

**ZL70550 Programmer User's Guide  
for  
ZL70550 Ultra-Low-Power Sub-GHz RF Transceiver**





© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

#### About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees globally. Learn more at [www.microsemi.com](http://www.microsemi.com).

# Contents

|                                                 |    |
|-------------------------------------------------|----|
| <b>1 Revision History</b>                       | 1  |
| 1.1 Initial Release History                     | 1  |
| <b>2 Overview</b>                               | 2  |
| 2.1 Introduction                                | 2  |
| 2.2 Product Description                         | 2  |
| <b>3 Architecture</b>                           | 3  |
| 3.1 Block Diagram                               | 3  |
| 3.2 System Clock                                | 3  |
| <b>4 Communication Protocol</b>                 | 4  |
| 4.1 Packet Definition                           | 4  |
| 4.1.1 Packet Modes Overview                     | 4  |
| 4.1.2 Frame Control                             | 7  |
| 4.1.3 Frame Processing                          | 8  |
| 4.1.4 Packet Exchange Timing                    | 12 |
| 4.1.5 Packet Operations                         | 14 |
| 4.1.6 Adaptive Packet Reception                 | 17 |
| 4.1.7 Packet Reception                          | 19 |
| 4.2 Channel Monitoring                          | 19 |
| 4.2.1 CSMA Threshold                            | 20 |
| 4.2.2 RSSI Measurement                          | 20 |
| 4.3 State Machine Diagrams                      | 20 |
| 4.3.1 Single Packet Operation                   | 21 |
| 4.3.2 Transaction Sequence Operation            | 22 |
| <b>5 Application Interface</b>                  | 25 |
| 5.1 Introduction                                | 25 |
| 5.1.1 Support for Peripheral Access and Control | 25 |
| 5.2 Serial Peripheral Interface                 | 25 |
| 5.2.1 SPI Principles                            | 25 |
| 5.2.2 SPI Command Set                           | 25 |
| 5.2.3 SPI Command Encoding                      | 26 |
| 5.2.4 SPI Status                                | 27 |
| 5.3 SPI Commands                                | 27 |
| 5.3.1 Short-Address Read and Write              | 27 |
| 5.3.2 Long-Address Read and Write               | 28 |
| 5.3.3 Packet Write                              | 28 |
| 5.3.4 Packet Read                               | 29 |
| 5.3.5 Other SPI Commands                        | 29 |
| 5.4 Registers, Interrupts, and Memory Map       | 30 |
| 5.4.1 Registers                                 | 30 |
| 5.4.2 Basic Memory Map                          | 30 |
| 5.4.3 Interrupts                                | 30 |
| 5.4.4 Interrupt Controller                      | 31 |
| 5.5 GPIO Pins                                   | 32 |
| <b>6 Setup and Initialization</b>               | 35 |
| 6.1 Power Management                            | 35 |
| 6.1.1 Power Domains                             | 35 |
| 6.1.2 Power Modes                               | 35 |

|          |                                                                        |           |
|----------|------------------------------------------------------------------------|-----------|
| 6.2      | Power Up .....                                                         | 35        |
| 6.2.1    | Initial Reset .....                                                    | 35        |
| 6.2.2    | Wake-Up Operation .....                                                | 35        |
| 6.2.3    | Monitoring Wake-Up .....                                               | 35        |
| 6.3      | Sleep Operation .....                                                  | 36        |
| 6.3.1    | Manual Sleep Operation .....                                           | 36        |
| 6.3.2    | Automatic Sleep Operation .....                                        | 36        |
| 6.4      | Synthesizer Controller and Channel Selection .....                     | 36        |
| 6.4.1    | A and M Requirements .....                                             | 36        |
| 6.4.2    | A and M Value Calculation .....                                        | 36        |
| 6.4.3    | Channel Frequency Calculation .....                                    | 37        |
| 6.4.4    | A and M Programming Example .....                                      | 37        |
| 6.5      | Recommended Initialization Settings .....                              | 37        |
| 6.5.1    | Z-Star Operation .....                                                 | 38        |
| 6.5.2    | For Raw Bit Mode .....                                                 | 38        |
| <b>7</b> | <b>Calibrations .....</b>                                              | <b>40</b> |
| 7.1      | Overview/Summary .....                                                 | 40        |
| 7.2      | Sequence .....                                                         | 41        |
| 7.3      | Setup, Initiation, and Control of Calibrations .....                   | 42        |
| 7.4      | Required Time for Calibrations .....                                   | 43        |
| 7.5      | Procedures .....                                                       | 43        |
| 7.5.1    | Current Reference Trimming .....                                       | 43        |
| 7.5.2    | XO Tuning .....                                                        | 43        |
| 7.5.3    | RCO Tuning .....                                                       | 45        |
| 7.5.4    | VCO Frequency and Amplitude Trimming .....                             | 45        |
| 7.5.5    | Blocker Peak Detector Offset Trimming .....                            | 48        |
| 7.5.6    | Antenna Tuning .....                                                   | 48        |
| 7.5.7    | LNA Load Tuning .....                                                  | 49        |
| 7.5.8    | RX Filter (FM detector, IF filter, and Gaussian filter) Trimming ..... | 50        |
| 7.5.9    | FSK Deviation Trimming .....                                           | 50        |
| 7.5.10   | Output Power Trimming .....                                            | 50        |
| 7.5.11   | LNA Gain .....                                                         | 51        |
| <b>8</b> | <b>Registers .....</b>                                                 | <b>52</b> |
| 8.1      | Using the Memory Map .....                                             | 52        |
| 8.2      | Address Space .....                                                    | 53        |
| 8.3      | SPI Local Registers .....                                              | 61        |
| 8.3.1    | Chip ID .....                                                          | 61        |
| 8.3.2    | Chip Revision .....                                                    | 61        |
| 8.3.3    | 2V Reset Generator .....                                               | 61        |
| 8.3.4    | Chip Reset .....                                                       | 62        |
| 8.3.5    | Power Down Request .....                                               | 62        |
| 8.3.6    | SPIR Local Status .....                                                | 62        |
| 8.3.7    | SPI Control Register .....                                             | 63        |
| 8.4      | System Bus Control and Status Registers .....                          | 63        |
| 8.4.1    | Frame Sync Control 1 .....                                             | 63        |
| 8.4.2    | Received PHY Header Status .....                                       | 64        |
| 8.4.3    | RX Payload Length .....                                                | 64        |
| 8.4.4    | MAC SPI Status .....                                                   | 65        |
| 8.4.5    | RX Frame Length .....                                                  | 65        |
| 8.4.6    | Fields Received in Z-Star MAC Header .....                             | 65        |
| 8.4.7    | MAC RX Frame Status .....                                              | 67        |
| 8.4.8    | MAC Sequencer Status .....                                             | 68        |
| 8.4.9    | Manual Global Enables .....                                            | 69        |
| 8.4.10   | Manual Miscellaneous .....                                             | 69        |

|        |                                                                                                       |    |
|--------|-------------------------------------------------------------------------------------------------------|----|
| 8.4.11 | Clock Enable Tests .....                                                                              | 70 |
| 8.4.12 | ADC Mode Conversion .....                                                                             | 70 |
| 8.4.13 | Maximum Result in ADC Modes and When Using RSSI in CSMA-CA Modes .....                                | 71 |
| 8.4.14 | Average Result in ADC Modes and When Using RSSI in CSMA-CA Modes .....                                | 71 |
| 8.4.15 | Trimmed RSSI Average at Completion of DC Restore Process in RSSI Detect Modes with CSMA Not Active 71 |    |
| 8.4.16 | IRQ Status .....                                                                                      | 72 |
| 8.4.17 | Trim Command .....                                                                                    | 74 |
| 8.4.18 | LNA Trim Peak ADC Value .....                                                                         | 74 |
| 8.4.19 | Antenna Trim Peak ADC Value .....                                                                     | 74 |
| 8.5    | Always-On System Bus Control and Status Registers .....                                               | 75 |
| 8.5.1  | VCO Frequency Tune Value for RX Mode .....                                                            | 75 |
| 8.5.2  | VCO Frequency Tune Value for TX mode (with modulation off) with Power Amplifier Off (only bias on) 75 |    |
| 8.5.3  | VCO Frequency Tune Value for TX mode (with modulation off) with Power Amplifier On .....              | 76 |
| 8.5.4  | VCO Frequency Tune Value at Output of Multiplexer .....                                               | 76 |
| 8.5.5  | VCO Frequency Band Trim Value .....                                                                   | 77 |
| 8.5.6  | Modulator DAC Trim Value .....                                                                        | 77 |
| 8.5.7  | Frequency Deviation Trim Target .....                                                                 | 77 |
| 8.5.8  | RC Oscillator Frequency Trim Value .....                                                              | 77 |
| 8.5.9  | LNA Frequency Trim .....                                                                              | 78 |
| 8.5.10 | Manual LNA Trim Value .....                                                                           | 78 |
| 8.5.11 | IREF Resistor Trim Value .....                                                                        | 78 |
| 8.5.12 | Crystal Oscillator Trim Value .....                                                                   | 79 |
| 8.5.13 | Gaussian Filter Trim Value .....                                                                      | 79 |
| 8.5.14 | VCO Amplitude Trim Value .....                                                                        | 79 |
| 8.5.15 | Antenna Trim Value .....                                                                              | 79 |
| 8.5.16 | RX Peak Detector Trim Value .....                                                                     | 80 |
| 8.5.17 | Initial DC Correct/AFC Value .....                                                                    | 80 |
| 8.5.18 | IRQ Enables .....                                                                                     | 80 |
| 8.5.19 | Pad Enable .....                                                                                      | 81 |
| 8.5.20 | TX Control .....                                                                                      | 82 |
| 8.5.21 | TX Frame-Packet Buffer Length .....                                                                   | 84 |
| 8.5.22 | TX Frame Control for Z-Star Packet Mode .....                                                         | 85 |
| 8.5.23 | TX Frame Sequence Number for Z-Star Packet Mode .....                                                 | 85 |
| 8.5.24 | RX Control for Z-Star Packet Mode .....                                                               | 86 |
| 8.5.25 | Address Mask .....                                                                                    | 88 |
| 8.5.26 | RX Buffer Length .....                                                                                | 88 |
| 8.5.27 | RX Buffer Write Threshold .....                                                                       | 89 |
| 8.5.28 | Network ID .....                                                                                      | 89 |
| 8.5.29 | Device Short ID: Address of This Device .....                                                         | 89 |
| 8.5.30 | Short ID: Address of Other Device .....                                                               | 89 |
| 8.5.31 | Long ID of This Device .....                                                                          | 90 |
| 8.5.32 | Long ID of Other Device .....                                                                         | 90 |
| 8.5.33 | MAC Controls .....                                                                                    | 90 |
| 8.5.34 | CRC Polynomial .....                                                                                  | 91 |
| 8.5.35 | SPI Control .....                                                                                     | 91 |
| 8.5.36 | CSMA Control .....                                                                                    | 92 |
| 8.5.37 | CSMA 100- $\mu$ s Counts Per Interval .....                                                           | 92 |
| 8.5.38 | CSMA Maximum Random Number of Intervals in Back-Off .....                                             | 92 |
| 8.5.39 | CSMA Retry Minimum Back-Off in Intervals .....                                                        | 93 |
| 8.5.40 | Synchronization Threshold Minimum Number of Bits That Need to Match the 40-Bit Sync Word 93           |    |
| 8.5.41 | Delay Time Count for ptx_tx_trig .....                                                                | 93 |
| 8.5.42 | Selection for GP Input/Output .....                                                                   | 94 |
| 8.5.43 | Frame Sync Pattern .....                                                                              | 94 |
| 8.5.44 | PLL Start-Up Delay (100- $\mu$ s count) .....                                                         | 95 |
| 8.5.45 | RX Time Limit for Acknowledgment Timeout (100- $\mu$ s count) .....                                   | 95 |

|           |                                                                                                |            |
|-----------|------------------------------------------------------------------------------------------------|------------|
| 8.5.46    | RX Time Limit for Packet Timeout (100- $\mu$ s count) . . . . .                                | 95         |
| 8.5.47    | RX Frame Sequence Number . . . . .                                                             | 96         |
| 8.5.48    | TX Non-Acknowledgment Packet Transmitted Count . . . . .                                       | 96         |
| 8.5.49    | TX Packet Retry Accumulated Count (after ACK failure) . . . . .                                | 96         |
| 8.5.50    | TX Packet Drop Accumulated Count (after ACK failure) . . . . .                                 | 96         |
| 8.5.51    | RX Non-Acknowledgment Packet Received Count . . . . .                                          | 97         |
| 8.5.52    | RX Packet Received Count for All Types . . . . .                                               | 97         |
| 8.5.53    | RX Non-Acknowledgment Packet Drop Accumulated Count . . . . .                                  | 97         |
| 8.5.54    | RX Packet Sync Error Accumulated Count . . . . .                                               | 97         |
| 8.5.55    | RX Packet All Error Accumulated Count for All Errors . . . . .                                 | 98         |
| 8.5.56    | CSMA Retry Count . . . . .                                                                     | 98         |
| 8.5.57    | CSMA Fail Count . . . . .                                                                      | 98         |
| 8.5.58    | PHY RX Mode Select . . . . .                                                                   | 98         |
| 8.5.59    | Frame Sync Control 2 . . . . .                                                                 | 99         |
| 8.5.60    | PHY TX Raw Mode Control . . . . .                                                              | 99         |
| 8.5.61    | Data Rate Control . . . . .                                                                    | 99         |
| 8.5.62    | M Divide Counter Value . . . . .                                                               | 100        |
| 8.5.63    | A Divide Counter Value . . . . .                                                               | 100        |
| 8.5.64    | ADC Modes Multiplexer Input Selection . . . . .                                                | 101        |
| 8.5.65    | Number of Conversions Used for Averaging in ADC Modes and When Using RSSI in CSMA-CA Modes 102 |            |
| 8.5.66    | ADC CSMA Threshold . . . . .                                                                   | 103        |
| 8.5.67    | LNA Gain . . . . .                                                                             | 103        |
| 8.5.68    | PA Power Level . . . . .                                                                       | 103        |
| 8.5.69    | PA Buffer Bias Control . . . . .                                                               | 104        |
| 8.5.70    | VCO Control . . . . .                                                                          | 104        |
| <b>9</b>  | <b>Errata . . . . .</b>                                                                        | <b>105</b> |
| 9.1       | Full VCO Trim Failure . . . . .                                                                | 105        |
| 9.1.1     | Description . . . . .                                                                          | 105        |
| 9.1.2     | Solution or Workaround . . . . .                                                               | 105        |
| <b>10</b> | <b>References . . . . .</b>                                                                    | <b>106</b> |
| <b>11</b> | <b>Glossary . . . . .</b>                                                                      | <b>107</b> |

# Figures

|           |                                                                      |    |
|-----------|----------------------------------------------------------------------|----|
| Figure 1  | ZL70550 Block Diagram                                                | 3  |
| Figure 2  | Packet Format, Z-Star Packet Mode                                    | 5  |
| Figure 3  | Packet Format, User Packet Mode                                      | 6  |
| Figure 4  | Packet Format, Raw Packet Mode                                       | 7  |
| Figure 5  | Basic Transaction                                                    | 8  |
| Figure 6  | Basic Transaction with Retry                                         | 9  |
| Figure 7  | Hub to Node Frame Transaction                                        | 9  |
| Figure 8  | Data Request Transaction                                             | 10 |
| Figure 9  | Packet Processing in User Packet Mode and Raw Packet Mode            | 12 |
| Figure 10 | Default TX Start-Up Timing                                           | 12 |
| Figure 11 | Default RX Start-Up Timing                                           | 13 |
| Figure 12 | Optimized Turnaround in Preamble Detect Mode                         | 14 |
| Figure 13 | Simplified Single Packet Mode State Machine                          | 21 |
| Figure 14 | Simplified MAC Sequencer State Machine                               | 23 |
| Figure 15 | State Machine for User Packet Mode and Raw Packet Mode               | 24 |
| Figure 16 | SPI Command Encoding                                                 | 26 |
| Figure 17 | Short-Address Read-Write Timing                                      | 28 |
| Figure 18 | Long-Address Read Timing                                             | 28 |
| Figure 19 | Long-Address Write Timing                                            | 28 |
| Figure 20 | Command Timing                                                       | 29 |
| Figure 21 | Crystal Oscillator with Optional Additional External Load Capacitors | 44 |

# Tables

|          |                                                    |    |
|----------|----------------------------------------------------|----|
| Table 1  | Default Frequencies                                | 3  |
| Table 2  | Packet Modes of Operation                          | 4  |
| Table 3  | Auto Header Generation and Checking                | 11 |
| Table 4  | Settings for TX Frame Sync Polarity and FEC Enable | 18 |
| Table 5  | TX Preamble Pattern                                | 18 |
| Table 6  | Enable for TX FEC Encoding                         | 19 |
| Table 7  | Receiver Hamming Decoder Enable                    | 19 |
| Table 8  | Procedure for Manual RSSI Measurement              | 20 |
| Table 9  | SPI Command Set                                    | 26 |
| Table 10 | SPI Status Returned on MISO                        | 27 |
| Table 11 | Basic Memory Map                                   | 30 |
| Table 12 | ZL70550 Interrupt Register Bit Definitions         | 31 |
| Table 13 | GPIO Output Signal Selection                       | 32 |
| Table 14 | Power Modes and Operational Conditions             | 35 |
| Table 15 | General Parameters                                 | 38 |
| Table 16 | Receive Parameters                                 | 38 |
| Table 17 | TX Raw Bit Mode Controls                           | 38 |
| Table 18 | RX Raw Bit Mode Controls                           | 39 |
| Table 19 | Recommended System Calibration Order               | 41 |
| Table 20 | Procedure for Tune and Trim Setup                  | 42 |
| Table 21 | Trim Commands                                      | 42 |
| Table 22 | Required Time for Calibrations                     | 43 |
| Table 23 | Procedure for Current Reference Trim               | 43 |
| Table 24 | Procedure for Crystal Oscillator Tune              | 44 |
| Table 25 | Procedure for RC Oscillator Trim                   | 45 |
| Table 26 | Typical Frequency Range Selection                  | 46 |
| Table 27 | Procedure for VCO Amplitude Trim                   | 46 |
| Table 28 | Procedure VCO Full Frequency Trim                  | 47 |
| Table 29 | Procedure Blocker Peak Detector Offset Trim        | 48 |
| Table 30 | Procedure for Antenna Tuning                       | 48 |
| Table 31 | Procedure for LNA Load Tune                        | 49 |
| Table 32 | Procedure for RX Filter Tune                       | 50 |
| Table 33 | Procedure for FSK Deviation Trim                   | 50 |
| Table 34 | Procedure for Transmitter Output Power Trim        | 51 |
| Table 35 | Memory Map                                         | 53 |
| Table 36 | SPIR_CHIP_ID                                       | 61 |
| Table 37 | SPIR_REVISION                                      | 61 |
| Table 38 | SPIR_2V_RESET                                      | 61 |
| Table 39 | SPIR_SYS_RESET                                     | 62 |
| Table 40 | SPIR_PWRDWN_REQ                                    | 62 |
| Table 41 | SPIR_LOCAL_STAT                                    | 62 |
| Table 42 | SPIR_CTRL                                          | 63 |
| Table 43 | DP_CTRL0                                           | 63 |
| Table 44 | RPHR_STAT                                          | 64 |
| Table 45 | RXC_PLD_LEN                                        | 64 |
| Table 46 | MSC_SPI_STAT                                       | 65 |
| Table 47 | RXC_FRM_LEN                                        | 65 |
| Table 48 | RXC_FRM_CTRL0                                      | 65 |
| Table 49 | RXC_SOURCE_SID                                     | 66 |
| Table 50 | RXC_NETWORK_ID                                     | 66 |
| Table 51 | RXC_DEST_SID                                       | 66 |
| Table 52 | RXC_FRM_CTRL1                                      | 66 |
| Table 53 | RXC_DEST_LID                                       | 67 |
| Table 54 | RXC_SOURCE_LID                                     | 67 |
| Table 55 | RXC_FRM_STAT0                                      | 67 |

|           |                             |    |
|-----------|-----------------------------|----|
| Table 56  | RXC_FRM_STAT1 .....         | 68 |
| Table 57  | MSC_FRM_STAT0 .....         | 68 |
| Table 58  | MSC_FRM_STAT1 .....         | 69 |
| Table 59  | MAN_GLOBAL_EN .....         | 69 |
| Table 60  | MAN_TEST .....              | 69 |
| Table 61  | CLK_TEST .....              | 70 |
| Table 62  | ADC_CONV_START .....        | 70 |
| Table 63  | ADC_MAX .....               | 71 |
| Table 64  | ADC_AVG .....               | 71 |
| Table 65  | ADC_AVG_TRMD_PKT_RSSI ..... | 71 |
| Table 66  | IRQ0 .....                  | 72 |
| Table 67  | IRQ1 .....                  | 72 |
| Table 68  | IRQ2 .....                  | 73 |
| Table 69  | TRIM_CMD .....              | 74 |
| Table 70  | LNA_PEAK_ADC .....          | 74 |
| Table 71  | ANT_PEAK_ADC .....          | 74 |
| Table 72  | VCO_FRQ_RX_TRIM .....       | 75 |
| Table 73  | VCO_FRQ_TXPAOFF_TRIM .....  | 75 |
| Table 74  | VCO_FRQ_TXPAON_TRIM .....   | 76 |
| Table 75  | VCO_FRQ_TRIM .....          | 76 |
| Table 76  | VCO_FRQ_BAND_TRIM .....     | 77 |
| Table 77  | MOD_DAC_TRIM .....          | 77 |
| Table 78  | FSK_DEV_TRIM_TARGET .....   | 77 |
| Table 79  | RCOSC_FREQ_TRIM .....       | 77 |
| Table 80  | LNA_FRQ_TRIM .....          | 78 |
| Table 81  | LNA_BIAS_TRIM .....         | 78 |
| Table 82  | IREF_TRIM .....             | 78 |
| Table 83  | XO_TRIM .....               | 79 |
| Table 84  | GAÜS_TRIM .....             | 79 |
| Table 85  | VCO_AMP_TRIM .....          | 79 |
| Table 86  | ANT_TRIM .....              | 79 |
| Table 87  | RX_PKDET_TRIM .....         | 80 |
| Table 88  | DC_CNTR_TRIM .....          | 80 |
| Table 89  | IRQ_EN0 .....               | 80 |
| Table 90  | IRQ_EN1 .....               | 80 |
| Table 91  | IRQ_EN2 .....               | 81 |
| Table 92  | PAD_EN0 .....               | 81 |
| Table 93  | TX_CTRL0 .....              | 82 |
| Table 94  | TX_CTRL1 .....              | 82 |
| Table 95  | TX_CTRL2 .....              | 83 |
| Table 96  | TX_BUF_LEN .....            | 84 |
| Table 97  | TX_FRM_CTRL .....           | 85 |
| Table 98  | TX_FRM_SEQ_NO .....         | 85 |
| Table 99  | RX_CTRL0 .....              | 86 |
| Table 100 | RX_CTRL1 .....              | 86 |
| Table 101 | RX_CTRL2 .....              | 87 |
| Table 102 | ADDR_MASK .....             | 88 |
| Table 103 | RX_FRM_LEN .....            | 88 |
| Table 104 | RX_HDR_THRESH .....         | 89 |
| Table 105 | NETWORK_ID .....            | 89 |
| Table 106 | DEVICE_SID .....            | 89 |
| Table 107 | OTHER_SID .....             | 89 |
| Table 108 | DEVICE_LID .....            | 90 |
| Table 109 | OTHER_LID .....             | 90 |
| Table 110 | MAC_CTRL .....              | 90 |
| Table 111 | CRC_POLY .....              | 91 |
| Table 112 | SPI_CTRL .....              | 91 |
| Table 113 | CSMA_CTRL .....             | 92 |
| Table 114 | CSMA_TIME .....             | 92 |

|           |                              |     |
|-----------|------------------------------|-----|
| Table 115 | CSMA_MAX RAND_BACKOFF .....  | 92  |
| Table 116 | CSMA_RETRY_MIN_BACKOFF ..... | 93  |
| Table 117 | SYNC_THRESH .....            | 93  |
| Table 118 | TX_TRIG_CNT .....            | 93  |
| Table 119 | GPIO_0_SEL .....             | 94  |
| Table 120 | GPIO_1_SEL .....             | 94  |
| Table 121 | GPIO_2_SEL .....             | 94  |
| Table 122 | GPIO_3_SEL .....             | 94  |
| Table 123 | SYNC_PTRN .....              | 94  |
| Table 124 | PLL_START_DLY .....          | 95  |
| Table 125 | ACK_TIME_LIMIT .....         | 95  |
| Table 126 | PKT_TIME_LIMIT .....         | 95  |
| Table 127 | RX_FRM_SEQ_NO .....          | 96  |
| Table 128 | TX_PKT_CNT .....             | 96  |
| Table 129 | TX_PKT_RETRY_CNT .....       | 96  |
| Table 130 | TX_PKT_DROP_CNT .....        | 96  |
| Table 131 | RX_PKT_CNT .....             | 97  |
| Table 132 | RX_ALL_PKT_CNT .....         | 97  |
| Table 133 | RX_PKT_DROP_CNT .....        | 97  |
| Table 134 | RX_SYNC_ERR_CNT .....        | 97  |
| Table 135 | RX_ALL_ERR_CNT .....         | 98  |
| Table 136 | CSMA_RETRY_CNT .....         | 98  |
| Table 137 | CSMA_FAIL_CNT .....          | 98  |
| Table 138 | PHY_RX_MODE_SEL .....        | 98  |
| Table 139 | DPORT_CTRL .....             | 99  |
| Table 140 | PHY_TX_RAW_MODE_CTRL .....   | 99  |
| Table 141 | RATE_CTRL .....              | 99  |
| Table 142 | SYNTH_M_DIV .....            | 100 |
| Table 143 | SYNTH_A_DIV .....            | 100 |
| Table 144 | ADC_MUX_IN_SEL .....         | 101 |
| Table 145 | ADC_POW_N_CONV .....         | 102 |
| Table 146 | ADC_CSMA_THRESH .....        | 103 |
| Table 147 | LNA_GAIN .....               | 103 |
| Table 148 | PA_PWR_LEVEL .....           | 103 |
| Table 149 | VCO_BUF_BIAS .....           | 104 |
| Table 150 | VCO_CTRL .....               | 104 |

# 1 Revision History

---

The revision history describes the changes that were implemented in the ZL70550 Programmer User's Guide (153552). The changes are listed by revision, starting with the most current publication.

## 1.1 Initial Release History

Revision 1, dated July 2016, was the first publication of this document.

## 2 Overview

---

### 2.1 Introduction

The ZL70550 Programmer User's Guide contains a comprehensive list of typical and required programming procedures for the various modes of operation and required calibrations of the ZL70550 Ultra-Low-Power Sub-GHz RF Transceiver. Complementing these procedures is a complete memory map defining all of the application registers, with detailed descriptions of their bit definitions including reset values and register access types.

For programming examples, example source code written in C is available to all users who complete a Source Code License Agreement (SCLA) with Microsemi. This source code provides examples of many of the procedures in this user's guide and therefore significantly reduces the development time for users. This source code runs on the ZL70550 Application Development Kit (ADK) boards, which is also available and recommended for users. The ZL70550 ADK provides users with a platform to observe the behavior of the procedures in a lab environment. The ZL70550 ADK also provides an example circuit, allowing users to evaluate the RF performance of the device.

### 2.2 Product Description

Microsemi's ZL70550 RF transceiver is a low-power sub-GHz ISM-band radio designed for wireless-sensor applications that use either continuous monitoring or low-duty-cycle monitoring. The ZL70550 device operates in unlicensed frequency bands between 779 MHz and 965 MHz and offers a maximum data rate of 200 kbit/s to support voice communication. For data communication, the ZL70550 supports extremely low power consumption in packet-based networks. The device includes the RF transceiver as well as a Media Access Controller (MAC) that performs most link support functions.

The ZL70550 system uses the same device at both ends of the communication link.

All control and packet transfers occur across the SPI interface. Setup and control information is accessed with SPI interface operations to either volatile or always-on memory-mapped registers. Packet data is also transferred with block read/write operations.

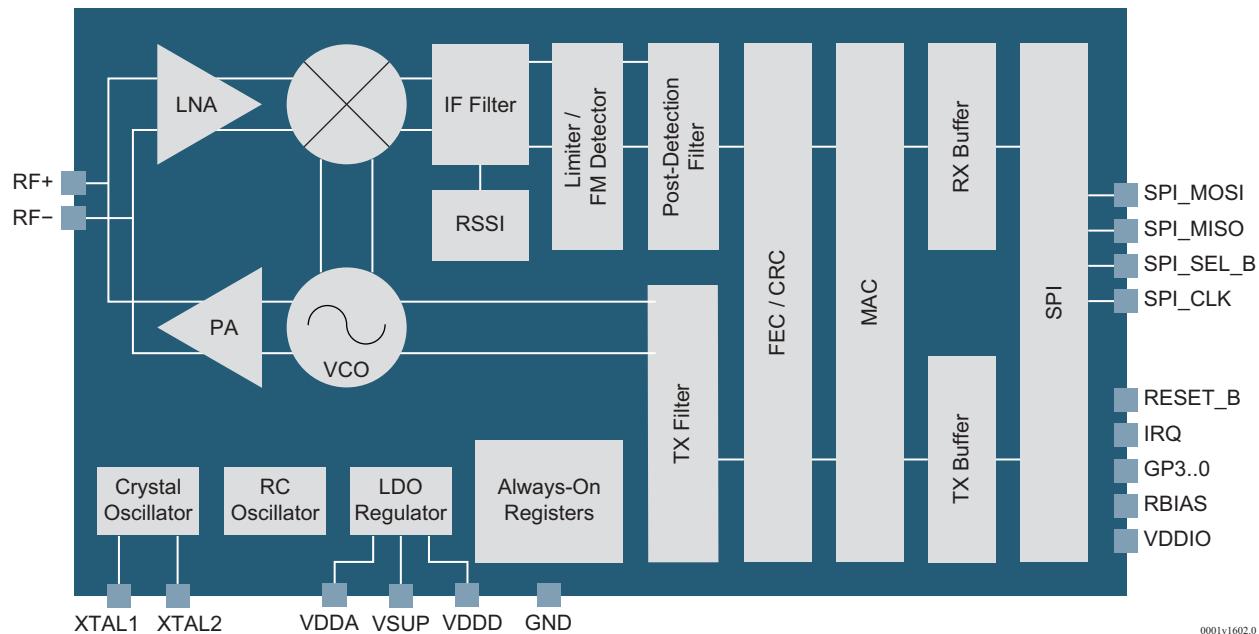
After the device is set up and necessary information is written to the registers, packet operations can be performed. Packets are written to the transmit buffer across the SPI interface, with or without packet headers. If written without headers, then the headers are automatically added to the packets, depending on the packet format. Likewise, packets can be read from the receive buffer, with or without packet headers. The packet headers are decoded by the device as necessary per the packet format.

