description ..279
26.3 System Call Implementation ...280
26.4 Blocking and Non-Blocking System Calls...280

26.4.1 Performing a System Call ...280
26.5 System Calls...281

26.5.1 Silicon ID ...281
26.5.2 Load Flash Bytes ..282
26.5.3 Write Row..283
26.5.4 Program Row ..284
26.5.5 Erase All..284
26.5.6 Checksum ...285
26.5.7 Write Protection...286
26.5.8 Non-Blocking Write Row ...286
26.5.9 Non-Blocking Program Row..287
26.5.10Resume Non-Blocking ..288

26.6 System Call Status ...289

8 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

26.7 Non-Blocking System Call Pseudo Code ...290

Glossary 293

Index 309

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 9

Section A: Overview

This section encompasses the following chapters:

■ Introduction chapter on page 11

■ Getting Started chapter on page 17

■ Document Construction chapter on page 19

Document Revision History

Revision Issue Date
Origin of
Change

Description of Change

** 23 January, 2013 XKJ Initial release

*A 18 April, 2013 RLIU Extensive updates throughout the document

*B 18 July, 2013 RLIU Multiple fixes across the document

*C 12 March, 2014 NIDH

Interrupts chapter: Change PICU to GPIO interrupt

I/O System chapter: Change PICU to GPIO interrupt. Added the limitation of Analog/DSI
switching of GPIOs

Power Modes chapter: Removed XRES from Table 11-1 and added as a note. Changed the
regular analog peripherals in Deep-Sleep to "off" in Table 11-2. Added brownout to table 3.
changed PICU to GPIO interrupt. Minor grammar fixes throughout the document. Updated
section 11.7 to include LPM_READY condition.

TCPWM chapter: Changed main clock to HFCLK. Minor fixes to images. Minor grammar
fixes throughout the document

CapSense chapter: Updated the IDAC names and explanations to match new IDAC nomen-
clature

*D 03 December, 2015 NIDH

Corrected links to the datasheet and register TRM.

Added the following sections: 1.11 Device Feature Summary, 2.4 Application Notes, 18.1
Features, 14.2.2 Flash Security, and 24.5 Registers.

Updated the following sections: 5.3.3 Exception Vector Table, 8.2 Clock Sources, UART
Local Interconnect Network (LIN) Mode, 19.3.1.6 Acquisition Time

Added Table 8-1, Table 21-2, Table 21-9, and Table 22-2.

Modified multiple sections in the I/O System chapter on page 47.

Minor text edits across the document.

*E 28 June, 2016 NIDH/BOO
Updated document properties

Minor content edits throughout the document.

*F 30 May, 2017 SHEA Updated logo and copyright information

10 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 11

1. Introduction

PSoC® 4 is a programmable embedded system controller with an ARM® Cortex®-M0 CPU. It combines programmable ana-
log, programmable interconnect, user-programmable digital logic, and commonly used fixed-function peripherals with a high-
performance ARM Cortex-M0 subsystem. The PSoC 4100/4200 families are the first members of the PSoC 4 architecture.
They are upward-compatible with larger members of PSoC 4.

PSoC 4 devices have these characteristics:

■ High-performance, 32-bit single-cycle Cortex-M0 CPU core

■ Fixed-function and configurable digital blocks

■ Programmable digital logic

■ High-performance analog system

■ Flexible and programmable interconnect

■ Capacitive touch sensing (CapSense®)

■ Low-power operating modes – Sleep, Deep-Sleep, Hibernate, and Stop modes

This document describes each functional block of the PSoC 4100/4200 device in detail. This information will help designers to
create system-level designs.

1.1 Top Level Architecture

Figure 1-1 shows the major components of the PSoC 4100 architecture and Figure 1-2 shows the architecture of the PSoC
4200 family.

12 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Introduction

Figure 1-1. PSoC 4100 Family Block Diagram

36
x

G
P

IO

C
a

ps
en

se

L
C

D

2x
 L

P
 C

om
pa

ra
to

r

2x
 S

C
B

-I
2C

/S
P

I/U
A

R
T

Peripherals

PSoC 4100

32-bit

AHB-Lite

CPU Subsystem

Peripheral Interconnect (MMIO)

System Interconnect (Single Layer AHB)

SRAM
Up to 4 kB

SRAM Controller

SWD/TC

NVIC, IRQMX

Cortex
M0

24 MHz
FAST MUL

SROM
4 kB

ROM Controller

FLASH
Up to 32 kB

Read Accelerator

I/O Subsystem

SAR
(12-bit)

x1

Programmable
Analog

I/O Pins (Analog, Digital, Special, ESD)

High Speed I/O Matrix

Port Interface & Digital System Interconnect (DSI)

System Resources

Power

Clock

WDT
ILO

Reset

Clock Control

DFT Logic
Test

IMO

DFT Analog

Sleep Control

PWRSYS
REF
POR LVD

NVLatches

BOD

WIC

Reset Control
XRES

Deep Sleep
Hibernate

Active/Sleep

SMX

2x OpAmp x1

CTBm

PCLK

4x
 T

C
P

W
M

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 13

Introduction

Figure 1-2. PSoC 4200 Family Block Diagram

1.2 Features

The PSoC 4100/4200 families have these major compo-
nents:

■ 32-bit Cortex-M0 CPU with single-cycle multiply, deliver-
ing up to 43 DMIPS at 48 MHz

■ Up to 32 KB flash and 4 KB SRAM

■ Four independent center-aligned pulse-width modulators
(PWMs) with complementary, dead-band programmable
outputs

■ Twelve-bit SAR ADC (with a sampling rate of 1 Msps in
PSoC 4200 and 806 ksps in PSoC 4100) with hardware
sequencing for multiple channels

■ Up to two opamps that can be used for analog signal
conditioning and as a comparator

■ Two low-power comparators

■ Two serial communication blocks (SCB) that can work
as SPI, UART, I2C, and local interconnect network (LIN)
slave serial communication channels

■ Up to four programmable logic blocks, known as univer-
sal digital blocks (UDBs)

■ CapSense

■ Segment LCD direct drive

■ Low-power operating modes: Sleep, Deep-Sleep, Hiber-
nate, and Stop

■ Programming and debugging system through serial wire
debug (SWD)

■ Fully supported by PSoC Creator™ IDE tool

36
x

G
P

IO

C
ap

se
ns

e

L
C

D

2x
 L

P
 C

om
pa

ra
to

r

2x
 S

C
B

-I
2C

/S
P

I/U
A

R
T

Peripherals

PSoC 4200

32-bit

AHB-Lite

CPU Subsystem

Peripheral Interconnect (MMIO)

System Interconnect (Single Layer AHB)

SRAM
Up to 4 kB

SRAM Controller

SWD/TC

NVIC, IRQMX

Cortex
M0

48 MHz
FAST MUL

SROM
4 kB

ROM Controller

FLASH
Up to 32 kB

Read Accelerator

I/O Subsystem

SAR
(12-bit)

x1

Programmable
Analog

I/O Pins (Analog, Digital, Special, ESD)

High Speed I/O Matrix

Port Interface & Digital System Interconnect (DSI)

System Resources

Power

Clock

WDT
ILO

Reset

Clock Control

DFT Logic
Test

IMO

DFT Analog

Sleep Control

PWRSYS
REF
POR LVD

NVLatches

BOD

WIC

Reset Control
XRES

Deep Sleep
Hibernate

Active/Sleep

SMX
2x OpAmp x1

CTBm

PCLK

Programmable
Digital

UDB UDB

UDBUDB

x4 4x
 T

C
P

W
M

14 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Introduction

1.3 CPU System

1.3.1 Processor

The heart of the PSoC 4 is a 32-bit Cortex-M0 CPU core
running up to 48 MHz for PSoC 4200 and 24 MHz for PSoC
4100. It is optimized for low-power operation with extensive
clock gating. It uses 16-bit instructions and executes a sub-
set of the Thumb-2 instruction set. This instruction set
enables fully compatible binary upward migration of the
code to higher performance processors such as Cortex M3
and M4.

The CPU has a hardware multiplier that provides a 32-bit
result in one cycle.

1.3.2 Interrupt Controller

The CPU subsystem includes a nested vectored interrupt
controller (NVIC) with 32 interrupt inputs and a wakeup
interrupt controller (WIC), which can wake the processor
from Deep-Sleep mode. The Cortex-M0 CPU of PSoC 4
implements a non-maskable interrupt (NMI) input, which can
be tied to digital routing for general-purpose use.

1.4 Memory
The PSoC 4 memory subsystem consists of flash and
SRAM. A supervisory ROM, containing boot and configura-
tion routines, is also present.

1.4.1 Flash

The PSoC 4 has a flash module, with a flash accelerator
tightly coupled to the CPU, to improve average access times
from the flash block. The flash accelerator delivers
85 percent of single-cycle SRAM access performance on an
average.

1.4.2 SRAM

The PSoC 4 provides SRAM, which is retained during Hiber-
nate mode.

1.5 System-Wide Resources

1.5.1 Clocking System

The clocking system for the PSoC 4 device consists of the
internal main oscillator (IMO) and internal low-speed oscilla-
tor (ILO) as internal clocks and has provision for an external
clock.

The IMO with an accuracy of ±2 percent is the primary
source of internal clocking in the device. The default IMO
frequency is 24 MHz and it can be adjusted between 3 MHz
and 48 MHz in steps of 1 MHz. Multiple clock derivatives are

generated from the main clock frequency to meet various
application needs.

The ILO is a low-power, less accurate oscillator and is used
to generate clocks for peripheral operation in Deep-Sleep
mode. Its clock frequency is 32 kHz with ±60 percent accu-
racy.

An external clock source ranging from 0 MHz to 48 MHz can
be used to generate the clock derivatives for the functional
blocks instead of the IMO.

1.5.2 Power System

The PSoC 4 operates with a single external supply in the
range 1.71 V to 5.5 V.

PSoC 4 has four low-power modes – Sleep, Deep-Sleep,
Hibernate, and Stop – in addition to the default Active mode.
In Active mode, the CPU runs with all the logic powered. In
Sleep mode, the CPU is powered off with all other peripher-
als functional. In Deep-Sleep mode, the CPU, SRAM, and
high-speed logic are in retention; the main system clock is
OFF while the low-frequency clock is ON and the low-fre-
quency peripherals are in operation. In Hibernate mode,
even the low-frequency clock is OFF and low-frequency
peripherals stop operating.

Multiple internal regulators are available in the system to
support power supply schemes in different power modes.

1.5.3 GPIO

Every GPIO in PSoC 4 has the following characteristics:

■ Eight drive strength modes

■ Individual control of input and output disables

■ Hold mode for latching previous state

■ Selectable slew rates

■ Interrupt generation – edge triggered

■ CapSense and LCD drive support

The pins are organized in a port that is 8-bit wide. A high-
speed I/O matrix is used to multiplex between various sig-
nals that may connect to an I/O pin. Pin locations for fixed-
function peripherals are also fixed.

1.6 Programmable Digital
The PSoC 4200 has up to four UDBs. Each UDB contains
structured data-path logic and uncommitted PLD logic with
flexible interconnect. The UDB array provides a switched
routing fabric called the digital signal interconnect (DSI). The
DSI allows routing of signals from peripherals and ports to
and within the UDBs.

The UDB arrays in PSoC 4200 enable custom logic or addi-
tional timers/PWMs and communication interfaces such as
I2C, SPI, I2S, and UART.

Note PSoC 4100 does not have UDBs.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 15

Introduction

1.7 Fixed-Function Digital

1.7.1 Timer/Counter/PWM Block

The Timer/Counter/PWM block consists of four 16-bit coun-
ters with user-programmable period length. The functionality
of these counters can be synchronized. Each block has a
capture register, period register, and compare register. The
block supports complementary, dead-band programmable
outputs. It also has a kill input to force outputs to a predeter-
mined state. Other features of the block include center-
aligned PWM, clock prescaling, pseudo random PWM, and
quadrature decoding.

1.7.2 Serial Communication Blocks

The device has two SCBs. Each SCB can implement a
serial communication interface as I2C, UART, local intercon-
nect network (LIN) slave, or SPI.

The features of each SCB include:

■ Standard I2C multi-master and slave function

■ Standard SPI master and slave function with Motorola,
Texas Instruments, and National (MicroWire) mode

■ Standard UART transmitter and receiver function with
SmartCard reader (ISO7816), IrDA protocol, and LIN

■ Standard LIN slave with LIN v1.3 and LIN v2.1/2.2 spec-
ification compliance

■ EZ function mode support for SPI and I2C with 32-byte
buffer

1.8 Analog System

1.8.1 SAR ADC

PSoC 4200 has a configurable 12-bit 1-Msps SAR ADC and
PSoC 4100 has a similar 12-bit SAR ADC with 806 ksps.
The ADC provides three internal voltage references (VDDA,
VDDA/2, and VREF) and an external reference through a
GPIO pin. The SAR hardware sequencer is available, which
scans multiple channels without CPU intervention.

1.8.2 Continuous Time Block mini

The Continuous Time Block mini (CTBm) provides continu-
ous time functionality at the entry and exit points of the ana-
log subsystem. The CTBm has two highly configurable and
high-performance opamps with a switch routing matrix. The
opamps can also work in comparator mode. PSoC 4100/
4200 has one such CTBm block.

The block allows open-loop opamp, linear buffer, and com-
parator functions to be performed without external compo-
nents. PGAs, voltage buffers, filters, and trans-impedance
amplifiers can be realized with external components.

1.8.3 Low-Power Comparators

The PSoC 4 has a pair of low-power comparators, which
can operate in all device power modes. This functionality
allows the CPU and other system blocks to be disabled
while retaining the ability to monitor external voltage levels
during low-power modes. Two input voltages can both come
from pins, or one from an internal signal through the AMUX-
BUS.

1.9 Special Function Peripherals

1.9.1 LCD Segment Drive

The PSoC 4 has an LCD controller, which can drive up to
four commons and every GPIO can be configured to drive
common or segment. It uses full digital methods (digital cor-
relation and PWM) to drive the LCD segments, and does not
require generation of internal LCD voltages.

1.9.2 CapSense

PSoC 4 devices have the CapSense feature, which allows
you to use the capacitive properties of your fingers to toggle
buttons and sliders. CapSense functionality is supported on
all GPIO pins in PSoC 4 through a CapSense Sigma-Delta
(CSD) block. The CSD also provides waterproofing capabil-
ity.

1.9.2.1 IDACs and Comparator

The CapSense block has two IDACs and a comparator with
a 12-V reference, which can be used for general purposes, if
CapSense is not used.

1.10 Program and Debug
PSoC 4 devices support programming and debugging fea-
tures of the device via the on-chip SWD interface. The
PSoC Creator IDE provides fully integrated programming
and debugging support. The SWD interface is also fully
compatible with industry standard third-party tools.

16 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Introduction

1.11 Device Feature Summary
Table 1-1 shows the PSoC 4100/4200 device summary.

Table 1-1. PSoC 4100/4200 Device Summary

Feature PSoC 4100 PSoC 4200

Maximum CPU Frequency 24 MHz 48 MHz

Flash 16 KB – 32 KB 16 KB – 32 KB

SRAM 4 KB 4 KB

GPIOs (maximum) 36 36

CapSense Available Available

LCD Driver Available Available

Timer, Counter, PWM (TCPWM) 4 4

Serial Communication Block (SCB) 2 2

Universal Digital Block (UDB) 0 4

IDAC (part of CapSense) 2 2

Opamp 2 2

Comparator 2 2

ADC 12-bit SAR, 806 ksps 12-bit SAR, 1 Msps

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 17

2. Getting Started

2.1 Support

Free support for PSoC® 4 products is available online at www.cypress.com/psoc4. Resources include training seminars,
discussion forums, application notes, PSoC consultants, CRM technical support email, knowledge base, and application
support engineers.

For application assistance, visit www.cypress.com/support/ or call 1-800-541-4736.

2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for PSoC Creator free of charge. Upgrades are available
from your distributor on DVD-ROM; you can also download them directly from www.cypress.com/psoccreator. Critical updates
to system documentation are also provided in the Documentation section.

2.3 Development Kits

The Cypress Online Store contains development kits, C compilers, and the accessories you need to successfully develop
PSoC projects. Visit the Cypress Online Store website at www.cypress.com/cypress-store. Under Products, click Program-
mable System-on-Chip to view a list of available items. Development kits are also available from Digi-Key, Avnet, Arrow, and
Future.

2.4 Application Notes

Refer to application note AN79953 - Getting Started with PSoC 4 for additional information on PSoC 4 device capabilities and
to quickly create a simple PSoC application using PSoC Creator and PSoC 4 development kits.

http://www.cypress.com/support/
http://www.cypress.com/psoccreator
http://www.cypress.com/cypress-store
http://www.cypress.com/psoc4
http://www.cypress.com/?rID=78695

18 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Getting Started

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 19

3. Document Construction

This document includes the following sections:

■ Section B: CPU System on page 23

■ Section D: System Resources Subsystem (SRSS) on page 45

■ Section E: Digital System on page 89

■ Section F: Analog System on page 191

■ Section G: Program and Debug on page 269

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

■ Section – Presents the top-level architecture, how to get started, and conventions and overview information of the prod-
uct.

■ Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed implementa-
tion and use information for some aspect of the integrated circuit.

■ Glossary – Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are pre-
sented in bold, italic font throughout.

■ Registers Technical Reference Manual – Supplies all device register details summarized in the technical reference man-
ual. This is an additional document.

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

■ The first is the use of italics when referencing a document title or file name.

■ The second is the use of bold italics when referencing a term described in the Glossary of this document.

■ The third is the use of Times New Roman font, distinguishing equation examples.

■ The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the PSoC 4100/4200 Family: PSoC 4 Registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
‘3Ah’) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.

http://www.cypress.com/?rID=78807

20 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Document Construction

3.2.3 Units of Measure

This table lists the units of measure used in this document.

3.2.4 Acronyms

This table lists the acronyms used in this document

Table 3-1. Units of Measure

Abbreviation Unit of Measure

bps bits per second

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

 sigma: one standard deviation

V volts

Table 3-2. Acronyms

Acronym Definition

ABUS analog output bus

AC alternating current

ADC analog-to-digital converter

AHB
AMBA (advanced microcontroller bus architecture)
high-performance bus, an ARM data transfer bus

API application programming interface

APOR analog power-on reset

BC broadcast clock

BOD brownout detect

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CI carry in

CMP compare

CO carry out

CPU central processing unit

CRC cyclic redundancy check

CSD CapSense sigma delta

CT continuous time

CTB continuous time block

CTBm continuous time block mini

DAC digital-to-analog converter

DAP debug access port

DC direct current

DI digital or data input

DMA direct memory access

DNL differential nonlinearity

DO digital or data output

DSI digital signal interface

DSM deep-sleep mode

DW data wire

ECO external crystal oscillator

EEPROM
electrically erasable programmable read only
memory

EMIF external memory interface

FB feedback

FIFO first in first out

FSR full scale range

GPIO general purpose I/O

HCI host-controller interface

HFCLK high-frequency clock

HSIOM high-speed I/O matrix

I2C inter-integrated circuit

IDE integrated development environment

ILO internal low-speed oscillator

ITO indium tin oxide

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

IOW I/O write

Table 3-2. Acronyms (continued)

Acronym Definition

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 21

Document Construction

IRES initial power on reset

IRA interrupt request acknowledge

IRQ interrupt request

ISR interrupt service routine

IVR interrupt vector read

LCD liquid crystal display

LFCLK low-frequency clock

LIN local interconnect network

LPCOMP low-power comparator

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

MSb most significant bit

MSB most significant byte

NMI non-maskable interrupt

NVIC nested vectored interrupt controller

PC program counter

PCB printed circuit board

PCH program counter high

PCL program counter low

PD power down

PGA programmable gain amplifier

PM power management

PMA PSoC memory arbiter

POR power-on reset

PPOR precision power-on reset

PRS pseudo random sequence

PSoC® Programmable System-on-Chip

PSRR power supply rejection ratio

PSSDC power system sleep duty cycle

PWM pulse width modulator

RAM random-access memory

RETI return from interrupt

RF radio frequency

ROM read only memory

RMS root mean square

RW read/write

SAR successive approximation register

SC switched capacitor

SCB serial communication block

SIE serial interface engine

SIO special I/O

Table 3-2. Acronyms (continued)

Acronym Definition

SE0 single-ended zero

SNR signal-to-noise ratio

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SSADC single slope ADC

SSC supervisory system call

SYSCLK system clock

SWD single wire debug

TC terminal count

TCPWM timer, counter, PWM

TD transaction descriptors

UART universal asynchronous receiver/transmitter

UDB universal digital block

USB universal serial bus

USBIO USB I/O

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

XRES external reset

XRES_N external reset, active low

Table 3-2. Acronyms (continued)

Acronym Definition

22 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Document Construction

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 23

Section B: CPU System

This section encompasses the following chapters:

■ Cortex-M0 CPU chapter on page 25

■ Interrupts chapter on page 31

Top Level Architecture

CPU System Block Diagram

SWD/TC

Cortex-M0
48 MHz (PSoC 4200)
24 MHz (PSoC 4100)

NVIC, IRQMX

System Interconnect (Single Layer AHB)

24 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 25

4. Cortex-M0 CPU

The PSoC® 4 ARM Cortex-M0 core is a 32-bit CPU optimized for low-power operation. It has an efficient three-stage pipeline,
a fixed 4-GB memory map, and supports the ARMv6-M Thumb instruction set. The Cortex-M0 also features a single-cycle 32-
bit multiply instruction and low-latency interrupt handling. Other subsystems tightly linked to the CPU core include a nested
vectored interrupt controller (NVIC), a SYSTICK timer, and debug.

This section gives an overview of the Cortex-M0 processor. For more details, see the ARM Cortex-M0 user guide or technical
reference manual, both available at www.arm.com.

4.1 Features

The PSoC 4 Cortex-M0 has the following features:

■ Easy to use, program, and debug, ensuring easier migration from 8- and 16-bit processors

■ Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power

■ Maximum CPU clock frequency of 24 MHz in PSoC 4100 and 48 MHz in PSoC 4200.

■ Supports the Thumb instruction set for improved code density, ensuring efficient use of memory

■ NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response

■ Extensive debug support including:

❐ SWD port

❐ Breakpoints

❐ Watchpoints

http://www.arm.com

26 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Cortex-M0 CPU

4.2 Block Diagram

Figure 4-1. PSoC 4 CPU Subsystem Block Diagram

4.3 How It Works

The Cortex-M0 is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It supports most
16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set.

The processor supports two operating modes (see “Operating Modes” on page 28). It has a single-cycle 32-bit multiplication
instruction.

4.4 Address Map

The ARM Cortex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 4-1. Note that code can be executed
from the code and SRAM regions.

Table 4-1. Cortex-M0 Address Map

Address Range Name Use

0x00000000 - 0x1FFFFFFF Code
Program code region. You can also place data here. Includes the exception vector table,
which starts at address 0.

0x20000000 - 0x3FFFFFFF SRAM Data region. You can also execute code from this region.

0x40000000 - 0x5FFFFFFF Peripheral All peripheral registers. You cannot execute code from this region.

0x60000000 - 0xDFFFFFFF Not used.

0xE0000000 - 0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000 - 0xFFFFFFFF Device PSoC 4 implementation-specific.

ARM Cortex-M0 CPU

System Interconnect

Flash
Accelerator

SRAM
Controller

SROM
Controller

DAP

CPU Subsystem

Flash SRAM SROM

AHB Bridge

Test
Controller

Fi
x

ed
 I

n
te

rr
u

p
ts

D
S

I
In

te
rr

u
p

ts
Flash

Programming
Interface

CPU & Memory
Subsystem

Interrupt
MUX

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 27

Cortex-M0 CPU

4.5 Registers

The Cortex-M0 has 16 32-bit registers, as Table 4-2 shows:

■ R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be accessed
by a subset of the instructions.

■ R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL
register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

■ R14 – Link register. Stores the return program counter during function calls.

■ R15 – Program counter. This register can be written to control program flow.

Table 4-3 shows how the PSR bits are assigned.

Table 4-2. Cortex-M0 Registers

Name Typea Reset Value Description

R0-R12 RW Undefined R0-R12 are 32-bit general-purpose registers for data operations.

MSP (R13)
PSP (R13)

RW [0x00000000]

The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
indicates which stack pointer to use:

0 = Main stack pointer (MSP). This is the reset value.

1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

LR (R14) RW Undefined
The link register (LR) is register R14. It stores the return information for subroutines,
function calls, and exceptions.

PC (R15) RW [0x00000004]
The program counter (PC) is register R15. It contains the current program address. On
reset, the processor loads the PC with the value from address 0x00000004. Bit[0] of the
value is loaded into the EPSR T-bit at reset and must be 1.

PSR RW Undefined

The program status register (PSR) combines:

Application Program Status Register (APSR).

Execution Program Status Register (EPSR).

Interrupt Program Status Register (IPSR).

APSR RW Undefined
The APSR contains the current state of the condition flags from previous instruction
executions.

EPSR RO [0x00000004].0 On reset, EPSR is loaded with the value bit[0] of the register [0x00000004].

IPSR RO 0 The IPSR contains the exception number of the current ISR.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0 The CONTROL register controls the stack used when the processor is in thread mode.

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Table 4-3. Cortex-M0 PSR Bit Assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

28 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Cortex-M0 CPU

Use the MSR or CPS instruction to set or clear bit 0 of the PRIMASK register. If the bit is 0, exceptions are enabled. If the bit
is 1, all exceptions with configurable priority, that is, all exceptions except HardFault, NMI, and Reset, are disabled. See the
Interrupts chapter on page 31 for a list of exceptions.

4.6 Operating Modes

The Cortex-M0 processor supports two operating modes:

■ Thread Mode – used by all normal applications. In this mode, the MSP or PSP can be used. The CONTROL register bit 1
determines which stack pointer is used:

❐ 0 = MSP is the current stack pointer

❐ 1 = PSP is the current stack pointer

■ Handler Mode – used to execute exception handlers. The MSP is always used.

In thread mode, use the MSR instruction to set the stack pointer bit in the CONTROL register. When changing the stack
pointer, use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the ISB execute
using the new stack pointer.

In handler mode, explicit writes to the CONTROL register are ignored, because the MSP is always used. The exception entry
and return mechanisms automatically update the CONTROL register.

4.7 Instruction Set

The Cortex-M0 implements a version of the Thumb instruction set, as Table 4-4 shows. For details, see the Cortex-M0
Generic User Guide.

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on the
operands and often store the result in a destination register. Many instructions are unable to use, or have restrictions on
using, the PC or SP for the operands or destination register.

27 – 25 – – Reserved

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0
results in a HardFault exception.

23 – 6 – – Reserved

5 – 0 IPSR N/A

Exception number of current ISR:

0 = thread mode
1 = reserved
2 = NMI
3 = HardFault
4 – 10 = reserved
11 = SVCall
12, 13 = reserved
14 = PendSV
15 = SysTick
16 = IRQ0
…
47 = IRQ31

Table 4-3. Cortex-M0 PSR Bit Assignments

Bit PSR Register Name Usage

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 29

Cortex-M0 CPU

4.7.1 Address Alignment

An aligned access is an operation where a word-aligned
address is used for a word or multiple word access, or
where a half-word-aligned address is used for a half-word
access. Byte accesses are always aligned.

No support is provided for unaligned accesses on the Cor-
tex-M0 processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

4.7.2 Memory Endianness

The PSoC 4 Cortex-M0 uses the little-endian format, where
the least-significant byte of a word is stored at the lowest
address and the most significant byte is stored at the high-
est address.

4.8 Systick Timer

The Systick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real-time system. The timer has a reload
register with 24 bits available to use as a countdown value.
The Systick timer uses the Cortex-M0 internal clock as a
source.

4.9 Debug

PSoC 4 contains a debug interface based on SWD; it fea-
tures four breakpoint (address) comparators and two watch-
point (data) comparators.

Table 4-4. Thumb Instruction Set

Mnemonic Brief Description

ADCS Add with carry

ADD{S}a Add

ADR PC-relative address to register

ANDS Bit wise AND

ASRS Arithmetic shift right

B{cc} Branch {conditionally}

BICS Bit clear

BKPT Breakpoint

BL Branch with link

BLX Branch indirect with link

BX Branch indirect

CMN Compare negative

CMP Compare

CPSID Change processor state, disable interrupts

CPSIE Change processor state, enable interrupts

DMB Data memory barrier

DSB Data synchronization barrier

EORS Exclusive OR

ISB Instruction synchronization barrier

LDM Load multiple registers, increment after

LDR Load register from PC-relative address

LDRB Load register with word

LDRH Load register with half-word

LDRSB Load register with signed byte

LDRSH Load register with signed half-word

LSLS Logical shift left

LSRS Logical shift right

MOV{S}a Move

MRS Move to general register from special register

MSR Move to special register from general register

MULS Multiply, 32-bit result

MVNS Bit wise NOT

NOP No operation

ORRS Logical OR

POP Pop registers from stack

PUSH Push registers onto stack

REV Byte-reverse word

REV16 Byte-reverse packed half-words

REVSH Byte-reverse signed half-word

RORS Rotate right

RSBS Reverse subtract

SBCS Subtract with carry

SEV Send event

STM Store multiple registers, increment after

STR Store register as word

STRB Store register as byte

STRH Store register as half-word

SUB{S}a Subtract

SVC Supervisor call

SXTB Sign extend byte

SXTH Sign extend half-word

TST Logical AND-based test

UXTB Zero extend a byte

UXTH Zero extend a half-word

WFE Wait for event

WFI Wait for interrupt

a. The ‘S’ qualifier causes the ADD, SUB, or MOV instructions to update
APSR condition flags.

Table 4-4. Thumb Instruction Set

Mnemonic Brief Description

30 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Cortex-M0 CPU

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 31

5. Interrupts

The ARM Cortex-M0 (CM0) CPU in PSoC® 4 supports interrupts and exceptions. Interrupts refer to those events generated
by peripherals external to the CPU such as timers, serial communication block, and port pin signals. Exceptions refer to those
events that are generated by the CPU such as memory access faults and internal system timer events. Both interrupts and
exceptions result in the current program flow being stopped and the exception handler or interrupt service routine (ISR) being
executed by the CPU. The device provides a unified exception vector table for both interrupt handlers/ISR and exception han-
dlers.

5.1 Features

PSoC 4 supports the following interrupt features:

■ Supports 32 interrupts

■ Nested vectored interrupt controller (NVIC) integrated with CPU core, yielding low interrupt latency

■ Vector table may be placed in either flash or SRAM

■ Configurable priority levels from 0 to 3 for each interrupt

■ Level-triggered and pulse-triggered interrupt signals

5.2 How It Works

Figure 5-1. PSoC 4 Interrupts Block Diagram

Figure 5-1 shows the interaction between interrupt signals and the Cortex-M0 CPU. PSoC 4 has 32 interrupts; these interrupt
signals are processed by the NVIC. The NVIC takes care of enabling/disabling individual interrupts, priority resolution, and
communication with the CPU core. The exceptions are not shown in Figure 5-1 because they are part of CM0 core generated
events, unlike interrupts, which are generated by peripherals external to the CPU.

Nested
Vectored
Interrupt

Controller
(NVIC)

Cortex-M0
Processor Core

IRQ0

Cortex-M0 Processor

IRQ1

IRQ31

Interrupt
signals from

PSoC 4 on-chip
peripherals

32 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Interrupts

5.3 Interrupts and Exceptions -
Operation

5.3.1 Interrupt/Exception Handling

The following sequence of events occurs when an interrupt
or exception event is triggered:

1. Assuming that all the interrupt signals are initially low
(idle or inactive state) and the processor is executing the
main code, a rising edge on any one of the interrupt lines
is registered by the NVIC. The interrupt line is now in a
pending state waiting to be serviced by the CPU.

2. On detecting the interrupt request signal from the NVIC,
the CPU stores its current context by pushing the con-
tents of the CPU registers onto the stack.

3. The CPU also receives the exception number of the trig-
gered interrupt from the NVIC. All interrupts and excep-
tions have a unique exception number, as given in
Table 5-1. By using this exception number, the CPU
fetches the address of the specific exception handler
from the vector table.

4. The CPU then branches to this address and executes
the exception handler that follows.

5. Upon completion of the exception handler, the CPU reg-
isters are restored to their original state using stack pop
operations; the CPU resumes the main code execution.

Figure 5-2. Interrupt Handling When Triggered

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the high-
est priority interrupt to the CPU. Thus, a higher priority inter-
rupt can block the execution of a lower priority ISR at any
time.

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception num-
ber, which is used by the CPU to execute the appropriate
exception handler.

5.3.2 Level and Pulse Interrupts

NVIC supports both level and pulse signals on the interrupt
lines (IRQ0 to IRQ31). The classification of an interrupt as
level or pulse is based on the interrupt source.

Figure 5-3. Level Interrupts

Figure 5-4. Pulse Interrupts

Figure 5-3 and Figure 5-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal
is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts:

1. On a rising edge event of the interrupt signal, the NVIC
registers the interrupt request. The interrupt is now in the
pending state, which means the interrupt requests have
not yet been serviced by the CPU.

2. The NVIC then sends the exception number along with
the interrupt request signal to the CPU. When the CPU
starts executing the ISR, the pending state of the inter-
rupt is cleared.

3. When the ISR is being executed by the CPU, one or
more rising edges of the interrupt signal are logged as a
single pending request. The pending interrupt is serviced
again after the current ISR execution is complete (see
Figure 5-4 for pulse interrupts).

4. If the interrupt signal is still high after completing the ISR,
it will be pending and the ISR is executed again.
Figure 5-3 illustrates this for level triggered interrupts,
where the ISR is executed as long as the interrupt signal
is high.

Rising Edge on Interrupt Line is
registered by the NVIC

CPU detects the request signal
from NVIC and stores its

current context by pushing
contents onto the stack

CPU receives exception
number of triggered interrupt

and fetches the address of the
specific exception handle from

vector table.

CPU branches to the received
address and executes

exception handler

CPU registers are restored
using stack upon completion of

exception handler.

IRQn

CPU
Execution

State main
ISR ISR

main
ISR

main

IRQn is still high

IRQn

CPU
Execution

State main
ISR

main
ISR

main
ISR

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 33

Interrupts

5.3.3 Exception Vector Table

The exception vector table (Table 5-1), stores the entry point addresses for all exception handlers. The CPU fetches the
appropriate address based on the exception number.

In Table 5-1, the first word (4 bytes) is not marked as excep-
tion number zero. This is because the first word in the
exception table is used to initialize the main stack pointer
(MSP) value on device reset; it is not considered as an
exception. In PSoC 4, the vector table can be configured to
be located either in flash memory (base address of
0x00000000) or SRAM (base address of 0x20000000). This
configuration is done by writing to the VECT_IN_RAM bit
field (bit 0) in the CPUSS_CONFIG register. When the
VECT_IN_RAM bit field is ‘1’, CPU fetches exception han-
dler addresses from the SRAM vector table location. When
this bit field is ‘0’ (reset state), the vector table in flash mem-
ory is used for exception address fetches. You must set the
VECT_IN_RAM bit field as part of the device boot code to
configure the vector table to be in SRAM. The advantage of
moving the vector table to SRAM is that the exception han-
dler addresses can be dynamically changed by modifying
the SRAM vector table contents. However, the nonvolatile
flash memory vector table must be modified by a flash mem-
ory write.

Reads of flash addresses 0x00000000 and 0x00000004 are
redirected to the first eight bytes of SROM to fetch the stack
pointer and reset vectors, unless the NO_RST_OVR bit of
the CPUSS_SYSREQ register is set. To allow flash read
from addresses 0x00000000 and 0x00000004, the
NO_RST_OVR bit should be set to ‘1’. The stack pointer
vector holds the address that the stack pointer is loaded with
on reset. The reset vector holds the address of the boot
sequence. This mapping is done to use the default
addresses for the stack pointer and reset vector from SROM
when the device reset is released. For reset, boot code in
SROM is executed first and then the CPU jumps to address
0x00000004 in flash to execute the handler in flash. The

reset exception address in the SRAM vector table is never
used because VECT_IN_RAM is 0 on reset.

Also, when the SYSREQ bit of the CPUSS_SYSREQ regis-
ter is set, reads of flash address 0x00000008 are redirected
to SROM to fetch the NMI vector address instead of from
flash. Reset CPUSS_SYSREQ to read the flash at address
0x00000008.

The exception sources (exception numbers 1 to 15) are
explained in 5.4 Exception Sources. The exceptions marked
as Reserved in Table 5-1 are not used, although they have
addresses reserved for them in the vector table. The inter-
rupt sources (exception numbers 16 to 47) are explained in
5.5 Interrupt Sources.

5.4 Exception Sources

This section explains the different exception sources listed
in Table 5-1 (exception numbers 1 to 15).

5.4.1 Reset Exception

Device reset is treated as an exception in PSoC 4. It is
always enabled with a fixed priority of –3, the highest priority
exception. A device reset can occur due to multiple reasons,
such as power-on-reset (POR), external reset signal on
XRES pin, or watchdog reset. When the device is reset, the
initial boot code for configuring the device is executed out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the CPU code execu-
tion jumps to flash memory. Flash memory address
0x00000004 (Exception#1 in Table 5-1) stores the location

Table 5-1. Exception Vector Table

Exception Number Exception Exception Priority Vector Address

– Initial Stack Pointer Value Not applicable (NA)
Base_Address - 0x00000000 (start of flash memory) or
0x20000000 (start of SRAM)

1 Reset –3, the highest priority Base_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Base_Address + 0x08

3 HardFault –1 Base_Address + 0x0C

4-10 Reserved NA Base_Address + 0x10 to Base_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0 - 3) Base_Address + 0x2C

12-13 Reserved NA Base_Address + 0x30 to Base_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0 - 3) Base_Address + 0x38

15 System Timer (SysTick) Configurable (0 - 3) Base_Address + 0x3C

16 External Interrupt(IRQ0) Configurable (0 - 3) Base_Address + 0x40

… … Configurable (0 - 3) …

47 External Interrupt(IRQ31) Configurable (0 - 3) Base_Address + 0xBC

34 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Interrupts

of the startup code in flash memory. The CPU starts execut-
ing code out of this address. Note that the reset exception
address in the SRAM vector table will never be used
because the device comes out of reset with the flash vector
table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is de-asserted.

5.4.2 Non-Maskable Interrupt (NMI)
Exception

Non-maskable interrupt (NMI) is the highest priority excep-
tion other than reset. It is always enabled with a fixed priority
of –2. There are three ways to trigger an NMI exception in
the device:

■ NMI exception due to a hardware signal (user NMI
exception): PSoC 4 provides an option to trigger an
NMI exception using a digital signal. This digital signal is
referred to as irq_out[0] in Table 5-3. The NMI exception
triggered due to irq_out[0] will execute the NMI handler
pointed to by the active vector table (flash or SRAM vec-
tor table).

■ NMI exception by setting NMIPENDSET bit (user NMI
exception): An NMI exception can be triggered in soft-
ware by setting the NMIPENDSET bit in the interrupt
control state register (CM0_ICSR register). Setting this
bit will execute the NMI handler pointed to by the active
vector table (flash or SRAM vector table).

■ System Call NMI exception: This exception is used for
nonvolatile programming operations such as flash write
operation and flash checksum operation. It is triggered
by setting the SYSCALL_REQ bit in the
CPUSS_SYSREQ register. An NMI exception triggered
by SYSCALL_REQ bit always executes the NMI excep-
tion handler code that resides in SROM. Flash or SRAM
exception vector table is not used for system call NMI
exception. The NMI handler code in SROM is not read/
write accessible because it contains nonvolatile pro-
gramming routines that should not be modified by the
user.

5.4.3 HardFault Exception

HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority. Hard-
Fault exception is a catch-all exception for different types of
fault conditions, which include executing an undefined
instruction and accessing an invalid memory addresses.
The CM0 CPU does not provide fault status information to
the HardFault exception handler, but it does permit the han-
dler to perform an exception return and continue execution
in cases where software has the ability to recover from the
fault situation.

5.4.4 Supervisor Call (SVCall) Exception

Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue a
supervisor call that requires privileged access to the system.
Note that the CM0 in PSoC 4 uses a privileged mode for the
system call NMI exception, which is not related to the SVCall
exception. (See the Chip Operational Modes chapter on
page 73 for details on privileged mode.) There is no other
privileged mode support for SVCall at the architecture level
in the device. The application developer must define the
SVCall exception handler according to the end application
requirements.

The priority of a SVCall exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_11[31:30] of the System Handler Priority Register 2
(SHPR2). When the SVC instruction is executed, the SVCall
exception enters the pending state and waits to be serviced
by the CPU. The SVCALLPENDED bit in the System Han-
dler Control and State Register (SHCSR) can be used to
check or modify the pending status of the SVCall exception.

5.4.5 PendSV Exception

PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable. The PendSV
exception is triggered by setting the PENDSVSET bit in the
Interrupt Control State Register, CM0_ICSR. On setting this
bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the PENDSV-
CLR bit in the Interrupt Control State Register, CM0_ICSR.
The priority of a PendSV exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_14[23:22] of the System Handler Priority Register 3
(CM0_SHPR3). See the ARMv6-M Architecture Reference
Manual for more details.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 35

Interrupts

5.4.6 SysTick Exception

CM0 CPU in PSoC 4 supports a system timer, referred to as
SysTick, as part of its internal architecture. SysTick provides
a simple, 24-bit decrementing counter for various timekeep-
ing purposes such as an RTOS tick timer, high-speed alarm
timer, or simple counter. The SysTick timer can be config-
ured to generate an interrupt when its count value reaches
zero, which is referred to as SysTick exception. The excep-
tion is enabled by setting the TICKINT bit in the SysTick
Control and Status Register (CM0_SYST_CSR). The priority
of a SysTick exception can be configured to a value
between 0 and 3 by writing to the two bit fields
PRI_15[31:30] of the System Handler Priority Register 3
(SHPR3). The SysTick exception can always be generated
in software at any instant by writing a one to the PENDST-
SETb bit in the Interrupt Control State Register, CM0_ICSR.
Similarly, the pending state of the SysTick exception can be
cleared by writing a one to the PENDSTCLR bit in the Inter-
rupt Control State Register, CM0_ICSR.

5.5 Interrupt Sources

PSoC 4 supports 32 interrupts (IRQ0 to IRQ31 or exception
numbers 16 – 47) from peripherals. The source of each
interrupt is listed in Table 5-3. PSoC 4 provides flexible
sourcing options for each of the 32 interrupt lines. Figure 5-5
shows the multiplexing options for interrupt source. Each
interrupt has two sources: a fixed-function interrupt source
and a DSI interrupt source. The CPUSS_INTR_SELECT
register is used to select between these sources.

Figure 5-5. Interrupt Source Multiplexing

Note The DSI interrupt signal naming (irq_out[n]) is not
readily accessible, but the PSoC Creator IDE simplifies the
task by doing the routing of the digital signals through the
DSI interrupt path. You do not need to manually configure
the DSI path.

The fixed-function interrupts include standard interrupts from
the on-chip peripherals such as TCPWM, serial communica-
tion block, and CSD block. The fixed-function interrupt gen-
erated is usually the logical OR of the different peripheral
states. The peripheral status register should be read in the
ISR to detect which condition generated the interrupt. Fixed-
function interrupts are usually level interrupts, which require
that the peripheral status register be read in the ISR to clear
the interrupt. If the status register is not read in the ISR, the
interrupt will remain asserted and the ISR will be executed
continuously. The second category of interrupt sources is
the DSI interrupt signals. There are 32 DSI channels for the
interrupts. Any digital signal on the chip, such as digital out-
puts from UDBs or digital input signals on pins, can be
routed as DSI interrupt sources. This provides flexibility in
the choice of interrupt sources. You also have the option of
routing the DSI signal through a rising edge detect circuit, as
shown in Figure 5-5. This edge detect circuit converts a ris-
ing edge signal on the DSI line to a pulse signal two system
clocks wide. This ensures that the interrupt is triggered once
on the rising edge of the signal on the DSI line. It is useful
for interrupt sources, which cannot generate proper level
interrupt signals to the NVIC. The UDB_INT_CFG register is
used to select between the direct DSI path and the edge
detect path.

See the I/O System chapter on page 53 for details on GPIO
interrupts.

DSI Interrupt
Source

Fixed Function Interrupt Source

Rising
Edge

Detect

0

1

IRQn
(n = 0 to 31)

Level

To NVIC

INT_CFG
register

0

1

INTR_SELECT
register

(irq_out[n])

Table 5-2. List of PSoC 4 Interrupt Sources

Interrupt
Cortex-M0

Exception No.
Fixed Function Interrupt Source DSI Interrupt Source

NMI (see “Exception Sources” on
page 33)

2 – irq_out[0]

IRQ0 16 GPIO Interrupt - Port 0 irq_out[1]

IRQ1 17 GPIO Interrupt - Port 1 irq_out[1]

IRQ2 18 GPIO Interrupt - Port 2 irq_out[2]

IRQ3 19 GPIO Interrupt - Port 3 irq_out[3]

IRQ4 20 GPIO Interrupt - Port 4 irq_out[4]

IRQ5 21 <DSI-only> irq_out[5]

36 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Interrupts

5.6 Exception Priority

Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. PSoC 4 provides flexibility in choosing priority values
for different exceptions. All exceptions other than Reset,
NMI, and HardFault can be assigned a configurable priority
level. The Reset, NMI, and HardFault exceptions have a
fixed priority of –3, –2, and –1 respectively. In PSoC 4, lower
priority numbers represent higher priorities. This means that
the Reset, NMI, and HardFault exceptions have the highest
priorities. The other exceptions can be assigned a configu-
rable priority level between 0 and 3.

PSoC 4 supports nested exceptions in which a higher prior-
ity exception can obstruct (interrupt) the currently active
exception handler. This pre-emption does not happen if the
incoming exception priority is the same as active exception.
The CPU resumes execution of the lower priority exception
handler after servicing the higher priority exception. The
CM0 CPU in PSoC 4 allows nesting of up to four exceptions.
When the CPU receives two or more exceptions requests of

the same priority, the lowest exception number is serviced
first.

The registers to configure the priority of exception numbers
1 to 15 are explained in “Exception Sources” on page 33.

The priority of the 32 interrupts (IRQ0 to IRQ31) can be con-
figured by writing to the Interrupt Priority registers
(CM0_IPR). This is a group of eight 32-bit registers with
each register storing the priority values of four interrupts, as
given in Table 5-3. The other bit fields in the register are not
used.

IRQ6 22 <DSI-only> irq_out[6]

IRQ7 23 <DSI-only> irq_out[7]

IRQ8 24 LPCOMP (Low-power Comparator) irq_out[8]

IRQ9 25 WDT (Watchdog timer) irq_out[9]

IRQ10 26 SCB1 (Serial Communication Block 1) irq_out[10]

IRQ11 27 SCB2 (Serial Communication Block 2) irq_out[11]

IRQ12 28 SPC (System Performance Controller) irq_out[12]

IRQ13 29 PWR (Power Manager) irq_out[13]

IRQ14 30 SAR (Successive Approximation ADC) irq_out[14]

IRQ15 31 CSD (CapSense block counter overflow interrupt) irq_out[15]

IRQ16 32 TCPWM0 (Timer/Counter/PWM 0) irq_out[16]

IRQ17 33 TCPWM1 (Timer/Counter/PWM 1) irq_out[17]

IRQ18 34 TCPWM2 (Timer/Counter/PWM 2) irq_out[18]

IRQ19 35 TCPWM3 (Timer/Counter/PWM 3) irq_out[19]

IRQ20 36 <DSI-only> irq_out[20]

IRQ21 37 <DSI-only> irq_out[21]

IRQ22 38 <DSI-only> irq_out[22]

IRQ23 39 <DSI-only> irq_out[23]

IRQ24 40 <DSI-only> irq_out[24]

IRQ25 41 <DSI-only> irq_out[25]

IRQ26 42 <DSI-only> irq_out[26]

IRQ27 43 <DSI-only> irq_out[27]

IRQ28 44 <DSI-only> irq_out[28]

IRQ29 45 <DSI-only> irq_out[29]

IRQ30 46 <DSI-only> irq_out[30]

IRQ31 47 <DSI-only> irq_out[31]

Table 5-2. List of PSoC 4 Interrupt Sources

Interrupt
Cortex-M0

Exception No.
Fixed Function Interrupt Source DSI Interrupt Source

Table 5-3. Interrupt Priority Register Bit Definitions

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 37

Interrupts

5.7 Enabling and Disabling
Interrupts

The NVIC provides registers to individually enable and dis-
able the 32 interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on
that interrupt line. The Interrupt Set-Enable Register
(CM0_ISER) and the Interrupt Clear-Enable Register
(CM0_ICER) are used to enable and disable the interrupts
respectively. These are 32-bit wide registers and each bit
corresponds to the same numbered interrupt. These regis-
ters can also be read in software to get the enable status of
the interrupts. Table 5-4 shows the register access proper-
ties for these two registers. Note that writing zero to these
registers has no effect.

The CM0_ISER and CM0_ICER registers are applicable
only for interrupts IRQ0 to IRQ31. These registers cannot be
used to enable or disable the exception numbers 1 to 11.
The 15 exceptions have their own support for enabling and
disabling, as explained in “Exception Sources” on page 33.

The PRIMASK register in Cortex-M0 (CM0) CPU can be
used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether they
are enabled. Configurable priority exceptions include all the
exceptions except Reset, NMI, and HardFault listed in
Table 5-1. They can be configured to a priority level between
0 and 3, 0 being the highest priority and 3 being the lowest
priority. When the PM bit (bit 0) in the PRIMASK register is
set, none of the configurable priority exceptions can be ser-
viced by the CPU, though they can be in the pending state
waiting to be serviced by the CPU after the PM bit is
cleared.

5.8 Exception States
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0_ICSR) contains
status bits describing the various exceptions states.

■ The VECTACTIVE bits ([8:0]) in the CM0_ICSR store the
exception number for the current executing exception.
This value is zero if the CPU does not execute any
exception handler (CPU is in thread mode). Note that the
value in VECTACTIVE bit fields is the same as the value
in bits [8:0] of the Interrupt Program Status Register
(IPSR), which is also used to store the active exception
number.

■ The VECTPENDING bits ([20:12]) in the CM0_ICSR
store the exception number of the highest priority pend-
ing exception. This value is zero if there are no pending
exceptions.

■ The ISRPENDING bit (bit 22) in the CM0_ICSR indi-
cates if a NVIC generated interrupt (IRQ0 to IRQ31) is in
a pending state.

5.8.1 Pending Exceptions

When a peripheral generates an interrupt request signal to
the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts
executing the corresponding exception handler routine, the
exception is changed from the pending state to the active
state.

The NVIC allows software pending of the 32 interrupt lines
by providing separate register bits for setting and clearing
the pending states of the interrupts. The Interrupt Set-Pend-
ing register (CM0_ISPR) and the Interrupt Clear-Pending
register (CM0_ICPR) are used to set and clear the pending
status of the interrupt lines. These are 32-bit wide registers
and each bit corresponds to the same numbered interrupt.

Table 5-4. Interrupt Enable/Disable Registers

Register Operation Bit Value Comment

Interrupt Set
Enable Register
(CM0_ISER)

Write
1 To enable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear
Enable Register
(CM0_ICER)

Write
1 To disable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Table 5-5. Exception States

Exception State Meaning

Inactive
The exception is not active or pending.
Either the exception is disabled or the
enabled exception has not been triggered.

Pending
The exception request is received by the
CPU/NVIC and the exception is waiting to
be serviced by the CPU.

Active

An exception that is being serviced by the
CPU but whose exception handler execu-
tion is not yet complete. A high-priority
exception can interrupt the execution of
lower priority exception. In this case, both
the exceptions are in the active state.

Active and Pending

The exception is serviced by the processor
and there is a pending request from the
same source during its exception handler
execution.

38 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Interrupts

Table 5-6 shows the register access properties for these two
registers. Note that writing zero to these registers has no
effect.

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the CM0_ISER register.

Note that the CM0_ISPR and CM0_ICPR registers are used
only for the 32 peripheral interrupts (exception numbers 16–
47). These registers cannot be used for pending the
exception numbers 1 to 11. These 15 exceptions have their
own support for pending, as explained in “Exception
Sources” on page 33.

5.9 Stack Usage for Exceptions

When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and R0. Cortex-M0
has two stack pointers - MSP and PSP. Only one of the
stack pointers can be active at a time. When in thread mode,
the Active Stack Pointer bit in the Control register is used to
define the current active stack pointer. When in handler
mode, the MSP is always used as the stack pointer. The
stack pointer in Cortex-M0 always grows downwards and
points to the address that has the last pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the control
register to store the general-purpose register contents. After
the stack push operations, the CPU enters handler mode to
execute the exception handler. When another higher priority
exception occurs while executing the current exception, the

MSP is used for stack push/pop operations, because the
CPU is already in handler mode. See the Cortex-M0
CPU chapter on page 35 for details.

The Cortex-M0 uses two techniques, tail chaining and late
arrival, to reduce latency in servicing exceptions. These
techniques are not visible to the external user and are part
of the internal processor architecture. For information on tail
chaining and late arrival mechanism, visit the ARM
Infocenter.

5.10 Interrupts and Low-Power
Modes

PSoC 4 allows device wakeup from low-power modes when
certain peripheral interrupt requests are generated. The
Wakeup Interrupt Controller (WIC) block generates a
wakeup signal that causes the device to enter Active mode
when one or more wakeup sources generate an interrupt
signal. After entering Active mode, the ISR of the peripheral
interrupt is executed.

The Wait For Interrupt (WFI) instruction, executed by the
CM0 CPU, triggers the transition into Sleep, Deep-Sleep,
and Hibernate modes. The sequence of entering the
different low-power modes is detailed in the Power
Modes chapter on page 75. Chip low-power modes have
three categories of fixed-function interrupt sources:

■ Fixed-function interrupt sources that are available in the
Active, Deep-Sleep, and Hibernate modes (GPIO
interrupts, low-power comparators).

■ Fixed-function interrupt sources that are available only in
the Active and Deep-Sleep modes (watchdog timer
interrupt, and serial communication block interrupts)

■ Fixed-function interrupt sources that are available only in
the Active mode (all other fixed-function interrupts)

Table 5-6. Interrupt Set Pending/Clear Pending Registers

Register Operation
Bit

Value
Comment

Interrupt Set-
Pending Register
(CM0_ISPR)

Write
1

To put an interrupt to
pending state

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-
Pending Register
(CM0_ICPR)

Write
1

To clear a pending
interrupt

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 39

Interrupts

5.11 Exceptions – Initialization and Configuration

This section covers the different steps involved in initializing and configuring exceptions in PSoC 4.

1. Configuring the Exception Vector Table Location: The first step in using exceptions is to configure the vector table location
as required – either in flash memory or SRAM. This configuration is done by writing either a ‘1’ (SRAM vector table) or ‘0’
(flash vector table) to the VECT_IN_RAM bit field (bit 0) in the CPUSS_CONFIG register. This register write is done as
part of device initialization code.

It is recommended that the vector table be available in SRAM if the application needs to change the vector addresses
dynamically. If the table is located in flash, then a flash write operation is required to modify the vector table contents.
PSoC Creator IDE uses the vector table in SRAM by default.

2. Configuring Individual Exceptions: The next step is to configure individual exceptions required in an application.

a. Configure the exception or interrupt source; this includes setting up the interrupt generation conditions. The register
configuration depends on the specific exception required.

b. Define the exception handler function and write the address of the function to the exception vector table. Table 5-1
gives the exception vector table format; the exception handler address should be written to the appropriate exception
number entry in the table.

c. Set up the exception priority, as explained in “Exception Priority” on page 36.

d. Enable the exception, as explained in “Enabling and Disabling Interrupts” on page 37.

5.12 Registers

5.13 Associated Documents
■ ARMv6-M Architecture Reference Manual – This document explains the ARM Cortex-M0 architecture, including the

instruction set, NVIC architecture, and CPU register descriptions.

Table 5-7. List of Registers

Register Name Description

CM0_ISER Interrupt Set-Enable Register

CM0_ICER Interrupt Clear Enable Register

CM0_ISPR Interrupt Set-Pending Register

CM0_ICPR Interrupt Clear-Pending Register

CM0_IPR Interrupt Priority Registers

CM0_ICSR Interrupt Control State Register

CM0_AIRCR Application Interrupt and Reset Control Register

CM0_SCR System Control Register

CM0_CCR Configuration and Control Register

CM0_SHPR2 System Handler Priority Register 2

CM0_SHPR3 System Handler Priority Register 3

CM0_SHCSR System Handler Control and State Register

CM0_SYST_CSR Systick Control and Status Register

CPUSS_CONFIG CPU Subsystem Configuration Register

CPUSS_SYSREQ System Request Register

CPUSS_INTR_SELECT Interrupt Multiplexer Select Register

UDB_INT_CFG UDB Subsystem Interrupt Configuration Register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

40 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Interrupts

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 41

Section C: Memory System

This section presents the following chapter:

■ Memory Map chapter on page 43

Top Level Architecture

Memory System Block Diagram

SPCIF

FLASH
32 KB

Read Accelerator

SRAM
4 kB

SROM
4 kB

SRAM Controller ROM Controller

System Interconnect (Single Layer AHB)

42 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 43

6. Memory Map

All PSoC® 4 memory (flash, SRAM, and SROM) and all registers are accessible by the CPU and in most cases by the debug
system. This chapter contains an overall map of the addresses of the memories and registers.

6.1 Features
The PSoC 4 memory system has the following features:

■ 32K bytes flash, 4K bytes SRAM

■ 4K byte SROM contains boot and configuration routines

■ ARM Cortex-M0 32-bit linear address space, with regions for code, SRAM, peripherals, and CPU internal registers

■ Flash is mapped to the Cortex-M0 code region

■ SRAM is mapped to the Cortex-M0 SRAM region

■ Peripheral registers are mapped to the Cortex-M0 peripheral region

■ The Cortex-M0 Private Peripheral Bus (PPB) region includes registers implemented in the CPU core. These include reg-
isters for NVIC, SysTick timer, and serial communication block (SCB). For more information, see the Cortex-M0
CPU chapter on page 25.

6.2 How It Works
The PSoC 4 memory map is detailed in the following tables. For additional information, refer to the PSoC 4100/4200 Family:
PSoC 4 Registers TRM.

The ARM Cortex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 6-1. Note that code can be executed
from the code and SRAM regions.

Table 6-1. Cortex-M0 Address Map

Address Range Name Use

0x00000000 – 0x1FFFFFFF Code
Executable region for program code. You can also put data here. Includes the exception
vector table, which starts at address 0.

0x20000000 – 0x3FFFFFFF SRAM Executable region for data. You can also put code here.

0x40000000 – 0x5FFFFFFF Peripheral All peripheral registers. Code cannot be executed out of this region.

0x60000000 – 0xDFFFFFFF – Not used

0xE0000000 – 0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000 – 0xFFFFFFFF Device PSoC 4 implementation-specific.

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

44 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Memory Map

Table 6-2 shows the PSoC 4 address map.

Table 6-2. PSoC 4 Address Map

Address Range Use

0x00000000 - 0x00007FFF 32 KB flash

0x10000000 - 0x10000FFF 4 KB supervisory flash

0x20000000 - 0x20000FFF 4 KB SRAM

0x40000000 - 0x4000FFFF CPU subsystem registers

0x40010000 - 0x40010FFF I/O port control (high-speed I/O matrix) registers

0x40020000 - 0x4002FFFF Programmable clocks registers

0x40040000- -0x4004FFFF I/O port registers

0x40050000- -0x40050FFF TCPWM registers

0x40060000- -0x4006FFFF SCB registers

0x40080000- -0x4008FFFF CapSense registers

0x40090000- -0x4009FFFF LCD registers

0x400A0000- -0x400AFFFF Low-power comparator registers

0x400B0000- -0x400BFFFF Power, clock, reset control registers

0x400F0000- -0x400FFFFF UDB control registers (available only in PSoC 4200 family)

0xE0000000 - 0xE00FFFFF Cortex-M0 PPB registers

0xF0000000 - 0xF0000FFF CoreSight ROM

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 45

Section D:System Resources Subsystem (SRSS)

This section encompasses the following chapters:

■ I/O System chapter on page 47

■ Clocking System chapter on page 57

■ Power Supply and Monitoring chapter on page 65

■ Chip Operational Modes chapter on page 71

■ Power Modes chapter on page 73

■ Watchdog Timer chapter on page 79

■ Reset System chapter on page 83

■ Device Security chapter on page 87

Top Level Architecture

System-Wide Resources Block Diagram

System Resources

Power
Sleep Control

PWRSYS

REF

POR LVD

BOD

WIC

XRES

Clock

WDT

ILO

Reset

Clock Control

IMO

NVLatches

Reset Control

P
er

ip
he

ra
l I

nt
er

co
nn

ec
t (

M
M

IO
)

46 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 47

7. I/O System

This chapter explains the PSoC® 4 I/O system, its features, architecture, operating modes, and interrupts. The GPIO pins in
PSoC 4 are grouped into ports; a port can have a maximum of eight GPIOs. The PSoC 4100/4200 family has a maximum of
36 GPIOs arranged in five ports.

7.1 Features

The PSoC 4 GPIOs have these features:

■ Analog and digital input and output capabilities

■ Eight drive strength modes

■ Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis

■ Slew rate control

■ Hold mode for latching previous state (used for retaining I/O state in Deep-Sleep mode)

■ Selectable CMOS and low-voltage LVTTL input buffer mode

■ CapSense support

■ Segment LCD drive support

7.2 GPIO Interface Overview

PSoC 4 is equipped with analog and digital peripherals. Figure 7-1 shows an overview of the routing between the peripherals
and pins.

Figure 7-1. GPIO Interface Overview

High Speed IO Matrix
(HSIOM)

G
P

IO

C
on

fig
uration

G
P

IO
 In

terrup
t

G
P

IO
 P

in

In
te

rfa
ce

GPIO Port Control

CSD
Controller

Segment
LCD

Control

Fixed
Function
Digital

Peripherals

UDB Array

Port
Adapter

SARMUX,
CTBm,

LPCOMP
CapSense Pin

AMUXBUS-A

AMUXBUS-B

IO Cell

DSI

48 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

I/O System

GPIO pins are connected to I/O cells. These cells are equipped with an input buffer for the digital input, providing high input
impedance and a driver for the digital output signals. The digital peripherals connect to the I/O cells via the high-speed I/O
matrix (HSIOM). HSIOM contains multiplexers to connect between a peripheral selected by the user and the pin. HSIOM also
bridges the connection between the digital system interconnect (DSI) and the pins. This enables routing of pin signals to the
DSI-connected peripherals such as UDBs. The analog peripherals such as SAR ADC, Continuous Time Block-mini (CTBm),
Low Power Comparator (LPCOMP), and CapSense are either connected to the GPIO pins directly or through the AMUX
buses.

7.3 I/O Cell Architecture

Figure 7-2 shows the I/O cell architecture. It comprises of an input buffer and an output driver. This architecture is present in
every GPIO cell. It connects to the HSIOM multiplexers for the digital input and the output signal. Analog peripherals connect
directly to the pin.

Figure 7-2. I/O Cell Architecture in PSoC 4100/4200

Digital
Logic

Slew
Control

PORT_SLOW (GPIO_PRTx_PC[25])

GPIO_PRTx_PC[3y+2:3y]

In

OE

PIN

VDDD

VDDD VDDD

D
ig

it
al

 O
u

tp
u

t
P

at
h

GPIO_PRTx_DR[y]

GPIO_DSI

DSI_GPIO

ACTIVE_0 (TCPWM)

ACTIVE_1 (SCB)

ACTIVE_2 (Reserved)

ACTIVE_3 (Reserved)

DEEP_SLEEP_1 (LCD-SEG)

DEEP_SLEEP_0 (LCD - COM)

OUTPUT ENABLE

HSIOM_PORT_SELx[4y+3:4y]

GPIO
Edge

Detect

Pin Interrupt Signal

DATA
(GPIO_PRTx_INTSTAT[y])

EDGE_SEL
(GPIO_PRTx_INTCFG[2y+1:2y])

SCB (SPI, I2C, UART)

DATA (GPIO_PRTx_PS[y])

INP_DIS (GPIO_PRTx_PC2[y])

D
ig

it
al

 In
p

u
t

P
at

h

Switches
HSIOM_PORT_SELx[4y+3:4y]

AMUXBUS-A (CapSense Source)

AMUXBUS-B (CapSense Shield)

A
n

al
o

g

Dedicated Analog Resources (CTBm, LPCOMP, SAR ADC)

HSIOM

3

4

DEEP_SLEEP_2

DEEP_SLEEP_3

Input Buffer

Disable

Drive
Mode

 DSI

HSIOM

PORT_VTRIP_SEL (GPIO_PRTx_PC[24])

Buffer Mode Select

CMOS
LVTTL

HSIOM_PORT_SELx[4y+3:4y] 4

IO CELL

Input Buffer
 Output Driver

DSI_DSI

4

x – Port Number
y – Pin Number

VSS

VSS VSS

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 49

I/O System

7.3.1 Digital Input Buffer

The digital input buffer provides a high-impedance buffer for
the external digital input. The buffer is enabled and disabled
by the INP_DIS bit of the Port Configuration Register 2
(GPIO_PRTx_PC2, where x is the port number). The buffer
is configurable for the following modes:

■ CMOS

■ LVTTL

These buffer modes are selected by the PORT_VTRIP_SEL
bit (GPIO_PRTx_PC[24]) of the Port Configuration register.

The threshold values for each mode can be obtained from
the device datasheet. The output of the input buffer is con-
nected to the HSIOM for routing to the selected peripherals.
Writing to the HSIOM port select register
(HSIOM_PORT_SELx) selects the peripheral. The digital
input peripherals in the HSIOM, shown in Figure 7-2, are pin
dependent. See the device datasheet to know the functions
available for each pin.

7.3.2 Digital Output Driver

Pins are driven by the digital output driver. It consists of cir-
cuitry to implement different drive modes and slew rate con-
trol for the digital output signals. The peripheral connects to
the digital output driver through the HSIOM; a particular
peripheral is selected by writing to the HSIOM port select
register (HSIOM_PORT_SELx).

In PSoC4100/4200, I/Os are driven with VDDD supply. Each
GPIO pin has ESD diodes to clamp the pin voltage to the I/O
supply source. Ensure that the voltage at the pin does not
exceed the I/O supply voltage VDDD and drop below VSS.
For the absolute maximum and minimum GPIO voltage, see
the device datasheet. The digital output driver can be
enabled and disabled using the DSI signal from the periph-
eral or data register (GPIO_PRTx_DR) associated with the
output pin. See 7.4 High-Speed I/O Matrix to know about the
peripheral source selection for the data and to enable or dis-
able control source selection.

7.3.2.1 Drive Modes

Each I/O is individually configurable into one of eight drive
modes using the Port Configuration register,
GPIO_PRTx_PC. Table 7-2 lists the drive modes. Figure 7-2
is a simplified output driver diagram that shows the pin view
based on each of the eight drive modes.

Table 7-1. Input Buffer Modes

PORT_VTRIP_SEL Input Buffer Mode

0b CMOS

1b LVTTL

Table 7-2. Drive Mode Settings

GPIO_PRTx_PC ('x' denotes port number and 'y' denotes pin number)

Bits Drive Mode Value Data = 1 Data = 0

3y+2: 3y

SEL'y’ Selects Drive Mode for Pin 'y' (0  y  7)

High-Impedance Analog 0 High Z High Z

High-impedance Digital 1 High Z High Z

Resistive Pull Up 2 Weak 1 Strong 0

Resistive Pull Down 3 Strong 1 Weak 0

Open Drain, Drives Low 4 High Z Strong 0

Open Drain, Drives High 5 Strong 1 High Z

Strong Drive 6 Strong 1 Strong 0

Resistive Pull Up and Down 7 Weak 1 Weak 0

50 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

I/O System

Figure 7-3. I/O Drive Mode Block Diagram

■ High-Impedance Analog

High-impedance analog mode is the default reset state; both output driver and digital input buffer are turned off. This state
prevents an external voltage from causing a current to flow into the digital input buffer. This drive mode is recommended for
pins that are floating or that support an analog voltage. High-impedance analog pins cannot be used for digital inputs. Read-
ing the pin state register returns a 0x00 regardless of the data register value. To achieve the lowest device current in low-
power modes, unused GPIOs must be configured to the high-impedance analog mode.

■ High-Impedance Digital

High-impedance digital mode is the standard high-impedance (High Z) state recommended for digital inputs. In this state, the
input buffer is enabled for digital input signals.

■ Resistive Pull-Up or Resistive Pull-Down

Resistive modes provide a series resistance in one of the data states and strong drive in the other. Pins can be used for either
digital input or digital output in these modes. If resistive pull-up is required, a ‘1’ must be written to that pin’s Data Register bit.
If resistive pull-down is required, a ‘0’ must be written to that pin’s Data Register. Interfacing mechanical switches is a com-
mon application of these drive modes. The resistive modes are also used to interface PSoC with open drain drive lines. Resis-
tive pull-up is used when input is open drain low and resistive pull-down is used when input is open drain high.

■ Open Drain Drives High and Open Drain Drives Low

Open drain modes provide high impedance in one of the data states and strong drive in the other. The pins can be used as
digital input or output in these modes. Therefore, these modes are widely used in bi-directional digital communication. Open
drain drive high mode is used when signal is externally pulled down and open drain drive low is used when signal is externally

pulled high. A common application for open drain drives low mode is driving I2C bus signal lines.

■ Strong Drive

The strong drive mode is the standard digital output mode for pins; it provides a strong CMOS output drive in both high and
low states. Strong drive mode pins must not be used as inputs under normal circumstances. This mode is often used for digi-
tal output signals or to drive external transistors.

DR
PS

Pin
DR
PS

Pin
DR
PS

Pin DR
PS

Pin

DR
PS

Pin
DR
PS

Pin
DR
PS

Pin
DR
PS

Pin

0 . High Impedance
 Analog

1 . High Impedance
 Digital

2 . Resistive Pull Up 3 . Resistive Pull Down

4 . Open Drain,
 Drives Low

5 . Open Drain,
 Drives High

6 . Strong Drive 7 . Resistive Pull Up
 and Pull Down

Vdd Vdd

Vdd Vdd Vdd

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 51

I/O System

■ Resistive Pull-Up and Resistive Pull-Down

In the resistive pull-up and resistive pull-down mode, the GPIO will have a series resistance in both logic 1 and logic 0 output
states. The high data state is pulled up while the low data state is pulled down. This mode is used when the bus is driven by
other signals that may cause shorts.

7.3.2.2 Slew Rate Control

GPIO pins have fast and slow output slew rate options in strong drive mode; this is configured using PORT_SLOW bit of the
Port Configuration register (GPIO_PRTx_PC[25]). Slew rate is individually configurable for each port. This bit is cleared by
default and the port works in fast slew mode. This bit can be set if a slow slew rate is required. Slower slew rate results in
reduced EMI and crosstalk; hence, the slow option is recommended for low-frequency signals or signals without strict timing
constraints.

52 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

I/O System

7.4 High-Speed I/O Matrix

The high-speed I/O matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the peripherals inside the device.
As the GPIOs are shared for multiple functions, HSIOM multiplexes the pin and connects to a particular peripheral selected by
the user. The HSIOM_PORT_SELx register is provided to select the peripheral. It is a 32-bit wide register available for each
port, with each pin occupying four bits. This register provides up to 16 different options for a pin as listed in Table 7-3.

Note The Active and Deep-Sleep sources are pin dependent. See the “Pinouts” section of the device datasheet for more
details on the features supported by each pin.

7.5 I/O State on Power Up

During power up all the GPIOs are in high-impedance analog state and the input buffers are disabled. During run time, GPIOs
can be configured by writing to the associated registers. Note that the pins supporting debug access port (DAP) connections
(SWD lines) are always enabled as SWD lines during power up. However, the DAP connection can be disabled or reconfig-
ured for general-purpose use through HSIOM. However, this reconfiguration takes place only after the device boots and start
executing code.

Table 7-3. PSoC 4100/4200 HSIOM Port Settings

HSIOM_PORT_SELx ('x' denotes port number and 'y' denotes pin number)

Bits Name (SEL'y') Value Description (Selects pin 'y' source ((0  y  7)

4y+3 : 4y

DR 0 Pin is regular firmware-controlled I/O or connected to dedicated hardware block.

DR_DSI 1 Output is firmware controlled, but OE is controlled from DSI.

DSI_DSI 2 Both output and OE are controlled from DSI.

DSI_DR 3 Output is controlled from DSI, but OE is firmware controlled.

CSD_SENSE 4 Pin is a CSD sense pin (analog mode).

CSD_SHIELD 5 Pin is a CSD shield pin (analog mode).

AMUXA 6 Pin is connected to AMUXBUS-A.

AMUXB 7
Pin is connected to AMUXBUS-B. This mode is also used for CSD I/O charging. When
CSD I/O charging is enabled in CSD_CONTROL, digital I/O driver is connected to
csd_charge signal (pin is still connected to AMUXBUS-B).

ACTIVE_0 8 Pin-specific Active source #0 (TCPWM).

ACTIVE_1 9 Pin-specific Active source #1 (SCB-UART).

ACTIVE_2 10 Reserved

ACTIVE_3 11 Reserved

DEEP_SLEEP_0 12 Pin-specific Deep-Sleep source #0 (LCD - COM)

DEEP_SLEEP_1 13 Pin-specific Deep-Sleep source #1 (LCD - SEG)

DEEP_SLEEP_2 14 Pin-specific Deep-Sleep source #2 (SCB-I2C, SWD).

DEEP_SLEEP_3 15 Pin-specific Deep-Sleep source #3 (SCB-SPI).

http://www.cypress.com/?id=4749&rtID=107&source=an85951

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 53

I/O System

7.6 Behavior in Low-Power Modes

Table 7-4 shows the status of GPIOs in low-power modes.

7.7 Input and Output Synchronization

For digital input and output signals, the I/O provides synchronization with an internal clock or a digital signal as clock. By
default, HFCLK is used for synchronization but any other clock can also be used.

This feature is implemented using the UDB port adapter. See the Universal Digital Blocks (UDB) chapter on page 125 for
details on the port adapter.

7.8 Interrupt

In the PSoC 4 device, all the port pins have the capability to generate interrupts. There are three routing possibilities for the
pin signals to generate the interrupt, as shown in Figure 7-4.

Figure 7-4. Interrupt Signal Routing

■ Through the “GPIO Edge Detect” block and direct connection to the interrupt source multiplexer

■ Through the “GPIO Edge Detect” block and to the interrupt source multiplexer via DSI

■ Pin signal to the interrupt source multiplexer via DSI bypassing the “GPIO Edge Detect” block

Figure 7-5 shows the GPIO Edge Detect block architecture.