Operations can be performed as single-packet operations or, alternatively, the device can perform intelligent packet sequence transactions. With packet transactions, automatic packet acknowledgments are transmitted and received, and if the acknowledgment is not received, automatic retransmissions are attempted.

Completion of packet operations is signaled by various interrupts, depending on the operation being performed, at which point the host processor is notified of the result of the operation.

The device is intended to operate primarily in CSMA mode, but can also support TDMA operation. In CSMA mode, the node initiates all packet transfers starting with a CSMA-CA operation to detect whether the channel is clear. It then transmits that packet and typically waits for an acknowledgment packet. If the acknowledgment fails, then the node may attempt a retransmission after a random back-off period and another CSMA-CA operation to detect whether the channel is clear.

The hub typically waits in receive mode for a packet. Once a packet is received, it transmits a response. In Z-Star packet mode, the hub may also immediately send another nonacknowledgment packet following the acknowledgment packet by signaling in the acknowledgment packet that it will be doing so.


Typically in CSMA operation, the hub does not initiate packet transfers and must wait for the node to send a packet. For nodes that do not periodically transmit data, they must periodically send data-request packets to see if the hub has a packet for them.

## 3 Architecture

## 3.1 Block Diagram

The ZL70550 block diagram is shown in [Figure 1](#), page 3. All control and data is transferred across the SPI slave interface. The 2,048-byte internal address space includes status and control registers plus a 1,024-byte packet buffer.

**Figure 1 • ZL70550 Block Diagram**



## 3.2 System Clock

The system clock is derived from the crystal oscillator (XTAL) clock, running at 24 MHz and giving the frequencies shown in [Table 1](#), page 3.

**Table 1 • Default Frequencies**

|                           |                                       |
|---------------------------|---------------------------------------|
| Crystal                   | 24.0 MHz                              |
| Internal system clock     | 1.20 MHz                              |
| PLL clock channel spacing | 300 kHz                               |
| IF frequency              | 600 kHz                               |
| Supported bit rates       | 200 kbit/s, 100 kbit/s, and 50 kbit/s |

# 4 Communication Protocol

## 4.1 Packet Definition

The packet format provides a high effective data rate with excellent error detection and error correction capability. As shown in [Table 2](#), page 4, depending on the packet mode selected by the user, the format of a complete packet may contain:

- Packet preamble
- Frame sync
- PHY header (Z-Star packet mode and user packet mode only)
- MAC header (Z-Star packet mode only)
- User data blocks
- Frame Check Sequence (FCS) or CRC

This packet format is used in both directions, from hub to node and from node to hub. For maximum data throughput, the packet preamble and header are both as small as possible, while allowing up to 511 bytes of user data within a packet.

Sections [4.1.1.1 Z-Star Packet Mode](#), page 5, through [4.1.1.3 Raw Packet Mode Format](#), page 6, show the structure of the complete packet: the preamble, the header, a typical data block, and CRC. The time sequence runs from left to right, so the preamble is first and CRC is last.

### 4.1.1 Packet Modes Overview

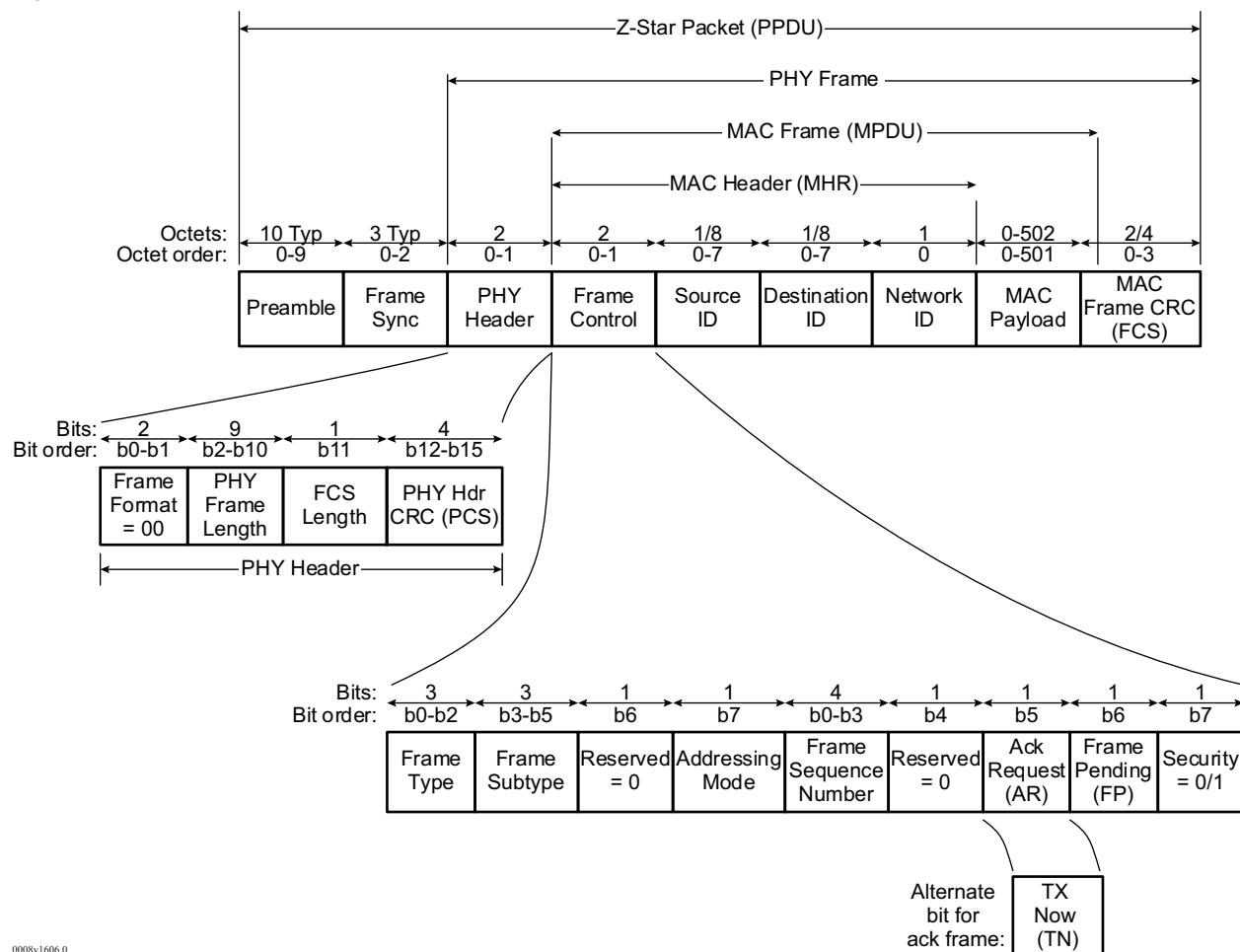
All packet transfers occur to and from the internal packet buffer across the system bus between the SPI interface and the MAC. Typically, 512 bytes are allocated to the transmit buffer, and 512 bytes to the receive buffer. Packet sizes are typically limited to 511 bytes.

The packet mode is selected using *tx\_mode* in the **TX\_CTRL0** register for TX and using *rx\_mode* in the **RX\_CTRL0** register for RX. The various packet modes provide different features, as shown in [Table 2](#), page 4.

**Table 2 • Packet Modes of Operation**

| Mode               | Description                                                         | Frame Sync | FEC | PHY Header | Auto-Length | MAC Header | CRC |
|--------------------|---------------------------------------------------------------------|------------|-----|------------|-------------|------------|-----|
| Raw bit mode       | Optional serial clock and data (TX/RX buffer or <b>GP3..0</b> pins) | No         | No  | No         | No          | No         | No  |
| Raw packet mode    | Compatible with ZL70251 MAC with optional FEC and CRC               | Yes        | Opt | No         | No          | No         | Opt |
| User packet mode   | User-defined packet (no MAC header)                                 | Yes        | Opt | Yes        | Yes         | No         | Opt |
| Z-Star packet mode | Fully functional MAC based on Microsemi's Z-Star protocol           | Yes        | Opt | Yes        | Yes         | Yes        | Yes |

There are restrictions on CRC availability in raw packet mode, since there is no length information in the packet. Either fixed length packets must be used, or length information must be extracted dynamically during packet reception to set the length.


#### 4.1.1.1 Z-Star Packet Mode

The function of the transmitter is to build the packet PHY frame, as shown in [Figure 2](#), page 5. The recommended preamble length is 10 bytes, and the frame synchronization pattern is programmable from 2 to 5 bytes. The Z-Star packet is composed of six distinct sections for the Z-Star frame:

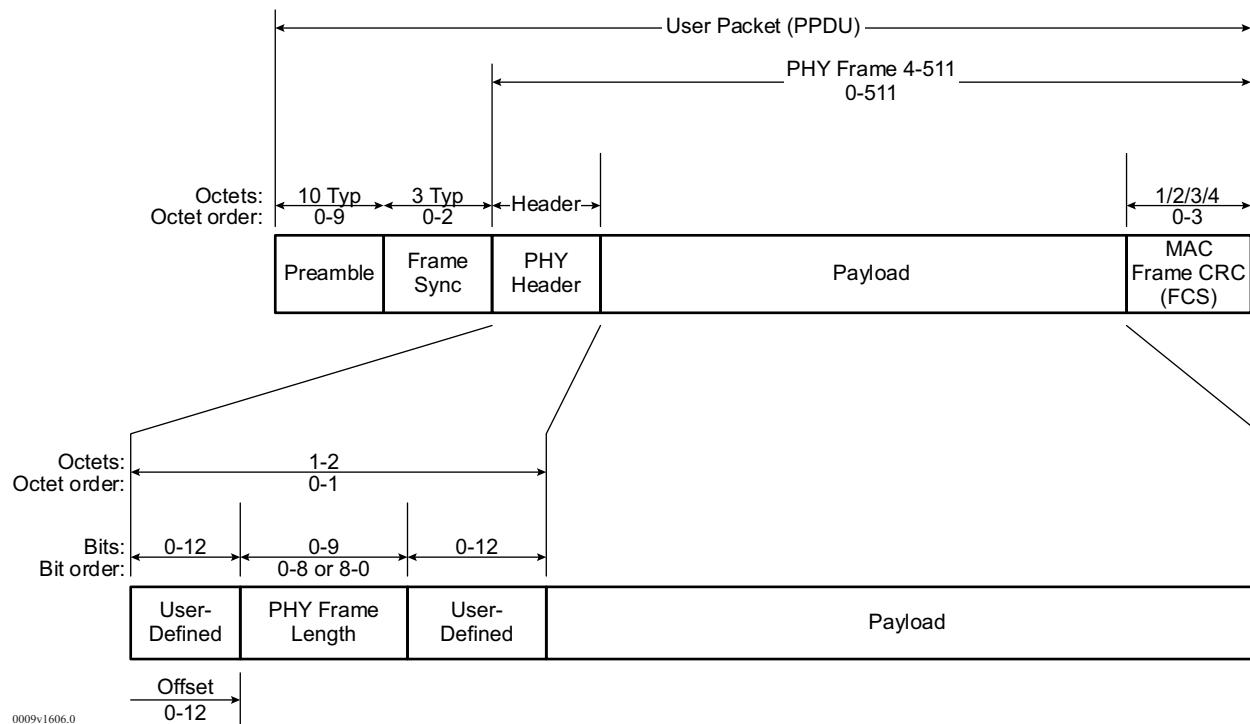
- Preamble
- Frame synchronization pattern
- PHY header
- MAC header
- Payload
- Frame Check Sequence (FCS) or CRC

The generated PHY frame is optionally hamming encoded and serialized in the MAC for final packet generation and transmission.

**Figure 2 • Packet Format, Z-Star Packet Mode**



#### 4.1.1.2 User Packet Mode


In the user packet mode, the frame is composed of the PHY header, payload, and FCS as shown in [Figure 3](#), page 6. There is no MAC header. The FCS is variable, set by `rx_fcs_len` for receive and `tx_fcs_len` for transmit. If the setting is zero, then there is no FCS. The correct FCS polynomial must be set in `crc_poly`. Both values must be the same for both devices in any one direction, but can be different for the different directions.

The recommended preamble length is 10 bytes, and the frame synchronization pattern is programmable from 2 to 5 bytes.

For transmit, the length is generated automatically by the SPI packet write command if *tx\_auto\_hdr* is set to 1; in user packet mode, this limits the PHY header to one byte and therefore limits frame length to 255 bytes. Alternatively, if *tx\_auto\_hdr* is set to 0, a two-byte PHY header is an option and the length is determined by *tx\_buf\_len*, so the maximum packet size is 511 bytes. In the latter case, the user must write the entire packet, including the frame length in the PHY header, to the transmit buffer.

The frame length may be placed anywhere in the first two bytes, but the receiver must preprogrammed for the location of the frame length field.

**Figure 3 • Packet Format, User Packet Mode**



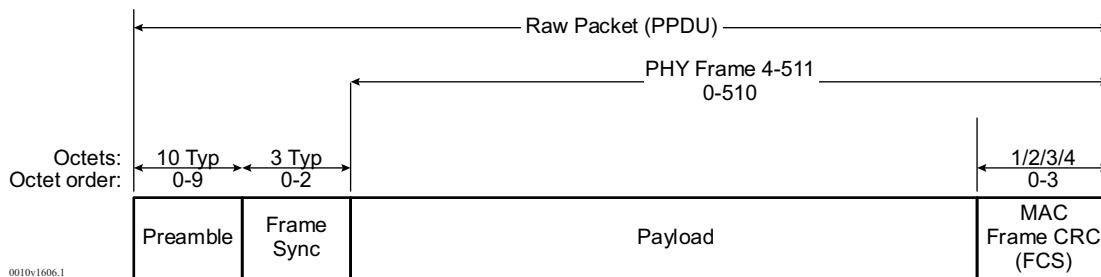
#### 4.1.1.3 Raw Packet Mode Format

The raw packet mode is similar to the user packet mode, except that there is no PHY header and no frame length in the packet. In raw packet mode, packets are transmitted without a header.

The packet format is shown in [Figure 4](#), page 7. The preamble and frame sync are transmitted, so that received data is byte-aligned before being written to the RX buffer. The operation in raw packet mode is limited to that shown in the state machine operation shown in [Figure 15](#), page 24. Raw packet mode can be used if the packet format does not support the PHY header requirements that exist in user packet mode for the packet length field. In this case, the TX and RX packet length are controlled by *tx\_buf\_len* and *rx\_frm\_len* respectively.

The recommended preamble length is 10 bytes, and the frame synchronization pattern is programmable from 2 to 5 bytes. FEC encoding/decoding is optional. Preamble and frame synchronization length, and FEC selection operate the same as for other modes.

The RX frame length *rx\_frm\_len* may be updated during packet reception, providing this occurs before the end of the packet. The packet may optionally be terminated by a SPI abort command. In all cases, ***rxc\_pkt\_buf\_len[8:0]*** indicates the number of bytes written to the RX buffer (which is either the entire PHY frame length or the payload length; see [Table 10](#), page 27).


The FCS is variable, set by `tx_fcs_len` and `rx_fcs_len`. If the setting is zero, then there is no FCS. The correct FCS polynomial must be set in `crc_poly`. Both values must be the same for both devices in any one direction, but can be different for the different directions.

The CRC is optional and requires using one of two methods for RX packet length.

- A fixed packet length is used, in which case the CRC is always known.
- The host CPU dynamically derives the length from the contents of the beginning of the packet, and writes that value to `rx_frm_len` prior to the end of packet being received. Otherwise, the FCS cannot be calculated correctly.

To facilitate the latter case, a programmable interrupt, `rx_hdr_rdy_irq`, is available to interrupt the host CPU after a predetermined number of packet bytes have been written to the RX buffer. The RX buffer fullness threshold `rx_hdr_thresh` controls the number of bytes written to the RX buffer, at which point `rx_hdr_rdy_irq` is asserted.

**Figure 4 • Packet Format, Raw Packet Mode**



## 4.1.2 Frame Control

### 4.1.2.1 Frame Control for Raw Bit Mode Operation

In raw bit mode, raw bits are transmitted from the transmitter without preamble, frame sync pattern, header, or CRC. If these properties are needed, then they must be encoded in the bit stream.

In raw bit TX mode, the transmitter sends a user defined bit stream. The source of the data can be either the TX buffer or the **GP1** pin. It is recommended that the preamble be included in the data stream, unless manual DC receiver settings can be used.

On the receiver side, the bit stream is input without frame synchronization or byte alignment. The received data is placed in the receive buffer, and can also be output to a general-purpose I/O pin along with an output clock.

In raw bit mode, the receiver does not require a frame sync to receive the RX data. As soon as the receiver is enabled, data is streamed into the RX buffer. All data is streamed to the receive buffer, with no byte alignment and no dewhitening. Optionally, the data could be qualified by preamble detection.

Raw bit mode has two basic applications. First, it can be used for raw bit error testing using the GPIO TX and RX I/O modes. Second, it can be used for applications where the packet framing is not desired, or for data rates not supported by the ZL70550. There are limitations to this second case.

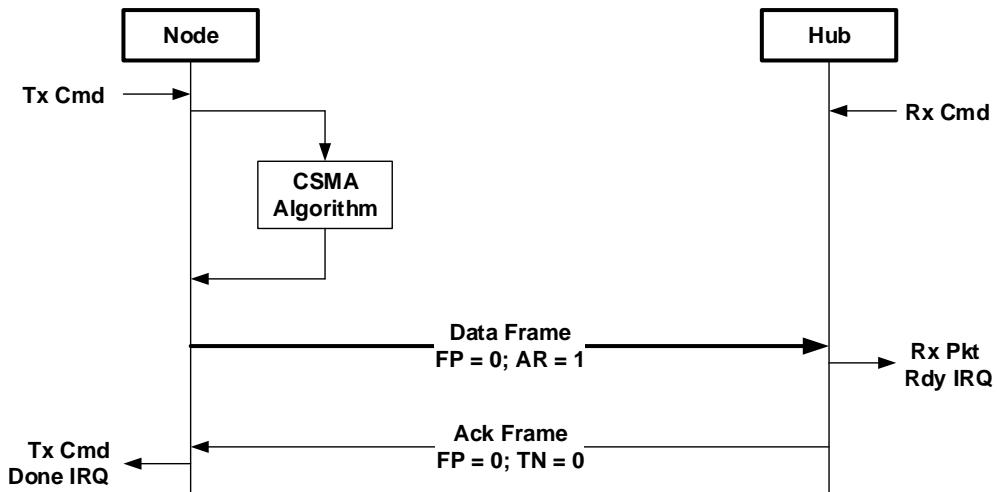
This mode allows for user defined bit rates, particularly if **GP1** is used for input data, because the user can change the bit value at his chosen rate. On the receiver side, the raw RX data bits are available either in the RX buffer or at a general-purpose I/O pin.

To use raw bit mode, refer to the setup and initialization information provided in Section [6.5.2 For Raw Bit Mode](#), page 38.

### 4.1.2.2 Frame Control for Packet Mode Operation

Packet mode is used in Z-Star packet mode, user packet mode, and raw packet mode.

In packet mode, preamble and frame sync is added during transmissions, and expects both preamble and frame sync during receive. For optimum performance of the receiver, the DC level of the receiver must be set, and the preamble is used to automatically set the DC level. The frame sync is needed to


perform byte alignment and synchronize the whitener in the PHY. It is also used in the MAC to locate the beginning of the PHY frame, which is required for FEC decoding, and header decoding, and CRC checking.

## 4.1.3 Frame Processing

### 4.1.3.1 Frame Processing in Z-Star Packet Mode

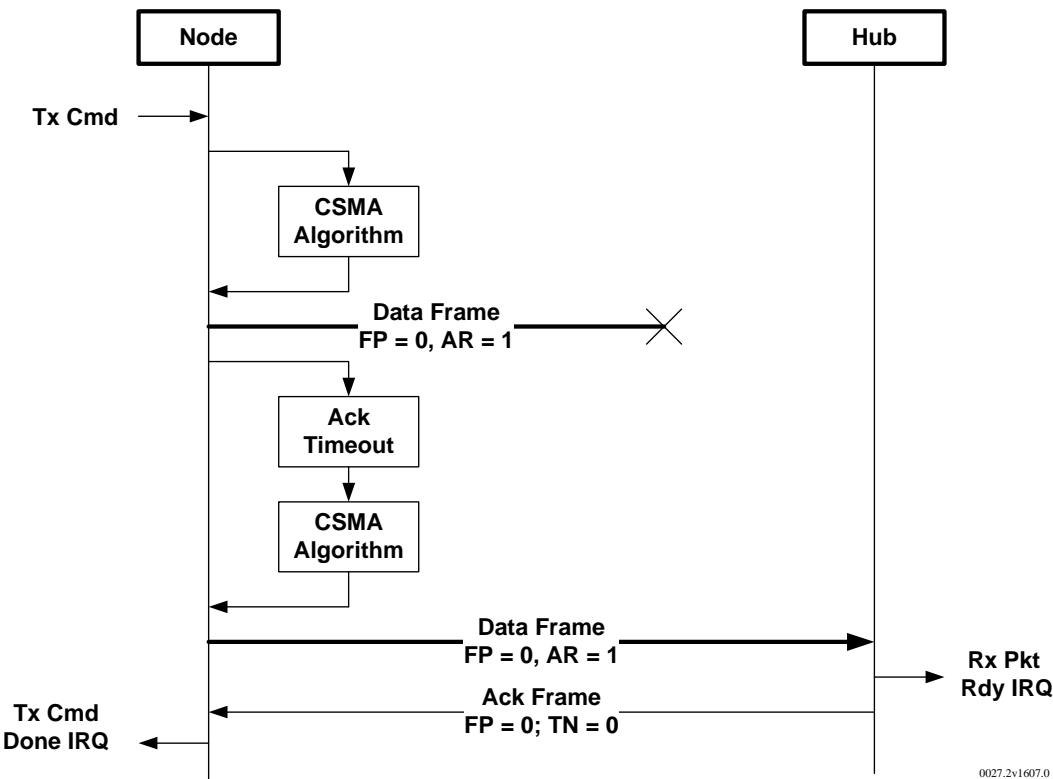
In Z-Star packet mode, frame processing is performed per [Figure 14](#), page 23. This state machine diagram shows the sequence of packet transfers that can be performed automatically by the device, and follows the transaction sequences defined by the Z-Star protocol.

**Figure 5 • Basic Transaction**

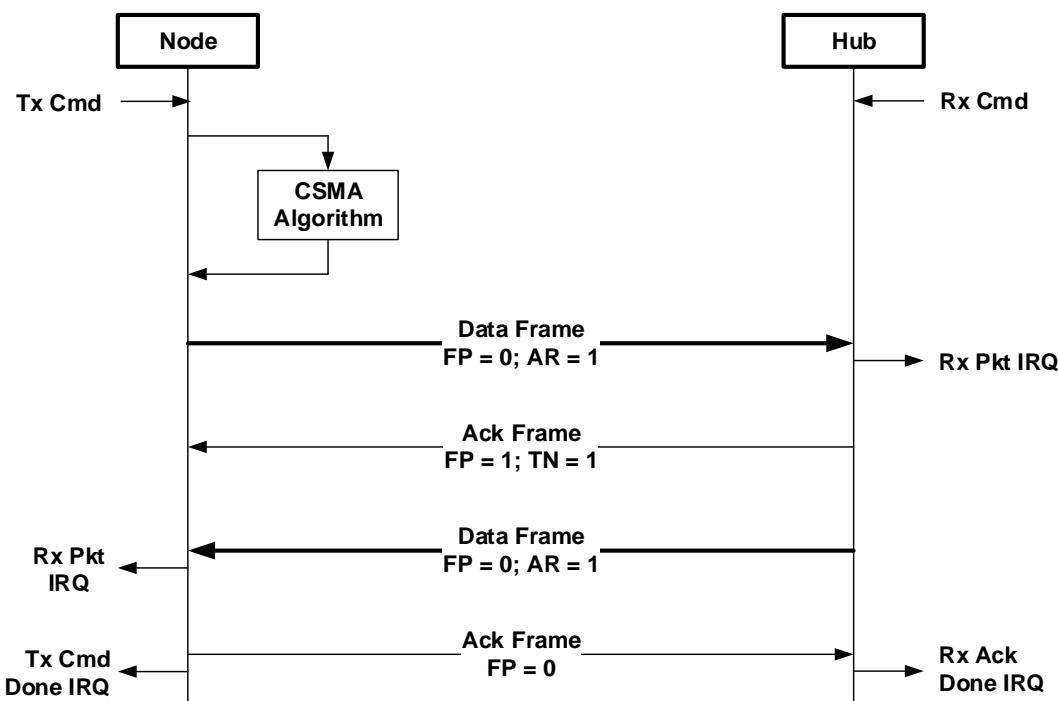


[Figure 5](#), page 8, shows the basic packet transaction. Typically the node starts in CSMA1 to listen for a clear channel before proceeding to TX1 to transmit a packet or send a data request. After sending a non-data-request packet, it turns around to RX to receive the acknowledgment packet. The node is interrupted with a *cmd\_done\_irq* when the packet operation is complete.

The hub remains in blind reception receive mode, waiting for a packet from any node in its network. When a packet is received, as indicated by the *rx\_pkt\_rdy\_irq* and the AR bit is set, then the hub sends an acknowledgment packet back to the node. The FP and TN bits are set to 0 in the acknowledgment packet to indicate to the node that the hub has no packets for the node. This completes the packet transaction.


If the packet is not received by the hub, or if the acknowledgment packet is sent and not received by the node, then the node retransmits the same packet, as shown in [Figure 6](#), page 9. This start with a random back-off prior at the beginning of the CSMA operation, followed by the retransmission of the packet.

If the hub needs to transmit a packet to the node, it must wait for that node to initiate either a packet transmission, or a data-request packet transmission. The data packet transmission is shown in [Figure 7](#), page 9. When the hub receives a packet, it must check its transmit queue for that node to see if it has a pending packet for that node. If it does, the hub sets FP and TN to 1 in the acknowledge packet, signifying to the node that it will immediately receive another packet.


When this packet is received, the node is notified with the *rx\_pkt\_rdy\_irq*, and if the AR bit is set in the packet header, the node sends the acknowledgment packet back to the hub.

When the hub receives the acknowledgment as signaled by *rx\_ack\_done\_irq*, it can mark that packet as sent and remove it from its transmit queue for that node.

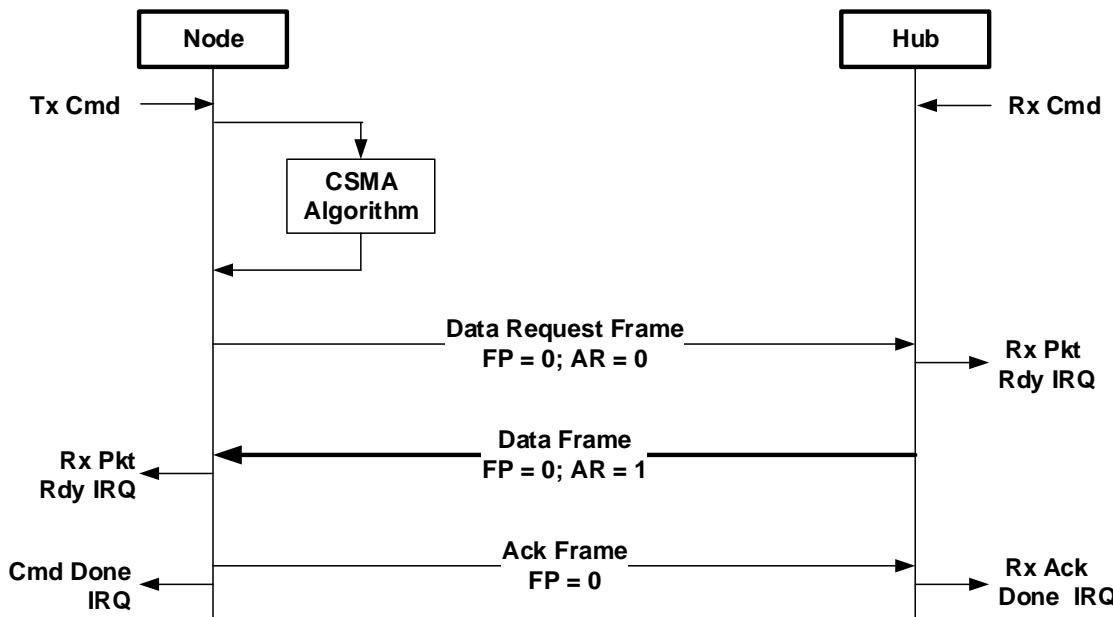
**Figure 6 • Basic Transaction with Retry**



**Figure 7 • Hub to Node Frame Transaction**



The node should periodically communicate with the hub, so that the hub and node remain connected and so the hub can send packets to the node. If the node does not have periodic data for the hub, then it should periodically send a data-request packet to the hub, as shown in [Figure 8](#), page 10.