Table 7-4. PSoC 4100/4200 GPIO in Low-Power Modes

Low-Power Mode Status

Sleep
■ GPIOs are active and can be driven by peripherals such as CapSense, TCPWM, and SCB, which can work in

sleep mode.

■ Input buffers are active; thus an interrupt on any I/O can be used to wake up the CPU.

Deep-Sleep
■ GPIOs connected to the deep-sleep domain peripherals are functional. Other pins, with its output enabled, are

in the frozen state.

■ Pin interrupts are functional on all I/Os.

Hibernate
■ GPIO output pin states are latched and remain in the frozen state.

■ Pin interrupts are functional on all I/Os.

Stop
■ GPIO output pin states are latched and remain in the frozen state.

■ Interrupt on only port P0[7] wakes up the device.

GPIO Edge
Detect

Pin Signal
from

HSIOM

Port
Adapter

DSI

DSI route

Fixed function route

To the Interrupt
Source
Multiplexer

54 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

I/O System

Figure 7-5. GPIO Edge Detect Block Architecture

An edge detector is present at each pin. It is capable of
detecting rising edge, falling edge, and both edges without
reconfiguration. The edge detector is configured by writing
into the EDGE_SEL bits of the Port Interrupt Configuration
register, GPIO_PRTx_INTCFG as shown in Table 7-5.

Besides the pins, edge detector is also present at the glitch
filter output. This filter can be used on one of the pins of a
port. The pin is selected by writing to the FLT_SEL field of
the GPIO_PRTx_INTCFG register as shown in Table 7-6.

The edge detector outputs of a port are ORed together and
then routed to the interrupt controller (NVIC in the CPU sub-
system). Thus, there is only one interrupt vector per port. On
a pin interrupt, it is required to know which pin caused an
interrupt. This is done by reading the Port Interrupt Status
register, GPIO_PRTx_INTSTAT. This register not only
includes the information on which pin triggered the interrupt,
it also includes the pin status; it allows the CPU to read both
information in a single read operation. This register has one
more important use – to clear the interrupt. Writing ‘1’ to the
corresponding status bit clears the pin interrupt. It is impor-
tant to clear the interrupt status bit; otherwise, the interrupt

will occur repeatedly for a single trigger or respond only
once for multiple triggers, which is explained later in this
section. Also, note that when the Port Interrupt Control Sta-
tus register is read when an interrupt is occurring on the cor-
responding port, it can result in the interrupt not being
properly detected. Therefore, when using GPIO interrupts, it
is recommended to read the status register only inside the
corresponding interrupt service routine and not in any other
part of the code. Table 7-7 shows the Port Interrupt Status
register bit fields.

The edge detector block output is routed to the Interrupt
Source Multiplexer shown in Figure 5-3 on page 32, which
gives an option of Level and Rising Edge detect. If the Level
option is selected, an interrupt is triggered repeatedly as
long as the Port Interrupt Status register bit is set. If the Ris-
ing Edge detect option is selected, an interrupt is triggered
only once if the Port Interrupt Status register is not cleared.
Thus, it is important to clear the interrupt status bit if the
Edge Detect block is used.

There is a dedicated interrupt vector for each port when the
interrupt signal is routed through the fixed-function route.
However, when the signal is routed though the DSI, interrupt
vector is flexible and can occupy any of the 32 interrupt lines
of the NVIC. See the Interrupts chapter on page 31 for
details.

When the signal is routed to the DSI, bypassing the Edge
Detect block, the edge detection is configurable in the Inter-
rupt Source Multiplexer block. It is important to note that if
the multiplexer is configured as Level, the interrupt is trig-
gered repeatedly as long as the pin signal is high. It is rec-
ommended to use the Rising Edge detect option when this
route is selected.

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

50 ns Glitch Filter

Interrupt
Signal

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7

Table 7-5. Edge Detector Configuration

EDGE_SEL Configuration

00 Interrupt is disabled

01 Interrupt on Rising Edge

10 Interrupt on Falling Edge

11 Interrupt on Both Edges

Table 7-6. Glitch filter Input Selection

FLT_SEL Selected Pin

000 Pin 0 is selected

001 Pin 1 is selected

010 Pin 2 is selected

011 Pin 3 is selected

100 Pin 4 is selected

101 Pin 5 is selected

110 Pin 6 is selected

111 Pin 7 is selected

Table 7-7. Port Interrupt Status Register

GPIO_PRTx_INTST
AT

Description

0000b to 0111b
Interrupt status on pin 0 to pin 7. Writing ‘1’
to the corresponding bit clears the interrupt

1000b Interrupt status from the glitch filter

10000b to 10111 Pin 0 to Pin 7 status

11000b Glitch filter output status

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 55

I/O System

7.9 Peripheral Connections

7.9.1 Firmware Controlled GPIO

See Table 7-3 to know the HSIOM settings for a firmware
controlled GPIO. GPIO_PRTx_DR is the data register used
to read and write the output data for the GPIOs. A write
operation to this register changes the GPIO output to the
written value. Note that a read operation reflects the output
data written to this register and not the current state of the
GPIOs. Using this register, read-modify-write sequences
can be safely performed on a port that has both input and
output GPIOs.

GPIO_PRTx_PS is the I/O pad register that provides the
state of the GPIOs when read. Writes to this register have
no effect.

7.9.2 Analog I/O

Analog resources, such as LPCOMP, SARMUX, and CTBm,
which require low-impedance routing paths have dedicated
pins. Dedicated analog pins provide direct connections to
specific analog blocks. They help improve performance and
should be given priority over other pins when using these
analog resources. See the device datasheet for details on
these dedicated pins.

To configure a GPIO as a dedicated analog I/O, it should be
configured in high-impedance analog mode (see Table 7-2)
and the respective connection should be enabled in the spe-
cific analog resource. This can be done via registers associ-
ated with the respective analog resources.

To configure a GPIO as an analog pin connecting to AMUX-
BUS, it should be configured in high-impedance analog
mode and then routed to AMUXBUS using the
HSIOM_PORT_SELx register.

7.9.2.1 AMUXBUS Connection and DSI

In ports that support DSI connectivity, connecting a pin to
AMUXBUS A/B requires the user to configure a couple of
DSI signals in addition to configuring the
HSIOM_PORT_SELx register. The DSI output and the DSI
output enable signal of the pin should be set high to enable
the AMUXBUS connection. This option allows the use of
DSI signals to control the AMUXBUS connection on a pin,
thus enabling the user to implement hardware AMUXBUS
switching through DSI. To properly configure a pin as
AMUXBUS input, follow these steps:

1. Route the DSI output and DSI output enable signals out
of the pin in the design and connect them to logic '1' for
static AMUXBUS connection. The signals can be con-
nected to a selection signal from DSI, if dynamic AMUX-
BUS connection is required in the design. This can be
done within the device.

2. Configure the GPIO_PRTx_PC register to set the pin in
Hi-Z analog mode – this enables the analog connectivity
on the pin by disabling the input buffer.

3. Configure the HSIOM_PRT_SELx register to connect
the pin to AMUXBUS A or B.

7.9.3 LCD Drive

All GPIOs have the capability of driving an LCD common or
segment. HSIOM_PORT_SELx registers are used to select
the pins for LCD drive. See the LCD Direct Drive chapter on
page 243 for details.

7.9.4 CapSense

The pins that support CSD can be configured as CapSense
widgets such as buttons, slider elements, touchpad ele-
ments, or proximity sensors. CapSense also requires exter-
nal tank capacitors and shield lines. Table 7-8 shows the
GPIO and HSIOM settings required for CapSense. See the
CapSense chapter on page 255 for more information.

Table 7-8. CapSense Settings

CapSense Pin
GPIO Drive Mode
(GPIO_PRTx_PC)

Digital Input Buffer Setting
(GPIO_PRTx_PC2)

HSIOM Setting

Sensor High-Impedance Analog Disable Buffer CSD_SENSE

Shield High-Impedance Analog Disable Buffer CSD_SHIELD

CMOD (normal operation) High-Impedance Analog Disable Buffer AMUXBUS A or CSD_COMP

CMOD (GPIO precharge, only available in select
GPIO)

High-Impedance Analog Disable Buffer AMUXBUS B or CSD_COMP

CSH TANK (GPIO precharge, only available in
select GPIO)

High-Impedance Analog Disable Buffer AMUXBUS B or CSD_COMP

http://www.cypress.com/?id=4749&rtID=107&source=an85951

56 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

I/O System

7.9.5 Serial Communication Block (SCB)

SCB, which can be configured as UART, I2C, and SPI, has dedicated connections to the pin. See the device datasheet for
details on these dedicated pins of PSoC 4. When the UART and SPI mode is used, the SCB controls the digital output buffer
drive mode for the input pin to keep the pin in the high-impedance state. That is, the SCB block disables the output buffer at
the UART Rx pin and MISO pin when configured as SPI master, and MOSI and select line when configured as SPI slave. This
functionality overrides the drive mode settings, which is done using the GPIO_PRTx_PC register.

7.10 Port Restrictions

Port 4 and higher ports do not have the port adapter resulting in the following restrictions:

■ Cannot be routed through the DSI; thus UDB-based digital signals cannot be routed to the pins of these ports

■ No input/output synchronization

■ Cannot be used for analog blocks - SAR ADC, continuous time block - mini (CTBm) and low-power comparator
(LPCOMP)

However, these ports can be used in the following ways:

■ As GPIO controlled in firmware

■ Direct connection to TCPWM, SCB, or CAN

■ LCD and CapSense pins

■ Interrupts generation

7.11 Registers

Note The 'x' in the GPIO register name denotes the port number. For example, GPIO_PTR1_DR is the Port 1 output data
register.

Table 7-9. I/O Registers

Name Description

GPIO_PRTx_DR Port Output Data Register

GPIO_PRTx_PS Port Pin State Register - Reads the logical pin state of I/O

GPIO_PRTx_PC Port Configuration Register - Configures the output drive mode, input threshold, and slew rate

GPIO_PRTx_PC2 Port Secondary Configuration Register - Configures the input buffer of I/O pin

GPIO_PRTx_INTCFG Port Interrupt Configuration Register

GPIO_PRTx_INTSTAT Port Interrupt Status Register

HSIOM_PORT_SELx HSIOM Port Selection Register

http://www.cypress.com/?id=4749&rtID=107&source=an85951

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 57

8. Clocking System

The PSoC® 4 clock system includes these clock resources:

■ Two internal clock sources:

❐ 3–48 MHz internal main oscillator (IMO) ±2 percent accuracy across all frequencies with trim

❐ 32-kHz internal low-speed oscillator (ILO) with ±60 percent accuracy with trim (can be calibrated using the IMO)

■ External clock (EXTCLK) generated using a signal from an I/O pin

■ High-frequency clock (HFCLK) of up to 48 MHz, selected from IMO or external clock

■ Low-frequency clock (LFCLK) sourced by ILO

■ Dedicated prescaler for system clock (SYSCLK) of up to 48 MHz sourced by HFCLK

■ Four peripheral clock dividers, each containing three chainable 16-bit dividers

■ Sixteen digital and analog peripheral clocks

8.1 Block Diagram

Figure 8-1 gives a generic view of the clocking system in PSoC 4 devices.

Figure 8-1. Clocking System Block Diagram

The three clock sources in the device are IMO, EXTCLK, and ILO, as shown in Figure 8-1. The HFCLK mux selects the
HFCLK source from the EXTCLK or the IMO. The ILO sources the LFCLK.

IMO

ILO

EXTCLK

LFCLK

HFCLK SYSCLK
Prescaler

SYSCLK

Peripheral
Divider 0

Peripheral
Divider 1

Peripheral
Divider 2

Peripheral
Divider 3

WDT

Cortex-M0
CPU

Peripheral
Clock 0

x16

...

58 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Clocking System

8.2 Clock Sources

8.2.1 Internal Main Oscillator

The internal main oscillator operates with no external com-
ponents and outputs a stable clock at frequencies spanning
3–48 MHz in 1-MHz increments. Frequencies are selected
by setting the frequency in the CLK_IMO_TRIM2 register,
setting the IMO trim in the CLK_IMO_TRIM1 register, and
finally setting the bandgap trim in PWR_BG_TRIM4 and
PWR_BG_TRIM5 registers. The frequency setting in
CLK_IMO_TRIM2 determines the IMO frequency output.
Table 8-1 provides the setting corresponding to the IMO fre-
quency output. In addition to setting the frequency in
CLK_IMO_TRIM2, the user needs to load corresponding
trim values in the CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5. Frequency selection follows an algorithm
to ensure no intermediate state is programmed to a value
higher than 48 MHz. Each PSoC device has IMO trim set-
tings determined during manufacturing to meet datasheet
specifications; the trim is stored in manufacturing configura-
tion data in SFLASH. There are TRIM values corresponding
to the frequency selected by the user. The TRIM values from
SFLASH are loaded in the corresponding trim register –
CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5. These values may be loaded at startup to
achieve the desired configuration. Firmware can retrieve
these trim values and reconfigure the device to change the
frequency at run-time.

To configure the IMO frequency, follow this algorithm:

■ If ((new_freq  43 MHz) and (old_freq  43 MHz)),

Change CLK_IMO_TRIM2 to a lower frequency such as
24 MHz

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for the new_freq

Wait  5 µs

Change CLK_IMO_TRIM2 to new_freq

■ else if (new_freq > old_freq),

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for new_freq

Wait  5 µs

Change CLK_IMO_TRIM2 to new_freq

■ else

Change CLK_IMO_TRIM2 to new_freq

Wait  5 cycles

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for new_freq

Table 8-1. IMO Frequency Configuration

CLK_IMO_TRIM2 Frequency in
MHzBit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 3

0 0 0 1 0 0 4

0 0 0 1 0 1 5

0 0 0 1 1 0 6

0 0 0 1 1 1 7

0 0 1 0 0 0 8

0 0 1 0 0 1 9

0 0 1 0 1 0 10

0 0 1 0 1 1 11

0 0 1 1 0 0 12

0 0 1 1 1 0 13

0 0 1 1 1 1 14

0 1 0 0 0 0 15

0 1 0 0 0 1 16

0 1 0 0 1 0 17

0 1 0 0 1 1 18

0 1 0 1 0 0 19

0 1 0 1 0 1 20

0 1 0 1 1 0 21

0 1 0 1 1 1 22

0 1 1 0 0 0 23

0 1 1 0 0 1 24

0 1 1 0 1 1 25

0 1 1 1 0 0 26

0 1 1 1 0 1 27

0 1 1 1 1 0 28

0 1 1 1 1 1 29

1 0 0 0 0 0 30

1 0 0 0 0 1 31

1 0 0 0 1 0 32

1 0 0 0 1 1 33

1 0 0 1 0 1 34

1 0 0 1 1 0 35

1 0 0 1 1 1 36

1 0 1 0 0 0 37

1 0 1 0 0 1 38

1 0 1 0 1 0 39

1 0 1 0 1 1 40

1 0 1 1 1 0 41

1 0 1 1 1 1 42

1 1 0 0 0 0 43

1 1 0 0 0 1 44

1 1 0 0 1 0 45

1 1 0 0 1 1 46

1 1 0 1 0 0 47

1 1 0 1 0 1 48

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 59

Clocking System

8.2.1.1 Startup Behavior

After reset, the IMO is configured for 24-MHz operation.
During the “boot” portion of startup, trim values are read
from flash and the IMO is configured to achieve datasheet
specified accuracy.

60 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Clocking System

8.2.1.2 IMO Frequency Spread

The IMO is capable of operating in a spread-spectrum mode to reduce the amplitude of noise generated at the IMO’s central
operating frequency. This mode causes the IMO to vary in frequency across one of four distributions selected by a register.
The four distribution options are fixed frequency, triangle wave, pseudo-random, and DSI input. The DSI input mode allows
you to specify the pattern with a digital signal. The distribution options are selected with register CLK_IMO_SPREAD bits
SS_MODE, which are shown in Table 8-2. The limits of the distribution are defined with register CLK_IMO_SPREAD bits
SS_RANGE, which are shown in Table 8-3. All spread options are downspread, meaning that instantaneous clock frequency
values are always at or below the configured frequency.

The SS_MAX field in the CLK_IMO_SPREAD register sets the maximum count for the spread spectrum counters. Increasing
this value increases the entire cycle time of a triangular spread when the SS_MODE is set to a triangular spread.

The IMO spread spectrum logic requires a clock to be routed to it for functionality. The logic uses the peripheral clock 0 as its
clock. The IMO spread spectrum needs the peripheral clock 0 to be routed with an appropriate clock from a peripheral clock
divider. The frequency of this clock will determine the rate of the spread spectrum logic and hence the rate of change of the
frequency.

8.2.1.3 Programming Clock (36-MHz)

The IMO block has a 36-MHz output, which is used as clock for the flash programming block. This clock is only available for
the flash programming block and is not available as a clock source into any of the clock dividers or the clock tree.

8.2.2 Internal Low-speed Oscillator

The internal low-speed oscillator operates with no external components and outputs a stable clock at 32-kHz nominal. The
ILO is relatively low power and low accuracy. It can be calibrated using a higher accuracy, high-frequency clock to improve
accuracy. The ILO is available in all power modes except Hibernate and Stop modes. The ILO is always used as the system
low-frequency clock LFCLK in the device. The ILO is a relatively inaccurate (±60 percent overvoltage and temperature) oscil-
lator, which is used to generate low-frequency clocks. If calibrated against the IMO when in operation, the ILO is accurate to
±10 percent for stable temperature and voltage. The ILO is enabled and disabled with register CLK_ILO_CONFIG bit
ENABLE.

8.2.3 External Clock (EXTCLK)

The external clock (EXTCLK) is a MHz range clock that can be generated from a signal on a designated PSoC 4 pin. This
clock may be used instead of the IMO as the source of the system high-frequency clock, HFCLK. The allowable range of

Table 8-2. IMO Spread-Spectrum Distribution Mode Bits SS_MODE

Name Description

SS_MODE[1:0]

IMO spread-spectrum mode. Defines the shape of the spread-spectrum frequency distribution.

0: Off. IMO frequency is not changed.

1: Triangle. IMO frequency forms a triangular distribution about the center frequency. Count limits are
defined by bits SS_MAX.

2: Pseudo-random sequence using LFSR. IMO frequency forms a pseudo-random distribution about the
center frequency.

3: DSI. IMO frequency distribution is determined using a DSI input signal.

Table 8-3. IMO Spread Spectrum Distribution Range Bits SS_RANGE

Name Description

SS_RANGE[1:0]

IMO spread-spectrum maximum range. Defines the frequency spread from nominal at the extreme count
values of the spread-spectrum’s counter.

0: 1%. Spread-spectrum varies in frequency from 0 to –1% at the extreme count values.

1: 2%. Spread-spectrum varies in frequency from 0 to –2% at the extreme count values.

2: 4%. Spread-spectrum varies in frequency from 0 to –4% at the extreme count values.

3: Reserved. Do not use.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 61

Clocking System

external clock frequencies is 0–48 MHz. The device always starts up using the IMO and the external clock must be enabled in
user mode; so the device cannot be started from a reset, which is clocked by the external clock.

When manually configuring a pin as the input to the EXTCLK, the drive mode of the pin must be set to high-impedance digital
to enable the digital input buffer. See the I/O System chapter on page 47 for more details.

8.3 Clock Distribution

PSoC 4 clocks are developed and distributed throughout the device, as shown in Figure 8-1. The distribution configuration
options are as follows:

■ HFCLK input selection

■ SYSCLK prescaler configuration

■ Peripheral divider configuration

8.3.1 HFCLK Input Selection

HFCLK in PSoC 4 has two input options: IMO and EXTCLK. The HFCLK input is selected using the CLK_SELECT register’s
DIRECT_SEL bits, as described in Table 8-4.

8.3.2 SYSCLK Prescaler Configuration

The SYSCLK Prescaler allows the device to divide the HFCLK before use as SYSCLK, which allows for non-integer relation-
ships between peripheral clocks and the system clock. SYSCLK must be equal to or faster than all other clocks in the device
that are derived from HFCLK. The SYSCLK prescaler is capable of dividing the HFCLK by powers of 2 between 2^0 = 1 and
2^7 = 128. The prescaler divide value is set using register CLK_SELECT bits SYSCLK_DIV, as described in Table 8-5. The
prescaler is initially configured to divide by 1.

 Note The SYSCLK frequency cannot exceed 24 MHz for the PSoC 4100 family.

Table 8-4. HFCLK Input Selection Bits DIRECT_SEL

Name Description

DIRECT_SEL[2:0]

HFCLK input clock selection

0: IMO. Uses the IMO as the source of the HFCLK

1: EXTCLK. Uses the EXTCLK as the source of the HFCLK

2–7: Reserved. Do not use

Table 8-5. SYSCLK Prescaler Divide Value Bits SYSCLK_DIV

Name Description

SYSCLK_DIV[3:0]

SYSCLK prescaler divide value

0: SYSCLK = HFCLK

1: SYSCLK = HFCLK/2

2: SYSCLK = HFCLK/4

3: SYSCLK = HFCLK/8

4: SYSCLK = HFCLK/16

5: SYSCLK = HFCLK/32

6: SYSCLK = HFCLK/64

7: SYSCLK = HFCLK/128

62 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Clocking System

8.3.3 Peripheral Clock Divider Configuration

PSoC 4 has four divider banks, each of which contains three 16-bit dividers named A, B, and C, which can be cascaded to fur-
ther divide clocks. One of the four banks is capable of fractional divides, which allows the clock divisor to include a fraction of
0..31/32. The fractional divider does not support a divider in the range of 1.0 to 2.0. This limitation prevents generating a clock
of 40 MHz from a 48-MHz "clk_hf".

These four divider banks are used to generate all of the analog and digital peripheral clocks in the device. Figure 8-2 shows a
block diagram of the cascaded dividers. The peripheral clocks are generated from the intermediate and final outputs of the
clock dividers.

Figure 8-2. Peripheral Clock Divider Block Diagram

The three non-fractional clock divider banks are configured with the DIVIDER_A, DIVIDER_B, and DIVIDER_C registers. The
fractional clock divider bank is configured with the DIVIDER_FRAC_A, DIVIDER_FRAC_B, and DIVIDER__FRAC_C regis-
ters. Table 8-6 and Table 8-7 describe the configurations for these registers.

8.3.4 Peripheral Clock Configuration

The four UDB clocks and 12 additional peripheral clocks, including the analog SAR clock, are sourced by peripheral clock
dividers. Each divider input can be used to generate two versions of the clock: a gated clock and a divided clock. The gated
version produces one in N clocking, where the pulse width of the clock is the same as the HFCLK, but the frequency is

Table 8-6. Non Fractional Peripheral Clock Divider Configuration Register DIVIDER_x

Bits Name Description

15:0 DIVIDER_x Divide value for divider x in the row. Output = input / (DIVIDER_x +1)

30 CASCADE_x–1_x

Determines the input of divider x in the row.

0: DIVIDER_x clock input driven by HFCLK

1: DIVIDER_x clock input driven by the output of DIVIDER_x–1

Note No effect for DIVIDER_A

31 ENABLE_x Enables DIVIDER_x.

Table 8-7. Fractional Peripheral Clock Divider Configuration Register DIVIDER_FRAC_x

Bits Name Description

15:0 DIVIDER_x Divide value for divider x in the row. Output = input / (DIVIDER_x +1 + FRAC_x/32)

20:16 FRAC_x
Fractional divider numerator value for divider x in the row. Output = input / (DIVIDER_x +1 +
FRAC_x/32)

30 CASCADE_x–1_x

Determines the input of divider x in the row.

0: DIVIDER_x clock input driven by HFCLK

1: DIVIDER_x clock input driven by the output of DIVIDER_x–1

Note No effect for DIVIDER_A

31 ENABLE_x Enables DIVIDER_x.

Divider N-A
÷(1..65,536)

HFCLK

Divider N-B
÷(1..65,536)

Divider N-C
÷(1..65,536)

x4
...

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 63

Clocking System

divided. The divided version has as close as possible to 50 percent duty cycle, with the edges of the divided clock always
occurring on high edges of the HFCLK. When divided by n, the divided version will be high for n/2 rounded down cycles, and
low for n/2 rounded up cycles. This is shown in Figure 8-3.

Clk_gated is used by most peripherals because they are impacted only by rising edges. However, in certain peripherals that
are negative edge sensitive as well, clk_divided may be preferred.

Figure 8-3. UDB and Peripheral Clock Timing Diagram

Table 8-8 shows the mapping of the mux output to the corresponding peripheral blocks (shown in Figure 8-1). Any of the 12
digital peripheral clocks can be mapped to a specific digital peripheral by using their respective SELECT registers, as
described in Table 8-9.

Table 8-8. Peripheral Clock Mapping

Peripheral Clock # Peripheral

0 IMO (SS)

1 SARPUMP

2 SCB0

3 SCB1

4 LCD

5 CSD (1)

6 CSD (2)

7 SAR

8 TCPWM0

9 TCPWM1

10 TCPWM2

11 TCPWM3

12 UDB0 (available only in PSoC 4200)

13 UDB1 (available only in PSoC 4200)

14 UDB2 (available only in PSoC 4200)

15 UDB3 (available only in PSoC 4200)

64 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Clocking System

The SAR clock is derived from the clock dividers similar to other peripheral clocks. Unlike the other peripheral clocks, the SAR
clock generates two outputs: a skewed and un-gated 50 percent duty cycle version for analog circuits, and a version synchro-
nized with HFCLK for digital circuits. The skew allows analog sampling to occur independently from digital clock transitions,
which can improve analog performance.

8.4 Low-Power Mode Operation

The high-frequency clocks including the IMO, EXTCLK, HFCLK, SYSCLK, and peripheral clocks operate only in Active and
Sleep modes. The ILO and LFCLK operate in all power modes except Hibernate and Stop.

8.5 Register List

Table 8-9. Peripheral Clock Configuration Register SELECT

Bits Name Description

3:0 DIVIDER_N

Select divider bank row to source clock from.

0 to 2: non-fractional divider 0 to 2

3: fractional divider 0

5:4 DIVIDER_ABC

Selects which divider from row N to use:

0: Clock disabled

1: Divider N-A

2: Divider N-B

3: Divider N-C

Table 8-10. Clocking System Register List

Register Name Description

CLK_IMO_TRIM1 IMO Trim Register - This register contains IMO trim, allowing fine manipulation of its frequency.

CLK_IMO_TRIM2
IMO Frequency Selection Register - This register controls the frequency range of the IMO, allowing gross
manipulation of its frequency.

PWR_BG_TRIM4 Bandgap Trim Registers - These registers control the trim of the bandgap reference, allowing manipulation of
the voltage references in the device.PWR_BG_TRIM5

CLK_IMO_SPREAD IMO Spread Spectrum Control Register - This register controls the IMO spread spectrum functionality.

CLK_ILO_CONFIG ILO Configuration Register - This register controls the ILO configuration.

CLK_IMO_CONFIG IMO Configuration Register - This register controls the IMO configuration.

CLK_SELECT
Clock Select - This register controls clock tree configuration, selecting different sources for the system
clocks.

DIVIDER_x
Peripheral Clock Divider Control Registers - These registers configure the peripheral clock dividers, selecting
the source clock, setting integer divide value, and enabling or disabling the divider.

DIVIDER_FRAC_x
Peripheral Clock Fractional Divider Control Registers - These registers configure the peripheral clock divid-
ers, selecting the source clock, setting fractional divide value, and enabling or disabling the divider.

SELECT_x
Peripheral Clock Select Registers - These registers configure the output of the peripheral clock dividers,
selecting the source from a specific divider within a specific row.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 65

9. Power Supply and Monitoring

PSoC® 4 is capable of operating from a 1.71 V to 5.5 V externally supplied voltage. This is supported through one of the two
following operating ranges:

■ 1.80 V to 5.50 V supply input to the internal regulators

■ 1.71 V to 1.89 V1 direct supply

There are different internal regulators to support the various power modes. These include Active digital regulator, Quiet regu-
lator, Deep-Sleep regulator, and Hibernate regulator.

1. When the system supply is in the range 1.80 V to 1.89 V, both direct supply and internal regulator options can be used. The selection can be made depending
on the user’s system capability. Note that the supply voltage cannot go above 1.89 V for the direct supply option because it will damage the device. It should
not go below 1.80 V for the internal regulator option because the regulator will turn off.

66 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Power Supply and Monitoring

9.1 Block Diagram

Figure 9-1. Power System Block Diagram

The power system has separate digital and analog supply
pins labeled VDDD and VDDA, as shown in Figure 9-1. Simi-
larly, there are separate digital and analog ground pins
named VSSD and VSSA. The digital and analog supply pins
share ESD resources. To avoid turning on the ESD devices,
the digital supply cannot exceed analog supply by more than
300 mV, not even on a transient basis. Thus, the VDDA sup-
ply must ramp up before or concurrently with the VDDD
supply.

In some PSoC 4 device packages, VDDD and VDDA are
shorted internally and made available as a single VDD pin. In
such devices, VDDA and VDDD supply ramp up concurrently
inside the device.

The Active digital regulator allows the external VDDD supply

to be regulated to the nominal 1.8 V required for the digital
core. The output pin of this regulator has a specific capacitor
requirement, as shown in Figure 9-1. This Active digital reg-
ulator is designed to supply the internal circuits only; there-
fore, it should not be loaded externally.

The primary regulated supply, labeled VCCD, can be config-

ured for internal regulation or can be directly supplied by the
pin. In internal regulation mode, VDDD can vary between

1.8 V and 5.5 V and the on-chip regulators generate the
other low-voltage supplies.

In direct supply configuration, VCCD and VDDD must be

shorted together and connected to a supply of 1.71 V to
1.89 V. The Active digital regulator is still powered up and
enabled by default. It must be disabled by the firmware to
reduce power consumption; see 9.3.1.1 Active Digital Regu-
lator.

Two additional regulators are used to provide supplemental
power domains including Deep-Sleep and Hibernate. In
addition, a Quiet regulator powers sensitive analog circuitry
including the bandgap reference and capacitive sensing
sub-system.

Digital
Regulator

VDDD
VDDA

1 uF
V

D
D

D

V
D

D
A

V
C

C
D

Active
Domain

Examples: CPU,
IMO, Flash

Quiet
Regulator

Deep-Sleep
Regulator

Hibernate
Regulator

1 uF0.1 uF

Bandgap
Voltage

Reference

Deep-Sleep
Domain

Examples: ILO,
I2C

Hibernate
Domain

Examples: LP
COMP, SRAM,

UDB

Analog
Domain

Examples: CTBm,
SAR

V
S

S
D

V
S

S
A

Note: Do not connect
external load to VCCD

0.1 uF 1 uF

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 67

Power Supply and Monitoring

9.2 Power Supply Scenarios

The following diagrams illustrate the different ways in which the device is powered.

9.2.1 Single 1.8 V to 5.5 V Unregulated Supply

Depending on board design, the 1.8-V to 5.5-V supply can reach the PSoC 4 device via a single route or two different routes
(on boards with separate analog and digital supply networks), as shown in Figure 9-2 and Figure 9-3, respectively.

Figure 9-2. Single Regulated Power Supply

Figure 9-3. Separate Regulated VDDA and VDDD Supplies

PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD

0.1 uF 1 uF

1 uF

1.8 V - 5.5 V

PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD

0.1 uF 1 uF 1 uF

1.8 V - 5.5 V

1.8 V - 5.5 V

0.1uF

VSSD

VSSA VSSA
VSSD

VSSD

1uF

68 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Power Supply and Monitoring

Some PSoC 4 device packages have a single power supply and ground pins labeled VDD and VSS, respectively. The 1.8-V to

5.5-V supply can be connected to these packages, as shown in Figure 9-4.

Figure 9-4. Single Regulated VDD Supply

9.2.2 Direct 1.71 V to 1.89 V Regulated Supply

In direct supply configuration, VCCD and VDDD are shorted together and connected to a 1.71-V to 1.89-V supply. This supply

can reach the PSoC 4 device via a single route or two different routes, as shown in the following diagrams. This regulated
supply should be connected to the device, as shown in Figure 9.3 and Figure 9-6.

Figure 9-5. Single Unregulated Power Supply

PSoC 4

VDDD

VCCD

VSS

0.1 uF 1 uF

0.1 uF

1.8 V - 5.5 V

 PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD
0.1 uF 1 uF

1.71 V - 1.89 V

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 69

Power Supply and Monitoring

Figure 9-6. Separate Unregulated Power Supplies

9.3 How It Works

The regulators in Figure 9-1 power the various domains of
the device. All the core regulators and digital I/Os draw their
input power from the VDDD pin supply. Digital I/Os are sup-
plied from VDDD. The analog circuits run directly from the
VDDA input.

9.3.1 Regulator Summary

The Active digital regulator and Quiet regulator are enabled
during the Active or Sleep power modes. They are turned off
in the Deep-Sleep and Hibernate power modes (see
Table 9-1 and Figure 9-1). The Deep-Sleep and Hibernate
regulators are designed to fulfill power requirements in the
low-power modes of the device.

9.3.1.1 Active Digital Regulator

For external supplies from 1.8 V and 5.5 V, the Active digital
regulator provides the main digital logic in Active and Sleep
modes. This regulator has its output connected to a pin

(VCCD) and requires an external decoupling capacitor (1 µF
X5R).

For supplies below 1.8 V, VCCD must be supplied directly. In
this case, VCCD and VDDD must be shorted together, as
shown in Figure 9-5.

The Active digital regulator can be disabled by setting the
EXT_VCCD bit in the PWR_CONTROL register. This action
reduces the power consumption in direct supply mode. The
Active digital regulator is available only in Active and Sleep
power modes.

9.3.1.2 Quiet Regulator

In Active and Sleep modes, this regulator supplies analog
circuits such as the bandgap reference and capacitive sens-
ing subsystem, which require a quiet supply, free of digital
switching noise and power supply noise. This regulator has
a high-power supply rejection ratio. The Quiet regulator is
available only in Active and Sleep power modes.

9.3.1.3 Deep-Sleep Regulator

This regulator supplies the circuits that remain powered in
Deep-Sleep mode, such as the ILO and SCB. The Deep-
Sleep regulator is available in all power modes except the
Hibernate mode. In Active and Sleep power modes, the
main output of this regulator is connected to the output of
the Active digital regulator (VCCD). This regulator also has a
separate replica output that provides a stable voltage for the
ILO. This output is not connected to VCCD in Active and
Sleep modes.

PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD
0.1 uF 1 uF

1.71 V - 1.89 V

0.1 uF 1 uF

1.71 V - 1.89 V

VSSD VSSD

VSSA VSSA

Table 9-1. Regulator Status in Different Power Modes

Mode
Active

Regulator
Quiet

Regulator
Deep-Sleep
Regulator

Hibernate
Regulator

Stop Off Off Off Off

Hibernate Off Off Off On

Deep Sleep Off Off On On

Sleep On On On On

Active On On On On

70 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Power Supply and Monitoring

9.3.1.4 Hibernate Regulator

This regulator supplies the circuits that remain powered in
Hibernate mode, such as the sleep controller, low-power
comparator, and SRAM. The Hibernate regulator is available
in all power modes. In Active and Sleep modes, the output
of this regulator is connected to the output of the digital reg-
ulator. In Deep-Sleep mode, the output of this regulator is
connected to the output of the Deep-Sleep regulator.

9.4 Voltage Monitoring

The voltage monitoring system includes power-on-reset
(POR), brownout detection (BOD), and low-voltage detec-
tion (LVD).

9.4.1 Power-On-Reset (POR)

POR circuits provide a reset pulse during the initial power
ramp. POR circuits monitor VCCD voltage. Typically, the

POR circuits are not very accurate with respect to trip-point.
POR circuits are used during initial chip power-up and then
disabled.

9.4.1.1 Brownout-Detect (BOD)

The BOD circuit protects the operating or retaining logic
from possibly unsafe supply conditions by applying reset to
the device. BOD circuit monitors the VCCD voltage. The

BOD circuit generates a reset if a voltage excursion dips
below the minimum VCCD voltage required for safe operation

(see the device datasheet for details). The system will not
come out of RESET until the supply is detected to be valid
again.

To enable firmware to distinguish a normal power cycle from
a brownout event, a special register is provided
(PWR_BOD_KEY), which will not be cleared after a BOD
generated RESET. However, this register will be cleared if

the device goes through POR or XRES. BOD is available in
all power modes except the Stop mode.

9.4.1.2 Low-Voltage-Detect (LVD)

The LVD circuit monitors external supply voltage and accu-
rately detects depletion of the energy source. The LVD
detector generates an interrupt to cause the system to take
preventive measures.

The LVD is available only in Active and Sleep power modes.
If LVD is required in Deep-Sleep mode, then the chip should
be configured to periodically wake up from deep sleep using
WDT as the wake up source; the LVD monitoring should be
done in Active mode. LVD circuits generate interrupts at pro-
grammable levels within the safe operating voltage. The trip
point of the LVD can be configured between 1.75 V to 4.5 V
using the LVD_SEL field in the PWR_VMON_CONFIG reg-
ister.

When enabling the LVD circuit, it is possible to get a false
interrupt during the initial settling time. Firmware can mask
this by waiting for 1 µs after setting the LVD_EN bit in
PWR_VMON_CONFIG register. The recommended firm-
ware procedure to enable the LVD function is:

1. Ensure that the LVD bit in the PWR_INTR_MASK regis-
ter is 0 to prevent propagating a false interrupt.

2. Set the required trip-point in the LVD_SEL field of the
PWR_VMON_CFG register.

3. Enable the LVD by setting the LVD_EN bit in
PWR_VMON_CFG. This may cause a false LVD event.

4. Wait at least 1 µs for the circuit to stabilize.

5. Clear the false event by writing a ‘1’ to the LVD bit in the
PWR_INTR register. The bit will not clear if the LVD con-
dition is truly present.

6. Unmask the interrupt using the LVD bit in
PWR_INTR_MASK.

9.5 Register List

Table 9-2. Power Supply and Monitoring Register List

Register Name Description

PWR_CONTROL
Power Mode Control Register – This register allows configuration of device power modes and regulator
activity.

PWR_INTR Power System Interrupt Register – This register indicates the power system interrupt status.

PWR_INTR_MASK
Power System Interrupt Mask Register – This register controls which interrupts are propagated to the
interrupt controller of the CPU.

PWR_VMON_CONFIG
Power System Voltage Monitoring Trim and Configuration – This register contains trim and configuration
bits for the voltage monitoring system.

http://www.cypress.com/?id=4749&rtID=107&source=an85951

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 71

10. Chip Operational Modes

PSoC® 4 is capable of executing firmware in four different modes. These modes dictate execution from different locations in
flash and ROM, with different levels of hardware privileges. Only three of these modes are used in end-applications; debug
mode is used exclusively to debug designs during firmware development.

PSoC 4’s operational modes are:

■ Boot

■ User

■ Privileged

■ Debug

10.1 Boot

Boot mode is an operational mode where the device is configured by instructions hard-coded in the device SROM. This mode
is entered after the end of a reset, provided no debug-acquire sequence is received by the device. Boot mode is a privileged
mode; interrupts are disabled in this mode so that the boot firmware can set up the device for operation without being inter-
rupted. During boot mode, hardware trim settings are loaded from flash to guarantee proper operation during power-up.
When boot concludes, the device enters user mode and code execution from flash begins. This code in flash may include
automatically generated instructions from the PSoC Creator IDE that will further configure the device.

10.2 User

User mode is an operational mode where normal user firmware from flash is executed. User mode cannot execute code from
SROM. Firmware execution in this mode includes the automatically generated firmware by the PSoC Creator IDE and the
firmware written by the user. The automatically generated firmware can govern both the firmware startup and portions of nor-
mal operation. The boot process transfers control to this mode after it has completed its tasks.

10.3 Privileged

Privileged mode is an operational mode, which allows execution of special subroutines that are stored in the device ROM.
These subroutines cannot be modified by the user and are used to execute proprietary code that is not meant to be inter-
rupted or observed. Debugging is not allowed in privileged mode.

The CPU can transition to privileged mode through the execution of a system call. For more information on how to perform a
system call, see “Performing a System Call” on page 280. Exit from this mode returns the device to user mode.

10.4 Debug

Debug mode is an operational mode that allows observation of the PSoC 4 operational parameters. This mode is used to
debug the firmware during development. The debug mode is entered when an SWD debugger connects to the device during
the acquire time window, which occurs during the device reset. Debug mode allows IDEs such as PSoC Creator and ARM
MDK to debug the firmware. Debug mode is only available on devices in open mode (one of the four protection modes). For
more details on the debug interface, see the Program and Debug Interface chapter on page 271.

For more details on protection modes, see the Device Security chapter on page 87.

72 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Chip Operational Modes

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 73

11. Power Modes

The PSoC® 4 provides five power modes, intended to minimize the average power consumption for a given application. The
power modes, in the order of decreasing power consumption, are:

■ Active

■ Sleep

■ Deep-Sleep

■ Hibernate

■ Stop

Active, Sleep, and Deep-Sleep are standard ARM-defined power modes, supported by the ARM CPUs and instruction set
architecture (ISA). Hibernate and Stop modes are additional low-power modes supported by PSoC 4. These modes are
entered from firmware similar to Deep-Sleep, but on wakeup, the CPU and all peripherals go through a reset.

The power consumption in different power modes is controlled by using the following methods:

■ Enabling/disabling peripherals

■ Powering on/off internal regulators

■ Powering on/off clock sources

■ Powering on/off other portions of the PSoC 4

Figure 11-1 illustrates the various power modes and the possible transitions between them.

Figure 11-1. Power Mode Transitions State Diagram

ACTIVE

DEEP-SLEEP

HIBERNATE

Wakeup
Interrupt

Wakeup
Interrupt

Internal
Resets

STOP WAKEUP
Asserts

XRES / Brownout /
Power On Reset

Firmware
Action

RESET

Internal Reset Event

External Reset Event

Firmware Action

Other External Event

Power Mode Action

KEY:

SLEEP

74 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Power Modes

Table 11-1 illustrates the power modes offered by PSoC 4.

In addition to the wakeup sources mentioned in Table 11-1, external reset (XRES) and brownout reset bring the device to
Active mode from any power mode.

11.1 Active Mode

Active mode is the primary power mode of the PSoC device. This mode provides the option to use every possible subsystem/
peripheral in the device. In this mode, the CPU is running and all the peripherals are powered. The firmware may be config-
ured to disable specific peripherals that are not in use, to reduce power consumption.

11.2 Sleep Mode

This is a CPU-centric power mode. In this mode, the Cortex-M0 CPU enters Sleep mode and its clock is disabled. It is a mode
that the device should come to very often or as soon as the CPU is idle, to accomplish low power consumption. It is identical
to Active mode from a peripheral point of view. Any enabled interrupt can cause wakeup from Sleep mode.

11.3 Deep-Sleep Mode

In Deep-Sleep mode, the CPU, SRAM, UDB, and high-speed logic are in retention. The high-frequency clocks, including
HFCLK and SYSCLK, are disabled. Optionally, the internal low-frequency (32 kHz) oscillator remains on and low-frequency

Table 11-1. PSoC 4 Power Modes

Power
Mode

Description Entry Condition
Wakeup
Sources

Active Clocks
Wakeup
Action

Available Regulators

Active
Primary mode of opera-
tion; all peripherals are
available (programmable).

Wakeup from other
power modes, inter-
nal and external
resets, brownout,
power on reset

Not applicable
All (programma-
ble)

Interrupt

All regulators are available.
The Active digital regulator
can be disabled if external
regulation is used.

Sleep

CPU enters Sleep mode
and SRAM is in retention;
all peripherals are avail-
able (programmable).

Manual register write Any interrupt
All (programma-
ble)

Interrupt

All regulators are available.
The Active digital regulator
can be disabled if external
regulation is used.

Deep-
Sleep

All internal supplies are
driven from the Deep-
Sleep regulator. IMO and
high-speed peripherals are
off. Only the low-frequency
(32 kHz) clock is available.

Interrupts from low-speed,
asynchronous, or low-
power analog peripherals
can cause a wakeup.

Manual register write

GPIO interrupt,
low-power
comparator,
SCB, watch-
dog timer

ILO (32 kHz) Interrupt
Deep-Sleep regulator and
Hibernate regulator

Hibernate

Only SRAM and UDBs are
retained; all internal sup-
plies, except the hibernate
supply are off. Wakeup is
possible from a pin inter-
rupt or a low-power com-
parator.

Manual register write
GPIO interrupt,
low-power
comparator

None

Reset
(with
interrupt
state
retention)

Hibernate regulator

Stop

All internal supplies are off.
Only GPIO states are
retained. Wakeup is possi-
ble from XRES or
WAKEUP pins only.

Manual register write WAKEUP pin None Reset None

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 75

Power Modes

peripherals continue to operate. Digital peripherals that do not need a clock or receive a clock from their external interface (for
example, I2C slave) continue to operate. Interrupts from low-speed, asynchronous or low-power analog peripherals can
cause a wakeup from Deep-Sleep mode.

The available wakeup sources are listed in Table 11-3.

11.4 Hibernate Mode

This is the lowest PSoC 4 power mode that retains SRAM. It is implemented by switching off all clocks and removing power
from the CPU and all peripherals, with the exception of a few (asynchronous) peripherals that can wake up the system from
an external event. Note that in this mode, the CPU and all peripherals lose state.

In this mode, a Hibernate regulator with limited capacity is used to achieve an extremely low power consumption. This puts a
constraint on the maximum frequency of any signals present on the input pins while in Hibernate mode. The combined toggle
rate on all I/O pins (total frequency of signals in all inputs and outputs) must not exceed 10 kHz.

Any system that has signals toggling at high rates can use Deep-Sleep mode without seeing a significant difference in total
power consumption.

Wakeup from Hibernate mode is possible from a pin interrupt or a low-power comparator only. Wakeup from hibernate incurs
a reset rather than a wakeup from interrupt. When waking up from hibernate, the CPU and most peripherals are in their reset
state and firmware will start at the reset vector. I/O pins will be tri-stated after reset, unless they are explicitly frozen by firm-
ware before entry into Hibernate mode. To know the cause of interrupt, use the TOKEN bits in PWR_STOP register, as
described in “Low-Power Mode Entry and Exit” on page 77.

External reset (XRES) triggers a full system restart. In this case, the cause is not readable after the device restarts, and I/O
pins will not retain their “frozen” state.

11.5 Stop Mode

In the Stop mode, the CPU, all internal regulators, and all peripherals are switched off. Wakeup from Stop mode is a system
reset and it is possible from XRES or WAKEUP pins only. I/O pins will be tri-stated after reset, unless they are explicitly frozen
by firmware before entry into Stop mode. To know the cause of interrupt, use the TOKEN bits in PWR_STOP register, as
described in “Low-Power Mode Entry and Exit” on page 77.

External reset (XRES) triggers a full system restart. In this case, the cause is not readable after the device restarts, and I/O
pins will not retain their "frozen" state.

76 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Power Modes

11.6 Power Mode Summary

Table 11-3 illustrates the peripherals available in each low-power mode; Table 11-3 illustrates the wakeup sources available in
each power mode.

Table 11-2. Available Peripherals

Peripheral Active Sleep Deep-Sleep Hibernate Stop

CPU On Retentiona

a. The configuration and state of the peripheral is retained. Peripheral continues its operation when the device enters Active mode.

Retention Off Off

SRAM On Retention Retention Retention Off

High-speed peripherals
(peripherals that operate from HFCLK)

On On Retention Off Off

CapSense On On Retention Off Off

Universal digital block (UDB) On On Retention Off Off

Low-speed peripherals
(peripherals that operate from ILO)

On On On (optional) Off Off

Internal main oscillator (IMO) On On Off Off Off

Internal low-speed oscillator (ILO 32 kHz) On On On (optional) Off Off

Asynchronous peripherals On On On Off Off

Power-on-reset, Brownout detection On On On Off Off

Regular analog peripherals On On Off Off Off

Low power comparator On On On On Off

GPIO output state On On On/Frozen Frozenb

b. The configuration, mode, and state of all GPIOs in the system are locked. Changing the GPIO state is not possible until the device enters Active mode.

Frozen

Table 11-3. Wakeup Sources

Power Mode Wakeup Source Wakeup Action

Sleep
Any interrupt source Interrupt

Any reset source Reset

Deep-Sleep

GPIO interrupt Interrupt

Low-power comparator Interrupt

I2C address match Interrupt

Watchdog timer Interrupt / Reset

XRES (external reset pin)a, Brownout

a. XRES triggers a full system restart. All the states including frozen GPIOs are lost. In this case, the cause of wakeup is not readable after the device restarts.

Reset

Hibernate

GPIO Interrupt Reset

Low-power comparator Reset

XRES (external reset pin)a, Brownout Reset

Stop
WAKEUP pin Reset

XRES (external reset pin)a, Brownout Reset

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 77

Power Modes

11.7 Low-Power Mode Entry and Exit

A Wait For Interrupt (WFI) instruction from the Cortex-M0 (CM0) triggers the transitions into Sleep, Deep-Sleep, and Hiber-
nate modes. The Cortex-M0 can delay the transition into a low-power mode until the lowest priority ISR is exited (if the
SLEEPONEXIT bit in the CM0 System Control Register is set).

The transition to Sleep, Deep-Sleep, and Hibernate modes are controlled by the flags SLEEPDEEP in the CM0 System Con-
trol Register (CM0_SCR) and HIBERNATE in the System Resources Power subsystem (PWR_CONTROL).

■ Sleep is entered when the WFI instruction is executed, SLEEPDEEP = 0 and HIBERNATE = x.

■ Deep-Sleep is entered when the WFI instruction is executed, SLEEPDEEP = 1 and HIBERNATE = 0.

■ Hibernate is entered when the WFI instruction is exe-
cuted, SLEEPDEEP = 1 and HIBERNATE = 1.

The LPM READY bit in the PWR_CONTROL register shows the status of Deep-Sleep and Hibernate regulators. If the firm-
ware tries to enter Deep-Sleep or Hibernate mode before the regulators are ready, then PSoC 4 goes to Sleep mode first, and
when the regulators are ready, the device enters Deep-Sleep or Hibernate mode. This operation is automatically done in
hardware.

In Sleep and Deep-Sleep modes, a selection of peripherals are available (see Table 11-3), and firmware can either enable or
disable their associated interrupts. Enabled interrupts can cause wakeup from low-power mode to Active mode. Additionally,
any RESET returns the system to Active mode. See the Interrupts chapter on page 31 and the Reset System chapter on
page 83 for details.

Before entering Deep-Sleep mode, change the IMO fre-
quency to 12 MHz. After wakeup from Deep-Sleep mode,
restore the previous IMO frequency. See the Clocking

System chapter on page 57 for details on how to change the
IMO frequency.

Use the PWR_STOP register to freeze the GPIO states in these low-power modes. This is recommended for the Hibernate
and Stop modes because the wakeup from these modes causes a system reset. Stop mode is entered directly using the
PWR_STOP register in the System Resources Power subsystem. It removes power from all of the low-voltage logic in the
system. Only the I/O state and PWR_STOP register contents are retained and wakeup (reset) happens on either XRES or
toggling of a fixed WAKEUP pin.

The fields in PWR_STOP register are:

■ TOKEN – This field contains an 8-bit token that is retained through a STOP/WAKEUP sequence that can be used by firm-
ware to differentiate WAKEUP from a general RESET event. Note that waking up from STOP using XRES resets this reg-
ister.

■ UNLOCK – This field must be written to 0x3A to unlock the Stop mode. The hardware ignores the STOP bit if this field has
any other setting.

■ POLARITY – This bit sets the polarity of WAKEUP pin input. The device wakes up when the WAKEUP pin input matches
the value of POLARITY bit.

■ FREEZE – Setting this bit freezes the configuration, mode, and state of all GPIOs in the system

■ STOP –This bit must be set to enter the Stop mode.

The recommended procedure to enter Stop mode is:

1. Write TOKEN = <any application-specified value>

2. Write UNLOCK = 0x3A

3. Write POLARITY = <application-specified polarity>

4. Write FREEZE = 1

5. Write STOP = 1

It is recommended to add two NOP cycles after the third write. Stop mode exits when either the XRES or WAKEUP pins are
toggled. Both events clear the STOP bit in the PWR_STOP register and trigger a POR. A wakeup event does not clear the
other bits of the PWR_STOP register, but an XRES event clears all the bits.

The recommended firmware procedure on wakeup from Stop or Hibernate mode is as follows:

1. Optionally read TOKEN for application-specific branching.

78 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Power Modes

2. Optionally write I/O drive modes and output data registers to the required settings. A typical procedure for digital output
ports is to set the pin description as output, read its frozen value, and set that value in the output data register.

3. Unfreeze the I/O.

11.8 Register List

Table 11-4. Power Mode Register List

Register Name Description

CM0_SCR System Control - Sets or returns system control data.

PWR_CONTROL Power Mode Control - Controls the device power mode options and allows observation of current state.

PWR_STOP Power Stop - Controls entry/exit from the Stop power mode.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 79

12. Watchdog Timer

The watchdog timer (WDT) is used to automatically reset the device in the event of an unexpected firmware execution path.
The WDT runs from the LFCLK, generated by the ILO. The timer, if enabled, must be serviced periodically in firmware to
avoid a reset. Otherwise, the timer will elapse and generate a device reset. The WDT can be used as an interrupt source or a
wakeup source in low-power modes.

12.1 Features

The WDT has these features:

■ System reset generation after a configurable interval

■ Periodic interrupt/wake up generation in Active, Sleep, and Deep-Sleep power modes

■ Supports two 16-bit and one 32-bit independent counters, which can be cascaded to increase the interval

12.2 Block Diagram

Figure 12-1. Watchdog Timer Block Diagram

Watchdog
Timer

CLK

AHB
Interface
Register

CFG/
STATUS

CPU
Subsystem or

WIC

Reset BlockRESET

INTERRUPT

Low-Frequency
Clock

(LFCLK)

80 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Watchdog Timer

Figure 12-2. Watchdog Timer Internal Block Diagram

12.3 How It Works
The WDT asserts an interrupt or a hardware reset to the device after a programmable interval, unless it is periodically ser-
viced in firmware. The WDT has two 16-bit counters (WDT0 and WDT1) and one 32-bit counter (WDT2). These counters can
be configured to work independently or in cascade.

WDT0 and WDT1 can be configured to generate an interrupt on a match event, that is, when the counter value equals the
match value. The WDT0 and WDT1 counters can also be configured to generate a reset on a match event or after three suc-
cessive match events that are not handled (match event interrupt not cleared).

WDT2 can be configured to generate an interrupt based on the value stored in the WDT_BITS2[4:0] bits in the WDT_CONFIG
register. WDT2 cannot generate a system reset or an interrupt with any match value similar to WDT1 or WDT0. WDT2 can
generate an interrupt only on a rising edge on one of the 32 bits present in the counter. The WDT_BITS2[4:0] bits in the
WDT_CONFIG register control the bit that generates the interrupt. See the WDT_CONFIG register in the PSoC 4100/4200
Family: PSoC 4 Registers TRM for details.

WDT_MODEx bits are used to configure the watchdog counters as described above.

The cascade configuration shown in Figure 12-2 provides an option to increase the reset or interrupt interval. Note that cas-
cading two 16-bit counters will not provide a 32-bit counter; instead, you will obtain a 16-bit period counter with a 16-bit pres-
caler. For example, when cascading WDT0 and WDT1, WDT0 acts as a prescaler for WDT1 and the prescaler value will be
defined by the WDT_MATCH0[15:0] bits in the WDT_MATCH register. The WDT1 will have a period defined by
WDT_MATCH1[31:16] bits in the WDT_MATCH register. The same logic applies to WDT1 and WDT2 cascading.

When the WDT is used to protect against system crashes, clearing the WDT interrupt bit to reset the watchdog must be done
from a portion of the code that is not directly associated with the WDT interrupt. Otherwise, even if the main function of the
firmware crashes or is in an endless loop, the WDT interrupt vector can still be intact and feed the WDT periodically.

The safest way to use the WDT against system crashes is to:

■ Configure the watchdog reset period such that firmware is able to reset the watchdog at least once during the period, even
along the longest firmware delay path.

■ Reset the watchdog by clearing the interrupt bit regularly in the main body of the firmware code. If configured to generate
a reset on a match event, reset the watchdog by clearing the WDTx counter. The WDTx counter can be cleared by setting
the WDT_RESETx bit in the WDT_CONFIG register. For details, refer to the WDT_CONFIG register in the PSoC 4100/
4200 Family: PSoC 4 Registers TRM.

■ It is not recommended to reset watchdog in the WDT interrupt service routine (ISR), if WDT is being used as a reset
source to protect the system against crashes. Hence, it is not recommended to use the same watchdog counter for gener-
ating system reset and interrupt. For example, if WDT0 is used for generating system reset against crashes, then WDT1
or WDT2 should be used for periodic interrupt generations.

LFCLK

WDT0 (16-bit Counter)
WDT_CTR0

WDT1 (16-bit Counter)
WDT_CTR1

WDT2 (32-bit Counter)
WDT_CTRHIGH

WDT_CTR0 ==
WDT_MATCH0

WDT_CTR1 ==
WDT_MATCH1

321616

WDT
Mode

Configuration
WDT_MODE0

2
WDT_MODE1

2

WDT
Mode

Configuration
WDT_MODE2

1

5
WDT_BITS2

WDT_CASCADE0_1 WDT_CASCADE1_2

WDT_INT1WDT_INT0 WDT_INT2RESET RESET

INTERRUPT

RESET

WDT
Mode

Configuration

Watchdog
Timer

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 81

Watchdog Timer

Follow these steps to use WDT as a periodic interrupt generator:

1. Set the WDT_CLEAR0 or WDT_CLEAR1 bit in the WDT_CONFIG register for WDT0 or WDT1 to reset the corresponding
watchdog counter to ‘0’ on a match event.

2. Write the desired match value to the WDT_MATCH register for WDT0/WDT1 and the WDT_BITS2 value to the
WDT_CONFIG register for WDT2.

3. Clear the WDT_INTx bit in WDT_CONTROL to clear any pending interrupt.

4. Enable the WDT interrupt by configuring the WDT_MODEx bits in WDT_CONFIG. Configure the WDT_MODE0 or
WDT_MODE1 bits in WDT_CONFIG for WDT0 or WDT1 to ‘1’ (interrupt on match) or ‘3’ (interrupt on match and reset on
third unhandled match). For WDT2, set the WDT_MODE2 bit in the WDT_CONFIG register.

5. Enable global WDT interrupt in the CM0_ISER register (See the Interrupts chapter on page 31 for details).

6. In the ISR, clear the WDT interrupt.

For more details on interrupts, see the Interrupts chapter on page 31.

Changing WDT_MATCH requires three LFCLK cycles to come into effect. After changing WDT_MATCH, do not enter the
Deep-Sleep mode for one LFCLK cycle to ensure the WDT updates to the new setting.

12.3.1 Enabling and Disabling WDT

The WDT counters are enabled by setting the WDT_ENABLEx bit in the WDT_CONTROL register and are disabled by clear-
ing it. Enabling or disabling a WDT requires three LFCLK cycles to come into effect. Therefore, the WDT_ENABLEx bit value
must not be changed more than once in that period.

After WDT is enabled, it is not recommended to write to the WDT configuration (WDT_CONFIG) and control the
(WDT_CONTROL) registers. Accidental corruption of WDT registers can be prevented by setting the WDT_LOCK[15:14] bits
of the CLK_SELECT register. If the application requires updating the match value (WDT_MATCH) when the WDT is running,
the WDT_LOCK bits must be cleared. The WDT_LOCK bits require two different writes to clear both the bits. Writing a '1' to
the bits clears bit 0. Writing a '2' clears bit 1. Writing a '3' sets both the bits and writing '0' does not have any effect. For details,
refer to the CLK_SELECT register in the PSoC 4100/4200 Family: PSoC 4 Registers TRM.

12.3.2 WDT Operating Modes

The WDT0 and WDT1 can be used to generate a reset to stop the system from going into the unresponsive state or to gener-
ate an interrupt to wake up the system from Sleep or Deep-Sleep power modes. The bit field WDT_MODEx[1:0] in the
WDT_CONFIG register can be configured to select the required action when the count value stored in the WDT_CTRx regis-
ter bits equals the match values (WDT_MATCHx) stored in the WDT_MATCH register. See the WDT_CTRHIGH,
WDT_CTRLOW, and WDT_MATCH registers in the PSoC 4100/4200 Family: PSoC 4 Registers TRM for details.

The WDT2 can be used to generate interrupts based on the status of the WDT_BITS2[4:0] register bits.

Note: When the watchdog counters are configured to generate an interrupt every LFCLK cycle, make sure you read the
WDT_CONTROL register after clearing the watchdog interrupt (setting the WDT_INTx bit in the WDT_CONTROL register).
Failure to do this may result in missing the next interrupt; it will also result in an interrupt cycle of LFCLK/2.

Table 12-1. WDT0 and WDT1 Modes

Bit-field Name Description

WDT_MODE0[1:0]

or

WDT_MODE1[1:0]

Watchdog Counter Action on Match (WDT_CTR0=WDT_MATCH0) or (WDT_CTR1=WDT_MATCH1):

00: Do nothing

01: Assert WDT_INT0 or WDT_INT1

10: Assert WDT Reset

11: Assert WDT_INT0 or WDT_INT1, assert WDT reset after the third unhandled interrupt

Table 12-2. WDT2 Mode

Bit-field Name Description

WDT_MODE2

0: Free-running counter with no interrupt requests

1: Free-running counter with interrupt request on the rising edge of the bit specified by WDT_BITS2 bits in the
WDT_CONFIG register

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

82 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Watchdog Timer

12.3.3 WDT Interrupts and Low-Power Modes

The watchdog counter can send interrupt requests to the CPU in Active power mode and to the WakeUp Interrupt Controller
(WIC) in Sleep and Deep-Sleep power modes. It works as follows:

■ Active Mode: In Active power mode, the WDT can send the interrupt to the CPU. The CPU acknowledges the interrupt
request and executes the ISR. The interrupt must be cleared after entering the ISR in firmware.

■ Sleep or Deep-Sleep Mode: In this mode, the CPU subsystem is powered down. Therefore, the interrupt request from
the WDT is directly sent to the WIC, which will then wake up the CPU. The CPU acknowledges the interrupt request and
executes the ISR. The interrupt must be cleared after entering the ISR in firmware.

For more details on device power modes, see the Power Modes chapter on page 73.

12.3.4 WDT Reset Mode

The RESET_WDT bit in the RES_CAUSE register indicates the reset generated by the WDT. This bit remains set until
cleared or until a power-on reset (POR), brownout reset (BOD), or external reset (XRES) occurs. All other resets leave this bit
untouched. For more details, see the Reset System chapter on page 83.

12.4 Register List

Table 12-3. WDT Registers

Register Name Description

WDT_CTRLOW Watchdog counters 0 and 1

WDT_CTRHIGH Watchdog counter 2

WDT_MATCH Match value for watchdog counters 0 and 1

WDT_CONFIG Contains WDT configuration bits

WDT_CONTROL Controls the behavior of WDT counters

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 83

13. Reset System

PSoC® 4 supports several types of resets that guarantee error-free operation during power up and allow the device to reset
based on user-supplied external hardware or internal software reset signals. PSoC 4 also contains hardware to enable the
detection of certain resets.

The reset system has these sources:

■ Power-on reset (POR) to hold the device in reset while the power supply ramps up

■ Brownout reset (BOD) to reset the device if the power supply falls below specifications during operation

■ Watchdog reset (WRES) to reset the device if firmware execution fails to service the watchdog timer

■ Software initiated reset (SRES) to reset the device on demand using firmware

■ External reset (XRES) to reset the device using an external electrical signal

■ Protection fault reset (PROT_FAULT) to reset the device if unauthorized operating conditions occur

■ Hibernate wakeup reset to bring the device out of the Hibernate low-power mode

■ Stop wakeup reset to bring the device out of the Stop low-power mode

13.1 Reset Sources

The following sections provide a description of the reset sources available in PSoC 4.

13.1.1 Power-on Reset

Power-on reset is provided for system reset at power-up. POR holds the device in reset until the supply voltage, VDDD, is

according to the datasheet specification. The POR activates automatically at power-up.

POR events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, BOD, or XRES.

13.1.2 Brownout Reset

Brownout reset monitors the chip digital voltage supply VCCD and generates a reset if VCCD is below the minimum logic oper-
ating voltage specified in the device datasheet. BOD is available in all power modes except the Stop mode.

BOD events do not set a reset cause status bit, but in some cases they can be detected. In some BOD events, VCCD will fall
below the minimum logic operating voltage, but remain above the minimum logic retention voltage. Thus, some BOD events
may be distinguished from POR events by checking for logic retention. This is explained further in “Identifying Reset Sources”
on page 84.

13.1.3 Watchdog Reset

Watchdog reset (WRES) detects errant code by causing a reset if the watchdog timer is not cleared within the user-specified
time limit. This feature is enabled by setting the WDT_ENABLEx bit in the WDT_CONTROL register.

The RESET_WDT status bit of the RES_CAUSE register is set when a watchdog reset occurs. This bit remains set until
cleared or until a POR, XRES, or undetectable BOD reset; for example, in the case of a device power cycle. All other resets
leave this bit untouched.

For more details, see the Watchdog Timer chapter on page 79.

84 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Reset System

13.1.4 Software Initiated Reset

Software initiated reset (SRES) is a mechanism that allows a software-driven reset. The Cortex-M0 application interrupt and
reset control register (CM0_AIRCR) forces a device reset when a ‘1’ is written into the SYSRESETREQ bit. CM0_AIRCR
requires a value of A05F written to the top two bytes for writes. Therefore, write A05F0004 for the reset.

The RESET_SOFT status bit of the RES_CAUSE register is set when a software reset occurs. This bit remains set until
cleared or until a POR, XRES, or undetectable BOD reset; for example, in the case of a device power cycle. All other resets
leave this bit untouched.

13.1.5 External Reset

External reset (XRES) is a user-supplied reset that causes immediate system reset when asserted. The XRES pin is active
low – a high voltage on the pin has no effect and a low voltage causes a reset. The pin is pulled high inside the device. XRES
is available as a dedicated pin in most of the devices. For detailed pinout, refer to the pinout section of the device datasheet.

The XRES pin holds the device in reset while held active. When the pin is released, the device goes through a normal boot
sequence. The logical thresholds for XRES and other electrical characteristics, are listed in the Electrical Specifications sec-
tion of the device datasheet.

XRES events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, undetectable BOD, or XRES.

13.1.6 Protection Fault Reset

Protection fault reset (PROT_FAULT) detects unauthorized protection violations and causes a device reset if they occur. One
example of a protection fault is if a debug breakpoint is reached while executing privileged code. For details about privilege
code, see “Privileged” on page 71.

The RESET_PROT_FAULT bit of the RES_CAUSE register is set when a protection fault occurs. This bit remains set until
cleared or until a POR, XRES, or undetectable BOD reset; for example, in the case of a device power cycle. All other resets
leave this bit untouched.

13.1.7 Hibernate Wakeup Reset

Hibernate wakeup reset detects hibernate wakeup sources and performs a device reset to return to the Active power mode.
Hibernate wakeup resets are caused by interrupts. Both pin and comparator interrupts are available in the Hibernate low-
power mode. After a hibernate wakeup reset, both SRAM and UDB register contents are retained, but code execution begins
after reset as it does after any other reset source occurs.

Hibernate resets can be detected by checking the interrupt registers for comparators and pins. These interrupt register states
will be retained across hibernate wakeup resets.

For more details, see “Hibernate Mode” on page 75.

13.1.8 Stop Wakeup Reset

Stop wakeup reset detects stop wakeup sources and performs a device reset to return to the Active power mode. Stop
wakeup resets are caused by the XRES pin or the WAKEUP pin. After a stop wakeup reset, no memory contents are retained;
code execution begins after reset as it does after any other reset source occurs.

Some stop wakeup resets can be detected by examining the TOKEN bit-field (bits 0:7) in the PWR_STOP register. This bit-
field will be filled with a key when Stop mode is entered. Its contents will be retained if the device is woken up using the
WAKEUP pin. If the device is woken up with the XRES pin, the wakeup source cannot be detected. For more details, see
“Stop Mode” on page 75.

13.2 Identifying Reset Sources

When the device comes out of reset, it is often useful to know the cause of the most recent or even older resets. This is
achieved in the device primarily through the RES_CAUSE register. This register has specific status bits allocated for some of
the reset sources. The RES_CAUSE register supports detection of watchdog reset, software reset, and protection fault reset.

http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?id=4749&rtID=107&source=an85951

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 85

Reset System

It does not record the occurrences of POR, BOD, XRES, or the Hibernate and Stop wakeup resets. The bits are set on the
occurrence of the corresponding reset and remain set after the reset, until cleared or a loss of retention, such as a POR reset,
external reset, or brownout detect.

Hibernate wakeup resets can be detected by examining the comparator and pin interrupt registers that were configured to
wake the device from Hibernate mode. Stop wakeup resets that occur as a result of a WAKEUP pin event can be detected by
examining the PWR_STOP register, as described previously. Stop wakeup resets that occur as a result of an XRES cannot be
detected. The other reset sources can be inferred to some extent by the status of RES_CAUSE shown in Table 13-1.

Brownout events can be subdivided into two categories: retention resets and non-retention resets. If VCCD dips below the

minimum logic operating voltage, but not below the minimum logic retention voltage, then a BOD reset occurs; but retention of
registers is maintained. If VCCD dips below both minimum operating and minimum retention voltage, then a BOD reset occurs

without retention of registers. This register retention can be detected using a special register, PWR_BOD_KEY. The
PWR_BOD_KEY register only changes value when written by firmware or when a non-retention reset such as a non-retention
BOD, XRES, or POR event. This register may be initialized by firmware, and then checked in subsequent executions of
startup code to determine if a retention BOD occurred.

If these methods cannot detect the cause of the reset, then it can be one of the non-recorded and non-retention resets: non-
retention BOD, POR, XRES, or Stop Wakeup reset. These resets cannot be distinguished using on-chip resources.

13.3 Register List

Table 13-1. Reset Cause Bits to Detect Reset Source

Bits Name Description

0 RESET_WDT A watchdog timer reset has occurred since the last power cycle.

3 RESET_PROT_FAULT A protection violation occurred that requires a RESET.

4 RESET_SOFT Cortex-M0 requested a system reset through its SYSRESETREQ.

Table 13-2. Reset System Register List

Register Name Description

WDT_CONTROL Watchdog Timer Control Register - This register allows configuration of the device watchdog timer.

CM0_AIRCR
Cortex-M0 Application Interrupt and Reset Control Register - This register allows initiation of software resets,
among other Cortex-M0 functions.

RES_CAUSE Reset Cause Register - This register captures the cause of recent resets.

PWR_STOP This register controls entry/exit from the Stop power mode.

86 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Reset System

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 87

14. Device Security

PSoC® 4 offers a number of options for protecting user designs from unauthorized access or copying. Disabling debug fea-
tures and enabling flash protection provide a high level of security. In PSoC 4200 devices, additional security can be gained
by implementing custom functionality in the universal digital blocks (UDBs) instead of in firmware. It is more difficult to
reverse-engineer a hardware design implemented in the UDBs than it is to reverse-engineer object code.

The debug circuits are enabled by default and can only be disabled in firmware. If disabled, the only way to re-enable them is
to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Addi-
tionally, all device interfaces can be permanently disabled for applications concerned about phishing attacks due to a mali-
ciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences.
Permanently disabling interfaces is not recommended for most applications because the designer cannot access the device.
For more information, as well as a discussion on flash row and chip protection, see the CY8C41XX, CY8C42XX Programming
Specifications.

Note Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4
devices with full device security enabled may not be returned for failure analysis.

14.1 Features

The PSoC 4 device security system has the following features:

■ User-selectable levels of protection.

■ In the most secure case provided, the chip can be “locked” such that it cannot be acquired for test/debug and it cannot
enter erase cycles. Interrupting erase cycles is a known way for hackers to leave chips in an undefined state and open to
observation.

■ CPU execution in a privileged mode by use of the non-maskable interrupt (NMI). When in privileged mode, NMI remains
asserted to prevent any inadvertent return from interrupt instructions causing a security leak.

In addition to these, the device offers protection for individual flash row data.

14.2 How It Works

14.2.1 Device Security

The CPU operates in normal user mode or in privileged mode, and the device operates in one of four protection modes:
BOOT, OPEN, PROTECTED, and KILL. Each mode provides specific capabilities for the CPU software and debug. You can
change the mode by writing to the CPUSS_PROTECTION register.

■ BOOT mode: The device comes out of reset in BOOT mode. It stays there until its protection state is copied from supervi-
sor flash to the protection control register (CPUSS_PROTECTION). The debug-access port is stalled until this has hap-
pened. BOOT is a transitory mode required to set the part to its configured protection state. During BOOT mode, the CPU
always operates in privileged mode.

■ OPEN mode: This is the factory default. The CPU can operate in user mode or privileged mode. In user mode, flash can
be programmed and debugger features are supported. In privileged mode, access restrictions are enforced.

■ PROTECTED mode: The user may change the mode from OPEN to PROTECTED. This mode disables all debug access
to user code or memory. Access to most registers is still available; debug access to registers to reprogram flash is not
available. The mode can be set back to OPEN but only after completely erasing the flash.

http://www.cypress.com/?rID=78468

88 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Device Security

■ KILL mode: The user may change the mode from OPEN to KILL. This mode removes all debug access to user code or
memory, and the flash cannot be erased. Access to most registers is still available; debug access to registers to repro-
gram flash is not available. The part cannot be taken out of KILL mode; devices in KILL mode may not be returned for fail-
ure analysis.

14.2.2 Flash Security

The PSoC 4 devices include a flexible flash-protection system that controls access to flash memory. This feature is designed
to secure proprietary code, but it can also be used to protect against inadvertent writes to the bootloader portion of flash.

Flash memory is organized in rows. You can assign one of two protection levels to each row; see Table 14-1. Flash protection
levels can only be changed by performing a complete flash erase.

For more details, see the Nonvolatile Memory Programming chapter on page 279.

Table 14-1. Flash Protection Levels

Protection Setting Allowed Not Allowed

Unprotected
External read and write,
Internal read and write

–

Full Protection External reada

Internal read

a. To protect the device from external read operations, you should change the device protection settings to PROTECTED.