The node first checks for a clear channel with CSMA, and then sends a data-request packet. The data-request packet contains the next expected frame sequence number for that node.

When the hub receives the data request, it must check its transmit queue to see if it has a packet for that node. If so, it immediately sends the packet with the expected frame sequence number, typically with the AR bit set to request an acknowledgment packet.

When the node receives the packet, it is interrupted with *rx\_pkt\_rdy\_irq*, and the acknowledgment packet is automatically transmitted back to the hub. When the hub receives the acknowledgment, it clears the packet from its transmit queue for that node.

If the hub does not have a packet for that node, or if the hub has already transmitted the requested sequence number, then it sends a null packet with AR equal to 0. This terminates the transaction on both sides.

**Figure 8 • Data Request Transaction**



#### 4.1.3.1.1 Z-Star FCS Calculation

In Z-Star packet mode, the polynomial is controlled dynamically, depending of the FCS length. The transmitter transmits an FEC length as defined in *tx\_fcs\_len*. If set to 3'b010, then the 16-bit polynomial is used for calculating the FCS. On the receiver, if FCS length is set to 0 in the PHY header, the 16-bit FCS is calculated over the entire MAC frame, not including the PHY header. The 16-bit FCS polynomial is shown in [EQ 4-1](#). The polynomial is entered LSB first, also known as reverse bit order. For 16-bit FCS, the polynomial is 0x00008408.

$$FCS = x^{16} + x^{12} + x^5 + 1 \quad EQ\ 4-1$$

If *tx\_fcs\_len* is set to 3'b100, then the transmitter uses to 32-bit polynomial to generate the 32-bit FCS. On the receiver, if FCS length in the PHY header is set to 1, the 32-bit FCS is calculated over the entire MAC frame, not including the PHY header, and uses the 32-bit FCS polynomial shown in [EQ 4-2](#). For the 32-bit FCS, the polynomial is 0xEDB88320.

$$FCS = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 \quad EQ\ 4-2$$

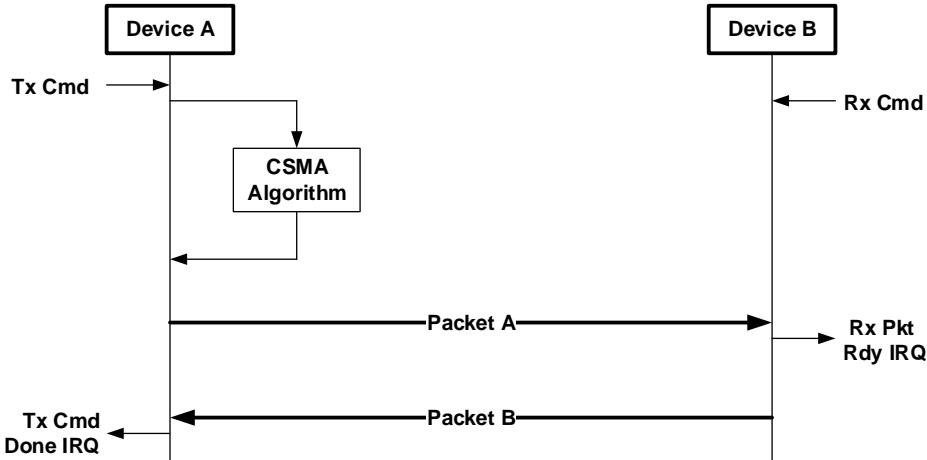
#### 4.1.3.1.2 Z-Star Header Generation

The MAC header may be automatically generated from the always-on registers, or loaded into the transmit buffer, depending on the setting of *tx\_auto\_hdr*. It is set to 1 for auto-header generation. In auto-header generation, the MAC header is generated from the contents of the always-on registers, from the previous received packet, or from default values per packet type. For acknowledgment, data request, and null packets, *tx\_auto\_hdr* is ignored and the headers are automatically generated, where the frame type and frame subtype fields, and other fields, are over-ridden relative to the values in the always-on registers.

[Table 3](#), page 11, shows the typical header field sources for auto-header generation in transmit (where the column headings correspond to the state machine diagram shown in [Figure 14](#), page 23). RX packet means that fields are derived from the current/last RX packet received. Payloads with payload lengths are only used in TX1 and TX2, where the command is not TX data request and when *tx\_null\_frm* is 0.

The contents of the packet may always be completely specified, over-riding the contents of [Table 3](#), page 11, by two methods. One method is to use a SPI TX command (not TX data request) with *tx\_auto\_hdr* equal to 1 and *tx\_null\_frm* equal to 0, and have all settings in the always-on registers. The other method is to use a SPI transmit command with *tx\_auto\_hdr* equal to 0 and *tx\_null\_frm* equal to 0, and place the header in the transmit buffer.

**Table 3 • Auto Header Generation and Checking**


|                     | TX1 Data Pkt        | TX1 Null Pkt        | TX1 Data Request    | TX_ACK2             | TX_ACK1             | TX2                 |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Source address      | Always-on registers |
| Destination address | Always-on registers | Always-on registers | Always-on registers | RX packet           | RX packet           | RX packet           |
| Network address     | Always-on registers | Always-on registers | Always-on registers | RX packet           | RX packet           | RX packet           |
| Address mode        | Always-on registers | Always-on registers | Always-on registers | RX packet           | RX packet           | RX packet           |
| FSN                 | Always-on registers | 0                   | 1 + last RX FSN     | RX packet           | RX packet           | Always-on registers |
| FP                  | Always-on registers | 0                   | 0                   | 0                   | Always-on registers | Always-on registers |
| AR/TN               | Always-on registers | 0                   | 0                   | 0                   | Always-on registers | Always-on registers |
| FCS length          | Always-on registers | 2                   | 2                   | 2                   | 2                   | Always-on registers |
| Frame type          | Always-on registers | Data                | Data request        | Ack                 | Ack                 | Always-on registers |
| Payload length      | Always-on registers | 0                   | 0                   | 0                   | 0                   | Always-on registers |

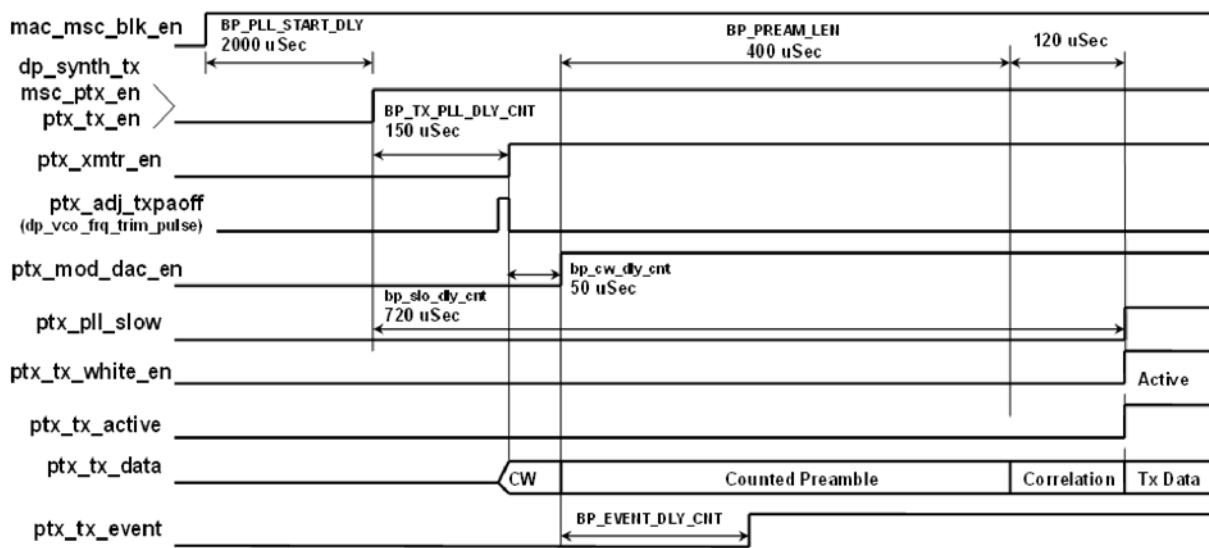
#### 4.1.3.2 Frame Processing in User Packet Mode

The user packet mode, processing is shown in [Figure 15](#), page 24. As in Z-Star, the network is configured for CSMA operation with the node, Device A, initiating all packet transactions. When Device B receives a packet and is interrupted with *rx\_pkt\_rdy\_irq*, it immediately turns around and starts transmitting the response packet. The host CPU must have the packet loaded into the transmit buffer by the time the frame synchronization pattern is transmitted. After the packet is transmitted from Device B, Device B goes back to receive mode, waiting for another packet.

When Device A receives a good packet, the transaction sequence is complete, and *cmd\_done\_irq* is asserted. This transaction sequence is shown in [Figure 9](#), page 12. If the packet reception fails, then Device A performs a random back-off at the beginning of the CSMA and automatically retransmits the same packet up to the retry count. If no response packet is received, and all retries are exhausted, then the process exits with a *cmd\_done\_irq* interrupt and the *cmd\_fail\_irq* status.

**Figure 9 • Packet Processing in User Packet Mode and Raw Packet Mode**




## 4.1.4 Packet Exchange Timing

There are several registers that control the timing in the ZL70550. This timing relates to the sequence of internal operations required to transmit or receive packets. Microsemi recommends using either the default values or the values listed in [Section 8.2 Address Space](#), page 53, which were tested and chosen for optimal system performance.

### 4.1.4.1 TX Timing Delays (Default Register Settings)

[Figure 10](#), page 12, shows the default TX start-up timing, using the default register settings. The *pll\_start\_dly* controls the setting time of the PLL start-up from when it is enabled. This typically occurs when *msc\_blk\_en* is high after wake-up. The CSMA, transmit, and receive operations cannot start until this delay is complete. It only occurs once during the start-up of the device after power-on. For other TX/RX start-up conditions, it is bypassed.

**Figure 10 • Default TX Start-Up Timing**



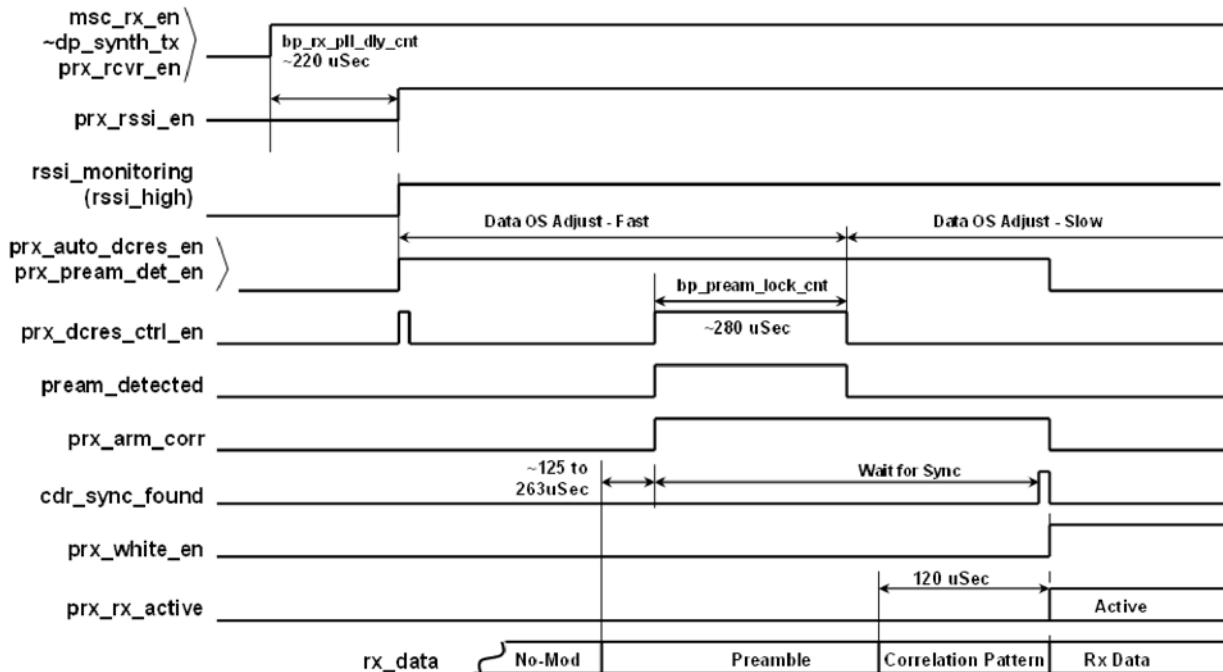
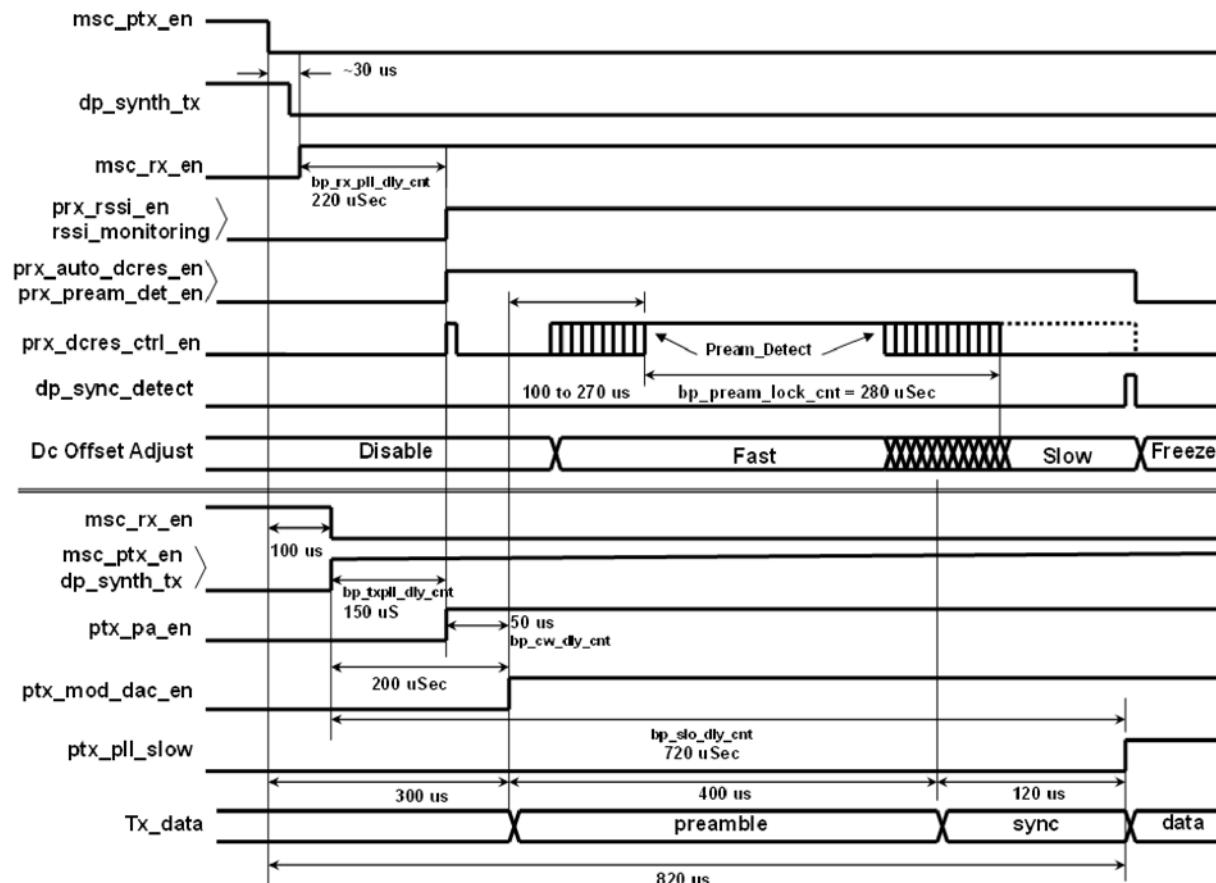

#### 4.1.4.2 RX Timing Delays (Default Register Settings)

Figure 11, page 13, shows the timing for the typical RX startup using the default settings. The timing assumes that the PLL start-up delay is already complete, and that a transmit operation has recently completed. The **RX\_PLL\_DLY\_CNT** is the settling time allowed for changing from the channel center frequency to the IF RX frequency. This delay is bypassed on device startup and if more than 300 $\mu$ s has elapsed since the last TX. However, it is always present on the TX to RX turnaround.

Depending on the mode, there is a delay from when the RSSI-ADC block is turned on and when the RSSI is level is detected high. Because **ADC\_RSSI\_THRESH** is greater than zero (see recommended initialization value in Table 35, page 53), then the RSSI must be above the threshold before the receive process continues. If **ADC\_RSSI\_THRESH** is zero (not recommended), then the receive process commences immediately by either enabling the DC restore block, or enabling the preamble detector block, depending on the setting of *pream\_det\_mode*.


In preamble detect mode (default mode), the preamble detector detects the arrival of the preamble. At that time, it turns on the DC restore block. Once the frame synchronization pattern is detected, the receiver informs the MAC that the packet data is now valid.

**Figure 11 • Default RX Start-Up Timing**



#### 4.1.4.3 Optimized TX to RX Turnaround Timing with Preamble Detection

Figure 12, page 14, shows the TX to RX turnaround timing using preamble detect mode. The top section shows the device going from TX to RX, and the bottom portion shows the device going from RX to TX.

**Figure 12 • Optimized Turnaround in Preamble Detect Mode**

## 4.1.5 Packet Operations

### 4.1.5.1 Z-Star Node Operation, Transmit Transaction Sequence Mode

The node is typically set up to perform a single packet transmit transaction, starting with a CSMA operation. All the node MPU needs to do is write the payload into the node's transmit buffer using a SPI packet write command, and then wait for the *cmd\_done\_irq* interrupt. While waiting, the MPU can be put in the sleep state.

When the interrupt is received, the node MPU needs to check for any errors. If a PLL lock error is present, then a VCO trim is required. Note that *cmd\_done\_irq* may not be the first interrupt to be asserted on a packet transaction when other interrupts are enabled. In particular, *rx\_pkt\_rdy\_irq* and *rx\_frm\_pend\_irq* can occur, if enabled, after the packet is transmitted and before the *cmd\_done\_irq* in both TX Packet and TX Data Request operations. In this case, the user needs to understand the associated timing and decide whether *rx\_pkt\_rdy\_irq* and *rx\_frm\_pend\_irq* should be enabled as interrupts or just used as status. In general, *cmd\_done\_irq* is the last interrupt to be asserted in a packet transaction, and the other interrupt/status can wait for *cmd\_done\_irq*.

If the *rx\_pkt\_rdy\_irq* status/interrupt is received, then there is a packet in the RX buffer from the hub that needs to be read using a packet read operation. The length of the packet is in the SPI status when the interrupt is read.

If *cmd\_fail\_irq* and *rx\_frm\_pend\_irq* status are both set, then the hub attempted to send the node a packet, and the packet was not received. In this case, the node MPU should send a SPI data request command to give the hub another opportunity to send the packet.

If *cmd\_fail\_irq* and *msc\_rx\_ack\_fail* status are both set, then the node did not receive an acknowledgment for the transmitted packet from the hub after the programmed number of retries or because CSMA failed.

- The first option is to re-try the packet transmission.
- Next is to use a mode that gives more sensitivity with lower data rate and/or enabling FEC. In this case, it is necessary to have both devices setup in adaptive mode, with the hub in Follow receiver mode.
- If there is no response from the hub, then search for the hub on another channel using a SPI data request command.

#### 4.1.5.1.1 Transmit Transaction Sequence

A packet transmission sequence is initiated as follows, after initialization and register setup as defined in [Section 6 Setup and Initialization](#), page 35, for the node. It is assumed that the node has been put in a sleep state, where the main section of the chip is powered down. See [Table 14](#), page 35.

1. Perform dummy read by performing a SPI read of address 0x000 (if the device is in sleep mode). This takes the device out of the SLEEP state and puts it in STANDBY.
  - Put MPU into sleep mode and wait for SPI ready interrupt on **IRQ** pin
2. Write payload to TX buffer using a SPI packet write command:
  - Put MPU into sleep mode and wait for interrupt on **IRQ** pin
  - After the interrupt, read registers **IRQ0**, **IRQ1**, and **IRQ2** in a single three-byte SPI read operation
3. If *cmd\_done\_irq* is received and *rx\_frm\_pend\_irq* status is 1:
  - Write SPI data request command
  - Put MPU into sleep mode and wait for interrupt on **IRQ** pin
  - After the interrupt, read registers **IRQ0**, **IRQ1**, and **IRQ2** in a single three-byte SPI read operation
  - If *cmd\_done\_irq* is received and *rx\_pkt\_rdy\_irq* status is 1, then go to Step 6
  - Else If *cmd\_done\_irq* is received and *msc\_rx\_null\_data\_frm*, then the command is complete; put the device into the SLEEP state via the SPI interface by writing 0xDE to **SPIR\_PWRDWN\_REQ**
  - Else If *cmd\_done\_irq* is received and *cmd\_fail\_irq* status is 1, go to Step 5

**Note:** If *rx\_frm\_pend\_irq\_en* is equal to 1, then this interrupt is asserted, and may occur prior to *cmd\_done\_irq*. Typically it is preferred to set *rx\_frm\_pend\_irq\_en* equal to 0 and to use *rx\_frm\_pend\_irq* as status only.

4. Else If *cmd\_done\_irq* is received and *cmd\_fail\_irq* status is 0:
  - Mark TX packet as transmitted and remove it from TX queue.
  - Command is complete; put the device into the SLEEP state via the SPI interface by writing 0xDE to **SPIR\_PWRDWN\_REQ**
5. Else If *cmd\_done\_irq* is received and *cmd\_fail\_irq* status is 1:
  - Read MAC and receiver status and process error accordingly.
  - Command is complete; put the device into the SLEEP state via the SPI interface by writing 0xDE to **SPIR\_PWRDWN\_REQ**
6. Else If *cmd\_done\_irq* is received and *rx\_pkt\_rdy\_irq* status is 1:
  - Save **rx\_pkt\_buf\_len[8:0]** from previous SPI interrupt status read (see [Table 10](#), page 27)
  - Read packet using SPI packet read command
  - Perform any processing required by the received packet
  - Mark TX packet as transmitted and remove it from TX queue
  - Command is complete; put the device into the SLEEP state via the SPI interface by writing 0xDE to **SPIR\_PWRDWN\_REQ**
7. Else wait for MPU timeout. In this case, the TX packet was successful and acknowledged, and the hub successfully transmitted a packet back to the node.

**Note:** If *rx\_pkt\_rdy\_irq\_en* is equal to 1, then this interrupt is asserted, and may occur prior to *cmd\_done\_irq*. Typically it is preferred to set *rx\_pkt\_rdy\_irq\_en* equal to 0 and to use *rx\_pkt\_rdy\_irq* as status only.

#### 4.1.5.1.2 Transmit Data Request Transaction Sequence

1. Perform dummy read by performing a SPI read of address 0x000 (if the device is in sleep mode)
  - Put MPU into sleep mode and wait for SPI ready interrupt on **IRQ** pin
2. After the interrupt, write SPI data request command.
  - Put MPU into sleep mode and wait for interrupt on **IRQ** pin
  - After the interrupt, read registers **IRQ0**, **IRQ1**, and **IRQ2** in a single three-byte SPI read operation
3. If *cmd\_done\_irq* is received and *rx\_pkt\_rdy\_irq* status is 1, then:
  - Save *rx\_pkt\_buf\_len[8:0]* from previous SPI interrupt status read (see [Table 10](#), page 27).
  - Read packet using SPI packet read command
  - Perform any processing required by the received packet
  - Command is complete; put the device into the SLEEP state via the SPI interface by writing 0xDE to **SPIR\_PWRDWN\_REQ**
4. Else If *cmd\_done\_irq* is received and *msc\_rx\_null\_data\_frm* status is 1:
  - Command is complete; put the device into the SLEEP state via the SPI interface by writing 0xDE to **SPIR\_PWRDWN\_REQ**
5. Else If *cmd\_done\_irq* is received and *cmd\_fail\_irq* status is 1:
  - Read status and process error accordingly.
  - Command is complete; put the device into the SLEEP state via the SPI interface by writing 0xDE to **SPIR\_PWRDWN\_REQ**
6. Else wait for MPU timeout.

#### 4.1.5.2 Z-Star Hub Operation, Receive Transaction Sequence Mode

The hub is typically set up to perform continuous receive operations. It only needs one SPI receive command to start it receiving packets. It waits for an *rx\_pkt\_rdy\_irq* interrupt, and then reads the packet with a SPI packet read command. The acknowledgment packet is automatically sent to the node when a good packet is received.

When the hub receives a packet from the node, it should check its transmit queue for any pending packets to be sent to that node. If it has a packet for the node, and the packet received from the node was a non-data-request packet, then the hub MPU must set the *tx\_pkt\_frm\_pend* and *tx\_tn* bits to 1 for transmission in the acknowledgment packet, and then immediately write the packet into the transmit buffer with a packet write command.

This is a time critical operation. Both *tx\_pkt\_frm\_pend* and *tx\_tn* must be set before the acknowledgment packet header is transmitted, and the packet must be written to the TX buffer before the packet header for transmitted packet is written on this back-to-back TX-TX operation.

If a data request packet is received, then the hub only needs to write the packet to the TX buffer. No acknowledgment packet is sent. Once again, the packet must be in the buffer prior to the header being transmitted. This is because the length is contained in the header. If there is not enough time to write the entire packet, then the length must be written first to *tx\_buf\_len* and the SPI interface needs to be set to non-auto-length mode by setting *tx\_auto\_len\_en* equal to 0.

When a packet is sent to the node, the hub should monitor for the *rx\_ack\_done\_irq* interrupt and check *msc\_rx\_ack\_fail* status to determine if the packet transmission was completed correctly.

#### 4.1.5.2.1 Receive Transaction Sequence

A packet reception sequence is processed as follows when the packet is a data packet or data request packet. After initialization and register setup as defined in [Section 6 Setup and Initialization](#), page 35, for the hub:

1. Set *rx\_forever* equal to 1 on the hub
2. Write SPI receive command to begin receive process

3. Wait for interrupt on the **IRQ** pin
4. When the **IRQ** pin goes high, read registers **IRQ0**, **IRQ1**, and **IRQ2** in a single three-byte SPI read operation. Save **rx\_pkt\_buf\_len** from the SPI status (see [Table 10](#), page 27).
5. If **rx\_pkt\_rdy\_irq** is received and **msc\_rx\_data\_frm** equals 1:
  - Read packet using SPI packet read command
  - Perform any processing required by the received packet
  - In MPU, check TX queue for a packet for that node.
  - If there is a packet in queue for that node, go to Step 8
  - Else (that is, if there is no packet for that node), done. Wait for another RX packet; go to Step 3
6. Else If **rx\_pkt\_rdy\_irq** is received and **msc\_rx\_data\_req\_frm** equals 1:
  - Check the source ID from the SPI status received during the IRQ status read
  - In MPU, check TX queue for a packet for that node
  - If there is a packet for that node, go to Step 9
  - Else If there is no packet for that node:
    - Set **tx\_null\_frm** equal to 1
    - Set **tx\_ack\_frm\_pend** equal 0 and **tx tn** equal to 0
    - Wait for interrupt on **IRQ** pin
  - If **cmd\_done\_irq** is received and **tx\_pkt\_done\_irq** status equals 1:
    - Set **tx\_null\_frm** equal to 0
  - Else, process error
  - Done; wait for another RX packet. go to Step 3
7. Else, process error
8. Set up for immediate packet TX to node after TX of acknowledgment packet:
  - Set **tx\_ack\_frm\_pend** equal to 1 and **tx tn** equal to 1
  - TX acknowledgment packet is automatically transmitted
9. Transmit packet to node
  - Write the packet to TX buffer using SPI packet write command
  - Wait for interrupt on **IRQ**
  - After the interrupt, read registers **IRQ0**, **IRQ1**, and **IRQ2** in a single three-byte SPI read operation
10. If **cmd\_done\_irq** is received and **rx\_ack\_done\_irq** status is 1:
  - In MPU remove packet from TX queue.
  - Done; wait for another RX packet; go to Step 3
11. Else, TX packet failed
  - Mark TX attempt on TX queue; wait for another TX opportunity to same node
  - Done; wait for another RX packet; go to Step 3
12. Exit and wait for another packet; go to Step 3

**Note:** This process assumes that the device is a hub, and **rx\_forever** is set to 1. With this setting, the hub returns to waiting in receive for another packet after each transaction is completed, regardless of whether or not the transaction passed or failed.

## 4.1.6 Adaptive Packet Reception

### 4.1.6.1 Auto Detection of Bit Rate

Auto bit rate detection (where **adapt\_rate\_en** is equal to 1) uses the receiver preamble detector to determine the bit rate. Three preamble detectors operate in parallel, each being set to one of the three rates. Refer to [Table 5](#), page 18. The first to detect preamble determines the rate. Once the rate is selected, the rate controls the prefilter bandwidth, the AFC/DC restore time and bandwidth, and the clock and data recovery rates.

Once the preamble is detected, the corresponding rate is latched as *prx\_rx\_rate*. When *adapt\_rate\_en* is set to 0, *rx\_rate* controls the receiver behavior. When *adapt\_rate\_en* is set to 1, the RX rate is controlled by *prx\_rx\_rate* instead of *rx\_rate* in the PHY RX controller.

#### 4.1.6.2 Auto FEC Detection

When *adapt\_fec\_en* is set to 1, the receiver frame synchronization correlator searches for both inverted and noninverted frame sync patterns. If a normal frame synchronization pattern is found, then the FEC decoder in the receiver are by-passed. If an inverted frame synchronization pattern is found, then the receiver FEC decoder is enabled and used for error correction of the RX data.

The MAC enables FEC on the MAC receiver if an inverted sync was received. If *adapt\_fec\_en* is set to 0, it uses *hmd\_dec\_en* to enable FEC on the MAC receiver.