External write,
Internal write

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 89

Section E: Digital System

This section encompasses the following chapters:

■ Serial Communications Block (SCB) chapter on page 91

■

■ Universal Digital Blocks (UDB) chapter on page 125

■ Timer, Counter, and PWM chapter on page 167

Top Level Architecture

Digital System Block Diagram

Port Interface and Digital System Interconnect (DSI)

High Speed I/O Matrix

Peripheral Interconnect (MMIO)

4x
 T

C
P

W
M

2x
 S

C
B

-
I2

C
/S

P
I/

U
A

R
T

 Programmable
Digital

UDB UDB

UDBUDB

x4

90 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 91

15. Serial Communications Block (SCB)

The Serial Communications Block (SCB) of PSoC® 4 supports three serial interface protocols: SPI, UART, and I2C. Only one
of the protocols is supported by an SCB at any given time. PSoC 4 devices have two SCBs. Additional instances of the serial
peripheral interface (SPI) and UART protocols can be implemented using the universal digital blocks (UDBs).

15.1 Features

This block supports the following features:

■ Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor protocols

■ Standard UART functionality with SmartCard reader, Local Interconnect Network (LIN), and IrDA protocols

■ Standard I2C master and slave functionality

■ Standard LIN slave functionality with LIN v1.3 and LIN v2.1/2.2 specification compliance

■ Low-power (Deep-Sleep) mode of operation for SPI and I2C protocols (using external clocking)

Each of the three protocols is explained in the following sections.

15.2 Serial Peripheral Interface (SPI)

The SPI protocol is a synchronous serial interface protocol. Devices operate in either master or slave mode. The master initi-
ates the data transfer. The SCB supports single-master-multiple-slaves topology for SPI. Multiple slaves are supported with
individual slave select lines.

You can use the SPI master mode when the PSoC has to communicate with one or more SPI slave devices. The SPI slave
mode can be used when the PSoC has to communicate with an SPI master device.

15.2.1 Features

■ Supports master and slave functionality

■ Supports three types of SPI protocols:

❐ Motorola SPI – modes 0, 1, 2, and 3

❐ Texas Instruments SPI, with coinciding and preceding data frame indicator for mode 1

❐ National Semiconductor (MicroWire) SPI for mode 0

■ Supports up to four slave select lines

■ Data frame size programmable from 4 bits to 16 bits

■ Interrupts or polling CPU interface

■ Programmable oversampling

■ Supports externally clocked slave operation:

❐ In this mode, the slave operates in Active, Sleep, and Deep-Sleep system power modes

92 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.2.2 General Description

Figure 15-1 illustrates an example of SPI master with four slaves.

Figure 15-1. SPI Example

A standard SPI interface consists of four signals as follows.

■ SCLK: Serial clock (clock output from the master, input to the slave).

■ MOSI: Master-out-slave-in (data output from the master, input to the slave).

■ MISO: Master-in-slave-out (data input to the master, output from the slave).

■ Slave Select (SS): Typically an active low signal (output from the master, input to the slave).

A simple SPI data transfer involves the following: the master selects a slave by driving its SS line, then it drives data on the
MOSI line and a clock on the SCLK line. The slave uses either of the edges of SCLK depending on the configuration to cap-
ture the data on the MOSI line; it also drives data on the MISO line, which is captured by the master.

By default, the SPI interface supports a data frame size of eight bits (1 byte). The data frame size can be configured to any
value in the range 4 to 16 bits. The serial data can be transmitted either most significant bit (MSb) first or least significant bit
(LSB) first.

Three different variants of the SPI protocol are supported by the SCB:

■ Motorola SPI: This is the original SPI protocol.

■ Texas Instruments SPI: A variation of the original SPI protocol, in which data frames are identified by a pulse on the SS
line.

■ National Semiconductors SPI: A half duplex variation of the original SPI protocol.

SPI
Master

SPI
Slave 1

SPI
Slave 2

SPI
Slave 4

SCLK

MOSI

MISO

Slave Select (SS) 2

Slave Select (SS) 4

SPI
Slave 3

Slave Select (SS) 3

Slave Select (SS) 1

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 93

Serial Communications Block (SCB)

15.2.3 SPI Modes of Operation

15.2.3.1 Motorola SPI

The original SPI protocol was defined by Motorola. It is a full duplex protocol. Multiple data transfers may happen with the SS
line held at '0'. As a result, slave devices must keep track of the progress of data transfers to separate individual data frames.
When not transmitting data, the SS line is held at '1' and SCLK is typically pulled low.

Modes of Motorola SPI

The Motorola SPI protocol has four different modes based on how data is driven and captured on the MOSI and MISO lines.
These modes are determined by clock polarity (CPOL) and clock phase (CPHA).

Clock polarity determines the value of the SCLK line when not transmitting data. CPOL = '0' indicates that SCLK is '0' when
not transmitting data. CPOL = '1' indicates that SCLK is '1' when not transmitting data.

Clock phase determines when data is driven and captured. CPHA=0 means sample (capture data) on the leading (first) clock
edge, while CPHA=1 means sample on the trailing (second) clock edge, regardless of whether that clock edge is rising or fall-
ing. With CPHA=0, the data must be stable for setup time before the first clock cycle.

■ Mode 0: CPOL is '0', CPHA is '0': Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK.

■ Mode 1; CPOL is '0', CPHA is '1': Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK.

■ Mode 2: CPOL is '1', CPHA is '0': Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK.

■ Mode 3: CPOL is '1', CPHA is '1': Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK.

Figure 15-2 illustrates driving and capturing of MOSI/MISO data as a function of CPOL and CPHA.

Figure 15-2. SPI Motorola, 4 Modes

CPOL = 0 CPHA = 0

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

MSB LSB

MSB LSB

MSB LSB

MSB LSB

CPOL = 0 CPHA = 1

CPOL = 1 CPHA = 0

CPOL = 1 CPHA = 1

94 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

Figure 15-3 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0 (CPOL is '0', CPHA is '0').

Figure 15-3. SPI Motorola Data Transfer Example

Configuring SCB for SPI Motorola Mode

To configure the SCB for SPI Motorola mode, set various register bits in the following order:

1. Select SPI by writing '01' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI Motorola mode by writing '00' to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in Motorola by writing to the CPHA and CPOL fields (bits 2 and 3 respectively) of the
SCB_SPI_CTRL register.

4. Follow steps 2 to 4 mentioned in “Enabling and Initializing SPI” on page 98.

Note that PSoC Creator does all this automatically with the help of GUIs. For more information on these registers, see the
PSoC 4100/4200 Family: PSoC 4 Registers TRM.

15.2.3.2 Texas Instruments SPI

The Texas Instruments' SPI protocol redefines the use of the SS signal. It uses the signal to indicate the start of a data trans-
fer, rather than a low active slave select signal, as in the case of Motorola SPI. As a result, slave devices need not keep track
of the progress of data transfers to separate individual data frames. The start of a transfer is indicated by a high active pulse
of a single bit transfer period. This pulse may occur one cycle before the transmission of the first data bit, or may coincide with
the transmission of the first data bit. The TI SPI protocol supports only mode 1 (CPOL is '0' and CPHA is '1'): data is driven on
a rising edge of SCLK and data is captured on a falling edge of SCLK.

Figure 15-4 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse precedes the
first data bit. Note how the SELECT pulse of the second data transfer coincides with the last data bit of the first data transfer.

SCLK

Slave Select

MOSI

MISO

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL = 0, CPHA = 0 single data transfer

MSB LSB

MSB LSB MSB LSB

LSBMSB

MSB LSB MSB LSB

 CPOL = 0, CPHA = 0 two successive data transfers

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 95

Serial Communications Block (SCB)

Figure 15-4. SPI TI Data Transfer Example

Figure 15-5 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse coincides with
the first data bit of a frame.

Figure 15-5. SPI TI Data Transfer Example

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

 CPOL=0, CPHA=1 two successive data transfers

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

CPOL=0, CPHA=1 two successive data transfers

96 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

Configuring SCB for SPI TI Mode

To configure the SCB for SPI TI mode, set various register bits in the following order:

1. Select SPI by writing '01' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI TI mode by writing '01' to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in TI by writing to the SELECT_PRECEDE field (bit 1) of the SCB_SPI_CTRL register ('1'
configures the SELECT pulse to precede the first bit of next frame and '0' otherwise).

4. Follow steps 2 to 5 mentioned in “Enabling and Initializing SPI” on page 98.

Note that PSoC Creator does all this automatically with the help of GUIs. For more information on these registers, see the
PSoC 4100/4200 Family: PSoC 4 Registers TRM.

15.2.3.3 National Semiconductors SPI

The National Semiconductors' SPI protocol is a half duplex protocol. Rather than transmission and reception occurring at the
same time, they take turns. The transmission and reception data sizes may differ. A single "idle" bit transfer period separates
transmission from reception. However, the successive data transfers are NOT separated by an "idle" bit transfer period.

The National Semiconductors SPI protocol only supports mode 0: data is driven on a falling edge of SCLK and data is cap-
tured on a rising edge of SCLK.

Figure 15-6 illustrates a single data transfer and two successive data transfers. In both cases the transmission data transfer
size is eight bits and the reception data transfer size is four bits.

Figure 15-6. SPI NS Data Transfer Example

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB

“idle” ‘0’ cycle

“idle” ‘0’ cycle
No “idle” cycle

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=0 Transfer of one MOSI and one MISO data frame

CPOL=0, CPHA=0 Successive transfer of two MOSI and one MISO data frame

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 97

Serial Communications Block (SCB)

Configuring SCB for SPI NS Mode

To configure the SCB for SPI NS mode, set various register bits in the following order:

1. Select SPI by writing '01' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI NS mode by writing '10' to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Follow steps 2 to 5 mentioned in “Enabling and Initializing SPI” on page 98.

Note that PSoC Creator does all this automatically with the help of Component customizers. For more information on these
registers, see the PSoC 4100/4200 Family: PSoC 4 Registers TRM.

15.2.4 SPI Registers

The SPI interface is controlled using a set of 32-bit control and status registers listed in Table 15-1. For more information on
these registers, see the PSoC 4100/4200 Family: PSoC 4 Registers TRM.

Table 15-1. SPI Registers

Register Name Operation

SCB_CTRL Enables the SCB, selects the type of serial interface (SPI, UART, I2C), and selects internally and externally
clocked operation.

SCB_SPI_CTRL
Configures the SPI as either a master or a slave, selects SPI protocols (Motorola, TI, National) and clock-
based submodes in Motorola SPI (modes 0,1,2,3), selects the type of SELECT signal in TI SPI.

SCB_SPI_STATUS Indicates whether the SPI bus is busy.

SCB_TX_CTRL
Enables the transmitter, specifies the data frame width, and specifies whether MSB or LSB is the first bit in
transmission.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the receiver.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clears the transmitter FIFO and shift registers, and performs the FREEZE opera-
tion of the transmitter FIFO.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_FIFO_RD
Holds the data frame read from the receiver FIFO. Reading a data frame removes the data frame from the
FIFO - behavior is similar to that of a POP operation. This register has a side effect when read by software:
a data frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data frame read from the receiver FIFO. Reading a data frame does not remove the data frame
from the FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Holds the slave device address and mask values.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides
if the transmitter FIFO holds the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

98 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.2.5 SPI Interrupts

The SPI supports both internal and external interrupt requests. The internal interrupt events are listed here. PSoC Creator
generates the necessary interrupt service routines (ISRs) for handling buffer management interrupts. Custom ISRs can also
be used by connecting external interrupt component to the interrupt output of the SPI component (with external interrupts
enabled).

The SPI predefined interrupts can be classified as TX interrupts and RX interrupts. The TX interrupt output is the logical OR of
the group of all possible TX interrupt sources. This signal goes high when any of the enabled TX interrupt sources are true.
The RX interrupt output is the logical OR of the group of all possible RX interrupt sources. This signal goes high when any of
the enabled Rx interrupt sources are true. Various interrupt registers are used to determine the actual source of the interrupt.

The SPI supports interrupts on the following events:

■ SPI master transfer done

■ SPI Bus Error - Slave deselected at an unexpected time in the SPI transfer

■ TX

❐ TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

■ RX

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

■ SPI Externally clocked

❐ Wake up request on slave select

❐ SPI STOP detection at the end of each transfer

❐ SPI STOP detection at the end of a write transfer

Note The SPI interrupt signal is hard-wired to the Cortex-M0 NVIC and cannot be routed to external pins.

15.2.6 Enabling and Initializing SPI

The SPI must be programmed in the following order:

1. Program protocol specific information using the SCB_SPI_CTRL register, according to Table 15-3. This includes selecting
the submodes of the protocol and selecting master-slave functionality.

2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL registers, as
shown in Table 15-4:

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be transmitted/received.

c. Enable the transmitter and receiver.

3. Program the transmitter and receiver FIFOs using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers respec-
tively, as shown in Table 15-5:

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift registers.

c. Freeze the TX and RX FIFO.

4. Program SCB_CTRL register to enable the SCB block. Also select the mode of operation. These register bits are shown in
Table 15-2.

5. Enable the block (write a '1' to the ENABLED bit of the SCB_CTRL register). After the block is enabled, control bits should
not be changed. Changes should be made after disabling the block; for example, to modify the operation mode (from

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 99

Serial Communications Block (SCB)

Motorola mode to TI mode) or to go from externally clocked to internally clocked operation. The change takes effect only
after the block is re-enabled. Note that re-enabling the block causes re-initialization and the associated state is lost (for
example, FIFO content).

Table 15-2. SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled

Table 15-3. SCB_SPI_CTRL Register

Bits Name Value Description

[25:24] MODE

00 SPI Motorola submode.

01 SPI Texas Instruments submode.

10 SPI National Semiconductors submode.

11 Reserved.

31 MASTER_MODE
0 Slave mode.

1 Master mode.

Table 15-4. SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the number of bits in the transmitted or received data frame. The valid
range is [3, 15]. This does not include start, stop, and parity bits.

8 MSB_FIRST
1= MSB first

0= LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface lines. This
filter should reduce susceptibility to errors, but it requires higher oversampling values.

1=Enabled

0=Disabled

31 ENABLED

In the SCB_TX_CTRL register, this is the transmitter enable bit. This bit should be set for all
protocols when transmitting. Otherwise, the transmit protocol may not function.

In SCB_RX_CTRL register, this is the receiver enable bit. This bit should be enabled for all
protocols when receiving. Otherwise, the receive protocol may not function.

Table 15-5. SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL Registers

Bits Name Description

[2:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more entries
than the value of this field, a transmitter or receiver trigger event is generated in the respec-
tive case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no effect. Freeze
does not advance the TX or RX FIFO read/write pointer.

100 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.2.7 Internally and Externally Clocked SPI Operations

The SCB supports both internally and externally clocked operations for SPI and I2C functions. An internally clocked operation
uses a clock provided by the chip. An externally clocked operation uses a clock provided by the serial interface. Externally
clocked operation enables operation in the Deep-Sleep system power mode.

Internally clocked operation uses the high-frequency clock (HFCLK) of the system. For more information on system clocking,
see the Clocking System chapter on page 61. It also supports oversampling. Oversampling is implemented with respect to the
high-frequency clock. The OVS (bits [3:0]) of the SCB_CTRL register specify the oversampling.

In SPI master mode, the valid range for oversampling is 4 to 16. Hence, with a clock speed of 48 MHz, the maximum bit rate
is 12 Mbps. However, if you consider the I/O cell and routing delays, the oversampling must be set between 6 and 16 for
proper operation. So, the maximum bit rate is 8 Mbps. Note To achieve maximum possible bit rate, LATE_MISO_SAMPLE
must be set to '1' in SPI master mode. This has a default value of ‘0’.

In SPI slave mode, the OVS field (bits [3:0]) of SCB_CTRL register is not used. However, there is a frequency requirement for
the SCB clock with respect to the interface clock (SCLK). This requirement is expressed in terms of the ratio (SCB clock/
SCLK). This ratio is dependent on two fields: MEDIAN of SCB_RX_CTRL register and LATE_MISO_SAMPLE of SCB_CTRL
register. If the external SPI master supports Late MISO sampling and if the median bit is set to ‘0’, the maximum data rate that
can be achieved is 16 Mbps. If the external SPI master does not support late MISO sampling, the maximum data rate is lim-
ited to 8 Mbps (with the median bit set to ‘0’). Based on these bits, the maximum bit rates are given in Table 15-6.

Externally clocked operation is limited to:

■ Slave functionality.

■ Motorola mode 0.

Internally and externally clocked operation is determined by two register fields of the SCB_CTRL register:

■ EC_AM_MODE: Indicates whether SPI slave selection is internally ('0') or externally ('1') clocked. SPI slave selection
comprises the first part of the protocol.

■ EC_OP_MODE: Indicates whether the rest of the protocol operation (besides SPI slave selection) is internally ('0') or
externally ('1') clocked.

These two register fields determine the functional behavior of SPI. The register fields should be set based on the required
behavior in Active, Sleep, and Deep-Sleep system power mode. Improper setting may result in faulty behavior in certain sys-
tem power modes. Table 15-7 describes the settings for SPI.

Table 15-6. SPI Slave Maximum Data Rates

Maximum Bit Rate at Peripheral Clock of 48 MHz Ratio Requirement
Median of

SCB_RX_CTRL
LATE_MISO_SAMPLE of SCB_CTRL

8 Mbps 6 0 1

6 Mbps 8 1 1

4 Mbps 12 0 0

3 Mbps 16 1 0

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 101

Serial Communications Block (SCB)

EC_OP_MODE should always be set to '0'. However, EC_AM_MODE can be set to '0' or '1'.

EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting only works in Active and Sleep system power modes. The entire
block's functionality is provided in the internally clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting works in Active and Sleep system power mode and provides lim-
ited (wake up) functionality in Deep-Sleep system power mode. SPI slave selection is performed by the externally clocked
logic: in Active system power mode, both internally and externally clocked logic are active, and in Deep-Sleep system power
mode, only the externally clocked logic is active. When the externally clocked logic detects slave selection, it sets a wakeup
interrupt cause bit, which can be used to generate an interrupt to wake up the CPU.

■ In Active system power mode, the CPU and the block's internally clocked operation are active and the wakeup interrupt
cause is disabled (associated MASK bit is '0'). But in the Sleep mode, wakeup interrupt cause can be either enabled or
disabled (MASK bit can be either '1' or '0') based on the application. The remaining operations in the Sleep mode are
same as that of the Active mode. The internally clocked operation takes care of the ongoing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to be woken up and the wakeup interrupt cause is enabled (MASK bit
is '1'). Waking up takes time, so the ongoing SPI transfer is negatively acknowledged ('1' bit or "0xFF" byte is sent out on
the MISO line) and the internally clocked operation takes care of the next SPI transfer when it is woken up.

Table 15-7. SPI Operation

SPI Mode

System Power Mode
EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep
Selection using internal clock.

Operation using internal
clock.

Selection using external clock:

Operation using internal clock.

In Active mode, the Wakeup
interrupt cause is disabled
(MASK = 0).

In Sleep mode, the MASK bit
can be configured by the user.

Not supported Not supported

Deep-Sleep Not supported

Selection using external clock:
Wakeup interrupt cause is
enabled (MASK = 1).

Send 0xFF.

Hibernate
The SCB is not available in these modes (see the Power Modes chapter on page 75)

Stop

102 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.3 UART

The Universal Asynchronous Receiver/Transmitter (UART)
protocol is an asynchronous serial interface protocol. UART
communication is typically point-to-point. The UART inter-
face consists of two signals:

■ TX: Transmitter output

■ RX: Receiver input

15.3.1 Features

■ Asynchronous transmitter and receiver functionality

■ Supports a maximum data rate of 3 Mbps

■ Supports UART protocol

❐ Standard UART

❐ SmartCard (ISO7816) reader.

❐ IrDA

■ Supports Local Interconnect Network (LIN)

❐ Break detection

❐ Baud rate detection

❐ Collision detection (ability to detect that a driven bit
value is not reflected on the bus, indicating that
another component is driving the same bus)

■ Multi-processor mode

■ Data frame size programmable from 4 to 9 bits

■ Programmable number of STOP bits, which can be set in
terms of half bit periods between 1 and 4

■ Parity support (odd and even parity)

■ Interrupt or polling CPU interface

■ Programmable oversampling

15.3.2 General Description

Figure 15-7 illustrates a standard UART TX and RX.

Figure 15-7. UART Example

A typical UART transfer consists of a "Start Bit" followed by
multiple "Data Bits", optionally followed by a "Parity Bit" and
finally completed by one or more "Stop Bits". The Start and
Stop bits indicate the start and end of data transmission. The
Parity bit is sent by the transmitter and is used by the
receiver to detect single bit errors. As the interface does not
have a clock (asynchronous), the transmitter and receiver
use their own clocks; also, they need to agree upon the
period of a bit transfer.

Three different serial interface protocols are supported:

■ Standard UART protocol

❐ Multi-Processor Mode

❐ Local Interconnect Network (LIN)

■ SmartCard, similar to UART, but with a possibility to
send a negative acknowledgement

■ IrDA, modification to the UART with a modulation
scheme

By default, UART supports a data frame width of eight bits.
However, this can be configured to any value in the range of
4 to 9. This does not include start, stop, and parity bits. The
number of stop bits can be in the range of 1 to 4. The parity
bit can be either enabled or disabled. If enabled, the type of
parity can be set to either even parity or odd parity. The
option of using the parity bit is available only in the Standard
UART and SmartCard UART modes. For IrDA UART mode,
the parity bit is automatically disabled. Figure 15-8 depicts
the default configuration of the UART interface of the SCB.

Note UART interface does not support external clocking
operation. Hence, UART operates only in the Active and
Sleep system power modes.

15.3.3 UART Modes of Operation

15.3.3.1 Standard Protocol

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit
value is always '0', the data bits values are dependent on the
data transferred, the parity bit value is set to a value guaran-
teeing an even or odd parity over the data bits, and the stop
bit value is '1'. The parity bit is generated by the transmitter
and can be used by the receiver to detect single bit trans-
mission errors. When not transmitting data, the TX line is '1'
– the same value as the stop bits.

Because the interface does not have a clock, the transmitter
and receiver need to agree upon the period of a bit transfer.
The transmitter and receiver have their own internal clocks.
The receiver clock runs at a higher frequency than the bit
transfer frequency, such that the receiver may oversample
the incoming signal.

The transition of a stop bit to a start bit is represented by a
change from '1' to '0' on the TX line. This transition can be
used by the receiver to synchronize with the transmitter
clock. Synchronization at the start of each data transfer
allows error-free transmission even in the presence of fre-
quency drift between transmitter and receiver clocks. The
required clock accuracy is dependent on the data transfer
size.

The stop period or the amount of stop bits between succes-
sive data transfers is typically agreed upon between trans-
mitter and receiver, and is typically in the range of 1 to 3-bit
transfer periods.

UART UART

TX

RX
TX

RX

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 103

Serial Communications Block (SCB)

Figure 15-8 illustrates the UART protocol.

Figure 15-8. UART, Standard Protocol Example

The receiver oversamples the incoming signal; the value of the sample point in the middle of the bit transfer period (on the
receiver's clock) is used. Figure 15-9 illustrates this.

Figure 15-9. UART, Standard Protocol Example (Single Sample)

Alternatively, three samples around the middle of the bit transfer period (on the receiver's clock) are used for a majority vote
to increase accuracy. Figure 15-10 illustrates this.

Figure 15-10. UART, Standard Protocol (Multiple Samples)

UART Multi-Processor Mode

The UART_MP (multi-processor) mode is defined with single-master-multi-slave topology, as Figure 15-11 shows. This mode
is also known as UART 9-bit protocol because the data field is nine bits wide. UART_MP is part of Standard UART mode.

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line

104 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

Figure 15-11. UART MP Mode Bus Connections

The main properties of UART_MP mode are:

■ Single master with multiple slave concept (multi-drop network).

■ Each slave is identified by a unique address.

■ Using 9-bit data field, with the ninth bit as address/data flag (MP bit). When set high, it indicates an address byte; when set
low it indicates a data byte. A data frame is illustrated in Figure 15-12.

■ Parity bit is disabled.

Figure 15-12. UART MP Data Frame

The SCB can be used as either master or slave device in UART_MP mode. Both SCB_TX_CTRL and SCB_RX_CTRL regis-
ters should be set to 9-bit data frame size. When the SCB works as UART_MP master device, the firmware changes the MP
flag for every address or data frame. When it works as UART_MP slave device, the MP_MODE field of the
SCB_UART_RX_CTRL register should be set to '1'. The SCB_RX_MATCH register should be set for the slave address and
address mask. The matched address is written in the RX_FIFO when ADDR_ACCEPT field of the SCB_CTRL register is set
to '1'. If received address does not match its own address, then the interface ignores the following data, until next address is
received for compare.

UART Local Interconnect Network (LIN) Mode

The LIN protocol is supported by the SCB as part of the standard UART. LIN is designed with single-master-multi-slave topol-
ogy. There is one master node and multiple slave nodes on the LIN bus. The SCB UART supports both LIN master and slave
functionality. The LIN specification defines both physical layer (layer 1) and data link layer (layer 2). Figure 15-13 illustrates
the UART_LIN and LIN Transceiver.

Figure 15-13. UART_LIN and LIN Transceiver

UART MP
Master

UART MP
Slave 1

UART MP
Slave 2

UART MP
Slave 3

TX

RXTX TXTX

RX

RXRX

Master TX

Master RX

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field

UART LIN

LIN Transceiver

UART LIN

LIN Transceiver

LIN Master 1 LIN Slave 1 LIN Slave 2

TX RX TX RX

LIN BUS

UART LIN

LIN Transceiver

TX RX

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 105

Serial Communications Block (SCB)

LIN protocol defines two tasks:

■ Master task: This task involves sending a header packet to initiate a LIN transfer.

■ Slave task: This task involves transmitting or receiving a response.

The master node supports master task and slave task; the slave node supports only slave task, as shown in Figure 15-14.

Figure 15-14. LIN Bus Nodes and Tasks

LIN Frame Structure

LIN is based on the transmission of frames at pre-determined moments of time. A frame is divided into header and response
fields, as shown in Figure 15-15.

■ The header field consists of:

❐ Break field (at least 13 bit periods with the value '0').

❐ Sync field (a 0x55 byte frame). A sync field can be used to synchronize the clock of the slave task with that of the mas-
ter task.

❐ Identifier field (a frame specifying a specific slave).

■ The response field consists of data and checksum.

Figure 15-15. LIN Frame Structure

In LIN protocol communication, the least significant bit (LSB) of the data is sent first and the most significant bit (MSB) last.
The start bit is encoded as zero and the stop bit is encoded as one. The following sections describe all the byte fields in the
LIN frame.

Break Field

Every new frame starts with a break field, which is always generated by the master. The break filed has logical zero with a
minimum of 13 bit times and followed by a break delimiter. The break field structure is as shown in Figure 15-16.

Figure 15-16. LIN Break Field

Sync Field

This is the second field transmitted by the master in the header field; its value is 0x55. A sync field can be used to synchronize
the clock of the slave task with that of the master task for automatic baud rate detection. Figure 15-17 shows the LIN sync
field structure.

Figure 15-17. LIN Sync Field

Master Node

Master Task

Slave Task

Slave Node Slave Node

LIN bus

Slave Task Slave Task

106 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

Protected identifier (PID) Field

A protected identifier field consists of two sub-fields: the frame identifier (bits 0-5) and the parity (bit 6 and bit 7). The PID field
structure is shown in Figure 15-18.

■ Frame identifier: The frame identifiers are split into three categories

❐ Values 0 to 59 (0x3B) are used for signal carrying frames

❐ 60 (0x3C) and 61 (0x3D) are used to carry diagnostic and configuration data

❐ 62 (0x3E) and 63 (0x3F) are reserved for future protocol enhancements

■ Parity: Frame identifier bits are used to calculate the parity

Figure 15-18 shows the PID field structure.

Figure 15-18. PID Field

Data. In LIN, every frame can carry a minimum of one byte and maximum of 8 bytes of data. Here, the LSB of the data byte
is sent first and the MSB of the data byte is sent last.

Checksum

The checksum is the last byte field in the LIN frame. It is calculated by inverting the 8-bit sum along with carryover of all data
bytes only or the 8-bit sum with the carryover of all data bytes and the PID field. There are two types of checksums in LIN
frames. They are:

■ Classic checksum: the checksum calculated over all the data bytes only (used in LIN 1.x slaves).

■ Enhanced checksum: the checksum calculated over all the data bytes along with the protected identifier (used in LIN 2.x
slaves).

LIN Frame Types

The type of frame refers to the conditions that need to be valid to transmit the frame. According to the LIN specification, there
are five different types of LIN frames. A node or cluster does not have to support all frame types.

Unconditional Frame

These frames carry the signals and their frame identifiers (of 0x00 to 0x3B range). The subscriber will receive the frames and
make it available to the application; the publisher of the frame will provide the response to the header.

Event-Triggered Frame

The purpose of an event-triggered frame is to increase the responsiveness of the LIN cluster without assigning too much of
the bus bandwidth to polling of multiple slave nodes with seldom occurring events. Event-triggered frames carry the response
of one or more unconditional frames. The unconditional frames associated with an event triggered frame should:

■ Have equal length

■ Use the same checksum model (either classic or enhanced)

■ Reserve the first data field to its protected identifier

■ Be published by different slave nodes

■ Not be included directly in the same schedule table as the event-triggered frame

Sporadic Frame

The purpose of the sporadic frames is to merge some dynamic behavior into the schedule table without affecting the rest of
the schedule table. These frames have a group of unconditional frames that share the frame slot. When the sporadic frame is
due for transmission, the unconditional frames are checked if they have any updated signals. If no signals are updated, no
frame will be transmitted and the frame slot will be empty.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 107

Serial Communications Block (SCB)

Diagnostic Frames

Diagnostic frames always carry transport layer, and contains eight data bytes.

The frame identifier for diagnostic frame is:

■ Master request frame (0x3C), or

■ Slave response frame (0x3D)

Before transmitting a master request frame, the master task queries its diagnostic module to see if it will be transmitted or if
the bus will be silent. A slave response frame header will be sent unconditionally. The slave tasks publish and subscribe to the
response according to their diagnostic modules.

Reserved Frames

These frames are reserved for future use; their frame identifiers are 0x3E and 0x3F.

LIN Go-To-Sleep and Wake-Up

The LIN protocol has the feature of keeping the LIN bus in Sleep mode, if the master sends the go-to-sleep command. The
go-to-sleep command is a master request frame (ID = 0x3C) with the first byte field is equal to 0x00 and rest set to 0xFF. The
slave node application may still be active after the go-to-sleep command is received. This behavior is application specific. The
LIN slave nodes automatically enter Sleep mode if the LIN bus inactivity is more than four seconds.

Wake-up can be initiated by any node connected to the LIN bus – either LIN master or any of the LIN slaves by forcing the
bus to be dominant for 250 µs to 5 ms. Each slave should detect the wakeup request and be ready to process headers within
100 ms. The master should also detect the wakeup request and start sending headers when the slave nodes are active.

To support LIN, a dedicated (off-chip) line driver/receiver is required. Supply voltage range on the LIN bus is 7 V to 18 V. Typ-
ically, LIN line drivers will drive the LIN line with the value provided on the SCB TX line and present the value on the LIN line
to the SCB RX line. By comparing TX and RX lines in the SCB, bus collisions can be detected (indicated by the
SCB_UART_ARB_LOST field of the SCB_INTR_TX register).

Configuring the SCB as Standard UART Interface

To configure the SCB as a standard UART interface, set various register bits in the following order:

1. Configure the SCB as UART interface by writing '10' to the MODE field (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a Standard protocol by writing '00' to the MODE field (bits [25:24]) of the
SCB_UART_CTRL register.

3. To enable the UART MP Mode or UART LIN Mode, write '1' to the MP_MODE (bit 10) or LIN_MODE (bit 12) respectively
of the SCB_UART_RX_CTRL register.

4. Follow steps 2 to 5 described in “Enabling and Initializing UART” on page 110.

Note that PSoC Creator does all this automatically with the help of GUIs. For more information on these registers, see the
PSoC 4100/4200 Family: PSoC 4 Registers TRM.

15.3.3.2 SmartCard (ISO7816)

ISO7816 is asynchronous serial interface, defined with single-master-single slave topology. ISO7816 defines both Reader
(master) and Card (slave) functionality. For more information, refer to the ISO7816 Specification. Only master (reader) func-
tion is supported by the SCB. This block provides the basic physical layer support with asynchronous character transmission.
UART_TX line is connected to SmartCard I/O line, by internally multiplexing between UART_TX and UART_RX control mod-
ules.

The SmartCard transfer is similar to a UART transfer, with the addition of a negative acknowledgement (NACK) that may be
sent from the receiver to the transmitter. A NACK is always '0'. Both master and slave may drive the same line, although
never at the same time.

A SmartCard transfer has the transmitter drive the start bit and data bits (and optionally a parity bit). After these bits, it enters
its stop period by releasing the bus. Releasing results in the line being '1' (the value of a stop bit). After one bit transfer period
into the stop period, the receiver may drive a NACK on the line (a value of '0') for one bit transfer period. This NACK is
observed by the transmitter, which reacts by extending its stop period by one bit transfer period. For this protocol to work, the
stop period should be longer than one bit transfer period. Note that a data transfer with a NACK takes one bit transfer period

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38770

108 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

longer, than a data transfer without a NACK. Typically, implementations use a tristate driver with a pull-up resistor, such that
when the line is not transmitting data or transmitting the Stop bit, its value is '1'.

Figure 15-19 illustrates the SmartCard protocol.

Figure 15-19. SmartCard Example

The communication Baud rate for ISO7816 is given as:

Baud rate= f7816 × (D/F)

Where f7816 is the clock frequency, F is the clock rate conversion integer, and D is the baud rate adjustment integer.

By default, F = 372, D = f1, and the maximum clock frequency is 5 MHz. Thus, maximum baud rate is 13.4 Kbps. Typically, a
3.57-MHz clock is selected. The typical value of the baud rate is 9.6 Kbps.

Configuring SCB as UART SmartCard Interface

To configure the SCB as a UART SmartCard interface, set various register bits in the following order; note that PSoC Creator
does all this automatically with the help of GUIs. For more information on these registers, see the PSoC 4100/4200 Family:
PSoC 4 Registers TRM.

1. Configure the SCB as UART interface by writing '10' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a SmartCard protocol by writing '01' to the MODE (bits [25:24]) of the
SCB_UART_CTRL register.

3. Follow steps 2 to 5 described in “Enabling and Initializing UART” on page 110.

15.3.3.3 IrDA

The SCB supports the Infrared Data Association (IrDA) protocol for data rates of up to 115.2 Kbps using the UART interface.
It supports only the basic physical layer of IrDA protocol with rates less than 115.2 Kbps. Hence, the system instantiating this
block must consider how to implement a complete IrDA communication system with other available system resources.

The IrDA protocol adds a modulation scheme to the UART signaling. At the transmitter, bits are modulated. At the receiver,
bits are demodulated. The modulation scheme uses a Return-to-Zero-Inverted (RZI) format. A bit value of '0' is signaled by a
short '1' pulse on the line and a bit value of '1' is signaled by holding the line to '0'. For these data rates (<=115.2 Kbps), the
RZI modulation scheme is used and the pulse duration is 3/16 of the bit period. The sampling clock frequency should be set
16 times the selected baud rate, by configuring the SCB_OVS field of the SCB_CTRL register.

Different communication speeds under 115.2 Kbps can be achieved by configuring corresponding block clock frequency.
Additional allowable rates are 2.4 Kbps, 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, and 57.6 Kbps. An IrDA serial infrared interface
operates at 9.6 Kbps. Figure 15-20 shows how a UART transfer is IrDA modulated.

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) without NACK
TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

STOPNACK

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 109

Serial Communications Block (SCB)

Figure 15-20. IrDA Example

Configuring the SCB as UART IrDA Interface

To configure the SCB as a UART IrDA interface, set various register bits in the following order; note that PSoC Creator does
all this automatically with the help of GUIs. For more information on these registers, see the PSoC 4100/4200 Family: PSoC
4 Registers TRM.

1. Configure the SCB as UART interface by writing '10' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as IrDA protocol by writing '10' to the MODE (bits [25:24]) of the
SCB_UART_CTRL register.

3. Enable the Median filter on the input interface line by writing ‘1’ to MEDIAN (bit 9) of the SCB_RX_CTRL register.

4. Configure the SCB as described in “Enabling and Initializing UART” on page 110.

15.3.4 UART Registers

The UART interface is controlled using a set of 32-bit registers listed in Table 15-8. For more information on these registers,
see the PSoC 4100/4200 Family: PSoC 4 Registers TRM.

Table 15-8. UART Registers

Register Name Operation

SCB_CTRL Enables the SCB; selects the type of serial interface (SPI, UART, I2C)

SCB_UART_CTRL
Used to select the sub-modes of UART (standard UART, SmartCard, IrDA), also used for local loop back
control.

SCB_UART_RX_STATUS
Used to specify the BR_COUNTER value that determines the bit period. This is used to set the accuracy
of the SCB clock. This value provides more granularity than the OVS bit in SCB_CTRL register.

SCB_UART_TX_CTRL
Used to specify the number of stop bits, enable parity, select the type of parity, and enable retransmission
on NACK.

SCB_UART_RX_CTRL
Performs same function as SCB_UART_TX_CTRL but is also used for enabling multi processor mode,
LIN mode drop on parity error, and drop on frame error.

SCB_TX_CTRL
Used to enable the transmitter; also to specify the data frame width and to specify whether MSB or LSB
is the first bit in transmission.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

‘1' ‘0' PARIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

‘1'‘1' ‘1' ‘1' ‘1' ‘1'‘0' ‘0' ‘0'

IrDA
TX / RX

LEGEND:
TX / RX : Transmit or Receive line

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

110 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.3.5 UART Interrupts

The UART supports both internal and external interrupt requests. The internal interrupt events are listed in this section. PSoC
Creator generates the necessary interrupt service routines (ISRs) for handling buffer management interrupts. Custom ISRs
can also be used by connecting the external interrupt component to the interrupt output of the UART component (with external
interrupts enabled).

The UART predefined interrupts can be classified as TX interrupts and RX interrupts. The TX interrupt output is the logical OR
of the group of all possible TX interrupt sources. This signal goes high when any of the enabled TX interrupt sources is true.
The RX interrupt output is the logical OR of the group of all possible RX interrupt sources. This signal goes high when any of
the enabled Rx interrupt sources is true. The UART provides interrupts on the following events:

■ TX

❐ TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

❐ TX received a NACK in SmartCard mode

❐ TX done

❐ Arbitration lost (in LIN or SmartCard modes)

■ RX

❐ RX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

❐ Frame error in received data frame

❐ Parity error in received data frame

❐ LIN baud rate detection is completed

❐ LIN break detection is successful

15.3.6 Enabling and Initializing UART

The UART must be programmed in the following order:

1. Program protocol specific information using the SCB_UART_CTRL register, according to Table 15-9. This includes select-
ing the submodes of the protocol, transmitter-receiver functionality, and so on.

2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL registers, as
shown in Table 15-10.

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be transmitted or received.

c. Enable the transmitter and receiver.

3. Program the transmitter and receiver FIFOs using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers respec-
tively, as shown in Table 15-11.

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift registers.

c. Freeze the TX and RX FIFOs.

4. Program the SCB_CTRL register to enable the SCB block. Also select the mode of operation (Table 15-12).

5. Enable the block (write a '1' to the ENABLED bit of the SCB_CTRL register). After the block is enabled, control bits should
not be changed. Changes should be made after disabling the block; for example, to modify the operation mode (from

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 111

Serial Communications Block (SCB)

SmartCard to IrDA). The change takes effect only after the block is re-enabled. Note that re-enabling the block causes re-
initialization and the associated state is lost (for example FIFO content).

Table 15-9. SCB_UART_CTRL Register

Bits Name Value Description

[25:24] MODE

00 Standard UART

01 SmartCard

10 IrDA

11 Reserved

16 LOOP_BACK Loop back control. This allows a SCB UART transmitter to communicate with its receiver counterpart.

Table 15-10. SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the no. of bits in the transmitted or received data frame. The valid range is [3, 15]. This
does not include start, stop, and parity bits.

8 MSB_FIRST
1 = MSB first

0 = LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface lines. This filter should
reduce susceptibility to errors, but it requires higher oversampling values. For the UART IrDA mode, this
should always be '1'.

1 = Enabled

0 = Disabled

31 ENABLED

In SCB_TX_CTRL register, this is the transmitter enable bit. This bit should be set for all protocols when
transmitting. If not enabled, the transmit protocol may not function.

In SCB_RX_CTRL register, this is the receiver enable bit. This bit should be set for all protocols when
receiving. If not enabled, the receive protocol may not function.

Table 15-11. SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL Registers

Bits Name Description

[2:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more entries than the value of
this field, a transmitter or receiver trigger event is generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared/invalidated.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no effect. Freeze will not advance
the TX or RX FIFO read/write pointer.

Table 15-12. SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled

112 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.4 Inter Integrated Circuit (I2C)

This section explains the I2C implementation in PSoC 4. For more information on the I2C protocol specification, refer to the
I2C-bus specification available on the NXP website.

15.4.1 Features

This block supports the following features:

■ Master, slave, and master/slave mode

■ Slow-mode (50 kbps), standard-mode (100 kbps), fast-mode (400 kbps), and fast-mode plus (1000 kbps) data-rates

■ 7- or 10-bit slave addressing (10-bit addressing requires firmware support)

■ Clock stretching and collision detection

■ Programmable oversampling of I2C clock signal (SCL)

■ Error reduction using an digital median filter on the input path of the I2C data signal (SDA)

■ Glitch-free signal transmission with an analog glitch filter

■ Interrupt or polling CPU interface

15.4.2 General Description

Figure 15-21 illustrates an example of an I2C communication network.

Figure 15-21. I2C Interface Block Diagram

The standard I2C bus is a two wire interface with the following lines:

■ Serial Data (SDA)

■ Serial Clock (SCL)

I2C devices are connected to these lines using open collector or open-drain output stages, with pull-up resistors (Rp). A sim-
ple master/slave relationship exists between devices. Masters and slaves can operate as either transmitter or receiver. Each
slave device connected to the bus is software addressable by a unique 7-bit address. PSoC 4 also supports 10-bit address
matching for I2C with firmware support.

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

http://www.nxp.com/documents/other/UM10204_v5.pdf

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 113

Serial Communications Block (SCB)

15.4.3 Terms and Definitions

Table 15-13 explains the commonly used terms in an I2C
communication network.

15.4.3.1 Clock Stretching

When a slave device is not yet ready to process data, it may
drive a ‘0’ on the SCL line to hold it down. Due to the imple-
mentation of the I/O signal interface, the SCL line value will
be '0', independent of the values that any other master or
slave may be driving on the SCL line. This is known as clock
stretching and is the only situation in which a slave drives
the SCL line. The master device monitors the SCL line and
detects it when it cannot generate a positive clock pulse ('1')
on the SCL line. It then reacts by delaying the generation of
a positive edge on the SCL line, effectively synchronizing
with the slave device that is stretching the clock.

15.4.3.2 Bus Arbitration

The I2C protocol is a multi-master, multi-slave interface. Bus
arbitration is implemented on master devices by monitoring
the SDA line. Bus collisions are detected when the master
observes an SDA line value that is not the same as the
value it is driving on the SDA line. For example, when mas-
ter 1 is driving the value '1' on the SDA line and master 2 is
driving the value '0' on the SDA line, the actual line value will
be '0' due to the implementation of the I/O signal interface.
Master 1 detects the inconsistency and loses control of the
bus. Master 2 does not detect any inconsistency and keeps
control of the bus.

15.4.4 I2C Modes of Operation

I2C is a synchronous single master, multi-master, multi-slave
serial interface. Devices operate in either master mode,
slave mode, or master/slave mode. In master/slave mode,
the device switches from master to slave mode when it is
addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving the

clock on the SCL line. Table 15-14 illustrates the I2C modes
of operation.

Data transfer through the I2C bus follows a specific format.
Table 15-15 lists some common bus events that are part of
an I2C data transfer. The Write Transfer and Read Transfer
sections explain the I2C bus bit format during data transfer.

When operating in multi-master mode, the bus should
always be checked to see if it is busy; another master may
already be communicating with a slave. In this case, the
master must wait until the current operation is complete
before issuing a START signal (see Table 15-15,
Figure 15-22, and Figure 15-23). The master looks for a
STOP signal as an indicator that it can start its data trans-
mission.

When operating in multi-master-slave mode, if the master
loses arbitration during data transmission, the hardware
reverts to slave mode and the received byte generates a
slave address interrupt, so that the device is ready to
respond to any other master on the bus. With all of these
modes, there are two types of transfer - read and write. In
write transfer, the master sends data to slave; in read trans-
fer, the master receives data from slave. Write and read
transfer examples are available in “Master Mode Transfer
Examples” on page 119, “Slave Mode Transfer Examples”
on page 121, and “Multi-Master Mode Transfer Example” on
page 123.

Table 15-13. Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master
The device that initiates a transfer, generates
clock signals, and terminates a transfer

Slave The device addressed by a master

Multi-master
More than one master can attempt to control
the bus at the same time without corrupting the
message

Arbitration

Procedure to ensure that, if more than one mas-
ter simultaneously tries to control the bus, only
one is allowed to do so and the winning mes-
sage is not corrupted

Synchronization
Procedure to synchronize the clock signals of
two or more devices

Table 15-14. I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-master Supports more than one master on the bus

Multi-master-slave Simultaneous slave and multi-master operation

Table 15-15. I2C Bus Events Terminology

Bus Event Description

START
A HIGH to LOW transition on the SDA line while
SCL is HIGH

STOP
A LOW to HIGH transition on the SDA line while
SCL is HIGH

ACK

The receiver pulls the SDA line LOW and it
remains LOW during the HIGH period of the clock
pulse, after the transmitter transmits each byte.
This indicates to the transmitter that the receiver
received the byte properly.

NACK

The receiver does not pull the SDA line LOW and
it remains HIGH during the HIGH period of clock
pulse after the transmitter transmits each byte.
This indicates to the transmitter that the receiver
received the byte properly.

Repeated
START

START condition generated by master at the end
of a transfer instead of a STOP condition

DATA
SDA status change while SCL is low (data chang-
ing), and no change while SCL is high (data valid)

114 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.4.4.1 Write Transfer

Figure 15-22. Master Write Data Transfer

■ A typical write transfer begins with the master generating a START condition on the I2C bus. The master then writes a 7-

bit I2C slave address and a write indicator ('0') after the START condition. The addressed slave transmits an acknowledge-
ment byte by pulling the data line low during the ninth bit time.

■ If the slave address does not match any of the slave devices or if the addressed device does not want to acknowledge the
request, it transmits a no acknowledgement (NACK) by not pulling the SDA line low. The absence of an acknowledge-
ment, results in an SDA line value of '1' due to the pull-up resistor implementation.

■ If no acknowledgement is transmitted by the slave, the master may end the write transfer with a STOP event. The master
can also generate a repeated START condition for a retry attempt.

■ The master may transmit data to the bus if it receives an acknowledgement. The addressed slave transmits an acknowl-
edgement to confirm the receipt of every byte of data written. Upon receipt of this acknowledgement, the master may
transmit another data byte.

■ When the transfer is complete, the master generates a STOP condition.

15.4.4.2 Read Transfer

Figure 15-23. Master Read Data Transfer

■ A typical read transfer begins with the master generating a START condition on the I2C bus. The master then writes a 7-bit
I2C slave address and a read indicator ('1') after the START condition. The addressed slave transmits an acknowledge-
ment by pulling the data line low during the ninth bit time.

■ If the slave address does not match with that of the connected slave device or if the addressed device does not want to
acknowledge the request, a no acknowledgement (NACK) is transmitted by not pulling the SDA line low. The absence of
an acknowledgement, results in an SDA line value of '1' due to the pull-up resistor implementation.

■ If no acknowledgement is transmitted by the slave, the master may end the read transfer with a STOP event. The master
can also generate a repeated START condition for a retry attempt.

■ If the slave acknowledges the address, it starts transmitting data after the acknowledgement signal. The master transmits
an acknowledgement to confirm the receipt of each data byte sent by the slave. Upon receipt of this acknowledgement,
the addressed slave may transmit another data byte.

■ The master can send a NACK signal to the slave to stop the slave from sending data bytes. This completes the read trans-
fer.

■ When the transfer is complete, the master generates a STOP condition.

MSB LSBSDA

SCL

START Slave address (7 bits) Write ACK ACKData(8 bits) STOP

Write data transfer(Master writes the data)

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

MSB LSB

START Slave address (7 bits) Read ACK ACKData(8 bits) STOP

Read data transfer(Master reads the data)

SDA

SCL

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 115

Serial Communications Block (SCB)

15.4.5 I2C Registers

The I2C interface is controlled by reading and writing a set of configuration, control, and status registers, as listed in
Table 15-16.

Note Detailed descriptions of the I2C register bits are available in the PSoC 4100/4200 Family: PSoC 4 Registers TRM.

Table 15-16. I2C Registers

Register Function

SCB_CTRL
Enables the SCB block and selects the type of serial interface (SPI, UART, I2C). Also used to select inter-
nally and externally clocked operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver FIFO status.

SCB_I2C_STATUS Indicates bus busy status detection, read/write transfer status of the slave/master.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.

SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.

SCB_I2C_CFG Configures filters, which remove glitches from the SDA and SCL lines.

SCB_TX_CTRL
Enables the transmitter and specifies the data frame width; also used to specify whether MSB or LSB is the
first bit in transmission.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and FREEZE operation of the
transmitter FIFO.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides
if the transmitter FIFO holds the valid data.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO;
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK.

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

116 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.4.6 I2C Interrupts

The fixed-function I2C block generates interrupts for the fol-
lowing conditions.

■ I2C Master

❐ I2C master lost arbitration

❐ I2C master received NACK

❐ I2C master received ACK

❐ I2C master sent STOP

❐ I2C bus error (unexpected stop/start condition
detected)

■ I2C Slave

❐ I2C slave lost arbitration

❐ I2C slave received NACK

❐ I2C slave received ACK

❐ I2C slave received STOP

❐ I2C slave received START

❐ I2C slave address matched

❐ I2C bus error (unexpected stop/start condition
detected)

■ TX

❐ TX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

■ RX

❐ RX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_RX_FIFO_CTRL

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

■ I2C Externally Clocked

❐ Wake up request on address match

❐ I2C STOP detection at the end of each transfer

❐ I2C STOP detection at the end of a write transfer

❐ I2C STOP detection at the end of a read transfer

The I2C interrupt signal is hard-wired to the Cortex-M0 NVIC
and cannot be routed to external pins.

The interrupt output is the logical OR of the group of all pos-
sible interrupt sources. The interrupt is triggered when any
of the enabled interrupt conditions are met. Interrupt status
registers are used to determine the actual source of the
interrupt. For more information on interrupt registers, see the
PSoC 4100/4200 Family: PSoC 4 Registers TRM.

15.4.7 Enabling and Initializing the I2C

The following section describes the method to configure the
I2C block.

The I2C interface must be programmed in the following
order.

1. Program protocol specific information using the
SCB_I2C_CTRL register according to Table 15-17. This
includes selecting master - slave functionality.

2. Program the generic transmitter and receiver information
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 15-18.

a. Specify the data frame width.

b. Specify that MSB is the first bit to be transmitted/
received.

c. Enable the transmitter and receiver.

3. Program transmitter and receiver FIFO using the
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters, respectively, as shown in Table 15-19.

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift
registers.

4. Program the SCB_CTRL register to enable the I2C block
and select the I2C mode. These register bits are shown
in Table 15-20. For a complete description of the I2C
registers, see the PSoC 4100/4200 Family: PSoC 4
Registers TRM.

Table 15-17. SCB_I2C_CTRL Register

Bits Name Value Description

30 SLAVE_MODE 1 Slave mode

31 MASTER_MODE 1 Master mode

http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000-family-psoc-4-registers-technical-reference
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 117

Serial Communications Block (SCB)

15.4.8 Internal and External Clock Operation in I2C

The I2C block supports both internally and externally clocked operation for data-rate generation. Internally clocked operations
use a clock signal derived from the PSoC system bus clock. Externally clocked operations use a clock provided by the user.
Externally clocked operation allows limited functionality in the Deep-Sleep power mode, in which on-chip clocks are not
active. For more information on system clocking, see the Clocking System chapter on page 61.

Externally clocked operation is limited to slave functionality.

Internally and externally clocked operations are determined by two register fields of the SCB_CTRL register:

■ EC_AM_MODE (Externally Clocked Address Matching Mode): Indicates whether I2C address matching is internally
('0') or externally ('1') clocked.

■ EC_OP_MODE (Externally Clocked Operation Mode): Indicates whether the rest of the protocol operation (besides I2C
address match) is internally ('0') or externally ('1') clocked.

Table 15-18. SCB_TX_CTRL/SCB_RX_CTRL Register

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the number of bits in the transmitted or received data
frame. For I2C, this is always 7.

8 MSB_FIRST
1= MSB first (this should always be true for I2C)

0= LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface
lines. This filter should reduce susceptibility to errors, but it requires higher overs-
ampling values.

1=Enabled

0=Disabled

31 ENABLED

In SCB_TX_CTRL register, this is the transmitter enable bit This bit should be set
for all protocols when transmitting. If not enabled, the transmit protocol may not
function.

In SCB_RX_CTRL register, this is the receiver enable bit. This bit should be set
for all protocols when receiving. If not enabled, the receive protocol may not func-
tion.

Table 15-19. SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL

Bits Name Description

[2:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or the receiver FIFO
has more entries than the value of this field, a transmitter or receiver trigger event
is generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no
effect. Freeze does not advance the TX or RX FIFO read/write pointer.

Table 15-20. SCB_CTRL Registers

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled

118 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

These two register fields determine the functional behavior of I2C. The register fields should be set based on the required
behavior in Active, Sleep, and Deep-Sleep system power modes. Improper setting may result in faulty behavior in certain
power modes. Table 15-21 describes these settings.

EC_OP_MODE should always be set to '0'. However, EC_AM_MODE can be set to '0' or '1'.The combination EC_AM_MODE
= 0 and EC_OP_MODE = 1 is invalid and the block will not respond.

EC_AM_MODE is '0' and EC_OP_MODE is '0'.

This setting only works in Active and Sleep system power modes. All the functionality of the I2C is provided in the internally
clocked domain.

EC_AM_MODE is '1' and EC_OP_MODE is '0'.

This setting works in Active, Sleep, and Deep-Sleep system power modes. I2C address matching is performed by the exter-
nally clocked logic in Active, Sleep, and Deep-Sleep system power modes. When the externally clocked logic matches the
address, it sets a wakeup interrupt cause bit, which can be used to generate an interrupt to wakeup the CPU.

■ In Active system power mode, the CPU is active and the wakeup interrupt cause is disabled (associated MASK bit is '0').
The externally clocked logic takes care of the address matching and the internally locked logic takes care of the rest of the
I2C transfer.

■ In the Sleep mode, wakeup interrupt cause can be either enabled or disabled based on the application. The remaining
operations are similar to the Active mode.

■ In the Deep-Sleep mode, the CPU is shut down and will wake up on I2C activity if the wakeup interrupt cause is enabled.
CPU wakeup up takes time and the ongoing I2C transfer is either negatively acknowledged (NACK) or the clock is
stretched. In the case of a NACK, the internally clocked logic takes care of the first I2C transfer after it wakes up. For clock
stretching, the internally clocked logic takes care of the ongoing/stretched transfer when it wakes up. The register bit
S_NOT_READY_ADDR_NACK (bit 14) of the SCB_I2C_CTRL register determines whether the externally clocked logic
performs a negative acknowledge ('1') or clock stretch ('0').

15.4.9 Wake up from Sleep

The system wakes up from Sleep or Deep-Sleep system power modes when an I2C address match occurs. The fixed-func-
tion I2C block performs either of two actions after address match: Address ACK or Address NACK.

Address ACK - The I2C slave executes clock stretching and waits until the device wakes up and ACKs the address.

Address NACK - The I2C slave NACKs the address immediately. The master must poll the slave again after the device
wakeup time is passed. This option is only valid in the slave or multi-master-slave modes.

Note The interrupt bit WAKE_UP (bit 0) of the SCB_INTR_I2C_EC register must be enabled for the I2C to wake up the
device on slave address match while switching to the Sleep mode.

Table 15-21. I2C Operation

I2C Mode

System Power
Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep
Address match using internal clock.

Operation using internal clock.

Address match using external clock.

Operation using internal clock.
Not supported

Deep-Sleep Not supported
Address match using external clock.

Operation using internal clock.

Hibernate
The SCB is not available in these modes (see the Power Modes chapter on page 75).

Stop

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 119

Serial Communications Block (SCB)

15.4.10 Master Mode Transfer Examples

Master mode transmits or receives data.

15.4.10.1 Master Transmit

Figure 15-24. Single Master Mode Write Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Master
mode

Enable
TX FIFO

Enable SCB I2C
block

Transmission
of one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK STOP/
RESTART

Set Fixed
Function I2C

block to transmit
mode

Transmission
of one byte

data complete?

Byte ACK’ed or
NACK’ed?

Yes

NACK STOP/
RESTART

Data transfer
complete?

ACK

No

Send STOP
signal

Yes

Send START
signal

ACK

No
(stretch)

E
Error

STOP

E

Report and
handle error

TX FIFO
Empty?

EYes

No

RESTART

End

120 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.4.10.2 Master Receive

Figure 15-25. Single Master Mode Read Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Master
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Transmission
of one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK STOP/
RESTART

Set Fixed Function
I2C block

to receive mode

Receiving
one byte data

complete?

RX FIFO
full?

Yes

Yes
E

Data transfer
complete?

No

Send STOP
signal

Yes

Send START
signal

ACK

E
Error

STOP

E

Report and
handle error

Send ACK

Send NACK

No

No

RESTART

End

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 121

Serial Communications Block (SCB)

15.4.11 Slave Mode Transfer Examples

Slave mode transmits or receives data.

15.4.11.1 Slave Transmit

Figure 15-26. Slave Mode Write Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
TX FIFO

Enable Fixed
Function I2C block

Receiving
one byte slave

address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

Set Fixed Function
I2C block

to transmit mode

Transmitting one byte
data complete?

TX FIFO
empty?

Yes

Yes
E

Byte ACK’ed
or NACK’ed?

ACK

ACK

No
E

Error

Begin

E

Report and
handle error

START detected

Wake up

No

NACK

Data transfer
complete?

No

Yes

End

122 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.4.11.2 Slave Receive

Figure 15-27. Slave Mode Read Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

Set Fixed Function
I2C block to

receive mode

Receiving one byte
data complete?

RX FIFO
full?

Yes

Yes
E

ACK

No
(stretch)

E
Error

E

Report and
handle error

START detected

Wake up

No

Data transfer
complete?

No

Yes

Send
ACK

Send
NACK

End

Enable Fixed
Function I2C block

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 123

Serial Communications Block (SCB)

15.4.12 Multi-Master Mode Transfer Example

In multi-master mode, data can be transferred with the slave mode enabled or not enabled.

15.4.12.1 Multi-Master - Slave Not Enabled

Figure 15-28. Multi-Master, Slave Not Enabled Flow Chart

Begin

D isable F ixed
Function I2C b lock

Select M aster
m ode

Enable
TX FIFO

Enable F ixed
Function I2C b lock

Send START
signal

Transm ission
of one byte

slave address
com plete?N o

(stretch)

E

Lost arb itra tion?

Error

Yes

Begin

Bus busy?

N o

Bus busy?
Yes

N o

Yes

N o

C ontinue w ith da ta transfer as
in sing le m aster

E

R eport and
handle error

Yes

End

124 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Serial Communications Block (SCB)

15.4.12.2 Multi-Master - Slave Enabled

Figure 15-29. Multi-Master, Slave Enabled Flow Chart

Begin

Disable F ixed
Function I2C block

Select M aster and
Slave m ode

Enable
TX FIFO

Enable Fixed
Function I2C block

Send START
signal

Transm ission
of one byte

slave address
com plete?

No
(stretch)

E

Bus busy or
lost arbitration?

Error

Yes

Bus busy?

No

Yes

No

Continue w ith data transfer as
in single m aster

E

Report and
handle error

Yes

Continue w ith address
recognition as a slave

End

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 125

16. Universal Digital Blocks (UDB)

This chapter shows the design details of the PSoC® 4 universal digital blocks (UDBs). The UDB architecture implements a
balanced approach between configuration granularity and efficiency; UDBs have a combination of programmable logic
devices (PLDs), structured logic (datapaths), and a flexible routing scheme.

Note: Some PSoC 4 device families do not support UDBs. See the device datasheet for details.

16.1 Features
■ PSoC 4 contains an array of four UDBs

■ For optimal flexibility, each UDB contains several components:

❐ An ALU-based 8-bit datapath (DP) with multiple registers, FIFOs, and an 8-word instruction store

❐ Two PLDs, each with 12 inputs, eight product terms, and four macrocell outputs

❐ Control and status modules

❐ Clock and reset modules

■ Flexible routing through the UDB array

■ Portions of UDBs can be shared or chained to enable larger functions

■ Flexible implementations of multiple digital functions, including timers, counters, PWM (with dead band generator), UART,
SPI, and CRC generation/checking

■ Register-based interface to CPU

Figure 16-1 shows the components of a single UDB: two PLDs, a datapath, and control, status, clock and reset functions.

Figure 16-1. Single UDB Block Diagram

PLD
12C4

(8 PTs)

PLD
12C4

(8 PTs)

Datapath

Clock
 and Reset

Control

Routing Channel

Datapath
Chaining

PLD
Chaining

Status and
Control

http://www.cypress.com/?rID=94034

126 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Figure 16-2 shows how the array of four UDBs interfaces with the rest of the PSoC 4.

Figure 16-2. UDBs Array in PSoC 4

16.2 How It Works

The major components of a UDB are:

■ PLDs (2) – These blocks take inputs from the routing
channel and form registered or combinational sum-of-
products logic to implement state machines, control for
datapath operations, conditioning inputs, and driving out-
puts.

■ Datapath – This block contains a dynamically program-
mable ALU, four registers, two FIFOs, comparators, and
condition generation.

■ Control and Status – These modules provide a way for
CPU firmware to interact and synchronize with UDB
operation.

■ Reset and Clock Control – These modules provide
clock selection and enabling, and reset selection, for the
other blocks in the UDB.

■ Chaining Signals – The PLDs and datapath have
chaining signals that enable neighboring UDBs to be
linked, to create higher precision functions.

■ Routing Channel – UDBs are connected to the routing
channel through a programmable switch matrix for con-
nections between blocks in one UDB, and to all other
UDBs in the array.

■ System Bus Interface – All registers and RAM in each
UDB are mapped into the system address space and are
accessible by the CPU as 8-, 16-, and 32-bit accesses.

16.2.1 PLDs

Each UDB has two “12C4” PLDs. The PLD blocks, shown in
Figure 16-3, can be used to implement state machines, per-
form input or output data conditioning, and to create lookup
tables (LUTs). PLDs may also be configured to perform
arithmetic functions, sequence the datapath, and generate
status. General-purpose RTL can be synthesized and
mapped to the PLD blocks. This section presents an over-
view of the PLD design.

A PLD has 12 inputs, which feed across eight product terms
(PT) in the AND array. In a given product term, the true (T)
or complement (C) of the input can be selected. The outputs
of the PTs are inputs into the OR array. The 'C' in 12C4 indi-
cates that the OR terms are constant across all inputs, and
each OR input can programmatically access any or all of the
PTs. This structure gives maximum flexibility and ensures
that all inputs and outputs are permutable.

Programmable Digital Subsystem

UDBIF

UDB UDB

UDB UDB

DSI DSI

DSI DSI

BUS IF CLK IF Port IFPort IFPort IF

H
igh-S

p
ee

d
 I/O

 M
a

trix

CPUSS
(CPU Subsystem)

System Interconnect
(Single Layer AHB)

Dig. CLKs

4 to 88 to 32

Routing
Channels

O
th

er D
igital

S
ignals in C

hip

IRQ IF

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 127

Universal Digital Blocks (UDB)

Figure 16-3. PLD 12C4 Structure

16.2.1.1 PLD Macrocells

Figure 16-4 shows the macrocell architecture. The output drives the routing array and can be registered or combinational.
The registered modes are D Flip-Flop (DFF) with true or inverted input and Toggle Flip-Flop (TFF) on input high or low. The
output register can be set or reset for purposes of initialization, or asynchronously during operation under control of a routed
signal.

Figure 16-4. PLD Macrocell Architecture

P
T

0

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

IN9

IN10

IN11

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

P
T

1

P
T

2

P
T

3

P
T

4

P
T

5

P
T

6

P
T

7

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

AND
Array

OR
Array

MC0

MC1

MC2

OUT0

OUT1

OUT2

OUT3MC3

Carry In

Carry Out

set

res

D Q

QB

From OR gate

out
0

1

0

1

2

3

reset

selin

Output Bypass (BYP)
0: Registered
1: Combinational

XOR Feedback (XORFB)
00: D FF
01: Arithmetic (Carry)
10: T FF on high
11: T FF on low

Set Select (SSEL)
0: Set not used
1: Set from input

Reset Select (RSEL)
0: Set not used
1: Set from input

0

1

0

1

Carry Out Enable (COEN)
0:Carry Out disabled
1: Carry Out enabled

Constant (CONST)
0: D FF true in
1: D FF inverted in

selout

(to next MC)

(from prev MC)

BYP

RSEL

SSEL

COEN

CONST

0

1

clk

To macrocell
read-only registercpt0

cpt1

pld_en

XORFB[1:0]

128 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

PLD Macrocell Read-Only Registers

The outputs of the eight macrocells in the two PLDs can be accessed by the CPU as an 8-bit read-only register. Macrocells
across multiple UDBs can be accessed as 16- or 32-bit read-only registers. See “UDB Addressing” on page 162.

16.2.1.2 PLD Carry Chain

PLDs are chained together in UDB address order. As shown in Figure 16-5, the carry chain input “selin” is routed from the
previous UDB in the chain through each macrocell in both PLDs, and then to the next UDB as the carry chain out “selout”. To
support the efficient mapping of arithmetic functions, special product terms are generated and used in the macrocell in con-
junction with the carry chain.

Figure 16-5. PLD Carry Chain and Special Product Term Inputs

16.2.1.3 PLD Configuration

The PLDs can be configured by accessing a set of 16- or 32-bit registers; see “UDB Addressing” on page 162.

16.2.2 Datapath

The datapath, shown in Figure 16-6, contains an 8-bit single-cycle ALU, with associated compare and condition generation
circuits. A datapath may be chained with datapaths in neighboring UDBs to achieve higher precision functions. The datapath
includes a small dynamic configuration RAM, which can dynamically select the operation to perform in a given cycle. The dat-
apath is optimized to implement typical embedded functions such as timers, counters, PWMs, PRS, CRC, shifters, and dead
band generators. The add and subtract functions allow support for digital delta-sigma operations.

selinMC0MC1MC2MC3MC0

cpt1,cpt0

MC1MC2MC3

{P
T

7
,P

T
6}

selout

PLD0PLD1

To the next
PLD block
in the chain

cpt1,cpt0cpt1,cpt0cpt1,cpt0 cpt1,cpt0cpt1,cpt0 cpt1,cpt0cpt1,cpt0

From the previous
PLD block in

the chain
{P

T
7

,P
T

6}

{P
T

5
,P

T
4}

{P
T

5,P
T

4}

{P
T

3
,P

T
2}

{P
T

3
,P

T
2}

{P
T

1
,P

T
0}

{P
T

1
,P

T
0}

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 129

Universal Digital Blocks (UDB)

Figure 16-6. Datapath Top Level

16.2.2.1 Overview

The following are key datapath features.

Dynamic Configuration

Dynamic configuration is the ability to change the datapath
function and interconnect on a cycle-by-cycle basis, under
sequencer control. This is implemented using the configura-
tion RAM, which stores eight unique configurations. The
address input to this RAM can be routed from any block
connected to the routing fabric, typically PLD logic, I/O pins,
or other datapaths.

ALU

The ALU can perform eight general-purpose functions:
increment, decrement, add, subtract, AND, OR, XOR, and
PASS. Function selection is controlled by the configuration
RAM on a cycle-by-cycle basis. Independent shift (left, right,
nibble swap) and masking operations are available at the
output of the ALU.

Conditionals

Each datapath has two comparators with bit masking
options, which can be configured to select a variety of data-
path register inputs for comparison. Other detectable condi-
tions include all zeros, all ones, and overflow. These
conditions form the primary datapath output selects to be

routed to the digital routing fabric as inputs to other func-
tions.

Built-in CRC/PRS

The datapath has built-in support for single-cycle cyclic
redundancy check (CRC) computation and pseudo random
sequence (PRS) generation of arbitrary width and arbitrary
polynomial specification. To achieve longer than 8-bit CRC/
PRS widths, signals may be chained between datapaths.
This feature is controlled dynamically and therefore, can be
interleaved with other functions.

Variable MSB

The most significant bit of an arithmetic and shift function
can be programmatically specified. This supports variable
width CRC/PRS functions and, in conjunction with ALU out-
put masking, can implement arbitrary width timers, counters,
and shift blocks.

Input/Output FIFOs

Each datapath contains two 4-byte FIFOs, which can be
individually configured for direction as an input buffer (CPU
writes to the FIFO, datapath internals read the FIFO), or an
output buffer (datapath internals write to the FIFO, the CPU
reads from the FIFO). These FIFOs generate full or empty
status signals that can be routed to interact with sequencers
or interrupts.

ALU

A0

A1

D0

D1

PI

ALU

Mask

Shift

Data Registers

Output
Muxes

F1

F0

FIFOs

Accumulators

SRC A

PO

A0

A1

D0

D1

Output to
Programmable
Routing

Chaining

D
yn

am
ic C

o
n

fig
u

ratio
n

 R
A

M
8 W

o
rd

 X
 16

 b
it

Parallel Input/Output
(to/from Programmable

Routing)

Input from
Programmable

Routing

Input
Muxes

To/From
Next
Datapath

To/From
Prev

Datapath

D
ata

p
ath

 C
o

n
tro

l

System Bus

SRC B

R/W Access to all
registers

C
o

n
d

itio
n

s
2

 C
o

m
pares

2 Z
ero D

etect, 2 O
nes D

e
tect

O
verflow

 D
etect

66

130 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Chaining

The datapath can be configured to chain conditions and sig-
nals with neighboring datapaths. Shift, carry, capture, and
other conditional signals can be chained to form higher pre-
cision arithmetic, shift, and CRC/PRS functions.

Time Multiplexing

In applications that are oversampled or do not need the
highest clock rates, the single ALU block in the datapath can
be efficiently shared between two sets of registers and con-
dition generators. ALU and shift outputs are registered and
can be used as inputs in subsequent cycles. Usage exam-
ples include support for 16-bit functions in one (8-bit) data-
path, or interleaving a CRC generation operation with a data
shift operation.

Datapath Inputs

The datapath has three types of inputs: configuration, con-
trol, and serial and parallel data. The configuration inputs
select the dynamic configuration RAM address. The control

inputs load the data registers from the FIFOs and capture
accumulator outputs into the FIFOs. Serial data inputs
include shift in and carry in. A parallel data input port allows
up to eight bits of data to be brought in from routing.

Datapath Outputs

A total of 16 signals are generated in the datapath. Some of
these signals are conditional signals (for example, com-
pares), some are status signals (for example, FIFO status),
and the rest are data signals (for example, shift out). These
16 signals are multiplexed into the six datapath outputs and
then driven to the routing matrix. By default, the outputs are
single synchronized (pipelined). A combinational output
option is also available for these outputs.

Datapath Working Registers

Each datapath module has six 8-bit working registers. All
registers are readable and writable by CPU.

16.2.2.2 Datapath FIFOs

FIFO Modes and Configurations

Each FIFO has a variety of operation modes and configurations.

Table 16-1. Datapath Working Registers

Type Name Description

Accumulator A0, A1
The accumulators may be both a source and a destination for the ALU. They may also be loaded from a data
register or a FIFO. The accumulators typically contain the current value of a function, such as a count, CRC, or
shift. These registers are non-retention; they lose their values in sleep and are reset to 0x00 on wakeup.

Data D0, D1
The data registers typically contain constant data for a function, such as a PWM compare value, timer period,
or CRC polynomial. These registers retain their values across sleep intervals.

FIFOs F0, F1

The two 4-byte FIFOs provide both a source and a destination for buffered data. The FIFOs can be configured
as both input buffers, both output buffers, or as one input buffer and one output buffer. Status signals indicate
the full/empty status of these registers. Usage examples include buffered TX and RX data in the SPI or UART
and buffered PWM compare and buffered timer period data. These registers are non-retention; they lose their
values in sleep and are reset to 0x00 on wakeup.

Table 16-2. FIFO Modes and Configurations

Mode Description

Input/Output
In input mode, the CPU writes to the FIFO and the data is read and consumed by the datapath internals. In
output mode, the FIFO is written to by the datapath internals and is read and consumed by the CPU.

Single Buffer
The FIFO operates as a single-byte buffer with no status. Data written to the FIFO is immediately available for
reading, and can be overwritten at anytime.

Level/Edge The control to load the FIFO from the datapath internals can be either level or edge triggered.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 131

Universal Digital Blocks (UDB)

Figure 16-7 shows the possible FIFO configurations controlled by the input/output modes. The TX/RX mode has one FIFO in
input mode and the other in output mode. The primary example of this configuration is SPI. The dual capture configuration
provides independent capture of A0 and A1, or two separately controlled captures of either A0 or A1. Finally, the dual buffer
mode can provide buffered periods and compares, or two independent periods/compares.

Figure 16-7. FIFO Configurations

Normal/Fast
The control to load the FIFO from the datapath source is sampled on the currently selected datapath clock
(normal) or the HFCLK (fast). This allows captures to occur at the highest rate in the system (HFCLK), inde-
pendent of the datapath clock.

Software

Capture

When this mode is enabled and the FIFO is in output mode, a read by the CPU of the associated accumulator
(A0 for F0, A1 for F1) initiates a synchronous transfer of the accumulator value into the FIFO. The captured
value may then be immediately read from the FIFO. If chaining is enabled, the operation follows the chain to
the MS block for atomic reads by datapaths of multi-byte values.

Asynch
When the datapath is being clocked asynchronously to the HFCLK, the FIFO status signals can be routed to
the rest of the datapath either directly, single sampled to the datapath clock, or double sampled in the case of
an asynchronous datapath clock

Independent Clock Polarity Each FIFO has a control bit to invert polarity of the FIFO clock with respect to the datapath clock.

Table 16-2. FIFO Modes and Configurations (continued)

Mode Description

System Bus

F0

F1

System Bus

A0/A1/ALU

D0/D1

A0/A1/ALU

System Bus

F1

A0/A1/ALU

F0

D0

System Bus

F1

A0

D1

A1

F0

TX/RX Dual Capture Dual Buffer

132 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Figure 16-8 shows a detailed view of FIFO sources and sinks.

Figure 16-8. FIFO Sources and Sinks

When the FIFO is in input mode, the source is the system bus and the sinks are the Dx and Ax registers. When in output
mode, the sources include the Ax registers and the ALU, and the sink is the system bus. The multiplexer selection is statically
set in UDB configuration register CFG15, as shown in Table 16-3 for the F0_INSEL[1:0] or F1_INSEL[1:0].

FIFO Status

Each FIFO generates two status signals, “bus” and “block,” which are sent to the UDB routing through the datapath output
multiplexer. The “bus” status can be used to assert an interrupt request to read/write the FIFO. The “block” status is primarily
intended to provide the FIFO state to the UDB internals. The meanings of the status bits depend on the configured direction
(Fx_INSEL[1:0] in the UDB CFG15 register) and the FIFO level bits. The FIFO level bits (Fx_LVL) are set in the Auxiliary Con-
trol Working register (ACTL) in working register space. Table 16-4 shows the options.

Table 16-3. FIFO Multiplexer Set in UDB CFG15 Register

Fx_INSEL[1:0] Description

00 Input mode - System bus writes the FIFO, FIFO output destination is Ax or Dx.

01 Output A0 Mode - FIFO input source is A0, FIFO output destination is the system bus.

10 Output A1 Mode - FIFO input source is A1, FIFO output destination is the system bus.

11 Output ALU Mode - FIFO input source is the ALU output, FIFO output destination is the system bus.

Table 16-4. FIFO Status Options

Fx_INSEL[1:0] Fx_LVL FIFO Status FIFO Status Signal Description

Input 0 Not Full Bus Status Asserted when there is room for at least 1 byte in the FIFO.

Input 1
At Least Half
Empty

Bus Status Asserted when there is room for at least 2 bytes in the FIFO.

Input NA Empty Block Status
Asserted when there are no bytes left in the FIFO. When not empty, the
datapath internals may consume bytes. When empty the datapath may
idle or generate an underrun condition.

Output 0 Not Empty Bus Status Asserted when there is at least 1 byte available to be read from the FIFO.

Output 1
At Least Half
Empty

Bus Status
Asserted when there are at least 2 bytes available to be read from the
FIFO.

Output NA Full Block Status
Asserted when the FIFO is full. When not full, the datapath internals may
write bytes to the FIFO. When full, the datapath may idle or generate an
overrun condition.

FIFO F1

D1

A1

U
D

B
 L

ocal D
ata B

us

FIFO F0

D0

A0

A
0

A
0

A
1

A
1

A
L

U

A
L

U

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 133

Universal Digital Blocks (UDB)

FIFO Operation

Figure 16-9 illustrates a typical sequence of reads and writes and the associated status generation. Although the figure
shows reads and writes occurring at different times, a read and write can also occur simultaneously.

Figure 16-9. Detailed FIFO Operation Sinks

FIFO Fast Mode (FIFO FAST)

When the FIFO is configured for output, the FIFO load operation normally uses the currently selected datapath clock for sam-
pling the write signal. As shown in Figure 16-10, with the FIFO fast mode set, the HFCLK can be optionally selected for this
operation. Used in conjunction with edge sensitive mode, this operation reduces the latency of accumulator-to-FIFO transfer
from the resolution of the datapath clock to the resolution of the HFCLK, which can be much higher. This allows the CPU to
read the captured result in the FIFO with minimal latency.

Figure 16-10 illustrates that the fast load operation is independent of the currently selected datapath clock; however, using
the HFCLK may cause higher power consumption. Note that the incoming fx_ld signal must be able to meet HFCLK timing,
which can require local resynchronization.

Figure 16-10. FIFO Fast Configuration Sinks

WR_PTR

RD_PTR RD_PTR

Reset Write 2 bytes

Empty = 1

At Least Half Empty = 1

D0

D1

Full = 0

At Least Half Full = 0

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 1

Write 2 more bytes

Empty = 0

At Least Half Empty = 0

Full = 1

At Least Half Full = 1

D0

D1

D2

D3

WR_PTR

WR_PTR

RD_PTR

Read 3 bytes

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

X

X

D3
RD_PTR

WR_PTR

Write 2 bytes

Empty = 0

At Least Half Empty = 0

Full = 0

At Least Half Full = 1

D4

D5

X

D3
RD_PTR

WR_PTR

Read 2 bytes

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

D5

X

X

RD_PTR

WR_PTR

Read 1 bytes

Empty = 1

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

X

X

X

RD_PTR

WR_PTR

FIFO
(In Output Mode)

DP clk

HFCLK

DP Operation

fx_ld

FIFO Fast

0

1

HFCLK

digital
clocks

UDB DP
Clock Mux

Write

134 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

FIFO Level/Edge Write Mode

Two modes are available for writing the FIFO from the datapath. In the first mode, data is synchronously transferred from the
accumulators to the FIFOs. The control for that write (fx_ld) is typically generated from a state machine or condition that is
synchronous to the datapath clock. The FIFO is written in any cycle where the input load control is a '1'.

In the second mode, the FIFO is used to capture the value of the accumulator in response to a positive edge of the fx_ld sig-
nal. In this mode the duty cycle of the waveform is arbitrary (however, it must be at least one datapath clock cycle in width). An
example of this mode is capturing the value of the accumulator using an external pin input as a trigger. The limitation of this
mode is that the input control must revert to '0' for at least one cycle before another positive edge is detected.

Figure 16-11 shows the edge detect option on the fx_ld control input. One bit for this option sets the mode for both FIFOs in a
UDB. Note that edge detection is sampled at the rate of the selected FIFO clock.

Figure 16-11. Edge Detect Option for Internal FIFO Write

FIFO Software Capture Mode

A common and important requirement is to allow the CPU the ability to reliably read the contents of an accumulator during
normal operation. This is done with software capture and is enabled by setting the FIFO Cap configuration bit (FIFO_CAP bit
in the UDB CFG16 register). This bit applies to both FIFOs in a UDB, but is only operational when a FIFO is in output mode.
When using software capture, F0 should be set to load from A0 and F1 from A1.

As shown in Figure 16-12, reading the accumulator triggers a write to the FIFO from that accumulator. This signal is chained
so that a read of a given byte simultaneously captures accumulators in all chained UDBs. This allows the CPU to reliably read
16 bits or more simultaneously. The data returned in the read of the accumulator should be ignored; the captured value may
be read from the FIFOs immediately.

The fx_ld signal, which generates a FIFO load, is ORed with the software capture signal; the results can be unpredictable
when both hardware and software capture are used at the same time. As a general rule, these functions should be mutually
exclusive; however, hardware and software capture can be used simultaneously with the following settings:

■ FIFO capture clocking mode is set to FIFO FAST

■ FIFO write mode is set to FIFO EDGE

With these settings, hardware and software capture work essentially the same and in any given HFCLK cycle, either signal
asserted initiates a capture.

It is also recommended to clear the target FIFO in firmware (UDB ACTL register) before initiating a software capture. This ini-
tializes the FIFO read and write pointers to a known state.

FF

0

1fx_ld (from Routing)

FIFO Edge

fx_write

0

1

FIFO Fast

dp_clk

HFCLK

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 135

Universal Digital Blocks (UDB)

Figure 16-12. Software Capture Configuration

FIFO Control Bits

The Auxiliary Control register (ACTL) has four bits that may be used by the CPU firmware to control the FIFO during normal
operation.

The FIFO0 CLR and FIFO1 CLR bits are used to reset or flush the FIFO. When a '1' is written to one of these bits, the associ-
ated FIFO is reset. The bit must be written back to '0' for FIFO operation to continue. If the bit is left asserted, the given FIFO
is disabled and operates as a one byte buffer without status. Data can be written to the FIFO; the data is immediately avail-
able for reading and can be overwritten at anytime. Data direction using the Fx INSEL[1:0] (UDB CFG15 register) configura-
tion bits is still valid.

The FIFO0 LVL and FIFO1 LVL bits control the level at which the 4-byte FIFO asserts bus status (when the bus is either read-
ing or writing to the FIFO) to be asserted. The meaning of FIFO bus status depends on the configured direction, as shown in
Table 16-5.

FIFO Asynchronous Operation

Figure 16-13 illustrates the concept of asynchronous FIFO operation. As an example, assume F0 is set for input mode and F1
is set for output mode, which is a typical configuration for TX and RX registers.

On the TX side, the datapath state machine uses "empty" to determine if there are any bytes available to consume. Empty is
set synchronously to the DP state machine, but is cleared asynchronously due to a bus write. When cleared, the status is syn-
chronized back to the DP state machine.

On the RX side, the datapath state machine uses “full” to determine whether there is a space left to write to the FIFO. Full is
set synchronously to the DP state machine, but is cleared asynchronously due to a bus read. When cleared, the status is syn-
chronized back to the DP state machine.

A single FIFO ASYNCH bit of the UDB CFG16 register is used to enable this synchronization method; when set it applies to
both FIFOs. It is only applied to the block status, as it is assumed that bus status is naturally synchronized by the interrupt
process.

Table 16-5. FIFO Level Control Bits in UDB ACTL Register

FIFOxLVL Input Mode (Bus is Writing FIFO) Output Mode (Bus is Reading FIFO)

0
Not Full

At least 1 byte can be written

Not Empty

At least 1 byte can be read

1
At least Half Empty

At least 2 bytes can be written

At least Half Full

At least 2 bytes can be read

capxi (chaining in)
capx (chaining out)

read ax

Chain X

FIFO Cap

fx_write

fx_ld

HFCLK

(FIFO FAST)

FIFO EDGE

0

1

136 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Figure 16-13. FIFO Asynchronous Operation

FIFO Overflow Operation

Use FIFO status signaling to safely implement both internal
(datapath) and external (CPU) reads and writes. There is no
built-in protection from underflow and overflow conditions. If
the FIFO is full and subsequent writes occur (overflow), the
new data overwrites the front of the FIFO (the data currently
being output, the next data to read). If the FIFO is empty and
subsequent reads occur (underflow), the read value is unde-
fined. FIFO pointers remain accurate regardless of under-
flow and overflow.

FIFO Clock Inversion Option

Each FIFO has a control bit called Fx CK INV in the UDB
CFG16 register that controls the polarity of the FIFO clock,
with respect to the polarity of the DP clock. By default, the
FIFO operates at the same polarity as the DP clock. When
this bit is set, the FIFO operates at the opposite polarity as
the DP clock. This provides support for “both clock edge”
communication protocols, such as SPI.

FIFO Dynamic Control

Normally, the FIFOs are configured statically in either input
or output mode. As an alternative, each FIFO can be config-
ured into a mode where the direction is controlled dynami-
cally, that is, by routed signals. One configuration bit per
FIFO (Fx DYN bit in the UDB CFG17 register) enables the
mode. Figure 16-14 shows the configurations available in
dynamic FIFO mode.

Figure 16-14. FIFO Dynamic Mode

In internal access mode, the datapath can read and write the
FIFO. In this configuration, the Fx INSEL bits must be con-
figured to select the source for the FIFO writes. Fx INSEL =
00 (CPU bus source) is invalid in this mode; they can only
be 01, 10, or 11 (A0, A1, or ALU). Note that the only read
access is to the associated accumulator; the data register
destination is not available in this mode.

In external access mode, the CPU can both read and write
the FIFO. The configuration between internal and external
access is dynamically switchable using datapath routing sig-
nals. The datapath input signals d0_load and d1_load are
used for this control. Note that in the dynamic control mode,
d0_load and d1_load are not available for their normal use
in loading the D0/D1 registers from F0/F1. The dx_load sig-
nals can be driven by any routed signal, including constants.

In one usage example, starting with external access
(dx_load == 1), the CPU can write one or more bytes of data
to the FIFO. Then toggling to internal access (dx_load == 0),
the datapath can perform operations on the data. Then tog-

System Bus

F0 (TX)

F1 (RX)

System Bus

Datapath Process
(Asynch)

blk_stat

Synch to
DP

blk_stat

Synch to
DP

empty

full

set

DP clk

d q

async

1

0 Empty to
DP state
machine

empty

set

DP clk

d q

async

1

0 Full to
DP state
machine

full

Asynchronously cleared
by bus write,

sycnhyronously set by
DP read

Asynchronously cleared
by bus read,

sycnhyronously set by
DP write

FIFO Fx

Ax

Internal Access
(Fx DYN = 1, dx_load = 0)

A
0

A
1

A
L

U

UDB Local Data Bus

FIFO Fx

UDB Local Data Bus

External Access
(Fx DYN = 1, dx_load = 1)

INSEL

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 137

Universal Digital Blocks (UDB)

gling back to external access, the CPU can read the result
of the computation.

Because the Fx INSEL must always be set to 01, 10, or 11
(A0, A1, or ALU), which is “output mode” in normal opera-
tion, the FIFO status signals have the following definitions
(also dependent on Fx LVL control).

Because the datapath and CPU may both write and read the
FIFO, these signals are no longer considered “block” and
“bus” status. The blk_stat signal is used for write status and
the bus_stat signal is used for read status.

16.2.2.3 FIFO Status

There are four FIFO status signals, two for each FIFO:
fifo0_bus_stat, fifo0_blk_stat, fifo1_bus_stat, and
fifo1_blk_stat. The meaning of these signals depends on the
direction of the given FIFO, which is determined by static
configuration.

16.2.2.4 Datapath ALU

The ALU core consists of three independent 8-bit program-
mable functions, which include an arithmetic/logic unit, a
shifter unit, and a mask unit. See the UDB datapath archi-
tecture block diagram (Figure 16-6) for more details.

Arithmetic and Logic Operation

The ALU functions, which are configured dynamically by the
configuration RAM, are shown in Table 16-7.

srca = ‘A’ input source to the ALU, srcb = ‘B’ input source to
the ALU. See Figure 16-6.

Table 16-6. FIFO Status

Status Signal Meaning Fx LVL = 0 Fx LVL = 1

fx_blk_stat Write Status FIFO full FIFO full

fx_bus_stat Read Status FIFO not empty At least half full

Table 16-7. ALU Functions in UDB DCFG Register

Func[2:0] Function Operation

000 PASS srca

001 INC ++srca

010 DEC --srca

011 ADD srca +srcb

100 SUB srca – srcb

101 XOR srca ^ srcb

110 AND srca and srcb

111 OR srca | srcb

138 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Carry In

The carry in is used in arithmetic operations. Table 16-8 shows the default carry in value for certain functions.

In addition to this default arithmetic mode for carry operation, there are three additional carry options. The CI SELA and CI
SELB configuration bits in the CFG13 register determine the carry in for a given cycle. Dynamic configuration RAM selects
either the A or B configuration on a cycle-by-cycle basis. The options are defined in Table 16-9.

When a routed carry is used, the meaning with respect to each arithmetic function is shown in Table 16-10. Note that in the
case of the decrement and subtract functions, the carry is active low (inverted).

Carry Out

The carry out is a selectable datapath output and is derived from the currently defined MSB position, which is statically pro-
grammable. This value is also chained to the next most significant block as an optional carry in. Note that in the case of dec-
rement and subtract functions, the carry out is inverted.

Table 16-8. Carry In Functions

Function Operation Default Carry In Implementation

INC ++srca srca + 00h + ci, where ci is forced to 1

DEC --srca srca + ffh + ci, where ci is forced to 0

ADD srca + srcb srca + srcb + ci, where ci is forced to 0

SUB srca – srcb srca + ~srcb + ci, where ci is forced to 1

Table 16-9. Additional Carry In Functions in UDB CFG13

CI SEL A
CI SEL B

Carry Mode Description

00 Default Default arithmetic mode as described in Table 16-8.

01 Registered
Carry Flag, result of the carry from the previous cycle. This mode is used to implement add with carry
and subtract with borrow operations. It can be used in successive cycles to emulate a double precision
operation.

10 Routed
Carry is generated elsewhere and routed to this input. This mode can be used to implement controllable
counters.

11 Chained
Carry is chained from the previous datapath. This mode can be used to implement single cycle opera-
tions of higher precision involving two or more datapaths.

Table 16-10. Routed Carry In Functions

Function Carry In Polarity Carry In Active Carry In Inactive

INC True ++srca srca

DEC Inverted --srca srca

ADD True (srca + srcb) + 1 srca + srcb

SUB Inverted (srca – srcb) – 1 (srca – srcb)

Table 16-11. Carry Out Functions

Function Carry Out Polarity Carry Out Active Carry Out Inactive

INC True ++srca == 0 srca

DEC Inverted --srca == –1 srca

ADD True srca + srcb > 255 srca + srcb

SUB Inverted srca – srcb < 0 (srca – srcb)

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 139

Universal Digital Blocks (UDB)

Carry Structure

Figure 16-15 shows the options for carry in, and for MSB selection for carry out generation. The registered carry out value
may be selected as the carry in for a subsequent arithmetic operation. This feature can be used to implement higher precision
functions in multiple cycles.

Figure 16-15. Carry Operation

Shift Operation

The shift operation occurs independent of the ALU operation, according to Table 16-12.

A shift out value is available as a datapath output. Both shift out right (sor) and shift out left (sol_msb) share that output selec-
tion. A static configuration bit (SHIFT SEL in the UDB CFG15 register) determines which shift output is used as a datapath
output. When no shift is occurring, the sor and sol_msb signal is defined as the LSB or MSB of the ALU function, respectively.

The SI SELA and SI SELB configuration bits determine the shift in data for a given operation. Dynamic configuration RAM
selects the A or B configuration on a cycle-by-cycle basis. Shift in data is only valid for left and right shift; it is not used for pass
and nibble swap. Table 16-13 shows the selections and usage that apply to both left and right shift directions.

The shift out left data comes from the currently defined MSB position (MSB_EN and MSB_SEL bits in the CFG14 register),
and the data that is shifted in from the left (in a shift right operation) goes into the currently defined MSB position. Both shift
out data (left or right) are registered and can be used in a subsequent cycle. This feature can be used to implement a higher
precision shift in multiple cycles.

Table 16-12. Shift Operation Functions in UDB DCFG Register

Shift[1:0] Function

00 Pass

01 Shift Left

10 Shift Right

11 Nibble Swap

Table 16-13. Shift In Functions in UDB CFG15 Register

SI SEL A/ SI SEL B Shift In Source Description

00 Default/Arithmetic
The default input is the value of the DEF SI configuration bit (fixed 1 or 0). However, if
the MSB SI bit is set, then the default input is the currently defined MSB (for right shift
only).

01 Registered
The shift in value is driven by the current registered shift out value (from the previous
cycle). The shift left operation uses the last shift out left value. The shift right operation
uses the last shift out right value.

10 Routed Shift in is selected from the routing channel (the SI input).

11 Chained
Shift in left is routed from the right datapath neighbor and shift in right is routed from the
left datapath neighbor.

co_msb
(to DP output mux)

ci

Selected MSB

Arithmetic ALU Function
(inc, dec, add, sub)

Default function value

Chained (from prev datapath)

Routed (from interconnect)

Registered (from co_msb_reg)

ALU
Bit 0

ALU
Bit 1

ALU
Bit 2

ALU
Bit 3

ALU
Bit 4

ALU
Bit 5

ALU
Bit 6

ALU
Bit 7

co_msb_reg

140 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Figure 16-16. Shift Operation

Note that the bits that are isolated by the MSB selection are still shifted. In the example shown, bit 7 still shifts in the sil value
on a right shift and bit 5 shifts in bit 4 on a left shift. The shift out either right or left from the isolated bits is lost.

ALU Masking Operation

An 8-bit mask register (AMASK) in the UDB static configuration register space (CFG9) defines the masking operation. In this
operation, the output of the ALU is masked (ANDed) with the value in the mask register. A typical use for the ALU mask func-
tion is to implement free-running timers and counters in power of two resolutions.

16.2.2.5 Datapath Inputs and Multiplexing

The datapath has a total of nine inputs, as shown in Table 16-14, including six inputs from the channel routing. These consist
of the configuration RAM address, FIFO and data register load control signals, and the data inputs shift in and carry in.

As shown in Figure 16-17, each input has a 6-to-1 multiplexer, therefore, all inputs are permutable. Inputs are handled in one
of two ways, either level sensitive or edge sensitive. RAM address, shift in and data in values are level sensitive; FIFO and
data register load signals are edge sensitive.

Table 16-14. Datapath Inputs

Input Description

RAD2
RAD1
RAD0

Asynchronous dynamic configuration RAM address. There are eight 16-bit words, which are user-programmable. Each
word contains the datapath control bits for the current cycle. Sequences of instructions can be controlled by these address
inputs.

F0 LD
F1 LD

When asserted in a given cycle, the selected FIFO is loaded with data from one of the A0 or A1 accumulators or from the
output of the ALU. The source is selected by the Fx INSEL[1:0] configuration bits. This input is edge sensitive. It is sampled
at the datapath clock; when a '0' to '1' transition is detected, a load occurs at the subsequent clock edge.

D0 LD
D1 LD

When asserted in a given cycle, the Dx register is loaded from associated FIFO Fx. This input is edge sensitive. It is sam-
pled at the datapath clock; when a '0' to '1' transition is detected, a load occurs at the subsequent clock edge.

SI This is a data input value that can be used for either shift in left or shift in right.

CI This is the carry in value used when the carry in select control is set to "routed carry."

3 2 1 07 6 5 4

shift in left (sil)

shift out left (sol_msb)
(to DP output mux) shift in right (sir)

shift out right (sor)
(to DP output mux)

Selected MSB

Shift right or shift left

Default (tie value)

Registered (sor_reg)

Chained (from next Datapath)

Routed (from interconnect)

Default (tie value)

Chained (from prev Datapath)

Routed (from interconnect)

Registered (from sol_msb_reg)

sor_reg

sol_msb_reg

sil

Select default value or
arithmetic shift

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 141

Universal Digital Blocks (UDB)

Figure 16-17. Datapath Input Selection

16.2.2.6 CRC/PRS Support

The datapath can support cyclic redundancy checking (CRC) and pseudo random sequence (PRS) generation. Chaining sig-
nals are routed between datapath blocks to support CRC/PRS bit lengths of longer than eight bits.

The most significant bit (MSB) of the most significant block in the CRC/PRS computation is selected and routed (and chained
across blocks) to the least significant block. The MSB is then XORed with the data input (SI data) to provide the feedback
(FB) signal. The FB signal is then routed (and chained across blocks) to the most significant block. This feedback value is
used in all blocks to gate the XOR of the polynomial (from the Data0 or Data1 register) with the current accumulator value.

Figure 16-18 shows the structural configuration for the CRC operation. The PRS configuration is identical except that the shift
in (SI) is tied to '0'. In the PRS configuration, D0 or D1 contain the polynomial value, while A0 or A1 contain the initial (seed)
value and the CRC residual value at the end of the computation.

To enable CRC operation, the CFB_EN bit in the dynamic configuration RAM must be set to '1'. This enables the AND of
SRCB ALU input with the CRC feedback signal. When set to zero, the feedback signal is driven to '1', which allows for normal
arithmetic operation. Dynamic control of this bit on a cycle-by-cycle basis gives the capability to interleave a CRC/PRS oper-
ation with other arithmetic operations.

Figure 16-18. CRC Functional Structure

CRC/PRS Chaining

Figure 16-19 illustrates an example of CRC/PRS chaining across three UDBs. This scenario can support a 17- to 24-bit oper-
ation. The chaining control bits are set according to the position of the datapath in the chain as shown in the figure.

Figure 16-19. CRC/PRS Chaining Configuration

{0, dp_in[5:0], 0} rad0
(similar for rad1, rad2, si, ci)

CFGx
RAD0 MUX[2:0]

f0_ld
(similar for f1_ld, d0_ld, d1_ld)

CFGx
F0 LD MUX[2:0]

{0, dp_in[5:0], 0}

These inputs are
edge sensitive

SI
(shift in)

D0/D1
(POLY)

A0/A1
(CRC)

ALU
(XOR)

SHIFTER
(LEFT)

MSB
(most significant bit) FB

(feedback)

srcasrcb Tie input to
zero for PRS
operation

CHAIN MSB = 1

CHAIN FB = 1CHAIN FB = 1

UDB 1

cmsbi

cfbo

cmsbo

cfbi

cmsbi

cfbo

cmsbo

cfbi
UDB 0

CHAIN MSB = 1

UDB 2

cmsbi

cfbo

cmsbo

cfbi

Set msb_sel

sir CRC data in

142 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

The CRC/PRS feedback signal (cfbo, cfbi) is chained as follows:

■ If a given block is the least significant block, then the feedback signal is generated in that block from the built-in logic that
takes the shift in from the right (sir) and XORs it with the MSB signal. (For PRS, the "sir" signal is tied to '0'.)

■ If a given block is not the least significant block, the CHAIN FB configuration bit must be set and the feedback is chained
from the previous block in the chain.

The CRC/PRS MSB signal (cmsbo, cmsbi) is chained as follows:

■ If a given block is the most significant block, the MSB bit (according to the polynomial selected) is configured using the
MSB_SEL configuration bits in the UDB CFG14 register.

■ If a given block is not the most significant block, the CHAIN CMSB configuration bit in the UDB CFG14 register must be
set and the MSB signal is chained from the next block in the chain.

CRC/PRS Polynomial Specification

As an example of how to configure the polynomial for programming into the associated D0/D1 register, consider the CCITT

CRC-16 polynomial, which is defined as x16 + x12 +x5 + 1. The method for deriving the data format from the polynomial is
shown in Figure 16-20.

The X0 term is inherently always '1' and therefore does not need to be programmed. For each of the remaining terms in the
polynomial, a '1' is set in the appropriate position in the alignment shown.

Note This polynomial format is slightly different from the format normally specified in Hex. For example, the CCITT CRC16
polynomial is typically denoted as 1021H. To convert to the format required for datapath operation, shift right by one and add
a '1' in the MSB bit. In this case, the correct polynomial value to load into the D0 or D1 register is 8810H.

Figure 16-20. CCITT CRC16 Polynomial Format

Example CRC/PRS Configuration

The following is a summary of CRC/PRS configuration requirements, assuming that D0 is the polynomial and the CRC/PRS is
computed in A0:

1. Select a suitable polynomial and write it into D0.

2. Select a suitable seed value (for example, all zeros for CRC, all ones for PRS) and write it into A0.

3. Configure chaining if necessary.

4. Select the MSB position as defined in the polynomial from the MSB_SEL static configuration register bits and set the
MSB_EN register bit in the UDB CFG14 register.

5. Configure the dynamic configuration RAM word fields:

a. Select D0 as the ALU "SRCB" (ALU B Input Source)

b. Select A0 as the ALU "SRCA" (ALU A Input Source)

c. Select "XOR" for the ALU function

d. Select "SHIFT LEFT" for the SHIFT function

e. Select "CFB_EN" to enable the support for CRC/PRS

f. Select ALU as the A0 write source

If a CRC operation, configure "shift in right" for input data from routing and supply input on each clock. If a PRS operation, tie
"shift in right" to '0'.

0000100000010001

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15X16

CCITT 16-Bit Polynomial is 0x8810

X16 X12 X5 1+ + +

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 143

Universal Digital Blocks (UDB)

Clocking the UDB with this configuration generates the required CRC or outputs the MSB, which may be output to the routing
for the PRS sequence.

External CRC/PRS Mode

A static configuration bit may be set (EXT CRCPRS in the UDB CFG16 register) to enable support for external computation of
a CRC or PRS. As shown in Figure 16-21, computation of the CRC feedback is done in a PLD block. When the bit is set, the
CRC feedback signal is driven directly from the CI (Carry In) datapath input selection mux, bypassing the internal computa-
tion. The figure shows a simple configuration that supports up to an 8-bit CRC or PRS. Normally the built-in circuitry is used,
but this feature gives the capability for more elaborate configurations, such as up to a 16-bit CRC/PRS function in one UDB
using time division multiplexing.

In this mode, the dynamic configuration RAM bit CFB_EN in the UDB DCFG0 register still controls whether the CRC feed-
back signal is ANDed with the SRCB ALU input. Therefore, as with the built-in CRC/PRS operation, the function can be inter-
leaved with other functions if required.

Figure 16-21. External CRC/PRS Mode

16.2.2.7 Datapath Outputs and Multiplexing

Conditions are generated from the registered accumulator values, ALU outputs, and FIFO status. These conditions can be
driven to the digital routing for use in other UDB blocks, for use as interrupts, or to I/O pins. The 16 possible conditions are
shown in Table 16-15.

Table 16-15. Datapath Condition Generation

Name Condition Chain Description

ce0 Compare Equal Y A0 == D0

cl0 Compare Less Than Y A0 < D0

z0 Zero Detect Y A0 == 00h

ff0 Ones Detect Y A0 == FFh

ce1 Compare Equal Y A1 or A0 == D1 or A0 (dynamic selection)

cl1 Compare Less Than Y A1 or A0 < D1 or A0 (dynamic selection)

z1 Zero Detect Y A1 == 00h

ff1 Ones Detect Y A1 == FFh

ov_msb Overflow N Carry(msb) ^ Carry(msb–1)

co_msb Carry Out Y Carry out of MSB defined bit

SI
(shift in)

D0/D1
(POLY)

A0/A1
(CRC)

ALU
(XOR)

SHIFTER
(LEFT)

MSB
(Most Significant Bit)

FB
(feedback)

srcasrcb

Tie shift in to
zero for PRS

operation

CI Mux

PLD

D
P

Inputs

RoutingRouting

SI Mux

When the
EXT_CRCPRS bit is
set, the CI selection
drives the CRC
feedback line.

144 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

There are a total of six datapath outputs. As shown in Figure 16-22, each output has a 16-1 multiplexer that allows any of
these 16 signals to be routed to any of the datapath outputs.

Figure 16-22. Output Mux Connections

Compares

There are two compares, one of which has fixed sources
(Compare 0) and the other has dynamically selectable
sources (Compare 1). Each compare has an 8-bit statically
programmed mask register, which enables the compare to
occur in a specified bit field. By default, the masking is off
(all bits are compared) and must be enabled.

Comparator 1 inputs are dynamically configurable. As
shown in Table 16-16, there are four options for Comparator
1, which applies to both the "less than" and the "equal" con-
ditions. The CMP SELA and CMP SELB configuration bits in
the UDB CFG12 register determine the possible compare
configurations. A dynamic configuration RAM bit CMP SEL

in the UDB DCFG0 register selects one of the A or B config-
urations on a cycle-by-cycle basis.

Compare 0 and Compare 1 are independently chainable to
the conditions generated in the previous datapath (in
addressing order). The decision to chain compares is stati-
cally specified by CHAIN0 and CHAIN1 bits of the UDB
CFG14 registers. Figure 16-23 illustrates compare equal
chaining, which is just an ANDing of the compare equal in
this block with the chained input from the previous block.

Figure 16-23. Compare Equal Chaining

Figure 16-24 illustrates compare less than chaining. In this
case, the “less than” is formed by the compare less than out-
put in this block, which is unconditional. This is ORed with
the condition where this block is equal, and the chained
input from the previous block is asserted as less than.

cmsb CRC MSB Y MSB of CRC/PRS function

So Shift Out Y Selection of shift output

f0_blk_stat FIFO0 Block Status N Definition depends on FIFO configuration

f1_blk_stat FIFO1 Block Status N Definition depends on FIFO configuration

f0_bus_stat FIFO0 Bus Status N Definition depends on FIFO configuration

f1_bus_stat FIFO1 Bus Status N Definition depends on FIFO configuration

Table 16-15. Datapath Condition Generation

Name Condition Chain Description

1
4

2
1

3
1

2
1

1
3

4
5

6
7

8
9

1
0

1

O
utput M

u
x

 (6
 - 1

6
 to

 1)

0ce0

cl0

z0

ff0

ce1

cl1

z1

ff1

ov_msb

co_msb

cmsb
sor

sol_msb
f0_blk_stat

f1_blk_stat

dp_out[5:0]
6

Output Mux

1
5

f0_bus_stat

f1_bus_stat

Table 16-16. Compare Configuration

CMP SEL A
CMP SEL B

Comparator 1 Compare Configuration

00 A1 Compare to D1

01 A1 Compare to A0

10 A0 Compare to D1

11 A0 Compare to A0

CFG14
CCHAIN0

Compare Equal

ce0i
(from chaining)

ce0
(to routing

and chaining)

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 145

Universal Digital Blocks (UDB)

Figure 16-24. Compare Less Than Chaining

All Zeros and All Ones Detect

Each accumulator has dedicated all zeros detect and all
ones detect. These conditions are statically chainable as
specified in the UDB configuration registers. The decision to
chain these conditions is statically specified in the UDB con-
figuration registers. Chaining of zero detect is the same con-
cept as the compare equal. Successive chained data is
ANDed if the chaining is enabled.

Overflow

Overflow is defined as the XOR of the carry into the MSB
and the carry out of the MSB. The computation is done on
the currently defined MSB as specified by the MSB_SEL
bits. This condition is not chainable, however the computa-
tion is valid when done in the most significant datapath of a
multi-precision function as long as the carry is chained
between blocks.

16.2.2.8 Datapath Parallel Inputs and Outputs

As shown in Figure 16-25, the datapath Parallel In (PI) and
Parallel Out (PO) signals give limited capability to bring
routed data directly into and out of the Datapath. Parallel
Out signals are always available for routing as the ALU asrc
selection between A0 and A1.

Figure 16-25. Datapath Parallel In/Out

Parallel In needs to be selected for input to the ALU. The
two options available are static operation or dynamic opera-
tion. For static operation, the PI SEL bit of the UDB CFG15
register forces the ALU asrc to be PI. The PI DYN bit of the
UDB CFG15 register is used to enable the PI dynamic oper-
ation. When it is enabled, and assuming the PI SEL is 0, the
PI multiplexer may then be controlled by the CFB_EN (UDB
DCFG0 register) dynamic control bit. The primary function of
CFB_EN is to enable PRS/CRC functionality.

16.2.2.9 Datapath Chaining

Each datapath block contains an 8-bit ALU, which is
designed to chain carries, shifted data, capture triggers, and
conditional signals to the nearest neighbor datapaths, to
create higher precision arithmetic functions and shifters.
These chaining signals, which are dedicated signals, allow
single-cycle 16-, 24- and 32-bit functions to be efficiently
implemented without the timing uncertainty of channel rout-
ing resources. In addition, the capture chaining supports the
ability to perform an atomic read of the accumulators in
chained blocks. As shown in Figure 16-26, all generated
conditional and capture signals chain in the direction of least
significant to most significant blocks. Shift left also chains
from least to most significant. Shift right chains from most to
least significant. The CRC/PRS chaining signal for feedback
chains least to most significant; the MSB output chains from
most to least significant.

Figure 16-26. Datapath Chaining Flow

CFG14
CCHAIN0

Compare
Less Than

cl0i
(from chaining)

cl0
(to routing

and chaining)

Compare
Equal

Alu

PI[7:0] A1[7:0]A0[7:0]

ASRC[7:0]

PI SEL
(static config bit in CFG15 register)

PI DYN
(static config bit in CFG15 register)

CFB_EN

01

PO[7:0]

UDB1

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

UDB0

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

UDB2

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

0

0

0

0

0

0

0

0

0

0

0

0

CFBI CFBI CFBICFBOCFBOCFBO 0

CAP0

CAP1

CAP0i

CAP1i

CAP0

CAP1

CAP0i

CAP1i

CAP0

CAP1

CAP0i

CAP1i

0

0

146 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

16.2.2.10 Dynamic Configuration RAM

Each datapath contains a 16 bit-by-8 word dynamic configuration RAM, which is shown in Figure 16-27. The purpose of this
RAM is to control the datapath configuration bits on a cycle-by-cycle basis, based on the clock selected for that datapath. This
RAM has synchronous read and write ports for purposes of loading the configuration via the system bus.

An additional asynchronous read port is provided as a fast path to output these 16-bit words as control bits to the datapath.
The asynchronous address inputs are selected from datapath inputs and can be generated from any of the possible signals
on the channel routing, including I/O pins, PLD outputs, control block outputs, or other datapath outputs. The primary purpose
of the asynchronous read path is to provide a fast single-cycle decode of datapath control bits.

Figure 16-27. Configuration RAM I/O

The fields of this dynamic configuration RAM word are shown here. A description of the usage of each field follows.

Register Address 15 14 13 12 11 10 9 8

CFGRAM
61h - 6Fh

(odd)
FUNC[2:0] SRCA SRCB[1:0] SHIFT[1:0]

Register Address 7 6 5 4 3 2 1 0

CFGRAM
60h - 6Eh

(even)
A0 WR

SRC[1:0]

A1 WR

SRC[1:0]
CFB EN CI SEL SI SEL CMP SEL

16 Bit-by-8 Word RAM
Array

R
ead/W

rite

A
ddress

D
ecoder

bus_addr
[2:0]

W
r C

trl
wrl

wrh

R
ea

d
 O

nl
y

A
dd

re
ss

 D
ec

od
er

rad[2:0]

Datapath Control
Inputs bus_data[15:0]

R/W
Read

16

Config RAM
dyn_cfg_ram

[15:0]

16

RO
Read

16

rd
dpram

U
D

B
 Local B

us

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 147

Universal Digital Blocks (UDB)

16.2.3 Status and Control Module

Figure 16-28 shows a high-level view of the Status and Con-
trol module. The Control register drives into the routing to
provide firmware control inputs to UDB operation. The Sta-
tus register read from routing provides firmware a method of
monitoring the state of UDB operation.

Figure 16-29 shows a more detailed view of the Status and
Control module. The primary purpose of this block is to coor-
dinate CPU firmware interaction with internal UDB opera-
tion. However, due to its rich connectivity to the routing

matrix, this block may be configured to perform other func-
tions.

Figure 16-28. Status and Control Registers

Table 16-17. Dynamic Configuration Quick Reference

Field Bits Parameter Values

FUNC[2:0] 3 ALU Function

000 PASS

001 INC SRCA

010 DEC SRCA

011 ADD

100 SUB

101 XOR

110 AND

111 OR

SRCA 1 ALU A Input Source
0 A0

1 A1

SRCB 2 ALU B Input Source

00 D0

01 D1

10 A0

11 A1

SHIFT[1:0] 2 SHIFT Function

00 PASS

01 Left Shift

10 Right Shift

11 Nibble Swap

A0 WR

SRC[1:0]
2 A0 Write Source

00 None

01 ALU

10 D0

11 F0

A1 WR

SRC[1:0]
2 A1 Write Source

00 None

01 ALU

10 D1

11 F1

CFB EN 1 CRC Feedback Enable
0 Enable

1 Disable

CI SEL 1
Carry In Configuration
Select

0 ConfigA

1 ConfigBa

SI SEL 1
Shift In Configuration
Select

0 ConfigA

1 ConfigBa

CMP SEL 1
Compare Configuration
Select

0 ConfigA

1 ConfigBa

a. For CI, SI, and CMP, the RAM fields select between two predefined stat-
ic settings; see Table 16-9, Table 16-13, and Table 16-16 respectively.

Routing Channel

8-Bit Status Register
(Read Only)

8-Bit Control Register
(Write/Read)

System Bus

148 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Figure 16-29. Status and Control Module

Modes of operation include:

■ Status Input – The state of routing signals can be input and captured as status and read by the CPU.

■ Control Output – The CPU can write to the control register to drive the state of the routing.

■ Parallel Input – To datapath parallel input.

■ Parallel Output – From datapath parallel output.

■ Counter Mode – In this mode, the control register operates as a 7-bit down counter with programmable period and auto-
matic reload. Routing inputs can be configured to control both the enable and reload of the counter. When this mode is
enabled, control register operation is not available.

■ Sync Mode – In this mode, the status register operates as a 4-bit double synchronizer. When this mode is enabled, status
register operation is not available.

Interrupt
Gen

sc_out[7:0]

From
Datapath
Parallel
Output

(po[7:0])

To
Datapath
Parallel
Input

(pi[7:0])

8

8

sc_io_out[2:0]

INT

{sc_io_in[3:0],sc_in[3:0]}

7-Bit
Down Count

7-Bit
Period Register
(same as Mask)

8-Bit
Status Register

7-Bit
Mask Register

(same as Period)

8-Bit
Control Register

Status and Control Module

Horizontal Channel Routing

8

8

EN/LD CTL

7
TC CNT

8
CFGx

SC OUT
CTL[1:0]

CFGx
INT MD

8

3

4-Bit Sync

4

CFGx
SYNC MD

8 8

sc_io_out[3]

sc_in[3:0]

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 149

Universal Digital Blocks (UDB)

16.2.3.1 Status and Control Mode

When operating in status and control mode, this module functions as a status register, interrupt mask register, and control
register in the configuration shown in Figure 16-30.

Figure 16-30. Status and Control Operation

Status Register Operation

One 8-bit, read-only status register is available for each
UDB. Inputs to this register come from any signal in the digi-
tal routing fabric. The status register is nonretention; it loses
its state across sleep intervals and is reset to 0x00 on
wakeup. Each bit can be independently programmed to
operate in one of two ways, as shown in Table 16-18.

An important feature of the status register clearing operation
is to note that the clear of status is only applied to the bits
that are set. This allows other bits that are not set to con-
tinue to capture status, so that a coherent view of the pro-
cess can be maintained.

Transparent Status Read

By default, a CPU read of this register transparently reads
the state of the associated routing. This mode can be used
for a transient state that is computed and registered inter-
nally in the UDB.

Sticky Status, with Clear on Read

In this mode, the status register inputs are sampled on each
cycle of the status and control clock. If the signal is high in a
given sample, it is captured in the status bit and remains
high, regardless of the subsequent state of the input. When
the CPU reads the status register the bit is cleared. The sta-
tus register clearing is independent of mode and occurs
even if the UDB clock is disabled; it is based on the HFCLK
and occurs as part of the read operation.

Status Latching During Read

Figure 16-31 shows the structure of the status read logic.
The sticky status register is followed by a latch, which
latches the status register data and holds it stable during the
duration of the read cycle, regardless of the number of wait
states in a given read.

8-Bit Status

Register

sc_out[7:0]

7-Bit Mask

Register

Read
Write

Reset

{sc_io_in[3:0],sc_in[3:0]

8

Read
Only

(Routed Reset

from Reset and Clock
Control Block

8-Bit Control

Register

Read
Write

8

System Bus

sc_io_out[3]

7 7

7

00: Read Transparently
01: Sticky, Clear on Read

CFGx
STAT MD[7:0]

CFGx
INT MD

ACTL
INT EN

SC OUT CTL bits must
be set to select Control
register bits for output

CFGx
SC OUT
CTL[1:0]

INT

Table 16-18. Status Register Mode Selection in UDB
CFG20 Register

STAT MD Description

0
Transparent read. A read returns the current value
of the routed signal

1
Sticky, clear on read. A high on the input is sampled
and captured. It is cleared when the register is read.

150 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Figure 16-31. Status Read Logic

Interrupt Generation

In most functions, interrupt generation is tied to the setting of
status bits. As shown in Figure 16-31, this feature is built
into the status register logic as the masking and OR reduc-
tion of status. Only the lower seven bits of status input can
be used with the built-in interrupt generation circuitry. The
most significant bit is typically used as the interrupt output
and may be routed to the interrupt controller through the dig-
ital routing. In this configuration, the MSB of the status regis-
ter is read as the state of the interrupt bit.

16.2.3.2 Control Register Operation

One 8-bit control register is available for each UDB. This
operates as a standard read/write register on the system
bus, where the output of these register bits are selectable as
drivers into the digital routing fabric.

The Control register is nonretention; it loses its contents
across sleep intervals and is reset to 0x00 on wakeup.

Control Register Operating Modes

Three modes are available that may be configured on a bit-
by-bit basis. The configuration is controlled by the concate-
nation of the bits of the two 8-bit registers CTL_MD1[7:0]
and CTL_MD0[7:0] of the UDB CFG18 and CFG19 regis-
ters. For example, {CTL_MD1[0],CTL_MD0[0]} controls the
mode for Control Register bit 0, as shown in Table 16-19.

Control Register Direct Mode

The default mode is Direct mode. As shown in Figure 16-32,
when the Control Register is written by the CPU the output

of the control register is driven directly to the routing on that
write cycle.

Figure 16-32. Control Register Direct Mode

Control Register Sync Mode

In Sync mode, as shown in Figure 16-33, the control register
output is driven by a re-sampling register clocked by the cur-
rently selected Status and Control (SC) clock. This allows
the timing of the output to be controlled by the selected SC
clock, rather than the HFCLK.

Figure 16-33. Control Register Sync Mode

Control Register Double Sync Mode

In Double Sync mode, as shown in Figure 16-34, a second
register clocked by the selected SC clock is added after the
re-sampling register. This allows the circuit to perform
robustly when the HFCLK and SC clock are asynchronous.

Figure 16-34. Control Register Double Sync Mode

Status and
Control Clock

from Routing

UDB Local Bus

D Q

AR

Sticky/!Transparent

0

1

Sticky Status
Register

EN

D Q

Read Latch

Status Register
Read

End of Status
Register Read

Table 16-19. Mode for Control Register Bit 0 in the UDB
CFG18 and CFG19 Registers

CTL MD Description

00 Direct mode

01 Sync mode

10 Double sync mode

11 Pulse mode

HFCLK

Data Bus To
Routing

SC CLKHFCLK

Data Bus
To

Routing

SC CLKHFCLK

Data Bus
To

Routing

SC CLK

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 151

Universal Digital Blocks (UDB)

Control Register Pulse Mode

Pulse mode is similar to Sync mode in that the control bit is
re-sampled by the SC clock; the pulse starts on the first SC
clock cycle following the bus write cycle. The output of the
control bit is asserted for one full SC clock cycle. At the end
of this clock cycle, the control bit is automatically reset.

With this mode of operation, firmware can write a ‘1’ to a
control register bit to generate a pulse. After it is written as a
‘1’, it is read back by firmware as a ‘1’ until the completion of
the pulse, after which it is read back as a ‘0’. The firmware
can then write another ‘1’ to start another pulse. A new pulse

cannot be generated until the previous one is completed.
Therefore, the maximum frequency of pulse generation is
every other SC clock cycle.

Control Register Reset

The control register has two reset modes, controlled by the
EXT RES configuration bit, as shown in Figure 16-35. When
EXT RES is 0 (the default) then in sync or pulse mode the
routed reset input resets the synced output but not the
actual control bit. When EXT RES is 1 then the routed reset
input resets both the control bit and the synced output.

Figure 16-35. Control Register Reset

16.2.3.3 Parallel Input/Output Mode

In this mode, as Figure 16-36 shows, the status and control routing is connected to the datapath parallel in and parallel out
signals. To enable this mode, the SC OUT configuration bits in the UDB CFG22 registers are set to select datapath parallel
out. The parallel input connection is always available, but these routing connections are shared with the status register inputs,
counter control inputs, and the interrupt output.

Figure 16-36. Parallel Input/Output Mode

SC CLKHFCLK

Data Bus

To
Routing

Bit by Bit
CFG

0

1

EXT RES

Routed Reset

res resStatic configuration
bit

sc_out[7:0]

88

Datapath

po[7:0] pi[7:0]

Datapath
Parallel Out

Datapath
Parallel InSC OUT CTL bits must

be set to select
datapath parallel out bits
for output to routing.

The INT MD and SYNC
MD control bits should
be cleared to enable
SC_IO bits to input mode.

{sc_io_in[3:0], sc_in[3:0]}

152 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

16.2.3.4 Counter Mode

As shown in Figure 16-37, when the block is in counter
mode, a 7-bit down counter is exposed for use by UDB inter-
nal operation or firmware applications. This counter has the
following features:

■ A 7-bit read/write period register.

■ A 7-bit read/write count register. It can be accessed only
when the counter is disabled.

■ Automatic reload of the period to the count register on
terminal count (0).

■ A firmware control bit in the Auxiliary Control Working
register (ACTL0) called CNT START, to start and stop
the counter. (This is an overriding enable and must be
set for optional routed enable to be operational.)

■ Selectable bits from the routing for optional dynamic
control of the counter enable and load functions:

❐ EN, routed enable to start or stop counting.

❐ LD, routed load signal to force the reload of period.
When this signal is asserted, it overrides a pending
terminal count. It is level sensitive and continues to
load the period while asserted.

■ The 7-bit count may be driven to the routing fabric as
sc_out[6:0].

■ The terminal count may be driven to the routing fabric as
sc_out[7].

■ In default mode, the terminal count is registered. In alter-
nate mode the terminal count is combinational.

■ In default mode, the routed enable, if used, must be
asserted for routed load to operate. In alternate mode
the routed enable and routed load signals operate inde-
pendently.

To enable the counter mode, the SC_OUT_CTL[1:0] bits of
the UDB CFG22 register must be set to counter output. In
this mode the normal operation of the control register is not
available. The status register can still be used for read oper-
ations, but should not be used to generate an interrupt
because the mask register is reused as the counter period
register. The Period register is implemented as a retention
register and maintains its state across sleep intervals. For a
period of N clocks, the period value of N–1 should be
loaded. N = 1 (period of 0) is not supported as a clock divide
value, and results in the terminal count output of a constant
1.The use of SYNC mode depends on whether the dynamic
control inputs (LD/EN) are used. If they are not used, SYNC
mode is unaffected. If they are used, SYNC mode is unavail-
able.

Figure 16-37. Counter Mode

sc_out[6:0]

7-Bit Period

Register

4

7-Bit Counter

7

Zero
Detect

sc_out[7]

EN

4

LD

0: Reload is only controlled by terminal count
1: Reload is also controlled by routing

CFGx
ROUTE LD

CFGx
ROUTE EN

0: Enable is only controlled by firmware
1: Enable is also controlled by routing

CFGx
LD SEL[1:0]

Terminal
Count
(TC)

RES

CFGx
EN SEL[1:0]

ACTL
CNT START

Routed Reset from
Reset and Clock

Control Block

SC OUT CTL bits must be set
to select the counter output
as the selected output to
routing.

The INT MD and SYNC
MD bits should be
cleared to configure the
SC_IO bits to input mode.

Read
Only*

 System Bus

Read
Write

*Current count value is
only readable when
not enabled.

{sc_io_in[3:0], sc_in[3:0]}

8

[3:0][7:4]

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 153

Universal Digital Blocks (UDB)

16.2.3.5 Sync Mode

As shown in Figure 16-38, the status register can operate as
a 4-bit double synchronizer, clocked by the current SC_CLK,
when the SYNC MD bit in the UDB CFG22 register is set.
This mode may be used to implement local synchronization
of asynchronous signals, such as GPIO inputs. When
enabled, the signals to be synchronized are selected from
SC_IN[3:0], the outputs are driven to the SC_IO_OUT[3:0]
pins, and SYNC MD automatically puts the SC_IO pins into
output mode. When in this mode, the normal operation of
the status register is not available, and the status sticky bit
mode is forced off, regardless of the control settings for this
mode. The control register is not affected by the mode. The
counter can still be used with limitations. No dynamic inputs
(LD/EN) to the counter can be enabled in this mode.

Figure 16-38. Sync Mode

16.2.3.6 Status and Control Clocking

The status and control registers require a clock selection for
any of the following operating modes:

■ Status register with any bit set to sticky, clear on read
mode.

■ Control register in counter mode.

■ Sync mode.

The clock for this is allocated in the reset and clock control
module. See “Reset and Clock Control Module” on
page 154.

16.2.3.7 Auxiliary Control Register

The read-write Auxiliary Control register is a special register
that controls fixed function hardware in the UDB. This regis-
ter allows CPU to dynamically control the interrupt, FIFO,
and counter operation. The register bits and descriptions are
as follows.

FIFO0 Clear, FIFO1 Clear

The FIFO0 CLR and FIFO1 CLR bits are used to reset the
state of the associated FIFO. When a '1' is written to these
bits, the state of the associated FIFO is cleared. These bits
must be written back to '0' to allow FIFO operation to con-
tinue. When these bits are left asserted, the FIFOs operate
as simple one-byte buffers, without status.

FIFO0 Level, FIFO1 Level

The FIFO0 LVL and FIFO1 LVL bits control the level at
which the 4-byte FIFO asserts bus status (when the bus is
either reading or writing to the FIFO) to be asserted. The
meaning of FIFO bus status depends on the configured
direction, as shown in Table 16-20.

Interrupt Enable

When the status register’s interrupt generation logic is
enabled, the INT EN bit gates the resulting interrupt signal.

Count Start

The CNT START bit may be used to enable and disable the
counter (only valid when the SC_OUT_CTL[1:0] bits are
configured for counter output mode).

sc_io_out[3:0]

Sync Module (Status Register)

Digital Routing

4

CFGx
SYNC MD

sc_in[3:0]

01234567

4

Auxiliary Control Registers

7 6 5 4 3 2 1 0

CNT
START

INT
EN

FIFO1
LVL

FIFO0
LVL

FIFO1
CLR

FIFO0
CLR

Table 16-20. FIFO Level Control Bits

FIFOx
LVL

Input Mode
(Bus is Writing FIFO)

Output Mode
(Bus is Reading FIFO)

0

Not Full

At least 1 byte can be writ-
ten

Not Empty

At least 1 byte can be
read

1

At Least Half Empty

At least 2 bytes can be writ-
ten

At Least Half Full

At least 2 bytes can be
read

154 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

16.2.3.8 Status and Control Register Summary

Table 16-21 summarizes the function of the status and control registers. Note that the control and mask registers are shared
with the count and period registers and the meaning of these registers is mode dependent.

16.2.4 Reset and Clock Control Module

The primary function of the reset and clock block is to select a clock from the available global system clocks or HFCLK for
each of the PLDs, the datapath, and the status and control block. It also supplies dynamic and firmware-based resets to the
UDB blocks. As shown in Figure 16-39, there are four clock control blocks, and one reset block. Four inputs are available for
use from the routing matrix (RC_IN[3:0]). Each clock control block can select a clock enable source from these routing inputs,
and there is also a multiplexer to select one of the routing inputs to be used as an external clock source. As shown, the exter-
nal clock source selection can be optionally synchronized. There are a total of six clocks that can be selected for each UDB
component: four UDB peripheral clocks, HFCLK, and the selected external clock (ext clk). Any of the routed input signals
(rc_in) can be used as either a level sensitive or edge sensitive enable. The reset function of this block provides a routed reset
for the PLD blocks and SC counter, and a firmware reset capability to each block to support reconfiguration.

The HFCLK input to the reset and clock control is distinct from the system HFCLK. This clock is called “hf_clk_app” because
it is gated similar to the other UDB peripheral clocks and used for UDB applications. The system HFCLK is only used for I/O
access and is automatically gated, per access. The datapath clock generator produces three clocks: one for the datapath in
general, and one for each of the FIFOs.

Figure 16-39. Reset and Clock Control

Table 16-21. Status, Control Register Function Summary

Mode Control/Count Status/SYNC Mask/Period

Control Control Out
Status In or SYNC

Status Mask

Count Count Out Count Perioda

a. In counter mode, the mask register is operating as a period register and cannot function as a mask register. Therefore, interrupt output is not available when
counter mode is enabled.

Status
Control Out or Count Out

Status In Status Mask

SYNC SYNC NAb

b. In SYNC mode, the status register function is not available, and therefore, the mask register is unusable. However, it can be used as a period register for
count mode.

PLD0
Clock

Select/Enable
pld0_clk (to PLD0)rc_in[3:0]

pld1_clk (to PLD1)

dp_clk (to Datapath)

sc_clk (to Status and Control)

cnt_routed_ reset (to SC counter)

sc_reset (firmware/system reset)

hf_clk_app, gclks[7:0]

dp_reset (firmware/system reset)

CFGx
EXT CLK SEL[1:0]

2

global_enable

PLD1
Clock

Select/Enable

DP
Clock

Select/Enable

SC
Clock

Select/Enable

rc_in_gated[3:0]

ext_clk

rc_in_gated[3:0]

sysreset

From channel routing

pld0_reset (firmware/system reset)

pld1_reset (firmware/system reset)

Reset
Select/Enable

mf

CFGx
EXT SYNC

HFCLK

f0_clk (to FIFO0)

f1_clk (to FIFO1)

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 155

Universal Digital Blocks (UDB)

16.2.4.1 Clock Control

Figure 16-40 illustrates one instance of the clock selection and enable circuit. Each UDB has four of these circuits: one for
each of the PLD blocks, one for the datapath, and one for the status and control block. The main components of this circuit
are a global clock selection multiplexer, clock inversion, clock enable selection multiplexer, clock enable inversion, and edge
detect logic.

Figure 16-40. Clock Select/Enable Control

Clock Selection

Four UDB peripheral clocks (see Clocking System chapter
on page 57), gclk[0] to gclk[3], are routed to all UDBs; the
remaining four clock configurations, gclk[4] to gclk[7], are
not supported in the PSoC 4 family of devices. Any of these
clocks may be selected. UDB peripheral clocks are the out-
put of user-selectable clock dividers. Another selection is
HFCLK, which is the highest frequency in the system.
Called “hf_clk_app,” this signal is routed separately from the
system HFCLK. In addition, an external routing signal can
be selected as a clock input to support direct-clocked func-
tions such as SPI. Because application functions are
mapped to arbitrary boundaries across UDBs, individual
clock selection for each UDB subcomponent block supports
a fine granularity of programming.

Clock Inversion

The selected clock may be optionally inverted. This limits
the maximum frequency of operation due to the existence of
one half cycle timing paths. Simultaneous bus writes and
internal writes (for example writing a new count value while
a counter is counting) are not supported when the internal
clock is inverted and the same frequency as HFCLK. This
limitation affects A0, A1, D0, D1, and the Control register in
counter mode.

Clock Enable Selection

The clock enable signal may be routed to any synchronous
signal and can be selected from any of the four inputs from
the routing matrix that are available to this block.

Clock Enable Inversion

The clock enable signal may be optionally inverted. This
feature allows the clock enable to be generated in any polar-
ity.

Clock Enable Mode

By default, the clock enable is OFF. After configuring the tar-
get block operation, software can set the mode to one of the
following using the EN MODE[1:0] bits of the UDB CFG24
register shown in Figure 16-40.

Latch

CFGx
CK SEL[3:0]

{hf_clk_app,ext_clk, gclk[7:0]}

clk

Clock Select
0000: gclk[0] 0100: gclk[4]
0001: gclk[1] 0101: gclk[5]
0010: gclk[2] 0110: gclk[6]
0011: gclk[3] 0111: gclk[7]
1000: ext_clk
1001: hf_clk_app

CFGx
EN SEL[1:0]

Enable Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

CFGx
EN INV

2

Enable Invert
0: true
1: inverted

4
Clock Invert
0: true
1: inverted

rc_in_gated[3:0] FF

CFGx
EN MODE[1:0]

Enable Mode
00: off
01: on
10: positive edge
11: level

1 1

0

22

0

1

CFGx
CK INV

2

0

1

0

3

2

156 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Clock Enable Usage

The two general usage scenarios for the clock enable are:

Firmware Enable – It is assumed that most functions
require a firmware clock enable to start and stop the func-
tion. Because the boundary of a function mapped into the
UDB array is arbitrary–it may span multiple UDBs and/or
portions of UDBs–there must be a way to enable a given
function atomically. This is typically implemented from a bit
in a control register routed to one or more clock enable
inputs. This scenario also supports the case where applica-
tions require multiple, unrelated blocks to be enabled simul-
taneously.

Emulated Local Clock Generation – This feature allows
local clocks to be generated by UDBs, and distributed to
other UDBs in the array by using a synchronous clock
enable implementation scheme, rather than directly clocking
from one UDB to another. Using the positive edge feature of
the clock enable mode eliminates restrictions on the duty
cycle of the clock enable waveform.

Special FIFO Clocking

The datapath FIFOs have special clocking considerations.
By default, the FIFO clocks follow the same configuration as
the datapath clock. However, the FIFOs have special control
bits that alter the clock configuration:

■ Each FIFO clock can be inverted with respect to the
selected datapath clock polarity.

■ When FIFO FAST mode is set in the UDB CFG16 regis-
ter, the HFCLK overrides the datapath clock selection
normally in use by the FIFO.

16.2.4.2 Reset Control

The two modes of reset control are: compatible mode and
alternate mode. The modes are controlled by the ALT RES
bit in each UDB CFG31 register. When this bit is ‘0’, the
compatible scheme is implemented. When this bit is ‘1’, the
alternate scheme is implemented.

Compatible Reset Scheme

This scheme features a routed reset, for dynamically reset-
ting the embedded state of block, which can be applied to
each PLD macrocell and the SC counter.

Compatible PLD Reset Control

Figure 16-41 shows the compatible PLD reset system, using
routed dynamic resets.

Table 16-22. Clock Enable Mode in UDB CFG24 Register

Clock Enable
Mode

Description

OFF Clock is OFF.

ON
Clock is ON. The selected global clock is free run-
ning.

Positive Edge

A gated clock is generated on each positive edge
detect of the clock enable input. Maximum fre-
quency of enable input is the selected global clock
divided by two.

Level
Clocks are generated while the clock enable input
is high ('1').

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 157

Universal Digital Blocks (UDB)

Figure 16-41. Compatible PLD Reset Structure

Compatible Datapath Reset Control

Figure 16-42 shows the compatible datapath reset system, using firmware reset. The firmware reset asynchronously clears
the DP output registers, the carry and shift out flags, the FIFO state, accumulators, and data registers. Note that the DO and
D1 registers are implemented as retention registers that maintain their state across sleep intervals. The FIFO data is
unknown because it is RAM-based.

CFGx
PLD0 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD0 RES POL
Reset Invert
0: true
1: inverted

rc_in[3:0]

set

res

D Q

QB

SSEL

0

1

0

1

RSEL

SSEL

PLD
Macrocell

M
C

PLD0

M
C

M
C

M
C

routed
reset

System
Reset

M
C

PLD1

M
C

M
C

M
C

sysreset

pld_routed_reset

158 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Figure 16-42. Compatible Datapath Reset Structure

Compatible Status and Control Reset Control

Figure 16-43 shows the compatible status and control block reset. The mask/period and auxiliary control registers are reten-
tion registers.

Figure 16-43. Compatible Status and Control Reset Control

sysreset

CFGx
DP FRES dp_reset

A0/A1
RES

F1 Status
RES

ACTL
F0 CLR

F0 Status
RES

ACTL
F1 CLR

res res res

OUT
res

OUT
res

OUT
res

OUT
res

OUT
res

res
OUT

SYNC

CO
REG

SOL
MSB
REG

SOR
REG

D0/D1
RES

sysreset _ret

dp_reset_ret

CFGx
RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
RES INV

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
SC FRES sc_reset

CFGx
EN RES
CNTCTL

Status

RES

Mask/Period
(retention)

RES

Aux Control
(retention)

RES

sysreset_ret

sc_reset_ret

CFGx
EXT RES

CGFx
SC OUT CTL[1:0]

Control register is enabled for routed reset, either in
Counter mode, OR with the EXT RES bit explicitly.

Control Write Register
And Counter

RES

Control Sampling
Register

(embedded)

RES

sc_routed_reset

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 159

Universal Digital Blocks (UDB)

Alternate Reset Scheme

Table 16-23 shows a summary of the differences between the compatible reset scheme and the alternate reset scheme.

Alternate PLD Reset Control

Figure 16-44 shows the alternate PLD reset system. Although there are provisions for individual resets for each PLD, this is
not supported in the PLD block. Therefore, in the alternate reset scheme, the PLD0 reset control settings applies to both
PLDs.

Figure 16-44. Alternate PLD Reset Structure

Table 16-23. Reset Schemes

Feature Compatible Alternate

Granularity One routed reset is shared by all blocks in the UDB Each UDB component block can select an individual reset

Status register No routed reset capability Optionally can use the selected SC routed reset

Datapath No routed reset capability Optionally can use the selected DP routed reset

CFGx
PLD0 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD0 RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

set

res

D Q

QB

SSEL

0

1

0

1

RSEL

SSEL

PLD Macrocell

MC

PLD0

MC

MC

MC

routed
reset

system/
firmware

reset

MC

PLD1

MC

MC

MC

sysreset

pld_routed_reset

pld0_reset

pld1_reset
sysreset

CFGx
PLD1 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD1 RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

NOTE: The current
PLD only supports 1
routed reset. Both
are controlled by
PLD0 routed reset.

160 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

Alternate Datapath Reset Control

Figure 16-45 shows the alternate datapath reset system. The datapath routed reset applies to all datapath states, except the
Data Registers, which are implemented as retention registers.

Figure 16-45. Alternate Datapath Reset Structure

CFGx
 DP RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
DP RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
EN RES DP

Carry Out
Register

Shift Out Left
Register

Output
Sync
Registers

RES

Shift Out Right
Register

Accumulator
Accumulators

RES

Accumulator
Data Registers

RES

RES

RES

RES

FIFO0 Status
RES

All elements of the Datapath are reset by the selected
DP routed reset signal, EXCEPT the Data Registers

FIFO1 Status
RES

ACTL
F0 CLR

ACTL
F1 CLR

sysreset_ret

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 161

Universal Digital Blocks (UDB)

Alternate Status and Control Reset Control

Figure 16-46 shows the alternate status and control block reset. The mask/period and auxiliary control registers are retention
registers.

Figure 16-46. Alternate Status and Control Reset Control

16.2.4.3 UDB POR Initialization

Register and State Initialization

Routing Initialization

On POR, the state of input and output routing is as follows:

■ All outputs from the UDB that drive into the routing matrix are held at '0'.

■ All drivers out of the routing and into UDB inputs are initially gated to '0'.

As a result of this initialization, conflicting drive states on the routing are avoided and initial configuration occurs in an order-
independent sequence.

Table 16-24. UDB POR State Initialization

State Element State Element POR State

Configuration Latches CFG 0 – 31 0

Ax, Dx, CTL, ACTL, MASK Accumulators, data registers, auxiliary control register, mask register 0

ST, Macrocell Status and macrocell read only registers 0

DP CFG RAM and Fx (FIFOs) Datapath configuration RAM and FIFO RAM Unknown

PLD RAM PLD configuration RAM Unknown

CFGx
 SC RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
SC RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
EN RES CNTCTL

Control Write Register
and Counter

RES

Status

RES

CFGx
EN RES STAT

Mask/Period

RES

Aux Control

RESsysreset_ret

CFGx
EXT RES

CGFx
SC OUT CTL[1:0]

Control register is enabled for routed reset, either in
Counter mode, OR with the EXT RES bit explicitly.

Control Sampling
Register

(embedded)

RES

162 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

16.2.5 UDB Addressing

The UDBs can be accessed through a number of address spaces, for 8, 16, and 32-bit accesses of both the working registers
(A0, A1, D0, D1, FIFOs, and so on) and the configuration registers.

■ 8-bit working registers – This address space allows access to individual working registers in a single UDB.

■ 16-bit working registers consecutive – This address space allows access to the same working register in two consecutive
UDBs, for example D0 of UDB n and D0 of UDB n + 1

■ 16-bit working registers paired – This address space allows access to two working registers, for example A0 and A1, from
the same UDB.

■ 32-bit working registers – This address space allows access to the same working register, for example A1, in all four
UDBs.

■ 8-, 16-, or 32-bit configuration registers – This address space allows access to the configuration registers for a single
UDB.

16.2.6 System Bus Access Coherency

UDB registers have dual access modes:

■ System bus access, where the CPU is reading or writing a UDB register.

■ UDB internal access, where the UDB function is updating or using the contents of a register.

16.2.6.1 Simultaneous System Bus Access

Table 16-25 lists the possible simultaneous access events and required behavior:

16.2.6.2 Coherent Accumulator Access (Atomic Reads and Writes)

The UDB accumulators are the primary target of data computation. Therefore, reading these registers directly during normal
operation gives an undefined result, as indicated in Table 16-25. However, there is built-in support for atomic reads in the form
of software capture, which is implemented across chained blocks. In this usage model, a read of the least significant accumu-
lator transfers the data from all chained blocks to their associated FIFOs. Atomic writes to the accumulator can be imple-
mented programmatically. Individual writes can be performed to the input FIFOs, and then the status signal of the last FIFO
written can be routed to all associated blocks and simultaneously transfer the FIFO data into the Dx or Ax registers.

Table 16-25. Simultaneous System Bus Access

Register
UDB Write

Bus Write

UDB Write

Bus Read

UDB Read

Bus Write

UDB Read

Bus Read

Ax
Undefined result Not allowed directlya, b

a. The Ax registers can be safely read by using the software capture feature of the FIFOs.
b. The Dx registers can only be written dynamically by the FIFOs. When this mode is programmed, direct read of the Dx registers is not allowed.

UDB reads previous value Current value is read by both
Dx

Fx
Not supported (UDB and bus
must be opposite access)

If FIFO status flags are used, no simultaneous read/
write at the same location is possible

Not supported (UDB and bus
must be opposite access)

ST NA, bus does not write Bus reads previous value NA, UDB does not read

CTL NA, UDB does not write

UDB reads previous value
Current value is read by both

CNT Undefined result Not allowed directlyc

c. The CNT register can only be safely read when it is disabled. An alternative for dynamically reading the CNT value is to route the output to the SC register
(in transparent mode).

ACTL

NA, UDB does not writeMASK

PER

Macrocell (RO) NA, bus does not write Not allowed directlyd

d. Macrocell register bits can also be routed to the status register (in transparent mode) inputs for safe reading.

NA, bus does not write

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 163

Universal Digital Blocks (UDB)

16.3 Port Adapter Block

The Port Adaptor block extends the UDBs to provide an interface to the GPIOs through the High-Speed I/O Matrix (HSIOM),
described in “High-Speed I/O Matrix” on page 52. The HSIOM places registers for faster routing of DSI signals to GPIO out-
puts and output enables. The HSIOM also allows GPIOs to be shared amongst multiple blocks, for example port data regis-
ters and peripherals such as I2C. Figure 16-47 shows a high-level view.

Figure 16-47. Port Adapter Block Diagram

Each 8-bit GPIO port has one port adaptor (PA). There are eight inputs from the GPIO data in, eight outputs to the GPIO data
out, and eight output enable (OE) connections. The registers in the PA are used for synchronizing inputs, outputs, and output
enables. Another feature is the port input clock multiplexer. This multiplexer selects one of the port inputs to be used as a
clock. The clock can be used locally in the PA and routed to the global clocks (see Clocking System chapter on page 57).

Two programmable clock selectors are available, to supply separate clocks for the input and output synchronization registers.
The OE register uses the same clock as the output register. Also, two programmable reset selectors are available, in the
same manner as for the clock selectors.

16.3.1 PA Data Input Logic

Figure 16-48 shows the structure for the data input logic. Inputs are from each pin of an I/O port. The signal can be either sin-
gle synchronized or double synchronized, or synchronization can be bypassed for asynchronous inputs. Synchronization is to
the selected port input clock. The output of this circuit connects to the DSI routing.

Figure 16-48. Detail of GPIO Input Logic

Clock
Selectors

9
Global Clocks

3 DSI Signals
4

Reset
Selectors

2

2

To DSI

8

From DSI

8

8 8

8

From DSI

4

4

HSIOM

To Clock Tree

[0]

[0]

[1]

[1]

GPIO Port

8 8

 Input Synch Regs
reset

 Output Synch Regs
reset

 Output Enables
reset

Port Input
Clock Multiplexer

3

8

8

2

PACFGx
IN SYNC[1:0]

00: transparent
01: single sync
10: double sync
11: reserved

Selected
Input Reset

Selected
Input Clock

From Port Pin[j]
where j = 0-7

dsi_from_pin[j]
(to DSI routing)

8 Instances (one per port pin) in each Port Adapter

164 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

16.3.2 PA Port Pin Clock Multiplexer Logic

Figure 16-49 shows the port pin multiplexer. Each port has eight data input signals, one of which is selected for use as a
clock. This selection is routed for use as:

■ Programmable clock in the port adapter

■ Source for the UDB clock tree

■ Programmable reset in the port adapter

■ For use as a clock enable in the port adapter.

Note that the selected signal does not pass through synchronizers and is asynchronous to other clock domains within the
block. It should be used carefully for selected functions.

Figure 16-49. Detail of GPIO Pin Selection

16.3.3 PA Data Output Logic

Figure 16-50 shows the structure for the data output logic. Outputs go to each pin of an I/O port (through HSIOM). The signal
can be single synchronized or synchronization can be bypassed for asynchronous outputs. Other options include the ability to
output either the selected clock or an inverted version of the clock.

Figure 16-50. Detail of GPIO Output Data Logic

PIN CLK
MUX

dsi_from_pin[4]

dsi_from_pin[5]

3

PACFGx
PIN SEL[2:0]

Pin Clk Sel
000: sel pin 0
001: sel pin 1
010: sel pin 2
011: sel pin 3
100: sel pin 4
101: sel pin 5
110: sel pin 6
111: sel pin 7

dsi_from_pin[6]

dsi_from_pin[7]

(From Port Pins)

dsi_from_pin[0]

dsi_from_pin[1]

dsi_from_pin[2]

dsi_from_pin[3] To PA CLK/
Reset Select

2

PACFGx
OUT SYNC[1:0]

00: transparent
01: single sync
10: clock
11: clock inverted

Selected
Output Reset

Selected
Outout Clock

Data Mux

To Port Pin[j]
where j = i+ 0,1,2,3

dsi_to_pin[i+0]

dsi_to_pin[i+1]

2

PACFGx
DATA SEL[1:0]

00: Sel i+0
01: Sel i+1
10: Sel i+2
11: Sel i+3
where i = 0, 4

dsi_to_pin[i+2]

dsi_to_pin[i+3]

(From DSI routing)

8 Instances (one per port pin) in each Port Adapter

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 165

Universal Digital Blocks (UDB)

16.3.4 PA Output Enable Logic

Figure 16-51 shows the output enable (OE) logic. This circuit shares the clock and reset associated with data output. This
connection is unique in that there are four DSI outputs associated with the OE, but these are muxed to a total of four OE con-
nections to the I/O port pins, as Figure 16-52 shows.

Figure 16-51. GPIO Output Enable (OE) Sync Logic

Figure 16-52. GPIO Output Enable (OE) Multiplexers

Note that due to the active low sense of the OE signals at the ports, there is an additional inversion in the path between the
OE sync logic and the OE multiplexers.

2

PACFGx
OE SNYC[1:0]

00: transparent
01: single sync
10: 1
11: 0

Selected
Output Reset

Selected
Outout Clock

0

1

dsi_to_oe[j]
(j=0 to 3)

4 Instances (one per DSI
OE connection) in each

Port Adapter

To OE Muxes

OE MUXes

2

PACFGx
OE SEL[1:0]

00: Sel 0
01: Sel 1
10: Sel 2
11: Sel 3

8 Instances (one per OE
port pin input) in each Port

Adapter

OE selected[0]

OE selected[2]

OE selected[3]

To Port Pin OE[j]
j = 0 to 7

OE selected[1]
OE Sync

OE Sync

OE Sync

OE Sync

dsi_to_oe[0]

dsi_to_oe[1]

dsi_to_oe[2]

dsi_to_oe[3]

166 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Universal Digital Blocks (UDB)

16.3.5 PA Clock Multiplexer

Figure 16-53 shows the structure of the PA clock multiplexer. As noted previously, each PA has two programmable clock
selectors, to supply separate clocks for port inputs and outputs and output enables (OEs).