If *tx\_follow\_rx\_fec* is set to 1, the transmitter responds to a received packet with the same FEC mode (on/off) that it received. The bit *cdr\_inverted\_sync* indicates that the previous frame sync was inverted. When *tx\_follow\_rx\_fec* is set to 1, the transmitter uses the *cdr\_inverted\_sync* bit to determine whether FEC should be enabled and whether the frame synchronization pattern should be inverted.

The polarity of the transmitter frame synchronization pattern and the FEC enable state is shown in [Table 4](#), page 18.

**Table 4 • Settings for TX Frame Sync Polarity and FEC Enable**

|                                |     |     |     |     |     |     |
|--------------------------------|-----|-----|-----|-----|-----|-----|
| <i>adapt_fec_en</i>            | 0   | 0   | 1   | 1   | 1   | 1   |
| <i>tx_follow_rx_fec</i>        | X   | X   | 0   | 0   | 1   | 1   |
| <i>hme_enc_en</i>              | 1   | 0   | 1   | 0   | X   | X   |
| <i>cdr_inverted_sync</i>       | X   | X   | X   | X   | 1   | 0   |
| Frame synchronization polarity | Pos | Pos | Pos | Neg | Pos | Neg |
| FEC enable                     | 1   | 0   | 1   | 0   | 1   | 0   |

#### 4.1.6.3 Transmitted Preamble

The preamble bit pattern is always 00110011, which is expressed in bit periods and not symbols because the transmitter deals only with bits. (For example, the preamble symbol pattern for a bit rate of 100 kbit/s is 00110011 in bits, but it is 0000111100001111 in symbols.)

**Table 5 • TX Preamble Pattern**

| <i>tx_rate</i> | Preamble Pattern In Bits | Bit Rate   |
|----------------|--------------------------|------------|
| 00             | 00110011                 | 200 kbit/s |
| 01             | 00110011                 | 100 kbit/s |
| 10             | 00110011                 | 50 kbit/s  |

#### 4.1.6.4 Transmitted FEC and Frame Sync Pattern

The TX hamming enable is sourced from *hme\_enc\_en* when *tx\_follow\_rx\_fec* is 0, or from the receiver *cdr\_inverted\_sync* if *tx\_follow\_rx\_fec* is 1 to automatically transmit in the same FEC mode as the packet received. In the latter case, enabling FEC causes the frame synchronization pattern to be transmitted inverted. See [Table 6](#), page 19.

**Table 6 • Enable for TX FEC Encoding**

| <i>tx_follow_rx_fec</i> | <i>hme_enc_en</i> | <i>cdr_inverted_sync</i> | <b>FEC Encoding</b> |
|-------------------------|-------------------|--------------------------|---------------------|
| 0                       | 0                 | X                        | OFF                 |
| 0                       | 1                 | X                        | ON                  |
| 1                       | X                 | 0                        | OFF                 |
| 1                       | X                 | 1                        | ON                  |

If *adapt\_rate\_en* is set to 1, then the transmitted frame sync pattern is inverted if FEC is enabled and noninverted if FEC is disabled. If *adapt\_rate\_en* is set to 0, then the transmitted frame sync pattern is never inverted.

#### 4.1.6.5 Receiver FEC Decoding

In the receiver, the hamming FEC decoder block is enabled based on *hmd\_dec\_en*, *adapt\_fec\_en* and *cdr\_inverted\_sync*, according to [Table 7](#), page 19. If enabled, the 12-bit symbols are then decoded using a code (12,8) hamming decoding. This decoding process corrects any one-bit error in the 12-bit symbol, with no indication that an error was corrected. The output of the decoding is *rx\_hmd\_data[7:0]*, which is then processed by the rest of the receiver.

**Table 7 • Receiver Hamming Decoder Enable**

| <i>adapt_fec_en</i> | <i>hmd_dec_en</i> | <i>cdr_inverted_sync</i> | <b>FEC Decode</b> |
|---------------------|-------------------|--------------------------|-------------------|
| 0                   | 1                 | X                        | Yes               |
| 0                   | 0                 | X                        | No                |
| 1                   | X                 | 1                        | Yes               |
| 1                   | X                 | 0                        | No                |

#### 4.1.7 Packet Reception

The receiver searches for the preamble pattern before enabling the search for a valid frame sync.

Preamble detection detects a valid preamble sequence and uses this detection to enable the AFC/DC settling function. The preamble detector delays starting the AFC and DC-restore settling function until a valid preamble is detected, helping to ensure that the AFC/DC settling function is performed on a valid signal and not on interference or other RF transmissions. Once preamble detection has occurred, the receiver starts searching for frame sync. In the event that frame sync is not detected, usually due to too many bit errors, the use of a timer is recommended to abort searching for frame sync and return to searching for preamble. This timer begins counting after preamble detection has occurred. The default timeout period is 15 bytes after preamble is detected, which is the recommended value to reduce the possibility of a false preamble detect due to a preamble detection that was the result of noise and not a valid preamble.

### 4.2 Channel Monitoring

Typically, it is necessary to check that a channel is not busy before transmitting a packet. CSMA is an algorithm used to implement this channel monitoring. A Carrier Sense Multiple Access (CSMA) protocol is used to avoid collisions with other transmissions or interference on a specified channel.

## 4.2.1 CSMA Threshold

In CSMA, an RSSI threshold is set, *adc\_csma\_thresh*, which defines the minimum RSSI level at which the device is allowed to transmit. If the RSSI level is greater than *adc\_csma\_thresh*, then the device must wait until the level goes below *adc\_csma\_thresh*. To set the RSSI threshold for use with CSMA, a RSSI measurement must be made (see [4.2.2 RSSI Measurement](#), page 20) and then set the *adc\_csma\_thresh* register to 24 counts above the RSSI result found in *adc\_avg*.

## 4.2.2 RSSI Measurement

The procedure in [Table 8](#), page 20, describes the programming steps required in performing an RSSI measurement. Ensure all calibrations have been performed (refer to [Section 7 Calibrations](#), page 40) prior to making an RSSI measurement.

**Table 8 • Procedure for Manual RSSI Measurement**

|                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Write <b>MAC_CTRL</b> = 0x00.                                                                                                                                                                                                                                                     | Disables the MAC.                                                                                                                                |
| 2. If the <i>adc_done_irq</i> interrupt is used, write <b>IRQ_EN1[4]</b> = 1.                                                                                                                                                                                                        | Setting the <i>adc_avg_done_irq_en</i> bit enables the <i>adc_done_irq</i> interrupt.                                                            |
| 3. Write <b>MAN_TEST[2]</b> = 0                                                                                                                                                                                                                                                      | Clearing the <i>rfmac_synth_tx</i> bit selects RX mode.                                                                                          |
| 4. Write <b>ADC_MUX_IN_SEL</b> = 0x04.                                                                                                                                                                                                                                               | Writing this value to the <i>adc_mux_in_sel</i> bits selects the RSSI as the input to the ADC.                                                   |
| 5. Write <b>ADC_POW_N_CONV[3:0]</b> = 4'b0011.                                                                                                                                                                                                                                       | Bits [3:0] set the sample size for the number of sequential RSSI conversions to eight (recommended value).                                       |
| 6. Write <b>MAN_GLOBAL_EN</b> = 0x02.                                                                                                                                                                                                                                                | Setting the <i>rfmac_rcvr_en</i> bit manually enables the receiver.                                                                              |
| 7. Wait 2ms for the PLL to settle.                                                                                                                                                                                                                                                   |                                                                                                                                                  |
| 8. Write <b>ADC_CONV_START[1]</b> = 1.                                                                                                                                                                                                                                               | Bit [1] initiates the ADC conversions. Two results are obtained from this sample size: an average RSSI and a maximum RSSI.                       |
| 9. Wait for interrupt or time it takes for conversion to complete.                                                                                                                                                                                                                   | Each ADC conversion takes approximately 10 µs. After all eight conversions are complete, bit [1] of <b>ADC_CONV_START</b> is cleared internally. |
| 10. Read <b>ADC_AVG</b> and <b>ADC_MAX</b> .                                                                                                                                                                                                                                         | These result registers give the average RSSI over eight samples and the maximum over eight samples, respectively.                                |
| 11. Clean up after procedure:<br>a. Restore <b>MAC_CTRL</b> value.<br>b. Restore <b>MAN_TEST</b> value.<br>c. Restore <b>ADC_MUX_IN_SEL</b> value.<br>d. Restore <b>ADC_POW_N_CONV</b> value.<br>e. Restore <b>MAN_GLOBAL_EN</b> value.<br>f. Restore <b>IRQ_EN1</b> value, if used. | Be sure to restore these registers to the original values that were stored before this procedure began.                                          |

## 4.3 State Machine Diagrams

This section describes the operation of the communication protocol with specific reference to the sequence of operations performed in various modes. State machine diagrams depict the control actions performed internally. These diagrams are useful for understanding the following:

- Differences in operation of hub and node
- Packet transaction sequences

These overview descriptions identify only the major operational phases and states.

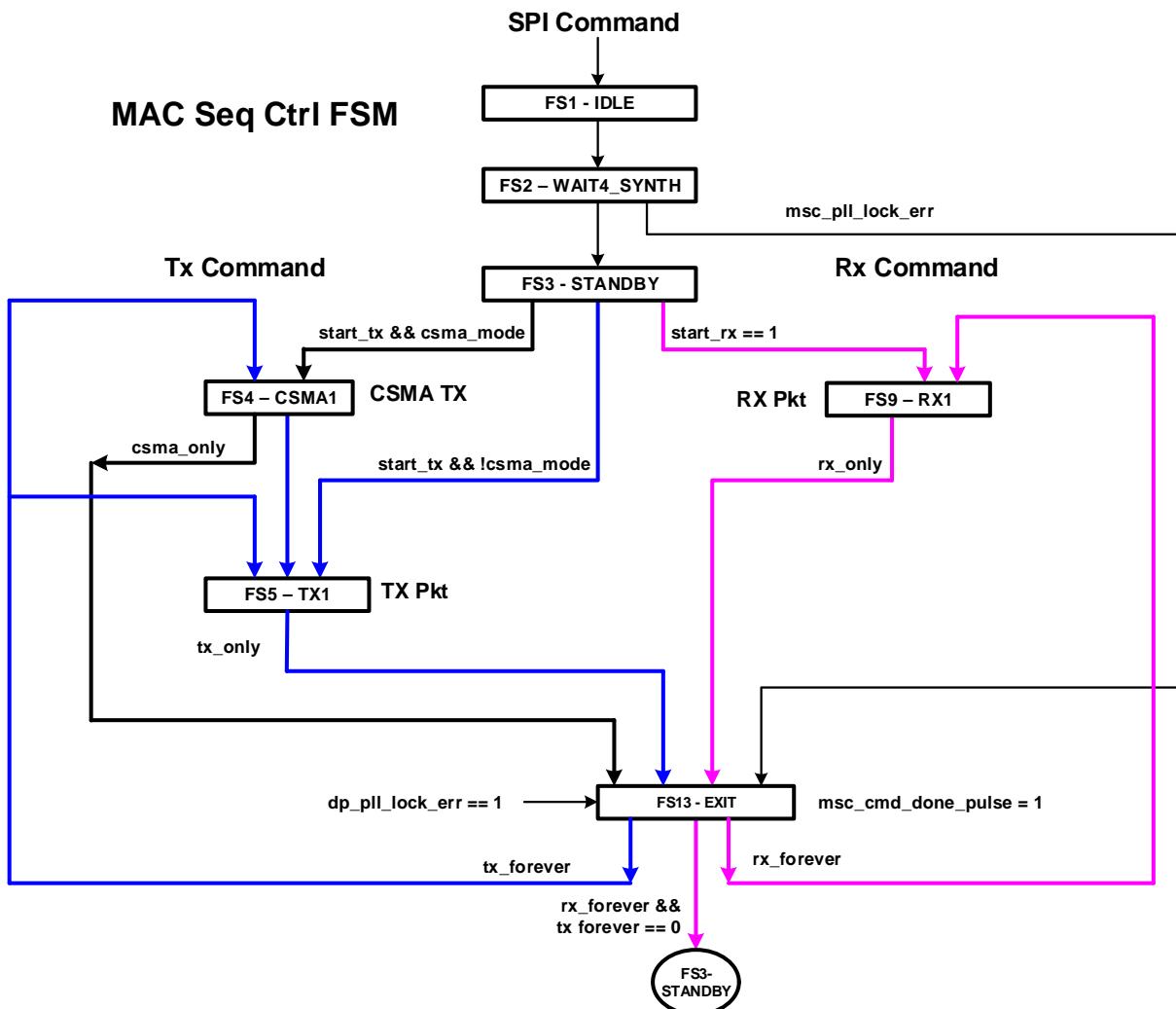

### 4.3.1 Single Packet Operation

Figure 13, page 21, shows the MAC state machine operation for single packet operation. In this mode, a single packet is transmitted or received, and then the operation completes and the SPI command is cleared. To enable this mode, *tx\_only* and *rx\_only* are set to 1.

In this mode, no acknowledgment is sent on packet reception, nor is there a switch to receive for an acknowledgment after transmit. Likewise, there is no retry on a failed acknowledgment.

A CSMA may optionally be performed prior to transmitting a packet by setting *csma\_mode* equal to 1 and *csma\_only* equal to 0. To perform a CSMA only and then exit before transmit, set *csma\_mode* equal to 1 and *csma\_only* equal to 1.

**Figure 13 • Simplified Single Packet Mode State Machine**

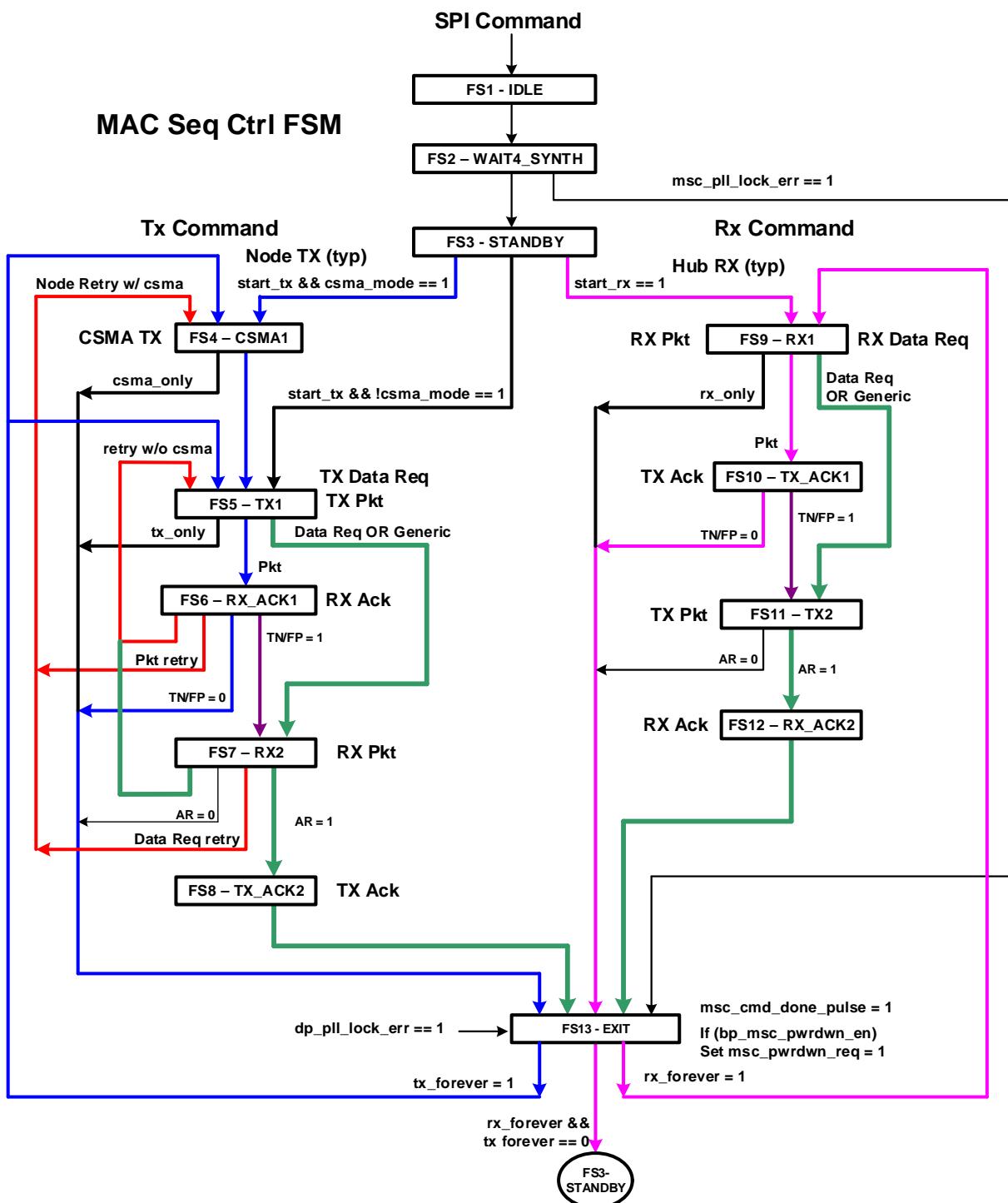


**Note:** Definitions:

- ***start\_tx*** is given by EITHER: (a) a SPI Packet Write command with *auto\_tx\_cmd* equal to 1 (where 1 is default) OR (b) a SPI Start Transmit Command OR (3) a SPI Transmit "Data-Request" Command. Refer to the SPI command encoding information in [Figure 16](#), page 26.
- ***start\_rx*** is given by a SPI Receive command.

## 4.3.2 Transaction Sequence Operation

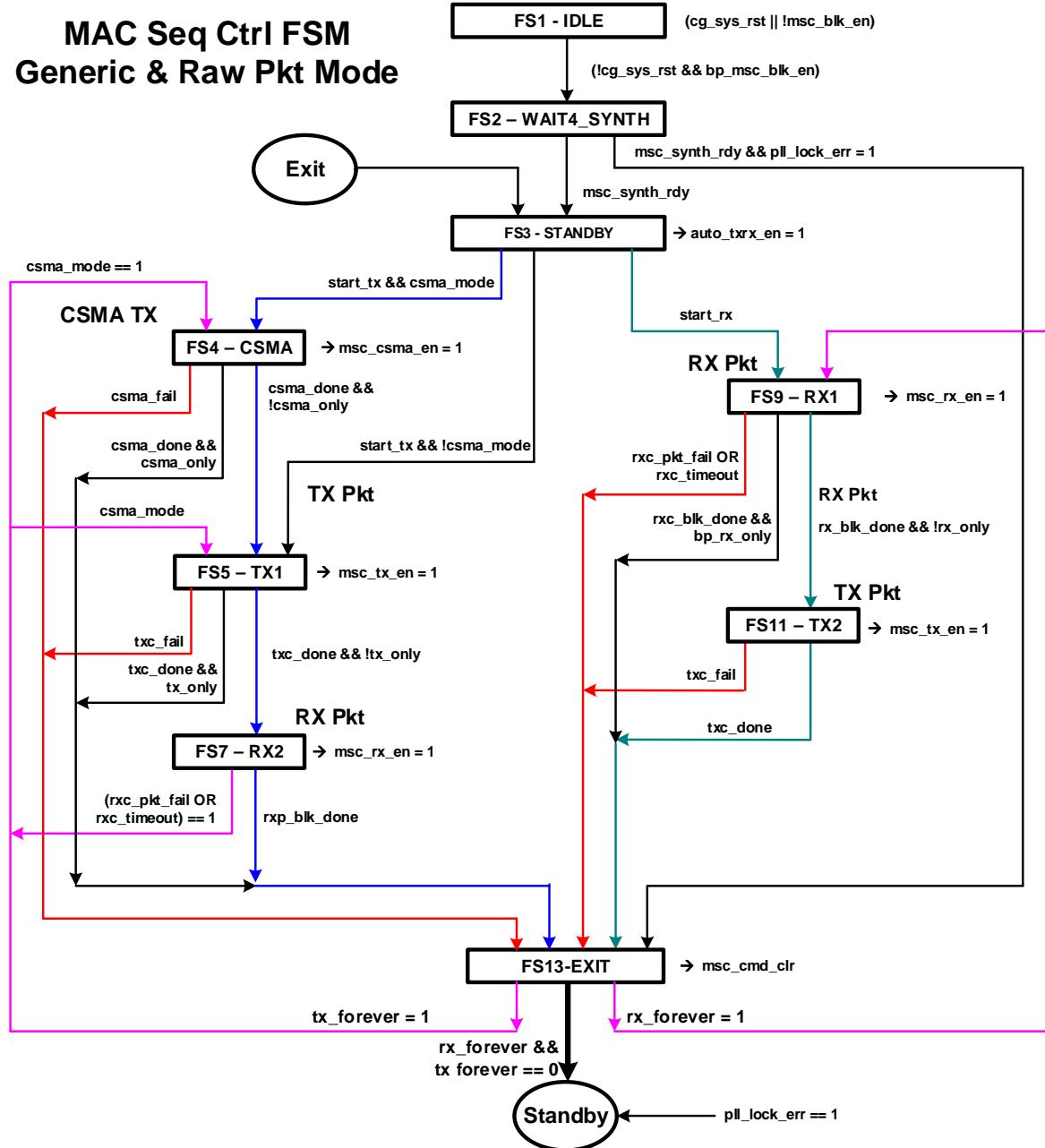
In transaction sequence mode, packet operations are completed per [Figure 14](#), page 23, and [Figure 15](#), page 24.


The hub is placed in receive Forever mode, and the node receives transmit commands from its host. In Z-Star packet mode, acknowledgment packets are automatically sent and received, as are other operations such as data requests and transmit immediate operations from the hub to the node. If a transmission from the node fails, then an automatic retry of the previous packet transmission is performed up to the programmed retry count.

In user packet mode and raw packet mode, the setup is similar. The node transmits to the hub. When the hub receives a good packet, it automatically turns around to transmit a response, which must be immediately loaded into the transmit buffer. After the node transmits, it also turns-around to receive a response packet. If the expected packet is not received correctly, then the node automatically retransmits the previous packet up to the retry count.

### 4.3.2.1 Z-Star Packet Operation

[Figure 14](#), page 23, shows the Z-Star operating state machine used in transaction sequence mode.


Figure 14 • Simplified MAC Sequencer State Machine

**Note:** Definitions:

- **start\_tx** is given by EITHER: (a) a SPI Packet Write command with *auto\_tx\_cmd* equal to 1 (where 1 is default) OR (b) a SPI Start Transmit Command OR (3) a SPI Transmit "Data-Request" Command. Refer to the SPI command encoding information in Figure 16, page 26.
- **start\_rx** is given by a SPI Receive command.

### 4.3.2.2 User Packet Operation and Raw Packet Operation

Figure 15 • State Machine for User Packet Mode and Raw Packet Mode



**Note:** Definitions:

- **start\_tx** is given by either: (a) a SPI Packet Write command with *auto\_tx\_cmd* equal to 1 (where 1 is default) or (b) a SPI Start Transmit Command or (3) a SPI Transmit "Data-Request" Command. Refer to the SPI command encoding information in Figure 16, page 26.
- **start\_rx** is given by a SPI Receive command.
- **txc\_fail** is given by *msc\_tx\_pkt\_fail*.

# 5 Application Interface

---

## 5.1 Introduction

The ZL70550 has a highly versatile application interface, the general features of which are outlined in this chapter.

Two fundamental points about the ZL70550 design are important to this discussion.

- Hardware state machine

The ZL70550 is designed as a memory-mapped, hardware state machine. The state machine architecture means that all the digital functions described in this User's Guide are built into the hardware. They are not reconfigurable in software.

- Memory-mapped device

In most respects the ZL70550 can be controlled by the application program as a memory-mapped peripheral. The ZL70550 memory map is divided into eight-bit registers, and most interactions with the device are by register writes and reads.

### 5.1.1 Support for Peripheral Access and Control

The ZL70550 supports interrupt-driven peripheral access and control. In this method, the peripheral device initiates the servicing process by asserting an interrupt to the application processor. Interrupt-driven systems may be more power efficient because the application processor does not have to run timers and poll unnecessarily.

For access to its registers, the ZL70550 provides a serial peripheral interface conforming to industry-wide SPI standards. The ZL70550 has an IRQ output that can be asserted by one or more interrupt sources, which can be individually disabled or enabled (masked or unmasked).

Programmable outputs are also available for use. Internal signals such as various interrupt sources may be selected to output to the general-purpose I/O pins as described in Section [5.5 GPIO Pins](#), page 32.

## 5.2 Serial Peripheral Interface

This section describes the Serial Peripheral Interface (SPI), which is used to read or write to registers in the ZL70550 memory map, including the TX and RX buffers.

### 5.2.1 SPI Principles

SPI is an industry standard for in-system communication. Using a synchronous bus, data is transmitted and received in eight-bit words.

Multiple devices may connect to the SPI bus, but only one acts as the bus master. The ZL70550 always operates as a SPI slave device, so the user application must be programmed as a master.

Four signal lines are used for SPI communication:

- **SPI\_CLK**, the synchronizing clock signal, sent to the ZL70550 RF transceiver by the master device.
- **SPI\_MOSI**, SPI bus data input.
- **SPI\_MISO**, SPI bus data output.
- **SPI\_SEL\_B**, the SPI bus select signal. Note that this signal is active low.

### 5.2.2 SPI Command Set

The SPI command set is shown in [Table 9](#), page 26. The MOSI line shows the bit stream that is output to the host CPU. The MISO line shows the data output from the ZL70550 SPI slave interface. In all cases, one to three status bytes are output on MISO at the beginning of every SPI operation. See [Table 10](#), page 27, for information on the SPI status.

Each SPI operation is initiated with a two-bit to eight-bit sequence, as defined in [Table 9](#), page 26. Read and write operations occur at specified address. See [Table 11](#), page 30, and Chapter 8 Registers, page 52.

**Table 9 • SPI Command Set**

| SPI Command                   | Command Format                                                                           | No. Status Bytes |
|-------------------------------|------------------------------------------------------------------------------------------|------------------|
| Short-address write           | MOSI: <2'b11,Address><wr_data> .... <wr_data><br>MISO: <Stat_0><0x00>....<0x00>          | 1                |
| Short-address read            | MOSI: <2'b01,Address><0x00>....<0x00><br>MISO: <Stat_0><rd_data> .... <rd_data>          | 1                |
| Long-address write            | MOSI: <4'b1010,Address><Address><wr_data>....<wr_data><br>MISO: <Stat_0><0x00>....<0x00> | 1                |
| Long-address read             | MOSI: <4'b0010,Address><Address><br>MISO: <Stat_0><Stat_1><Stat_2><rd_data>....<rd_data> | 3                |
| Packet write                  | MOSI: <0x88><wr_data>....<wr_data><br>MISO: <Stat_0><0x00>....<0x00>                     | 1                |
| Packet read                   | MOSI: <0x88><0x00>....<0x00><br>MISO: <Stat_0><Stat_1><rd_data>....<rd_data>             | 2                |
| Transmit command              | MOSI: <0x89><br>MISO: <Stat_0>                                                           | 1                |
| Transmit data request command | MOSI: <0x8C><br>MISO: <Stat_0>                                                           | 1                |
| Receive command               | MOSI: <0x8D><br>MISO: <Stat_0>                                                           | 1                |
| Abort command                 | MOSI: <0x8F><br>MISO: <Stat_0>                                                           | 1                |

### 5.2.3 SPI Command Encoding

The SPI command encoding is shown in [Figure 16](#), page 26.

**Figure 16 • SPI Command Encoding**

|             |             |                                                                      |
|-------------|-------------|----------------------------------------------------------------------|
| <b>11AA</b> | <b>AAAA</b> | <b>  DDDD DDDD   {DDDD DDDD} - Short Address Write</b>               |
| <b>1010</b> | <b>AAAA</b> | <b>  AAAA AAAA   DDDD DDDD   {DDDD DDDD} - Long Write</b>            |
| <b>1000</b> | <b>1000</b> | <b>  DDDD DDDD   {DDDD DDDD} – Packet Write</b>                      |
| <b>1000</b> | <b>1001</b> | <b>  Start Transmit Command</b>                                      |
| <b>1000</b> | <b>1100</b> | <b>  Transmit “Data-Request” Command</b>                             |
| <b>1000</b> | <b>1101</b> | <b>  Start Receiver Command – Enable Receiver</b>                    |
| <b>1000</b> | <b>1111</b> | <b>  Abort Command</b>                                               |
| <br>        | <br>        | <br>                                                                 |
| <b>01AA</b> | <b>AAAA</b> | <b>  RRRR RRRR   {RRRR RRRR} – Immediate Address Short Read</b>      |
| <b>0010</b> | <b>AAAA</b> | <b>  AAAA AAAA   XXXX XXXX   RRRR RRRR   {RRRR RRRR} – Long Read</b> |
| <b>0000</b> | <b>1000</b> | <b>  XXXX XXXX   RRRR RRRR   {RRRR RRRR} – Packet Read</b>           |

**Note:**

1. A = Address bit, on MOSI
2. D = Write data bit, on MOSI
3. R = Read data bit, on MISO
4. X = Dead bus cycle, used for status on MISO

## 5.2.4 SPI Status

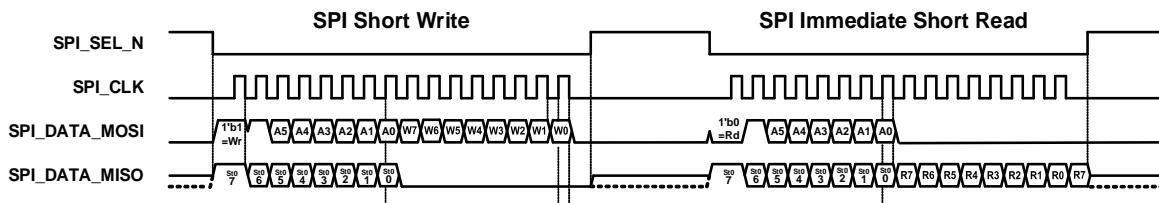
On all SPI operations, one to three bytes of status information is returned to the host on MISO, as shown in [Table 10](#), page 27. The number of status bytes returned per SPI operation is shown in [Table 9](#), page 26. The contents of status byte 2 depend on the setting of *hub\_node\_n*, which is set to 1 for hub configuration and to 0 for node configuration.