Figure 16-53. PA Clock Multiplexer Detail

16.3.6 PA Reset Multiplexer

The structure of the PA reset multiplexer is shown in Figure 16-54.

Figure 16-54. PA Reset Multiplexer Detail

As shown in Figure 16-55, the reset selection logic is duplicated, one for input, and one that serves both output and output
enable. Each of these resets has an individual enable, which applies to all eight bits in the associated category.

Figure 16-55. PA Reset System

Latch

PACFGx
CK SEL[3:0]

{dsi_xx_rc[2:0],port_xx_rc,bus_clk_app, gclk[7:0]}

Input/Output clk

1000: res
1001: hf_clk_app
1010: res
1011: res
1100: port_xx_rc
1101: dsi_xx_rc[0]
1110: dsi_xx_rc[1]
1111: dsi_xx_rc[2]

PACFGx
EN SEL[1:0]

00: port_xx_rc
01: dsi_xx_rc[0]
10: dsi_xx_rc[1]
11: dsi_xx_rc[2]

PACFGx
EN INV

2

0: true
1: inverted

4

0: true
1: inverted

{dsi_xx_rc[2:0],port_xx_rc} FF

PACFGx
EN MODE[1:0]

00: off
01: on
10: pos edge
11: level

1 1

0

22

0

1

PACFGx
CK INV

2

0

1

0

3

2

0000: gclk[0]
0001: gclk[4]
0010: gclk[1]
0011: gclk[5]
0100: gclk[2]
0101: gclk[6]
0110: gclk[3]
0111: gclk[7]

PACFGx
RES SEL[1:0]

00: port_xx_rc
01: dsi_xx_rc[0]
10: dsi_xx_rc[1]
11: dsi_xx_rc[2]

2

PACFGx
RES INV

0: true
1: inverted

{dsi_xx_rc[2:0],port_xx_rc} To Input/Output reset

{dsi_xx_rc[2:0],port_xx_rc}

To Input/Output reset

Input
Reset Select

PACFGx
RES IN EN

PACFGx
RES OUT EN

PACFGx
RES OE EN

Output
Reset Select

0

0

0

To Input Sync
Register Resets

To Output Sync
Registers Resets

To OE Sync
Registers Resets

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 167

17. Timer, Counter, and PWM

The Timer, Counter, and Pulse Width Modulator (TCPWM) block in PSoC® 4 implements the 16-bit timer, counter, pulse width
modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an
input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadra-
ture signals. This chapter explains the features, implementation, and operational modes of the TCPWM block.

17.1 Features
■ Four 16-bit timers, counters, or pulse width modulators (PWM)

■ The TCPWM block supports the following operational modes:

❐ Timer

❐ Capture

❐ Quadrature decoding

❐ Pulse width modulation

❐ Pseudo-random PWM

❐ PWM with dead time

■ Multiple counting modes – up, down, and up/down

■ Clock prescaling (division by 1, 2, 4, ... 64, 128)

■ Double buffering of compare/capture and period values

■ Supports interrupt on:

❐ Terminal Count – The final value in the counter register is reached

❐ Capture/Compare – The count is captured to the capture/compare register or the counter value equals the compare
value

■ Synchronized counters – The counters can reload, start, stop, and count at the same time

■ DSI output signals for each counter to indicate underflow, overflow, and capture/compare condition

■ Complementary line output for PWMs

■ Selectable start, reload, stop, count, and capture event signals for each TCPWM from up to 14 DSI signals with rising
edge, falling edge, both edges, and level trigger options

168 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

17.2 Block Diagram

Figure 17-1. TCPWM Block Diagram

The block has these interfaces:

■ Bus interface: Connects the block to the CPU subsystem.

■ I/O signal interface with DSI: Routes signals to or from the universal digital block (UDB) and TCPWM block. It consists of
input triggers (such as reload, start, stop, count, and capture) and output signals (such as overflow (OV), underflow (UN),
and capture/compare (CC)). Any GPIO can be used as the input trigger signal.

■ Interrupts: Provides interrupt request signals from each counter, based on terminal count (TC) or CC conditions, and a
combined interrupt signal generated by the logical OR of all four interrupt request signals.

■ System interface: Consists of control signals such as clock and reset from the system resources subsystem.

This TCPWM block can be configured by writing to the TCPWM registers. See “TCPWM Registers” on page 190 for more
information on all registers required for this block.

17.2.1 Enabling and Disabling Counter in TCPWM Block

The counter can be enabled by setting the COUNTER_ENABLED field (bit 0) of the control register TCPWM_CTRL.

Note The counter must be configured before enabling it. If the counter is enabled after being configured, registers are
updated with the new configuration values. Disabling the counter retains the values in the registers until it is enabled again (or
reconfigured). Status registers are cleared after the counter is disabled.

17.2.2 Clocking

The TCPWM receives the HFCLK through the system interface to synchronize all events in the block. The counter enable sig-
nal (counter_en), which is generated when the counter is enabled, gates the HFCLK to provide a counter-specific clock
(counter_clock). Output triggers (explained later in this chapter) are also synchronized with the HFCLK.

Bus Interface

DSI:
underflow[3:0],
overflow[3:0],
cc[3:0]

Interrupts[3:0],
Interrupt

line_out[3:0],
line_compl_out[3:0]

System
Interface

14

5

Counter 0

Counter 1

Counter 2

Counter 3

T
ri

gg
er

S

yn
ch

ro
n

iz
a

tio
n

C
o

nf
ig

ur
at

io
n

R

e
gi

st
e

rs

Bus Interface Logic

812

CPU Subsystem

DSI:
Trigger_in

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 169

Timer, Counter, and PWM

Clock Prescaling: counter_clock can be prescaled, with divider values of 1, 2, 4… 64, 128. This prescaling is done by modi-
fying the GENERIC field of the counter control (TCPWM_CNT_CTRL) register, as shown in Table 17-1.

Note Clock prescaling cannot be done in quadrature mode and PWM-DT mode.

Table 17-1. Bit-Field Setting to Prescale Counter Clock

GENERIC[10:8] Description

0 Divide by 1

1 Divide by 2

2 Divide by 4

3 Divide by 8

4 Divide by 16

5 Divide by 32

6 Divide by 64

7 Divide by 128

170 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

17.2.3 Events Based on Trigger Inputs

These are the events triggered by hardware or software.

■ Reload

■ Start

■ Stop

■ Count

■ Capture/switch

Hardware triggers can be level signal, rising edge, falling edge, or both edges. Figure 17-2 shows the selection of edge detec-
tion type for any event trigger signal. The trigger control register 0 (TCPWM_CNT_TR_CTRL0) selects one of the 1416five
trigger inputs as the event signal, which includes constant '0' and '1' signals.

Any edge (rising, falling, or both) or level (high or low) can be selected for the occurrence of an event by configuring the trig-
ger control register 1 (TCPWM_CNT_TR_CTRL1). This edge/level configuration can be selected for each trigger event sepa-
rately. Alternatively, firmware can generate an event by writing to the counter command register (TCPWM_CMD), as shown in
Figure 17-2.

Figure 17-2. Trigger Signal Edge Detection

The events derived from these triggers can have different
definitions in different modes of the TCPWM block.

■ Reload: A reload event initializes and starts the counter.

❐ In UP counting mode, the count register
(TCPWM_CNT_COUNTER) is initialized with ‘0’.

❐ In DOWN counting mode, the counter is initialized
with the period value stored in the
TCPWM_CNT_PERIOD register.

❐ In UP/DOWN counting mode, the count register is
initialized with ‘0’.

❐ In quadrature mode, the reload event acts as a
quadrature index event. An index/reload event indi-
cates a completed rotation and can be used to syn-
chronize quadrature decoding.

■ Start: A start event is used to start counting; it can be
used after a stop event or after re-initialization of the
counter register to any value by software. Note that the
count register is not initialized on this event.

❐ In quadrature mode, the start event acts as quadra-
ture phase input phiB, which is explained in detail in
“Quadrature Decoder Mode” on page 179.

■ Count: A count event causes the counter to increment
or decrement, depending on its configuration.

❐ In quadrature mode, the count event acts as quadra-
ture phase input phiA.

■ Stop: A stop event stops the counter from incrementing
or decrementing. A start event will start the counting
again.

❐ In the PWM modes, the stop event acts as a kill
event. A kill event disables all the PWM output lines.

■ Capture: A capture event copies the counter register
value to the capture register and capture register value
to the buffer capture register. In the PWM modes, the
capture event acts as a switch event. It switches the val-
ues of the capture/compare and period registers with
their buffer counterparts. This feature can be used to
modulate the pulse width and frequency.

Notes

■ All trigger inputs are synchronized to the HFCLK.

■ When more than one event occurs in the same counter
clock period, one or more events may be missed. This
can happen for high-frequency events (frequencies
close to the counter frequency) and a timer configuration
in which a pre-scaled (divided) counter clock is used.In
the Quadrature mode, edge detection is performed with
the counter clock. In the other five modes, the edge
detection is done using the gated version of the HFCLK.

trigger control register 1

rising edge

falling edge

both

pass through
counter command

register (SW generated)

event

2

Edge
Detector
Circuit

Trigger signal

Trigger
Synchronisation

System bus
clock

1

0

Trigger_in [13:0]

trigger control register 0

14

4

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 171

Timer, Counter, and PWM

17.2.4 Output Signals

The TCPWM block generates several output signals, as shown in Figure 17-3.

Figure 17-3. TCPWM Output Signals

17.2.4.1 Signals upon Trigger Conditions

■ Counter generates an internal overflow (OV) condition when counting up and the count register reaches the period value.

■ Counter generates an internal underflow (UN) condition when counting down and the count register reaches zero.

■ The capture/compare (CC) condition is generated by the TCPWM when the counter is running and one of the following
conditions occur:

❐ The counter value equals the compare value.

❐ A capture event occurs - When a capture event occurs, the TCPWM_CNT_COUNTER register value is copied to the
capture register and the capture register value is copied to the buffer capture register.

Note These signals, when they occur, remain at logic high for one cycle of the HFCLK. For reliable operation, the condition
that causes this trigger should be less than a quarter of the HFCLK. For example, if the HFCLK is running at 24 MHz, the con-
dition causing the trigger should occur at a frequency less than 6 MHz.

17.2.4.2 Interrupts

The TCPWM block provides a dedicated interrupt output signal from the counter. An interrupt can be generated for a TC con-
dition or a CC condition. The exact definition of these conditions is mode-specific. All four interrupt output signals from the
four TCPWMs are also OR’ed together to produce a single interrupt output signal.

Four registers are used for interrupt handling in this block, as shown in Table 17-2.

Table 17-2. Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR

(Interrupt request register)

0 TC This bit is set to '1', when a terminal count is detected. Write '1' to clear this bit.

1 CC_MATCH
This bit is set to ‘1’ when the counter value matches capture/compare register
value. Write '1' to clear this bit.

TCPWM_CNT_INTR_SET

(Interrupt set request register)

0 TC
Write '1' to set the corresponding bit in the interrupt request register. When
read, this register reflects the interrupt request register status.

1 CC_MATCH
Write '1' to set the corresponding bit in the interrupt request register. When
read, this register reflects the interrupt request register status.

TCPWM_CNT_INTR_MASK

(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt request register.

1 CC_MATCH Mask bit for the corresponding CC_MATCH bit in the interrupt request register.

TCPWM_CNT_INTR_MASKED

(Interrupt masked request register)

0 TC Logical AND of the corresponding TC request and mask bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and mask bits.

TCPWM block

Interrupt 4
Interrupt 5
Interrupt 6
Interrupt 7

Interrupt

line_out
line_compl_out

8
8
8

Underflow
Overflow
CC

8
8

Interrupt 0
Interrupt 1
Interrupt 2
Interrupt 3

172 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

17.2.4.3 Outputs

The TCPWM has two outputs, line_out and line_compl_out (complementary of line_out). Note that the OV, UN, and CC con-
ditions can be used to drive line_out and line_compl_out if needed, by configuring the TCPWM_CNT_TR_CTRL2 register
(Table 17-3).

17.2.5 Power Modes

The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The configuration registers

and other logic are powered in Deep-Sleep mode to keep the states of configuration registers. See Table 17-4 for details.

Table 17-3. Configuring Output Line for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE
Default Value = 3

1:0

0 Set line_out to '1

Configures output line on a compare
match (CC) event

1 Clear line_out to '0

2 Invert line_out

3 No change

OVERFLOW_MODE
Default Value = 3

3:2

0 Set line_out to '1

Configures output line on a overflow
(OV) event

1 Clear line_out to '0

2 Invert line_out

3 No change

UNDERFLOW_MODE
Default Value = 3

5:4

0 Set line_out to '1

Configures output line on a underflow
(UN) event

1 Clear line_out to '0

2 Invert line_out

3 No change

Table 17-4. Power Modes in TCPWM Block

Power Mode Block Status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep All counter clocks are on, but bus interface cannot be accessed.

Deep-Sleep
In this mode, the power to this block is still on but no bus clock is provided; hence, the logic is not functional.
All the configuration registers will keep their state.

Hibernate In this mode, the power to this block is switched off. Configuration registers will lose their state.

Stop In this mode, the power to this block is switched off. Configuration registers will lose their state.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 173

Timer, Counter, and PWM

17.3 Modes of Operation

The counter block can function in six operational modes, as shown in Table 17-5. The MODE [26:24] field of the counter con-
trol register (TCPWM_CNTx_CTRL) configures the counter in the specific operational mode.

The counter can be configured to count up, down, and up/down by setting the UP_DOWN_MODE[17:16] field in the
TCPWM_CNT_CTRL register, as shown in Table 17-6.

Table 17-5. Operational Mode Configuration

Mode
MODE Field

[26:24]
Description

Timer 000
Implements a timer or counter. The counter increments or decrements by '1' at every counter clock cycle in
which a count event is detected.

Capture 010
Implements a timer or counter with capture input. The counter increments or decrements by '1' at every coun-
ter clock cycle in which a count event is detected. When a capture event occurs, the counter value copies into
the capture register.

Quadrature
Decoder

011
Implements a quadrature decoder, where the counter is decremented or incremented, based on two phase
inputs according to the selected (X1, X2 or X4) encoding scheme.

PWM 100 Implements edge/center-aligned PWMs with an 8-bit clock prescaler and buffered compare/period registers.

PWM-DT 101
Implements edge/center-aligned PWMs with configurable 8-bit dead time (on both outputs) and buffered com-
pare/period registers.

PWM-PR 110 Implements a pseudo-random PWM using a 16-bit linear feedback shift register (LFSR).

Table 17-6. Counting Mode Configuration

Counting Modes
UP_DOWN_
MODE[17:16]

Description

UP Counting Mode 00
Increments the counter until the period value is reached. A Terminal Count (TC) condition is
generated when the counter reaches the period value.

DOWN Counting Mode 01
Decrements the counter from the period value until 0 is reached. A TC condition is gener-
ated when the counter reaches ‘0’.

UP/DOWN Counting Mode 0 10
Increments the counter until the period value is reached, and then decrements the counter
until ‘0’ is reached. A TC condition is generated only when ‘0’ is reached.

UP/DOWN Counting Mode 1 11
Similar to up/down counting mode 0 but a TC condition is generated when the counter
reaches ‘0’ and when the counter value reaches the period value.

174 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

17.3.1 Timer Mode

The timer mode is commonly used to measure the time of occurrence of an event or to measure the time difference between
two events.

17.3.1.1 Block Diagram

Figure 17-4. Timer Mode Block Diagram

17.3.1.2 How It Works

The timer can be configured to count in up, down, and up/down counting modes. It can also be configured to run in either con-
tinuous mode or one-shot mode. The following explains the working of the timer:

■ The timer is an up, down, and up/down counter.

❐ The current count value is stored in the count register (TCPWM_CNTx_COUNTER).
Note It is not recommended to write values to this register while the counter is running.

❐ The period value for the timer is stored in the period register.

■ The counter is re-initialized in different counting modes as follows:

❐ In the up counting mode, after the count reaches the period value, the count register is automatically reloaded with 0.

❐ In the down counting mode, after the count register reaches zero, the count register is reloaded with the value in the
period register.

❐ In the up/down counting modes, the count register value is not updated upon reaching the terminal values. Instead the
direction of counting changes when the count value reaches 0 or the period value.

■ The CC condition is generated when the count register value equals the compare register value. Upon this condition, the
compare register and buffer compare register switch their values if enabled by the AUTO_RELOAD_CC bit-field of the
counter control (TCPWM_CNT_CTRL) register. This condition can be used to generate an interrupt request.

Figure 17-5 shows the timer operational mode of the counter in four different counting modes. The period register contains
the maximum counter value.

■ In the up counting mode, a period value of A results in A+1 counter cycles (0 to A).

■ In the down counting mode, a period value of A results in A+1 counter cycles (A to 0).

■ In the two up/down counting modes (0 and 1), a period value of A results in 2*A counter cycles (0 to A and back to 0).

PERIOD

COUNTER

COMPARE

 BUFFER
COMPARE

==

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock

Capture

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 175

Timer, Counter, and PWM

Figure 17-5. Timing Diagram for Timer in Multiple Counting Modes

Period

TC

Counter

Timer, down counting mode

0xFF

0xFF

counter_clock

0xFF

0xFE

0xFD

0xFC

0x01

0x00

0xFF

0xFE

0xFD

0xFC

0x01

0x00

0xFF

0xFE

0x02

0x03

UN

OV

Period

TC

Counter

Timer, up counting mode

0xFF

0x00

0x01

0x02

0x03

0xFE

0xFF

counter_clock

0x00

0x01

0x02

0x03

0xFE

0xFF

0x00

0x01

0xFE

0x02

UN

OV

Period

TC

Counter

Timer, up/down counting mode
1

0xFF

0x00

0x01

0x02

0x03

0xFE

0xFF

0xFE

0xFD

0xFC

0x01

0x00

0x01

0x02

0x03

0xFE

0xFF

counter_clock

UN

OV

176 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

Note The OV and UN signals remain at logic high for one cycle of the HFCLK, as explained in “Signals upon Trigger Condi-
tions” on page 171. The figures in this chapter assume that HFCLK and counter clock are the same.

17.3.1.3 Configuring Counter for Timer Mode

The steps to configure the counter for Timer mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select Timer mode by writing '000' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register.

5. Set AUTO_RELOAD_CC field of the TCPWM_CNT_CTRL register, if required to switch values at every CC condition.

6. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 17-1.

7. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register, as
shown in Table 17-6.

8. The timer can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the
ONE_SHOT[18] field of TCPWM_CNT_CTRL.

9. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Stop, Capture, and
Count).

10. Set the TCPWM_CNT_TR_CTRL1 register to select the edge of the trigger that causes the event (Reload, Start, Stop,
Capture, and Count).

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 171.

12. Enable the counter by writing '1' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL register.
A start trigger must be provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal
is not enabled.

Period

TC

Counter

Timer, up/down counting mode 0

0xFF

0x00

0x01

0x02

0x03

0xFE

0xFF

0xFE

0xFD

0xFC

0x01

0x00

0x01

0x02

0x03

0xFE

0xFF

counter_clock

UN

OV

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 177

Timer, Counter, and PWM

17.3.2 Capture Mode

In the capture mode, the counter value can be captured at any time either through a firmware write to command register
(TCPWM_CMD) or a capture trigger input. This mode is used for period and pulse width measurement.

17.3.2.1 Block Diagram

Figure 17-6. Capture Mode Block Diagram

17.3.2.2 How it Works

The counter can be set to count in up, down, and up/down counting modes by configuring the UP_DOWN_MODE[17:16] bit-
field of the counter control register (TCPWM_CNT_CTRL).

Operation in capture mode occurs as follows:

■ During a capture event, generated either by hardware or software, the current count register value is copied to the capture
register (TCPWM_CNT_CC) and the capture register value is copied to the buffer capture register
(TCPWM_CNT_CC_BUFF).

■ A pulse on the CC output signal is generated when the counter value is copied to the capture register. This condition can
also be used to generate an interrupt request.

Figure 17-7 illustrates the capture behavior in the up counting mode.

Figure 17-7. Timing Diagram of Counter in Capture Mode, Up Counting Mode

PERIOD

COUNTER

CAPTURE

 CAPTURE BUFFER

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock

Capture

Period

Counter

OV

UN

TC

Capture, up counting mode

capture

capture buffer

CC

counter_clock

0xFF

Capture trigger

0x00
0x01

0x02

0x03

0xFE

0x02

0x02

0xFE

0xFE

0x03

0x00

0x01

0x02

0x03

0xFE

0x00

0x01

0x02

178 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

In the figure, observe that:

■ The period register contains the maximum count value.

■ Internal overflow (OV) and TC conditions are generated when the counter reaches the period value.

■ A capture event is only possible at the edges or through software. Use trigger control register 1 to configure the edge
detection.

■ Multiple capture events in a single clock cycle are handled as:

❐ Even number of capture events - no event is observed

❐ Odd number of capture events - single event is observed

This happens when the capture signal frequency is greater than the counter_clock frequency.

17.3.2.3 Configuring Counter for Capture Mode

The steps to configure the counter for Capture mode operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select Capture mode by writing '010' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 17-1.

5. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register, as
shown in Table 17-6.

6. Counter can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the
ONE_SHOT[18] field of the TCPWM_CNT_CTRL register.

7. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Stop, Capture, and
Count).

8. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Stop, Capture, and
Count).

9. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 171.

10. Enable the counter by writing '1' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL register.
A start trigger must be provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal
is not enabled.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 179

Timer, Counter, and PWM

17.3.3 Quadrature Decoder Mode

Quadrature decoders are used to determine speed and position of a rotary device (such as servo motors, volume control
wheels, and PC mice). The quadrature encoder signals are used as phiA and phiB inputs to the decoder.

17.3.3.1 Block Diagram

Figure 17-8. Quadrature Mode Block Diagram

17.3.3.2 How It Works

Quadrature decoding only runs on counter_clock. It can
operate in three sub-modes: X1, X2, and X4 modes. These
encoding modes can be controlled by the
QUADRATURE_MODE[21:20] field of the counter control
register (TCPWM_CNT_CTRL). This mode uses double
buffered capture registers.

The Quadrature mode operation occurs as follows:

■ Quadrature phases phiA and phiB: Counting direction is
determined by the phase relationship between phiA and
phiB. These phases are connected to the count and the
start trigger inputs, respectively as hardware input to the
decoder.

■ Quadrature index signal: This is connected to the reload
signal as a hardware input. This event generates a TC
condition, as shown in Figure 17-9.

On TC, the counter is set to 0x0000 (in the up counting
mode) or to the period value (in the down counting
mode).

Note The down counting mode is recommended to be
used with a period value of 0x8000 (the mid-point value).

■ A pulse on CC output signal is generated when the
count register value reaches 0x0000 or 0xFFFF. On a
CC condition, the count register is set to the period value
(0x8000 in this case).

■ On TC or CC condition:

❐ Count register value is copied to the capture register

❐ Capture register value is copied to the buffer capture
register

❐ This condition can be used to generate an interrupt
request

■ The value in the capture register can be used to deter-
mine which condition caused the event and whether:

❐ A counter underflow occurred (value 0)

❐ A counter overflow occurred (value 0xFFFF)

❐ An index/TC event occurred (value is not equal to
either 0 or 0xFFFF)

■ The DOWN bit field of counter status
(TCPWM_CNTx_STATUS) register can be read to deter-
mine the current counting direction. Value '0' indicates a
previous increment operation and value '1' indicates pre-
vious decrement operation. Figure 17-9 illustrates
quadrature behavior in the X1 encoding mode.

❐ A positive edge on phiA increments the counter
when phiB is '0' and decrements the counter when
phiB is '1'.

❐ The count register is initialized with the period value
on an index/reload event.

❐ Terminal count is generated when the counter is ini-
tialized by index event. This event can be used to
generate an interrupt.

❐ When the count register reaches 0xFFFF (the maxi-
mum count register value), the count register value is
copied to the capture register and the count register
is initialized with period value (0x8000 in this case).

PERIOD

COUNTER

CAPTURE

 BUFFER CAPTURE

==

index

phiA

Stop

phiB

CC

TC

counter_clock

0x0000
0xFFFF

180 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

Figure 17-9. Timing Diagram for Quadrature Mode, X1 Encoding

The quadrature phases are detected on the counter_clock. Within a single counter_clock period, the phases should not
change value more than once. The X2 and X4 quadrature encoding modes count twice and four times as fast as the X1
encoding mode.

Figure 17-10 illustrates the quadrature mode behavior in the X2 and X4 encoding modes.

Period

TC

CC

Quadrature, X1 encoding

0x8000

Y 0xFFFFcapture

buffer capture
X Y

0x8000 0x8001 0x8002 0x8000 0x7FFFcounter

phiA

phiB

index/reload
event

0x8003

counter_clock

0xFFFF

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 181

Timer, Counter, and PWM

Figure 17-10. Timing Diagram for Quadrature Mode, X2 and X4 Encoding

17.3.3.3 Configuring Counter for Quadrature Mode

The steps to configure the counter for quadrature mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select Quadrature mode by writing '011' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set the required encoding mode by writing to the QUADRATURE_MODE[21:20] field of the TCPWM_CNT_CTRL regis-
ter.

5. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Index and Stop).

6. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Index and Stop).

7. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 171.

8. Enable the counter by writing '1' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

Period

TC

Quadrature, X2 encoding

4

counter

phiA

phiB

index/reload
event

counter_clock

4 5 6 7 8 7 6

Period

TC

Quadrature, X4 encoding

4

counter

phiA

phiB

index/reload
event

counter_clock

4 5 6 7 8 9 10 11 12 11 10 9 8

182 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

17.3.4 Pulse Width Modulation Mode

The PWM mode is also called the Digital Comparator mode. The comparison output is a PWM signal whose period depends
on the period register value and duty cycle depends on the compare and period register values.

PWM period = (period value/counter clock frequency) in left- and right-aligned modes

PWM period = (2 × (period value/counter clock frequency)) in center-aligned mode

Duty cycle = (compare value/period value) in left- and right-aligned modes

Duty cycle = ((period value-compare value)/period value) in center-aligned mode

17.3.4.1 Block Diagram

Figure 17-11. PWM Mode Block Diagram

17.3.4.2 How It Works

The PWM mode can output left, right, center, or asymmetri-
cally aligned PWM signals. The desired output alignment is
achieved by using the counter's up, down, and up/down
counting modes selected using UP_DOWN_MODE [17:16]
bits in the TCPWM_CNT_CTRL register, as shown in
Table 17-6.

This CC signal along with OV and UN signals control the
PWM output line. The signals can toggle the output line or
set it to a logic '0' or '1' by configuring the
TCPWM_CNT_TR_CTRL2 register. By configuring how the
signals impact the output line, the desired PWM output
alignment can be obtained.

The recommended way to modify the duty cycle is:

■ The buffer period register and buffer compare register
are updated with new values.

■ On TC, the period and compare registers are automati-
cally updated with the buffer period and buffer compare
registers when there is an active switch event. The
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register are set to ‘1’. When

a switch event is detected, it is remembered until the
next TC event. Pass through signal (selected during
event detection setting) cannot trigger a switch event.

■ Updates to the buffer period register and buffer compare
register should be completed before the next TC with an
active switch event; otherwise, switching does not reflect
the register update, as shown in Figure 17-13.

In the center-aligned mode, the output line is set to '0' at Ter-
minal Count and toggled at the CC condition

At the reload event, the count register is initialized and starts
counting in the appropriate mode. At every count, the count
register value is compared with compare register value to
generate the CC signal on match.

Figure 17-12 illustrates center-aligned PWM with buffered
period and compare registers (up/down counting mode 0).

line_out_compl

PERIOD

COUNTER

COMPARE

 BUFFER COMPARE

==

reload

start

stop

switch

UN

OV

CC

TC

counter_clock

BUFFER PERIOD

PWM
line_out

count

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 183

Timer, Counter, and PWM

Figure 17-12. Timing Diagram for Center Aligned PWM

Figure 17-12 illustrates center-aligned PWM with software generated switch events:

■ Software generates a switch event only after both the period buffer and compare buffer registers are updated.

■ Because the updates of the second PWM pulse come late (after the terminal count), the first PWM pulse is repeated.

■ Note that the switch event is automatically cleared by hardware at TC after the event takes effect.

PWM center aligned buffered

new period value B, new compare value N

A B

B

A

BA

M

M

N

N N

M

SW update of buffers

reload event

period buffer

period

compare

compare buffer

Counter

A

0

Switch at TC condition

B

M

N

TC

CC

line_out

counter_clock

184 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

Figure 17-13. Timing Diagram for Center Aligned PWM (software switch event)

17.3.4.3 Other Configurations

■ For asymmetric PWM, the up/down counting mode 1 should be used. This causes a TC when the counter reaches either
‘0’ or the period value. To create an asymmetric PWM, the compare register is changed at every TC (when the counter
reaches either ‘0’ or the period value), whereas the period register is only changed at every other TC (only when the coun-
ter reaches ‘0’).

■ For left-aligned PWM, use the up counting mode; configure the OV condition to set output line to '1' and CC condition to
reset the output line to '0'. See Table 17-3.

■ For right-aligned PWM, use the down counting mode; configure UN condition to reset output line to '0' and CC condition to
set the output line to '1'. See Table 17-3.

17.3.4.4 Kill Feature

The kill feature gives the ability to disable both output lines immediately. This event can be programmed to stop the counter by
modifying the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the counter control register, as shown in Table 17-7.

Table 17-7. Field Setting for Stop on Kill Feature

PWM_STOP_ON_KILL Field Comments

0 The kill trigger temporarily blocks the PWM output line but the counter is still running.

1 The kill trigger temporarily blocks the PWM output line and the counter is also stopped.

A B

BA

M

M

N

N

Switch event

reload event

period buffer

period

compare

compare buffer

Counter

A

0

Switch at TC condition
B

M

N

TC

CC

line_out

M

A

PWM, center aligned, buffered (software switch event)

counter_clock

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 185

Timer, Counter, and PWM

A kill event can be programmed to be asynchronous or synchronous, as shown in Table 17-8.

In the synchronous kill, PWM cannot be started before the next TC. To restart the PWM immediately after kill input is
removed, kill event should be asynchronous (see Table 17-8). The generated stop event disables both output lines. In this
case, the reload event can use the same trigger input signal but should be used in falling edge detection mode.

17.3.4.5 Configuring Counter for PWM Mode

The steps to configure the counter for the PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select PWM mode by writing '100' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 17-1.

4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC register and buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to con-
figure left-aligned, right-aligned, or center-aligned PWM, as shown in Table 17-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, Switch, and
Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, Switch, and
Count).

10. line_out and line_out_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC,
OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 171.

12. Enable the counter by writing '1' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter. A start trigger must be provided through firmware (TCPWM_CMD register) to start the counter if the hardware start
signal is not enabled.

Table 17-8. Field Setting for Synchronous/Asynchronous Kill

PWM_SYNC_KILL Field Comments

0 An asynchronous kill event lasts as long as it is present. This event requires pass through mode.

1
A synchronous kill event disables the output lines until the next TC event. This event requires rising
edge mode.

186 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

17.3.5 Pulse Width Modulation with Dead Time Mode

Dead time is used to delay the transitions of both ‘line_out’ and ‘line_out_compl’ signals. It separates the transition edges of
these two signals by a specified time interval. Two complementary output lines 'dt_line' and 'dt_line_compl' are derived from
these two lines. During the dead band period, both compare output and complement compare output are at logic ‘0’ for a fixed
period. The dead band feature allows the generation of two non-overlapping PWM pulses. A maximum dead time of 255
clocks can be generated using this feature.

17.3.5.1 Block Diagram

Figure 17-14. PWM-DT Mode Block Diagram

17.3.5.2 How It Works

The PWM operation with Dead Time mode occurs as fol-
lows:

■ On the rising edge of the PWM line_out, depending upon
UN, OV, and CC conditions, the dead time block sets the
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the
period configured in the register.

■ When the dead band period is complete, dt_line is set to
'1'.

■ On the falling edge of the PWM line_out depending upon
UN, OV, and CC conditions, the dead time block sets the
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the
period configured in the register.

■ When the dead band period has completed,
dt_line_compl is set to '1'.

■ A dead band period of zero has no effect on the dt_line
and is the same as line_out.

■ When the duration of the dead time equals or exceeds
the width of a pulse, the pulse is removed.

This mode follows PWM mode and supports the following
features available with that mode:

■ Various output alignment modes

■ Two complementary output lines, dt_line and
dt_line_compl, derived from PWM "line_out" and "line
_out_compl", respectively

❐ Stop/kill event with synchronous and asynchronous
modes

❐ Conditional switch event for compare and buffer
compare registers and period and buffer period reg-
isters

This mode does not support clock prescaling.

Figure 17-15 illustrates how the complementary output lines
"dt_line" and "dt_line_compl" are generated from the PWM
output line, "line_out".

PERIOD

COUNTER

COMPARE

 BUFFER COMPARE

==

Reload

Start

Stop

Switch

CC

TC

counter_clock

BUFFER PERIOD

PWM
dt_line

Count
Dead Time

dt_line_compl

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 187

Timer, Counter, and PWM

Figure 17-15. Timing Diagram for PWM, with and without Dead Time

17.3.5.3 Configuring Counter for PWM with Dead Time Mode

The steps to configure the counter for PWM with Dead Time mode of operation and the affected register bits are as follows:

1. Disable the counter by writing '0' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select PWM with Dead Time mode by writing '101' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required dead time by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in
Table 17-1.

4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to con-
figure left-aligned, right-aligned, or center-aligned PWM, as shown in Table 17-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required, as shown
in the “Pulse Width Modulation Mode” on page 182.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, Switch, and
Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, Switch, and
Count).

10. dt_line and dt_line_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC,
OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 171.

12. Enable the counter by writing '1' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter. A start trigger must be provided through firmware (TCPWM_CMD register) to start the counter if hardware start signal
is not enabled.

PWM, Deadtime insertion

line_out

Dead time duration : 0

dt_line

dt_line_compl

Deadtime duration :

dt_line

dt_line_compl

188 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

17.3.6 Pulse Width Modulation Pseudo-Random Mode

This mode uses the linear feedback shift register (LFSR). LFSR is a shift register whose input bit is a linear function of its pre-
vious state.

17.3.6.1 Block Diagram

Figure 17-16. PWM-PR Mode Block Diagram

17.3.6.2 How It Works

The counter register is used to implement LFSR with the polynomial: x16+x14+x13+x11+1, as shown in Figure 17-17. It gener-
ates all the numbers in the range [1, 0xFFFF] in a pseudo-random sequence. Note that the counter register should be initial-
ized with a non-zero value.

Figure 17-17. Pseudo-Random Sequence Generation using Counter Register

PERIOD

LFSR / COUNTER

COMPARE

 BUFFER COMPARE

==

reload

start

stop

switch

CC

TC

counter_clock

BUFFER PERIOD

<
line_out

0

1 0 0 0 0 000 01 1 1 111 1

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 189

Timer, Counter, and PWM

The following steps describe the process:

■ The PWM output line, ‘line_out’, is driven with '1' when
the lower 15-bit value of the counter register is smaller
than the value in the compare register (when coun-
ter[14:0] < compare[15:0]). A compare value of ‘0x8000’
or higher always results in a '1' on the PWM output line.
A compare value of ‘0’ always results in a '0' on the
PWM output line.

■ A reload event behaves similar to a start event; however,
it does not initialize the counter.

■ Terminal count is generated when the counter value
equals the period value. LFSR generates a predictable
pattern of counter values for a certain initial value. This
predictability can be used to calculate the counter value
after a certain amount of LFSR iterations ‘n’. This calcu-
lated counter value can be used as a period value and
the TC is generated after ‘n’ iterations.

■ At TC, a switch/capture event conditionally switches the
compare and period register pairs (based on the
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register).

■ A kill event can be programmed to stop the counter as
described in previous sections.

■ One shot mode can be configured by setting the
ONE_SHOT field of the counter control register. At ter-
minal count, the counter is stopped by hardware.

■ In this mode, underflow, overflow, and trigger condition
events do not occur.

■ CC condition occurs when the counter is running and its
value equals compare value. Figure 17-18 illustrates
pseudo-random noise behavior.

■ A compare value of 0x4000 results in 50 percent duty
cycle (only the lower 15 bits of the 16- bit counter are
used to compare with the compare register value).

Figure 17-18. Timing Diagram for Pseudo-Random PWM

A capture/switch input signal may switch the values between the compare and compare buffer registers and the period and
period buffer registers. This functionality can be used to modulate between two different compare values using a trigger input
signal to control the modulation.

Note Capture/switch input signal can only be triggered by an edge (rising, falling, or both). This input signal is remembered
until the next terminal count.

17.3.6.3 Configuring Counter for Pseudo-Random PWM Mode

The steps to configure the counter for pseudo-random PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit in COUNTER_ENABLED of the TCPWM_CTRL register.

2. Select pseudo-random PWM mode by writing '110' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required period (16 bit) in the TCPWM_CNT_PERIOD register and buffer period value in the
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values.

5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

6. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, and Switch).

7. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, and Switch).

8. line_out and line_out_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC,
OV, and UN conditions.

9. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 171.

10. Enable the counter by writing '1' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

Pseudo Random PWM

reload event

compare

period

counter

line_out

0x4000

0xACE1

0xACE1 0x5670 0xAB38 0x559C 0x2ACE 0x1567

counter_clock

190 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Timer, Counter, and PWM

17.4 TCPWM Registers

Note 'x' in the register name denotes the number of TCPWM. For example, the interrupt mask register for TCPWM0 is
TCPWM_CNT0_INTR_MASK.

Table 17-9. List of TCPWM Registers

Register Comment Features

TCPWM_CTRL TCPWM control register Enables the counter block

TCPWM_CMD TCPWM command register Generates software events

TCPWM_INTR_CAUSE TCPWM counter interrupt cause register Determines the source of the combined interrupt signal

TCPWM_CNTx_CTRL Counter control register
Configures counter mode, encoding modes, one shot mode,
switching, kill feature, dead time, clock prescaling, and counting
direction

TCPWM_CNTx_STATUS Counter status register
Reads the direction of counting, dead time duration, and clock
prescaling; checks if counter is running

TCPWM_CNTx_COUNTER Count register Contains the 16-bit counter value

TCPWM_CNTx_CC Counter compare/capture register
Captures the counter value or compares the value with the
counter value

TCPWM_CNTx_CC_BUFF Counter buffered compare/capture register Buffer register for counter CC register; switches compare value

TCPWM_CNTx_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNTx_PERIOD_BUFF Counter buffered period register Buffer register for counter period register; switches period value

TCPWM_CNTx_TR_CTRL0 Counter trigger control register 0 Selects trigger for specific counter events

TCPWM_CNTx_TR_CTRL1 Counter trigger control register 1 Determines edge detection for specific counter input signals

TCPWM_CNTx_TR_CTRL2 Counter trigger control register 2 Controls counter output lines upon CC, OV, and UN conditions

TCPWM_CNTx_INTR Interrupt request register Sets the register bit when TC or CC condition is detected

TCPWM_CNTx_INTR_SET Interrupt set request register Sets the corresponding bits in the interrupt request register

TCPWM_CNTx_INTR_MASK Interrupt mask register Mask for interrupt request register

TCPWM_CNTx_INTR_MASKED Interrupt masked request register Bit-wise AND of interrupt request and mask registers

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 191

Section F: Analog System

This section encompasses the following chapter:

■ Precision Reference chapter on page 193

■ SAR ADC chapter on page 197

■ Low-Power Comparator chapter on page 229

■ Continuous Time Block mini (CTBm) chapter on page 235

■ LCD Direct Drive chapter on page 243

■ CapSense chapter on page 255

■ Temperature Sensor chapter on page 265

Top Level Architecture

Analog System Block Diagram

SMX

2x OpAmp x1

CTBm

Programmable
Analog

x1

SAR
(12-bit)

Port Interface and Digital System
Interconnect (DSI)

I/O Pins (Analog, Digital, Special, ESD)

2x
 L

P
 C

om
pa

ra
to

r

C
ap

S
en

se

LC
D

Peripheral Interconnect (MMIO)

192 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Analog Routing Diagram
P

0[
7

]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]
P3[5]

P3[4]

P3[3]
P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]
P

2[
5]

P
2[

4]
P

2[
3]

P
2[

2]

P
2[

1]
P

2[
0]

P
1[

7]

P
1[

6]

P
1[

5]

P
1[

4]

P
1[

3]
P

1[
2]

P
1[

1]

P
1[

0]

P4[3]
P4[2]

P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x10
x

Port0 Port1 Port2

P
ort3

P
o

rt4
CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

Firmware Only

Firmware + DSI

Firmware + DSI +
SAR-Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out to DSI Comp out to DSI

vp
lu

s

vm
in

us

sarbus0
sarbus1

DSI Only

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 193

18. Precision Reference

PSoC® 4 has a precision reference block, which creates multiple reference bias voltages and currents for the whole chip. This
block is also responsible to provide temperature dependent references to the internal main oscillator (IMO) circuit and the
flash memory block for accurate IMO output frequency and error free flash read/write operations respectively, across temper-
ature range of the device.

18.1 Features

The precision reference block has following features:

■ Bandgap circuit to generate 1.024 V and 2.4 µA references

■ Trim buffer to generate different output voltage levels - 1.2 V, 1.024 V, and 0.8 V with input from the bandgap circuit

■ Multiple fast and slow low-power buffers, which not only enhance the drive capability of various reference outputs, but
also isolate noise from one another

■ Multiple fast and slow current mirror circuits

■ Temperature-dependent voltage reference for flash memory

■ Temperature-dependent current reference for the IMO

18.2 Block Diagram

Figure 18-1 illustrates the block diagram.

The precision reference is mainly composed of these blocks:

■ A precision bandgap block, which generates the precision voltage and current references

■ A trim buffer, which generates different output voltage references for various applications and trims the voltage magnitude
of 1.024-V output

■ A group of fast low-power buffers and slow low-power buffers, which not only enhance the drive capability of various refer-
ence outputs, but also isolate the noise from one another

■ A group of fast leaf cells and slow leaf cells, which create multiple copies of current references in fast and slow domains,
respectively

■ A temperature-controlled voltage generator block for the flash system

■ A temperature-controlled current source for the IMO

194 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Precision Reference

Figure 18-1. Voltage Reference Block Diagram

18.3 How it Works

The work principles of the main components are detailed in
this section.

18.3.1 Precision Bandgap

This circuit is the source of all the references generated by
the precision reference block. It provides the second order
curvature corrected 1.024-V voltage reference and 2.4-µA
current reference. The voltage reference is routed to the trim
buffer and the current reference is routed to the current mir-
ror circuits.

18.3.2 Trim Buffer

The trim buffer is an opamp network, which takes input from
the bandgap circuit and generates three different references
(1.2 V, 1.024 V, and 0.8 V). The references are tapped at the
resistor array in the feedback network, resulting in high out-
put impedance. This necessitates use of buffers to drive the
references.

18.3.3 Low-Power Buffers

PSoC 4 has multiple low-power buffers divided into two
groups - fast and slow. These buffers take input from the trim
buffer circuit and drive the destination blocks. The fast buffer
has the capability to reach within 1 percent of the final value
in 9 us. The slow buffer can reach within 40 us. Multiple buf-
fers ensure low reference-line capacitances, which in turn
reduces the settling time. Fast voltage buffers are used for
the references driven to the blocks that are crucial for sys-
tem startup. These include the IMO, flash, low dropout
(LDO) regulator, low voltage detect (LVD), and brownout
detect (BOD) circuit.

The output of the fast buffer is driven to the slow buffer. This
ensures that the extra loading due to the non-startup related
blocks are isolated from those driven by fast buffers. Slow
buffers drive function blocks, such as SAR ADC and
CapSense CSD.

Fast buffers are always enabled along with the bandgap
block; slow buffers can be individually enabled or disabled
by the user using the VREF_EN bits of the
PWR_BG_CONFIG register.

Precision
BandGap

Voltage
Generator

Current
Generator

1.024 V

…

…

GND

Resistor Divider

2.4 uA

Current
Mirrors - slow

Current
Mirrors - fast

0.8 V

1.024 V

Trim
Buffer

M
IR

R
O

R

M
IR

R
O

R
1.2 V

Temperature
Controlled Current

Generator

Temperature
Controlled Voltage

Generator

IMO

Flash
(VCTAT)

2.4 uA

2.4 uA

To Analog
Blocks

LVD

BOD, Flash

SAR

IMO, LDO

Slow Voltage Buffer/
Current Mirror

Fast Voltage Buffer/
Current Mirror

Voltage Buffers

2.4 uA

9.6 uA
(Trimmable)

Temperature
depended Voltage and

Current sources

CSD

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 195

Precision Reference

18.3.4 Current Mirrors

Current mirror circuits are used to generate multiple copies of 2.4 µA reference from the bandgap circuit. Similar to voltage
buffers, there are two types of current mirrors - fast and slow current mirrors. The fast current mirror circuit has a settling time
of 9 us to reach within 1 percent of the final value and slow current mirror can settle in 40 µs. The fast current mirrors are used
to provide bias to the fast voltage buffers. The slow current mirror outputs are used to drive the analog blocks such as SAR,
CTBm, CSD, and LPCOMP. Besides the 2.4-µA source current, a 3-µA sink current (fast), required by the flash block, is also
generated.

18.3.5 Temperature-Controlled Voltage Generator

The bias signal generated by this block controls the reference for flash memory, depending on the temperature. It receives
input from the precision bandgap block. The temperature-dependent voltage reference (VCTAT) compensates the pump volt-

age generated in the flash memory block required for proper read and write operations across the temperature range of the
device.

18.3.6 Temperature-Controlled Current Generator

This block generates the temperature dependent current reference for the IMO to maintain its clock frequency within ±2%
across the device operating temperature.

18.4 Configuration

During power-up, the precision reference block is initialized with default trim settings saved in the nonvolatile latch (NVL) and
SFLASH. These settings are programmed during manufacturing and no field adjustment is needed.

Table 18-1. Voltage References

Voltage References Buffer Speed Description

1.2 V Fast Reference to the LVD block

1.2 V Slow Reference to the CapSense block

1.024 V Fast Reference to the BOD block

1.024 V Fast Bias reference voltage to the flash block for flash read-out

1.024 V Slow Reference to the SAR ADC block

0.8 V Fast Comparator threshold for relaxation oscillator in the IMO

0.8 V Fast Reference to VCCD and VCCA regulators in the LDO block

VCTAT Fast Temperature dependent voltage reference for flash positive voltage (VPOS) pump

Table 18-2. Current References

Current References Buffer Speed Description

2.4 µA Fast Current reference for LCD drive, BOD, and blocks, and bias for fast voltage buffers

2.4 µA Slow
Current reference for analog blocks (SAR, CapSense, IDAC, LPCOMP, and CTBm) and bias
for slow voltage buffers

3.0 µA Fast Current reference for flash block

9.6 µA Fast Current reference for the IMO block with programmable temperature compensation

196 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Precision Reference

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 197

19. SAR ADC

The PSoC® 4 has one successive approximation register analog-to-digital converter (SAR ADC). The SAR ADC is designed
for applications that require moderate resolution and high data rate. It consists of the following blocks (see Figure 19-1):

■ SARMUX

■ SAR ADC core

■ SARREF

■ SARSEQ

The SAR ADC core is a fast 12-bit ADC with sampling rate of 1 Msps in PSoC 4200 and 806 Msps in PSoC 4100. Preceding
the SAR ADC is the SARMUX, which can route external pins and internal signals (AMUXBUS-A/-B, CTBm, temperature sen-
sor output) to the eight internal channels of SAR ADC. SARREF is used for multiple reference selection. The sequencer con-
troller SARSEQ is used to control SARMUX and SAR ADC to do an automatic scan on all enabled channels without CPU
intervention and for pre-processing, such as averaging the output data.

The ninth channel is an injection channel that is used for infrequent and incidental sampling of pins and signals, for example,
the internal temperature sensor.

The result from each channel is double-buffered and a complete scan may be configured to generate an interrupt at the end
of the scan. Alternatively, the data can be routed to programmable digital blocks (UDBs) for further processing without CPU
intervention. The sequencer may also be configured to flag overflow, collision, and saturation errors that can be configured to
assert an interrupt.

For more flexibility, it is also possible to control most analog switches, including those in the SARMUX with the UDBs. This
makes it possible to implement an alternative sequencer with the UDBs.

19.1 Features
■ Operates across the entire device power supply range

■ Maximum 1 Msps sample rate

■ Eight individually configurable channels and one injection channel

■ Each channel has the following features:

❐ Input from external pin (only for eight channels in single-ended mode and four channels in differential mode) or inter-
nal signal (AMUXBUS/CTBm/temperature sensor)

❐ Programmable acquisition times

❐ Selectable 8-, 10-, and 12-bit resolution

❐ Single-ended or differential measurement

❐ Averaging

❐ Results are double-buffered

❐ Result may be left or right aligned

■ Scan triggered by timer, pin, or UDB

❐ One shot–periodic or continuous mode

■ Hardware averaging support

❐ First order accumulate

❐ Samples averaging from 2 to 256 (powers of 2)

198 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

■ Results represented in 16-bit sign extended values

■ Selectable voltage references

❐ Internal VDDA and VDDA/2 references

❐ Internal 1.024-V reference with buffer

❐ External reference

■ Interrupt generation

❐ Finished scan conversion

❐ Saturation detect and over-range (configurable) detect for every channel

❐ Scan results overflow

❐ Collision detect

■ Configurable injection channel

❐ Can be interleaved between two scan sequences (tailgating)

❐ Selectable sample time, resolution, single-ended or differential, averaging

■ Option to process data in programmable digital blocks to off-load CPU

■ Option to control switches from programmable digital blocks

■ Option to control SAR ADC and switches from programmable digital blocks

❐ Implement an alternative SAR sequencer

❐ Able to achieve 1 Msps

■ Low-power modes

❐ ADC core and reference voltage have dedicated low power modes

19.2 Block Diagram

Figure 19-1. Block Diagram

AHB, DSI

SARADC

VPLUS

VMINUS

Sequencer

Configure
Registers

SARSEQ

SARREF

Vrefs Ref-bypassCTBm,
AMUXBUS

Data

Control

SARMUX
and TempPort with

SARMUX
connectivity

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 199

SAR ADC

19.3 How it Works

This section includes the following contents:

■ Introduction of each block: SAR ADC core, SARMUX,
SARREF, and SARSEQ

■ SAR ADC system resource: Interrupt, low-power mode,
and SAR ADC status

■ System operation modes

❐ Register mode

❐ DSI mode

■ Configuration examples

19.3.1 SAR ADC Core

PSoC 4 SAR ADC core is a 12-bit SAR ADC. The maximum
sample rate for this ADC is 1 Msps. The SAR ADC core has
the following features:

■ Fully differential architecture; also supports single-ended
mode

■ 12-bit resolution and a selectable alternate resolution:
either 8-bit or 10-bit

■ Programmable acquisition time

■ Programmable power mode (full, one-half, one-quarter)

■ Supports single and continuous conversion mode

19.3.1.1 Single-ended and Differential Mode

PSoC 4 SAR ADC can operate in single-ended and differen-
tial mode. It is designed in a fully differential architecture,
optimized to provide 12-bit accuracy in the differential mode
of operation. It gives full range output (0 to 4095) for differ-
ential inputs in the range of –VREF to +VREF. SAR ADC can

be configured in single-ended mode by fixing the negative
input. Differential or single-ended mode can be configured
by channel configuration register, SAR_CHANx_CONFIG.

The single-ended mode options of negative input include:
VSSA, VREF, or an external input from any of the eight pins

with SARMUX connectivity. See the device datasheet for the
pin details. This mode is configured by the global configura-
tion register SAR_CTRL. When Vminus is connected to
these SARMUX pins, the single-ended mode is equivalent
to differential mode. However, when the odd pin of each dif-
ferential pair is connected to the common alternate ground,
these conversions are 11-bit, because measured signal
value (SARMUX.vplus) cannot go below ground.

To get a single-ended conversion with 12 bits, it is neces-
sary to connect VREF to the negative input of the SAR ADC;

then, the input range can be from 0 to 2 × VREF.

Note that temperature sensor can only be used in single-
ended mode; it will override the SAR_CTRL [11:9] to 0. The
differential conversion is not available for temperature sen-
sors; the result is undefined.

19.3.1.2 Input Range

All inputs should be in the range of VSSA to VDDA. Input volt-

age range is also limited by VREF. If voltage on negative

input is Vn and the ADC reference is VREF, the range on the

positive input is Vn ± VREF. This criteria applies for both sin-

gle-ended and differential modes. In single-ended mode, Vn
is connected to VSSA, VREF or an external input.

Note that Vn ± VREF should be in the range of VSSA to VDDA.

For example, if negative input is connected to VSSA, the

range on the positive input is 0 to VREF, not –VREF to VREF.

This is because the signal cannot go below VSSA. Only half

of the ADC range is usable because the positive input signal
cannot swing below VSS, which effectively only generates

an 11-bit result.

19.3.1.3 Result Data Format

Result data format is configurable from two aspects:

■ Signed/unsigned

■ Left/right alignment

When the result is considered signed, the most significant
bit of the conversion is used for sign extension to 16 bits
with MSB. For an unsigned conversion, the result is zero
extended to 16-bits. It can be configured by
SAR_SAMPLE_CTRL [3:2] for differential and single-ended
conversion, respectively.

The sample value can either be right-aligned or left-aligned
within the 16 bits of the result register. By default, data is
right-aligned in data[11:0], with sign extension to 16 bits, if
required. A lower resolution combined with left-alignment
will cause lower significant bits to be made zero.

Combined with signed and unsigned, and left and right
alignment for 12-, 10-, and 8-bit conversion, the result data
format can be shown as follows.

Table 19-1. Result Data Format

Alignment
Signed/

Unsigned
Resolution

Result Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Right Unsigned

12 – – – – 11 10 9 8 7 6 5 4 3 2 1 0

10 – – – – – – 9 8 7 6 5 4 3 2 1 0

8 – – – – – – – – 7 6 5 4 3 2 1 0

200 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

19.3.1.4 Negative Input Selection

The negative input connection choice affects the voltage range, SNR, and effective resolution (Table 19-2). In single-ended
mode, negative input of the SAR ADC can be connected to VSSA, VREF, or any of the eight pins with SARMUX connectivity.

To get a single-ended conversion with 12-bits, it is necessary to connect VREF to the negative input of the SAR ADC; then, the
input range can be from 0 to 2 × VREF.

Note that single-ended conversions with Vminus connected to the pins with SARMUX connectivity are electrically equivalent
to differential mode. However, when the odd pin of each differential pair is connected to the common alternate ground, these
conversions are 11-bit, because measured signal value (SARMUX.vplus) cannot go below ground.

Right Signed

12 11 11 11 11 11 10 9 8 7 6 5 4 3 2 1 0

10 9 9 9 9 9 9 9 8 7 6 5 4 3 2 1 0

8 7 7 7 7 7 7 7 7 7 6 5 4 3 2 1 0

Left –

12 11 10 9 8 7 6 5 4 3 2 1 0 – – – –

10 9 8 7 6 5 4 3 2 1 0 – – – – – –

8 7 6 5 4 3 2 1 0 – – – – – – – –

Table 19-2. Negative Input Selection Comparison

Single-ended/
Differential

Signed/Unsigned
SARMUX
Vminus

SARMUX
 Vplus Range

Result Register Maximum SNR

Single-ended N/Aa

a. For single-ended mode with Vminus connected to VSSA, conversions are effectively 11-bit because voltages cannot swing below VSSA on any PSoC 4 pin.
Because of this, the global configuration bit SINGLE_ENDED_SIGNED (SAR_SAMPLE_CTRL[2]) will be ignored and the result is always (0x000-0x7FF).

VSSA
+VREF

VSSA = 0

0x7FF

0x000
Better

Single-ended Unsigned VREF

+2 × VREF

VREF

VSSA = 0

0xFFF

0x800

0

Good

Single-ended Signed VREF

+2 × VREF

VREF

VSSA = 0

0x7FF

0x000

0x800

Good

Single-ended Unsigned Vx

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Best

Single-ended Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

Best

Differential Unsigned Vx

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Best

Differential Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

Best

Table 19-1. Result Data Format

Alignment
Signed/

Unsigned
Resolution

Result Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 201

SAR ADC

19.3.1.5 Resolution

PSoC 4 supports 12-bit resolution (default) and a selectable alternate resolution: either 8-bit or 10-bit for each channel. Reso-
lution affects conversion time:

Conversion time (sar_clk) = resolution (bit) + 2

Total acquisition and conversion time (sar_clk) = acquisition time + resolution (bit) + 2

For 12-bit conversion and acquisition time = 4, 18 sar_clk is required. For example, if sar_clk is 18 MHz, 18 sar_clk is required
for conversion and you will get 1 Msps conversion rate. Lower resolution results in higher conversion rate.

19.3.1.6 Acquisition Time

Acquisition time is the time taken by sample and hold (S/H) circuit inside SAR ADC to settle. After acquisition time, the input
signal source is disconnected from the SARADC core, and the output of the S/H circuit will be used for conversion. Each
channel can select one from four acquisition time options, from 4 to 1023 SAR clock cycles defined in global configuration
registers SAR_SAMPLE_TIME01 and SAR_SAMPLE_TIME23.

Figure 19-2. Acquisition Time

The acquisition time should be sufficient to charge the internal hold capacitor of the ADC through the resistance of the routing
path, as shown in Figure 19-2. The recommended value of acquisition time is:

tACQ  9 × (RSRC + RSW2 + RSW1) × CSHOLD

Where:

CSHOLD ~= 10 pF

RSW2 + RSW1 = ~ 500 to 1000 ohms, depending on the routing path (See Analog Routing on page 202 for details).

RSRC = series resistance of the signal source

19.3.1.7 SAR ADC Clock

SAR ADC clock frequency must be between 1 MHz and 18 MHz for PSoC 4200 and 1 MHz to 14.5 MHz for PSoC 4100,
which comes from the HFCLK via a clock divider. Note that a fractional divider is not supported for SAR ADC. To get a 1-Msps
sample rate, an 18-MHz SAR ADC clock is required. To achieve this, the system clock (HFCLK) must be set to 36 MHz rather
than 48 MHz. To get a 806-ksps sample rate for the PSoC 4100 device, IMO must be set to 29 MHz. A 12-bit ADC conversion
with the minimum acquisition time of four clocks (at 18 MHz) requires 18 clocks in which to complete. A 10-bit and 8-bit con-
version requires 16 and 14 clocks respectively. Note that the minimum acquisition time of four clock cycles at 18 MHz is
based on the minimum acquisition time supported by the SAR block (RSW1 and CSHOLD in Figure 19-2), which is 194 ns.

+

-

DAC

SAR
Logic

RSW1RSW2

CSHOLD

SWACQ

DC

RSRC

Inside PSoC4

Signal
Source

Inside PSoC4

202 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

19.3.1.8 SAR ADC Timing

As Figure 19-3 shows, there is a sar_clk delay before raising start-of-conversion (SOC). A 12-bit resolution conversion needs
14 clocks (one bit needs one sar_clk, plus two excess sar_clk for G and F state). With acquisition time equal to four sar_clk
cycles by default, 18 clock sar_clk cycles are required for total ADC acquisition and conversion. After sample (acquisition), it
will output the next pulse (or dsi_sample_done). The SARMUX can route to another pin and signal; this will be done automat-
ically with sequencer control (see SARSEQ on page 210 for details).

Figure 19-3. SAR ADC Timing

19.3.2 SARMUX

SARMUX is an analog dedicated programmable multiplexer. The main features of SARMUX are:

■ Switch on resistance: 600  (maximum)

■ Internal temperature sensor

■ Controlled by sequencer controller block (SARSEQ) or UDBs

■ Charge pump inside:

❐ If VDDA < 4.0 V, charge pump should be turned on to reduce switch resistance

❐ If VDDA  4.0 V, charge pump is turned off and delivers VDDA as its output

■ Multiple inputs:

❐ Analog signals from pins (port 2)

❐ Temperature sensor output

❐ CTBm output via sarbus0/1 (not fast enough to sample at 1 Msps)

❐ AMUXBUS_A/B (not fast enough to sample at 1 Msps)

19.3.2.1 Analog Routing

SARMUX has many switches that may be controlled by SARSEQ block (sequencer controller) or the DSI. Sequencer and DSI
are the hardware control method, which can be masked by the hardware control bit in the register,
SAR_MUX_SWITCH_HW_CTRL. Different control methods have different control capability on the switches. See
Figure 19-4.

F FSAMPLE SAMPLES1S2S3S4S5S6S7S8S9S10S11S12 S1S2S3S4S5S6

SOC

Data Data

S7S8S9S10G S11S12G* SAMPLE

SARADC CLK

DSI trigger

sample

State

EOC

Next

Data_out

18 sar_clk cycles

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 203

SAR ADC

Figure 19-4. SARMUX Switches and Control Capability

Sequencer control: The switches are controlled by the sequencer in SARSEQ block. After configuring each channel's ana-
log routing, it enables multi-channel automatic scan in a round-robin fashion, without CPU intervention. Not every switch can
be controlled by the sequencer; see Figure 19-4. The corresponding registers are: SAR_CHANx_CONFIG,
SAR_MUX_SWITCH0, SAR_CTRL, and SAR_MUX_SWITCH_HW_CTRL. The detailed configuration is available in register
mode; see Firmware Analog Routing on page 221.

Firmware control: Programmable registers directly define the VPLUS/VMINUS connection. It can control every switch in
SARMUX; see Figure 19-4. For example, in firmware control, it is possible to do a differential measurement between any two
pins or signals, not just two adjacent pins (as in sequencer control). However, it needs CPU intervention for multi-channel
acquisition. The corresponding registers are: SAR_MUX_SWITCH0, SAR_MUX_SWITCH_HW_CTRL. and SAR_CTRL. The
detailed configuration is available in register mode; see Firmware Analog Routing on page 221.

DSI control: Switches are controlled by DSI signals from the UDB, which can act as a secondary sequencer with a custom-
ized logic design. DSI can control most switches. Thus, it can do a differential measurement between any two pins and sig-
nals and firmware control. The detailed configuration is available in DSI mode; see SARMUX Analog Routing on page 217.

19.3.2.2 Analog Interconnection

PSoC 4 analog interconnection is very flexible. SAR ADC can be connected to multiple inputs via SARMUX, including both
external pins and internal signals. For example, it can connect to a neighboring block such as CTBm. It can also connect to
other pins except port 2 through AMUXBUS_A/B, at the expense of scanning performance (more parasitic coupling, longer
RC time to settle).

Several cases are discussed here to provide a better understanding of analog interconnection.

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]

P3[5]

P3[4]

P3[3]

P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]

P
2[

5]

P
2[

4]

P
2[

3]

P
2[

2]

P
2[

1]

P
2[

0]

P
1[

7]

P
1[

6]

P
1[

5]
P

1[
4]

P
1[

3]

P
1[

2]

P
1[

1]

P
1[

0]

P4[3]

P4[2]

P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x10
x

Port0 Port1 Port2

P
ort3

P
o

rt4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

C
A

P
S

E
N

S
E

Firmware Only

Firmware + DSI

Firmware + DSI +
SAR-Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out to DSI Comp out to DSI

vp
lu

s

vm
in

u
s

sarbus0
sarbus1

204 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

Input from External Pins

Figure 19-5 shows how two GPIOs that support SARMUX are connected to SAR ADC as a differential pair (Vpuls/Vminus) via
switches. These two switches can be controlled by sequencer, firmware, or DSI. The pins are arranged in adjacent pairs; for
example, in SARMUX port P2[0] and P2[1], P2[2] and P2[3], and so on. If you need to use pins that are not paired as a differ-
ential pair, such as P2[1] and P2[2], the sequencer does not work; use firmware or DSI.

Figure 19-5. Input from External Pins

P
0[

7]
P

0[
6]

P
0[

5]

P
0[

4]

P
0[

3]

P
0[

2]

P
0[

1]

P
0[

0]

P3[7]

P3[6]

P3[5]

P3[4]

P3[3]

P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]

P
2[

5]

P
2[

4]

P
2[

3]
P

2[
2]

P
2[

1]

P
2[

0]

P
1[

7]

P
1[

6]

P
1[

5]

P
1[

4]

P
1[

3]

P
1[

2]
P

1[
1]

P
1[

0]

P4[3]

P4[2]

P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x10
x

Port0 Port1 Port2

P
ort3

P
ort4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

Comp out to DSI Comp out to DSI

vp
lu

s

vm
in

u
s

sarbus0
sarbus1

Switch Closed

Switch Sequenced/Controlled from FW/UDB

Switch Open or don’t care

Legend

Analog route used

Analog route not used

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 205

SAR ADC

Input from Analog Bus (AMUXBUS_A/B)

Figure 19-6 shows how two pins that do not support SARMUX connectivity are connected to ADC as a differential pair. Addi-
tional switches must connect these to two pins: AMUXBUS_A and AMUX-BUS_B, and then connect AMUXBUS_A and
AMUXBUS_B to ADC.

The additional switches reduce the scanning performance (more parasitic coupling, longer RC time to settle) – it is not fast
enough to sample at 1 Msps. This is not recommended for external signals; the dedicated SARMUX port should be used, if
possible.

Figure 19-6. Input from Analog Bus

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]

P3[5]
P3[4]

P3[3]

P3[2]
P3[1]

P3[0]

P
2[

7]

P
2[

6]

P
2[

5]

P
2[

4]

P
2[

3]
P

2[
2]

P
2[

1]
P

2[
0]

P
1[

7]
P

1[
6]

P
1[

5]

P
1[

4]
P

1[
3]

P
1[

2]
P

1[
1]

P
1[

0]

P4[3]

P4[2]
P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x10
x

Port0 Port1 Port2

P
ort3

P
o

rt4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

Comp out to DSI Comp out to DSI

vp
lu

s

vm
in

us

sarbus0
sarbus1

Switch Closed

Switch Sequenced/Controlled from FW/UDB

Switch Open or don’t care

Legend

Analog route used

Analog route not used

206 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

Input from CTBm Output via sarbus

SAR ADC can be connected to CTBm output via sarbus 0/1. Figure 19-7 shows how to connect an opamp (configured as a
follower) output to a single-ended SAR ADC. Negative terminal is connected to VREF. Figure 19-8 shows how to connect two

opamp outputs to SAR ADC as a differential pair. It must connect opamp output to sarbus 0/1, then connect SAR ADC input to
sarbus 0/1. Because there are also additional switches, it is not fast enough to sample at 1 Msps. However, the on-chip
opamps add value for many applications.

Figure 19-7. Input from CTBm Output via sarbus

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]

P3[5]
P3[4]

P3[3]

P3[2]
P3[1]

P3[0]

P
2[

7]

P
2[

6]

P
2[

5]

P
2[

4]

P
2[

3]
P

2[
2]

P
2[

1]
P

2[
0]

P
1[

7]
P

1[
6]

P
1[

5]

P
1[

4]
P

1[
3]

P
1[

2]
P

1[
1]

P
1[

0]

P4[3]

P4[2]
P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x10
x

Port0 Port1 Port2

P
ort3

P
o

rt4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

Comp out to DSI Comp out to DSI

vp
lu

s

vm
in

us

sarbus0
sarbus1

Switch Closed

Switch Sequenced/Controlled from FW/UDB

Switch Open or don’t care

Legend

Analog route used

Analog route not used

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 207

SAR ADC

Figure 19-8. Inputs from CTBm Output via sarbus0 and sarbus1

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]

P3[5]
P3[4]

P3[3]
P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]

P
2[

5]
P

2[
4]

P
2[

3]
P

2[
2]

P
2[

1]

P
2[

0]

P
1[

7]
P

1[
6]

P
1[

5]

P
1[

4]
P

1[
3]

P
1[

2]
P

1[
1]

P
1[

0]

P4[3]
P4[2]

P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x10
x

Port0 Port1 Port2

P
ort3

P
o

rt4
CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

Comp out to DSI Comp out to DSI

vp
lu

s

vm
in

u
s

sarbus0
sarbus1

Switch Closed

Switch Sequenced/Controlled from FW/UDB

Switch Open or don’t care

Legend

Analog route used

Analog route not used

208 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

Input from Temperature Sensor

One on-chip temperature sensor is available for temperature sensing and temperature-based calibration. Note for tempera-
ture sensor, differential conversions are not available (conversion result is undefined), thus always use it in singled-ended
mode.

As Figure 19-9 shows, temperature sensor can be routed to positive input of SAR ADC via switch, which can be controlled by
sequencer, firmware, or DSI. Setting the MUX_FW_TEMP_VPLUS bit (SAR_MUX_SWITCH0[17]) can enable the tempera-
ture sensor and connect its output to VPLUS of SAR ADC; clearing this bit will disable temperature sensor by cutting its bias
current.

Figure 19-9. Inputs from Temperature Sensor

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]

P3[5]
P3[4]

P3[3]

P3[2]
P3[1]

P3[0]

P
2[

7]

P
2[

6]

P
2[

5]

P
2[

4]

P
2[

3]
P

2[
2]

P
2[

1]
P

2[
0]

P
1[

7]
P

1[
6]

P
1[

5]

P
1[

4]
P

1[
3]

P
1[

2]
P

1[
1]

P
1[

0]

P4[3]

P4[2]
P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x10
x

Port0 Port1 Port2

P
ort3

P
o

rt4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

Comp out to DSI Comp out to DSI

vp
lu

s

vm
in

us

sarbus0
sarbus1

Switch Closed

Switch Sequenced/Controlled from FW/UDB

Switch Open or don’t care

Legend

Analog route used

Analog route not used

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 209

SAR ADC

19.3.3 SARREF

The main features of SARREF are:

■ Reference options: VDDA, VDDA/2, 1.024-V bandgap (±1 percent), external reference

■ Reference buffer + bypass cap to enhance internal reference drive capability

Figure 19-10. SARREF Block Diagram

19.3.3.1 Reference Options

The reference voltage selection for the SAR ADC consists of a reference mux and switches inside the SARREF. The selec-
tion allows connecting VDDA, VDDA/2, and 1.024-V internal reference from a bandgap or an external VREF connected to an Ext

Vref/SAR bypass pin (see the device datasheet for details). The control for the reference mux in SARREF is in the global con-
figuration register SAR_CTRL [6:4].

19.3.3.2 Bypass Capacitors

The internal references, 1.024 V from bandgap or VDDA/2 are buffered with the reference buffer. This reference may be
routed to the Ext Vref/SAR bypass pin where an external capacitor can be used to filter internal noise that may exist on the
reference signal. The SAR ADC sample rate is limited to 100 ksps (at 12-bit) without an external reference bypass capacitor.
For example, without a bypass capacitor and with 1.024-V internal VREF, the maximum SAR ADC clock frequency is 1.6 MHz.
When using an external reference, it is recommended that an external capacitor is used. Bypass capacitors can be enabled
by setting SAR_CTRL [7]. Table 19-3 lists different reference modes and its maximum frequency/sample rate for 12-bit con-
tinuous mode operation.

1.024-V internal VREF startup time varies with the different bypass capacitor size, Table 19-4 lists two common values for the
bypass capacitor and its startup time specification. If reference selection is changed between scans or when scanning after
Sleep/Deep-Sleep, make sure the 1.024-V internal VREF is settled when SAR ADC starts sampling. The worst case settling
time (when VREF is completely discharged) is the same as the startup time.

Table 19-3. Reference Modes

Reference Mode
Reference

SAR_CTRL [6:4]
Bypass Cap

SAR_CTRL[7]
Buffer

Max
Frequency

Max Sample
Rate (12-bit)

1.024 V internal VREF without bypass cap 4 0 Yes 1.6 MHz 100 ksps

1.024 V internal VREF with bypass cap 4 1 Yes 18 MHz 1 Msps

External VREF (low-impedance path) 5 X No 18 MHz 1 Msps

VDDA/2 without bypass cap 6 0 Yes 1.6 MHz 100 ksps

VDDA/2 with bypass cap 6 1 Yes 18 MHz 1 Msps

VDDA 7 X No 9 MHz 500 ksps

Table 19-4. Bypass Capacitor Values

Internal VREF Startup Time Maximum Specification

Startup time for reference with external capacitor (1 uF) 2 ms

Startup time for reference with external capacitor (100 nF) 200 µs

S
A

R
R

E
F

M
U

X

Reference
 buffer

Vref_ext /
bypass cap

VDD

VDD/2B
an

d
g

ap

Internal 1.024V Vref

SARREF

Vref for
SAR ADC

core

210 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

19.3.3.3 Input Range versus Reference

All inputs should be between VSSA and VDDA. The ADCs

input range is limited by VREF selection. If negative input is

Vn and the ADC reference is VREF, the range on the positive

input is Vn ± VREF. This criteria applies for both single-ended

and differential modes as long as both negative and positive
inputs stay within VSSA to VDDA.

19.3.4 SARSEQ

SARSEQ is a dedicated sequencer controller that automati-
cally sequences the input mux from one channel to the next
while placing the result in an array of registers, one per
channel.

■ Control SARMUX analog routing automatically without
CPU intervention

■ Control SAR ADC core (such as resolution, acquisition
time, and reference)

■ Receive data from SAR ADC and pre-process (average,
range detect)

■ Results are double-buffered so the CPU can safely read
the results of the last scan while the next scan is in prog-
ress.

The features of SARSEQ are:

■ Eight channels can be individually enabled as an auto-
matic scan without CPU intervention

■ A ninth channel (injection channel) for infrequent signal
to insert in an automatic scan

■ Each channel has the following features:

❐ Single-ended or differential mode

❐ Input from external pin (only for eight channels in
single-ended mode and four channels in differential
mode) or internal signal (AMUXBUS/CTBm/
temperature sensor)

❐ Up to four programmable acquisition time

❐ Default 12-bit resolution, selectable alternate resolu-
tion: either 8-bit or 10-bit

❐ Result averaging

■ Scan triggering

❐ One shot, periodic, or continuous mode

❐ Triggered by any digital signal or input from GPIO pin

❐ Triggered by internal UDB of fixed-function block

❐ Software triggered

■ Hardware averaging support

❐ First order accumulate

❐ From 2 to 256 samples averaging (powers of 2)

❐ Results in 16-bit representation

■ Double buffering of output data

❐ Left or right adjusted results

❐ Results in working register and result register

■ Interrupt generation

❐ Finished scan conversion

❐ Channel saturation detect in all control modes

❐ Over range (configurable) detect for every channel

❐ Scan results overflow

❐ Collision detect

■ Configurable injection channel

❐ Can be interleaved between two scan sequences
(tailgating)

❐ Selectable sample time, resolution, single ended, or
differential, averaging

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 211

SAR ADC

Figure 19-11. SARSEQ Block Diagram

19.3.4.1 Averaging

The SARSEQ block has a 20-bit accumulator and shift reg-
ister to implement averaging. Averaging is after signed
extension. The global configuration SAR_SAMPLE_CTRL
register specifies the details of averaging.