**Table 10 • SPI Status Returned on MISO**

| Status Byte | Bit Position | Signal Name                       | Description                                                                                      |
|-------------|--------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| 0           | 7            | <code>~cg_sys_spi_rst</code>      | Main chip reset, from <code>cg_sys_rst</code> . When high, indicates that VDDD and SPI are ready |
| 0           | 6            | <code>spis_bad_cmd_stat</code>    | Bad SPI command on last command                                                                  |
| 0           | 5            | <code>spis_radio_rdy</code>       | Radio ready for transmit or receive packet command                                               |
| 0           | 4            | <code>rxc_pkt_pass</code>         | No CRC or address error on last RX packet                                                        |
| 0           | 3            | <code>rxc_ack_req</code>          | Acknowledge request bit set on last RX packet                                                    |
| 0           | 2            | <code>rxc_brdcst_match</code>     | RX broadcast packet                                                                              |
| 0           | 1            | <code>rxc_addr_mode</code>        | RX packet address mode                                                                           |
| 0           | 0            | <code>rxc_pkt_buf_len[8]</code>   | Bit [8] (MSB) of RX packet length in RX buffer. See Note 1.                                      |
| 1           | 7:0          | <code>rxc_pkt_buf_len[7:0]</code> | Bits [7:0] of RX packet length in RX buffer. See Note 1.                                         |
| 2 (hub)     | 7:0          | <code>rxc_source_sid</code>       | RX packet short ID of source                                                                     |
| 2 (node)    | 7            | <code>msc_rx_dup_frm</code>       | Last RX packet was a duplicate packet                                                            |
| 2 (node)    | 6            | <code>rxc_frm_pend</code>         | Frame pending bit set on last RX packet                                                          |
| 2 (node)    | 5:3          | <code>rxc_frm_subtype</code>      | RX packet frame subtype                                                                          |
| 2 (node)    | 2:0          | <code>rxc_frm_type</code>         | RX packet frame type                                                                             |

1. The value of `rxc_pkt_buf_len[8:0]` is the number of bytes the ZL70550 puts in its RX buffer for the user to read out.
  - If `wr_rx_payload_only` is set to 1 then the ZL70550 puts only the packet's payload in its RX buffer and `rxc_pkt_buf_len[8:0]` is the payload length `rxc_pld_len`.
  - If `wr_rx_payload_only` is set to 0, then the ZL70550 puts the whole packet in its RX buffer, and `rxc_pkt_buf_len[8:0]` is the length of the whole packet and this is the value in `rxc_frm_len`.

## 5.3 SPI Commands

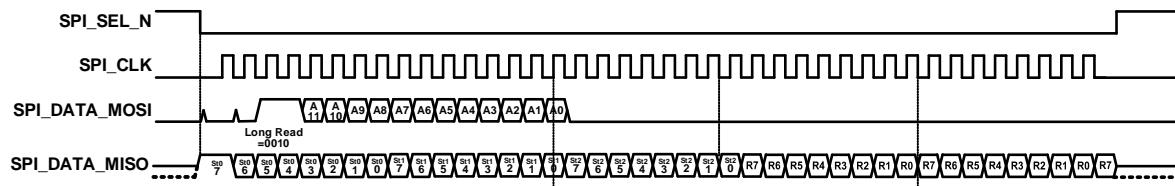

Read and write operations are performed with either short addresses or long addresses, depending on where in the memory map the operation is conducted. In all cases, there is a command field of two to four bits, followed by an address, followed by data. Multiple addresses may be accessed in a single command, with the address being automatically incremented from the starting address on consecutive bytes.

### 5.3.1 Short-Address Read and Write

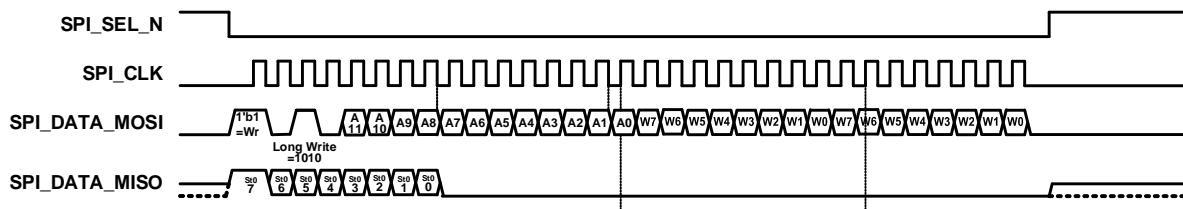
Short addressing is used to access addresses 0x000 to 0x007. These operations occur in the SPI clock domain and do not require the crystal oscillator or system bus to be operational. Therefore no system bus synchronization is required. The timing for these operations is shown in [Figure 17](#), page 28.

A write starts with 2'b11 followed by six bits of address. This is followed by one or more bytes to be written to consecutive address locations, starting with the first address.

A read starts with 2'b01 followed by six bits of address. This is followed by one or more bytes read from consecutive address locations, starting with the first address.


**Figure 17 • Short-Address Read-Write Timing**

### 5.3.2 Long-Address Read and Write


Long addressing is used to access all addresses on the system bus. See [Table 11](#), page 30. The transmit and receive buffers may also be accessed with long-address read and write operations, but typically they are accessed with packet write and packet read operations.

The long-address operations use a 12-bit address. Write operations occur on consecutive byte cycles, with no dead byte periods. Because of the system bus synchronization requirements, a dead byte cycle is inserted after the address on read operations. In all cases, status is returned on the first two or three bytes on the MISO line, as shown in [Table 9](#), page 26.

[Figure 18](#), page 28, shows the timing and bit sequence for a long-address read operation, where two data bytes are read back on the SPI bus. There is a one byte delay between the address and the first data byte, in which SPI Status 2 is inserted. The read operations must perform a look-ahead in order to have the data ready for the SPI interface. Because of this, the SPI interface always reads two additional locations on the system bus after the last byte needed for the read operation. Notice that there are four bus requests for the two-byte read operation. The de-assertion of **SPI\_SEL\_B** high terminates the operation.

**Figure 18 • Long-Address Read Timing**

[Figure 19](#), page 28, shows the timing and bit sequence for the write operation, where two bytes are shown written on the system bus. In this case, there is no dead byte cycle between the last address bit and the first data byte to be written. The de-assertion of **SPI\_SEL\_B** high terminates the operation.

**Figure 19 • Long-Address Write Timing**

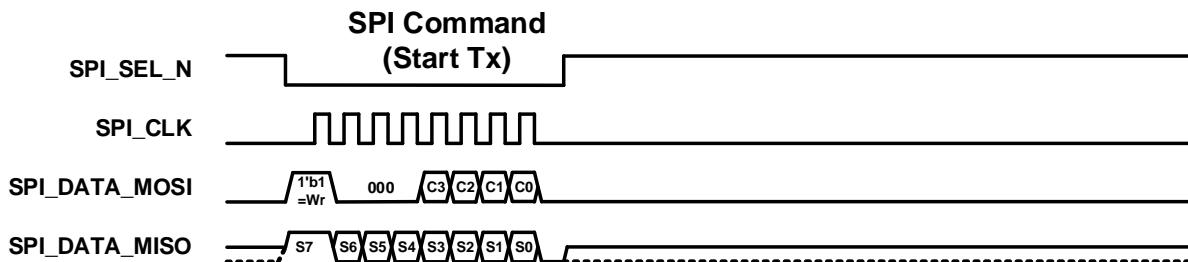
### 5.3.3 Packet Write

Packet write operations are an efficient means of writing packets and starting the packet transaction. This operation is similar to the long-address write operation, except that no address is in the SPI command sequence. The packet write operation starts with the 0x88 command. In addition to writing the packet into the transmit buffer, this operation optionally performs three other operations:

- Calculates the TX buffer length, and writes it to *tx\_buf\_len*
- Increments the TX frame sequence number and writes it to *tx\_fcs\_len*
- Asserts the SPI transmit command *spis\_tx\_cmd* to the MAC to transmit the packet (see [5.3.5.1 Transmit Command](#), page 29).

If auto-header generation is enabled by setting `tx_auto_hdr` equal to 1, then the CPU only needs to write the payload into the TX buffer using the packet write operation, and the entire packet is automatically generated with preamble, frame sync pattern, PHY header, MAC header, payload, and CRC.

### 5.3.4 Packet Read


This operation is similar to the long-address read operation, except that no address is in the SPI command sequence. Packet read operation reads the packet currently stored in the RX packet buffer. Information in the status can be used to determine the state of the packet, including its length. This command does not turn on the receiver to receive a packet. This must be done with a SPI receive command, or in conjunction with a SPI TX command or SPI TX request command when operating in transaction sequence mode.

Depending on the setting of `wr_rx_payload_only`, either the entire packet or just the payload is written to the RX buffer. All status for a received packet is stored in the status registers until the next packet is received. The SPI status field `rx_pkt_buf_len[8:0]` (see [Table 10](#), page 27) gives the length of the RX data in the RX buffer.

### 5.3.5 Other SPI Commands

[Figure 20](#), page 29, shows the timing for a typical one byte SPI command, in this case a TX command. The command is synchronized to the system clock `cg_sys_clk` before asserting `spis_tx_cmd` to the MAC. The `spis_tx_cmd` is cleared by the MAC when the command is complete.

**Figure 20 • Command Timing**



#### 5.3.5.1 Transmit Command

The SPI transmit command `spis_tx_cmd` goes high either with a SPI Write Packet command (if `auto_tx_cmd` is 1) or with a SPI Transmit Command. The `spis_tx_cmd` command causes a SPI TX command to the MAC, which in turn begins a transmit packet sequence that may include CSMA, packet transmit, and packet receive operations as shown in the state machine diagrams (see [Figure 13](#), page 21, [Figure 14](#), page 23, and [Figure 15](#), page 24). In this case, for the initial transmitted packet, the header and packet length is taken from the always-on registers, and the payload is taken from the TX buffer. If `tx_auto_hdr` is equal to 0, then the entire packet with the MAC header is taken from the TX buffer.

This command is useful for issuing a retransmission of the last packet transmitted, or for delaying transmission after a packet is written to the TX buffer.

#### 5.3.5.2 Transmit Data Request Command

This SPI command `spis_tx_req_cmd` goes high with a SPI Transmit "Data Request" Command. The `spis_tx_req_cmd` causes the transmission of the data-request packet in Z-Star packet mode, which in turn begins a transmit packet sequence that may include CSMA, packet transmit, and packet receive operations as shown in the state machine diagrams (see [Figure 13](#), page 21, [Figure 14](#), page 23, and [Figure 15](#), page 24). Typically, this is done from the node and requires no changes to the contents of the always-on registers. For the transmitted data request packet, the frame sequence number is set to the expected frame sequence number of the next RX packet, and the payload length is set to zero. Also, the AR and FP bits are also set to 0, and the frame type / frame subtype are set to data request type packet.

### 5.3.5.3 Receive Command

The SPI receive command *spis\_rx\_cmd* goes high with a SPI Receive Command. The *spis\_rx\_cmd* command is used to turn on the receiver to begin a receive packet sequence that may include both packet transmit and packet receive operations as shown in the state machine diagrams (see [Figure 13](#), page 21, [Figure 14](#), page 23, and [Figure 15](#), page 24). It takes the MAC to state RX1, per [Figure 14](#), page 23. This command is required in order to initiate a receive operation, and the receive operation must complete before a packet can be read from the RX packet buffer.

### 5.3.5.4 Abort Command

The SPI abort command is used to terminate an active command. This is most commonly used after a receive command has been issued when *rx\_forever* is equal to 1. In this case, the RX command is not cleared without an abort command or a MAC disable/reset or a SLEEP condition.

## 5.4 Registers, Interrupts, and Memory Map

The user application controls most digital functions in the ZL70550 by accessing designated memory addresses called registers. Each register represents a designated address within the ZL70550 memory map.

### 5.4.1 Registers

On the SPI bus, each register is accessed using its 6-bit or 12-bit address, depending on whether short- or long-address mode is used for that register. Each register contains up to one byte of data, and the “Default” column of the memory map (refer to [Section 9.3 SPI Local Registers](#), page 61, [Section 9.4 System Bus Control and Status Registers](#), page 63, and [Section 9.5 Always-On System Bus Control and Status Registers](#), page 75) identifies how many bits are significant for each register. These are always the least significant bits. Over the SPI bus, the MSB of each byte is always sent first, the LSB last. Read and write access is described in [Section 5.3 SPI Commands](#), page 27.

In this User’s Guide, individual bits within a register are typically referenced using the “Field Name” shown in the tables in [Section 8 Registers](#), page 52, but may also be referenced using the bit number appended to the register name. In the latter case, a bit range within a register is identified in brackets and the number sequence of a bit range is always written as [MSB:LSB]. For example, the RX FCS length is stored in bits [2], [1], and [0] of register **RX\_CTRL1** and may be referenced as **RX\_CTRL1[2:0]** or as **rx\_fcs\_len**.

Registers are of two types: volatile and always-on registers. The contents of the volatile registers located in the VDDD power domain are lost every time the device goes into the SLEEP state. The always-on registers are located in the VSUP power domain and retain their values when the device goes into the SLEEP state.

### 5.4.2 Basic Memory Map

[Table 11](#), page 30, summarizes the memory map of the ZL70550. Additional details can be found in [Chapter 8 Registers](#), page 52. As indicated in the table, there are always-on registers whose values are always preserved as long as power is applied to VSUP, even while the chip is in the SLEEP state.

**Table 11 • Basic Memory Map**

| Starting Address | Ending Address | Addressing Mode | Always On | Description                             |
|------------------|----------------|-----------------|-----------|-----------------------------------------|
| 0x000            | 0x007          | Short           | No        | SPI local registers, not on system bus  |
| 0x100            | 0x14B          | Long            | No        | System bus control and status registers |
| 0x200            | 0x29F          | Long            | Yes       | System bus control and status registers |
| 0x400            | 0x5FF          | Long            | No        | System bus transmit buffer (SRAM)       |
| 0x600            | 0x7FF          | Long            | No        | System bus receive buffer (SRAM)        |

### 5.4.3 Interrupts

The naming convention for interrupt registers is *interruptname\_irq* (for example, *cmd\_done\_irq*).

Interrupts are signaled by the ZL70550 asserting its **IRQ** (Interrupt Request) output.

## 5.4.4 Interrupt Controller

There is only one interrupt pin at the top level of the ZL70550 chip called **IRQ**, and the interrupt sources are determined by writing to the enable registers **IRQ\_EN0**, **IRQ\_EN1**, and **IRQ\_EN2**. More than one interrupt source per register can be enabled. In this case, when the **IRQ** pin is set high, it is necessary to read the interrupt registers **IRQ0**, **IRQ1**, and **IRQ2** (with an SPI bus read command) to determine what the source(s) is.

When the corresponding interrupts are enabled, the outputs of the interrupt registers **IRQ0**, **IRQ1**, and **IRQ2** create an interrupt on the **IRQ** pin (level high). If an interrupt is not enabled, the interrupt pulse in the interrupt registers **IRQ0**, **IRQ1**, and **IRQ2** can still be latched but that does not generate an interrupt on the **IRQ** pin.

If an interrupt is enabled and it is set, the **IRQ** pin is set high until it is lowered either by reading the respective interrupt register or by writing to the appropriate enable register to disable the interrupt.

The **STATUS** register returns the status as defined in the memory map when it is read, but a status can never generate an interrupt on the **IRQ** pin.

The **STATUS** register is read-only and registers **IRQ0**, **IRQ1**, and **IRQ2** are clear-on-read (CoR). Because of the prefetch behavior of the system bus, if just **IRQ0** is read, then **IRQ1** and **IRQ2** are also cleared. It is best to perform a three-byte read, starting with **IRQ0**, to read the interrupt status and clear the registers. This guarantees that no interrupt status is missed.

See [Table 12](#), page 31, for a list of the individual ZL70550 interrupts.

**Table 12 • ZL70550 Interrupt Register Bit Definitions**

| Register    | Bit | Bit Definition          | Description                                               | Reset Value |
|-------------|-----|-------------------------|-----------------------------------------------------------|-------------|
| <b>IRQ0</b> | 7:3 | –                       | <Reserved>                                                | 00000       |
|             | 2   | <i>csma_done_irq</i>    | CSMA done interrupt status                                | 0           |
|             | 1   | <i>rx_ack_done_irq</i>  | RX acknowledgment process done interrupt status           | 0           |
|             | 0   | <i>rx_pkt_done_irq</i>  | RX nonacknowledgment packet process done interrupt status | 0           |
| <b>IRQ1</b> | 7   | <i>synth_rdy_irq</i>    | Synthesizer ready interrupt status                        | 0           |
|             | 6   | <i>trim_done_irq</i>    | Trim done interrupt status                                | 0           |
|             | 5   | <i>trim_fail_irq</i>    | Trimming and tune process failed interrupt status         | 0           |
|             | 4   | <i>adc_avg_done_irq</i> | ADC average done interrupt status                         | 0           |
|             | 3   | <i>rssi_nosig_irq</i>   | RSSI no signal interrupt status                           | 0           |
|             | 2   | <i>sync_detect_irq</i>  | Frame synchronization detect interrupt status             | 0           |
|             | 1   | <i>pream_det_irq</i>    | Preamble detect interrupt status                          | 0           |
|             | 0   | <i>rssi_high_irq</i>    | RSSI high interrupt status                                | 0           |
| <b>IRQ2</b> | 7   | <i>tx_ack_done_irq</i>  | TX acknowledgment process done                            | 0           |
|             | 6   | <i>tx_pkt_done_irq</i>  | TX nonacknowledgment packet process done interrupt status | 0           |
|             | 5   | <i>pll_lock_err_irq</i> | PLL lock error interrupt status                           | 0           |
|             | 4   | <i>rx_hdr_rdy_irq</i>   | RX header / buffer ready interrupt status                 | 0           |
|             | 3   | <i>rx_frm_pend_irq</i>  | Frame pending interrupt status                            | 0           |
|             | 2   | <i>rx_pkt_rdy_irq</i>   | RX packet ready in RX buffer interrupt status             | 0           |
|             | 1   | <i>cmd_fail_irq</i>     | SPI MAC command fail interrupt status                     | 0           |
|             | 0   | <i>cmd_done_irq</i>     | SPI MAC command complete interrupt status                 | 0           |

## 5.5 GPIO Pins

There are four general-purpose I/O pins (**GP3..0**). These can be configured as input or output, and as digital or analog. For digital outputs, [Table 13](#), page 32, shows the selection for each signal. The output is 0 for any selector not shown in the table. All 156 digital signals are available at all general-purpose I/O pins using the same code, one code for each general-purpose I/O pin:

- *gpio\_0\_sel*
- *gpio\_1\_sel*
- *gpio\_2\_sel*
- *gpio\_3\_sel*

To enable a GPIO for output, the corresponding output enable must also be set to 1 in *gpio\_oen*.

Typically, the input enables should remain disabled with a setting of 0 on each of the *gpio\_ien*. In addition, to enable clock output (**\_tclk**) signals, *sys\_clk\_en\_test* must be set to 1 in the **CLK\_TEST** register.

**Table 13 • GPIO Output Signal Selection**

| Selection | Signal                    | Description                                                                                                                                                                                                                                                 |
|-----------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21        | <i>cg_sys_tclk</i>        | 1.2-MHz system clock                                                                                                                                                                                                                                        |
| 22        | <i>cg_xtal_tclk</i>       | 24-MHz crystal oscillator clock                                                                                                                                                                                                                             |
| 2B        | <b><i>cg_sys_rst</i></b>  | System reset                                                                                                                                                                                                                                                |
| 38        | <i>rfmac_synth_tx</i>     | Synth TX: 1 for TX mode;0 for RX mode                                                                                                                                                                                                                       |
| 3A        | <i>trim_fail</i>          | Trim fail pulse                                                                                                                                                                                                                                             |
| 3B        | <i>trim_done</i>          | Trim done pulse                                                                                                                                                                                                                                             |
| 40        | <i>dp_tx_data</i>         | Transmitter bit data to modulator; includes preamble and frame sync                                                                                                                                                                                         |
| 43        | <i>msc_ptx_en</i>         | PHY transmit operation active                                                                                                                                                                                                                               |
| 44        | <i>dp_pll_lock_err</i>    | PLL lock error indication                                                                                                                                                                                                                                   |
| 46        | <i>dp_bit_clk_en</i>      | Receive and transmit bit clock                                                                                                                                                                                                                              |
| 47        | <i>ptx_xmtr_en</i>        | TX power amplifier enable status (1 for PA on)                                                                                                                                                                                                              |
| 4C        | <i>cdr_raw_data</i>       | Raw RX data, prior to data recovery and bit alignment                                                                                                                                                                                                       |
| 4D        | <i>cdr_phy_data</i>       | Bit-aligned recovered RX data; includes preamble and frame sync                                                                                                                                                                                             |
| 51        | <i>prx_rx_done</i>        | Packet receive done status pulse                                                                                                                                                                                                                            |
| 53        | <i>cdr_sync_found</i>     | Frame sync pattern detection pulse                                                                                                                                                                                                                          |
| 54        | <i>prx_sync_err</i>       | A pulse indicating frame sync timeout or packet abort before frame sync                                                                                                                                                                                     |
| 55        | <i>prx_sync_timeout</i>   | Frame sync timeout pulse                                                                                                                                                                                                                                    |
| 5A        | <i>adc_done</i>           | ADC conversion complete                                                                                                                                                                                                                                     |
| 5C        | <b><i>ptx_tx_trig</i></b> | Transmit trigger level signal. Goes high after, programmable time, which starts at the beginning of the transmitted preamble. Time interval is set by <i>tx_trig_dly_cnt</i> in 10 us counts. Can be used to enable external PA after synthesizer settling. |
| 63        | <i>pream_detected</i>     | Indicates preamble detection in RX, and stays high for duration of AFC operation                                                                                                                                                                            |

**Table 13 • GPIO Output Signal Selection (continued)**

| Selection | Signal                    | Description                                                                                                                                                                                                        |
|-----------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 69        | <i>dp_rx_data</i>         | Bit clock aligned RX data to MAC, packet data only, qualified with <i>dp_rx_active</i> . Does not include preamble and frame sync.                                                                                 |
| 6A        | <i>dp_rx_active</i>       | RX active signal for payload data; qualifies <i>dp_rx_data</i>                                                                                                                                                     |
| 6B        | <i>dp_tx_active</i>       | TX active signal for payload data. Goes high after frame sync is transmitted, and stays high while packet data is transmitted from TX buffer.                                                                      |
| 80        | <i>spis_tx_cmd</i>        | SPI transmit command active status; is high when a SPI TX command sequence is active. Stays high until <i>msc_cmd_done</i> status/IRQ is generated.                                                                |
| 81        | <i>spis_tx_req_cmd</i>    | SPI data request packet command active status; is high when a SPI TX request command sequence is active. Stays high until <i>msc_cmd_done</i> status/IRQ is generated.                                             |
| 82        | <i>spis_rx_cmd</i>        | SPI receive command active status; is high when a SPI RX command sequence is active. Stays high until command sequence is complete or as long the <i>rx_forever</i> is high after SPI receive command is received. |
| 88        | <i>msc_synth_rdy</i>      | Synthesizer ready and PLL locked                                                                                                                                                                                   |
| 89        | <i>msc_cmd_done_pulse</i> | A pulse indicating the end of a packet sequence, which generates <i>cmd_done_irq</i>                                                                                                                               |
| A1        | <i>msc_pwrdown_req</i>    | A power-down request from the MAC after command done                                                                                                                                                               |
| A2        | <i>msc_csma_en</i>        | CSMA operation active                                                                                                                                                                                              |
| A3        | <i>mac_rssi_en</i>        | RSSI block active                                                                                                                                                                                                  |
| A4        | <i>msc_rxc_blk_en</i>     | MAC receive operation active                                                                                                                                                                                       |
| A5        | <i>msc_txc_blk_en</i>     | MAC transmit operation active                                                                                                                                                                                      |
| B0        | <i>rxc_pkt_rcvd</i>       | Packet receive status                                                                                                                                                                                              |

**Table 13 • GPIO Output Signal Selection (continued)**

| Selection | Signal                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B8        | <i>rxc_dup_frm</i>      | Duplicate frame received status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B9        | <i>rxc_addr_match</i>   | <p>Address match on received RX frame. Is automatically set if <b>all</b> of the following are true:</p> <ul style="list-style-type: none"> <li>• The destination ID in the received header (<i>rxc_dest_sid</i> or <i>rxc_dest_lid</i>) matches local device ID (<i>device_sid</i> or <i>device_lid</i>)</li> <li>• <b>AND</b> the source ID in the received header (<i>rxc_source_sid</i> or <i>rxc_source_lid</i>) matches the unmasked portion of the other ID (<i>other_sid</i> or <i>other_lid</i>)</li> <li>• <b>AND</b> the network ID in the received header (<i>rxc_network_id</i>) matches the unmasked portion of the network ID (<i>network_id</i>).</li> </ul>                                                                                                     |
| BA        | <i>rxc_brdcst_match</i> | <p>Broadcast address match on received RX frame. This applies to both long and short broadcast mode:</p> <ul style="list-style-type: none"> <li>• In long addressing mode, the network ID is not used for matching. This bit is set if long addressing mode is used (<i>rxc_addr_mode</i> equals 1), <b>and</b> broadcast is enabled (<i>lNg_brdcst_en</i> equals 1), <b>and</b> the destination address is all 1s.</li> <li>• In short addressing mode, the unmasked portion of network ID must also match. This bit is set if short addressing mode is used (<i>rxc_addr_mode</i> equals 0), <b>and</b> broadcast is enabled (<i>shrt_brdcst_en</i> equals 1), <b>and</b> the destination address is all 1s, <b>and</b> the unmasked portion of network ID matches.</li> </ul> |

# 6 Setup and Initialization

---

## 6.1 Power Management

### 6.1.1 Power Domains

There are three power domains in the device: VDDD for the digital, VDDA for the analog, and VSUP for the sections of the device that must operate without VDDD and VDDA, including the always-on registers. When the device is in the SLEEP state, VDDD and VDDA are turned off, so all information is lost in those areas at that time.

### 6.1.2 Power Modes

Table 14, page 35, shows the power states of the ZL70550. Refer to the descriptions in Section 6.2 Power Up, page 35, for the bits that control each state.

To power modes are shown in Table 14, page 35. Stand-by mode requires setting *msc\_blk\_en* equal to 0. Setting *msc\_blk\_en* to 1 enables the PLL. The setting of *msc\_blk\_en* during sleep determines whether or not the PLL is turned on wake-up.

**Table 14 • Power Modes and Operational Conditions**

| State                | VDDD | XTAL Osc | <i>cg_sys_ck</i> | PLL | TX Circuit | RX Circuit | Current |
|----------------------|------|----------|------------------|-----|------------|------------|---------|
| SLEEP                |      |          |                  |     |            |            | 10 nA   |
| IDLE <sup>1</sup>    | ✓    | ✓        | ✓                |     |            |            | 150 µA  |
| STANDBY <sup>1</sup> | ✓    | ✓        | ✓                | ✓   |            |            | 700 µA  |
| ACTIVE TX            | ✓    | ✓        | ✓                | ✓   | ✓          |            | 2.75 mA |
| ACTIVE RX            | ✓    | ✓        | ✓                | ✓   |            | ✓          | 2.4 mA  |

1. *msc\_blk\_en* affects whether the device goes into IDLE or STANDBY.

## 6.2 Power Up

### 6.2.1 Initial Reset

When VSUP power is applied to the device, **RESET\_B** should be asserted low to initialize the device into its default state. After **RESET\_B**, the device is in the SLEEP state, in which the VDDD section of the device is powered-down. VDDD is the regulated voltage domain that is supplied by the VSUP voltage domain, which is the main external power to the device. **RESET\_B** also resets all of the registers in the device.

### 6.2.2 Wake-Up Operation

The only mechanism for waking up the device is to assert or pulse the **SPI\_SEL\_B** line low. This starts the wake-up sequencer, which powers up the VDDD section. When the VDDD power-up sequence is complete, the **IRQ** line goes high (if enabled) and the **SPI\_MISO** line goes high if **SPI\_SEL\_B** is low. This indicates that the SPI interface is ready to accept commands and read/write operations. The IRQ is cleared on the first rising edge of **SPI\_CLK**, so no explicit clearing of this interrupt is required. While the device is not ready, **SPI\_MISO** remains low while **SPI\_SEL\_B** is asserted low before the first **SPI\_CLK**.

### 6.2.3 Monitoring Wake-Up

To monitor wake-up without asserting the **SPI\_SEL\_B** line low, **cg\_spi\_rst** can be monitored from one of the GPIO pins. The signal **cg\_spi\_rst** is high if VDDA and VDDD are powered up, and the device is ready to receive SPI operations, and the **SPI\_SEL\_B** pin is high. The signal **cg\_spi\_rst** is selected as

the GPIO output by writing 0x2D to one of the GPIO selector registers along with the corresponding output enables. These registers remain unchanged during a SLEEP event, and the selected output is activated as soon as VDDD power is stable and the internal **cg\_sys\_rst** is released.

If **cg\_spi\_rst** is selected as an output on GPIO, then the level of that GPIO indicates that whether VDDD and VDDA are fully powered-up, the crystal oscillator is running, and the digital reset has been released.

**Note:** The *trim\_done\_irq* status is set after wake-up. This status should be cleared and ignored.

## 6.3 Sleep Operation

Powering down VDDD causes the device to go into the SLEEP state. The VDDD section is normally powered down manually but can be powered down automatically if desired.

### 6.3.1 Manual Sleep Operation

The VDDD section is normally powered-down by writing the power-down command to the SPI interface. This is done by writing 0xDE to **SPIR\_PWRDWN\_REQ** using a short-address write command.

### 6.3.2 Automatic Sleep Operation

Two options are available for automatically putting the device into the SLEEP state if desired.

- If *mac\_pwrdown\_en* equals 1 and no interrupt is currently active, an SPI command done status from the MAC can cause the device into the SLEEP state.
- If *dp\_pwrdown\_en* equals 1, then a low RSSI level after the receiver is enabled causes the device to SLEEP if no interrupt is currently active.

If the interrupt is asserted at the time of the SLEEP event, then the SLEEP request is blocked. However, care must be taken in responding to an interrupt when automatic SLEEP is enabled.

The SLEEP event from the MAC only occurs at *cmd\_done\_irq*, but *cmd\_done\_irq\_en* is 0 for automatic SLEEP so no interrupt is generated on that condition. If another interrupt occurs prior to *cmd\_done\_irq*, such as *rx\_pkt\_rdy\_irq* or *rx\_frm\_pend\_irq*, these interrupts can occur before *cmd\_done\_irq*. If the interrupt status is read while the automatic SLEEP is enabled, then the sleep event may occur while the interrupt is being processed. Therefore, it is recommended to disable automatic sleep by setting *mac\_pwrdown\_en* and *dp\_pwrdown\_en* equal to 0 prior to reading interrupt status.

## 6.4 Synthesizer Controller and Channel Selection

The A and M registers must be programmed any time a different channel is desired.

The A value can be programmed through the system bus using *a\_div* in the **SYNTH\_A\_DIV** register.

The M value can be programmed through the system bus using **SYNTH\_M\_DIV**.

The M value and the A value should be written as a two-byte write operation starting at the address for the **SYNTH\_M\_DIV** register.

LO control (high/low) can be programmed through the system bus using *ch\_lo\_ctrl* in the **VCO\_CTRL** register. This bit controls whether the mixing IF is above or below the channel frequency, and determines where the channel image is located during receiver operations.

### 6.4.1 A and M Requirements

The A and M requirements are:

$$A \geq 5, M \geq 16 \quad EQ\ 6-3$$

### 6.4.2 A and M Value Calculation

The total number of PLL clock periods to be produced by the VCO in order to run through the PLL divide cycle is given by  $N_{tot}$ :

$$N_{tot} = \text{int}(\text{carrier frequency} / \text{PLL clock}) \quad EQ\ 6-4$$

In the ZL70550 PLL implementation, the relation between  $N_{tot}$  and A and M is given by [EQ 6-5](#) below:

$$N_{tot} = 17 \times A + 16 \times M \quad EQ\ 6-5$$

[EQ 6-5](#) shows that A is the number of times the prescaler needs to count to 17 and M is the number of times the prescaler needs to count to 16.

$$A = ((N_{tot} - 5) \bmod 16) + 5 \quad EQ\ 6-6$$

where:  $4 < A < 21$

$$M = (N_{tot} - A \times 17) / 16 \quad EQ\ 6-7$$

where:  $139 < M < 193$  for 300-kHz channel spacing

[EQ 6-4](#), [EQ 6-6](#), and [EQ 6-7](#) can be used for calculating A and M values to program registers **SYNTH\_A\_DIV** and **SYNTH\_M\_DIV**.

### 6.4.3 Channel Frequency Calculation

The *ZL70550 Synthesizer Programming Table.xls* spreadsheet implements the above formulas and can also be used to generate the A and M values for a particular target frequency or as a look-up table for all the synthesizable frequencies within the ZL70550 range.

The channel frequency is:

$$((A \times 17) + (M \times 16)) \times 300\ \text{kHz} \quad EQ\ 6-8$$

where: 300kHz is the channel width

### 6.4.4 A and M Programming Example

1. Determine the output frequency for the current channel being programmed.  $N_{tot}$  represents the number of counts that corresponds to the output frequency. From the table, look up the values for A and M. A is the number of times the prescaler divides by 17 and M is the number of times the prescaler divides by 16.
2. If a frequency of 915.9 MHz is desired, this would equate to an  $N_{tot}$  value of 3053.
3. If  $N_{tot}$  of 3053 is chosen, the values in [EQ 6-8](#), page 37, are  $17 \times 13 + 16 \times 177 = 3053$ , that is:
  - A is 13, with a binary representation of 6'b001101.
  - M is 177, with a binary representation of 8'b10110001.
4. For this example, **vco\_low\_range** remains at 0. If channels below 795 MHz are being used, then program the **vco\_low\_range** bit in the **VCO\_CTRL** register to 1. Programming a 1 shifts the VCO trim range so that the PLL can take the VCO down to 779 MHz.
5. Program **m\_div** equal to 8'b10110001 (0xB1) in the **SYNTH\_M\_DIV** register.
6. Program **a\_div** in **SYNTH\_A\_DIV** equal to 8'b00001011 (0x0B).

## 6.5 Recommended Initialization Settings

[Chapter 8 Registers](#), page 52, summarizes the memory map of the ZL70550. Recommended initial register settings are provided in the "Recommended Values" column of Table 35 in [Section 8.2 Address Space](#), page 53. Write the recommended values to the appropriate registers after every chip reset (**RESET\_B** pin low).

Before packet transactions can be performed, the device must first be trimmed for the channel of operation, and then the packet parameters must be set. Basic variables needed are number of FCS (CRC) bytes, length of preamble, DC restore value and mode, and preamble detect mode.

## 6.5.1 Z-Star Operation

For Z-Star operation, the following values must be set. Any value that is not shown here or in Section [8.2 Address Space](#), page 53, should use the default (reset) value.

**Table 15 • General Parameters**

| Parameter              | Node | Hub | Default | Function                                        |
|------------------------|------|-----|---------|-------------------------------------------------|
| <i>msc_blk_en</i>      | 1    | 1   | 0       | MAC enable and turn on the PLL                  |
| <i>hub_node_n</i>      | 0    | 1   | 0       | Hub enable: 1 for hub, 0 for node               |
| <i>tx_fsn_incr_dis</i> | 0    | 1   | 0       | Disable auto TX frame sequence number increment |

**Table 16 • Receive Parameters**

| Parameter             | Node   | Hub    | Default | Function                                         |
|-----------------------|--------|--------|---------|--------------------------------------------------|
| <i>lNg_brdcst_en</i>  | 0      | 1      | 0       | Enable receiving Z-Star long-address broadcast   |
| <i>dup_frm_irq_en</i> | 0      | 1      | 0       | Enable packet ready interrupt on duplicate frame |
| <i>rx_forever</i>     | 0      | 1      | 0       | Receive continuously                             |
| <i>addr_mask</i>      | 0xFFFF | 0xFF00 | 0xFFFF  | Mask for received Z-Star source & network ID     |

## 6.5.2 For Raw Bit Mode

### 6.5.2.1 TX Raw Bit Mode

Sources for TX data are either the TX buffer or pin **GP1**. For test purposes, the frame sync pattern may also be continuously transmitted. In raw bit mode, the transmitter transmits only raw data, without preamble and frame sync. If preamble and frame sync are needed, then they must be supplied by the raw data source.

When *gpio\_tx\_sel* equals 1, the bit rate is controlled by the data source at **GP1**. To use the device bit clock, the signal **dp\_bit\_clk\_en** may be output to one of the other **GP3..0** pins using selection code 0x46 as described in Section [5.5 GPIO Pins](#), page 32.

**Table 17 • TX Raw Bit Mode Controls**

| Field                 | Memory Map Location            | Recommended |                                                                                       |
|-----------------------|--------------------------------|-------------|---------------------------------------------------------------------------------------|
|                       |                                | Value       | Comments                                                                              |
| <i>tx_mode</i>        | <b>TX_CTRL0[2:0]</b>           | 000         | Selects raw bit mode TX format                                                        |
| <i>raw_tx_mode</i>    | <b>PHY_TX_RAW_MODE_CTRL[1]</b> | 1           | Enables TX operation in raw bit mode                                                  |
| <i>tx_buf_len</i>     | <b>TX_BUF_LEN0..1</b>          | Length      | Sets byte length of TX                                                                |
| <i>dp_sync_always</i> | <b>DP_CTRL0[2]</b>             | 0 or 1      | Optional. Set to 1 for continuous TX of sync pattern                                  |
| <i>gpio_tx_sel</i>    | <b>PHY_TX_RAW_MODE_CTRL[0]</b> | 0 or 1      | Optional; set to 1 to select <b>GP1</b> as TX data source                             |
| <i>gpio_ien</i>       | <b>PAD_EN0[3:0]</b>            | 0 or 0x2    | Optional; set to 0x2 if using <b>GP1</b> as TX data source. Enables <b>GP1</b> input. |

**Table 17 • TX Raw Bit Mode Controls**

| Field              | Memory Map Location                                                                                                              | Recommended Value | Comments                                                                                                                                                                                                                                                        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>gpio_oen[1]</i> | <b>PAD_EN0[5]</b>                                                                                                                | 0                 | Optional; always set to 0 if using <b>GP1</b> as TX data source. Disables use of <b>GP1</b> for output.                                                                                                                                                         |
| <i>gpio_X_sel</i>  | <b>GPIO_X_SEL</b><br>(where X is 3, 2, or 0, corresponding to unused pin <b>GP3</b> , <b>GP2</b> , or <b>GP0</b> , respectively) | 0 or 0x46         | Optional; if using pin <b>GP1</b> as TX data source, writing 0x46 assigns any unused <b>GP3..0</b> pin as output for device bit clock ( <b>dp_bit_clk_en</b> )                                                                                                  |
| <i>gpio_oen</i>    | <b>PAD_EN0[7], PAD_EN[6], or PAD_EN0[4]</b> (corresponding to unused pin <b>GP3</b> , <b>GP2</b> , or <b>GP0</b> , respectively) | Any               | Optional. Enable any unused <b>GP3..0</b> pin if using <b>GP1</b> as TX data source AND outputting device bit clock ( <b>dp_bit_clk_en</b> ) to GPIO. Enable the pin corresponding to the GPIO selection register ( <i>gpio_X_sel</i> ) used for outputs above. |

### 6.5.2.2 RX Raw Bit Mode

In RX raw bit mode, all data bits received are output to the RX buffer in non-bit-aligned bytes. Preamble detection is recommended, but not required (if not used, then *pream\_det\_mode* is set to 0). No frame sync is required.

The raw bit data may also be received on **GP1**, either as **cdr\_raw\_data** using GPIO selection code 0x4C, or as **dp\_rx\_data** using GPIO selection code 0x69 as described in Section 5.5 GPIO Pins, page 32. The signal **dp\_rx\_data** uses full bit recovery and is aligned to **dp\_bit\_clk\_en** (which is used on both TX and RX; see above). The signal **cdr\_raw\_data** is raw receiver data and not bit aligned.

**Table 18 • RX Raw Bit Mode Controls**

| Field                 | Memory Map Location                                                                                                              | Recommended Value | Comments                                                                                                                                                                                      |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>rx_mode</i>        | <b>RX_CTRL0[2:0]</b>                                                                                                             | 000               | Selects raw bit mode for receiving packets                                                                                                                                                    |
| <i>raw_rx_mode</i>    | <b>PHY_RX_MODE_SEL[3]</b>                                                                                                        | 1                 | Enables RX operation in raw bit mode                                                                                                                                                          |
| <i>rx_frm_len</i>     | <b>RX_FRM_LENO/1</b>                                                                                                             | Length            | Sets byte length of RX                                                                                                                                                                        |
| <i>pream_det_mode</i> | <b>PHY_RX_MODE_SEL[0]</b>                                                                                                        | 0 or 1            | Recommended that this bit be set to 1 to enable preamble packet detection                                                                                                                     |
| <i>gpio_X_sel</i>     | <b>GPIO_X_SEL</b><br>(where X is 3, 2, or 0, corresponding to unused pin <b>GP3</b> , <b>GP2</b> , or <b>GP0</b> , respectively) | 0 or 0x4C or 0x69 | Optional. Write 0x4C or 0x69 to assign an unused GPIO pin for RX data as <b>cdr_raw_data</b> or <b>dp_rx_data</b> , respectively.                                                             |
| <i>gpio_X_sel</i>     | <b>GPIO_X_SEL</b><br>(where X is 3, 2, or 0, corresponding to unused pin <b>GP3</b> , <b>GP2</b> , or <b>GP0</b> , respectively) | 0 or 0x6A         | Optional. Write 0x6A to select any unused <b>GP3..0</b> pin to qualify <b>dp_rx_data</b> if desired.                                                                                          |
| <i>gpio_oen</i>       | <b>PAD_EN0[7:4]</b>                                                                                                              | Any               | Optional. Enable appropriate <b>GP3..0</b> pin(s) if using GPIO as RX output. Enable the pin(s) corresponding to the GPIO selection register(s) ( <i>gpio_X_sel</i> ) used for outputs above. |

# 7 Calibrations

---

## 7.1 Overview/Summary

Calibration requirements are needed for a variety of subsystems in the ZL70550 to optimize parameters controlling the frequency of oscillators, antenna matching, filters, etc.

The different calibrations and optimizations in the ZL70550 are described in Section [7.2 Sequence](#), page 41, and Section [7.5 Procedures](#), page 43. The majority of calibrations require no external equipment and may be performed very quickly by the ZL70550 itself (refer to Section [7.4 Required Time for Calibrations](#), page 43). Section [7.5 Procedures](#), page 43, specifies the unique requirements of each calibration.

It is optional (with an always-on setup bit) to automatically tune the RC oscillator after power-on reset. Otherwise the internal trims are executed only on command.

ZL70550 does not perform any trimming or tuning at wake-up or at any other time without being commanded to do so over the control interface.

Any combination of automated calibrations can be initiated by the user application writing commands via the SPI bus interface. No further user intervention is then needed until the ZL70550 signals to the user application that all requested calibrations are complete.

Registers (or parameters) that control analog circuit operation may be categorized into three classes:

- Preset: Registers whose values are defined during IC evaluation and are set to a constant value (ideally the default value). No calibration is required for such parameters. These registers are supplied for design flexibility and to reduce risk.
- Factory: Registers whose values must be determined in production calibration procedures requiring special equipment. These registers relate to parameters that may vary from device to device due to process variations, operation range selections, or external component values.
- Operation: Registers whose values must be determined in production and/or by operational calibration procedures executed by the chip independent of external equipment. These registers relate to parameters that may vary from device to device due to process variations, operation range selections, or external component values.

Parameters are typically stored in internal always-on memory. Because the internal always-on memory depends on application of a battery voltage on the **VSUP** pin, SLEEP and wake-up of the device does not affect the always-on memory. However, if the chip loses battery voltage or if the device is reset using the **RESET\_B** pin, it is necessary to retrim or reload the parameters from external storage.

## 7.2 Sequence

The calibration sequence should be performed on every power-up on untrimmed, uncalibrated parts in the order provided in [Table 19](#), page 41. Only one of the calibrations at a time can be performed by the application software. Calibrations marked with “F” should be done at the factory and then stored in external nonvolatile memory. These values should be loaded to the device on subsequent power-ups.

**Table 19 • Recommended System Calibration Order**

| Order | Description                  | P (Preset)<br>F (Factory)<br>O (Operating) | Supported by TRIM_CMD | Notes |
|-------|------------------------------|--------------------------------------------|-----------------------|-------|
| 1     | Current reference            | O                                          | X                     |       |
| 2     | Crystal oscillator frequency | F                                          |                       |       |
| 3     | RC oscillator                | O                                          | X                     | 1     |
| 4     | VCO amplitude                | O                                          | X                     | 1,2   |
| 5     | VCO full frequency           | O                                          | X                     | 1,2   |
| 6     | Peak detector offset         | O                                          | X                     | 1,2   |
| 7     | Antenna                      | O                                          | X                     | 3     |
| 8     | LNA load                     | O                                          | X                     | 3     |
| 9     | RX filter                    | O                                          | X                     |       |
| 10    | FSK deviation                | O                                          | X                     | 1     |
| 11    | Transmitter output power     | P,F                                        |                       | 4     |
| 12    | LNA gain                     | P,F                                        |                       | 4     |

1. Periodic retrim may be desired due to thermal change.
2. It is recommended that these calibrations be performed anytime there is a frequency change. The `vco_low_range` bit must be set by application prior to tune if frequency is less than 815MHz. Retrim is also prescribed if a `trim_fail_irq` or `pll_lock_err_irq` is triggered.
3. Whenever the frequency changes, it may be necessary to run these calibrations to maintain optimum performance. It is recommended that this be determined during product characterization. These tests require that the TX and RX pins be connected together. Note that the antenna tune capacitors are only on the RX pins and that the LNA load tune requires a transmitted signal fed back to the receiver.
4. Preset trim values are determined during product characterization and should be the same for all devices

The calibration sequence should be executed in the order provided in [Table 19](#), page 41 and in the following paragraphs. At the end of most tune or trim procedures, the `trim_done_irq` interrupt is set. The **IRQ1** register should then be read to see if the `trim_fail_irq` status bit is set. The **IRQ1** register is cleared on the read operation.

**Note:** **IMPORTANT:** In order to optimize the tune and trim procedure on the ZL70550 chip at the factory or after every power-up, the tune and trim sequence described in the following paragraphs assumes that the steps are performed in a contiguous manner. If a tune or trim has to be run independently, the settings performed before this particular tune or trim have to be taken into account.

## 7.3 Setup, Initiation, and Control of Calibrations

The tune and trim sequence can start only after setting up the basic functionality of the ZL70550 chip both at the factory and at power-up. Refer to [Table 20](#), page 42.

**Table 20 • Procedure for Tune and Trim Setup**

|                                                                                                   |                                                  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1. Power up and wake-up device in accordance with Section <a href="#">6.2 Power Up</a> , page 35. |                                                  |
| 2. Write <b>IRQ_EN1[6]</b> = 1.                                                                   | This enables the <i>trim_done_irq</i> interrupt. |

A write to the control register **TRIM\_CMD** starts an automatic trim algorithm if any previous command was completed. If the previous command is not done, any writes are ignored and trimming not executed. [Table 21](#), page 42, defines the command value to be written for each of the available automatic trims. Executing a trim command unconditionally and asynchronously disables any on-going or new MAC operations until the trim command is done. Application software is responsible for assuring orderly transitions between normal media operation and trimming. It is advisable that any external processes that can generate SPI writes to the chip be temporarily disabled until a trim is completed to avoid interference with a trim.

Termination of a trim command is indicated by the *trim\_done\_irq* status. This can be polled or an interrupt generated when the *trim\_done\_irq\_en* bit is set. If a trim failure was encountered by the trim command, it is indicated on the *trim\_fail\_irq* status bit when *trim\_done\_irq* is read.

There are a handful of setup bits that may be useful for certain applications and trims. See trim control registers in memory map. This need to be written before initiating the relevant trim. Application of some setup bits may depend on lab and manufacturing evaluation results.

**Table 21 • Trim Commands**

| Command | Algorithm                                               | Typical Customer Prerequisites              |
|---------|---------------------------------------------------------|---------------------------------------------|
| 0       | No-op                                                   |                                             |
| 1       | Current reference                                       | None                                        |
| 2       | VCO full frequency                                      | Channel frequency                           |
| 6       | VCO amplitude                                           | Channel frequency                           |
| 7       | FSK frequency separation                                | Valid full VCO frequency trim               |
| 8       | Blocker peak detector offset                            | None                                        |
| 9       | LNA load                                                | Peak detector trim, full VCO frequency trim |
| 10      | Antenna                                                 | LNA load tune                               |
| 11      | RX filter (IF filter, FM detector, and Gaussian filter) | VCO full frequency trim                     |
| 12      | RC oscillator                                           | None                                        |

## 7.4 Required Time for Calibrations

The length of time for each internal automated calibration is defined in [Table 22](#), page 43.

**Table 22 • Required Time for Calibrations**

| Calibration                                            | Typical Time        |
|--------------------------------------------------------|---------------------|
| Current reference                                      | 400 µs              |
| VCO full frequency                                     | 150 ms <sup>1</sup> |
| VCO amplitude                                          | 500 µs              |
| FSK frequency separation                               | 500 ms              |
| Blocker peak detector offset                           | 3 ms                |
| LNA load                                               | 12 ms               |
| Antenna                                                | 12 ms               |
| RX filter (IF filter, FM detector and Gaussian filter) | 3 ms                |
| RC oscillator                                          | 1 ms                |

1. Time depends on whether correct frequency band was selected prior to initiating the VCO full frequency trim.

## 7.5 Procedures

### 7.5.1 Current Reference Trimming

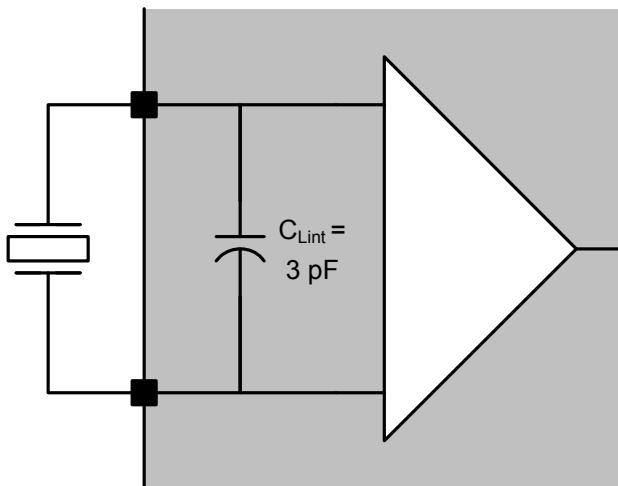
It is very important to trim the current reference before any other trimming or tuning because the current reference supplies current to almost all the analog circuits on the chip. If the reference is untrimmed then the other trims are not valid.

The ZL70550 uses an external resistor of 2% or better accuracy to set its internal current reference. The node attached to the external resistor is sensitive to noise that can be picked up by the exposed pin and trace runs. For this reason, internal resistors are used in the current reference and other reference circuits. Before they can be used, however, an internal resistor of the same type and value is compared with the external resistor and trimmed to match.

The current reference trimming is described in [Table 23](#), page 43. It assumes that the procedure in Section [7.3 Setup, Initiation, and Control of Calibrations](#), page 42, has already been completed.

**Table 23 • Procedure for Current Reference Trim**

|                                                                |                                                                                            |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1. Perform the following setup through the control interface:  |                                                                                            |
| a. Write <b>TRIM_CMD</b> = 0x01.                               |                                                                                            |
| 2. Now that the automatic IREF trimming procedure is launched: |                                                                                            |
| a. Wait for the <i>trim_done_irq</i> .                         | Indicates that the trim has completed. The trim typically takes less than 500 µs.          |
| 3. At the end of the IREF trimming procedure:                  |                                                                                            |
| a. Read <b>IRQ1</b> .                                          | Read the <b>IRQ1</b> register to clear interrupt(s) and ensure that the trim did not fail. |


### 7.5.2 XO Tuning

The purpose of the crystal oscillator tuning is to improve the absolute accuracy of the system reference frequency. This tuning is done once during factory calibration.

**Note:** **IMPORTANT:** The crystal oscillator tuning depends on the selection of the crystal and the loading that is placed on the crystal pins. In order to save power, the crystal oscillator presents a 3-pF load instead of

the typical 8-pF or 10-pF load. A slight frequency pull, on the order of 100 to 150 PPM, would result if using a standard crystal without additional external load capacitors. Such a deviation has no effect on the operation of the device and is generally not a problem for most applications, providing all ZL70550 devices have the same frequency pull (within trimmable range). If the deviation is not acceptable and power is critical, a special cut crystal may be used (that is, slightly slower to compensate for the pull). Microsemi is engaging with crystal manufacturers in developing custom crystals that operate at 24 MHz with only a 3-pF load.

**Figure 21 • Crystal Oscillator with Optional Additional External Load Capacitors**



0026~Xtal diagram~v1606.0

The crystal oscillator tuning procedure is described in Table 24, page 44.

**Table 24 • Procedure for Crystal Oscillator Tune**

|                                                                                                |                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Route out the crystal frequency to desired GPIO pin ( <b>GPIO3..0</b> ):                    |                                                                                                                                                                                                 |
| a. Set the corresponding output enable bit in the <b>PAD_EN0</b> register.                     |                                                                                                                                                                                                 |
| b. Write 0x22 to the corresponding GP input/output register ( <b>GPIO_3..0_SEL</b> ).          |                                                                                                                                                                                                 |
| c. Write 0x08 to the <b>CLK_TEST</b> register.                                                 |                                                                                                                                                                                                 |
| 2. Measure actual crystal ( $F_{\text{meas}}$ ).                                               | Use a frequency counter that has better than 1 PPM accuracy.                                                                                                                                    |
| 3. Compare desired frequency ( $F_{\text{des}}$ ) to measured frequency ( $F_{\text{meas}}$ ). | Change the six-bit control word in the <b>XO_TRIM</b> register until the desired crystal frequency ( $F_{\text{des}}$ ) is reached. Desired frequency should be as close to 24 MHz as possible. |
| a. If $F_{\text{meas}} < F_{\text{des}}$ , then write <b>XO_TRIM</b> = - 1.                    |                                                                                                                                                                                                 |
| b. Else:                                                                                       |                                                                                                                                                                                                 |
| If $F_{\text{meas}} > F_{\text{des}}$ , then write <b>XO_TRIM</b> = <b>XO_TRIM</b> + 1.        |                                                                                                                                                                                                 |
| c. Else:                                                                                       |                                                                                                                                                                                                 |
| If $F_{\text{meas}} = F_{\text{des}}$ , then trim is complete.                                 |                                                                                                                                                                                                 |

**Table 24 • Procedure for Crystal Oscillator Tune (continued)**


---

|                                                                                    |                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Check whether <b>XO_TRIM</b> is out of range.                                   | Repeat steps 2 and 3 until desired crystal frequency is reached or trim fails.                                                                                                               |
| a. If <b>XO_TRIM</b> = 0x00 or if <b>XO_TRIM</b> = 0x3F, then the trim has failed. |                                                                                                                                                                                              |
| b. Else:<br>Repeat steps 2 and 3.                                                  |                                                                                                                                                                                              |
| 5. Store <b>XO_TRIM</b> value in external nonvolatile memory.                      | Since the crystal oscillator trim is a factory trim, the trim value has to be stored in external nonvolatile memory and loaded into the <b>XO_TRIM</b> register upon power-up of the device. |

---

### 7.5.3 RCO Tuning

The purpose of the 150-kHz strobe oscillator tuning is to set the output frequency to 150 kHz for accurate timing of all processes controlled by this oscillator.

**Table 25 • Procedure for RC Oscillator Trim**


---

|                                                                         |                                                                                            |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1. Perform the following setup through the control interface:           |                                                                                            |
| a. Write <b>TRIM_CMD</b> = 0x0C.                                        |                                                                                            |
| 2. Now that the automatic RC oscillator trimming procedure is launched: |                                                                                            |
| a. Wait for the <i>trim_done_irq</i> .                                  | Indicates that the trim has completed. The trim typically takes less than 500 $\mu$ s.     |
| 3. At the end of the RC oscillator trimming procedure:                  |                                                                                            |
| a. Read <b>IRQ1</b> .                                                   | Read the <b>IRQ1</b> register to clear interrupt(s) and ensure that the trim did not fail. |

---

### 7.5.4 VCO Frequency and Amplitude Trimming

The terms "tuning" and "trimming" are used interchangeably in this section. Please read all the sections related to VCO trimming before starting programming.

Trimming the VCO frequency and amplitude keeps the VCO in the proper operating conditions. There are several steps to accomplish this and they should be done in the order shown:

1. Select the frequency band (see Section [7.5.4.1 Frequency Band Selection](#), page 45).
2. Perform VCO full frequency tuning and VCO amplitude trimming (see Sections [7.5.4.2 VCO Amplitude Trimming](#), page 46, and [7.5.4.3 VCO Frequency Trimming](#), page 47):

Detailed descriptions of the trim steps follow this section.

**Note:** **IMPORTANT:** Periodic retrimming of the VCO may be required if the antenna impedance changes or operating conditions change drastically.

**Note:** **IMPORTANT:** Trim the VCO with the expected antenna in the nominal application condition.

The VCO frequency can be trimmed for every channel and the resulting values stored in a table. When a channel is selected, the appropriate trim values can be written back to the VCO. We recommend doing all of the calibrations upon any change of frequency.

#### 7.5.4.1 Frequency Band Selection

Before any automatic frequency tuning is initiated, the frequency range must be selected. An initial, rough range setting for the **vco\_low\_range**, and **vco\_frq\_band\_trim** bits can be found in [Table 26](#), page 46. IC process variations affect these ranges. The first step is to pick the correct frequency range.

There are two ranges, a low range and a high range. If you are using the device between 815 MHz and 965 MHz, set the *vco\_low\_range* bit to 0. If you are using the device between 779 MHz and 815 MHz, set the *vco\_low\_range* bit to 1.

The second step is to pick the frequency band. The *vco\_frq\_band\_trim* value is used to select the frequency band. The first and second columns in [Table 26](#), page 46, show the band settings. At the tops of these columns are the register names and bit positions in the registers. The frequencies vary with temperature, voltage and process so they are offered as guidance, not guaranteed. Select the band in which your frequency of operation is nearest to the center of the band or a little higher than center.

**Table 26 • Typical Frequency Range Selection**

| <b><i>vco_low_range</i><br/>(at VCO_CTRL[5])</b> | <b><i>vco_frq_band_trim</i></b> | <b>Frequency (MHz)</b> |
|--------------------------------------------------|---------------------------------|------------------------|
| 1                                                | 1                               | 768.0 – 788.0          |
| 1                                                | 2                               | 779.2 – 800.0          |
| 1                                                | 3                               | 790.4 – 812.4          |
| 1                                                | 4                               | 802.8 – 825.6          |
| 0                                                | 0                               | 813.2 – 836.8          |
| 0                                                | 1                               | 826.0 – 850.8          |
| 0                                                | 2                               | 837.6 – 863.2          |
| 0                                                | 3                               | 851.6 – 878.8          |
| 0                                                | 4                               | 862.0 – 890.4          |
| 0                                                | 5                               | 877.6 – 907.2          |
| 0                                                | 6                               | 890.8 – 921.6          |
| 0                                                | 8                               | 903.6 – 935.6          |
| 0                                                | 7                               | 907.6 – 940.4          |
| 0                                                | 9                               | 921.2 – 955.6          |
| 0                                                | 10                              | 934.4 – 970.0          |
| 0                                                | 11                              | 954.4 – 992.4          |

### 7.5.4.2 VCO Amplitude Trimming

The VCO amplitude trimming procedure is described in the table below.