In register control mode, channel configuration
SAR_CHAN_CONFIG register has an enable bit (AVG_EN)
to enable averaging. In DSI control mode, average is
enabled by dsi_cfg_average signal.

In global configuration, AVG_CNT (SAR_SMAPLE_CTRL
[6:4]) specifies the number of samples (N) according to this
formula:

N=2^(AVG_CNT+1) N range = [2..256]

For example, if AVG_CNT (SAR_SMAPLE_CTRL [6:4]) = 3,
then N = 16.

AVG_SHIFT bit (SAR_SAMPLE_CTRL[7]) is used to shift
the result to get averaged; it should be set if averaging is
enabled.

If a channel is configured for averaging, the SARSEQ will
take N consecutive samples of the specified channel in
every scan. Because the conversion result is 12-bit and the
maximum value of N is 256 (left shift 8 bits), the 20-bit accu-
mulator will never overflow.

If AVG_SHIFT in SAR_SAMPLE_CTRL register is set, SAR
sequencer performs sign extension and then accumulation.

The accumulated result is shifted right AVG_CNT + 1 bits to
get averaged. If it is not, the result is forced to shift right to
ensure it fits in 16 bits. Right shift is done by maximum (0,
AVG_CNT-3) – if the number of samples is more than 16
(AVG_CNT >3), then the accumulation result is shifted right
AVG_CNT-3bits; it AVG_CNT<3, the result is not shifted.
Note in this case, the average result is bigger than
expected; it is recommended to set AVG_SHIFT. This mode
always uses the selected resolution of ADC (12, 10, or 8
bits).

19.3.4.2 Range Detection

The SARSEQ supports range detection to allow automatic
detection of result values compared to two programmable
thresholds without CPU involvement. Range detection is
defined by the SAR_RANGE_THRES register. The
RANGE_LOW field (SAR_RANGE_THRES [15:0]) value
defines the lower threshold and RANGE_HIGH field
(SAR_RANGE_THRES [31:16]) defines the upper threshold
of the range.

The SAR_RANGE_COND bits define the condition that trig-
gers a channel maskable range detect interrupt
(RANGE_INTR). The following conditions can be selected:

0: result < RANGE_LOW (below range)

1: RANGE_LOW  result < RANGE_HIGH (inside range)

2: RANGE_HIGH  result (above range)

Sequencer logic
& state machine

CHAN_RESULT0

CHAN_RESULT7

INJ_CHAN_RESULT

STATUS

RANGE_COND

RANGE_THRES

S
A

R
M

U
X

P
o

rt
 w

it
h

 S
A

R
M

U
X

co

n
n

ec
ti

vi
ty

?
?

?

AMUXBUS_A/_B

sarbus 0/1

Temperature Sensor

Accumulate/Average
/Align/Sign extended

INTR_MASK

INTR

SARADC

Saturation
Detect

<
=
>

s
ar

_
d

si
_d

a
ta

[]

AHB BUS interface
SARSEQ

saturate_intr

ra
n

g
e_

in
tr

eo
s

/c
o

lli
si

o
n

/o
ve

rf
lo

w
_i

n
tr

s
ar

_
in

te
rr

u
p

t

?
?
?

VPLUS

VMINUS

D
S

I i
n

p
u

t
fr

o
m

 U
D

B

D
S

I o
u

tp
u

t
to

 U
D

B

Configuration
Registers

Result Registers

SARREF

Reference Voltage Pin

212 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

3: result <RANGE_LOW || RANGE_HIGH <= result (outside
range)

See Range Detection Interrupts on page 213 for details.

19.3.4.3 Double Buffer

Double buffering is used so that firmware can read the
results of a complete scan while the next scan is in prog-
ress. The SAR ADC results are written to a set of working
registers until the scan is complete, at which time the data is
copied to a second set of registers where the data can be
read by the user's application. This action allows sufficient
time for the firmware to read the previous scan before the
present scan is completed. All input channels are double
buffered with 16 registers, except the injection channel. The
injection channel is not required to be doubled buffered
because it is not normally part of a normal channel scan.

19.3.4.4 Injection Channel

The conversions for the injection channel can be configured
in the same way as the regular channels by setting
SAR_INJ_CHAN_CONFIG register, it supports:

■ Pin or signal selection

■ Single-ended or differential selection

■ Choice of resolution between 12-bit or the globally spec-
ified SUB_RESOLUTION

■ Sample time select from one of the four globally speci-
fied sample times

■ Averaging select

It supports the same interrupts as the regular channel
except the overflow interrupt.

■ Maskable end-of-conversion interrupt INJ_EOC_INTR

■ Maskable range detect interrupt INJ_RANGE_INTR

■ Maskable saturation detect interrupt
INJ_SATURATE_INTR

■ Maskable collision interrupt INJ_COLLISION_INTR

SAR_INTR, SAR_INTR_MASK, SAR_INTR_MASKED, and
SAR_INTR_SET are the corresponding registers.

These features are described in detail in Global SARSEQ
Configuration on page 218, Channel Configurations on
page 218, and Interrupt on page 212.

Tailgating

The injection channel conversion can be triggered by setting
the start or enable bit INJ_START_EN
(SAR_INJ_CHAN_CONFIG [31]). It is recommended to
select tailgating by setting INJ_TAILGATING=1
(SAR_INJ_CHAN_CONFIG [30]). The injection channel will
be scanned at the end of the ongoing scan of regular chan-
nels without any collision. However, if there is no ongoing
scan or the SAR ADC is idle, INJ_START_EN will enable
the injection channel to be scanned at the end of the next
scan of regular channels.

After completing the conversion for the injection channel, the end-of conversion interrupt (INJ_EOC_INTR) is set and the
INJ_START_EN bit is cleared. The conversion data of the injection is put in the SAR_INJ_RESULT register. Similar to the
SAR_CHAN_RESULT, the registers contain mirror bits for "valid" (=INJ_EOC_INTR), range detect, saturation detect interrupt,
and a mirror bit of the collision interrupt (INJ_COLLISSION_INTR).

19.3.5 Interrupt

An interrupt can be generated on different events:

■ End of Scan – When scanning is complete for all the
enabled channels.

■ Overflow – When the result register is updated before
the previous result is read.

■ Collision – When a new trigger is received while the SAR
ADC is still processing the previous trigger.

■ Injection End of Conversion – When the injection chan-
nel is converted.

■ Range Detection – When the channel result meets the
threshold value.

■ Saturation Detection – When the channel result is equal
to the minimum or maximum value of the set resolution.

This section describes each interrupt in detail. These inter-
rupts have an interrupt mask in the SAR_INTR_MASK regis-
ter. By making the interrupt mask low, the corresponding
interrupt source is ignored. The SAR interrupt is generated if

the interrupt mask bit is high and the corresponding interrupt
source is pending.

When servicing an interrupt, the interrupt service routine
(ISR) clears the interrupt source by writing a ‘1’ to the inter-
rupt bit after reading the data.

The SAR_INTR_MASKED register is the logical AND
between the interrupts sources and the interrupt mask. This
register provides a convenient way for the firmware to deter-
mine the source of the interrupt.

For verification and debug purposes, a set bit (such as
EOS_SET in the SAR_INTR_SET register) is used to trigger
each interrupt. This action allows the firmware to generate
an interrupt without the actual event occurring.

19.3.5.1 End-of-Scan Interrupt (EOS_INTR)

After completing a scan, the end-of-scan interrupt
(EOS_INTR) is raised. Firmware should clear this interrupt
after picking up the data from the RESULT registers.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 213

SAR ADC

Optionally, the EOS_INTR can also be sent out on the DSI
bus by setting the EOS_DSI_OUT_EN bit in
SAR_SAMPLE_CTRL [31]. The EOS_INTR signal is main-
tained on the DSI bus for two system clock cycles. These
cycles coincide with the data_valid signal for the last chan-
nel of the scan (if selected).

EOS_INTR can be masked by making the EOS_MASK bit 0
in the SAR_INTR_MASK register. EOS_MASKED bit of the
SAR_INTR_MASKED register is the logic AND of the inter-
rupt flags and the interrupt masks. Writing a ‘1’ to EOS_SET
bit in SAR_INTR_SET register can set the EOS_INTR,
which is intended for debug and verification.

19.3.5.2 Overflow Interrupt

If a new scan completes and the hardware tries to set the
EOS_INTR and EOS_INTR is still high (firmware does not
clear it fast enough), then an overflow interrupt
(OVERFLOW_INTR) is generated by the hardware. This
usually means that the firmware is unable to read the previ-
ous results before the current scan completes. In this case,
the old data is overwritten.

OVERFLOW_INTR can be masked by making the
OVERFLOW_MASK bit 0 in SAR_INTR_MASK register.
OVERFLOW_MASKED bit of SAR_INTR_MASKED register
is the logic AND of the interrupt flags and the interrupt
masks, which is for firmware convenience. Writing a ‘1’ to
the OVERFLOW_SET bit in SAR_INTR_SET register can
set OVERFLOW_INTR, which is intended for debug and
verification.

19.3.5.3 Collision Interrupt

It is possible that a new trigger is generated while the
SARSEQ is still busy with the scan started by the previous
trigger. Therefore, the scan for the new trigger is delayed
until after the ongoing scan is completed. It is important to
notify the firmware that the new sample is invalid. This is
done through the collision interrupt, which is raised any time
a new trigger, other than the continuous trigger, is received.

There are two collision interrupts: for the DSI trigger
(DSI_COLLISION_INTR), and for the injection channel
(INJ_COLLISION_INTR). These interrupts allow the firm-
ware to identify which trigger collided with an ongoing scan.

When the DSI trigger is used in level mode, the
DSI_COLLISION_INTR will never be set.

The three collision interrupts can be masked by making the
corresponding bit ‘0’ in the SAR_INTR_MASK register. The
corresponding bit in the SAR_INTR_MASKED register is the
logic AND of the interrupt flags and the interrupt masks.
Writing a ‘1’ to the corresponding bit in SAR_INTR_SET reg-
ister can set the collision interrupt, which is intended for
debug and verification.

19.3.5.4 Injection End-of-Conversion Interrupt
(INJ_EOC_INTR)

After completing a conversion for the injection channel, the
injection end-of-conversion interrupt is raised
(INJ_EOC_INTR). The firmware clears this interrupt after
picking up the data from the INJ_RESULT register.

Note that if the injection channel is tailgating a scan, the
EOS_INTR is raised in parallel to starting the injection chan-
nel conversion. The injection channel is not considered part
of the scan.

INJ_EOC_INTR can be masked by making the
INJ_EOC_MASK bit ‘0’ in the SAR_INTR_MASK register.
The INJ_EOC_MASKED bit of SAR_INTR_MASKED regis-
ter is the logic AND of the interrupt flags and the interrupt
masks. Writing a ‘1’ to the INJ_EOC_SET bit in
SAR_INTR_SET register can set INJ_EOC_INTR, which is
intended for debug and verification.

19.3.5.5 Range Detection Interrupts

Range detection interrupt flag can be set after averaging,
alignment, and sign extension (if applicable). This means it
is not required to wait for the entire scan to complete to
determine whether a channel conversion is over-range. The
threshold values need to have the same data format as the
result data.

Range detection interrupt for a specified channel can be
masked by setting the SAR_RANGE_INTR_MASK register
specified bit to ‘0’. Register SAR_RANGE_INTR_MASKED
reflects a bitwise AND between the interrupt request and
mask registers. If the value is not zero, then the SAR inter-
rupt signal to the NVIC is high.

SAR_RANGE_INTR_SET can be used for debug/verifica-
tion. Write a '1' to set the corresponding bit in the interrupt
request register; when read, this register reflects the inter-
rupt request register.

There is a range detect interrupt for each channel
(RANGE_INTR and INJ_RANGE_INTR).

19.3.5.6 Saturate Detection Interrupts

The saturation detection is always applied to every conver-
sion. This feature detects if a sample value is equal to the
minimum or maximum value for the specific resolution and
sets a maskable interrupt flag for the corresponding chan-
nel. This action allows the firmware to take action, such as
discarding the result, when the SAR ADC saturates. The
sample value is tested right after conversion, before averag-
ing. This means that the interrupt is set while the averaged
result in the data register is not equal to the minimum or
maximum.

When a 10-bit or 8-bit resolution is selected for the channel,
saturate detection is done on 10-bit or 8-bit data.

214 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

Saturation interrupt flag is set immediately to enable a fast
response to saturation, before the full scan and averaging.
Saturation detection interrupt for specified channel can be
masked by setting the SAR_SATURATE_INTR_MASK reg-
ister specified bit to ‘0’. SAR_SATURATE_INTR_MASKED
register reflects a bit-wise AND between the interrupt
request and mask registers. If the value is not zero, then the
SAR interrupt signal to the NVIC is high.

SAR_SARTURATE_INTR_SET can be used for debug/veri-
fication. Write a '1' to set the corresponding bit in the inter-
rupt request register; when read, this register reflects the
interrupt request register.

19.3.5.7 Interrupt Cause Overview

INTR_CAUSE register contains an overview of all the pend-
ing SAR interrupts. It allows the ISR to determine the cause
of the interrupt. The register consists of a mirror copy of
SAR_INTR_MASKED. In addition, it has two bits that aggre-
gate the range and saturate detection interrupts of all chan-
nels. It includes a logical OR of all the bits in
RANGE_INTR_MASKED and SATURATE_INTR_MASKED
registers (does not include INJ_RANGE_INTR and
INJ_SATURATE_INTR).

19.3.6 Trigger

The two possible ways to trigger a scan are:

■ A periodic trigger comes in over the DSI connections
(dsi_trigger). This trigger is connected to the output of a
TCPWM; however, it can also be connected to any GPIO
pin or a UDB. The UDB can implement a state machine
looking for a certain sequence of events.

■ A continuous trigger is activated by setting the CONTIN-
UOUS bit in SAR_SAMPLE_CTRL register. In this
mode, after completing a scan the SARSEQ starts the
next scan immediately; therefore, the SARSEQ is
always BUSY. As a result, all other triggers are essen-
tially ignored.

The two triggers are mutually exclusive, although there is no
hardware requirement. When a DSI trigger coincides with a
continuous trigger, both triggers are effectively handled at

the same time (a collision interrupt may be set for the DSI
trigger).

For continuous trigger, it takes only one SAR ADC clock
cycle before the sequencer tells the SAR ADC to start sam-
pling (provided the sequencer is idle). For the DSI trigger, it
depends on the trigger configuration setting.

19.3.6.1 DSI Trigger Configuration

■ DSI Synchronization

The DSI interface of SARSEQ runs at the system clock fre-
quency (clk_sys); see Clocking System chapter on page 61
for details. If the incoming DSI trigger signal is not synchro-
nous to the AHB clock, the signal needs to be synchronized
by double flopping it (default). However, if the DSI trigger
signal is already synchronized with the AHB clock, then
these two flops can be bypassed. The configuration bit,
DSI_SYNC_TRIGGER in the SAR_SAMPLE_CTRL regis-
ter, controls the double flop bypass. DSI_SYNC_TRIGGER
affects the trigger width (TW) and trigger interval (TI)
requirement of the DSI pulse trigger signal.

■ DSI Trigger Level

The DSI trigger can either be a pulse or a level; this is indi-
cated by the configuration bit, DSI_TRIGGER_LEVEL in the
SAR_SAMPLE_CTRL register. If it is a level, then the SAR
starts new scans for as long as the DSI trigger signal
remains high. When the DSI trigger signal is a pulse input, a
positive edge detected on the DSI trigger signal triggers a
new scan.

■ Transmission Time

After the 'dsi_trigger' is raised, it takes some transmission
time before the SAR ADC is told to start sampling. With dif-
ferent DSI_SYNC_TRIGGER and DSI_TRIGGER_LEVEL
configuration, the transmission time is different; Table 19-5
shows the maximum time. Two trigger pulse intervals should
be longer than the transmission time, otherwise, the second
trigger is ignored.

When the SAR is disabled (ENABLED=0), the DSI trigger is
ignored.

Table 19-5. DSI Trigger Maximum Time

Maximum DSI_TRIGGER Transmission Time
Bypass Sync

DSI_SYNC_TRIGGER=0
Enable Sync

DSI_SYNC_TRIGGER=1 (by default)

Pulse trigger: DSI_TRIGGER_LEVEL=0 (by default) 1 clk_sys+2 clk_sar 3 clk_sys+2 clk_sar

Level Trigger: DSI_TRIGGER_LEVEL=1 2 clk_sar 2 clk_sys+2 clk_sar

Table 19-6. Trigger Signal Requirement

Trigger Specification Requirement

Trigger Width (TW)
TW should be greater enough so that a trigger can be locked. If DSI_SYNC_TRIGGER=1, TW  2 clk_sys
cycle. If DSI_SYNC_TRIGGER=0, TW  1 SAR clock cycle.

Trigger interval (TI)
Trigger interval of the DSI pulse trigger signal should be longer than the transmission time (as specified in
Table 19-5); otherwise, the second trigger pulse will be ignored.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 215

SAR ADC

19.3.7 SAR ADC Status

The current SAR status can be observed through the BUSY and CUR_CHAN fields in the SAR_STATUS register. The BUSY
bit is high whenever the SAR is busy sampling or converting a channel; the CUR_CHAN [4:0] bits indicate the number of the
current channel being sampled (channel 16 indicates the injection channel). SW_VREF_NEG bit indicates the current switch
status, including DSI and register controls, of the switch in the SAR ADC that shorts NEG with VREF input.

CHAN_WORK_VALID in the CHAN_WORK_VALID register will be set if the WORK data that was sampled during the last
scan is valid. When CHAN_RESULT_VALID is set in the CHAN_RESULT_VALID register, indicating that the RESULT data is
valid, then the corresponding CHAN_WORK_VALID bit is cleared. The CUR_AVG_ACCU and CUR_AVG_CNT fields in the
SAR_AVG_STAT register indicate the current averaging accumulator contents and the current sample counter value for aver-
aging (counts down).

The SAR_MUX_SWITCH_STATUS register gives the current switch status of MUX_SWITCH0 register. These status regis-
ters help to debug SAR behavior.

19.3.8 Low-Power Mode

The current consumption of the SAR ADC can be divided into two parts: SAR ADC core and SARREF. There are several
methods to reduce the power consumption of the SAR ADC core. The easiest way is to reduce the trigger frequency; that is,
reduce the number of conversions per second. Another option is to use a lower resolution for channels that do not need high
accuracy. This action shortens the conversion by up to four out of 18 cycles (for 8-bit resolution and minimum sample time). In
addition, the SAR ADC offers the ICONT_LV[1:0] configuration bits, which control overall power of the SAR ADC. Maximum
clock rates for each power setting should be observed.

In PSoC 4100/4200, the maximum frequency supported by the block without external bypass capacitor is 1.6 MHz. The
VDDA range supported without external bypass capacitor is 2.7 V to 5.5 V.

19.3.9 System Operation

After the SAR analog is enabled by setting the ENABLED bit (SAR_CTRL [31]), follow these steps to start ADC conversions
with the SARSEQ:

1. Set SAR ADC control mode: 19.3.10 Register Mode or 19.3.11 DSI Mode

2. Set SARMUX analog routing (pin/signal selection) via sequencer/firmware/DSI

3. Set the global SARSEQ conversion configurations

4. Configure each channel source (such as pin address)

5. Enable the channels

6. Set the trigger type

7. Set interrupt masks

8. Start the trigger source

9. Retrieve data after each end of conversion interrupt

10. Perform injection conversions if needed

Table 19-7. ICONT_LV for Low Power Consumption

ICONT_LV[1:0]
Relative Power of

SAR ADC Core [%]
Maximum Frequency

[MHz]
Minimum Sample Time

[cycles]
Maximum Sample Speed (at 12-

bit) [ksps]

0 100 18 4 1000

1 50 9 3 529

2 133 18 4 1000

3 25 4.5 2 281

216 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

Register mode means using registers to control the SARMUX and SAR ADC conversion; DSI mode means using DSI from
UDB to control. The major difference between these two control modes is shown in Table 19-8. DSI mode can be enabled by
setting DSI_MODE bit (SAR_CTRL [29]).

Table 19-8. Difference between Control Modes

Control Mode Register DSI

DSI_MODE 0 1

SARMUX control

Sequencer control registers:

SAR_CHANx_CONFIG, SAR_MUX_SWITCH0,
SAR_MUX_HW_SWITCH_CTRL SAR_CTRL

Firmware control registers:

SAR_MUX_SWITCH0, SAR_MUX_HW_SWITCH_CTRL,
SAR_CTRL

DSI signal control signals: dsi_out,
dsi_oe,dsi_swctrl, dsi_sw_negvref

Firmware control registers: SAR_MUX_SWITCH0,
SAR_MUX_HW_SWITCH_CTRL, SAR_CTRL

Global configura-
tion

Global configure registers:

SAR_CTRL, SAR_SAMPLE_CTRL, SAR_SAMPLE01,
SAR_SAMPLE23, SAR_RANGE_THES, SAR_RANGE_COND

Global configure registers:

SAR_CTRL, SAR_SAMPLE_CTRL,
SAR_SAMPLE01, SAR_SAMPLE23,
SAR_RANGE_THES, SAR_RANGE_COND

Channel configu-
ration

Channel configure registers:

CHAN_CONFIG, CHAN_EN, INJ_CHAN_CONFIG

By DSI signal:

dsi_cfg_st_sel, dsi_cfg_average,
dsi_cfg_resolution, dsi_cfg_differential
(CHAN_CONFIG, CHAN_EN, INJ_CHAN_CONFIG
are ignored)

Trigger

All Apply

Firmware trigger (SAR_START_CTRL[0])

DSI trigger (dsi_trigger)

Continuous trigger (SAR_SAMPLE_CTRL [0])

All Apply

Firmware trigger (SAR_START_CTRL[0])

DSI trigger (dsi_trigger)

Continuous trigger (SAR_SAMPLE_CTRL [0])

Interrupt All Apply
All Apply (only EOS_INTR, RANGE_INTR, SATU-
RATE_INTR output on DSI signal)

DSI output Support Support

Result data 8 channel result registers 1 injection channel result register Only channel0 result register is available

Injection Support Not supported

Average Support average on one PIN/signal Support average on different PIN/signal

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 217

SAR ADC

19.3.10 Register Mode

Use registers to configure the SAR ADC; this is the most common usage. Detailed register bit definition is available in the
PSoC 4100/4200 Family: PSoC 4 Registers TRM.

19.3.10.1 SARMUX Analog Routing

In register mode, there are two ways to control the SARMUX analog routing: sequencer and firmware.

Sequencer Control

It is essential that the appropriate hardware control bits in MUX_SWITCH_HW_CTRL register and the firmware control bits in
MUX_SWITCH0 register are both set to ‘1’. Ensure that SWITCH_DISABLE=0; setting SWITCH_DISABLE disables
sequencer control.

With sequencer control, the pin or internal signal a channel converts is specified by the combination of port and pin address.
The PORT_ADDR bits are SAR_CHANx_CONFIG [6:4] and PIN_ADDR bits are SAR_CHANx_CONFIG [2:0]. Table 19-9
shows the PORT_ADDR and PIN_ADDR setup with corresponding SARMUX selection. The unused port/pins are reserved
for other products in the PSoC 4 series.

For differential conversion, the negative terminal connection is dependent on the positive terminal connection, which is
defined by PORT_ADDR and PIN_ADDR. By setting DIFFERENTIAL_EN, the channel will do a differential conversion on the
even/odd pin pair specified by the pin address with PIN_ADDR [0] ignored. P2.0/P2.1, P2.2/P2.3, P2.4/P2.5, P2.6/P2.7 are
valid differential pairs for sequencer control. More flexible analog can be implemented by firmware or DSI.

For single-ended conversions, NEG_SEL (SAR_CTRL [11:9]) is intended to decide which signal is connected to negative
input. In differential mode, these bits are ignored. Negative input choice affects the input voltage range and effective resolu-
tion. See Negative Input Selection on page 200 for details. The options include: VSSA, VREF, or an external input from any of

the eight pins with SARMUX connectivity. To connect negative input to VREF, an additional bit, SAR_HW_CTRL_NEGVREF

(SAR_CTRL[13]) must be set, because the MUX_SWITCH_HW_CTRL register does not have that hardware control bit.

Firmware Control

By default, the SARMUX operates in firmware control. VPLUS (positive) and VMINUS (negative) inputs of SAR ADC can be
controlled separately by setting the appropriate bits in SAR_MUX_SWITCH0 [29:0]. Clear appropriate bits in the hardware
switch control register (SAR_MUX_SWITCH_HW_CTR[n]=0). Otherwise, hardware control method (sequencer/DSI) will con-
trol the SARMUX analog routing.

SAR_CTRL register bit SWITCH_DISABLE is used to disable SAR sequencer from enabling routing switches. Note that firm-
ware control mode can always close switches independent of this bit value; however, it is recommended to set it to ‘1’.

NEG_SEL (SAR_CTRL [11:9]) decides which signal is connected to the negative terminal (vminus) of SAR ADC in single-
ended mode. In differential mode, these bits are ignored. In single-ended mode, when using sequencer control, you must set
these bits. When using firmware control, NEG_SEL is ignored and SAR_MUX_SWITCH0 should be set to control the nega-
tive input. A special case is when SAR_MUX_SWITCH0 does not connect internal VREF to vminus; then, set NEG_SEL to ‘7’.

Negative input choice affects the input voltage range, SNR, and effective resolution. See Negative Input Selection on
page 200 for details.

Table 19-9. PORT_ADDR and PIN_ADDR

PORT_ADDR PIN_ADDR Description

0 0..7 8 dedicated pins of the SARMUX

1 X sarbus0a

a. sarbus0 and sarbus1 connect to the output of the CTBm block, which contains opamp0/1. See the Continuous Time Block mini (CTBm) chapter on page 251
for more information. When PORT_ADDR=1, sarbus0 connects to positive terminal of SAR ADC regardless of the value of PIN_ADDR; sarbus1 can only
connect to the negative terminal of SAR ADC when differential mode is enabled and PORT_ADDR=1.

1 X sarbus1a

7 0 Temperature sensor

7 2 AMUXBUS-A

7 3 AMUXBUS-B

http://www.cypress.com/?rID=78807

218 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

19.3.10.2 Global SARSEQ Configuration

A number of conversion options that apply to all channels are configured globally. In several cases, the channel configuration
has bits to choose what parts of the global configuration to use. Global configuration is applied to both register control and DSI
control mode.

SAR_CTRL, SAR_SAMPLE_CTRL, SAR_SAMPLE01, SAR_SAMPLE23, SAR_RANGE_THES, and SAR_RANGE_COND
are all global configuration registers. Typically, these configurations should not be modified while a scan is in progress. If con-
figuration settings that are in use are changed, the results are undefined. Configuration settings that are not currently in use
can be changed without affecting the ongoing scan.

19.3.10.3 Channel Configurations

Channel configuration includes:

■ Differential or single-ended mode selection

■ Global configuration selection: sample time, resolution, averaging enable

■ DSI output enable

As a general rule, the channel configurations should only be updated between scans (same as global configurations). How-
ever, if a channel is not enabled for the ongoing scan, then the configuration for that channel can be changed freely without
affecting the ongoing scan. If this rule is violated, the results are undefined. The channels that enable themselves are the only
exception to this rule; enabled channels can be changed during the on-going scan, and it will be effective in the next scan.
Changing the enabled channels may change the sample rate.

Table 19-10. Global Configuration Registers

Configurations Control Registers Detailed Reference

Reference selection SAR_CTRL[6:4] 19.3.3.1 Reference Options

Signed/unsigned selection SAR_SAMPLE_CTRL [3:2] 19.3.1.3 Result Data Format

Data left/right alignment SAR_SAMPLE_CTRL [1] 19.3.1.3 Result Data Format

Negative input selection in single-ended mode SAR_CTRL[11:9] 19.3.1.4 Negative Input Selection

Resolution SAR_SAMPLE_CTRL[0]a

a. The alternate resolution should be enabled by the SAR_RESOLUTION bit in the SAR_CHAN_CONFIG register. If the alternate resolution is not enabled,
the ADC operates at 12-bits of resolution, irrespective of the resolution set by the SAR_SAMPLE_CTRL register.

19.3.1.5 Resolution

Acquisition time
SAR_SAMPLE_TIME01 [25:0]
SAR_SAMPLE_TIME32 [25:0]

19.3.1.6 Acquisition Time

Averaging count SAR_SAMPLE_CTRL[7:4] 19.3.4.1 Averaging

Range detection
SAR_RANGE_THRES [31:0]
SAR_RANGE_COND [31:30]

19.3.4.2 Range Detection

Table 19-11. Channel Configuration Registers

Configurations Registers Detailed Reference

Single-ended/differential SAR_CHANx_CONFIG [8] 19.3.1.1 Single-ended and Differential Mode

Acquisition time selection SAR_CHANx_CONFIG [13:12] 19.3.1.6 Acquisition Time

Resolution selection SAR_CHANx_CONFIG [9] 19.3.1.5 Resolution

Average enable SAR_CHANx_CONFIG [10] 19.3.4.1 Averaging

DSI output enable SAR_CHANx_CONFIG [30] 19.3.11.8 DSI Output Enable

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 219

SAR ADC

SUB_RESOLUTION (SAR_SAMPLE_CTRL[0]) can choose which alternate resolution will be used, either 8-bit or 10 bit. Res-
olution (SAR_CHANx_CONFIG [9]) can determine whether default resolution 12-bit or alternate resolution is used. When
averaging is enabled, the SUB_RESOLUTION is ignored; the resolution will be fixed to the maximum 12-bit.

19.3.10.4 Channel Enables

A CHAN_EN register is available to individually enable each
channel. All enabled channels are scanned when the next
trigger happens. After a trigger, the channel enables can
immediately be updated to prepare for the next scan. This
action does not affect the ongoing scan. Note that this is an
exception to the rule; all other configurations (global or
channel) should not be changed while a scan is in progress.

19.3.10.5 Interrupt Masks

There are six interrupt sources; all have an interrupt mask:

■ End-of-scan interrupt

■ Overflow interrupt

■ Collision interrupt

■ Injection end-of-conversion interrupt

■ Range detection interrupt

■ Saturate detection interrupt

Each interrupt has an interrupt request register (INTR,
SATURATE_INTR, RANGE_INTR), a software interrupt set
register (INTR_SET, SATURATE_INTR_SET,
RANGE_INTR_SET), an interrupt mask register
(INTR_MASK, SATURATE_INTR_MASK,
RANGE_INTR_MASK), and an interrupt re-quest masked
result register (INTR_MASKED,
SATURATE_INTR_MASKED, RANGE_INTR_MASKED).
An interrupt cause register is also added to have an over-
view of all the currently pending SAR interrupts and allows
the ISR to determine the interrupt cause by just reading this
register.

See 19.3.5 Interrupt for details.

19.3.10.6 Trigger

The three ways to start an A/D conversion are:

■ Firmware trigger: SAR_START_CTRL [0]

■ DSI trigger: dsi_trigger

■ Continuous trigger: SAR_SAMPLE_CTRL [16]

See 19.3.6 Trigger for details.

19.3.10.7 Retrieve Data after Each Interrupt

Make sure you read the data from the result register after
each scan; otherwise, the data may change because of the
next scan's configuration.

The 16-bit data registers are used to implement double buff-
ering for up to eight channels (injection channel do not have
double buffer). Double buffering means that there is one
working register and one result register for each channel.
Data is written to the working register immediately after
sampling this channel. It is then copied to the result register
from the working register after all enabled channels in this
scan have been sampled.

The CHAN_WORK_VALID bit is set after the corresponding
WORK data is valid, that is, it was already sampled during
the current scan. Corresponding CHAN_RESULT_VALID is
set after completed scan. When CHAN_RESULT_VALID is
set, the corresponding CHAN_WORK_VALID bit is cleared.

For firmware convenience, bit [31] in SAR_CHAN_WORK
register is the mirror bit of the corresponding bit in
SAR_CHAN_WORK_VALID register. Bit[29], bit [30],and
bit[31] in SAR_CHAN_RESULT are the mirror bits of the
corresponding bit in SAR_SATURATE_INTR,
SAR_RANGE_INTR, and SAR_CHAN_RESULT_VALID
registers. Note that the interrupt bits mirrored here are the
raw (unmasked) interrupt bits. It helps firmware to check if
the data is valid by just reading the data register.

If DSI output is enabled, it allows the SARSEQ result data to
be processed by the UDBs and the channel number allows
the possibility of applying different processing to data of dif-
ferent channels. See 19.3.11.8 DSI Output Enable for
detailed description.

19.3.10.8 Injection Conversions

Injection channel can be triggered by setting the start bit
INJ_START_EN (INJ_CHAN_CONFIG [31]). To prevent the
collision of regular automatic scan, it is recommended to
enable tailgating by setting INJ_CHAN_CONFIG [30]. When
it is enabled, INJ_START_EN will enable the injection chan-
nel to be scanned at the end of next scan of regular chan-
nels. See 19.3.4.4 Injection Channel for details.

Table 19-12. Resolution

Average
SUB_RESOLUTION

SAR_SAMPLE_CTRL[0]
Register Mode Resolution
SAR_CHANx_CONFIG [9]

Channel Resolution

OFF 0 1 8-bit

OFF 1 1 10-bit

OFF 0 0 12-bit

OFF 1 0 12-bit

ON X X 12-bit

220 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

19.3.11 DSI Mode

In DSI control mode, all of SAR ADC configuration can be done by DSI signals from UDB except the global configuration,
such as interrupt masks, range detect settings, and triggers. The major difference between DSI mode and register mode is
that the DSI mode allows hardware to dynamically control the ADC configuration. Figure 19-12 is a subset of the SAR ADC
block diagram (Figure 19-1), which specifies the DSI input and output signals.

Figure 19-12. DSI Control Mode Block Diagram

The DSI control mode is selected by setting the DSI_MODE bit in the SAR_CTRL register. In this mode, the SARSEQ ignores
all channel configurations in CHAN_EN, CHAN_CONFIG, and INJ_CHAN_CONFIG. Instead, it uses the configuration coming
in via the DSI signal.

The following DSI signals are used.

Table 19-13. DSI Signals

Signal Width Description

sar_dsi_sample_done 1
Pulse to indicate that SAR ADC sampling is done. Switches can be changed to the next signal that
need to be converted (identical to SAR ADC next output)

sar_dsi_chan_id_valid 1 Valid signal for channel ID

sar_dsi_chan_id 4

Regular mode: Channel ID, ID of the channel that is currently being converted (early)

DSI control mode:

[0]=saturation detect interrupt

[1]=range detect interrupt (valid together with data output)

sar_dsi_data_valid 1 Valid signal for data value

sar_dsi_data 12

Result of converting (and averaging, if available) for one channel; the internal averaging result is 16-
bit wide.

If dsi_data_hilo_sel=0 then sar_dsi_data[11:0]= sar_data[11:0].

If dsi_data_hilo_sel=1 then sar_dsi_data[7:0]= sar_data[15:8] and sar_dsi_data[11:8]=<undefined>.

sar_dsi_eos_intr 1 End-Of-Scan interrupt to indicate that SARSEQ just finished a scan of all enabled channels

dsi_out 8

dsi_out[0]=1, P2.0 connected to ADC

dsi_out[1]=1, P2.1 connected to ADC

…

dsi_out[7]=1, P2.7 connected to ADC

Note MUX_SWITCH0 configuration determines whether the pin is connected to vplus or vminus.

dsi_oe 4

dsi_oe[0]=1, AMUXBUSA connected to ADC

dsi_oe[1]=1, AMUXBUSB connected to ADC

dsi_oe[2]=1, opamp0 output connected to ADC

dsi_oe[3]=1, opamp1 output connected to ADC

Note MUX_SWITCH0 configuration determines whether the signal is connected to vplus or vminus.

SARADC
Sequencer Logic and

State Machine
d

si
_t

ri
g

g
er

, d
s

i_
d

at
a_

h
ilo

_s
el

 d
si

_
cf

g
 *

*

D
si

_o
u

t[
],

 d
si

_o
e

[]
,

d
si

_s
w

ct
rl

[]
,

 d
si

_s
w

_n
eg

ve
f,

sa
r_

d
si

_s
am

p
le

_d
o

n
e

sa
r_

d
si

_c
h

an
_i

d
[]

sa
r_

d
si

_d
at

a[
]

sa
r_

d
si

_e
o

s_
in

tr

UDB

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 221

SAR ADC

19.3.11.1 Firmware Analog Routing

In DSI mode, analog routing can be implemented by DSI signals and firmware. Firmware control is always available regard-
less of the register configuration and it is the same as in register mode. See 19.3.2.1 Analog Routing for firmware control
details.

19.3.11.2 DSI Analog Routing

DSI signals from UDB block are used to control SARMUX switches. In DSI control mode, the SARSEQ does not output any
switch enables from the sequencer. Figure 19-4 shows that DSI can control every switch, except the DFT (design for test)
switch. Thus, negative and positive input of SAR ADC can be connected to any switches in DSI mode.

Besides the DSI signals, appropriate hardware and firmware control bits in registers should be set. These registers and sig-
nals include SAR_MUX_SWITCH0 [n] = 1 and SAR_MUX_SWITCH_HW_CTRL[n] = 1. When VREF is connected to the neg-

ative input, set SAR_CTRL [11:9] = 7 (firmware control field) and SAR_CTRL [13] = 1 (hardware control bit) except DSI
signals.

DSI signals have control over the negative terminal of SAR ADC through dsi_swctrl[0] and dsi_sw_neg vREF for single-ended

mode. If NEG_SEL (SAR_CTRL[11:9]) is set, only NEG_SEL=7 is useful; the other value is ignored.

Table 19-14 shows the DSI signals.

dsi_swctrl[0] 1 SARMUX analog switch control, connect vssa_kelvin to vminus

dsi_swctrl[1] 1 SARMUX analog switch control, connect temp_sens to vplus

dsi_sw_negvref 1 SAR ADC internal switch control, connect VREF input to NEG input

dsi_cfg_st_sel 2 Configuration control for DSI control mode: select 1 of 4 global sample times

dsi_cfg_average 1 Configuration control for DSI control mode: enable averaging

dsi_cfg_resolution 1
Configuration control for DSI control mode: 0=12-bit resolution

1=use globally configured alternate resolution (8 or 10 bit)

dsi_cfg_differential 1 Configuration control for DSI control mode: 0= single-ended, 1=differential

dsi_trigger 1 Trigger to start SARSEQ scanning all enabled channels

dsi_data_hilo_sel 1
Selects between high and low byte output for sar_dsi_data[7:0]. This signal is fully asynchronous
(affects sar_dsi_data without any clock involved).

Table 19-14. DSI Analog Routing

Signal Width Description

dsi_out 8

dsi_out[0]=1, P2.0 connected to ADC

dsi_out[1]=1, P2.1 connected to ADC

…

dsi_out[7]=1, P2.7 connected to ADC

Note Whether the pin is connected to vplus or vminus is determined by MUX_SWITCH0 configuration.

dsi_oe 4

dsi_oe[0]=1, AMUXBUSA connected to ADC

dsi_oe[1]=1, AMUXBUSB connected to ADC

dsi_oe[2]=1, sarbus0 output connected to ADC

dsi_oe[3]=1, sarbus1 output connected to ADC

Note Whether the signal is connected to vplus or vminus is determined by MUX_SWITCH0 configuration.

dsi_swctrl[0] 1 SARMUX analog switch control, connect VSSA to vminus

dsi_swctrl[1] 1 SARMUX analog switch control, connect temperature sensor to vplus

dsi_sw_negvref 1 SAR ADC internal switch control, connect VREF input to NEG input

Table 19-13. DSI Signals

Signal Width Description

222 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

19.3.11.3 Global SARSEQ Configuration

Global configuration applies to both register mode and DSI control mode. See 19.3.10.2 Global SARSEQ Configuration for
details.

19.3.11.4 DSI Channel Configuration

For DSI control mode, only channel 0 is available. The channel 0 configuration can be done with DSI signals, as shown in
Table 19-15. CHAN_EN and channel configurations in CHAN_CONFIG and INJ_CHAN_CONFIG are ignored.

The dsi_cfg_* signals can optionally be synchronized to the SAR clock domain (actually clk_hf) by setting

DSI_SYNC_CONFIG. Bypassing synchronization may be required when running the SAR at a low frequency.

19.3.11.5 Interrupt

For an introduction to the SAR ADC interrupt, see Interrupt Masks on page 219. All interrupt masks work normally in register
control mode. Not all interrupts are sent on DSI; SATURATE_INTR, RANGE_INTR, and EOS_INTR are sent via the DSI sig-
nal.

■ Along with the data, SATURATE_INTR is output on dsi_chan_id[0]; SATURATE_INTR[0] is set in DSI control mode
because only channel 0 is valid in DSI mode.

■ Along with the data, RANGE_INTR is output on dsi_chan_id[1]; RANGE _INTR[0] is set in DSI control mode because only
channel 0 is valid in DSI mode.

■ Channel enables are ignored; this means only one conversion is done per trigger. An EOS_INTR is generated for each
conversion.

■ EOS_INTR is always sent via the DSI signal sar_dsi_eos_intr (a copy of dsi_data_valid).

Table 19-16 lists the interrupts that are sent via DSI signals.

19.3.11.6 Trigger

Typically, DSI control mode is used along with the DSI trigger. However, other trigger sources, such as firmware trigger and
continuous trigger are also supported. The trigger configuration is the same as in the register control mode. See Trigger on
page 214 for details.

For DSI trigger, the configuration settings (dsi_cfg_*) and switch settings should be stable no later than the cycle in which the
dsi_trigger is sent. They should remain stable until the positive edge of the sar_dsi_sample_done.

Table 19-15. DSI Channel Configuration

Signal Width Configuration Description

dsi_cfg_st_sel 2 Acquisition time Configuration control for DSI control mode: select 1 of 4 global sample times

dsi_cfg_average 1 Average enable Configuration control for DSI control mode: enable averaging

dsi_cfg_resolution 1 Resolution

Configuration control for DSI control mode:

0: 12-bit resolution

1: use globally configure resolution bit SUB_RESOLUTION (8 or 10 bit)

dsi_cfg_differential 1 Differential/single-ended

Configuration control for DSI control mode:

0: single-ended

1: differential

Table 19-16. DSI Signal Interrupts

Signal Width Description

sar_dsi_chan_id 4
Register mode: Channel ID (ID of the channel that is currently being converted)

DSI control mode:
[0]=saturation detect interrupt [1]=range detect interrupt (valid together with data output)

sar_dsi_eos_intr 1 End-of-scan interrupt to indicate that the SARSEQ has finished a scan of all enabled channels

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 223

SAR ADC

19.3.11.7 Retrieve Data

The result data and channel number are sent out on sar_dsi_data. It is equivalent to dsi_out_en high in register control mode.
See 19.3.11.8 DSI Output Enable for details. After each conversion, the data is also written to both CHAN_WORK0 and
CHAN_RESULT0 registers.

19.3.11.8 DSI Output Enable

If the DSI_OUT_EN bit (SAR_CHANx_CONFIG[31]) is set, the result data and channel number are also sent out on the DSI
bus (sar_dsi_data, sar_dsi_chan_id), next to being stored in the regular result register. This allows for the SARSEQ result
data to be processed by the UDBs and the channel number allows for the possibility to apply different processing to data of
different channels.

The data sent out on the DSI bus is formatted in the same way it is stored in the result register. However, by default only the
12 LSBs are sent out; it is not recommended to use left alignment unless more than 12 bits are required. To get the upper
eight LSBs, the dsi_data_hilo_sel input needs to be set to ‘1’. To get the full 16-bit data from result register, first set
dsi_data_hilo_sel = 0 to get the lower 12-bit data and then set dsi_data_hilo_sel = 1 to get the upper 8-bit data. Additional
data process is needed to deal with the data overlap.

The channel number (sar_dsi_chan_id) will be sent out earlier, after the SAR ADC has completed sampling that channel. The
channel number by itself can trigger the UDBs to drive some GPIO pins, which in turn can power up (or down) some off-chip
device. This drives an analog input pin that will be scanned by one of the subsequent channels in the same scan (a long sam-
ple time is useful here).

Note that the data is sent out one cycle after the conversion is completed. Channel numbers, data, and their respective valid
signals are maintained for two system clock cycles on the DSI bus.

19.3.12 Analog Routing Configuration Example

Table 19-18 shows some examples of pin and signal selection for sequencer control, firmware control, and DSI control.

Table 19-17. DSI Output Signals

Signal Width Description

sar_dsi_sample_done 1
Pulse to indicate that SAR ADC sampling is done. Switches can be changed to the next signal that
need to be converted (identical to SAR ADC next output)

sar_dsi_chan_id_valid 1 Valid signal for channel ID

sar_dsi_chan_id 4

Regular mode: Channel ID, ID of the channel that is currently being converted (early)

DSI control mode:

[0]=saturation detect interrupt

[1]=range detect interrupt (valid together with data output)

sar_dsi_data_valid 1 Valid signal for data value

sar_dsi_data 12

Result of converting (and averaging if there is) for one channel. The internal averaging result is 16-bit
wide.

If dsi_data_hilo_sel=0 then sar_dsi_data[11:0]= sar_data[11:0]

If dsi_data_hilo_sel=1 then sar_dsi_data[7:0]= sar_data[15:8] and sar_dsi_data[11:8]=<undefined>

sar_dsi_eos_intr 1 End-Of-Scan interrupt to indicate that SARSEQ just finished a scan of all enabled channels

dsi_data_hilo_sel 1
Selects between high and low byte output for sar_dsi_data[7:0]. This signal is fully asynchronous
(affects sar_dsi_data without any clock involved)

224 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

Table 19-18. Analog Routing Configuration Example

Sequencer Control Firmware Control DSI Control

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0
(CHANx_CONFIG[6:4])

PIN_ADDR = 0

(CHANx_CONFIG[2:0])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[16]= 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[0] = 0

MUX_SWITCH_HW_CTRL[16] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_out [0] =1

dsi_swctrl[0]=1

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH0 [16] = 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0

(CHANx_CONFIG[6:4])

PIN_ADDR = 0

(CHANx_CONFIG[2:0])

NEG_SEL = 7 (CTRL [11:9])

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0]=1

HW_CTRL_NEGVREF =1

(CTRL[13])

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] =0

NEG_SEL = 7 (CTRL [11:9])

HW_CTRL_NEGVREF =0

(CTRL[13])

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

dsi_out [0] =1

dsi_sw_negvref =1

HW_CTRL_NEGVREF =1

(CTRL[13])

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0

(CHANx_CONFIG[6:4])

PIN_ADDR = 0 or PIN_ADDR = 1

(CHANx_CONFIG[2:0])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[9] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[1] = 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1

(CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[9] = 1

MUX_SWITCH_HW_CTRL[0] = 0

MUX_SWITCH_HW_CTRL[1] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_out [0] =1

dsi_out [1] =1

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH0 [9] = 1

MUX_SWITCH_HW_CTRL[1]=1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 1

(CHANx_CONFIG[6:4])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[22] =1

MUX_SWITCH_HW_CTRL[16] =1

Note Connecting sarbus1 to VPLUS is
not supported for Port/Pin control

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[22] = 0

MUX_SWITCH_HW_CTRL[16] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_oe [2] =1

dsi_swctrl[0]=1

MUX_SWITCH0 [16] = 1

MUX_SWITCH0[22] = 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH_HW_CTRL[22] =1

VPLUS

VMINUS

SARADC

P2.0

VSSA

VPLUS

VMINUS

SARADC

P2.0

Vref

VPLUS

VMINUS

SARADC

P2.0

P2.1

VPLUS

VMINUS

SARADC

sarbus0

VSSA

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 225

SAR ADC

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 1

(CHANx_CONFIG[6:4])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22]=1

MUX_SWITCH_HW_CTRL[23]=1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22] = 0

MUX_SWITCH_HW_CTRL[23] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [2] = 1

dsi_oe [3] = 1

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22]=1

MUX_SWITCH_HW_CTRL[23]=1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 7

(CHANx_CONFIG[6:4])

PIN_ADDR = 2

(CHANx_CONFIG[2:0])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[16]= 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[18]= 0

MUX_SWITCH_HW_CTRL[16]= 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_oe [0] = 1

dsi_swctrl[0]=1

MUX_SWITCH0[18] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH0 [16] = 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 7

(CHANx_CONFIG[6:4])

PIN_ADDR = 2

(CHANx_CONFIG[2:0])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[19]= 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 0

MUX_SWITCH_HW_CTRL[19]= 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [0] = 1

dsi_oe [1] = 1

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[19]= 1

Not supported.

The differential pair is fixed for Port/Pin
control

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[19] = 1

MUX_SWITCH0[20] = 1

MUX_SWITCH_HW_CTRL[18] =0

MUX_SWITCH_HW_CTRL[19] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [0] = 1

dsi_oe [1] = 1

MUX_SWITCH0[19] = 1

MUX_SWITCH0[20] = 1

MUX_SWITCH_HW_CTRL[18] =1

MUX_SWITCH_HW_CTRL[19] = 1

Table 19-18. Analog Routing Configuration Example<Italic> (continued)

Sequencer Control Firmware Control DSI Control
VPLUS

VMINUS

SARADC

sarbus0

sarbus1

VPLUS

VMINUS

SARADC

AMUXBUSA

VSSA

VPLUS

VMINUS

SARADC

AMUXBUSA

AMUXBUSB

VPLUS

VMINUS

SARADC
AMUXBUSA

AMUXBUSB

226 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

19.3.13 Temperature Sensor Configuration

One on-chip temperature sensor is available for temperature sensing and temperature-based calibration. Differential conver-
sions are not available for temperature sensors (conversion result is undefined). Therefore, always use it in single-ended
mode. The reference is from internal 1.024 V.

A pin or signal can be routed to the SAR ADC in three ways. Table 19-19 lists the methods to route temperature sensors to
SAR ADC. Setting the MUX_FW_TEMP_VPLUS bit (SAR_MUX_SWITCH0[17]) can enable the temperature sensor and con-
nect its output to VPLUS of SAR ADC; clearing this bit disables temperature sensor by cutting its bias current.

Table 19-19. Route Temperature to SAR ADC

Control Methods Setup

Sequencer

DIFFERENTIAL_EN = 0 (SAR_CHANx_CONFIG[8])
VREF_SEL = 0 (SAR_CTRL[6:4])
PORT_ADDR = 7 (SAR_CHANx_CONFIG[6:4])
PIN_ADDR = 0 (SAR_CHANx_CONFIG[2:0])
SWITCH_DISABLE = 0 (SAR_CTRL[30])
SAR_MUX_SWITCH0[16] = 1
SAR_MUX_SWITCH0[17] = 1
SAR_MUX_SWITCH_HW_CTRL[16]= 1
SAR_MUX_SWITCH_HW_CTRL[17]= 1

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a

a. For temperature sensor, override NEL_SEG (SAR_CTRL [11:9]) to ‘0’.

Firmware

DIFFERENTIAL_EN = 0 (SAR_CHANx_CONFIG[8])
VREF_SEL = 0 (SAR_CTRL[6:4])
SWITCH_DISABLE = 1 (SAR_CTRL[30])
SAR_MUX_SWITCH0[16] = 1
SAR_MUX_SWITCH0[17] = 1
SAR_MUX_SWITCH_HW_CTRL[16]= 0
SAR_MUX_SWITCH_HW_CTRL[17]= 0

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a

DSI

SWITCH_DISABLE = 1 (SAR_CTRL[30])
VREF_SEL = 0 (SAR_CTRL[6:4])
Set DSI Signals:
dsi_cfg_differential=1
dsi_swctrl[1]=1
dsi_swctrl[0]=1
SAR_MUX_SWITCH0[16] = 1
SAR_MUX_SWITCH0[17] = 1
SAR_MUX_SWITCH_HW_CTRL[16]= 1
SAR_MUX_SWITCH_HW_CTRL[17]= 1

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 227

SAR ADC

19.4 Registers

Name Offset Qty. Width Description

SAR_CTRL 0x0000 1 32
Global configuration register

Analog control register

SAR_SAMPLE_CTRL 0x0004 1 32
Global configuration register

Sample control register

SAR_SAMPLE_TIME01 0x0010 1 32
Global configuration register

Sample time specification ST0 and ST1

SAR_SAMPLE_TIME23 0x0014 1 32
Global configuration register

Sample time specification ST2 and ST3

SAR_RANGE_THRES 0x0018 1 32 Global range detect threshold register

SAR_RANGE_COND 0x001C 1 32 Global range detect mode register

SAR_CHAN_EN 0x0020 1 32 Enable bits for the channels

SAR_START_CTRL 0x0024 1 32 Start control register (firmware trigger)

SAR_CHAN_CONFIG 0x0080 8 32 Channel configuration register

SAR_CHAN_WORK 0x0100 8 32 Channel working data register

SAR_CHAN_RESULT 0x0180 8 32 Channel result data register

SAR_CHAN_WORK_VALID 0x0200 1 32 Channel working data register valid bits

SAR_CHAN_RESULT_VALID 0x0204 1 32 Channel result data register valid bits

SAR_STATUS 0x0208 1 32 Current status of internal SAR registers (for debug)

SAR_AVG_STAT 0x020C 1 32 Current averaging status (for debug)

SAR_INTR 0x0210 1 32 Interrupt request register

SAR_INTR_SET 0x0214 1 32 Interrupt set request register

SAR_INTR_MASK 0x0218 1 32 Interrupt mask register

SAR_INTR_MASKED 0x021C 1 32

Interrupt masked request register: If the value is not zero, then the
SAR interrupt signal to the NVIC is high. When read, this register
reflects a bit-wise AND between the interrupt request and mask
registers

SAR_SATURATE_INTR 0x0220 1 32 Saturate interrupt request register

SAR_SATURATE_INTR_SET 0x0224 1 32 Saturate interrupt set request register

SAR_SATURATE_INTR_MASK 0x0228 1 32 Saturate interrupt mask register

SAR_SATURATE_INTR_MASKED 0x022C 1 32 Saturate interrupt masked request register

SAR_RANGE_INTR 0x0230 1 32 Range detect interrupt request register

SAR_RANGE_INTR_SET 0x0234 1 32 Range detect interrupt set request register

SAR_RANGE_INTR_MASK 0x0238 1 32 Range detect interrupt mask register

SAR_RANGE_INTR_MASKED 0x023C 1 32 Range interrupt masked request register

SASR_INTR_CAUSE 0x0240 1 32 Interrupt cause register

SAR_INJ_CHAN_CONFIG 0x0280 1 32 Injection channel configuration register

SAR_INJ_RESULT 0x0290 1 32 Injection channel result register

SAR_MUX_SWITCH0 0x0300 1 32 SARMUX firmware switch controls

SAR_MUX_SWITCH_CLEAR0 0x0304 1 32 SARMUX firmware switch control clear

SAR_MUX_SWITCH_HW_CTRL 0x0340 1 32 SARMUX switch hardware control

SAR_MUX_SWITCH_STATUS 0x0348 1 32 SARMUX switch status

SAR_PUMP_CTRL 0x0380 1 32 Switch pump control

228 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

SAR ADC

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 229

20. Low-Power Comparator

PSoC® 4 devices have two low-power comparators. These comparators can perform fast analog signal comparison in all sys-
tem power modes except the Stop mode. Refer to the Power Modes chapter on page 73 for details on various device power
modes. The positive and negative inputs can be connected to dedicated GPIO pins or to AMUXBUS-A/AMUXBUS-B. The
comparator output can be read by the CPU through a status register, used as an interrupt or wakeup source.

20.1 Features

PSoC 4 comparators have the following features:

■ Configurable positive and negative inputs

■ Programmable power and speed

■ Ultra low-power mode support (<4 µA)

■ Optional 10-mV input hysteresis

■ Low-input offset voltage (<4 mV after trim)

■ Wakeup source in Deep-Sleep/Hibernate modes

230 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Low-Power Comparator

20.2 Block Diagram

Figure 20-1 shows the block diagram for the low-power comparator.

Figure 20-1. Low-Power Comparator Block Diagram

20.3 How It Works

The following sections describe the operation of the PSoC 4
low-power comparator, including input configuration, power
and speed mode, output and interrupt configuration, hyster-
esis, wake up from low-power modes, comparator clock,
and offset trim.

20.3.1 Input Configuration

Inputs to the comparators can be as follows:

■ Both positive and negative inputs from dedicated input
pins.

■ Both positive and negative inputs from any pin through
AMUXBUS (not available in Deep-Sleep mode).

■ One input from an external pin and another input from an
internally-generated signal. Both inputs can be con-
nected to either positive or negative inputs of the com-

parator. The internally-generated signal is connected to
the comparator input through the analog AMUXBUS.

■ Both positive and negative inputs from internally-gener-
ated signals. The internally-generated signals are con-
nected to the comparator input through AMUXBUS-A/
AMUXBUS-B.

From Figure 20-1, note that P0.0 and P0.1 connect to posi-
tive and negative inputs of Comparator 0; P0.2 and P0.3
connect to the inputs of Comparator 1. Also, note that the
AMUXBUS nets do not have a direct connection to the com-
parator inputs. Therefore, the comparator connection is
routed to the AMUXBUS nets through the corresponding
input pin. These input pins will not be available for other pur-
poses when using AMUXBUS for comparator connections.
They should be left open in designs that use AMUXBUS for
comparator input connection. Note that AMUXBUS connec-
tions are not available in Deep-Sleep and Hibernate modes.
If Deep-Sleep or Hibernate operation is required, the low-
power comparator must be connected to the dedicated pins.

Comparator 0

Comparator 1

Edge Detector

Edge Detector

MMIO Registers

AHB IF

CLK_ahb

AHB

I/0 pad
P0.0

I/0 pad
P0.1

I/0 pad
P0.2

I/0 pad
P0.3

dsi_comp1_edge

dsi_comp2_edge

comp_intr

In
tr
_c
lr

Active Power Domain

Hibernate Power Domain

Fa
lli
n
g,
 R
is
in
g,
 b
o
th

So
ft
w
ar
e
‐s
e
t
In
te
rr
u
p
t
2

in
tr
_c
o
m
p
1

in
tr
_c
o
m
p
2

So
ft
w
ar
e‐
se
t
In
te
rr
u
p
t
1

A
M
U
X
B
U
S_
A

A
M
U
X
B
U
S_
B

Not part of Low power comparator
It is in GPIO block

Each GPIO connects to AMUXBUS_A/_B

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 231

Low-Power Comparator

This restriction also includes routing of any internally-gener-
ated signal, which uses the AMUXBUS for the connection.
See the I/O System chapter on page 47 for more details on
connecting the GPIO to AMUXBUS A/B or setting up the
GPIO for comparator input.

20.3.2 Output and Interrupt Configuration

The output of Comparator0 and Comparator1 are available
in the OUT1 bit [6] and OUT2 bit [14], respectively, in the
LPCOMP_CONFIG register (Table 20-1). The values avail-
able in the OUTx bits are the direct (unflopped) or instanta-
neous output from the comparators, which can be
metastable. This means, accessing the comparator output
may not be reliable. The output of each comparator is con-
nected to a corresponding edge detector block. This block
determines the edge that triggers the interrupt. The edge
selection and interrupt enable is configured using the
INTTYPE1 bits [5:4] and INTTYPE2 bits [13:12] in the
LPCOMP_CONFIG register. Using the INTTYPEx bits, the
interrupt type can be selected to disabled, rising edge, fall-
ing edge, or both edges, as described in Table 20-1.

The comparator output is not available directly to the hard-
ware or DSI routing. Only the edge detector block's output is
available. The edge detector's output is an interrupt signal
that is set on a rising/falling/either edge on the actual com-
parator's output. The signal (dsi_comp1_edge/
dsi_comp2_edge in Figure 20-1) should be cleared by the
CPU by writing a ‘1’ to the LPCOMP_INTR bit[0] and bit[1]
for COMP1 and COMP2 outputs, respectively. This action
generates the intr_clr signal shown in Figure 20-1 for clear-
ing the respective interrupts and edge detector output. The
edge detector output can be connected to an interrupt for
processing by the CPU or can be used routed to the UDBs
for processing.

 During an edge event, the comparator will trigger an inter-
rupt (intr_comp1/intr_comp2 signals in Figure 20-1). The
interrupt request is registered in the COMP1 bit [0] and
COMP2 bit [1] of the LPCOMP_INTR register for
Comparator0 and Comparator1, respectively. Both
Comparator0 and Comparator1 share a common interrupt
(comp_intr signal in Figure 20-1), which is a logical OR of
the two interrupts and mapped as the low-power comparator
block's interrupt in the CPU NVIC. Refer to the
Interrupts chapter on page 31 for details. If both the compar-
ators are used in a design, the COMP1 and/or COMP2 bits
of the LPCOMP_INTR register need to be read in the inter-
rupt service routine to know which one triggered the inter-
rupt. After the interrupt is processed, the interrupt should be
cleared by writing a '1' to the COMP1 and COMP2 bits of the
LPCOMP_INTR register in firmware. If the interrupt is not
cleared, the next compare event will not trigger an interrupt
and the CPU will not be able to process the event. In Active
and Sleep modes, the dsi_comp1_edge/dsi_comp2_edge
outputs can be routed to UDB mapped interrupts for pro-
cessing each comparator's trigger separately. However, the

UDB/DSI routing is not available in Deep-Sleep and Hiber-
nate modes.

The LPCOMP interrupt (comp1_intr/comp2_intr) is synchro-
nous with SYSCLK. The LPCOMP DSI output
dsi_comp1_edge/dsi_comp2_edge is asynchronous. Clear-
ing dsi_comp1_edge/dsi_comp2_edge and comp1_intr/
comp2_intr are all synchronous.

In Active and Sleep modes, dsi_comp1_edge/
dsi_comp2_edge can be routed to GPIO or other blocks
through DSI routing in UDB with or without synchronization;
there is an optional synchronizer on UDB DSI output. See
the Universal Digital Blocks (UDB) chapter on page 125 for
details on the DSI signal synchronization. In Deep-Sleep
and Hibernate modes, this routing is unavailable because
the UDBs are powered off. In addition, if the
dsi_comp1_edge/dsi_comp2_edge is routed to the UDB for
further processing, the timing depends on the user's algo-
rithm and synchronizer choice.

LPCOMP_INTR_SET register bits [1:0] can be used to
assert an interrupt for software debugging.

In Deep-Sleep and Hibernate mode, the wakeup interrupt
controller (WIC) can be activated by a comparator edge
event, which then wakes up the CPU. Thus, the LPCOMP
has the capability to monitor a specified signal in low-power
modes.

232 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Low-Power Comparator

20.3.3 Power Mode and Speed Configuration

The low-power comparators can operate in three power modes:

■ Fast

■ Slow

■ Ultra low-power

The power or speed setting for Comparator0 is configured using MODE1 bits [1:0] in the LPCOMP_CONFIG register. The
power or speed setting for Comparator1 is configured using MODE2 bits [9:8] in the same register. The power consumption
and response time vary depending on the selected power mode; power consumption is highest in fast mode and lowest in
ultra-low-power mode, response time is fastest in fast mode and slowest in ultra-low-power mode. Refer to the device data-
sheet for specifications for the response time and power consumption for various power settings.

The comparators are enabled/disabled using ENABLE1 bit [7] and ENABLE2 bit [15] in the LPCOMP_CONFIG register, as
described in Table 20-2.

Note The output of the comparator may glitch when the power mode is changed while comparator is enabled. To avoid this,
disable the comparator before changing the power mode.

Table 20-1. Output and Interrupt Configuration in LPCOMP_CONFIG Register

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[6] OUT1 Current/Instantaneous output value of Comparator0

LPCOMP_CONFIG[14] OUT2 Current/Instantaneous output value of Comparator1

LPCOMP_CONFIG[5:4] INTTYPE1

Sets on which edge Comparator0 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_CONFIG[13:12] INTTYPE2

Sets on which edge Comparator1 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_INTR[0] COMP1
Comparator0 Interrupt: hardware sets this interrupt when Comparator0 triggers. Write a '1'
to clear the interrupt

LPCOMP_INTR[1] COMP2
Comparator2 Interrupt: hardware sets this interrupt when Comparator1 triggers. Write a '1'
to clear the interrupt

LPCOMP_INTR_SET[0] COMP1 Write a '1' to trigger the software interrupt for Comparator0

LPCOMP_INTR_SET[1] COMP2 Write a 1 to trigger the software interrupt for Comparator1

http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?id=4749&rtID=107&source=an85951

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 233

Low-Power Comparator

20.3.4 Hysteresis

For applications that compare signals close to each other and slow changing signals, hysteresis helps to avoid oscillations at
the comparator output when the signals are noisy. For such applications, a fixed 10-mV hysteresis may be enabled in the
comparator block.

The 10-mV hysteresis level is enabled/disabled by using the HYST1 bit [2] and HYST2 bit [10] in the LPCOMP_CONFIG reg-
ister, as described in Table 20-3.

Table 20-3. Hysteresis Control Bits HYST1 and HYST2

20.3.5 Wakeup from Low-Power Modes

The comparator is operational in the device’s low-power
modes, including Sleep, Deep-Sleep, and Hibernate modes.
The comparator output interrupt can wake the device from
Sleep, Deep-Sleep, and Hibernate modes. No special set-
ting is needed, other than enabling the comparators in the
LPCOMP_CONFIG register. The features that are not avail-
able during the Deep-Sleep and Hibernate modes include:

■ Comparisons involving AMUXBUS connections

■ Routing comparator output through DSI

In the Deep-Sleep or Hibernate power mode, a compare
event on either Comparator0 or Comparator1 output will
generate a wakeup interrupt. This behavior is unrelated to
the settings of INTTYPE bit in the LPCOMP_CONFIG regis-
ter.

20.3.6 Comparator Clock

The comparator uses the system main clock SYSCLK as the
clock for interrupt synchronization.

20.3.7 Offset Trim

The comparator offset is trimmed at the factory to less than
4.0 mV. The trim is a two-step process, trimmed first at com-
mon mode voltage equal to 0.1 V, then at common mode
voltage equal to VDD–0.1 V. Offset voltage is guaranteed to

be less than 10.0 mV over the input voltage range of 0.1 V to
VDD–0.1 V. For normal operation, further adjustment of trim

values is not recommended.

If a tighter trim is required at a specific input common mode
voltage, a trim may be performed at the desired input com-
mon mode voltage. The comparator offset trim is performed
using the LPCOMP_TRIM1/2/3/4 registers.

Table 20-2. Comparator Power Mode Selection Bits MODE1 and MODE2

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[1:0] MODE1

Compartor0 power mode selection

00: Slow operating mode (uses less power)

01: Fast operating mode (uses more power)

10: Ultra low-power operating mode (uses lowest possible power)

LPCOMP_CONFIG[9:8] MODE2

Compartor1 power mode selection

00: Slow operating mode (uses less power)

01: Fast operating mode (uses more power)

10: Ultra low-power operating mode (uses lowest possible power)

LPCOMP_CONFIG[7] ENABLE1

Comparator0 enable bit

0: Disables Comparator0

1: Enables Comparator0

LPCOMP_CONFIG[15] ENABLE2

Comparator1 enable bit

0: Disables Comparator1

1: Enables Comparator1

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[2] HYST1

Enable/Disable 10 mV hysteresis to Comparator0

- 0: Enable Hysteresis

- 1: Disable Hysteresis

LPCOMP_CONFIG[10] HYST2

Enable/Disable 10 mV hysteresis to Comparator1

- 0: Enable Hysteresis

- 1: Disable Hysteresis

234 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Low-Power Comparator

LPCOMP_TRIM1 and LPCOMP_TRIM2 are used to trim
comparator 0. LPCOMP_TRIM3 and LPCOMP_TRIM4 are
used to trim comparator 1. The bit fields that change the trim
values are TRIMA bits [4:0] in LPCOMP_TRIM1 and
LPCOMP_TRIM3, and TRIMB bits [3:0] in LPCOMP_TRIM2
and LPCOMP_TRIM4. TRIMA bits are used to coarse tune
the offset; TRIMB bits are used to fine tune. The use of
TRIMB bits for offset correction is restricted to slow mode of
comparator operation.

Any standard comparator offset trim procedure can be used
to perform the trimming. The following method can be used
to improve the offset at a given reference/common mode
voltage input.

1. Short the comparator inputs externally and connect the
voltage reference, Vref, to the input.

2. Set up the comparator for comparison, turn off hystere-
sis, and check the output.

3. If the output is high, the offset is positive. Otherwise, the
offset is negative. Follow these steps to tune the offset:

a. Tune the TRIMA bits[4:0] until the output switches
direction. TRIMA bits[3:0] control the amount of off-
set and TRIMA bit[4] controls the polarity of offset ('1'
indicates positive offset and '0' indicates negative off-
set).

b. When the tuning of TRIMA bits is complete, tune the
TRIMB bits[3:0] until the output switches direction
again. The TRIMB bit tuning is valid only for slow
mode of comparator operation. TRIMB bit[3] controls
the polarity of offset. Increasing TRIMB bits [2:0]
reduces the offset.

c. After completing step 3-b, the values available in the
TRIMA and TRIMB bits will be the closest possible
trim value for that particular Vref.

20.4 Register Summary

Table 20-4. Low-Power Comparator Register Summary

Register Function

LPCOMP_ID Includes the information of LPCOMP controller ID and revision number

LPCOMP_CONFIG LPCOMP configuration register

LPCOMP_INTR LPCOMP interrupt register

LPCOMP_INTR_SET LPCOMP interrupt set register

LPCOMP_TRIM1 Trim fields for comparator 0

LPCOMP_TRIM2 Trim fields for comparator 0

LPCOMP_TRIM3 Trim fields for comparator 1

LPCOMP_TRIM4 Trim fields for comparator 1

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 235

21. Continuous Time Block mini (CTBm)

The Continuous Time Block mini (CTBm) provides discrete operational amplifiers (opamps) inside the chip for use in continu-
ous-time signal chains. Each CTBm block includes a switch matrix for input/output configuration, two identical opamps, which
are also configurable as two comparators, a charge pump inside each opamp, and a digital interface for comparator output
routing, switch controls, and interrupts. The PSoC 4100/4200 family has one CTBm block - two discrete opamps.

21.1 Features

The opamps in the PSoC 4 CTBm block have the following features:

■ Discrete, high-performance, and highly configurable on-chip amplifiers

■ Programmable power, bandwidth, compensation, and output drive strength

■ 1-mA or 10-mA selectable output current drive capability

■ 6-MHz gain bandwidth for 20-pF load

■ Less than 1-mV offset with trim

■ Support for opamp follower mode

■ Comparator mode with optional 10-mV hysteresis

■ Buffer/pre-amplifier for SAR inputs

■ Rail-to-rail within 0.2 V of VSS or VDDA for 1-mA load

■ Rail-to-rail within 0.5 V of VSS or VDDA for 10-mA load

■ Slew rate 4 V/µs for 50-pF load

236 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Continuous Time Block mini (CTBm)

21.2 Block Diagram

Figure 21-1 shows the block diagram for the CTBm block available in PSoC 4 devices.

Figure 21-1. CTBm Block Diagram

21.3 How It Works

As the block diagram shows, CTBm has two identical opamps and a switch routing matrix. Each opamp has one input and
three output stages, all of which share a common input stage, as shown in Figure 21-1; only one of them can be selected at a
time. The output stage can be operated as Class-A(1X), Class-AB(10X), or comparator. The other configurable features are
power and speed, compensation, and switch routing control.

To use the CTBm block, the first step is to set up external components (such as resistors), if required. Then, enable the block
by setting the CTB_CTRL [31] bit. To have almost rail-to-rail input range and minimal distortion common mode input, there is
one charge pump inside each opamp. The charge pump can be enabled by setting the CTBM_OA_RES0_CTRL [11] bit for
opamp0 and CTBM_OA_RES1_CTRL [11] bit for opamp1.

After enabling the opamps and charge pumps, follow these steps to set up the amplifier:

1. Configure power mode

2. Configure output strength

3. Configure compensation

4. Configure input switch

10X

1X

P1.0

AMUXBUSA

P1.6

P1.1

sarbus0

P1.2

10X

1X

P1.5

AMUXBUSB

P1.7

P1.4

sarbus1

P1.3

OPAMP 0

OPAMP 1

sarbus0

Sync
Edge Detector

MUX

CTBM_comp0_out

CTBM_comp1_out

Clk_comp

CTBM_dsi_comp0

Switch: CTBm Regsiter control Swtich: CTBm Regsiter + SARADC register+ DSI control

Interrupt Request

SW1

SW2

SW3

Note: 10X or 1X output driver cannot be on at the same time.

Sync
Edge Detector

MUX

Clk_comp

CTBM_dsi_comp1

Interrupt Request

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 237

Continuous Time Block mini (CTBm)

5. Configure output switch, especially when opamp output needs to be connected to SAR ADC

Follow these steps to set up a comparator:

1. Configure the power mode

2. Configure the input switch

3. Configure the comparator output circuitry, as required - interrupt generation, DSI output, and so on

4. Configure hysteresis and enable the comparator

21.3.1 Power Mode Configuration

The opamp can operate in three power modes – low, medium, and high. CTBm adjusts the power consumed by adjusting the
reference currents coming into the opamp. Power modes are configured using the PWR_MODE bits [1:0] in
CTBM_OA_RESx_CTRL. The slew rate and gain bandwidth are maximum in high-power mode and minimum in low-power
mode. Note that power mode configuration also affects the maximum output drive capability (IOUT) in 1X mode. See

Table 21-1 for details. See the device datasheet for gain bandwidth, slew rate, and IOUT specifications in various power

modes.

21.3.2 Output Strength Configuration

The output driver of each opamp can be configured to internal driver (Class A/1X driver) or external driver (Class AB/10X
driver). 1X and 10X drivers are mutually exclusive – they cannot be active at the same time. 1X output driver is suited to drive
smaller on-chip capacitive and resistive loads at higher speeds. The 10X output driver is useful for driving large off-chip
capacitive and resistive loads. The 1X driver output is routed to sarbus 0/1 and 10X driver output is routed to an external pin.
Each driver mode has a low, medium, or high power mode, as shown in Table 21-1.