**Table 27 • Procedure for VCO Amplitude Trim**

|                                                                                                                                                            |                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Perform the following setup through the control interface:                                                                                              |                                                                                                                                                                                       |
| a. Write <b>SYNTH_M_DIV</b> and <b>SYNTH_A_DIV</b> per instructions in <a href="#">Section 6.4 Synthesizer Controller and Channel Selection</a> , page 36. | Set the synthesizer A and M values to the operational frequency bank (for more details, refer to <a href="#">Section 6.4 Synthesizer Controller and Channel Selection</a> , page 36). |
| b. If necessary, set <i>vco_low_range</i> in <b>VCO_CTRL</b> per <a href="#">Table 26</a> , page 46.                                                       | Writing to the <i>vco_low_range</i> selects the frequency range. (See <a href="#">Table 26</a> , page 46.)                                                                            |
| c. Write <b>VCO_FRQ_BAND_TRIM</b> per <a href="#">Table 26</a> , page 46                                                                                   | Writing to <i>vco_frq_band_trim</i> selects the frequency band. (See <a href="#">Table 26</a> , page 46.)                                                                             |
| 2. Write <b>MAC_CTRL[1] = 0</b> .                                                                                                                          | Clearing the <i>msc_blk_en</i> bit performs a synchronous reset of the MAC.                                                                                                           |

**Table 27 • Procedure for VCO Amplitude Trim (continued)**

|                                                                                                     |                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Write <b>TRIM_CMD</b> = 0x06.                                                                    | Writing 0x06 to <i>trim_cmd</i> launches the automatic VCO amplitude trim.<br>The <b>TRIM_CMD</b> register is cleared internally once the trim procedure is done. |
| 4. Now that the VCO amplitude trimming procedure is launched:<br>a. Wait for <i>trim_done_irq</i> . | Indicates that the trim has completed.<br>This trim takes approximately 500 us.                                                                                   |
| 5. At the end of the VCO amplitude trimming procedure:<br>a. Read <b>IRQ1</b> .                     | Read to clear the <b>IRQ1</b> register and to see whether the <i>trim_fail_irq</i> status bit has been set.                                                       |

### 7.5.4.3 VCO Frequency Trimming

There are four always-on registers used to set *vco\_fraq\_trim* for a currently selected channel. The *vco\_fraq\_band\_trim* field sets the upper four bits for “band” frequency trimming. Either the *vco\_fraq\_rx*, *vco\_fraq\_txpaoff*, or *vco\_fraq\_txpaon* field sets the lower eleven bits for “fine” frequency trimming. The latter three fields account for the intermediate synthesizer frequency offset necessary for reception and for possible PA load differences on the VCO output depending on whether or not the PA is turned on. The selection multiplexer is integrated into the ZL70550 and is automatically controlled by the state of the radio.

A VCO full frequency trim command executes all three fine frequency trim commands while also finding a trim band. The ZL70550 register fields affected by the VCO full frequency trim are *vco\_fraq\_rx*, *vco\_fraq\_txpaoff*, *vco\_fraq\_txpaon*, and *vco\_fraq\_band\_trim*.

#### 7.5.4.3.1 VCO Full Frequency Trimming

The VCO full frequency trimming procedure is described in the table below

**Table 28 • Procedure VCO Full Frequency Trim**

|                                                                                                              |                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Perform the following setup through the control interface:<br>a. Write <b>TRIM_CMD</b> = 0x02.            | Writing 0x02 to <i>trim_cmd</i> launches the full VCO frequency tune.<br>The <b>TRIM_CMD</b> register is cleared internally once the trim procedure is done.                                                                                                                                                 |
| 2. Now that the VCO full frequency trimming procedure is launched:<br>a. Wait for the <i>trim_done_irq</i> . | Indicates that the trim has completed.<br>If the <i>vco_fraq_band_trim</i> is not set to the correct band before the trim is launched, the internal algorithm will attempt to find the correct frequency band and re-trim the VCO. Each iteration of the full VCO frequency trim takes approximately 150 ms. |
| 3. At the end of the VCO full frequency trimming procedure:<br>a. Read <b>IRQ1</b> .                         | Read the <b>IRQ1</b> register to clear interrupt(s) and ensure that the trim did not fail.                                                                                                                                                                                                                   |

## 7.5.5 Blocker Peak Detector Offset Trimming

DC offset is created in the blocker peak detector by a process dependent resistance. The offset is controlled by a five-bit trim DAC. With no signal present at the input DC offset can be trimmed to 0 at the output. Trimming utilizes the five-bit ADC connected to the peak detector output. The trimming procedure for the peak detector offset is described in [Table 29](#), page 48.

**Table 29 • Procedure Blocker Peak Detector Offset Trim**

|                                                                              |                                                                                                                                                                        |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Perform the following setup through the control interface:                |                                                                                                                                                                        |
| a. Write <b>TRIM_CMD</b> = 0x08.                                             | Writing 0x08 to <i>trim_cmd</i> launches the blocker peak detector offset trim.<br>The <b>TRIM_CMD</b> register is cleared internally once the trim procedure is done. |
| 2. Now that the blocker peak detector offset trimming procedure is launched: |                                                                                                                                                                        |
| a. Wait for the <i>trim_done_irq</i> .                                       | Indicates that the trim has completed.<br>The trim typically takes less than 3 ms.                                                                                     |
| 3. At the end of the blocker peak detector offset trimming procedure:        |                                                                                                                                                                        |
| a. Read <b>IRQ1</b> .                                                        | Read the <b>IRQ1</b> register to clear interrupt(s) and ensure that the trim did not fail.                                                                             |

## 7.5.6 Antenna Tuning

The purpose of antenna tuning is to select the capacitance, which peaks the antenna resonance at the required frequency. A peak detector in the RF receiver section stores the maximum voltage swing on the receiver input pins. The voltage is measured by the five-bit ADC block. An algorithm for finding the best capacitor value is implemented in the trim algorithms.

Antenna tuning is performed during manufacturing after the device is mated with an antenna, after any channel frequency bank switch, and after any power-up if the trim value is not stored. It is best to store the known good trim value and restore it to the trim register at power-up. The antenna tuning procedure is described in [Table 30](#), page 48.

**Table 30 • Procedure for Antenna Tuning**

|                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Write <b>LNA_GAIN</b> = 0x00.                                                                                                                                                                                                                                                                                                                                                           | Sets the lowest internal LNA gain.                                                                                                                |
| 2. Write <b>LNA_BIAS_TRIM</b> = 0x01                                                                                                                                                                                                                                                                                                                                                       | Set the <i>lna_bias_trim</i> bits to 4'b0000 to set the LNA bias trim to its lowest setting.                                                      |
| 3. Write <b>PA_PWR_LEVEL</b> = 0x80                                                                                                                                                                                                                                                                                                                                                        | Sets the power amplifier to the lowest power setting by writing 6'b00 0000 to <i>pa_pwr_level[5:0]</i> .                                          |
| 4. Write <b>TRIM_CMD</b> = 0x0A.                                                                                                                                                                                                                                                                                                                                                           | Writing 0x0A to <i>trim_cmd</i> launches the antenna trim.<br>The <b>TRIM_CMD</b> register is cleared internally once the trim procedure is done. |
| 1. If the <i>trim_fail_irq</i> status has been set by the tuning procedure, read the trim value in <i>ant_trim</i> :                                                                                                                                                                                                                                                                       |                                                                                                                                                   |
| If the tune frequency is at the high end of what the VCO can reach and the trim value is at the lowest trim value, then there is no failure.                                                                                                                                                                                                                                               |                                                                                                                                                   |
| If the tune frequency is at the low end of what the VCO can reach and the trim value is at the highest trim value, then there is no failure.                                                                                                                                                                                                                                               |                                                                                                                                                   |
| Check the value of the ADC during the trimming (in the <b>ANT_PEAK_ADC</b> register). If the value is below 5 or above 26 then adjust the transmitter output power accordingly. If the value in <i>ant_peak_adc</i> is below 5, increase the transmitter output power by 1; if the value is over 26, decrease the PA power level by setting <i>pa_pwr_level[6]</i> . Then rerun this tune. |                                                                                                                                                   |

**Table 30 • Procedure for Antenna Tuning (continued)**

|                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. Now that the antenna tune procedure is launched: | a. Wait for <i>trim_done_irq</i> .                                                                                | Indicates that the trim has completed. The trim typically takes less than 15 ms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6. At the end of the antenna tune procedure:        | a. Read <b>IRQ1</b> .                                                                                             | Read to clear the <b>IRQ1</b> register and to see whether the <i>trim_fail_irq</i> status bit has been set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | b. If <b>IRQ1[5]</b> = 1, then<br>the trim may have failed; see Note 1.                                           | The <i>trim_fail_irq</i> status has been set by the tuning procedure when the <b>ANT_TRIM</b> register is set to 0 (minimum) or 31 (maximum). See Note 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.                                                  | If the <i>trim_fail_irq</i> status has been set by the tuning procedure, read the trim value in <i>ant_trim</i> : | If the tune frequency is at the high end of what the VCO can reach and the trim value is at the lowest trim value, then there is no failure.<br>If the tune frequency is at the low end of what the VCO can reach and the trim value is at the highest trim value, then there is no failure.<br>Check the value of the ADC during the trimming (in the <b>ANT_PEAK_ADC</b> register). If the value is below 5 or above 26 then adjust the transmitter output power accordingly. If the value in <i>ant_peak_adc</i> is below 5, increase the transmitter output power by 1; if the value is over 26, decrease the PA power level by setting <i>pa_pwr_level[6]</i> . Then rerun this tune. |

## 7.5.7 LNA Load Tuning

To get enough gain in the front-end amplifier without using much current, an inductive load is tuned to resonate at the receive frequency. The load tuning capacitance must change when the frequency bank changes, and the LNA load tune section of the tune and trim block is required to find the optimum tuning capacitance for a given channel. The tune block saves the setting with the largest peak detector response and restores that setting at the end of the routine.

### 7.5.7.1 Execute LNA Load Tuning

The LNA load tuning procedure is described in [Table 31](#), page 49. The following steps assume the setup for the antenna tune was done prior to running this trim.

**Table 31 • Procedure for LNA Load Tune**

|                                                      |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Write <b>TRIM_CMD</b> = 0x09.                     | Writing 0x09 to <i>trim_cmd</i> launches the LNA load trim. The <b>TRIM_CMD</b> register is cleared internally once the trim procedure is done. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2. Now that the LNA load tune procedure is launched: | a. Wait for <i>trim_done_irq</i> .                                                                                                              | Indicates that the trim has completed. The trim typically takes less than 15 ms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. At the end of the LNA load tuning procedure:      | a. Read <b>IRQ1</b> .                                                                                                                           | Read to clear the <b>IRQ1</b> register and to see whether the <i>trim_fail_irq</i> status bit has been set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                      | b. If <b>IRQ1[5]</b> = 1, then<br>the trim may have failed; read <i>Ina_frq_trim</i> and see Note 1.                                            | If the <i>trim_fail_irq</i> status has been set by the tuning procedure, read the trim value in <i>Ina_frq_trim</i> and see Note 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.                                                   | If the <i>trim_fail_irq</i> status has been set by the tuning procedure, read the trim value in <i>Ina_frq_trim</i> :                           | If the selected frequency range is at the high end of what the VCO can reach and the trim value is at the lowest trim value, then there is no failure. The trim value is appropriate.<br>If the tune frequency selected is at the low end of what the VCO can reach and the trim value is at the highest trim value, then there is no failure. The trim value is appropriate.<br>Check the value of the ADC during the tuning (in the <b>LNA_PEAK_ADC</b> register). If the value is below 5 or above 26 then adjust the transmitter output power. If the value in <i>Ina_peak_adc</i> is below 5, increase the transmitter output power by 1; if the value is over 26, decrease the PA power by 1. Then rerun this tune. |

## 7.5.8 RX Filter (FM detector, IF filter, and Gaussian filter) Trimming

The IF filter is critical to rejection of adjacent channel interference and must be tuned to achieve acceptable performance. The Gaussian filter characteristics are critical for low-side lobes in the transmitter output spectrum. The IF filter, the FM detector, and the Gaussian filter are designed with a similar topology, with component trimming scaled so that they can be tuned in parallel. The tune register values are at the same time used for the IF filter and Gaussian filter, ensuring that the IF filter's center frequency is at the IF and the Gaussian filter characteristics are as designed. This trim also handles the process, temperature, and voltage variation for the FM detector by determining and then writing an optimal value to the **DC\_CNTR\_TRIM** register. This trim value provides the starting point for the FM detector adjustments that are made automatically during the preamble of an incoming data packet.

The RX filter tuning procedure is described in [Table 32](#), page 50.

**Table 32 • Procedure for RX Filter Tune**

|                                                       |                                                                                                                                                  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Write <b>TRIM_CMD</b> = 0x0B.                      | Writing 0x0B to <i>trim_cmd</i> launches the RX filter trim. The <b>TRIM_CMD</b> register is cleared internally once the trim procedure is done. |
| 2. Now that the RX filter trim procedure is launched: |                                                                                                                                                  |
| a. Wait for <i>trim_done_irq</i> .                    | Indicates that the trim has completed. The trim typically takes less than 15 ms.                                                                 |
| 3. At the end of the RX filter trim procedure:        |                                                                                                                                                  |
| a. Read <b>IRQ1</b> .                                 | Read to clear the <b>IRQ1</b> register and to see whether the <i>trim_fail_irq</i> status bit has been set.                                      |

## 7.5.9 FSK Deviation Trimming

The gain of the direct modulating signal must correspond to the frequency bank being used. The modulation DAC must initially be trimmed to achieve the required frequency separation.

The FSK frequency deviation trimming procedure is described in [Table 33](#), page 50.

**Table 33 • Procedure for FSK Deviation Trim**

|                                                           |                                                                                                                                                          |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Write <b>MAN_GLOBAL_EN</b> = 0x04.                     | Setting the <i>man_pll_en</i> bit turns on the PLL.                                                                                                      |
| 2. Wait 2 ms                                              | Wait 2 ms for the PLL to settle before enabling the auto trim.                                                                                           |
| 3. Write <b>TRIM_CMD</b> = 0x07.                          | Writing 0x07 to <i>trim_cmd</i> launches the FSK deviation trimming. The <b>TRIM_CMD</b> register is cleared internally once the trim procedure is done. |
| 4. Now that the FSK deviation trim procedure is launched: |                                                                                                                                                          |
| a. Wait for <i>trim_done_irq</i> .                        | Indicates that the trim has completed. The trim typically takes less than 500 ms.                                                                        |
| 5. At the end of the FSK Deviation trimming procedure:    |                                                                                                                                                          |
| a. Read <b>IRQ1</b> .                                     | Read to clear the <b>IRQ1</b> register and to see whether the <i>trim_fail_irq</i> status bit has been set.                                              |
| 6. Write <b>MAN_GLOBAL_EN</b> = 0x00.                     | Disable the PLL.                                                                                                                                         |

## 7.5.10 Output Power Trimming

The transmitter output power trim settings are available for adjusting the power level. A programmable binary code selects the transmitter output power level. See the ZL70550 datasheet for transmit power versus PA trim code.

The transmitter output power trimming procedure is described in Table 34, page 51. Users may determine that the transmitter output power does not need to be trimmed on a part-by-part basis. Instead, a predetermined value can be programmed into every part. If a very accurate output power level is desired, then individual trimming may be necessary. Trim the current reference before any individual trimming is performed.

**Table 34 • Procedure for Transmitter Output Power Trim**

|                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Determine desired value ( $PA_{desired}$ ) for transmitter output power level.                                                                                                                                                                                                                   | See Note 1.                                                                                                                                                                                                                                                                                                 |
| a. Refer to Figure 7 (Transmit Power vs. PA Trim Value) in the ZL70550 Datasheet.                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |
| b. Choose the PA trim value associated with the desired TX output power.                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |
| 2. Write <b>PA_PWR_LEVEL[5:0]</b> = $PA_{desired}$ .                                                                                                                                                                                                                                                | Write the desired value (not necessarily the default value) to <i>pa_pwr_level[5:0]</i> .                                                                                                                                                                                                                   |
| 3. Output a carrier.                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |
| a. Write <b>MAN_GLOBAL_EN</b> = 0x01.                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |
| 4. Measure the transmitter output power with a power meter or spectrum analyzer.                                                                                                                                                                                                                    | <p>It is recommended that the PA trim value be selected during the design or manufacturing phase when a power meter or spectrum analyzer can be used to measure the transmitter output power.</p> <p>See Note 1; steps 1 through 4 may need to be repeated to ensure that regulatory standards are met.</p> |
| 5. Store <b>PA_PWR_LEVEL</b> value in external nonvolatile memory.                                                                                                                                                                                                                                  | Since the transmitter output power trim is a factory trim, the trim value must be stored in external nonvolatile memory and loaded into the <b>PA_PWR_LEVEL</b> register upon initialization of the device. Alternatively, the power can be preset or even dynamically adjusted based on link conditions.   |
| 1. Attention must be paid to the second and third harmonics of the transmitted signal when selecting the PA output power so that regulatory standards are not violated. The transmitter output level can be adjusted such that the standards are not met without a SAW filter or a low-pass filter. |                                                                                                                                                                                                                                                                                                             |

### 7.5.11 LNA Gain

The LNA gain is controlled by two registers **LNA\_GAIN** and **LNA\_BIAS\_TRIM**. The *lna\_bias\_trim* field (at **LNA\_BIAS\_TRIM[5:2]**) acts as the MSBs for the LNA gain. For a current consumption of 2.4 mA, set the **LNA\_GAIN** register to 0x0F and leave the **LNA\_BIAS\_TRIM** register at a default setting of 0x05. To achieve a higher sensitivity set the **LNA\_GAIN** register to 0x0F and the **LNA\_BIAS\_TRIM** register to 0x29. This increases the receiver current consumption to 3.2 mA. Typically, this setting is determined during product development. If an external LNA is used, then lower gain is recommended. This is to prevent overloading the LNA internal to the ZL70550. In the case of the external LNA, the optimum gain setting can be determined by monitoring the sensitivity while increasing the gain. At some gain setting, the sensitivity begins to drop, which means that the noise figure is limiting the sensitivity. At this point, users may consider backing off the gain by one code to reduce the risk of overloading the internal LNA.

# 8 Registers

---

## 8.1 Using the Memory Map

This section contains the address for each register, the bit definitions for the register contents, and some programming notes when appropriate. If not all bits are used, the unused bits are read-only and always return a value of zero. All writable bits can be read back at the same address and bit location as written. For values that are longer than eight bits, multiple register addresses are used and the LSB is in the lowest address register (that is to say, little-endian).

The register bits fall into the following categories.

- Read and Write (R/W). These bits can be written from the control interface and read back.
- Read only (R). These bits are read-only from the control interface and are not cleared on read.
- Clear on Read (CoR). These bits are cleared to zero when read from the control interface.
- Read, Write, Clear on Done (R/W/CoD). These are command bits that are set to start a command. The current state of the bit can be read any time without affecting the bit value. The bit is cleared automatically when the operation of the command is complete.
- Read, Write, Clear on Start (R/W/CoS). These are command bits that are set to start a command. The bit is cleared when the operation starts and therefore always returns 0 on a read operation.

There are three major types of register in the ZL70550 memory map. Although these registers are all the same in hardware terms, they have different logical properties and thus require different application programming methods.

- Bitwise registers

When writing to a bitwise register, be careful to modify only the targeted bits and to preserve all others. When modifying a register that contains reserved bits, always set the reserved bits to the value given in the register description or to 0 if no value is given.

- Byte-wide registers

Byte-wise registers can be programmed with a simple write operation.

- Multi-byte registers

In the ZL70550 memory map, multi-byte registers are little-endian, accessed starting with the least significant byte at the lowest address.

## 8.2 Address Space

The following table summarizes the ZL70550 memory map and provides recommended initialization values. It is recommended that these values be written when the device is powered on and after every chip reset.

**Table 35 • Memory Map**

| Description                                                                                             | Name            | Dec<br>Addr | Hex<br>Addr | R/W | Default | Recommended<br>Value <sup>1</sup> |
|---------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|-----|---------|-----------------------------------|
| <b>SPI Local Registers</b>                                                                              |                 |             |             |     |         |                                   |
| <i>(Address range: decimal 0–7; hexadecimal 0x0–0x7. Addressing mode: short. Always-on: no.)</i>        |                 |             |             |     |         |                                   |
| Chip ID                                                                                                 | SPIR_CHIP_ID    | 0           | 0x0         | R   | 8'h47   |                                   |
| Chip revision                                                                                           | SPIR_REVISION   | 1           | 0x1         | R   | 8'h11   |                                   |
| 2V reset generator                                                                                      | SPIR_2V_RESET   | 2           | 0x2         | R/W | 8'hCA   |                                   |
| Chip reset                                                                                              | SPIR_SYS_RESET  | 3           | 0x3         | R/W | 8'hBC   |                                   |
| Power down request                                                                                      | SPIR_PWRDWN_REQ | 4           | 0x4         | R/W | 8'hDE   |                                   |
| SPIR local status                                                                                       | SPIR_LOCAL_STAT | 5           | 0x5         | R   | 7'h00   |                                   |
| SPI control register                                                                                    | SPIR_CTRL       | 6           | 0x6         | R/W | 5'h00   |                                   |
| <b>System Bus Control and Status Registers</b>                                                          |                 |             |             |     |         |                                   |
| <i>(Address range: decimal 256–331; hexadecimal 0x100–0x14B. Addressing mode: long. Always-on: no.)</i> |                 |             |             |     |         |                                   |
| Frame sync control 1                                                                                    | DP_CTRL0        | 256         | 0x100       | R/W | 7'h00   |                                   |
| Received PHY header status                                                                              | RPHR_STAT       | 261         | 0x105       | R   | 8'h08   |                                   |
| RX payload length                                                                                       | RXC_PLD_LEN0    | 262         | 0x106       | R   | 8'h00   |                                   |
|                                                                                                         | RXC_PLD_LEN1    | 263         | 0x107       | R   | 1'h00   |                                   |
| MAC SPI status                                                                                          | MSC_SPI_STAT    | 264         | 0x108       | R   | 4'h00   |                                   |
| RX frame length                                                                                         | RXC_FRM_LEN0    | 265         | 0x109       | R   | 8'h00   |                                   |
|                                                                                                         | RXC_FRM_LEN1    | 266         | 0x10A       | R   | 1'h00   |                                   |
| RX frame control for Z-Star packet mode                                                                 | RXC_FRM_CTRL0   | 267         | 0x10B       | R   | 8'h00   |                                   |
|                                                                                                         | RXC_FRM_CTRL1   | 268         | 0x10C       | R   | 8'h00   |                                   |
| RX source short ID                                                                                      | RXC_SOURCE_SID  | 269         | 0x10D       | R   | 8'h00   |                                   |
| RX network ID                                                                                           | RXC_NETWORK_ID  | 270         | 0x10E       | R   | 8'h00   |                                   |
| RX destination short ID                                                                                 | RXC_DEST_SID    | 271         | 0x10F       | R   | 8'h00   |                                   |

1. Use this recommended initial register setting by writing this value after every chip reset. Device characterization has shown that the recommended value gives better system performance.
2. For Z-Star operation, use recommended values in Section 6.5.1 Z-Star Operation, page 38.
3. Recommended value may vary based on customer configuration. Refer to Sections 9.3 SPI Local Registers, page 61, 9.4 System Bus Control and Status Registers, page 63, and 9.5 Always-On System Bus Control and Status Registers, page 75.
4. Required value. Other values may cause errors for some configurations.
5. It is recommended that the default value (or reset value) be used.
6. Do not write to this register.

**Table 35 • Memory Map (continued)**

| Description                                                                                                           | Name            | Dec<br>Addr | Hex<br>Addr | R/W | Default | Recommended<br>Value <sup>1</sup> |
|-----------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|-----|---------|-----------------------------------|
| RX destination long ID                                                                                                | RXC_DEST_LID0   | 272         | 0x110       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_DEST_LID1   | 273         | 0x111       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_DEST_LID2   | 274         | 0x112       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_DEST_LID3   | 275         | 0x113       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_DEST_LID4   | 276         | 0x114       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_DEST_LID5   | 277         | 0x115       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_DEST_LID6   | 278         | 0x116       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_DEST_LID7   | 279         | 0x117       | R   | 8'h00   |                                   |
| RX source long ID                                                                                                     | RXC_SOURCE_LID0 | 280         | 0x118       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_SOURCE_LID1 | 281         | 0x119       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_SOURCE_LID2 | 282         | 0x11A       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_SOURCE_LID3 | 283         | 0x11B       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_SOURCE_LID4 | 284         | 0x11C       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_SOURCE_LID5 | 285         | 0x11D       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_SOURCE_LID6 | 286         | 0x11E       | R   | 8'h00   |                                   |
|                                                                                                                       | RXC_SOURCE_LID7 | 287         | 0x11F       | R   | 8'h00   |                                   |
| MAC RX frame status                                                                                                   | RXC_FRM_STAT0   | 288         | 0x120       | R   | 7'h00   |                                   |
|                                                                                                                       | RXC_FRM_STAT1   | 289         | 0x121       | R   | 7'h00   |                                   |
| MAC sequencer status                                                                                                  | MSC_FRM_STAT0   | 290         | 0x122       | R   | 8'h00   |                                   |
|                                                                                                                       | MSC_FRM_STAT1   | 291         | 0x123       | R   | 8'h00   |                                   |
| Manual global enables                                                                                                 | MAN_GLOBAL_EN   | 294         | 0x126       | R/W | 3'h00   |                                   |
| Manual miscellaneous                                                                                                  | MAN_TEST        | 302         | 0x12E       | R/W | 4'h04   |                                   |
| Clock enable tests                                                                                                    | CLK_TEST        | 305         | 0x131       | R/W | 8'h00   |                                   |
| ADC mode conversion<br>(start single ADC average<br>conversion mode and<br>continuous ADC average<br>conversion mode) | ADC_CONV_START  | 314         | 0x13A       | R/W | 2'h00   |                                   |
| Maximum result in ADC<br>modes and when using<br>RSSI in CSMA-CA modes                                                | ADC_MAX         | 315         | 0x13B       | R   | 7'h00   |                                   |
| Average result in ADC<br>modes and when using<br>RSSI in CSMA-CA modes                                                | ADC_AVG         | 316         | 0x13C       | R   | 7'h00   |                                   |

1. Use this recommended initial register setting by writing this value after every chip reset. Device characterization has shown that the recommended value gives better system performance.
2. For Z-Star operation, use recommended values in Section [6.5.1 Z-Star Operation](#), page 38.
3. Recommended value may vary based on customer configuration. Refer to Sections [9.3 SPI Local Registers](#), page 61, [9.4 System Bus Control and Status Registers](#), page 63, and [9.5 Always-On System Bus Control and Status Registers](#), page 75.
4. Required value. Other values may cause errors for some configurations.
5. It is recommended that the default value (or reset value) be used.
6. Do not write to this register.

**Table 35 • Memory Map (continued)**

| Description                                                                                                | Name                   | Dec<br>Addr | Hex<br>Addr | R/W | Default | Recommended<br>Value <sup>1</sup>                    |
|------------------------------------------------------------------------------------------------------------|------------------------|-------------|-------------|-----|---------|------------------------------------------------------|
| Trimmed RSSI average at the completion of the DC restore process in RSSI detect modes with CSMA not active | ADC_AVG_TRMD_PKT_RSSI  | 319         | 0x13F       | R   | 7'h00   |                                                      |
| IRQ status                                                                                                 | IRQ0                   | 323         | 0x143       | CoR | 3'h00   |                                                      |
|                                                                                                            | IRQ1                   | 324         | 0x144       | CoR | 8'h00   |                                                      |
|                                                                                                            | IRQ2                   | 325         | 0x145       | CoR | 8'h00   |                                                      |
| Trim command                                                                                               | TRIM_CMD               | 327         | 0x147       | R/W | 4'h00   |                                                      |
| LNA trim peak ADC value                                                                                    | LNA_PEAK_ADC           | 330         | 0x14A       | R   | 5'h00   |                                                      |
| Antenna trim peak ADC value                                                                                | ANT_PEAK_ADC           | 331         | 0x14B       | R   | 5'h00   | Note 5                                               |
| <b>Always-On System Bus Control and Status Registers</b>                                                   |                        |             |             |     |         |                                                      |
| (Address range: decimal 512–671; hexadecimal 0x200–0x29F. Addressing mode: long. Always-on: yes.)          |                        |             |             |     |         |                                                      |
| VCO frequency tune value for the RX mode                                                                   | VCO_FRQ_RX_TRIM_L      | 513         | 0x201       | R/W | 8'h88   |                                                      |
|                                                                                                            | VCO_FRQ_RX_TRIM_H      | 514         | 0x202       | R/W | 3'h00   |                                                      |
| VCO frequency tune value for the TX mode (with modulation off) with the power amplifier off (only bias on) | VCO_FRQ_TXPAOFF_TRIM_L | 515         | 0x203       | R/W | 8'h97   |                                                      |
|                                                                                                            | VCO_FRQ_TXPAOFF_TRIM_H | 516         | 0x204       | R/W | 3'h00   |                                                      |
| VCO frequency tune value for the TX mode (with modulation off) with the power amplifier on                 | VCO_FRQ_TXPAON_TRIM_L  | 517         | 0x205       | R/W | 8'h98   |                                                      |
|                                                                                                            | VCO_FRQ_TXPAON_TRIM_H  | 518         | 0x206       | R/W | 3'h00   |                                                      |
| VCO frequency tune MSB value at output of multiplexer                                                      | VCO_FRQ_TRIM_L         | 519         | 0x207       | R   | 8'hFF   |                                                      |
|                                                                                                            | VCO_FRQ_TRIM_H         | 520         | 0x208       | R   | 3'h04   |                                                      |
| VCO frequency band trim value                                                                              | VCO_FRQ_BAND_TRIM      | 521         | 0x209       | R/W | 4'h07   |                                                      |
| Modulator DAC trim value                                                                                   | MOD_DAC_TRIM           | 522         | 0x20A       | R/W | 5'h00   |                                                      |
| Frequency deviation trim target                                                                            | FSK_DEV_TRIM_TARGET    | 524         | 0x20C       | R/W | 8'h66   | US: 8'h6F,<br>EU: 8'h76,<br>China: 8'h83<br>(Note 3) |
| RC oscillator frequency trim value                                                                         | RCOSC_FREQ_TRIM        | 525         | 0x20D       | R/W | 6'h00   |                                                      |

1. Use this recommended initial register setting by writing this value after every chip reset. Device characterization has shown that the recommended value gives better system performance.
2. For Z-Star operation, use recommended values in Section [6.5.1 Z-Star Operation](#), page 38.
3. Recommended value may vary based on customer configuration. Refer to Sections [9.3 SPI Local Registers](#), page 61, [9.4 System Bus Control and Status Registers](#), page 63, and [9.5 Always-On System Bus Control and Status Registers](#), page 75.
4. Required value. Other values may cause errors for some configurations.
5. It is recommended that the default value (or reset value) be used.
6. Do not write to this register.