The CTBM_OA_RESx_CTRL[2] bit is used to select between the 10X and 1X output capability (0: 1X, 1: 10X). If the output of
the opamp is connected to the SAR ADC, it is recommended to choose the 1X output driver. If the output of the opamp is con-
nected to an external pin, then, choose the 10X output driver. In special instances, to connect the output to an external pin
with 1X output driver or an internal load (for example, SAR ADC) with 10X output driver, set CTBM_OAx_SW [21] to ‘1’. How-
ever, Cypress does not guarantee performance in this case.

Table 21-2 summarizes the bits used to configure the opamp output drive strength and power modes.

Table 21-1. Output Driver versus Power Mode

Power Mode IOUT Drive Capability
CTBM_OA_RESx_CTRL[1:0]

00 (disable) 01 (low) 10 (medium) 11 (high)

External Driver (10X) Off 10 mA 10 mA 10 mA

Internal Driver (1X) Off 100 µA 400 µA 1 mA

Table 21-2. Output Strength and Power Mode Configuration in CTBM Registers

Register[Bit_Pos] Bit_Name Description

CTBM_CTB_CTRL[31] ENABLE

CTBM power mode selection

0: CTBM is disabled

1: CTBM is enabled

CTBM_OA_RES0_CTRL [11] OA0_PUMP_EN

Opamp0 pump enable bit 0:

Opamp0 pump is disabled

1: Opamp0 pump is enabled

CTBM_OA_RES1_CTRL [11] OA1_PUMP_EN

Opamp1 pump enable bit

0: Opamp1 pump is disabled

1: Opamp1 pump is enabled

http://www.cypress.com/?id=4749&rtID=107&source=an85951

238 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Continuous Time Block mini (CTBm)

21.3.3 Compensation

Each opamp also has a programmable compensation capacitor block, which allows optimizing the stability of the opamp per-
formance based on output load. The compensation of each opamp is controlled by the respective CTBM_OAx_COMP_TRIM
register, as explained in Table 21-3. Note that all the GBW slew rate specifications in the device datasheet are applied for all
compensation trims.

21.3.4 Switch Control

The CTBm has many switches to configure the opamp input and output. Most of them are controlled by configuring CTBm
registers (CTBM_OA0_SW, CTBM_OA1_SW), except three switches, which are used to connect the output of opamps to
SAR ADC through sarbus0 and sarbus1. They must be controlled by SAR ADC registers, CTBm registers, and DSI signals.

Switches can be closed by setting the corresponding bit in register CTBM_OAx_SW; clearing them will cause the correspond-
ing switches to open. Writing ‘1’ to CTBM_OAx_SW_CLEAR can clear the corresponding bit in CTBM_OAx_SW. See the
PSoC 4100/4200 Family: PSoC 4 Registers TRM for details on the switches and the connections they enable.

21.3.4.1 Input Configuration

Positive and negative input to the operational amplifier can be selected from several options through analog switches. These
switches serve to connect the opamp inputs from the external pins or AMUX buses, or to form a local feedback loop (for buffer
function). Each opamp has a switch connecting to one of the two AMUXBUS line: Opamp0 connects to AMUXBUS-A and
Opamp1 connects to AMUXBUS-B.

Note Only one switch should be closed for the positive and negative input paths; otherwise, different input source may short
together.

CTBM_OA_RES0_CTRL [1:0] OA0_PWR_MODE

Opamp0 power mode select bits

00: Opamp0 is OFF

01: Opamp0 is in low power mode

10: Opamp0 is in medium power mode

11: Opamp0 is in high power mode

CTBM_OA_RES1_CTRL [1:0] OA1_PWR_MODE

Opamp1 power mode select bits

00: Opamp1 is OFF

01: Opamp1 is in low power mode

10: Opamp1 is in medium power mode

11: Opamp1 is in high power mode

CTBM_OA_RES0_CTRL [2] OA0_DRIVE_STR_SEL

Opamp0 output drive strength select bits

0: Opamp0 output drive strength is 1X

1: Opamp0 output drive strength is 10X

CTBM_OA_RES1_CTRL [2] OA1_DRIVE_STR_SEL

Opamp1 output drive strength select bits

0: Opamp1 output drive strength is 1X

1: Opamp1 output drive strength is 10X

Table 21-3. Opampx (Opamp0 or Opamp1) Compensation Bits in CTBm

Register[Bit_Pos] Bit_Name Description

CTBM_OAx_COMP_TRIM[1:0] OAx_COMP_TRIM

Opampx compensation trim bits

00: No compensation

01: Minimum compensation, high speed, and low stability

10: Medium compensation, balanced speed, and stability

11: Maximum compensation, low speed, and high stability

Table 21-2. Output Strength and Power Mode Configuration in CTBM Registers

Register[Bit_Pos] Bit_Name Description

http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?rID=78807

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 239

Continuous Time Block mini (CTBm)

■ Positive input: Both opamp0 and opamp1 have three positive input options through analog switches: two external pins and
one AMUXBUS line. See Table 21-4 for details.

■ Negative input: Both opamp0 and opamp1 have two negative input options through analog switches: one external pin or
output feedback, which is controlled by the CTBM_OAx_SW register. Table 21-5 shows the control bits.

Table 21-4. Positive Input Selection

Positive Input Switch Control Bit Description

Opamp0

AMUXBUSA CTBM_OA0_SW [0] 0: open 1: close switch

P1.0 CTBM_OA0_SW [2] 0: open 1: close switch

P1.6 CTBM_OA0_SW [3] 0: open 1: close switch

Opamp1

AMUXBUSB CTBM_OA1_SW [0] 0: open 1: close switch

P1. 5 CTBM_OA1_SW [1] 0: open 1: close switch

P1.7 CTBM_OA1_SW [4] 0: open 1: close switch

Table 21-5. Negative Input Selection

Negative Input Switch Control Bit Description

Opamp0
P1.1 CTBM_OA0_SW [8] 0: open 1: close switch

Opamp0 output feedback through 1X output driver CTBM_OA0_SW [14] 0: open 1: close switch

Opamp1
P1.4 CTBM_OA1_SW [8] 0: open 1: close switch

Opamp1 output feedback through 1X output driver CTBM_OA1_SW [14] 0: open 1: close switch

240 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Continuous Time Block mini (CTBm)

21.3.4.2 Output Configuration

Each opamp’s output is connected directly to a fixed pin; no additional setup is needed. Optionally, it can be connected to
sarbus0 or sarbus1 through three switches (SW1/2/3). The opamp0 output can be connected to sarbus0 and opamp1 can be
connected to sarbus0 or sarbus1. sarbus0 and sarbus1 are intended to connect opamp output to the SAR ADC input mux.
The three output routing switches to sarbus are controlled by SAR ADC registers, CTBm register, and DSI signals together;
the other switches can be controlled only by CTBm register.

The following truth tables (Table 21-6, Table 21-7, and Table 21-8) show the control logic of the three switches. PORT_ADDR,
PIN_ADDR, and DIFFERENTIAL_EN are from SAR_CHANx_CONFIG [6:4], SAR_CHANx_CONFIG [2:0], and
SAR_CHANx_CONFIG [2:0], respectively. Either PORT_ADDR =0 or PIN_ADDR = 0 will set SW[n]=0.
CTBM_SW_HW_CTRL bit [2] or [3] should be set when using the SAR register or a DSI signal to control switches.
CTBM_OAx_SW[18]/[19] can mask the other control bits – if CTBM_OAx_SW[18]/[19] = 0, SW[n] = 0.

The CTBM__SW_STATUS [30:28] register gives the current switch status of SW1/2/3.

Table 21-6. Truth Table of SW1 Control Logic

PORT_ADDR PIN_ADDR SW_HW_CTRL[2] dsi_out[2] OA0_SW[18] SW1

X X X X 0 0

X 0 1 0 1 0

0 X 1 0 1 0

X X X 1 1 1

X X 0 X 1 1

1 2 X X 1 1

Table 21-7. Truth Table of SW2 Control Logic

DIFFERENTIAL_
EN

PORT_ADDR PIN_ADDR SW_HW_CTRL[3] dsi_out[3] OA0_SW[18] SW2

X X X X X 0 0

X X 0 1 0 1 0

X 0 X 1 0 1 0

1 X X X 0 1 0

X X X 0 X 1 1

X X X X X 1 1

0 1 3 X X 1 1

Table 21-8. Truth Table of SW3 Control Logic

DIFFERENTIAL_
EN

PORT_ADDR PIN_ADDR SW_HW_CTRL[3] dsi_out[3] OA0_SW[18] SW3

X X X X X 0 0

X X 0 1 0 1 0

X 0 X 1 0 1 0

0 X X X 0 1 0

X X X 0 X 1 1

X X X X X 1 1

1 1 2 X X 1 1

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 241

Continuous Time Block mini (CTBm)

21.3.4.3 Comparator Mode

Each opamp can be configured as a comparator by setting the respective CTBM_OA_RESx_CTRL[4] bit. Note that enabling
the comparator completely disables the compensation capacitors and shuts down the Class A (1X) and Class AB (10X) out-
put drivers. The comparator has the following features:

■ Optional 10-mV input hysteresis

■ Configurable power/speed

■ Optional DSI output synchronization

■ Offset trimmed to less than 1 mV

■ Configurable edge detection (rising/falling/both/disable)

21.3.4.4 Comparator Configuration

The hysteresis of 10 mV ±5 percent can be enabled in one direction (low to high). Input hysteresis can be enabled by setting
CTBM_OA_RESx_CTRL[5]. The two comparators also have three power modes: low, medium, and high, controlled by set-
ting CTBM_OA_RESx_CTRL [1:0]. Power modes differ in response time and power consumption; power consumption is
maximum in fast mode and minimum in ultra-low-power mode. Exact specifications for power consumption and response time
are provided in the datasheet.

The comparator output is routed to the DSI with optional synchronization. The synchronization with comparator clock (system
AHB clock) can be configured in CTBMx_CTBM_OA_RESxy_CTRL[6].

The output state of comparator0 and comparator1 are stored in CTBM_COMP_STAT[0] and CTBM_COMP_STAT[16],
respectively.

Table 21-9 summarizes various bits used to configure the comparator mode in the CTBM block.

Table 21-9. Comparator Mode and Configuration Register Settings

Register[Bit_Pos] Bit_Name Description

CTBM_OA_RESyx_CTRL[4] OAx_COMP_EN

Opampx comparator enable bit

0: Comparator mode is disabled in opampx

1: Comparator mode is enabled in opampx

CTBM_OA_RESx_CTRL[5] OAx_HYST_EN

Opampx Comparator hysteresis enable bit

0: Hysteresis is disabled in opampx

1: Hysteresis is enabled in opampx

CTBM_OA_RESx_CTRL[6] OAx_BYPASS_DSI_SYNC

Opampx bypass comparator output synchronization for DSI (trigger)
output

0: Synchronize (level or pulse)

1: Bypass

CTBM_OA_RESx_CTRL[7] OAx_ DSI_LEVEL

Opampx comparator DSI (trigger) output synchronization level

0: Pulse

1: Level

242 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Continuous Time Block mini (CTBm)

21.3.4.5 Comparator Interrupt

The comparator output is connected to an edge detector block, which is used to detect the edge (disable/rising/falling/both)
that generates interrupt. It can be configured by the CTBM_OA_RESx_CTRL[9:8] bits.

Each comparator has a separate IRQ. CTBM_INTR [0] is for comparator0 IRQ, CTBM_INTR [1] is for comparator1 IRQ.

Each interrupt has an interrupt mask bit in the CTBM_INTR_MASK register. By setting the interrupt mask low, the correspond-
ing interrupt source is ignored. The CTBm comparator interrupt to the NVIC will be raised if logic AND of the interrupt flags in
CTBM_INTR registers and the corresponding interrupt masks in CTBM_INTR_MASK register is 1.

Writing a ‘1’ to the CTBM_INTR bit [1:0] can clear corresponding interrupt.

For firmware convenience, the intersection (logic AND) of the interrupt flags and the interrupt masks is also made available in
the CTBM_INTR_MASKED register.

For verification and debug purposes, a set bit is provided for each interrupt in the CTBM_INTR_SET register. This bit allows
the firmware to raise the interrupt without a real comparator switch event.

21.4 Register Summary

Table 21-10. Register Summary

Name Description

CTBM_CTRL Global CTBm block enable

CTBM_OA_RES0_CTRL Opamp0 control register

CTBM_OA_RES1_CTRL Opamp1 control register

CTBM_COMP_STAT Comparator status

CTBM_INTR Interrupt request register

CTBM_INTR_SET Interrupt request set register

CTBM_INTR_MASK Interrupt request mask

CTBM_INTR_MASKED Interrupt request masked

CTBM_OA0_SW Opamp0 switch control

CTBM_OA0_SW_CLEAR Opamp0 switch control clear

CTBM_OA1_SW Opamp1 switch control

CTBM_OA1_SW_CLEAR Opamp1 switch control clear

CTBM_SW_HW_CTRL CTBm hardware control enable

CTBM_SW_STATUS CTBm bus switch control status

CTBM_OA0_OFFSET_TRIM Opamp0 trim control

CTBM_OA0_SLOPE_OFFSET_TRIM Opamp0 trim control

CTBM_OA0_COMP_TRIM Opamp0 trim control

CTBM_OA1_OFFSET_TRIM Opamp1 trim control

CTBM_OA1_SLOPE_OFFSET_TRIM Opamp1 trim control

CTBM_OA1_COMP_TRIM Opamp1 trim control

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 243

22. LCD Direct Drive

The PSoC® 4 Liquid Crystal Display (LCD) drive system is a highly configurable peripheral that allows the PSoC device to
directly drive STN and TN segment LCDs.

22.1 Features
The PSoC 4 LCD segment drive block has the following features:

■ Supports up to 32 segments and four commons

■ Supports Type A (standard) and Type B (low-power) drive waveforms

■ Any GPIO can be configured as a common or segment

■ Supports five drive methods:

❐ Digital correlation

❐ PWM at 1/2 bias

❐ PWM at 1/3 bias

❐ PWM at 1/4 bias

❐ PWM at 1/5 bias

■ Ability to drive 3-V displays from 1.8 V VDD in Digital Correlation mode

■ Operates in active, sleep, and deep-sleep modes

■ Digital contrast control

22.2 LCD Segment Drive Overview
A segmented LCD panel has the liquid crystal material between two sets of electrodes and various polarization and reflector
layers. The two electrodes of an individual segment are called commons (COM) or backplanes and segment electrodes
(SEG). From an electrical perspective, an LCD segment can be considered as a capacitive load; the COM/SEG electrodes
can be considered as the rows and columns in a matrix of segments. The opacity of an LCD segment is controlled by varying
the root-mean-square (RMS) voltage across the corresponding COM/SEG pair.

The following terms/voltages are used in this chapter to describe LCD drive:

■ VRMSOFF: The voltage that the LCD driver can realize on segments that are intended to be off.

■ VRMSON: The voltage that the LCD driver can realize on segments that are intended to be on.

■ Discrimination Ratio (D): The ratio of VRMSON and VRMSOFF that the LCD driver can realize. This depends on the type of
waveforms applied to the LCD panel. Higher discrimination ratio results in higher contrast.

Liquid crystal material does not tolerate long term exposure to DC voltage. Therefore, any waveforms applied to the panel
must produce a 0-V DC component on every segment (on or off). Typically, LCD drivers apply waveforms to the COM and
SEG electrodes that are generated by switching between multiple voltages. The following terms are used to define these
waveforms:

■ Duty: A driver is said to operate in 1/M duty when it drives 'M' number of COM electrodes. Each COM electrode is effec-
tively driven 1/M of the time.

■ Bias: A driver is said to use 1/B bias when its waveforms use voltage steps of (1/B) × VDRV. VDRV is the highest drive
voltage in the system (equals to VDD in PSoC 4). PSoC 4 supports 1/2, 1/3, 1/4, and 1/5 biases in PWM drive modes.

■ Frame: A frame is the length of time required to drive all the segments. During a frame, the driver cycles through the com-
mons in sequence. All segments receive 0-V DC (but non-zero RMS voltage) when measured over the entire frame.

244 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

LCD Direct Drive

PSoC 4 supports two different types of drive waveforms in all drive modes. These are:

■ Type-A Waveform: In this type of waveform, the driver structures a frame into M sub-frames. 'M' is the number of COM
electrodes. Each COM is addressed only once during a frame. For example, COM[i] is addressed in sub-frame i.

■ Type-B Waveform: The driver structures a frame into 2M sub-frames. The two sub-frames are inverses of each other.
Each COM is addressed twice during a frame. For example, COM[i] is addressed in sub-frames i and M+i. Type-B wave-
forms are slightly more power efficient because it contains fewer transitions per frame.

22.2.1 Drive Modes

PSoC 4 supports the following drive modes.

■ PWM drive at 1/2 bias

■ PWM drive at 1/3 bias

■ PWM drive at 1/4 bias with high-frequency clock input

■ PWM drive at 1/5 bias with high-frequency clock input

■ Digital correlation

22.2.1.1 PWM Drive

In PWM drive mode, multi-voltage drive signals are generated using a PWM output signal together with the intrinsic resis-
tance and capacitance of the LCD. Figure 22-1 illustrates this.

Figure 22-1. PWM Drive (at 1/3 Bias)

The output waveform of the drive electronics is a PWM waveform. With the Indium Tin Oxide (ITO) panel resistance and the
segment capacitance to filter the PWM, the voltage across the LCD segment is an analog voltage, as shown in Figure 22-1.
This figure illustrates the generation of a 1/3 bias waveform (four commons and voltage steps of VDD/3).

The PWM is derived from either ILO (32 kHz, low-speed operation) or IMO (high-speed operation). The generated analog
voltage typically runs at very low frequency (~ 50 Hz) for segment LCD driving.

Figure 22-2 and Figure 22-3 illustrate the Type A and Type B waveforms for COM and SEG electrodes for 1/2 bias and 1/4
duty. Only COM0/COM1 and SEG0/SEG1 are drawn for demonstration purpose. Similarly, Figure 22-4 and Figure 22-5 illus-
trate the Type A and Type B waveforms for COM and SEG electrodes for 1/3 bias and 1/4 duty.

PWM Generator

PWM Generator

SEG

COM

GPIO Output Impedance ITO Panel Resistance LCD Segment
Capacitance

VPWM VLCD

Vddd

Vddd

2/3 Vddd

1/3 Vddd

0

0

t

t

VPWM

VLCD

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 245

LCD Direct Drive

Figure 22-2. PWM1/2 Type-A Waveform Example

VDD

0
COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

246 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

LCD Direct Drive

Figure 22-3. PWM1/2 Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 247

LCD Direct Drive

Figure 22-4. PWM1/3 Type-A Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

248 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

LCD Direct Drive

Figure 22-5. PWM1/3 Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 249

LCD Direct Drive

The effective RMS voltage for ON and OFF segments can be calculated easily using these equations:

Equation 22-1

 Equation 22-2

Where B is the bias and M is the duty (number of COMs).

For example, if the number of COMs is four, the resulting discrimination ratios (D) for 1/2 and 1/3 biases are 1.528 and 1.732,
respectively. 1/3 bias offers better discrimination ratio in two and three COM drives also. Therefore, 1/3 bias offers better con-
trast than 1/2 bias and is recommended for most applications. 1/4 and 1/5 biases are available only in high-speed operation
of the LCD. They offer better discrimination ratio especially when used with high COM designs.

When the low-speed operation of LCD is used, the PWM signal is derived from the 32-kHz ILO. To drive a low-capacitance
display with acceptable ripple and rise/fall times using a 32-kHz PWM, additional external series resistances of 100 k-1 M
should be used. External resistors are not required for PWM frequencies greater than ~1 MHz. The ideal PWM frequency
depends on the capacitance of the display and the internal ITO resistance of the ITO routing traces.

The 1/2 bias mode has the advantage that PWM is only required on the COM signals; the SEG signals use only logic levels,
as shown in Figure 22-2 and Figure 22-3.

22.2.1.2 Digital Correlation

The digital correlation mode, instead of generating bias voltages between the rails, takes advantage of the characteristic of
LCDs that the contrast of LCD segments is determined by the RMS voltage across the segments. In this approach, the corre-
lation coefficient between any given pair of COM and SEG signals determines whether the corresponding LCD segment is on
or off. Thus, by doubling the base drive frequency of the COM signals in their inactive sub-frame intervals, the phase relation-
ship of the COM and SEG drive signals can be varied to turn segments on and off. This is different from varying the DC levels
of the signals as in the PWM drive approach. Figure 22-8 and Figure 22-9 are example waveforms that illustrate the princi-
ples of operation.

V
RMS OFF  2 B 2– 2

2 M 1– +
2M

--= x
VDRV

B
------------ 
 

V
RMS ON  2B2 2 M 1– +

2M
--------------------------------------= x

VDRV

B
------------ 
 

250 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

LCD Direct Drive

Figure 22-6. Digital Correlation Type-A Waveform

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 251

LCD Direct Drive

Figure 22-7. Digital Correlation Type-B Waveform

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

252 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

LCD Direct Drive

The RMS voltage applied to on and off segments can be calculated as follows:

Where B is the bias and M is the duty (number of COMs). This leads to a discrimination ratio (D) of 1.291 for four COMs.
Digital correlation mode also has the ability to drive 3-V displays from 1.8-V VDD.

22.2.2 Recommended Usage of Drive Modes

The PWM drive mode has higher discrimination ratios compared to the digital correlation mode, as explained in 22.2.1.1
PWM Drive and 22.2.1.2 Digital Correlation. Therefore, the contrast in digital correlation method is lower than PWM method
but digital correlation has lower power consumption because its waveforms toggle at low frequencies.

The digital correlation mode creates reduced, but acceptable contrast on TN displays, but no noticeable difference in contrast
or viewing angle on higher contrast STN displays. Because each mode has strengths and weaknesses, recommended usage
is as follows.

22.2.3 Digital Contrast Control

In all drive modes, digital contrast control can be used to change the contrast level of the segments. This method reduces
contrast by reducing the driving time of the segments. This is done by inserting a ‘Dead-Time’ interval after each frame. Dur-
ing dead time, all COM and SEG signals are driven to a logic 1 state. The dead time can be controlled in fine resolution.
Figure 22-8 illustrates the dead-time contrast control method for 1/3 bias and 1/4 duty implementation.

Figure 22-8. Dead-Time’ Contrast Control

Table 22-1. Recommended Usage of Drive Modes

Display Type Deep-Sleep Mode Sleep/Active Mode Notes

Four COM TN
Glass

Digital correlation PWM 1/3 bias
Firmware must switch between LCD drive modes before going to deep
sleep or waking up.

Four COM STN
Glass

Digital correlation No contrast advantage for PWM drive with STN glass.

Eight and Sixteen
COM, STN

Not supported
PWM 1/4 bias and
1/5 bias

Supported only in the high-speed LCD mode. The low-speed clock is not
fast enough to make the PWM work at high multiplex ratios.

V
RMS OFF  M 1– 

2M
------------------= x VDD 

V
RMS ON  2 M 1– +

2M
----------------------------= x VDD 

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

Two Frames of of Type A Waveform with Dead-time

(Example for 1/4th Duty and 1/3rd bias)

Dead-Time

t0 t1 t2dt dtt3

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 253

LCD Direct Drive

22.3 Block Diagram

Figure 22-9. Block Diagram of LCD Direct Drive System

22.3.1 How it Works

The LCD controller block contains two generators; one with
a high-speed clock source HFCLK and the other with a low-
speed clock source (32 kHz) derived from the ILO. These
are called high-speed LCD master generator and low-speed
LCD master generator, respectively. Both the generators
support PWM and digital correlation drive modes. PWM
drive mode with low-speed generator requires external
resistors, as explained in PWM Drive on page 244.

The multiplexer selects one of these two generator outputs
to drive LCD, as configured by the firmware. The LCD pin
logic block routes the COM and SEG outputs from the gen-
erators to the corresponding I/O matrices. Any GPIO can be
used as either COM or SEG. This configurable pin assign-
ment for COM or SEG is implemented in GPIO and I/O
matrix; see High-Speed I/O Matrix on page 52. These two
generators share the same configuration registers. These
memory mapped I/O registers are connected to the system
bus (AHB) using an AHB interface.

The LCD controller works in three device power modes:
active, sleep, and deep-sleep. High-speed operation is sup-
ported in active and sleep modes. Low-speed operation is
supported in active, sleep, and deep-sleep modes. The LCD
controller is unpowered in hibernate and stop modes.

22.3.2 High-Speed and Low-Speed
Master Generators

The high-speed and low-speed master generators are simi-
lar to each other. The only exception is that the high-speed
version has larger frequency dividers to generate the frame
and sub-frame periods. This is because the clock of the
high-speed block (HFCLK) is derived from the IMO, which is
typically at 30 to 100 times the frequency of the ILO (32 kHz)
clock fed to the low-speed block. The high-speed generator
is in the active power domain and the low-speed generator
is in the deep-sleep power domain. A single set of configura-
tion registers is provided to control both high-speed and low-
speed blocks. Each master generator has the following fea-
tures and characteristics:

■ Register bit configuring the block for either Type A or
Type B drive waveforms (LCD_MODE bit in
LCD_CONTROL register).

■ Register bits to select the number of COMs (COM_NUM
field in LCD_CONTROL register). The available values
are 2, 3, and 4.

■ Operating mode configuration bits enabled to select one
of the following:

❐ Digital correlation

❐ PWM 1/2 bias

High Speed (HS)
LCD Master
Generator

AHB
interface

AHB

Low Frequency
Clock

Config&Control
Registers

LCD Mode
Select
(HS/LS)

Sub Frame
Data

Display
Data

HSIO
Matrix

LCD com[0]

Display Data [0]

LCD
Pin

Logic

Display
Data

Registers

HSIO
Matrix

HSIO
Matrix

High Frequency
Clock

LCD seg[0]

LCD com[1]

LCD seg[1]

LCD com[n]

LCD seg[n]

Active
Power Domain

DeepSleep
Power Domain

Low Speed (LS)
LCD Master
Generator

Multiplexer

Display Data [1]

Display Data [n]

HS COM Signals

HS SEG Signals

LS COM Signals

LS SEG Signals

HS Sub Frame Data

LS Sub Frame Data

COM
Signals

SEG
Signals

254 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

LCD Direct Drive

❐ PWM 1/3 bias

❐ PWM 1/4 bias (not supported in low-speed genera-
tor)

❐ PWM 1/5 bias (not supported in low-speed genera-
tor)

❐ Off/disabled. Typically, one of the two generators will
be configured to be Off

OP_MODE and BIAS fields in LCD_CONTROL bits
select the drive mode.

■ A counter to generate the sub-frame timing. The
SUBFR_DIV field in the LCD_DIVIDER register deter-
mines the duration of each sub-frame. If the divide value
written into this counter is C, the sub-frame period is 4 ×
(C+1). The low-speed generator has an 8-bit counter.
This counter generates a maximum half sub-frame
period of 8 ms from the 32-kHz ILO clock. The high-
speed generator has a 16-bit counter.

■ A counter to generate the dead time period. These coun-
ters have the same number of bits as the sub-frame
period counters and use the same clocks. DEAD_DIV
field in the LCD_DIVIDER register controls the dead time
period.

22.3.3 Multiplexer and LCD Pin Logic

The multiplexer selects the output signals of either high-
speed or low-speed master generator blocks and feeds it to
the LCD pin logic. This selection is controlled by the configu-
ration and control register. The LCD pin logic uses the sub-
frame signal from the multiplexer to choose the display data.
This pin logic will be replicated for each LCD pin.

22.3.4 Display Data Registers

Each LCD segment pin is part of an LCD port with its own
display data register, LCD_DATAnx. The device has eight
such LCD ports. Note that these ports are not real pin ports
but the ports/connections available in the LCD hardware for
mapping the segments to commons. Each LCD segment
configured is considered as a pin in these LCD ports. The
LCD_DATAnx registers are 32-bit wide and store the ON/
OFF data for all SEG-COM combination enabled in the
design. LCD_DATA0x holds SEG-COM data for COM0 to
COM3. The bits [4i+3:4i] (where 'i' is the pin number) of each
LCD_DATA0x register represent the ON/OFF data for Pin[i]
in Port[x] and COM[3,2,1,0] combinations, as shown in
Table 22-2. The LCD_DATAnx register should be pro-
grammed according to the display data of each frame. The
display data registers are Memory Mapped I/O (MMIO) and
accessed through the AHB slave interface.

22.4 Register List

Table 22-2. SEG-COM Mapping in LCD_DATA0x Registers (each SEG is a pin of the LCD port)

BITS[31:28] = PIN_7[3:0] BITS[27:24] = PIN_6[3:0]

PIN_7-COM3 PIN_7-COM2 PIN_7-COM1 PIN_7-COM0 PIN_6-COM3 PIN_6-COM2 PIN_6-COM1 PIN_6-COM0

BITS[23:20] = PIN_5[3:0] BITS[19:16] = PIN_4[3:0]

PIN_5-COM3 PIN_5-COM2 PIN_5-COM1 PIN_5-COM0 PIN_4-COM3 PIN_4-COM2 PIN_4-COM1 PIN_4-COM0

BITS[15:12] = PIN_3[3:0] BITS[11:8] = PIN_2[3:0]

PIN_3-COM3 PIN_3-COM2 PIN_3-COM1 PIN_3-COM0 PIN_2-COM3 PIN_2-COM2 PIN_2-COM1 PIN_2-COM0

BITS[7:3] = PIN_1[3:0] BITS[3:0] = PIN_0[3:0]

PIN_1-COM3 PIN_1-COM2 PIN_1-COM1 PIN_1-COM0 PIN_0-COM3 PIN_0-COM2 PIN_0-COM1 PIN_0-COM0

Table 22-3. LCD Direct Drive Register List

Register Name Description

LCD_ID This register includes the information of LCD controller' ID and revision number

LCD_DIVIDER This register controls the sub-frame and dead-time period

LCD_CONTROL This register is used to configure high-speed and low-speed generators

LCD_DATA0x LCD port pin data register for COM0 to COM3; x = port number, eight ports are available

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 255

23. CapSense

PSoC® 4 uses a capacitive touch sensing method known as CapSense® Sigma Delta (CSD). The CapSense Sigma Delta
touch sensing method provides the industry's best-in-class signal-to-noise ratio (SNR). CSD is a combination of hardware
and firmware techniques. This chapter explains how the CSD hardware is implemented in PSoC 4.

See the PSoC 4 CapSense Design Guide for more details on the basics of CSD operation, available CapSense design tools,
the easy-to-use PSoC Creator component, performance tuning using the tuner GUI, and PCB layout design considerations.

23.1 Features

PSoC 4 CapSense has the following features:

■ Robust sensing technology

■ CSD operation provides best-in-class SNR

■ High-performance sensing across a variety of overlay materials and thicknesses

■ SmartSense™ auto-tuning technology

■ Supports as many as 35 sensors

■ High-range proximity sensing

■ Water tolerant operation using shield signal, available on all GPIOs

■ Low power consumption

■ Two IDAC operation for improved scan speed and SNR

■ Any GPIO pin can be used for sensing or shielding

■ Pseudo random sequence (PRS) clock source for lower electromagnetic interference (EMI)

■ Dedicated charge tank capacitor for quick charge transfer on to shield lines

■ GPIO cell precharge support to quickly initialize external tank capacitors

23.2 Block Diagram

Figure 23-1 shows the CSD system block diagram.

http://www.cypress.com/go/an85951

256 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

CapSense

Figure 23-1. CapSense Module Block Diagram

23.3 How It Works

With CSD, each GPIO has a switched capacitance circuit
that converts the sensor capacitance into an equivalent cur-
rent. An analog multiplexer then selects one of the currents
and feeds it into the current-to-digital converter. The current-
to-digital converter is similar to a sigma delta ADC.

The output count of the current-to-digital converter, known
as raw count, is a digital value that is proportional to the sen-
sor capacitance.

Figure 23-2 shows a plot of raw count over time. When a fin-
ger touches the sensor, the sensor capacitance increases;
the raw count increases proportionally. By comparing the
change in raw count to a predetermined threshold, logic in
firmware can decide whether the sensor is active (finger is
present).

Figure 23-2. Raw Count Versus Time

Capacitance to
current converter

GPIO Pin

GPIO Pin

GPIO Pin

CS1

CS2

CSN

Sensor 1

Sensor 2

Sensor N

Capacitance to
current converter

Capacitance to
current converter

Analog
Multiplexer

Current to digital
converter (sigma

delta)

Firmware
processing

IS1

IS2

ISN

raw count touch status

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 257

CapSense

23.4 CapSense CSD Sensing

Figure 23-3 shows the block diagram of the PSoC 4 CapSense hardware.

Figure 23-3. PSoC 4 CapSense CSD Sensing

23.4.1 GPIO Cell Capacitance to Current
Converter

In the CapSense CSD system, the GPIO cells are config-
ured as switched capacitance circuits, which convert the
sensor capacitance to equivalent currents. Figure 23-4
shows a simplified diagram of the PSoC 4 GPIO cell struc-
ture.

PSoC 4 has two analog multiplexer buses: AMUXBUS A is
used for CSD sensing and AMUXBUS B is used for CSD
shielding. The GPIO switched capacitance circuit has two
possible configurations: source current to AMUXBUS A or
sink current from AMUXBUS A. Figure 23-5 shows the
switched capacitance configuration for sourcing current to
AMUXBUS A.

Figure 23-4. PSoC 4 GPIO Cell

GPIO
cell

GPIO
cell

GPIO
cell

8 bit IDAC

7 bit IDACGPIO pin

GPIO pin

GPIO pin

CMOD pin

VREF

(1.2V)

CS1

CS2

CSN

Integrating capacitor for
sigma-delta converter
CMOD

IO cells configured as switched
capacitance circuits for capacitance
to current conversion

raw
counts

 current to digital converter

AMUXBUS A forms an analog
multiplexer for the sensors

sensor 1

sensor 2

sensor N

IDAC
control

modulation clock

switching clock for
GPIO switched capacitance

circuits, frequency FSW

frequency FMOD

sigma-delta
converter

counter

sense
comparator

CapSense
clock generator

switching clock

modulation clock

(Both from
system

resources)

GPIO
Pin

VDDD

AMUXBUS
 A

AMUXBUS
B

SW1

SW2

SW3

SW4

258 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

CapSense

Figure 23-5. Sourcing Current to AMUXBUS A

Two non-overlapping, out of phase clocks of frequency FSW (see Figure 23-3) control the switches SW2 and SW3. The contin-

uous switching of SW2 and SW3 forms an equivalent resistance RS, as Figure 23-5 shows. The value of the equivalent resis-

tance RS is:

Equation 23-1

Where:

CS = Sensor capacitance

FSW = Frequency of the switching clock

The sigma delta converter maintains the voltage of AMUXBUS A at a constant VREF (this process is explained in Sigma Delta

Converter on page 259). Figure 23-6 shows the voltage waveform across the sensor capacitance.

Figure 23-6. Voltage Across Sensor Capacitance

Equation 23-3 gives the value of average current supplied to AMUXBUS A.

Equation 23-2

Figure 23-7 shows the switched capacitance configuration for sinking current from AMUXBUS A. Figure 23-8 shows the
resulting voltage waveform across CS.

CS

RS

AMUXBUS A
VDDD VDDD

SW2

SW3

AMUXBUS A

ISW
ISW

ISW

RS
1

CSF
SW

------------------=

V

t

VREF

(1.2 V)

0

TSW = 1/FSW

VDDD

SW2 Closed
SW3 Open

SW2 Open
SW3 Closed

IS CSFSW VDDD V– REF =

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 259

CapSense

Figure 23-7. Sinking Current From AMUXBUS A

Figure 23-8. Voltage Across Sensor Capacitance

Equation 23-4 gives the value of average current taken from
AMUXBUS A.

Equation 23-3

The sigma delta converter scans one sensor at a time.
AMUXBUS A is used to select one of the GPIO cells and
connects it to the input of the sigma delta converter, as
Figure 23-3 shows. The AMUXBUS A and the GPIO cell
switches (see SW3 in Figure 23-4) form this analog multi-

plexer. AMUXBUS A can connect to all PSoC 4 pins that
support CSD. See the device datasheet to know the CSD
capable pins.

See the I/O System chapter on page 47 to know how to con-
figure a GPIO cell for sensing, shielding, and connecting
CMOD.

23.4.2 CapSense Clock Generator

This block, together with the programmable clock dividers
from the system resources, generates the switching clock
FSW and the modulation clock FMOD, as Figure 23-3 shows.

For details, see the Clocking System chapter on page 57.

The switching clock is required for the GPIO cell switched
capacitance circuits. The sigma delta converter uses the
modulation clock for timing.

Any two programmable clock dividers from the system
resources can be used to divide the HFCLCK and generate
the required frequencies. See the Clocking System chapter
on page 57 for details. Typically, two cascaded clock divid-

ers are used. The first clock divider generates modulation
clock and the second one generates switching clock.

However, the final switching clock frequency depends on the
CapSense clock generator. It has the following output
options:

■ Divide by 2. Divides the clocks by two. To select this
option, clear the PRS_SELECT and BYPASS_SEL bits
in the CSD_CONFIG register.

■ Pseudo random sequence (PRS): Reduces the EMI in
the CapSense system by spreading the switching fre-
quency over a broader range. To select this option, set
the PRS_SELECT bit and clear the BYPASS_SEL bit in
the CSD_CONFIG register. You can select between 8-
and 12- bit pseudo random sequence using the
PRS_12_8 bit in the same register. Set this bit to select a
12- bit sequence; clear it for 8- bit PRS.

If PRS is selected, the maximum switching frequency is

 Equation 23-4

Where Fin is the frequency output of the switching divider.

The minimum frequency is:

Equation 23-5

Where PRS length is either 12 or 8 bits. The average
switching frequency is:

Equation 23-6

The PRS_CLEAR bit in CSD_CONFIG can be used to clear
the PRS; when set, this bit forces the pseudo-random gen-
erator to its initial state.

23.4.3 Sigma Delta Converter

The sigma delta converter converts the input current to a
corresponding digital count. It consists of a comparator, a
voltage reference VREF, a counter, and two current sourcing/

sinking digital-to-analog converters (IDACs), as Figure 23-3
shows.

CS

RS

AMUXBUS A

SW1

SW3

AMUXBUS A

ISW

ISW

ISW

V

t

VREF

(1.2 V)

0

TSW = 1/FSW

SW1 Open
SW3 Closed

SW1 Closed
SW3 Open

IS CSFSWVREF=

FSW maximum 
Fin

2
-------=

FSW minimum 
Fin

PRS length-1
--------------------------------=

FSW average 
Fin

4
-------=

http://www.cypress.com/?id=4749&rtID=107&source=an85951

260 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

CapSense

The sigma delta modulator controls the current of the 8-bit
IDAC in an on/off manner. This IDAC is known as the modu-
lation IDAC. The 7-bit IDAC, known as the compensation
IDAC, is either always on or always off.

The sigma delta converter can operate in either single IDAC
mode or dual IDAC mode. In the single IDAC mode, the
compensation IDAC is always off. In the dual IDAC mode,
the compensation IDAC is always on.

The sigma delta converter also requires an external integrat-
ing capacitor CMOD, as Figure 23-1 shows. The recom-

mended value of CMOD is 2.2 nF. PSoC 4 has a dedicated

CMOD pin. See the pinout in the device datasheet for details.

The sigma delta modulator maintains the voltage across
CMOD at VREF. It works in one of the following modes:

■ IDAC sourcing mode: If the switched capacitor circuit
sinks current from AMUXBUS A, the IDACs source cur-
rent to AMUXBUS A to balance its voltage.

■ IDAC sinking mode: In this mode, the IDACs sink current
from CMOD and the switched capacitor circuit sources

current to CMOD.

In both cases, the modulation IDAC current is switched on
and off corresponding to the small voltage variations across
CMOD to maintain the CMOD voltage at VREF.

The sigma delta converter can operate from 8-bit to 16-bit
resolutions. In the single IDAC mode, the raw count is pro-
portional to the sensor capacitance. If 'N' is the resolution of
the sigma delta converter and IMOD is the value of the modu-

lation IDAC current, the approximate value of raw count in
IDAC sourcing mode is given by Equation 16-7.

Equation 23-7

Similarly, the approximate value of raw count in IDAC sink-
ing mode is:

Equation 23-8

In both cases, the raw count is proportional to sensor capac-
itance CS. This raw count can be processed by the firmware

to detect touches. You can use both the IDACs in a dual
IDAC mode to improve the CapSense performance.

In this dual IDAC mode, the compensation IDAC is always
on. If ICOMP is the compensation IDAC current, the equation

for the raw count in IDAC sourcing mode is:

Equation 23-9

Raw count in IDAC sinking mode is given by equation 16-10.

Equation 23-10

Note that raw count values are always positive.

The hardware parameters such as ICOMP, IMOD, and FSW,

should be tuned to optimum values for reliable touch detec-
tion. For a detailed discussion of the tuning process, see the
PSoC 4 CapSense Design Guide.

Registers CSD_CONFIG, CSD_COUNTER, and
CSD_IDAC control the operation of the sigma delta con-
verter. The important bits in the CSD_CONFIG register are:

■ ENABLE in CSD_CONFIG: Master enable of the CSD
block. Must be set to '1' for any CSD operation.

■ POLARITY in CSD_CONFIG: Selects between IDAC
sinking mode and IDAC sourcing mode. 0: IDAC sourc-
ing mode, 1: IDAC sinking mode.

■ SENSE_COMP_BW in CSD_CONFIG: Selects the
bandwidth of the sensing comparator. Setting this bit
gives high bandwidth and clearing it gives low band-
width. High bandwidth is recommended for CSD opera-
tion.

■ SENSE_COMP_EN in CSD_CONFIG: Turns on the
sense comparator circuit. 0: Sense comparator is pow-
ered off. 1: Sense comparator is powered on.

■ SENSE_EN: Enables the sigma delta modulator output.
Also turns on the IDACs.

The IDACs must be configured properly for CSD operation.
See the CSD_IDAC register in the PSoC 4100/4200 Family:
PSoC 4 Registers TRM for details.

CSD_COUNTER register is used to initiate a sampling of
the currently selected sensor and to read the result. The 16-
bit COUNTER field in this register increments whenever the
comparator is sampled (at the modulation clock frequency)
and the sample is 1. Firmware typically writes ‘0’ to this field
whenever a new sense operation is initiated. The 16-bit
PERIOD field in the CSD_COUNTER register is used to ini-
tiate the capacitance to digital conversion. Writing a non-
zero value to this register initiates a sensing operation. The
value written to this field by the firmware determines the
period during which the COUNTER field samples the com-
parator output.

The clocks, GPIOs, IDACs, and the sigma delta modulator
must be properly configured before starting the CSD opera-
tion. The period field decrements after every modulation
clock cycle. When it reaches 0, the COUNTER field stops
incrementing. The value of this field at this time is the raw
count corresponding to the value of sensor capacitance.

Rawcount 2
NVREFFSW

IMOD
-------------------------CS=

Rawcount 2
N VDD VREF– FSW

IMOD
---CS=

Rawcount 2
NVREFFSW

IMOD
-------------------------CS 2

NICOMP

IMOD
----------------–=

Rawcount 2
N VDD VREF– FSW

IMOD
---CS 2

NICOMP

IMOD
----------------–=

http://www.cypress.com/go/an85951
http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?rID=78807
http://www.cypress.com/?rID=78807

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 261

CapSense

23.5 CapSense CSD Shielding

PSoC 4 CapSense supports shield electrodes for waterproofing and proximity sensing. For waterproofing, the shield elec-
trode is always kept at the same potential as the sensors. PSoC 4 CapSense has a shielding circuit that drives the shield
electrode with a replica of the sensor switching signal (see GPIO Cell Capacitance to Current Converter on page 257) to nul-
lify the potential difference between sensors and the shield electrode. See the PSoC 4 CapSense Design Guide to under-
stand the basics of shielding.

In the sensing circuit, the sigma delta converter keeps the AMUXBUS A at VREF (see Sigma Delta Converter on page 259).
The GPIO cells generate the sensor waveforms by switching the sensor between AMUXBUS A and a supply rail (either VDD
or ground, depending on the configuration). The shielding circuit works in a similar way; AMUXBUS B is always kept at VREF.
The GPIO cell switches the shield between AMUXBUS B and a supply rail (either VDDD or ground, the same configuration as
the sensor). This process generates a replica of the sensor switching waveform on the shield electrode.

Depending on how AMUXBUS B is maintained at VREF, two different configurations are possible.

■ Shield driving using VREF buffer: In this configuration, a voltage buffer is used to drive AMUXBUS B to VREF, as

Figure 23-9 shows. An external CSH_TANK capacitor is recommended to reduce switching transients. Setting the

REBUF_OUTSEL bit in the CSD_CONFIG register connects the buffer output to AMUXBUS B. The REFBUF_DRV bit
field in the same register can be used to set the drive strength of the buffer. Writing a '0' to this field disables the buffer;
writing 1, 2, and 3 selects the low, mid, and high-current drive modes respectively.

Figure 23-9. Shield Driving Using VREF Buffer

■ Shield driving using GPIO cell precharge: This configuration requires an external CSH_TANK capacitor, as Figure 23-10

shows. A special GPIO cell and a reference comparator is used to charge the CSH_TANK capacitor and hence the AMUX-

BUS B to VREF. The reference comparator always monitors the voltage on the CSH_TANK capacitor and controls the

GPIO cell switch to keep the voltage at VREF. The reference comparator connects to the CSH_TANK capacitor using a ded-

icated sense line known as Channel 2 sensing line, as Figure 23-10 shows.

GPIO
Cell

GPIO Pin

GPIO Pin

VREF

Shield Tank
 Capacitor
(optional)

Shield Electrode

(1.2V)

AMUXBUS B
(Always kept at VREF)

VREF Buffer

CSH_TANK

CSHIELD

Shield
electrode

capacitance

http://www.cypress.com/go/an85951

262 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

CapSense

Figure 23-10. Shield Driving Using GPIO Precharge

This GPIO cell precharge capability is available only on a
fixed CSH_TANK pin. See the device pinout in the device

datasheet for details.

COMP_MODE bit in the CSD_CONFIG register selects
between the reference buffer precharge and GPIO pre-
charge; 0: reference buffer precharge, 1: GPIO precharge.

23.5.1 CMOD Precharge

When the CapSense hardware is enabled for the first time,
the voltage across CMOD starts at zero. Then the sigma

delta converter slowly charges the CMOD to VREF. The

charging current is supplied by the IDACs in the IDAC sourc-
ing mode and by the sensor switched capacitance circuit in
the IDAC sinking mode. However, this is a slow process
because CMOD is a relatively large capacitor.

Precharging of CMOD is the process of quickly initializing the

voltage across CMOD to VREF. Precharging reduces the time

required for the sigma delta converter to start its operation.
There are two options for precharging CMOD.

■ Precharge using VREF buffer: When the shield is

enabled, the VREF buffer output is always connected to

AMUXBUS B (Figure 23-9). To precharge using the
VREF buffer, CMOD is initially connected to AMUXBUS B.

After the precharging process, CMOD is connected to

AMUXBUS A for normal sigma delta operation. When
the shield is disabled, the VREF buffer output is always

connected to AMUXBUS A for precharging and discon-
nected afterwards.

■ Precharge using GPIO cell: In this configuration, a spe-
cial GPIO cell and a reference comparator is used to
charge the CMOD capacitor to VREF. This GPIO cell pre-

charge capability is available only on a fixed CMOD pin.

See the pinout in the device datasheet for details. The
comparator used for this purpose is the same reference
comparator used for CSH_TANK precharge.
COMP_PIN bit in the CSD_CONFIG register is used to

select which capacitor is connected to the reference
comparator. If this bit is 0, the sense line designated as
"Channel 1" is used to connect CMOD to the reference

comparator as Figure 23-11 shows; if this bit is 1, Chan-
nel 2 sense line is used to connect CSH_TANK to the
reference comparator, as Figure 23-10 shows. Note that
the GPIO cells must be configured properly for the GPIO
cell precharge to work.

Figure 23-11. GPIO Cell Precharge

Precharge using a GPIO cell is faster than using the
VREF buffer. Therefore, GPIO precharge is the recom-

mended precharge configuration. However, if you do not
need a fast initialization of CapSense, use the VREF buf-

fer precharge.

The Channel 1 sense line can also be used to connect
CMOD to the sensing comparator in the sigma delta mod-

ulator. Setting the SENSE_INSEL bit in the
CSD_CONFIG register to '1' enables this option. Clear-
ing this bit connects CMOD to the sensing comparator

using AMUXBUS A.

GPIO
Cell

GPIO Pin

CSH_TANK Pin

Shield Tank
 Capacitor

Shield Electrode

CSH_TANK

CSHIELD

Shield
electrode

capacitance

AMUXBUS B
(Always kept at VREF)

GPIO cell switch

VDD

VREF (1.2V)

Reference
Comparator

Channel 2 sensing line

CMOD Pin

CMOD

AMUXBUS A
(Always kept at VREF)

GPIO cell switch

VREF (1.2V)

Reference
Comparator

Channel 1 sensing line

VDD

http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?id=4749&rtID=107&source=an85951

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 263

CapSense

23.6 General-Purpose Resources: IDACs

If the CapSense block is not used for touch sensing, the two IDACs can be used as general-purpose analog blocks.

The 8-bit IDAC can operate in either 0 to 306 µA (1.2 µA/bit) or 0 to 612 µA (2.4 µA/bit) ranges. The 7-bit IDAC supports 0 to
152.4 µA (1.2 µA/bit) and 0 to 304.8 µA (2.4 µA/bit) ranges.

Both the 8-bit and 7-bit IDACs can connect to GPIOs using AMUXBUS A and AMUXBUS B. It is also possible to connect both
IDACs to a single AMUXBUS. The IDACS can operate in three different modes: CSD-only mode, General-purpose (GP)
mode, and CSD and GP mode. Table 23-1 describes how IDAC1 and IDAC2 are connected to AMUXBUS A and AMUXBUS
B in each of these modes.

See the CSD_IDAC register in the PSoC 4100/4200 Family: PSoC 4 Registers TRM for details. The CSD_CONFIG register
can be used to enable the IDACs and set the polarity, as mentioned in Sigma Delta Converter on page 259. See the I/O
System chapter on page 47 for details on how to connect GPIOs to AMUXBUS A and B.

23.7 Register List

Table 23-1. IDAC Modes

Mode AMUXBUS A AMUXBUS B

CSD only Both IDACs sink/source current at 1.2 V No IDACs connected

General-purpose mode 8-bit IDAC sink/source current 7-bit IDAC sink/source current

CSD and GP mode 8-bit IDAC sink/source current at 1.2 V 7-bit IDAC sink/source current

Table 23-2. CapSense Register List

Register Name Description

CSD_CONFIG This register is used to configure and control the CSD block and its resources.

CSD_IDAC This register is used to control the IDAC current settings.

CSD_COUNTER This register is used to initiate a sampling of the selected capacitive sensor and read the result of conversion.

CSD_STATUS This register allows the observation of key signals in the CSD block.

CSD_INTR This is the CSD interrupt request register.

http://www.cypress.com/?rID=78807

264 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

CapSense

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 265

24. Temperature Sensor

PSoC® 4 has an on-chip temperature sensor that is used to measure the internal die temperature. The sensor consists of a
transistor connected in diode configuration.

24.1 Features

The temperature sensor has the following features:

■ ± 5° Celsius accuracy over temperature range –40 °C to +85 °C

■ 0.5° Celsius/LSB resolution (without amplification) when using a 12-bit SAR ADC with a 1.024-V reference

■ 10 µs settling time

24.2 How it Works

The temperature sensor consists of a single bipolar junction transistor (BJT) in the form of a diode. Its base-to-emitter voltage
(VBE) has a strong dependence on temperature at a constant collector current and zero collector-base voltage. This property

is used to calculate the die temperature by measuring the VBE of the transistor using SAR ADC, as shown in Figure 24-1.

Figure 24-1. Temperature Sensing Mechanism

The analog output from the sensor (VBE) is measured using the SAR ADC. Die temperature in °C can be calculated from the

ADC results as given in the following equation:

Equation 24-1

■ Temp is the slope compensated temperature in °C represented as Q16.16 fixed point number format.

■ ‘A’ is the 16-bit multiplier constant. The value of A is determined using the PSoC 4 family characterization data of two point
slope calculation. It is calculated as given in the following equation.

Temperature
Sensor

S
A

R
M

U
X

SAR ADC CPU

Ibias

2.5 uA
SAR_MUX_FW_
TEMP_VPLUS

Vssa

Current from Precision
Reference Block

vplus

vminus
12 bit

1.2 V

Vssa

vssa_kelvin

Temp A SARout 2
10

xB+  Tadjust+=

266 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Temperature Sensor

Equation 24-2

Where,

SAR100C = ADC counts at 100°C

SAR–40C = ADC counts at –40°C

Constant 'A' is stored in a register SFLASH_SAR_TEMP_MULTIPLIER.

■ ‘B’ is the 16-bit offset value. The value of B is determined on a per die basis by taking care of all the process variations and
the actual bias current (Ibias) present in the chip. It is calculated as given in the following equation.

Equation 24-3

Where,

SAR100C = ADC counts at 100°C

Constant 'B' is stored in a register SFLASH_SAR_TEMP_OFFSET.

■ Tadjust is the slope correction factor in °C. The temperature sensor is corrected for dual slopes using the slope correction
factor. It is evaluated based on the result obtained without slope correction, that is, evaluating Tinitial = (A×SARout+ 210×B).
If it is greater than the center value (15°C), then Tadjust is given by the following equation.

Equation 24-4

If less than center value, then Tadjust is given by the following equation.

Equation 24-5

Figure 24-2. Temperature Error Compensation

Note A and B are 16-bit constants stored in flash during factory calibration. Note that these constants are valid only when the
SAR ADC is running at 12-bit resolution with a 1.024-V reference.

24.3 Temperature Sensor Configuration

As shown in Figure 24-3, the temperature sensor output is routed to the positive input of SAR ADC via dedicated switches,
which can be controlled by sequencer, firmware, or digital system interconnect (DSI). The control signal for the switch
(SAR_MUX_FW_TEMP_VPLUS shown in Figure 24-1) enables the temperature sensor by passing bias current from preci-
sion reference block and connecting the sensor output to the positive input of SAR ADC. The SAR_MUX_FW_TEMP_VPLUS
control bit is a part of the SAR_MUX_SWITCH0 register. The switch status can be read using the
SAR_MUX_SWITCH_STATUS register.

A signed int  2
16 100C 40C– –

SAR100C SAR 40C––
-- 
 

 
 =

B unsigned int  2
6
x100C

A SAR100C

2
10

 
 
 

–
 
 
 

=

Tadjust
0.5C

100C 15C–
----------------------------------- 100C 2

16
Tinitial–  

 =

Tadjust
0.5C

40C 15C+
-------------------------------- 40C 2

16
Tinitial–  

 =

Temperature
Error

Actual Temperature
15°C 100°C-40°C

0°C

0.5°C

-0.5°C

Compensation curve

Sensor Error Curve

Tadjust

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 267

Temperature Sensor

Figure 24-3. Routing Temperature Sensor Output to SAR ADC

24.4 Algorithm
1. Enable the SARMUX and SAR ADC.

2. Configure SAR ADC in single-ended mode with VNEG = VSS, VREF = 1.024 V, 12-bit resolution, and right-aligned result.

3. Enable the temperature sensor.

4. Get the digital output from the SAR ADC.

5. Fetch ‘A’ from SFLASH_SAR_TEMP_MULTIPLIER and ‘B’ from SFLASH_SAR_TEMP_OFFSET.

6. Calculate the die temperature using the linear equation (Equation 24-1).

For example, let A = 0xBC4B and B = 0x65B4. Assume that the output of SAR ADC (VBE) is 0x595 at a given tempera-

ture.

Firmware does the following calculations:

a. Multiply A and VBE: 0xBC4B × 0x595 = (–17333)10 × (1429)10 = (–24768857)10

b. Multiply B and 1024: 0x65B4 × 0x400 = (26036)10 × (1024)10 = (26660864)10

c. Add the result of steps 1 and 2 to get Tinitial: (–24768857)10 + (26660864)10 = (1892007)10 = 0x1CDEA7

d. Calculate Tadjust using Tinitial value: Tinitial is the upper 16 bits multiplied by 216, that is, 0x1C00 = (1835008)10. It is

greater than 15°C (0x1C - upper 16 bits). Use Equation 4 to calculate Tadjust. It comes to 0x6C6C = (27756)10

S
A

R
M

U
X

268 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Temperature Sensor

e. Add Tadjust to Tinitial: (1892007)10 + (27756)10 = (1919763)10 = 0x1D4B13

f. The integer part of temperature is the upper 16 bits = 0x001D = (29)10

g. The decimal part of temperature is the lower 16 bits = 0x4B13 = (0.19219)10

h. Combining the result of steps f and g, Temp = 29.19219 °C ~ 29.2°C

24.5 Registers

Name Description

SAR_MUX_SWITCH0
This register has the SAR_MUX_FW_TEMP_VPLUS field to connect the temperature sensor to the
SAR MUX terminal.

SAR_MUX_SWITCH_STATUS This register provides the status of the temperature sensor switch connection to SAR MUX.

SFLASH_SAR_TEMP_MULTIPLIER Multiplier constant 'A' as defined in Equation 24-1.

SFLASH_SAR_TEMP_OFFSET Constant 'B' as defined in Equation 24-1.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 269

Section G: Program and Debug

This section encompasses the following chapters:

■ Program and Debug Interface chapter on page 271

■ Nonvolatile Memory Programming chapter on page 279

Top Level Architecture

Program and Debug Block Diagram

CPU Subsystem

SRAM
32 KB

SRAM Controller

ROM
8 KB

ROM Controller

FLASH
256 KB

Read Accelerator

SPCIFSWD/TC

Cortex
M0

48 MHz

System Interconnect (Multi Layer AHB)

IO Subsystem

80x GPIO, 14x GPIO_OVT, 2x SIO

IO
S

S
 G

P
IO

 (1
3

x
po

rt
s)

Peripherals

Peripheral Interconnect (MMIO)PCLK

High-Speed I/O Matrix

270 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 271

25. Program and Debug Interface

The PSoC® 4 Program and Debug interface provides a communication gateway for an external device to perform program-
ming or debugging. The external device can be a Cypress-supplied programmer and debugger, or a third-party device that
supports programming and debugging. The serial wire debug (SWD) interface is used as the communication protocol
between the external device and PSoC 4.

25.1 Features
■ Programming and debugging through the SWD interface

■ Four hardware breakpoints and two hardware watchpoints while debugging

■ Read and write access to all memory and registers in the system while debugging, including the Cortex-M0 register bank
when the core is running or halted

25.2 Functional Description

Figure 25-1 shows the block diagram of the program and debug interface in PSoC 4. The Cortex-M0 debug and access port
(DAP) acts as the program and debug interface. The external programmer or debugger, also known as the "host", communi-
cates with the DAP of the PSoC 4 "target" using the two pins of the SWD interface - the bidirectional data pin (SWDIO) and
the host-driven clock pin (SWDCK). The SWD physical port pins (SWDIO and SWDCK) communicate with the DAP through
the high-speed I/O matrix (HSIOM). See the I/O System chapter on page 47 for details on HSIOM.

Figure 25-1. Program and Debug Interface

The DAP communicates with the Cortex-M0 CPU using the ARM-specified advanced high-performance bus (AHB) interface.
AHB is the systems interconnect protocol used inside the device, which facilitates memory and peripheral register access by
the AHB master. The device has two AHB masters – ARM CM0 CPU core and DAP. The external device can effectively take
control of the entire device through the DAP to perform programming and debugging operations.

H
S

IO
M

Cortex-M0 DAP

Debug Port (DP)

Access Port (AP)

AP Access

SWDCK

SWDIO

SWD

Cortex-M0 CPU

AHB DAP
AHB

ARM Cortex-M0 subsystem

AHB

S
P

C
 In

te
rf

a
ce

FLASH SROM SRAM
Peripheral
Modules

AHB

PSoC 4

Host Device

272 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Program and Debug Interface

25.3 Serial Wire Debug (SWD) Interface

PSoC 4’s Cortex-M0 supports programming and debugging through the SWD interface. The SWD protocol is a packet-based
serial transaction protocol. At the pin level, it uses a single bidirectional data signal (SWDIO) and a unidirectional clock signal
(SWDCK). The host programmer always drives the clock line, whereas either the host or the target drives the data line. A
complete data transfer (one SWD packet) requires 46 clocks and consists of three phases:

■ Host Packet Request Phase – The host issues a request to the PSoC 4 target.

■ Target Acknowledge Response Phase – The PSoC 4 target sends an acknowledgement to the host.

■ Data Transfer Phase – The host or target writes data to the bus, depending on the direction of the transfer.

When control of the SWDIO line passes from the host to the target, or vice versa, there is a turnaround period (Trn) where nei-
ther device drives the line and it floats in a high-impedance (Hi-Z) state. This period is either one-half or one and a half clock
cycles, depending on the transition.

Figure 25-2 shows the timing diagrams of read and write SWD packets.

Figure 25-2. SWD Write and Read Packet Timing Diagrams

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the host

a. The start bit initiates a transfer; it is always logic 1.

b. The “AP not DP” (APnDP) bit determines whether
the transfer is an AP access – 1b1 or a DP access –
1b0.

c. The “Read not Write” bit (RnW) controls which direc-
tion the data transfer is in. 1b1 represents a ‘read
from’ the target, or 1b0 for a ‘write to’ the target.

d. The Address bits (A[3:2]) are register select bits for
AP or DP, depending on the APnDP bit value. See
Table 25-3 and Table 25-4 for definitions.
Note Address bits are transmitted with the LSB first.

e. The parity bit contains the parity of APnDP, RnW, and
ADDR bits. It is an even parity bit; this means, when
XORed with the other bits, the result will be 0.

If the parity bit is not correct, the header is ignored by
PSoC 4; there is no ACK response (ACK = 3b111).
The programming operation should be aborted and
retried again by following a device reset.

f. The stop bit is always logic 0.

g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO driven
by the target

a. The ACK[2:0] bits represent the target to host
response, indicating failure or success, among other
results. See Table 25-1 for definitions.
Note ACK bits are transmitted with the LSB first.

3. Data Transfer Phase: SWDIO driven by either target or
host depending on direction

a. The data for read or write is written to the bus, LSB
first.

S
ta

rt
 (

1
)

A
P

nD
P

R
nW

 (
0

)

A[2:3]

P
ar

ity

S
to

p
(0

)

P
ar

k
(1

)

T
rn

 (
H

i-
Z

)

1

w
da

ta
[0

]

P
ar

ity

ACK[0:2]

0 0

w
da

ta
[1

]

w
da

ta
[3

1]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK Phase Host Data Transfer Phase

SWD Write Packet

S
ta

rt
 (

1)

A
P

nD
P

R
nW

 (
1)

A[2:3]

P
ar

ity

S
to

p
(0

)

P
ar

k
(1

)

T
rn

 (
H

i-Z
)

1

rd
at

a[
0]

P
ar

ity

ACK[0:2]

0 0

rd
at

a[
1]

rd
at

a[
31

]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK and Data Transfer Phases

SWD Read Packet

SWDCK

SWDIO

SWDCK

SWDIO

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 273

Program and Debug Interface

b. The data parity bit indicates the parity of the data
read or written. It is an even parity; this means when
XORed with the data bits, the result will be 0.

If the parity bit indicates a data error, corrective
action should be taken. For a read packet, if the host
detects a parity error, it must abort the programming
operation and restart. For a write packet, if the target
detects a parity error, it generates a FAULT ACK
response in the next packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. It is recommended to generate three or more
dummy clock cycles between two SWD packets if the clock
is not free-running or to make the clock free-running in IDLE
mode.

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

25.3.1 SWD Timing Details

The SWDIO line is written to and read at different times
depending on the direction of communication. The host
drives the SWDIO line during the Host Packet Request
Phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response Phase and, if the target is reading
out data, during the Data Transfer Phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 25-1 and Figure 25-2 illustrate the timing of SWDIO bit
writes and reads.

25.3.2 ACK Details

The acknowledge (ACK) bit-field is used to communicate
the status of the previous transfer. OK ACK means that pre-
vious packet was successful. A WAIT response requires a
data phase. For a FAULT status, the programming operation
should be aborted immediately. Table 25-2 shows the ACK
bit-field decoding details.

Details on WAIT and FAULT response behaviors are as fol-
lows:

■ For a WAIT response, if the transaction is a read, the
host should ignore the data read in the data phase. The
target does not drive the line and the host must not
check the parity bit as well.

■ For a WAIT response, if the transaction is a write, the
data phase is ignored by the PSoC 4. But, the host must
still send the data to be written to complete the packet.
The parity bit corresponding to the data should also be
sent by the host.

■ For a WAIT response, it means that the PSoC 4 is pro-
cessing the previous transaction. The host can try for a
maximum of four continuous WAIT responses to see if
an OK response is received. If it fails, then the program-
ming operation should be aborted and retried again.

■ For a FAULT response, the programming operation
should be aborted and retried again by doing a device
reset.

25.3.3 Turnaround (Trn) Period Details

There is a turnaround period between the packet request
and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in
Figure 25-2. According to the SWD protocol, the Trn period
is used by both the host and target to change the drive
modes on their respective SWDIO lines. During the first Trn
period after the packet request, the target starts driving the
ACK data on the SWDIO line on the rising edge of SWDCK.
This action ensures that the host can read the ACK data on
the next falling edge. Thus, the first Trn period lasts only
one-half cycle. The second Trn period of the SWD packet is
one and a half cycles. Neither the host nor the PSoC 4
should drive the SWDIO line during the Trn period.

Table 25-1. SWDIO Bit Write and Read Timing

SWD Packet Phase
SWDIO Edge

Falling Rising

Host Packet Request
Host Write Target Read

Host Data Transfer

Target Ack Response
Host Read Target Write

Target Data Transfer

Table 25-2. SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 3b001

WAIT 3b010

FAULT 3b100

NO ACK 3b111

274 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Program and Debug Interface

25.4 Cortex-M0 Debug and Access Port (DAP)

The Cortex-M0 program and debug interface includes a Debug Port (DP) and an Access Port (AP), which combine to form the
DAP. The debug port implements the state machine for the SWD interface protocol that enables communication with the host
device. It also includes registers for the configuration of access port, DAP identification code, and so on. The access port con-
tains registers that enable the external device to access the Cortex-M0 DAP-AHB interface. Typically, the DP registers are
used for a one time configuration or for error detection purposes, and the AP registers are used to perform the programming
and debugging operations. Complete architecture details of the DAP is available in the ARM® Debug Interface v5 Architec-
ture Specification.

25.4.1 Debug Port (DP) Registers

Table 25-3 shows the Cortex-M0 DP registers used for programming and debugging, along with the corresponding SWD
address bit selections. The APnDP bit is always zero for DP register accesses. Two address bits (A[3:2]) are used for select-
ing among the different DP registers. Note that for the same address bits, different DP registers can be accessed depending
on whether it is a read or a write operation. See the ARM® Debug Interface v5 Architecture Specification for details on all of
the DP registers.

25.4.2 Access Port (AP) Registers

Table 25-4 lists the main Cortex-M0 AP registers that are used for programming and debugging, along with the corresponding
SWD address bit selections. The APnDP bit is always one for AP register accesses. Two address bits (A[3:2]) are used for
selecting the different AP registers.

Table 25-3. Main Debug Port (DP) Registers

Register APnDP
Address

A[3:2]
RnW Full Name Register Functionality

ABORT 0 (DP) 2b00 0 (W) AP Abort Register
This register is used to force a DAP abort and to clear the
error and sticky flag conditions.

IDCODE 0 (DP) 2b00 1 (R)
Identification Code
Register

This register holds the SWD ID of the Cortex-M0 CPU, which
is 0x0BB11477.

CTRL/STAT 0 (DP) 2b01 X (R/W)
Control and Status
Register

This register allows control of the DP and contains status
information about the DP.

SELECT 0 (DP) 2b10 0 (W) AP Select Register
This register is used to select the current AP. In PSoC 4, there
is only one AP, which interfaces with the DAP AHB.

RDBUFF 0 (DP) 2b11 1 (R) Read Buffer Register This register holds the result of the last AP read operation.

Table 25-4. Main Access Port (AP) Registers

Register APnDP
Address

A[3:2]
RnW Full Name Register Functionality

CSW 1 (AP) 2b00 X (R/W)
Control and Status
Word Register
(CSW)

This register configures and controls accesses through the
memory access port to a connected memory system (which is
the PSoC 4 Memory map)

TAR 1 (AP) 2b01 X (R/W)
Transfer Address
Register

This register is used to specify the 32-bit memory address to
be read from or written to

DRW 1 (AP) 2b11 X (R/W)
Data Read and Write
Register

This register holds the 32-bit data read from or to be written to
the address specified in the TAR register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 275

Program and Debug Interface

25.5 Programming the PSoC 4
Device

PSoC 4 is programmed using the following sequence. Refer
to the PSoC 4 Device Programming Specifications for com-
plete details on the programming algorithm, timing specifica-
tions, and hardware configuration required for programming.

1. Acquire the SWD port in PSoC 4.

2. Enter the programming mode.

3. Execute the device programming routines such as Sili-
con ID Check, Flash Programming, Flash Verification,
and Checksum Verification.

25.5.1 SWD Port Acquisition

25.5.1.1 Primary and Secondary SWD Pin
Pairs

The first step in device programming is to acquire the SWD
port in PSoC 4. Refer to the device datasheet for information
on SWD pins.

If two SWD pin pairs are available in the device, the
SWD_CONFIG register in the supervisory flash region is
used to select between one of the two SWD pin pairs that
can be used for programming and debugging. Note that only
one of the SWD pin pairs can be used during any program-
ming or debugging session. The default selection for
devices coming from the factory is the primary SWD pin pair.
To select the secondary SWD pin pair, it is necessary to pro-
gram the device using the primary pair with the hex file that
enables the secondary pin pair configuration. Afterwards,
the secondary SWD pin pair may be used.

25.5.1.2 SWD Port Acquire Sequence

The first step in device programming is for the host to
acquire the target's SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin.
After removing the XRES signal, the host must send an
SWD connect sequence for the device within the acquire
window to connect to the SWD interface in the DAP. The
pseudo code for the sequence is given here.

Code 1. SWD Port Acquire Pseudo Code
ToggleXRES(); // Toggle XRES pin to reset
device

//Execute ARM’s connection sequence to
acquire SWD-port
do
{

SWD_LineReset(); //perform a line reset
(50+ SWDCK clocks with SWDIO high)

ack = Read_DAP (IDCODE, out ID); //Read
the IDCODE DP register

}while ((ack != OK) && time_elapsed < 1.5 ms); //
retry connection until OK ACK or timeout

if (time_elapsed >= 1.5 ms) return FAIL; //check
for acquire time out

if (ID != CM0_ID) return FAIL; //confirm SWD ID
of Cortex-M0 CPU. (0x0BB11477)

In this pseudo code, SWD_LineReset() is the standard ARM
command to reset the debug access port. It consists of more
than 49 SWDCK clock cycles with SWDIO high. The trans-
action must be completed by sending at least one SWDCK
clock cycle with SWDIO asserted LOW. This sequence syn-
chronizes the programmer and the chip. Read_DAP() refers
to the read of the IDCODE register in the debug port. The
sequence of line reset and IDCODE read should be
repeated until an OK ACK is received for the IDCODE read
or a timeout (1.5 ms) occurs. The SWD port is said to be in
the acquired state if an OK ACK is received within the time
window and the IDCODE read matches with that of the Cor-
tex-M0 DAP.

25.5.2 SWD Programming Mode Entry

After the SWD port is acquired, the host must enter the
device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the
test mode control register (MODE register). The debug port
should also be configured before entering the device pro-
gramming mode. Timing specifications and pseudo code for
entering the programming mode are detailed in the PSoC 4
Device Programming Specifications document.

25.5.3 SWD Programming Routines
Executions

When the device is in programming mode, the external pro-
grammer can start sending the SWD packet sequence for
performing programming operations such as flash erase,
flash program, checksum verification, and so on. The pro-
gramming routines are explained in the Nonvolatile Memory
Programming chapter on page 279. The exact sequence of
calling the programming routines is given in the PSoC 4
Device Programming Specifications.

http://www.cypress.com/?rID=78468
http://www.cypress.com/?rID=78468
http://www.cypress.com/?rID=78468
http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?rID=78468
http://www.cypress.com/?rID=78468

276 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Program and Debug Interface

25.6 PSoC 4 SWD Debug
Interface

Cortex-M0 DAP debugging features are classified into two
types: invasive debugging and noninvasive debugging. Inva-
sive debugging includes program halting and stepping,
breakpoints, and data watchpoints. Noninvasive debugging
includes instruction address profiling and device memory
access, which includes the flash memory, SRAM, and other
peripheral registers.

The DAP has three major debug subsystems:

■ Debug Control and Configuration registers

■ Breakpoint Unit (BPU) – provides breakpoint support

■ Debug Watchpoint (DWT) – provides watchpoint sup-
port. Trace is not supported in Cortex-M0 Debug.

See the ARMv6-M Architecture Reference Manual for com-
plete details on the debug architecture.

25.6.1 Debug Control and Configuration
Registers

The debug control and configuration registers are used to
execute firmware debugging. The registers and their key
functions are as follows. See the ARMv6-M Architecture
Reference Manual for complete bit level definitions of these
registers.

■ Debug Halting Control and Status Register
(CM0_DHCSR) – This register contains the control bits
to enable debug, halt the CPU, and perform a single-
step operation. It also includes status bits for the debug
state of the processor.

■ Debug Fault Status Register (CM0_DFSR) – This regis-
ter describes the reason a debug event has occurred
and includes debug events, which are caused by a CPU
halt, breakpoint event, or watchpoint event.

■ Debug Core Register Selector Register (CM0_DCRSR)
– This register is used to select the general-purpose reg-
ister in the Cortex-M0 CPU to which a read or write oper-
ation must be performed by the external debugger.

■ Debug Core Register Data Register (CM0_DCRDR) –
This register is used to store the data to write to or read
from the register selected in the CM0_DCRSR register.

■ Debug Exception and Monitor Control Register
(CM0_DEMCR) – This register contains the enable bits
for global debug watchpoint (DWT) block enable, reset
vector catch, and hard fault exception catch.

25.6.2 Breakpoint Unit (BPU)

The BPU provides breakpoint functionality on instruction
fetches. The Cortex-M0 DAP in PSoC 4 supports up to four
hardware breakpoints. Along with the hardware breakpoints,
any number of software breakpoints can be created by using

the BKPT instruction in the Cortex-M0. The BPU has two
types of registers.

■ The breakpoint control register (CM0_BP_CTRL) is used
to enable the BPU and store the number of hardware
breakpoints supported by the debug system (four for
CM0 DAP in the PSoC 4).

■ Each hardware breakpoint has a Breakpoint Compare
Register (CM0_BP_COMPx). It contains the enable bit
for the breakpoint, the compare address value, and the
match condition that will trigger a breakpoint debug
event. The typical use case is that when an instruction
fetch address matches the compare address of a break-
point, a breakpoint event is generated and the processor
is halted.

25.6.3 Data Watchpoint (DWT)

The DWT provides watchpoint support on a data address
access or a program counter (PC) instruction address.
Trace is not supported by the Cortex-M0 in PSoC 4. The
DWT supports two watchpoints. It also provides external
program counter sampling using a PC sample register,
which can be used for noninvasive coarse profiling of the
program counter. The most important registers in the DWT
are as follows.

■ The watchpoint compare (CM0_DWT_COMPx) registers
store the compare values that are used by the watch-
point comparator for the generation of watchpoint
events. Each watchpoint has an associated
DWT_COMPx register.

■ The watchpoint mask (CM0_DWT_MASKx) registers
store the ignore masks applied to the address range
matching in the associated watchpoints.

■ The watchpoint function (CM0_DWT_FUNCTIONx) reg-
isters store the conditions that trigger the watchpoint
events. They may be program counter watchpoint event
or data address read/write access watchpoint events. A
status bit is also set when the associated watchpoint
event has occurred.

■ The watchpoint comparator PC sample register
(CM0_DWT_PCSR) stores the current value of the pro-
gram counter. This register is used for coarse, non-inva-
sive profiling of the program counter register.

25.6.4 Debugging the PSoC 4 Device

The host debugs the target PSoC 4 by accessing the debug
control and configuration registers, registers in the BPU, and
registers in the DWT. All registers are accessed through the
SWD interface; the SWD debug port (SW-DP) in the Cortex-
M0 DAP converts the SWD packets to appropriate register
access through the DAP-AHB interface.

The first step in debugging the target PSoC 4 is to acquire
the SWD port. The acquire sequence consists of an SWD
line reset sequence and read of the DAP SWDID through
the SWD interface. The SWD port is acquired when the cor-

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 277

Program and Debug Interface

rect CM0 DAP SWDID is read from the target device. For
the debug transactions to occur on the SWD interface, the
corresponding pins should not be used for any other pur-
pose. See the I/O System chapter on page 47 to understand
how to configure the SWD port pins, allowing them to be
used only for SWD interface or for other functions such as
LCD and GPIO. If debugging is required, the SWD port pins
should not be used for other purposes. If only programming
support is needed, the SWD pins can be used for other pur-
poses.

When the SWD port is acquired, the external debugger sets
the C_DEBUGEN bit in the DHCSR register to enable
debugging. Then, the different debugging operations such
as stepping, halting, breakpoint configuration, and watch-

point configuration are carried out by writing to the appropri-
ate registers in the debug system.

Debugging the target device is also affected by the overall
device protection setting, which is explained in the Device
Security chapter on page 87. Only the OPEN protected
mode supports device debugging. Also, the external debug-
ger loses connection to the target device when the device
enters either Hibernate or Stop modes. The connection must
be re-established after the device enters the Active mode
again. The external debugger and the target device connec-
tion is not lost for a device transition from Active mode to
either Sleep or Deep-Sleep modes. When the device enters
the Active mode from either Deep-Sleep or Sleep modes,
the debugger can resume its actions without initiating a con-
nect sequence again.

25.7 Registers

Table 25-5. List of Registers

Register Name Description

CM0_DHCSR Debug Halting Control and Status Register

CM0_DFSR Debug Fault Status Register

CM0_DCRSR Debug Core Register Selector Register

CM0_DCRDR Debug Core Register Data Register

CM0_DEMCR Debug Exception and Monitor Control Register

CM0_BP_CTRL Breakpoint control register

CM0_BP_COMPx Breakpoint Compare Register

CM0_DWT_COMPx Watchpoint Compare Register

CM0_DWT_MASKx Watchpoint Mask Register

CM0_DWT_FUNCTIONx Watchpoint Function Register

CM0_DWT_PCSR Watchpoint Comparator PC Sample Register

278 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Program and Debug Interface

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 279

26. Nonvolatile Memory Programming

Nonvolatile memory programming refers to the programming of flash memory in the PSoC® 4 device. This chapter explains
the different functions that are part of device programming, such as erase, write, program, and checksum calculation.
Cypress-supplied programmers and other third-party programmers can use these functions to program the PSoC 4 device
with the data in an application hex file. They can also be used to perform bootload operations where the CPU will update a
portion of the flash memory.

26.1 Features
■ Supports programming through the debug and access port (DAP) and Cortex-M0 CPU

■ Supports both blocking and non-blocking flash program and erase operations from the Cortex-M0 CPU

26.2 Functional Description

Flash programming operations are implemented as system calls. System calls are executed out of SROM in the privileged
mode of operation. The user has no access to read or modify the SROM code. The DAP or the CM0 CPU requests the sys-
tem call by writing the function opcode and parameters to the System Performance Controller Interface (SPCIF) input regis-
ters, and then requesting the SROM to execute the function. Based on the function opcode, the System Performance
Controller (SPC) executes the corresponding system call from SROM and updates the SPCIF status register. The DAP or the
CPU should read this status register for the pass/fail result of the function execution. As part of function execution, the code in
SROM interacts with the SPCIF to do the actual flash programming operations.

PSoC 4 flash is programmed using a Program Erase Program (PEP) sequence. The flash cells are all programmed to a
known state, erased, and then the selected bits are programmed. This sequence increases the life of the flash by balancing
the stored charge. When writing to flash the data is first copied to a page latch buffer. The flash write functions are then used
to transfer this data to flash.

External programmers program the flash memory in PSoC 4 using the SWD protocol by sending the commands to the Debug
and Access Port (DAP). The programming sequence for the PSoC 4 device with an external programmer is given in the
PSoC 4 Device Programming Specifications. Flash memory can also be programmed by the CM0 CPU by accessing the rel-
evant registers through the AHB interface. This type of programming is typically used to update a portion of the flash memory
as part of a bootload operation, or other application requirements, such as updating a lookup table stored in the flash memory.
All write operations to flash memory, whether from the DAP or from the CPU, are done through the SPCIF.

Note It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or unexpected
changes may be made to portions of the flash. Reset sources (see the Reset System chapter on page 83) include XRES pin,
software reset, and watchdog; make sure that these are not inadvertently activated. In addition, the low-voltage detect circuits
should be configured to generate an interrupt instead of a reset.

Note PSoC 4 implements a User Supervisory Flash (SFlash), which can be used to store application-specific information.
These rows are not part of the hex file; their programming is optional.

http://www.cypress.com/?rID=78468

280 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Nonvolatile Memory Programming

26.3 System Call Implementation

A system call consists of the following items:

■ Opcode: A unique 8-bit opcode

■ Parameters: Two 8-bit parameters are mandatory for all
system calls. These parameters are referred to as key1
and key2, and are defined as follows:

key1 = 0xB6

key2 = 0xD3 + Opcode

The two keys are passed to ensure that the user system
call is not initiated by mistake. If the key1 and key2
parameters are not correct, the SROM does not execute
the function, and returns an error code. Apart from these
two parameters, additional parameters may be required
depending on the specific function being called.

■ Return Values: Some system calls also return a value on
completion of their execution, such as the silicon ID or a
checksum.

■ Completion Status: Each system call returns a 32-bit sta-
tus that the CPU or DAP can read to verify success or
determine the reason for failure.

26.4 Blocking and Non-Blocking
System Calls

System call functions can be categorized as blocking or
non-blocking based on the nature of their execution. Block-
ing system calls are those where the CPU cannot execute
any other task in parallel other than the execution of the sys-
tem call. When a blocking system call is called from a pro-
cess, the CPU jumps to the code corresponding in SROM.
When the execution is complete, the original thread execu-
tion resumes. Non-blocking system calls allow the CPU to
execute some other code in parallel and communicate the
completion of interim system call tasks to the CPU through
an interrupt.

Non-blocking system calls are only used when the CPU initi-
ates the system call. The DAP will only use system calls dur-
ing the programming mode and the CPU is halted during this
process.

The three non-blocking system calls are Non-Blocking Write
Row, Non-Blocking Program Row, and Resume Non-Block-
ing, respectively. All other system calls are blocking.

Because the CPU cannot execute code from flash while
doing an erase or program operation on the flash, the non-
blocking system calls can only be called from a code execut-
ing out of SRAM. If the non-blocking functions are called
from flash memory, the result is undefined and may return a
bus error and trigger a hard fault when the flash fetch opera-
tion is being done.

The System Performance Controller (SPC) is the block that
generates the properly sequenced high-voltage pulses
required for erase and program operations of the flash mem-

ory. When a non-blocking function is called from SRAM, the
SPC timer triggers its interrupt when each of the sub-opera-
tions in a write or program operation is complete. Call the
Resume Non-Blocking function from the SPC interrupt ser-
vice routine (ISR) to ensure that the subsequent steps in the
system call are completed. Because the CPU can execute
code only from the SRAM when a non-blocking write or pro-
gram operation is being done, the SPC ISR should also be
located in the SRAM. The SPC interrupt is triggered once in
the case of a non-blocking program function or thrice in a
non-blocking write operation. The Resume Non-Blocking
function call done in the SPC ISR is called once in a non-
blocking program operation and thrice in a non-blocking
write operation.

The pseudo code for using a non-blocking write system call
and executing user code out of SRAM is given later in this
chapter.

26.4.1 Performing a System Call

The steps to initiate a system call are as follows:

1. Set up the function parameters: The two possible meth-
ods for preparing the function parameters (key1, key2,
additional parameters) are:

a. Write the function parameters to the
CPUSS_SYSARG register: This method is used for
functions that retrieve their parameters from the
CPUSS_SYSARG register. The 32-bit
CPUSS_SYSARG register must be written with the
parameters in the sequence specified in the respec-
tive system call table.

b. Write the function parameters to SRAM: This method
is used for functions that retrieve their parameters
from SRAM. The parameters should first be written in
the specified sequence to consecutive SRAM loca-
tions. Then, the starting address of the SRAM, which
is the address of the first parameter, should be writ-
ten to the CPUSS_SYSARG register. This starting
address should always be a word-aligned (32-bit)
address. The system call uses this address to fetch
the parameters.

2. Specify the system call using its opcode and initiating the
system call: The 8-bit opcode should be written to the
SYSCALL_COMMAND bits ([15:0]) in the
CPUSS_SYSREQ register. The opcode is placed in the
lower eight bits [7:0] and 0x00 be written to the upper
eight bits [15:8]. To initiate the system call, set the
SYSCALL_REQ bit (31) in the CPUSS_SYSREG regis-
ter. Setting this bit triggers a non-maskable interrupt that
jumps the CPU to the SROM code referenced by the
opcode parameter.

3. Wait for the system call to finish executing: When the
system call begins execution, it sets the PRIVILEGED bit
in the CPUSS_SYSREQ register. This bit can be set
only by the system call, not by the CPU or DAP. The
DAP should poll the PRIVILEGED and SYSCALL_REQ
bits in the CPUSS_SYSREG register continuously to
check whether the system call is completed. Both these
bits are cleared on completion of the system call. The

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 281

Nonvolatile Memory Programming

maximum execution time is one second. If these two bits
are not cleared after one second, the operation should
be considered a failure and aborted without executing
the following steps. Note that unlike the DAP, the CPU
application code cannot poll these bits during system
call execution. This is because the CPU executes code
out of the SROM during the system call. The application
code can check only the final function pass/fail status
after the execution returns from SROM.

4. Check the completion status: After the PRIVILEGED and
SYSCALL_REQ bits are cleared to indicate completion
of the system call, the CPUSS_SYSARG register should
be read to check for the status of the system call. If the
32-bit value read from the CPUSS_SYSARG register is
0xAXXXXXXX (where ‘X’ denotes don’t care hex val-
ues), the system call was successfully executed. For a
failed system call, the status code is 0xF00000YY where

YY indicates the reason for failure. See Table 26-1 for
the complete list of status codes and their description.

5. Retrieve the return values: For system calls that return
values such as silicon ID and checksum, the CPU or
DAP should read the CPUSS_SYSREG and
CPUSS_SYSARG registers to fetch the values returned.

26.5 System Calls

Table 26-1 lists all the system calls supported in PSoC 4
along with the function description and availability in device
protection modes. See the Device Security chapter on
page 87 for more information on the device protection set-
tings. Note that some system calls cannot be called by the
CPU as given in the table. Detailed information on each of
the system calls follows the table.

26.5.1 Silicon ID

This function returns a 12-bit family ID, 16-bit silicon ID, and an 8-bit revision ID, and the current device protection mode.
These values are returned to the CPUSS_SYSARG and CPUSS_SYSREQ registers. Parameters are passed through the
CPUSS_SYSARG and CPUSS_SYSREQ registers.

Parameters

Table 26-1. List of System Calls

System Call Description
DAP Access CPU

AccessOpen Protected Kill

Silicon ID Returns the device Silicon ID, Family ID, and Revision ID ✔ ✔ – ✔

Load Flash Bytes
Loads data to the page latch buffer to be programmed later into the
flash row, in 1 byte granularity, for a row size of 128 bytes

✔ – – ✔

Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer

✔ – – ✔

Program Row Programs a row of flash with data in the page latch buffer ✔ – – ✔

Erase All
Erases all user code in the flash array; the flash row-level protection
data in the supervisory flash area

✔ – –

Checksum
Calculates the checksum over the entire flash memory (user and super-
visory area) or checksums a single row of flash

✔ ✔ – ✔

Write Protection
This programs both flash row-level protection settings and chip-level
protection settings into the supervisory flash (row 0)

✔ ✔ –

Non-Blocking Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer. During program/erase pulses, the user may execute code from
SRAM. This function is meant only for CPU access

– – – ✔

Non-Blocking Program
Row

Programs a row of flash with data in the page latch buffer. During pro-
gram/erase pulses, the user may execute code from SRAM. This func-
tion is meant only for CPU access

– – – ✔

Resume Non-Blocking
Resumes a non-blocking write row or non-blocking program row. This
function is meant only for CPU access

– – – ✔

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD3 Key2

282 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Nonvolatile Memory Programming

Return

26.5.2 Load Flash Bytes

This function loads the page latch buffer with data to be programmed into a row of flash. The load size can range from 1-byte
to the maximum number of bytes in a flash row, which is 128 bytes. Data is loaded into the page latch buffer starting at the
location specified by the “Byte Addr” input parameter. Data loaded into the page latch buffer remains until a program operation
is performed, which clears the page latch contents. The parameters for this function, including the data to be loaded into the
page latch, are written to the SRAM; the starting address of the SRAM data is written to the CPUSS_SYSARG register. Note
that the starting parameter address should be a word-aligned address.

Parameters

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ register

Bits [15:0] 0x0000 Silicon ID opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [7:0] Silicon ID Lo See the device datasheet for Silicon ID values for different
part numbersBits [15:8] Silicon ID Hi

Bits [19:16] Minor Revision Id See the PSoC 4 Device Programming Specifications for these
valuesBits [23:20] Major Revision Id

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28] 0xA Success status code

CPUSS_SYSREQ register

Bits [11:0] Family ID
Family ID is 0x093 for PSoC 4200 and PSoC 4100

Bits [15:12] Chip Protection See the Device Security chapter on page 87

Bits [31:16] 0xXXXX Not used

Address Value to be Written Description

SRAM Address - 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD7 Key2

Bits [23:16] Byte Addr

Start address of page latch buffer to write data

0x00 – Byte 0 of latch buffer

0x7F – Byte 127 of latch buffer

Bits [31:24] Flash Macro Select

0x00 – Flash Macro 0

0x01 – Flash Macro 1

(Refer to the Cortex-M0 CPU chapter on page 25 for the
number of flash macros in the device)

SRAM Address- 32’hYY + 0x04

Bits [7:0] Load Size

Number of bytes to be written to the page latch buffer.

0x00 – 1 byte

0x7F – 128 bytes

Bits [15:8] 0xXX Don’t care parameter

Address Value to be Written Description

http://www.cypress.com/?rID=104932
http://www.cypress.com/?rid=111105
http://www.cypress.com/?rid=111105
http://www.cypress.com/?rid=111105
http://www.cypress.com/?id=4749&rtID=107&source=an85951
http://www.cypress.com/?rID=78468

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 283

Nonvolatile Memory Programming

Return

26.5.3 Write Row

This function erases and then programs the addressed row of flash with the data in the page latch buffer. If all data in the page
latch buffer is 0, then the program is skipped. The parameters for this function are stored in SRAM. The start address of the
stored parameters is written to the CPUSS_SYSARG register. This function clears the page latch buffer contents after the row
is programmed.

Usage Requirements: Call the Load Flash Bytes function before calling this function. This function can do a write operation
only if the corresponding flash row is not write protected.

Note that this system call disables the 36-MHz IMO output before performing the flash write operation. The 36-MHz IMO out-
put can be used to source the analog switch pump or the CTBm pump. If the 36-MHz IMO output is used, it must be manually
re-enabled after the system call completes. Specifically, the CLK_IMO_CONFIG EN_CLK36 and FLASHPUMP_SEL must be
reset.

Refer to the CLK_IMO_CONFIG register in the PSoC 4100/4200 Family: PSoC 4 Registers TRM for more information.

Parameters

Bits [23:16] 0xXX Don’t care parameter

Bits [31:24] 0xXX Don’t care parameter

SRAM Address- From (32’hYY + 0x08) to (32’hYY + 0x08 + Load Size)

Byte 0 Data Byte [0] First data byte to be loaded

. . .

. . .

Byte (Load size –1) Data Byte [Load size –1] Last data byte to be loaded

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0004 Load Flash Bytes opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD8 Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0005 Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Value to be Written Description

http://www.cypress.com/?rID=78807

284 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Nonvolatile Memory Programming

Return

26.5.4 Program Row

This function programs the addressed row of the flash with data in the page latch buffer. If all data in the page latch buffer is 0,
then the program is skipped. The row must be in an erased state before calling this function. It clears the page latch buffer
contents after the row is programmed.

Usage Requirements: Call the Load Flash Bytes function before calling this function. The row must be in an erased state
before calling this function. This function can do a program operation only if the corresponding flash row is not write-protected.

Parameters

Return

26.5.5 Erase All

This function erases all the user code in the flash main arrays and the row-level protection data in supervisory flash row 0 of
each flash macro.

Usage Requirements: This API can be called only from the DAP in the programming mode and only if the chip protection
mode is OPEN. If the chip protection mode is PROTECTED, then the Write Protection API must be used by the DAP to
change the protection settings to OPEN. Changing the protection setting from PROTECTED to OPEN automatically does an
erase all operation.

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD9 Key2

Bits [31:16] Row ID
Row number to program

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0006 Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 285

Nonvolatile Memory Programming

Parameters

Return

26.5.6 Checksum

This function reads either the whole flash memory or a row of flash and returns the 24-bit sum of each byte read in that flash
region. When performing a checksum on the whole flash, the user code and supervisory flash regions are included. When
performing a checksum only on one row of flash, the flash row number is passed as a parameter. Bytes 2 and 3 of the param-
eters select whether the checksum is performed on the whole flash memory or a row of user code flash.

Parameters

Return

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDD Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x000A Erase All opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDE Key2

Bits [31:16] Row ID

Selects the flash row number on which the checksum operation is done

Row number – 16 bit flash row number

or

0x8000 – Checksum is performed on entire flash memory

CPUSS_SYSREQ register

Bits [15:0] 0x000B Checksum opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:24] 0xX Not used (don’t care)

Bits [23:0] Checksum 24-bit checksum value of the selected flash region

286 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Nonvolatile Memory Programming

26.5.7 Write Protection

This function programs both the flash row-level protection settings and the device protection settings in the supervisory flash
row. The flash row-level protection settings are programmed separately for each flash macro in the device. Each row has a
single protection bit. The total number of protection bytes is the number of flash rows divided by eight. The chip-level protec-
tion settings (1-byte) are stored in flash macro zero in the last byte location in row zero of the supervisory flash. The size of
the supervisory flash row is the same as the user code flash row size.

Usage Requirements: The Load Flash Bytes function is used to load the flash protection bytes of a flash macro into the page
latch buffer corresponding to the macro. The starting address parameter for the load function should be zero. The flash macro
number should be one that needs to be programmed; the number of bytes to load is the number of flash protection bytes in
that macro.

Then, the Write Protection function is called, which programs the flash protection bytes from the page latch to be the corre-
sponding flash macro’s supervisory row. In flash macro zero, which also stores the device protection settings, the device level
protection setting is passed as a parameter in the CPUSS_SYSARG register.

Parameters

Return

26.5.8 Non-Blocking Write Row

This function is used when a flash row needs to be written by the CM0 CPU in a non-blocking manner, so that the CPU can
execute code from SRAM while the write operation is being done. The explanation of non-blocking system calls is explained
in Blocking and Non-Blocking System Calls on page 280.

The non-blocking write row system call has three phases: Pre-program, Erase, Program. Pre-program is the step in which all
of the bits in the flash row are written a ‘1’ in preparation for an erase operation. The erase operation clears all of the bits in the
row, and the program operation writes the new data to the row.

While each phase is being executed, the CPU can execute code from SRAM. When the non-blocking write row system call is
initiated, the user cannot call any system call function other than the Resume Non-Blocking function, which is required for
completion of the non-blocking write operation. After the completion of each phase, the SPC triggers its interrupt. In this inter-
rupt, call the Resume Non-Blocking system call.

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xE0 Key2

Bits [23:16] Device Protection Byte

Parameter applicable only for Flash Macro 0

0x01 – OPEN mode

0x02 – PROTECTED mode

0x04 – KILL mode

Bits [31:24] Flash Macro Select
0x00 – Flash Macro 0

0x01 – Flash Macro 1

CPUSS_SYSREQ register

Bits [15:0] 0x000D Write Protection opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:24] 0xX Not used (don’t care)

Bits [23:0] 0x000000

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 287

Nonvolatile Memory Programming

Note The device firmware must not attempt to put the device to sleep during a non-blocking write row. This action will reset
the page latch buffer and the flash will be written with all zeroes.

Usage Requirements: Call the Load Flash Bytes function before calling this function to load the data bytes that will be used
for programming the row. In addition, the non-blocking write row function can be called only from the SRAM. This is because
the CM0 CPU cannot execute code from flash while doing the flash erase program operations. If this function is called from
the flash memory, the result is undefined, and may return a bus error and trigger a hard fault when the flash fetch operation is
being done.

Parameters

Return

26.5.9 Non-Blocking Program Row

This function is used when a flash row needs to be programmed by the CM0 CPU in a non-blocking manner, so that the CPU
can execute code from the SRAM when the program operation is being done. The explanation of non-blocking system calls is
explained in Blocking and Non-Blocking System Calls on page 280. While the program operation is being done, the CPU can
execute code from the SRAM. When the non-blocking program row system call is called, the user cannot call any other sys-
tem call function other than the Resume Non-Blocking function, which is required for the completion of the non-blocking write
operation.

Unlike the Non-Blocking Write Row system call, the Program system call only has a single phase. Therefore, the Resume
Non-Blocking function only needs to be called once from the SPC interrupt when using the Non-Blocking Program Row sys-
tem call.

Usage Requirements: Call the Load Flash Bytes function before calling this function to load the data bytes that will be used
for programming the row. In addition, the non-blocking program row function can be called only from SRAM. This is because
the CM0 CPU cannot execute code from flash while doing flash program operations. If this function is called from flash mem-
ory, the result is undefined, and may return a bus error and trigger a hard fault when the flash fetch operation is being done.

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDA Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first function
parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0007 Non-Blocking Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

288 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Nonvolatile Memory Programming

Parameters

Return

26.5.10 Resume Non-Blocking

This function completes the additional phases of erase and program that were started using the non-blocking write row and
non-blocking program row system calls. This function must be called thrice following a call to Non-Blocking Write Row or once
following a call to Non-Blocking Program Row from the SPC ISR. No other system calls can execute until all phases of the
program or erase operation are complete. More details on the procedure of using the non-blocking functions are explained in
Blocking and Non-Blocking System Calls on page 280.

Parameters

Return

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDB Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0008 Non-Blocking Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDC Key2

Bits [31:16] 0xXXXX Don’t care. Not used by SROM

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0009 Resume Non-Blocking opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 289

Nonvolatile Memory Programming

26.6 System Call Status

At the end of every system call, a status code is written over the arguments in the CPUSS_SYSARG register. A success sta-
tus is 0xAXXXXXXX, where X indicates don’t care values or return data in the case of the system calls that return a value. A
failure status is indicated by 0xF00000XX, where XX is the failure code.

Table 26-2. System Call Status Codes

Status Code
(32-bit value in

CPUSS_SYSARG register)
Description

AXXXXXXXh
Success – The “X” denotes a don’t care value, which has a value of ‘0’ returned by the SROM, unless the
API returns parameters directly to the CPUSS_SYSARG register.

F0000001h Invalid Chip Protection Mode – This API is not available during the current chip protection mode.

F0000003h
Invalid Page Latch Address – The address within the page latch buffer is either out of bounds or the size pro-
vided is too large for the page address.

F0000004h Invalid Address – The row ID or byte address provided is outside of the available memory.

F0000005h Row Protected – The row ID provided is a protected row.

F0000007h
Resume Completed – All non-blocking APIs have completed. The resume API cannot be called until the next
non-blocking API.

F0000008h
Pending Resume – A non-blocking API was initiated and must be completed by calling the resume API,
before any other APIs may be called.

F0000009h
System Call Still In Progress – A resume or non-blocking is still in progress. The SPC ISR must fire before
attempting the next resume.

F000000Ah Checksum Zero Failed – The calculated checksum was not zero.

F000000Bh Invalid Opcode – The opcode is not a valid API opcode.

F000000Ch Key Opcode Mismatch – The opcode provided does not match key1 and key2.

F000000Eh Invalid Start Address – The start address is greater than the end address provided.

290 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Nonvolatile Memory Programming

26.7 Non-Blocking System Call Pseudo Code

This section contains pseudo code to demonstrate how to set up a non-blocking system call and execute code out of SRAM
during the flash programming operations.

#define REG(addr) (*((volatile uint32 *) (addr)))
#define CM0_ISER_REG REG(0xE000E100)
#define CPUSS_CONFIG_REG REG(0x40100000)
#define CPUSS_SYSREQ_REG REG(0x40100004)
#define CPUSS_SYSARG_REG REG(0x40100008)

#define ROW_SIZE_128 (128)
#define ROW_SIZE (ROW_SIZE_128)

/*Variable to keep track of how many times SPC ISR is triggered */
__ram int iStatusInt = 0x00;

__flash int main(void)
{

DoUserStuff();

/*CM0 interrupt enable bit for spc interrupt enable */
CM0_ISER_REG |= 0x00000040;

/*Set CPUSS_CONFIG.VECS_IN_RAM because SPC ISR should be in SRAM */
CPUSS_CONFIG_REG |= 0x00000001;

/*Call non-blocking write row API */
NonBlockingWriteRow();

/*End Program */
while(1);

}
__sram void SpcIntHandler(void)
{

/* Write key1, key2 parameters to SRAM */
REG(0x20000000) = 0x0000DCB6;

/*Write the address of key1 to the CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x09 to the CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000009;

/* Number of times the ISR has triggered */
iStatusInt ++;

}
__sram void NonBlockingWriteRow(void)
{

int iter;

/*Load the Flash page latch with data to write*/
* Write key1, key2, byte address, and macro sel parameters to SRAM
*/
REG(0x20000000) = 0x0000D7B6;

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 291

Nonvolatile Memory Programming

//Write load size param (128bytes) to SRAM
REG(0x20000004) = 0x0000007F;

for(i = 0; i < ROW_SIZE/4; i += 1)
{

REG(0x20000008 + i*4) = 0xDADADADA;
}

/*Write the address of the key1 param to CPUSS_SYSARG reg*/
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x04 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000004;

/*Perform Non-Blocking Write Row on Row 200 as an example.
* Write key1, key2, row id to SRAM row id = 0xC8 -> which is row 200
*/
REG(0x20000000) = 0x00C8DAB6;

/*Write the address of the key1 param to CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x07 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000007;

/*Execute user code until iStatusInt equals 3 to signify
* 3 SPC interrupts have happened. This should be 1 in case
* of non-blocking program System Call
*/
while(iStatusInt != 0x03)
{

DoOtherUserStuff();
}

/* Get the success or failure status of System Call*/
syscall_status = CPUSS_SYSARG_REG;

}

In the code, the CM0 exception table is configured to be in SRAM by writing 0x01 to the CPUSS_CONFIG register. The
SRAM exception table should have the vector address of the SPC interrupt as the address of the SpcIntHandler() function,
which is also defined to be in SRAM. See the Interrupts chapter on page 31 for details on configuring the CM0 exception table
to be in SRAM. The pseudo code for a non-blocking program system call is also similar, except that the function opcode and
parameters will differ and the iStatusInt variable should be polled for 1 instead of 3. This is because the SPC ISR will be trig-
gered only once for a non-blocking program system call.

292 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Nonvolatile Memory Programming

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 293

Glossary

The Glossary section explains the terminology used in this technical reference manual. Glossary terms are characterized in
bold, italic font throughout the text of this manual.

A

accumulator In a CPU, a register in which intermediate results are stored. Without an accumulator, it is neces-
sary to write the result of each calculation (addition, subtraction, shift, and so on.) to main mem-
ory and read them back. Access to main memory is slower than access to the accumulator,
which usually has direct paths to and from the arithmetic and logic unit (ALU).

active high 1. A logic signal having its asserted state as the logic 1 state.

2. A logic signal having the logic 1 state as the higher voltage of the two states.

active low 1. A logic signal having its asserted state as the logic 0 state.

2. A logic signal having its logic 1 state as the lower voltage of the two states: inverted logic.

address The label or number identifying the memory location (RAM, ROM, or register) where a unit of
information is stored.

algorithm A procedure for solving a mathematical problem in a finite number of steps that frequently
involve repetition of an operation.

ambient temperature The temperature of the air in a designated area, particularly the area surrounding the PSoC
device.

analog See analog signals.

analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain
stages, and much more.

analog output An output that is capable of driving any voltage between the supply rails, instead of just a logic 1
or logic 0.

analog signals A signal represented in a continuous form with respect to continuous times, as contrasted with a
digital signal represented in a discrete (discontinuous) form in a sequence of time.

analog-to-digital (ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs
the reverse operation.

Index

294 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

AND See Boolean Algebra.

API (Application Pro-
gramming Interface)

A series of software routines that comprise an interface between a computer application and
lower-level services and functions (for example, user modules and libraries). APIs serve as build-
ing blocks for programmers that create software applications.

array An array, also known as a vector or list, is one of the simplest data structures in computer pro-
gramming. Arrays hold a fixed number of equally-sized data elements, generally of the same
data type. Individual elements are accessed by index using a consecutive range of integers, as
opposed to an associative array. Most high-level programming languages have arrays as a built-
in data type. Some arrays are multi-dimensional, meaning they are indexed by a fixed number of
integers; for example, by a group of two integers. One- and two-dimensional arrays are the most
common. Also, an array can be a group of capacitors or resistors connected in some common
form.

assembly A symbolic representation of the machine language of a specific processor. Assembly language
is converted to machine code by an assembler. Usually, each line of assembly code produces
one machine instruction, though the use of macros is common. Assembly languages are consid-
ered low-level languages; where as C is considered a high-level language.

asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock sig-
nal.

attenuation The decrease in intensity of a signal as a result of absorption of energy and of scattering out of
the path to the detector, but not including the reduction due to geometric spreading. Attenuation
is usually expressed in dB.

B

bandgap reference A stable voltage reference design that matches the positive temperature coefficient of VT with the

negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) refer-

ence.

bandwidth 1. The frequency range of a message or information processing system measured in hertz.

2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or
loss); it is sometimes represented more specifically as, for example, full width at half maxi-
mum.

bias 1. A systematic deviation of a value from a reference value.

2. The amount by which the average of a set of values departs from a reference value.

3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a
reference level to operate the device.

bias current The constant low-level DC current that is used to produce a stable operation in amplifiers. This
current can sometimes be changed to alter the bandwidth of an amplifier.

binary The name for the base 2 numbering system. The most common numbering system is the base
10 numbering system. The base of a numbering system indicates the number of values that may
exist for a particular positioning within a number for that system. For example, in base 2, binary,
each position may have one of two values (0 or 1). In the base 10, decimal, numbering system,
each position may have one of ten values (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 295

Index

bit A single digit of a binary number. Therefore, a bit may only have a value of ‘0’ or ‘1’. A group of 8
bits is called a byte. Because the PSoC's M8CP is an 8-bit microcontroller, the PSoC devices's
native data chunk size is a byte.

bit rate (BR) The number of bits occurring per unit of time in a bit stream, usually expressed in bits per second
(bps).

block 1. A functional unit that performs a single function, such as an oscillator.

2. A functional unit that may be configured to perform one of several functions, such as a digital
PSoC block or an analog PSoC block.

Boolean Algebra In mathematics and computer science, Boolean algebras or Boolean lattices, are algebraic struc-
tures which "capture the essence" of the logical operations AND, OR and NOT as well as the set
theoretic operations union, intersection, and complement. Boolean algebra also defines a set of
theorems that describe how Boolean equations can be manipulated. For example, these theo-
rems are used to simplify Boolean equations, which will reduce the number of logic elements
needed to implement the equation.

The operators of Boolean algebra may be represented in various ways. Often they are simply
written as AND, OR, and NOT. In describing circuits, NAND (NOT AND), NOR (NOT OR), XNOR
(exclusive NOT OR), and XOR (exclusive OR) may also be used. Mathematicians often use +
(for example, A+B) for OR and for AND (for example, A*B) (in some ways those operations are
analogous to addition and multiplication in other algebraic structures) and represent NOT by a
line drawn above the expression being negated (for example, ~A, A_, !A).

break-before-make The elements involved go through a disconnected state entering (‘break”) before the new con-
nected state (“make”).

broadcast net A signal that is routed throughout the microcontroller and is accessible by many blocks or sys-
tems.

buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring
data from one device to another. Usually refers to an area reserved for I/O operations, into
which data is read, or from which data is written.

2. A portion of memory set aside to store data, often before it is sent to an external device or as
it is received from an external device.

3. An amplifier used to lower the output impedance of a system.

bus 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets
with similar routing patterns.

2. A set of signals performing a common function and carrying similar data. Typically repre-
sented using vector notation; for example, address[7:0].

3. One or more conductors that serve as a common connection for a group of related devices.

byte A digital storage unit consisting of 8 bits.

C

C A high-level programming language.

capacitance A measure of the ability of two adjacent conductors, separated by an insulator, to hold a charge
when a voltage differential is applied between them. Capacitance is measured in units of Farads.

Index

296 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

capture To extract information automatically through the use of software or hardware, as opposed to
hand-entering of data into a computer file.

chaining Connecting two or more 8-bit digital blocks to form 16-, 24-, and even 32-bit functions. Chaining
allows certain signals such as Compare, Carry, Enable, Capture, and Gate to be produced from
one block to another.

checksum The checksum of a set of data is generated by adding the value of each data word to a sum. The
actual checksum can simply be the result sum or a value that must be added to the sum to gen-
erate a pre-determined value.

clear To force a bit/register to a value of logic ‘0’.

clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is
sometimes used to synchronize different logic blocks.

clock generator A circuit that is used to generate a clock signal.

CMOS The logic gates constructed using MOS transistors connected in a complementary manner.
CMOS is an acronym for complementary metal-oxide semiconductor.

comparator An electronic circuit that produces an output voltage or current whenever two input levels simul-
taneously satisfy predetermined amplitude requirements.

compiler A program that translates a high-level language, such as C, into machine language.

configuration In a computer system, an arrangement of functional units according to their nature, number, and
chief characteristics. Configuration pertains to hardware, software, firmware, and documentation.
The configuration will affect system performance.

configuration space In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to
‘1’.

crowbar A type of over-voltage protection that rapidly places a low-resistance shunt (typically an SCR)
from the signal to one of the power supply rails, when the output voltage exceeds a predeter-
mined value.

CPUSS CPU subsystem

crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelec-
tric crystal is less sensitive to ambient temperature than other circuit components.

cyclic redundancy
check (CRC)

A calculation used to detect errors in data communications, typically performed using a linear
feedback shift register. Similar calculations may be used for a variety of other purposes such as
data compression.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 297

Index

D

data bus A bi-directional set of signals used by a computer to convey information from a memory location
to the central processing unit and vice versa. More generally, a set of signals used to convey
data between digital functions.

data stream A sequence of digitally encoded signals used to represent information in transmission.

data transmission Sending data from one place to another by means of signals over a channel.

debugger A hardware and software system that allows the user to analyze the operation of the system
under development. A debugger usually allows the developer to step through the firmware one
step at a time, set break points, and analyze memory.

dead band A period of time when neither of two or more signals are in their active state or in transition.

decimal A base-10 numbering system, which uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 (called digits)
together with the decimal point and the sign symbols + (plus) and - (minus) to represent num-
bers.

default value Pertaining to the pre-defined initial, original, or specific setting, condition, value, or action a sys-
tem will assume, use, or take in the absence of instructions from the user.

device The device referred to in this manual is the PSoC device, unless otherwise specified.

die An non-packaged integrated circuit (IC), normally cut from a wafer.

digital A signal or function, the amplitude of which is characterized by one of two discrete values: ‘0’ or
‘1’.

digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC gen-
erator, pseudo-random number generator, or SPI.

digital logic A methodology for dealing with expressions containing two-state variables that describe the
behavior of a circuit or system.

digital-to-analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The ana-
log-to-digital (ADC) converter performs the reverse operation.

direct access The capability to obtain data from a storage device, or to enter data into a storage device, in a
sequence independent of their relative positions by means of addresses that indicate the physi-
cal location of the data.

duty cycle The relationship of a clock period high time to its low time, expressed as a percent.

E

External Reset
(XRES_N)

An active high signal that is driven into the PSoC device. It causes all operation of the CPU and
blocks to stop and return to a pre-defined state.

Index

298 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

F

falling edge A transition from a logic 1 to a logic 0. Also known as a negative edge.

feedback The return of a portion of the output, or processed portion of the output, of a (usually active)
device to the input.

filter A device or process by which certain frequency components of a signal are attenuated.

firmware The software that is embedded in a hardware device and executed by the CPU. The software
may be executed by the end user, but it may not be modified.

flag Any of various types of indicators used for identification of a condition or event (for example, a
character that signals the termination of a transmission).

Flash An electrically programmable and erasable, volatile technology that provides users with the pro-
grammability and data storage of EPROMs, plus in-system erasability. Nonvolatile means that
the data is retained when power is off.

Flash bank A group of flash ROM blocks where flash block numbers always begin with ‘0’ in an individual
flash bank. A flash bank also has its own block level protection information.

Flash block The smallest amount of flash ROM space that may be programmed at one time and the smallest
amount of flash space that may be protected. A flash block holds 64 bytes.

flip-flop A device having two stable states and two input terminals (or types of input signals) each of
which corresponds with one of the two states. The circuit remains in either state until it is made to
change to the other state by application of the corresponding signal.

frequency The number of cycles or events per unit of time, for a periodic function.

G

gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively.
Gain is usually expressed in dB.

gate 1. A device having one output channel and one or more input channels, such that the output
channel state is completely determined by the input channel states, except during switching
transients.

2. One of many types of combinational logic elements having at least two inputs (for example,
AND, OR, NAND, and NOR (also see Boolean Algebra)).

ground 1. The electrical neutral line having the same potential as the surrounding earth.

2. The negative side of DC power supply.

3. The reference point for an electrical system.

4. The conducting paths between an electric circuit or equipment and the earth, or some con-
ducting body serving in place of the earth.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 299

Index

H

hardware A comprehensive term for all of the physical parts of a computer or embedded system, as distin-
guished from the data it contains or operates on, and the software that provides instructions for
the hardware to accomplish tasks.

hardware reset A reset that is caused by a circuit, such as a POR, watchdog reset, or external reset. A hardware
reset restores the state of the device as it was when it was first powered up. Therefore, all regis-
ters are set to the POR value as indicated in register tables throughout this document.

hexadecimal A base 16 numeral system (often abbreviated and called hex), usually written using the symbols
0-9 and A-F. It is a useful system in computers because there is an easy mapping from four bits
to a single hex digit. Thus, one can represent every byte as two consecutive hexadecimal digits.
Compare the binary, hex, and decimal representations:

bin = hex = dec

0000b = 0x0 = 0

0001b = 0x1 = 1

0010b = 0x2 = 2

...

1001b = 0x9 = 9

1010b = 0xA = 10

1011b = 0xB = 11

...

1111b = 0xF = 15

So the decimal numeral 79 whose binary representation is 0100 1111b can be written as 4Fh in
hexadecimal (0x4F).

high time The amount of time the signal has a value of ‘1’ in one period, for a periodic digital signal.

I

I2C A two-wire serial computer bus by Phillips Semiconductors (now NXP Semiconductors). I2C is an
Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The
original system was created in the early 1980s as a battery control interface, but it was later used

as a simple internal bus system for building control electronics. I2C uses only two bidirectional
pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at
100 Kbps in standard mode and 400 Kbps in fast mode.

idle state A condition that exists whenever user messages are not being transmitted, but the service is
immediately available for use.

Index

300 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

impedance 1. The resistance to the flow of current caused by resistive, capacitive, or inductive devices in a
circuit.

2. The total passive opposition offered to the flow of electric current. Note the impedance is
determined by the particular combination of resistance, inductive reactance, and capacitive
reactance in a given circuit.

input A point that accepts data, in a device, process, or channel.

input/output (I/O) A device that introduces data into or extracts data from a system.

instruction An expression that specifies one operation and identifies its operands, if any, in a programming
language such as C or assembly.

instruction mnemonics A set of acronyms that represent the opcodes for each of the assembly-language instructions, for
example, ADD, SUBB, MOV.

integrated circuit (IC) A device in which components such as resistors, capacitors, diodes, and transistors are formed
on the surface of a single piece of semiconductor.

interface The means by which two systems or devices are connected and interact with each other.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed.

interrupt service rou-
tine (ISR)

A block of code that normal code execution is diverted to when the M8CP receives a hardware
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code
block. Each ISR code block ends with the RETI instruction, returning the device to the point in
the program where it left normal program execution.

J

jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption
that occurs on serial data streams.

2. The abrupt and unwanted variations of one or more signal characteristics, such as the inter-
val between successive pulses, the amplitude of successive cycles, or the frequency or
phase of successive cycles.

L

latency The time or delay that it takes for a signal to pass through a given circuit or network.

least significant bit
(LSb)

The binary digit, or bit, in a binary number that represents the least significant value (typically the
right-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in LSb.

least significant byte
(LSB)

The byte in a multi-byte word that represents the least significant values (typically the right-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in LSB.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 301

Index

Linear Feedback Shift
Register (LFSR)

A shift register whose data input is generated as an XOR of two or more elements in the register
chain.

load The electrical demand of a process expressed as power (watts), current (amps), or resistance
(ohms).

logic function A mathematical function that performs a digital operation on digital data and returns a digital
value.

lookup table (LUT) A logic block that implements several logic functions. The logic function is selected by means of
select lines and is applied to the inputs of the block. For example: A 2 input LUT with 4 select
lines can be used to perform any one of 16 logic functions on the two inputs resulting in a single
logic output. The LUT is a combinational device; therefore, the input/output relationship is contin-
uous, that is, not sampled.

low time The amount of time the signal has a value of ‘0’ in one period, for a periodic digital signal.

low-voltage detect
(LVD)

A circuit that senses VDDD and provides an interrupt to the system when VDDD falls below a

selected threshold.

M

M8CP An 8-bit Harvard Architecture microprocessor. The microprocessor coordinates all activity inside
a PSoC device by interfacing to the flash, SRAM, and register space.

macro A programming language macro is an abstraction, whereby a certain textual pattern is replaced
according to a defined set of rules. The interpreter or compiler automatically replaces the macro
instance with the macro contents when an instance of the macro is encountered. Therefore, if a
macro is used five times and the macro definition required 10 bytes of code space, 50 bytes of
code space will be needed in total.

mask 1. To obscure, hide, or otherwise prevent information from being derived from a signal. It is usu-
ally the result of interaction with another signal, such as noise, static, jamming, or other forms
of interference.

2. A pattern of bits that can be used to retain or suppress segments of another pattern of bits, in
computing and data processing systems.

master device A device that controls the timing for data exchanges between two devices. Or when devices are
cascaded in width, the master device is the one that controls the timing for data exchanges
between the cascaded devices and an external interface. The controlled device is called the
slave device.

microcontroller An integrated circuit device that is designed primarily for control systems and products. In addi-
tion to a CPU, a microcontroller typically includes memory, timing circuits, and I/O circuitry. The
reason for this is to permit the realization of a controller with a minimal quantity of devices, thus
achieving maximal possible miniaturization. This in turn, will reduce the volume and the cost of
the controller. The microcontroller is normally not used for general-purpose computation as is a
microprocessor.

mnemonic A tool intended to assist the memory. Mnemonics rely on not only repetition to remember facts,
but also on creating associations between easy-to-remember constructs and lists of data. A two
to four character string representing a microprocessor instruction.

Index

302 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

mode A distinct method of operation for software or hardware. For example, the Digital PSoC block
may be in either counter mode or timer mode.

modulation A range of techniques for encoding information on a carrier signal, typically a sine-wave signal. A
device that performs modulation is known as a modulator.

Modulator A device that imposes a signal on a carrier.

MOS An acronym for metal-oxide semiconductor.

most significant bit
(MSb)

The binary digit, or bit, in a binary number that represents the most significant value (typically the
left-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in MSb.

most significant byte
(MSB)

The byte in a multi-byte word that represents the most significant values (typically the left-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in MSB.

multiplexer (mux) 1. A logic function that uses a binary value, or address, to select between a number of inputs
and conveys the data from the selected input to the output.

2. A technique which allows different input (or output) signals to use the same lines at different
times, controlled by an external signal. Multiplexing is used to save on wiring and I/O ports.

N

NAND See Boolean Algebra.

negative edge A transition from a logic 1 to a logic 0. Also known as a falling edge.

net The routing between devices.

nibble A group of four bits, which is one-half of a byte.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.

2. The random variations of one or more characteristics of any entity such as voltage, current,
or data.

NOR See Boolean Algebra.

NOT See Boolean Algebra.

O

OR See Boolean Algebra.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

output The electrical signal or signals which are produced by an analog or digital block.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 303

Index

P

parallel The means of communication in which digital data is sent multiple bits at a time, with each simul-
taneous bit being sent over a separate line.

parameter Characteristics for a given block that have either been characterized or may be defined by the
designer.

parameter block A location in memory where parameters for the SSC instruction are placed prior to execution.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).

path 1. The logical sequence of instructions executed by a computer.

2. The flow of an electrical signal through a circuit.

pending interrupts An interrupt that is triggered but not serviced, either because the processor is busy servicing
another interrupt or global interrupts are disabled.

phase The relationship between two signals, usually the same frequency, that determines the delay
between them. This delay between signals is either measured by time or angle (degrees).

pin A terminal on a hardware component. Also called lead.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts will
involve pin numbers as a link between schematic and PCB design (both being computer gener-
ated files) and may also involve pin names.

port A group of pins, usually eight.

positive edge A transition from a logic 0 to a logic 1. Also known as a rising edge.

posted interrupts An interrupt that is detected by the hardware but may or may not be enabled by its mask bit.
Posted interrupts that are not masked become pending interrupts.

Power On Reset (POR) A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is
one type of hardware reset.

program counter The instruction pointer (also called the program counter) is a register in a computer processor
that indicates where in memory the CPU is executing instructions. Depending on the details of
the particular machine, it holds either the address of the instruction being executed, or the
address of the next instruction to be executed.

protocol A set of rules. Particularly the rules that govern networked communications.

PSoC® Cypress’s Programmable System-on-Chip (PSoC®) devices.

PSoC blocks See analog blocks and digital blocks.

PSoC Creator™ The software for Cypress’s next generation Programmable System-on-Chip technology.

Index

304 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

pulse A rapid change in some characteristic of a signal (for example, phase or frequency), from a base-
line value to a higher or lower value, followed by a rapid return to the baseline value.

pulse width modulator
(PWM)

An output in the form of duty cycle which varies as a function of the applied measure.

R

RAM An acronym for random access memory. A data-storage device from which data can be read out
and new data can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

resistance The resistance to the flow of electric current measured in ohms for a conductor.

revision ID A unique identifier of the PSoC device.

ripple divider An asynchronous ripple counter constructed of flip-flops. The clock is fed to the first stage of the

counter. An n-bit binary counter consisting of n flip-flops that can count in binary from 0 to 2n - 1.

rising edge See positive edge.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but
new data cannot be written in.

routine A block of code, called by another block of code, that may have some general or frequent use.

routing Physically connecting objects in a design according to design rules set in the reference library.

runt pulses In digital circuits, narrow pulses that, due to non-zero rise and fall times of the signal, do not
reach a valid high or low level. For example, a runt pulse may occur when switching between
asynchronous clocks or as the result of a race condition in which a signal takes two separate
paths through a circuit. These race conditions may have different delays and are then recom-
bined to form a glitch or when the output of a flip-flop becomes metastable.

S

sampling The process of converting an analog signal into a series of digital values or reversed.

schematic A diagram, drawing, or sketch that details the elements of a system, such as the elements of an
electrical circuit or the elements of a logic diagram for a computer.

seed value An initial value loaded into a linear feedback shift register or random number generator.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a
single device or channel.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 305

Index

set To force a bit/register to a value of logic 1.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one
value to another.

shift The movement of each bit in a word one position to either the left or right. For example, if the hex
value 0x24 is shifted one place to the left, it becomes 0x48. If the hex value 0x24 is shifted one
place to the right, it becomes 0x12.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream of
serial data.

sign bit The most significant binary digit, or bit, of a signed binary number. If set to a logic 1, this bit rep-
resents a negative quantity.

signal A detectable transmitted energy that can be used to carry information. As applied to electronics,
any transmitted electrical impulse.

silicon ID A unique identifier of the PSoC silicon.

skew The difference in arrival time of bits transmitted at the same time, in parallel transmission.

slave device A device that allows another device to control the timing for data exchanges between two
devices. Or when devices are cascaded in width, the slave device is the one that allows another
device to control the timing of data exchanges between the cascaded devices and an external
interface. The controlling device is called the master device.

software A set of computer programs, procedures, and associated documentation about the operation of a
data processing system (for example, compilers, library routines, manuals, and circuit diagrams).
Software is often written first as source code, and then converted to a binary format that is spe-
cific to the device on which the code will be executed.

software reset A partial reset executed by software to bring part of the system back to a known state. A software
reset will restore the M8CP to a know state but not PSoC blocks, systems, peripherals, or regis-
ters. For a software reset, the CPU registers (CPU_A, CPU_F, CPU_PC, CPU_SP, and CPU_X)
are set to 0x00. Therefore, code execution will begin at flash address 0x0000.

SRAM An acronym for static random access memory. A memory device allowing users to store and
retrieve data at a high rate of speed. The term static is used because, when a value is loaded
into an SRAM cell, it will remain unchanged until it is explicitly altered or until power is removed
from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the
device, calibrate circuitry, and perform flash operations. The functions of the SROM may be
accessed in normal user code, operating from flash.

stack A stack is a data structure that works on the principle of Last In First Out (LIFO). This means that
the last item put on the stack is the first item that can be taken off.

stack pointer A stack may be represented in a computer’s inside blocks of memory cells, with the bottom at a
fixed location and a variable stack pointer to the current top cell.

state machine The actual implementation (in hardware or software) of a function that can be considered to con-
sist of a set of states through which it sequences.

Index

306 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

sticky A bit in a register that maintains its value past the time of the event that caused its transition, has
passed.

stop bit A signal following a character or block that prepares the receiving device to receive the next
character or block.

switching The controlling or routing of signals in circuits to execute logical or arithmetic operations, or to
transmit data between specific points in a network.

switch phasing The clock that controls a given switch, PHI1 or PHI2, in respect to the switch capacitor (SC)
blocks. The PSoC SC blocks have two groups of switches. One group of these switches is nor-
mally closed during PHI1 and open during PHI2. The other group is open during PHI1 and closed
during PHI2. These switches can be controlled in the normal operation, or in reverse mode if the
PHI1 and PHI2 clocks are reversed.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock
signal.

2. A system whose operation is synchronized by a clock signal.

T

tap The connection between two blocks of a device created by connecting several blocks/compo-
nents in a series, such as a shift register or resistive voltage divider.

terminal count The state at which a counter is counted down to zero.

threshold The minimum value of a signal that can be detected by the system or sensor under consider-
ation.

Thumb-2 The Thumb-2 instruction set is a highly efficient and powerful instruction set that delivers signifi-
cant benefits in terms of ease of use, code size, and performance. The Thumb-2 instruction set is
a superset of the previous 16-bit Thumb instruction set, with additional 16-bit instructions along-
side 32-bit instructions.

transistors The transistor is a solid-state semiconductor device used for amplification and switching, and
has three terminals: a small current or voltage applied to one terminal controls the current
through the other two. It is the key component in all modern electronics. In digital circuits, transis-
tors are used as very fast electrical switches, and arrangements of transistors can function as
logic gates, RAM-type memory, and other devices. In analog circuits, transistors are essentially
used as amplifiers.

tristate A function whose output can adopt three states: 0, 1, and Z (high impedance). The function does
not drive any value in the Z state and, in many respects, may be considered to be disconnected
from the rest of the circuit, allowing another output to drive the same net.

U

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data
and serial bits.

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 307

Index

user The person using the PSoC device and reading this manual.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and
configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high
level API (Application Programming Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified
during normal program execution and not just during initialization. Registers in bank 1 are most
likely to be modified only during the initialization phase of the program.

V

VDDD A name for a power net meaning "voltage drain." The most positive power supply signal. Usually
5 or 3.3 volts.

volatile Not guaranteed to stay the same value or level when not in scope.

VSS A name for a power net meaning "voltage source." The most negative power supply signal.

W

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU will reset after a specified
period of time.

waveform The representation of a signal as a plot of amplitude versus time.

X

XOR See Boolean Algebra.

Index

308 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F 309

Index

A
active mode

PSoC . 74
analog I/O . 55

B
block diagram

program and debug interface 271
watchdog timer circuit . 79

brownout reset . 83

C
clock distribution . 61
clock sources

distribution . 61
clocking system

introduction . 57
Cortex-M0

features . 25
instruction set . 28
registers . 27

D
development kits . 17
document

glossary . 293
revision history . 9

E
exception

HardFault . 34
NMI . 34
PendSV . 34
reset . 33
SVCall . 34
SysTick . 35

external reset . 84

F
features

I/O system .47
watchdog timer .79

G
glossary .293
GPIO pins in creation of buttons and sliders 55

H
hibernate mode .75
Hibernate wakeup reset .84
high impedance analog drive mode 50
high impedance digital drive mode50
how it works

watchdog timer .80

I
I/O drive mode

high impedance analog .50
high impedance digital .50
open drain .50
resistive .50
strong .50

I/O system
analog I/O .55
CapSense .55
features .47
introduction .47
LCD drive capabilities .55
open drain modes .50
register summary .56
resistive modes .50
slew rate control .51
strong drive mode .50

identifying reset sources .84
internal low speed oscillator .60
internal main oscillator .58
internal regulators .65
introduction

clock generator .57
I/O system .47
reset .83
successive approximation register analog to digital con-

vertor .197

310 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *F

Index

L
LCD drive

I/O system capabilities . 55

O
oscillators

internal PSoC . 58
overview, document

revision history . 9

P
power on reset . 83
program and debug

PSoC . 15
protection fault reset . 84
PSoC

active mode . 74
program and debug . 15

R
register summary

I/O system . 56
registers

Cortex-M0 . 27
regulator

internal . 65
reset

identifying sources . 84
introduction . 83

reset sources
description . 83

revision history . 9

S
SAR ADC

introduction . 197
sleep mode . 74
slew rate control in I/O system . 51
software initiated reset . 84
stop wakeup reset . 84
support . 17
SWD interface

program and debug interface 272
system call

overview . 280

U
upgrades . 17

W
watchdog reset . 83
watchdog timer

disabling . 81
enabling . 81
features . 79
how it works . 80
interrupts . 82
operating modes . 81

	PSoC 4100/4200 TRM
	Content Overview
	Contents
	Section A: Overview
	Document Revision History
	1. Introduction
	1.1 Top Level Architecture
	1.2 Features
	1.3 CPU System
	1.3.1 Processor
	1.3.2 Interrupt Controller

	1.4 Memory
	1.4.1 Flash
	1.4.2 SRAM

	1.5 System-Wide Resources
	1.5.1 Clocking System
	1.5.2 Power System
	1.5.3 GPIO

	1.6 Programmable Digital
	1.7 Fixed-Function Digital
	1.7.1 Timer/Counter/PWM Block
	1.7.2 Serial Communication Blocks

	1.8 Analog System
	1.8.1 SAR ADC
	1.8.2 Continuous Time Block mini
	1.8.3 Low-Power Comparators

	1.9 Special Function Peripherals
	1.9.1 LCD Segment Drive
	1.9.2 CapSense
	1.9.2.1 IDACs and Comparator

	1.10 Program and Debug
	1.11 Device Feature Summary

	2. Getting Started
	2.1 Support
	2.2 Product Upgrades
	2.3 Development Kits
	2.4 Application Notes

	3. Document Construction
	3.1 Major Sections
	3.2 Documentation Conventions
	3.2.1 Register Conventions
	3.2.2 Numeric Naming
	3.2.3 Units of Measure
	3.2.4 Acronyms

	Section B: CPU System
	Top Level Architecture
	4. Cortex-M0 CPU
	4.1 Features
	4.2 Block Diagram
	4.3 How It Works
	4.4 Address Map
	4.5 Registers
	4.6 Operating Modes
	4.7 Instruction Set
	4.7.1 Address Alignment
	4.7.2 Memory Endianness

	4.8 Systick Timer
	4.9 Debug

	5. Interrupts
	5.1 Features
	5.2 How It Works
	5.3 Interrupts and Exceptions - Operation
	5.3.1 Interrupt/Exception Handling
	5.3.2 Level and Pulse Interrupts
	5.3.3 Exception Vector Table

	5.4 Exception Sources
	5.4.1 Reset Exception
	5.4.2 Non-Maskable Interrupt (NMI) Exception
	5.4.3 HardFault Exception
	5.4.4 Supervisor Call (SVCall) Exception
	5.4.5 PendSV Exception
	5.4.6 SysTick Exception

	5.5 Interrupt Sources
	5.6 Exception Priority
	5.7 Enabling and Disabling Interrupts
	5.8 Exception States
	5.8.1 Pending Exceptions

	5.9 Stack Usage for Exceptions
	5.10 Interrupts and Low-Power Modes
	5.11 Exceptions – Initialization and Configuration
	5.12 Registers
	5.13 Associated Documents

	Section C: Memory System
	Top Level Architecture
	6. Memory Map
	6.1 Features
	6.2 How It Works

	Section D: System Resources Subsystem (SRSS)
	Top Level Architecture
	7. I/O System
	7.1 Features
	7.2 GPIO Interface Overview
	7.3 I/O Cell Architecture
	7.3.1 Digital Input Buffer
	7.3.2 Digital Output Driver
	7.3.2.1 Drive Modes
	7.3.2.2 Slew Rate Control

	7.4 High-Speed I/O Matrix
	7.5 I/O State on Power Up
	7.6 Behavior in Low-Power Modes
	7.7 Input and Output Synchronization
	7.8 Interrupt
	7.9 Peripheral Connections
	7.9.1 Firmware Controlled GPIO
	7.9.2 Analog I/O
	7.9.2.1 AMUXBUS Connection and DSI

	7.9.3 LCD Drive
	7.9.4 CapSense
	7.9.5 Serial Communication Block (SCB)

	7.10 Port Restrictions
	7.11 Registers

	8. Clocking System
	8.1 Block Diagram
	8.2 Clock Sources
	8.2.1 Internal Main Oscillator
	8.2.1.1 Startup Behavior
	8.2.1.2 IMO Frequency Spread
	8.2.1.3 Programming Clock (36-MHz)

	8.2.2 Internal Low-speed Oscillator
	8.2.3 External Clock (EXTCLK)

	8.3 Clock Distribution
	8.3.1 HFCLK Input Selection
	8.3.2 SYSCLK Prescaler Configuration
	8.3.3 Peripheral Clock Divider Configuration
	8.3.4 Peripheral Clock Configuration

	8.4 Low-Power Mode Operation
	8.5 Register List

	9. Power Supply and Monitoring
	9.1 Block Diagram
	9.2 Power Supply Scenarios
	9.2.1 Single 1.8 V to 5.5 V Unregulated Supply
	9.2.2 Direct 1.71 V to 1.89 V Regulated Supply

	9.3 How It Works
	9.3.1 Regulator Summary
	9.3.1.1 Active Digital Regulator
	9.3.1.2 Quiet Regulator
	9.3.1.3 Deep-Sleep Regulator
	9.3.1.4 Hibernate Regulator

	9.4 Voltage Monitoring
	9.4.1 Power-On-Reset (POR)
	9.4.1.1 Brownout-Detect (BOD)
	9.4.1.2 Low-Voltage-Detect (LVD)

	9.5 Register List

	10. Chip Operational Modes
	10.1 Boot
	10.2 User
	10.3 Privileged
	10.4 Debug

	11. Power Modes
	11.1 Active Mode
	11.2 Sleep Mode
	11.3 Deep-Sleep Mode
	11.4 Hibernate Mode
	11.5 Stop Mode
	11.6 Power Mode Summary
	11.7 Low-Power Mode Entry and Exit
	11.8 Register List

	12. Watchdog Timer
	12.1 Features
	12.2 Block Diagram
	12.3 How It Works
	12.3.1 Enabling and Disabling WDT
	12.3.2 WDT Operating Modes
	12.3.3 WDT Interrupts and Low-Power Modes
	12.3.4 WDT Reset Mode

	12.4 Register List

	13. Reset System
	13.1 Reset Sources
	13.1.1 Power-on Reset
	13.1.2 Brownout Reset
	13.1.3 Watchdog Reset
	13.1.4 Software Initiated Reset
	13.1.5 External Reset
	13.1.6 Protection Fault Reset
	13.1.7 Hibernate Wakeup Reset
	13.1.8 Stop Wakeup Reset

	13.2 Identifying Reset Sources
	13.3 Register List

	14. Device Security
	14.1 Features
	14.2 How It Works
	14.2.1 Device Security
	14.2.2 Flash Security

	Section E: Digital System
	Top Level Architecture
	15. Serial Communications Block (SCB)
	15.1 Features
	15.2 Serial Peripheral Interface (SPI)
	15.2.1 Features
	15.2.2 General Description
	15.2.3 SPI Modes of Operation
	15.2.3.1 Motorola SPI
	15.2.3.2 Texas Instruments SPI
	15.2.3.3 National Semiconductors SPI

	15.2.4 SPI Registers
	15.2.5 SPI Interrupts
	15.2.6 Enabling and Initializing SPI
	15.2.7 Internally and Externally Clocked SPI Operations

	15.3 UART
	15.3.1 Features
	15.3.2 General Description
	15.3.3 UART Modes of Operation
	15.3.3.1 Standard Protocol
	15.3.3.2 SmartCard (ISO7816)
	15.3.3.3 IrDA

	15.3.4 UART Registers
	15.3.5 UART Interrupts
	15.3.6 Enabling and Initializing UART

	15.4 Inter Integrated Circuit (I2C)
	15.4.1 Features
	15.4.2 General Description
	15.4.3 Terms and Definitions
	15.4.3.1 Clock Stretching
	15.4.3.2 Bus Arbitration

	15.4.4 I2C Modes of Operation
	15.4.4.1 Write Transfer
	15.4.4.2 Read Transfer

	15.4.5 I2C Registers
	15.4.6 I2C Interrupts
	15.4.7 Enabling and Initializing the I2C
	15.4.8 Internal and External Clock Operation in I2C
	15.4.9 Wake up from Sleep
	15.4.10 Master Mode Transfer Examples
	15.4.10.1 Master Transmit
	15.4.10.2 Master Receive

	15.4.11 Slave Mode Transfer Examples
	15.4.11.1 Slave Transmit
	15.4.11.2 Slave Receive

	15.4.12 Multi-Master Mode Transfer Example
	15.4.12.1 Multi-Master - Slave Not Enabled
	15.4.12.2 Multi-Master - Slave Enabled

	16. Universal Digital Blocks (UDB)
	16.1 Features
	16.2 How It Works
	16.2.1 PLDs
	16.2.1.1 PLD Macrocells
	16.2.1.2 PLD Carry Chain
	16.2.1.3 PLD Configuration

	16.2.2 Datapath
	16.2.2.1 Overview
	16.2.2.2 Datapath FIFOs
	16.2.2.3 FIFO Status
	16.2.2.4 Datapath ALU
	16.2.2.5 Datapath Inputs and Multiplexing
	16.2.2.6 CRC/PRS Support
	16.2.2.7 Datapath Outputs and Multiplexing
	16.2.2.8 Datapath Parallel Inputs and Outputs
	16.2.2.9 Datapath Chaining
	16.2.2.10 Dynamic Configuration RAM

	16.2.3 Status and Control Module
	16.2.3.1 Status and Control Mode
	16.2.3.2 Control Register Operation
	16.2.3.3 Parallel Input/Output Mode
	16.2.3.4 Counter Mode
	16.2.3.5 Sync Mode
	16.2.3.6 Status and Control Clocking
	16.2.3.7 Auxiliary Control Register
	16.2.3.8 Status and Control Register Summary

	16.2.4 Reset and Clock Control Module
	16.2.4.1 Clock Control
	16.2.4.2 Reset Control
	16.2.4.3 UDB POR Initialization

	16.2.5 UDB Addressing
	16.2.6 System Bus Access Coherency
	16.2.6.1 Simultaneous System Bus Access
	16.2.6.2 Coherent Accumulator Access (Atomic Reads and Writes)

	16.3 Port Adapter Block
	16.3.1 PA Data Input Logic
	16.3.2 PA Port Pin Clock Multiplexer Logic
	16.3.3 PA Data Output Logic
	16.3.4 PA Output Enable Logic
	16.3.5 PA Clock Multiplexer
	16.3.6 PA Reset Multiplexer

	17. Timer, Counter, and PWM
	17.1 Features
	17.2 Block Diagram
	17.2.1 Enabling and Disabling Counter in TCPWM Block
	17.2.2 Clocking
	17.2.3 Events Based on Trigger Inputs
	17.2.4 Output Signals
	17.2.4.1 Signals upon Trigger Conditions
	17.2.4.2 Interrupts
	17.2.4.3 Outputs

	17.2.5 Power Modes

	17.3 Modes of Operation
	17.3.1 Timer Mode
	17.3.1.1 Block Diagram
	17.3.1.2 How It Works
	17.3.1.3 Configuring Counter for Timer Mode

	17.3.2 Capture Mode
	17.3.2.1 Block Diagram
	17.3.2.2 How it Works
	17.3.2.3 Configuring Counter for Capture Mode

	17.3.3 Quadrature Decoder Mode
	17.3.3.1 Block Diagram
	17.3.3.2 How It Works
	17.3.3.3 Configuring Counter for Quadrature Mode

	17.3.4 Pulse Width Modulation Mode
	17.3.4.1 Block Diagram
	17.3.4.2 How It Works
	17.3.4.3 Other Configurations
	17.3.4.4 Kill Feature
	17.3.4.5 Configuring Counter for PWM Mode

	17.3.5 Pulse Width Modulation with Dead Time Mode
	17.3.5.1 Block Diagram
	17.3.5.2 How It Works
	17.3.5.3 Configuring Counter for PWM with Dead Time Mode

	17.3.6 Pulse Width Modulation Pseudo-Random Mode
	17.3.6.1 Block Diagram
	17.3.6.2 How It Works
	17.3.6.3 Configuring Counter for Pseudo-Random PWM Mode

	17.4 TCPWM Registers

	Section F: Analog System
	Top Level Architecture
	18. Precision Reference
	18.1 Features
	18.2 Block Diagram
	18.3 How it Works
	18.3.1 Precision Bandgap
	18.3.2 Trim Buffer
	18.3.3 Low-Power Buffers
	18.3.4 Current Mirrors
	18.3.5 Temperature-Controlled Voltage Generator
	18.3.6 Temperature-Controlled Current Generator

	18.4 Configuration

	19. SAR ADC
	19.1 Features
	19.2 Block Diagram
	19.3 How it Works
	19.3.1 SAR ADC Core
	19.3.1.1 Single-ended and Differential Mode
	19.3.1.2 Input Range
	19.3.1.3 Result Data Format
	19.3.1.4 Negative Input Selection
	19.3.1.5 Resolution
	19.3.1.6 Acquisition Time
	19.3.1.7 SAR ADC Clock
	19.3.1.8 SAR ADC Timing

	19.3.2 SARMUX
	19.3.2.1 Analog Routing
	19.3.2.2 Analog Interconnection

	19.3.3 SARREF
	19.3.3.1 Reference Options
	19.3.3.2 Bypass Capacitors
	19.3.3.3 Input Range versus Reference

	19.3.4 SARSEQ
	19.3.4.1 Averaging
	19.3.4.2 Range Detection
	19.3.4.3 Double Buffer
	19.3.4.4 Injection Channel

	19.3.5 Interrupt
	19.3.5.1 End-of-Scan Interrupt (EOS_INTR)
	19.3.5.2 Overflow Interrupt
	19.3.5.3 Collision Interrupt
	19.3.5.4 Injection End-of-Conversion Interrupt (INJ_EOC_INTR)
	19.3.5.5 Range Detection Interrupts
	19.3.5.6 Saturate Detection Interrupts
	19.3.5.7 Interrupt Cause Overview

	19.3.6 Trigger
	19.3.6.1 DSI Trigger Configuration

	19.3.7 SAR ADC Status
	19.3.8 Low-Power Mode
	19.3.9 System Operation
	19.3.10 Register Mode
	19.3.10.1 SARMUX Analog Routing
	19.3.10.2 Global SARSEQ Configuration
	19.3.10.3 Channel Configurations
	19.3.10.4 Channel Enables
	19.3.10.5 Interrupt Masks
	19.3.10.6 Trigger
	19.3.10.7 Retrieve Data after Each Interrupt
	19.3.10.8 Injection Conversions

	19.3.11 DSI Mode
	19.3.11.1 Firmware Analog Routing
	19.3.11.2 DSI Analog Routing
	19.3.11.3 Global SARSEQ Configuration
	19.3.11.4 DSI Channel Configuration
	19.3.11.5 Interrupt
	19.3.11.6 Trigger
	19.3.11.7 Retrieve Data
	19.3.11.8 DSI Output Enable

	19.3.12 Analog Routing Configuration Example
	19.3.13 Temperature Sensor Configuration

	19.4 Registers

	20. Low-Power Comparator
	20.1 Features
	20.2 Block Diagram
	20.3 How It Works
	20.3.1 Input Configuration
	20.3.2 Output and Interrupt Configuration
	20.3.3 Power Mode and Speed Configuration
	20.3.4 Hysteresis
	20.3.5 Wakeup from Low-Power Modes
	20.3.6 Comparator Clock
	20.3.7 Offset Trim

	20.4 Register Summary

	21. Continuous Time Block mini (CTBm)
	21.1 Features
	21.2 Block Diagram
	21.3 How It Works
	21.3.1 Power Mode Configuration
	21.3.2 Output Strength Configuration
	21.3.3 Compensation
	21.3.4 Switch Control
	21.3.4.1 Input Configuration
	21.3.4.2 Output Configuration
	21.3.4.3 Comparator Mode
	21.3.4.4 Comparator Configuration
	21.3.4.5 Comparator Interrupt

	21.4 Register Summary

	22. LCD Direct Drive
	22.1 Features
	22.2 LCD Segment Drive Overview
	22.2.1 Drive Modes
	22.2.1.1 PWM Drive
	22.2.1.2 Digital Correlation

	22.2.2 Recommended Usage of Drive Modes
	22.2.3 Digital Contrast Control

	22.3 Block Diagram
	22.3.1 How it Works
	22.3.2 High-Speed and Low-Speed Master Generators
	22.3.3 Multiplexer and LCD Pin Logic
	22.3.4 Display Data Registers

	22.4 Register List

	23. CapSense
	23.1 Features
	23.2 Block Diagram
	23.3 How It Works
	23.4 CapSense CSD Sensing
	23.4.1 GPIO Cell Capacitance to Current Converter
	23.4.2 CapSense Clock Generator
	23.4.3 Sigma Delta Converter

	23.5 CapSense CSD Shielding
	23.5.1 CMOD Precharge

	23.6 General-Purpose Resources: IDACs
	23.7 Register List

	24. Temperature Sensor
	24.1 Features
	24.2 How it Works
	24.3 Temperature Sensor Configuration
	24.4 Algorithm
	24.5 Registers

	Section G: Program and Debug
	Top Level Architecture
	25. Program and Debug Interface
	25.1 Features
	25.2 Functional Description
	25.3 Serial Wire Debug (SWD) Interface
	25.3.1 SWD Timing Details
	25.3.2 ACK Details
	25.3.3 Turnaround (Trn) Period Details

	25.4 Cortex-M0 Debug and Access Port (DAP)
	25.4.1 Debug Port (DP) Registers
	25.4.2 Access Port (AP) Registers

	25.5 Programming the PSoC 4 Device
	25.5.1 SWD Port Acquisition
	25.5.1.1 Primary and Secondary SWD Pin Pairs
	25.5.1.2 SWD Port Acquire Sequence

	25.5.2 SWD Programming Mode Entry
	25.5.3 SWD Programming Routines Executions

	25.6 PSoC 4 SWD Debug Interface
	25.6.1 Debug Control and Configuration Registers
	25.6.2 Breakpoint Unit (BPU)
	25.6.3 Data Watchpoint (DWT)
	25.6.4 Debugging the PSoC 4 Device

	25.7 Registers

	26. Nonvolatile Memory Programming
	26.1 Features
	26.2 Functional Description
	26.3 System Call Implementation
	26.4 Blocking and Non-Blocking System Calls
	26.4.1 Performing a System Call

	26.5 System Calls
	26.5.1 Silicon ID
	26.5.2 Load Flash Bytes
	26.5.3 Write Row
	26.5.4 Program Row
	26.5.5 Erase All
	26.5.6 Checksum
	26.5.7 Write Protection
	26.5.8 Non-Blocking Write Row
	26.5.9 Non-Blocking Program Row
	26.5.10 Resume Non-Blocking

	26.6 System Call Status
	26.7 Non-Blocking System Call Pseudo Code

	Glossary
	Index