**Table 35 • Memory Map (continued)**

| Description                                     | Name          | Dec<br>Addr | Hex<br>Addr | R/W | Default | Recommended<br>Value <sup>1</sup> |
|-------------------------------------------------|---------------|-------------|-------------|-----|---------|-----------------------------------|
| Manual LNA frequency trim                       | LNA_FRQ_TRIM  | 526         | 0x20E       | R/W | 5'h16   |                                   |
| Manual LNA trim value                           | LNA_BIAS_TRIM | 527         | 0x20F       | R/W | 6'h05   | Note 3                            |
| IREF resistor trim value                        | IREF_TRIM     | 528         | 0x210       | R/W | 5'h0F   |                                   |
| Crystal oscillator trim value                   | XO_TRIM       | 529         | 0x211       | R/W | 6'h26   |                                   |
| Gaussian filter trim value                      | GAUS_TRIM     | 532         | 0x214       | R/W | 8'h62   |                                   |
| VCO amplitude trim value                        | VCO_AMP_TRIM  | 533         | 0x215       | R/W | 6'h3F   |                                   |
| Antenna trim value                              | ANT_TRIM      | 534         | 0x216       | R/W | 5'h16   |                                   |
| RX peak detector trim value                     | RX_PKDET_TRIM | 535         | 0x217       | R/W | 5'h09   |                                   |
| Initial DC correct/AFC value                    | DC_CNTR_TRIM  | 536         | 0x218       | R/W | 8'h62   |                                   |
| IRQ enables                                     | IRQ_EN0       | 537         | 0x219       | R/W | 4'h08   |                                   |
|                                                 | IRQ_EN1       | 538         | 0x21A       | R/W | 8'h00   |                                   |
|                                                 | IRQ_EN2       | 539         | 0x21B       | R/W | 8'h00   |                                   |
| Pad enables                                     | PAD_EN0       | 540         | 0x21C       | R/W | 8'h00   |                                   |
| TX control                                      | TX_CTRL0      | 542         | 0x21E       | R/W | 8'h1B   |                                   |
|                                                 | TX_CTRL1      | 543         | 0x21F       | R/W | 7'h01   |                                   |
|                                                 | TX_CTRL2      | 544         | 0x220       | R/W | 8'hA2   |                                   |
| TX frame-packet buffer length                   | TX_BUF_LEN0   | 545         | 0x221       | R/W | 8'h00   |                                   |
|                                                 | TX_BUF_LEN1   | 546         | 0x222       | R/W | 1'h00   |                                   |
| TX frame control for Z-Star packet mode         | TX_FRM_CTRL   | 547         | 0x223       | R/W | 8'h01   |                                   |
| TX frame sequence number for Z-Star packet mode | TX_FRM_SEQ_NO | 548         | 0x224       | R/W | 4'h00   |                                   |
| RX control for Z-Star packet mode               | RX_CTRL0      | 549         | 0x225       | R/W | 8'h0B   | Note 2                            |
|                                                 | RX_CTRL1      | 550         | 0x226       | R/W | 8'h12   | Note 2                            |
|                                                 | RX_CTRL2      | 551         | 0x227       | R/W | 8'h84   |                                   |
| Address mask                                    | ADDR_MASK0    | 553         | 0x229       | R/W | 8'hFF   | Note 2                            |
|                                                 | ADDR_MASK1    | 554         | 0x22A       | R/W | 8'hFF   | Note 2                            |
| RX buffer length                                | RX_FRM_LEN0   | 555         | 0x22B       | R/W | 8'h00   |                                   |
|                                                 | RX_FRM_LEN1   | 556         | 0x22C       | R/W | 1'h01   |                                   |

1. Use this recommended initial register setting by writing this value after every chip reset. Device characterization has shown that the recommended value gives better system performance.
2. For Z-Star operation, use recommended values in Section 6.5.1 Z-Star Operation, page 38.
3. Recommended value may vary based on customer configuration. Refer to Sections 9.3 SPI Local Registers, page 61, 9.4 System Bus Control and Status Registers, page 63, and 9.5 Always-On System Bus Control and Status Registers, page 75.
4. Required value. Other values may cause errors for some configurations.
5. It is recommended that the default value (or reset value) be used.
6. Do not write to this register.

**Table 35 • Memory Map (continued)**

| Description                             | Name          | Dec<br>Addr | Hex<br>Addr | R/W | Default | Recommended<br>Value <sup>1</sup> |
|-----------------------------------------|---------------|-------------|-------------|-----|---------|-----------------------------------|
| RX buffer write threshold               | RX_HDR_THRESH | 557         | 0x22D       | R/W | 8'h00   |                                   |
| Network ID                              | NETWORK_ID    | 558         | 0x22E       | R/W | 8'h00   |                                   |
| Device short ID: address of this device | DEVICE_SID    | 559         | 0x22F       | R/W | 8'h00   |                                   |
| Short ID: address of other device       | OTHER_SID     | 560         | 0x230       | R/W | 8'h00   |                                   |
| Long ID of this device                  | DEVICE_LID0   | 561         | 0x231       | R/W | 8'h00   |                                   |
|                                         | DEVICE_LID1   | 562         | 0x232       | R/W | 8'h00   |                                   |
|                                         | DEVICE_LID2   | 563         | 0x233       | R/W | 8'h00   |                                   |
|                                         | DEVICE_LID3   | 564         | 0x234       | R/W | 8'h00   |                                   |
|                                         | DEVICE_LID4   | 565         | 0x235       | R/W | 8'h00   |                                   |
|                                         | DEVICE_LID5   | 566         | 0x236       | R/W | 8'h00   |                                   |
|                                         | DEVICE_LID6   | 567         | 0x237       | R/W | 8'h00   |                                   |
|                                         | DEVICE_LID7   | 568         | 0x238       | R/W | 8'h00   |                                   |
| Long ID of other device                 | OTHER_LID0    | 569         | 0x239       | R/W | 8'h00   |                                   |
|                                         | OTHER_LID1    | 570         | 0x23A       | R/W | 8'h00   |                                   |
|                                         | OTHER_LID2    | 571         | 0x23B       | R/W | 8'h00   |                                   |
|                                         | OTHER_LID3    | 572         | 0x23C       | R/W | 8'h00   |                                   |
|                                         | OTHER_LID4    | 573         | 0x23D       | R/W | 8'h00   |                                   |
|                                         | OTHER_LID5    | 574         | 0x23E       | R/W | 8'h00   |                                   |
|                                         | OTHER_LID6    | 575         | 0x23F       | R/W | 8'h00   |                                   |
|                                         | OTHER_LID7    | 576         | 0x240       | R/W | 8'h00   |                                   |
| MAC controls                            | MAC_CTRL      | 577         | 0x241       | R/W | 5'h00   | Notes 2, 5                        |
| CRC polynomial                          | CRC_POLY0     | 578         | 0x242       | R/W | 8'h01   |                                   |
|                                         | CRC_POLY1     | 579         | 0x243       | R/W | 8'h8F   |                                   |
|                                         | CRC_POLY2     | 580         | 0x244       | R/W | 8'h00   |                                   |
|                                         | CRC_POLY3     | 581         | 0x245       | R/W | 8'h00   |                                   |
| SPI control reg                         | SPI_CTRL      | 586         | 0x24A       | R/W | 4'h07   | Note 2                            |
| CSMA control                            | CSMA_CTRL     | 587         | 0x24B       | R/W | 7'h45   |                                   |
| CSMA 100- $\mu$ s counts per interval   | CSMA_TIME0    | 588         | 0x24C       | R/W | 8'h0A   |                                   |
|                                         | CSMA_TIME1    | 589         | 0x24D       | R/W | 4'h00   |                                   |

1. Use this recommended initial register setting by writing this value after every chip reset. Device characterization has shown that the recommended value gives better system performance.
2. For Z-Star operation, use recommended values in Section 6.5.1 Z-Star Operation, page 38.
3. Recommended value may vary based on customer configuration. Refer to Sections 9.3 SPI Local Registers, page 61, 9.4 System Bus Control and Status Registers, page 63, and 9.5 Always-On System Bus Control and Status Registers, page 75.
4. Required value. Other values may cause errors for some configurations.
5. It is recommended that the default value (or reset value) be used.
6. Do not write to this register.

**Table 35 • Memory Map (continued)**

| Description                                                                                       | Name                    | Dec<br>Addr | Hex<br>Addr | R/W | Default | Recommended<br>Value <sup>1</sup> |
|---------------------------------------------------------------------------------------------------|-------------------------|-------------|-------------|-----|---------|-----------------------------------|
| CSMA maximum random number of intervals in the back-off                                           | CSMA_MAX RAND BACKOFF0  | 590         | 0x24E       | R/W | 8'h32   |                                   |
|                                                                                                   | CSMA_MAX RAND BACKOFF1  | 591         | 0x24F       | R/W | 4'h00   |                                   |
| CSMA retry minimum back-off in intervals                                                          | CSMA_RETRY_MIN_BACKOFF0 | 592         | 0x250       | R/W | 8'h19   |                                   |
|                                                                                                   | CSMA_RETRY_MIN_BACKOFF1 | 593         | 0x251       | R/W | 4'h00   |                                   |
| Synchronization threshold<br>minimum number of bits<br>that need to match the<br>40-bit sync word | SYNC_THRESH             | 594         | 0x252       | R/W | 6'h24   | 6'h15                             |
| Preamble length in bytes<br>used on TX side                                                       | PREAM_LEN               | 595         | 0x253       | R/W | 8'h1A   | 8'h0A                             |
| Delay time count for<br><i>prx_tx_trig</i>                                                        | TX_TRIG_CNT             | 596         | 0x254       | R/W | 8'h14   |                                   |
| Clock recovery fast adjust<br>mode error threshold                                                | ADJ_FAST                | 597         | 0x255       | R/W | 8'h58   | 8'h25                             |
| Clock recovery slow adjust<br>mode error threshold                                                | ADJ_SLOW                | 598         | 0x256       | R/W | 8'h58   | 8'h25                             |
| Length of DC adjustment<br>in bytes                                                               | PREAM_LOCK_CNT          | 608         | 0x260       | R/W | 8'h12   | 8'h07                             |
| Selection for GPIO0                                                                               | GPIO_0_SEL              | 609         | 0x261       | R/W | 8'h00   |                                   |
| Selection for GPIO1                                                                               | GPIO_1_SEL              | 610         | 0x262       | R/W | 8'h00   |                                   |
| Selection for GPIO2                                                                               | GPIO_2_SEL              | 611         | 0x263       | R/W | 8'h00   |                                   |
| Selection for GPIO3                                                                               | GPIO_3_SEL              | 612         | 0x264       | R/W | 8'h00   |                                   |
| Frame sync pattern                                                                                | SYNC_PTRN0              | 613         | 0x265       | R/W | 8'h13   | Note 5                            |
|                                                                                                   | SYNC_PTRN1              | 614         | 0x266       | R/W | 8'hDA   | Note 5                            |
|                                                                                                   | SYNC_PTRN2              | 615         | 0x267       | R/W | 8'h32   | Note 5                            |
|                                                                                                   | SYNC_PTRN3              | 616         | 0x268       | R/W | 8'hEC   | Note 5                            |
|                                                                                                   | SYNC_PTRN4              | 617         | 0x269       | R/W | 8'h79   | Note 5                            |
| PLL start-up delay (100- $\mu$ s<br>count)                                                        | PLL_START_DLY           | 618         | 0x26A       | R/W | 8'h14   |                                   |
| TX PLL turn-around<br>settling delay count (10- $\mu$ s<br>count)                                 | TX_PLL_DLY_CNT          | 619         | 0x26B       | R/W | 8'h1E   | 8'h0F                             |
| RX PLL turn-around<br>settling delay count (10- $\mu$ s<br>count)                                 | RX_PLL_DLY_CNT          | 620         | 0x26C       | R/W | 8'h26   | 8'h16                             |

1. Use this recommended initial register setting by writing this value after every chip reset. Device characterization has shown that the recommended value gives better system performance.
2. For Z-Star operation, use recommended values in Section 6.5.1 Z-Star Operation, page 38.
3. Recommended value may vary based on customer configuration. Refer to Sections 9.3 SPI Local Registers, page 61, 9.4 System Bus Control and Status Registers, page 63, and 9.5 Always-On System Bus Control and Status Registers, page 75.
4. Required value. Other values may cause errors for some configurations.
5. It is recommended that the default value (or reset value) be used.
6. Do not write to this register.

**Table 35 • Memory Map (continued)**

| Description                                                      | Name             | Dec<br>Addr | Hex<br>Addr | R/W  | Default | Recommended<br>Value <sup>1</sup> |
|------------------------------------------------------------------|------------------|-------------|-------------|------|---------|-----------------------------------|
| CW count                                                         | CW_DLY_CNT       | 621         | 0x26D       | R/W  | 8'h26   | 8'h05                             |
| PLL fast to slow loop delay count                                | SLO_DLY_CNT      | 622         | 0x26E       | R/W  | 8'h44   | 8'hFF                             |
| PA ramp-down delay count at the end of the TX data (10-µs count) | PA_OFF_DLY_CNT   | 623         | 0x26F       | R/W  | 4'h03   | 4'h00 (Note 4)                    |
| RX time limit for acknowledgment timeout (100-µs count)          | ACK_TIME_LIMIT   | 624         | 0x270       | R/W  | 8'h18   | 8'h0C (Note 3)                    |
| RX time limit for packet timeout (100-µs count)                  | PKT_TIME_LIMIT   | 625         | 0x271       | R/W  | 8'h24   | 8'h0C (Note 3)                    |
| RX frame sequence number                                         | RX_FRM_SEQ_NO    | 626         | 0x272       | R/W  | 4'h00   |                                   |
| TX nonacknowledgment packet transmitted count                    | TX_PKT_CNT       | 627         | 0x273       | WCOR | 8'h00   |                                   |
| TX packet retry accumulated count (after ACK failure)            | TX_PKT_RETRY_CNT | 628         | 0x274       | WCOR | 8'h00   |                                   |
| TX packet drop accumulated count (after ACK failure)             | TX_PKT_DROP_CNT  | 629         | 0x275       | WCOR | 8'h00   |                                   |
| RX nonacknowledgment packet received count                       | RX_PKT_CNT       | 630         | 0x276       | WCOR | 8'h00   |                                   |
| RX packet received count for all types                           | RX_ALL_PKT_CNT   | 631         | 0x277       | WCOR | 8'h00   |                                   |
| RX nonacknowledgment packet drop accumulated count               | RX_PKT_DROP_CNT  | 632         | 0x278       | WCOR | 8'h00   |                                   |
| RX packet sync error accumulated count                           | RX_SYNC_ERR_CNT  | 633         | 0x279       | WCOR | 8'h00   |                                   |
| RX packet all error accumulated count for all errors             | RX_ALL_ERR_CNT   | 634         | 0x27A       | WCOR | 8'h00   |                                   |
| CSMA retry count                                                 | CSMA_RETRY_CNT   | 635         | 0x27B       | WCOR | 8'h00   |                                   |
| CSMA fail count                                                  | CSMA_FAIL_CNT    | 636         | 0x27C       | WCOR | 8'h00   |                                   |
| System bus clock <i>cg_sys_clk</i> divide count                  | SYS_CLK_DIV      | 637         | 0x27D       | R/W  | 5'h16   | 5'h14                             |
| PLL clock divide count                                           | PLL_CLK_DIV_CNT  | 638         | 0x27E       | R/W  | 7'h51   | 7'h50                             |

1. Use this recommended initial register setting by writing this value after every chip reset. Device characterization has shown that the recommended value gives better system performance.
2. For Z-Star operation, use recommended values in Section 6.5.1 Z-Star Operation, page 38.
3. Recommended value may vary based on customer configuration. Refer to Sections 9.3 SPI Local Registers, page 61, 9.4 System Bus Control and Status Registers, page 63, and 9.5 Always-On System Bus Control and Status Registers, page 75.
4. Required value. Other values may cause errors for some configurations.
5. It is recommended that the default value (or reset value) be used.
6. Do not write to this register.

**Table 35 • Memory Map (continued)**

| Description                                                                                | Name                 | Dec<br>Addr | Hex<br>Addr | R/W | Default | Recommended<br>Value <sup>1</sup> |
|--------------------------------------------------------------------------------------------|----------------------|-------------|-------------|-----|---------|-----------------------------------|
| PHY RX mode select                                                                         | PHY_RX_MODE_SEL      | 642         | 0x282       | R/W | 8'h45   | 0 for bit [6]                     |
| Frame sync timeout delay (in bytes)                                                        | SYNC_DLY_CNT         | 643         | 0x283       | R/W | 8'h22   | 8'h0F                             |
| Preamble detect threshold and bandwidth                                                    | PREAM_DET_CTRL       | 644         | 0x284       | R/W | 8'h6B   | 8'h33                             |
| Frame sync control 2                                                                       | DPORT_CTRL           | 647         | 0x287       | R/W | 6'h1D   | 6'h1B (Note 3)                    |
| PHY TX raw mode control                                                                    | PHY_TX_RAW_MODE_CTRL | 648         | 0x288       | R/W | 2'h00   |                                   |
| Data rate control                                                                          | RATE_CTRL            | 649         | 0x289       | R/W | 8'h00   |                                   |
| M divide counter value                                                                     | SYNTH_M_DIV          | 650         | 0x28A       | R/W | 8'hB5   |                                   |
| A divide counter value                                                                     | SYNTH_A_DIV          | 651         | 0x28B       | R/W | 6'h07   |                                   |
| ADC modes multiplexer input selection                                                      | ADC_MUX_IN_SEL       | 654         | 0x28E       | R/W | 3'h00   |                                   |
| Number of conversions used for averaging in ADC modes and when using RSSI in CSMA-CA modes | ADC_POW_N_CONV       | 655         | 0x28F       | R/W | 7'h30   |                                   |
| ADC RSSI threshold                                                                         | ADC_RSSI_THRESH      | 659         | 0x293       | R/W | 7'h00   | 7'h01                             |
| ADC CSMA threshold                                                                         | ADC_CSMA_THRESH      | 660         | 0x294       | R/W | 7'h20   |                                   |
| LNA gain                                                                                   | LNA_GAIN             | 661         | 0x295       | R/W | 4'h07   | 4'h0F                             |
| Analog control                                                                             | ANA_CTRL0            | 663         | 0x297       | R/W | 8'h80   | 8'h84                             |
| Lock detector and pump select                                                              | LOCK_PUMP_SEL        | 665         | 0x299       | R/W | 6'h08   |                                   |
| PA power level                                                                             | PA_PWR_LEVEL         | 666         | 0x29A       | R/W | 8'h88   |                                   |
| PA buffer bias control                                                                     | VCO_BUF_BIAS         | 667         | 0x29B       | R/W | 4'h03   | Note 5                            |
| VCO control                                                                                | VCO_CTRL             | 668         | 0x29C       | R/W | 7'h08   |                                   |
| VCO control voltage comparator reference values                                            | VCO_CMP_VREF_CTRL    | 670         | 0x29E       | R/W | 2'h00   | 2'h01                             |

**System Bus Transmit Buffer (SRAM)**

(Address range: decimal 1024–1535; hexadecimal 0x400–0x5FF. Addressing mode: long. Always-on: no.)

**System Bus Receive Buffer (SRAM)**

(Address range: decimal 1536–2047; hexadecimal 0x600–0x7FF. Addressing mode: long. Always-on: no.)

1. Use this recommended initial register setting by writing this value after every chip reset. Device characterization has shown that the recommended value gives better system performance.
2. For Z-Star operation, use recommended values in Section 6.5.1 Z-Star Operation, page 38.
3. Recommended value may vary based on customer configuration. Refer to Sections 9.3 SPI Local Registers, page 61, 9.4 System Bus Control and Status Registers, page 63, and 9.5 Always-On System Bus Control and Status Registers, page 75.
4. Required value. Other values may cause errors for some configurations.
5. It is recommended that the default value (or reset value) be used.
6. Do not write to this register.

## 9.3 SPI Local Registers

Addresses 0x000 to 0x007 comprise the SPI local registers, which use short addressing mode.

These registers are not powered from VSUP (that is, they are volatile registers rather than always-on registers). Whenever the ZL70550 device goes into its SLEEP state, information contained in these registers is lost. All necessary registers must therefore be backed up external to the MAC before the ZL70550 device goes to SLEEP, and the registers must be reloaded on wake-up.

### 9.3.1 Chip ID

**Short Name:** SPIR\_CHIP\_ID

**Address:** 0x0

**Always-On:** No

**Table 36 • SPIR\_CHIP\_ID**

| Field Name   | Bit | Access | Description                                             | Default |
|--------------|-----|--------|---------------------------------------------------------|---------|
| spir_chip_id | 7:0 | WCOR   | Chip ID. This eight-bit value gives the ID of the chip. | 0x47    |

### 9.3.2 Chip Revision

**Short Name:** SPIR\_REVISION

**Address:** 0x1

**Always-On:** No

**Table 37 • SPIR\_REVISION**

| Field Name    | Bit | Access | Description                                                                           | Default |
|---------------|-----|--------|---------------------------------------------------------------------------------------|---------|
| spir_revision | 7:0 | R      | Chip revision. This eight-bit value gives the revision of the current implementation. | 0x11    |

### 9.3.3 2V Reset Generator

**Short Name:** SPIR\_2V\_RESET

**Address:** 0x2

**Always-On:** No

**Table 38 • SPIR\_2V\_RESET**

| Field Name    | Bit | Access | Description                                                                                                                                                                             | Default |
|---------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| spir_2v_reset | 7:0 | R/W    | VDDD S/W reset. Write reset value (0xCA) to perform a VDDD reset. Writing 0xCA causes a hardware reset to the VDDD section of the IC, resulting in the assertion of <i>cg_sys_rst</i> . | 0xCA    |

### 9.3.4 Chip Reset

**Short Name:** SPIR\_SYS\_RESET  
**Address:** 0x3  
**Always-On:** No

**Table 39 • SPIR\_SYS\_RESET**

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                                                   | Default |
|----------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| spir_sys_reset | 7:0 | R/W    | Hardware reset, similar to pad reset. Write 0xBC to perform a hardware reset. Writing 0xBC causes a hardware reset to the VDDD section of the IC, similar to resetting the device via the <b>RESET_B</b> pin. This results in resetting the entire chip and turning off VDDD. | 0xBC    |

### 9.3.5 Power Down Request

**Short Name:** SPIR\_PWRDWN\_REQ  
**Address:** 0x4  
**Always-On:** No

**Table 40 • SPIR\_PWRDWN\_REQ**

| Field Name      | Bit | Access | Description                                                                                                                                         | Default |
|-----------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| spir_pwrdsn_req | 7:0 | R/W    | Power-down request to the 3-volt power-down sequencer. Write 0xDE to perform a VDDD (2-volt) power-down. This puts the device into the SLEEP state. | 0xDE    |

### 9.3.6 SPIR Local Status

**Short Name:** SPIR\_LOCAL\_STAT  
**Address:** 0x5  
**Always-On:** No

**Table 41 • SPIR\_LOCAL\_STAT**

| Field Name        | Bit | Access | Description                                                                                                           | Default |
|-------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------|---------|
| -                 | 7   | R      | <Reserved>                                                                                                            | 0x0     |
| dp_pll_lock_2q    | 6   | R      | PLL lock status                                                                                                       | 0x0     |
| mac_pll_en        | 5   | R      | MAC enable status; also indicates if PLL is enabled. Reflects the status of <i>msc_blk_en</i> at <i>MAC_CTRL[1]</i> . | 0x0     |
| msc_synth_rdy     | 4   | R      | Synthesizer ready status                                                                                              | 0x0     |
| spir_xtal_osc_off | 3   | R      | Crystal oscillator status; is high when crystal oscillator is turned off                                              | 0x0     |
| spis_rx_cmd       | 2   | R      | SPI receive command active status; is high when a SPI RX command is active                                            | 0x0     |
| spis_tx_req_cmd   | 1   | R      | SPI data request packet command active status; is high when a SPI TX request command is active                        | 0x0     |
| spis_tx_cmd       | 0   | R      | SPI transmit command active status; is high when a SPI TX command is active                                           | 0x0     |

### 9.3.7 SPI Control Register

**Short Name:** SPIR\_CTRL

**Address:** 0x6

**Always-On:** No

**Table 42 • SPIR\_CTRL**

| Field Name         | Bit | Access | Description                                                                                                                                     | Default |
|--------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| –                  | 7:3 | R/W    | <Reserved; always write 0x00 (or 5'b00000) to these bits>                                                                                       | 0x00    |
| spir_addr_incr_inh | 2   | R/W    | Inhibit address autoincrement for multibyte SPI operations. If set high, all bytes are read from or written to the same address in the command. | 0x0     |
| –                  | 1:0 | R/W    | <Reserved; always write 0x0 (2'b00) or to these bits>                                                                                           | 0x0     |

## 9.4 System Bus Control and Status Registers

Addresses 0x100 to 0x14B comprise the system bus control and status registers, which use long addressing mode.

These registers are not powered from VSUP (that is, they are volatile rather than always-on registers). Whenever the ZL70550 device goes into its SLEEP state, information contained in these registers is lost. All necessary registers must therefore be backed up external to the MAC before the ZL70550 device goes to SLEEP, and the registers must be reloaded on wake-up.

### 9.4.1 Frame Sync Control 1

**Short Names:** DP\_CTRL0

**Addresses:** 0x100

**Always-On:** No

**Table 43 • DP\_CTRL0**

| Field Name     | Bit | Access | Description                                                                            | Default |
|----------------|-----|--------|----------------------------------------------------------------------------------------|---------|
| –              | 7:3 | R/W    | <Reserved; always write 0x00 (or 5'b00000) to these bits>                              | 0x00    |
| dp_sync_always | 2   | R/W    | Send preamble once, followed continuously by frame sync pattern. Used in raw bit mode. | 0x0     |
| –              | 1:0 | R/W    | <Reserved; always write 0x0 (or 2'b00) to these bits>                                  | 0x0     |

## 9.4.2 Received PHY Header Status

**Short Name:** RPHR\_STAT

**Address:** 0x105

**Always-On:** No

**Table 44 • RPHR\_STAT**

| Field Name        | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                  | Default |
|-------------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| prx_rx_rate       | 7:6 | R      | Detected RX bit rate. Also used for transmit rate if <i>tx_follow_rx_rate</i> is 1.<br>• 00: 200 kbit/s<br>• 01: 100 kbit/s<br>• 10: 50 kbit/s                                                                                                                                                                                               | 0x0     |
| cdr_inverted_sync | 5   | R      | Inverted sync detected, cleared on next sync detect. Used to enable FEC on RX, and FEC and inverted frame sync pattern on TX.                                                                                                                                                                                                                | 0x0     |
| rphr_fcs_len      | 4:2 | R      | FCS length in bytes, up to four bytes:<br>• 001: One byte (not valid for Z-Star packet mode)<br>• 010: Two bytes<br>• 011: Three bytes (not valid for Z-Star packet mode)<br>• 100: Four bytes<br>In Z-Star packet mode, this is the value in the received PHY header. In user and raw packet modes, this is copied from <i>rx_fcs_len</i> . | 0x2     |
| rphr_frm_format   | 1:0 | R      | PHY header frame format, included in received PHY header in Z-Star packet mode:<br>• 00: Two bytes<br>• Others: not currently supported                                                                                                                                                                                                      | 0x0     |

## 9.4.3 RX Payload Length

**Short Name:** RXC\_PLD\_LEN (comprising RXC\_PLD\_LEN0 and RXC\_PLD\_LEN1)

**Addresses:** Two-byte little-endian starting at 0x106 (comprising 0x106 and 0x107, respectively)

**Always-On:** No

**Table 45 • RXC\_PLD\_LEN**

| Field Name  | Bit  | Access | Description                                                                                                                                                                                                                                                                     | Default |
|-------------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —           | 15:9 | R      | <Reserved>                                                                                                                                                                                                                                                                      | 0x00    |
| rcx_pld_len | 8:0  | R      | Length in bytes of received payload without headers and FCS.<br>In all packet modes, if <i>wr_rx_payload_only</i> is set to 1, then the SPI status information returned to the host on MISO includes <i>rcx_pld_len</i> as <i>rcx_pkt_buf_len[8:0]</i> (see Table 10, page 27). | 0x000   |

## 9.4.4 MAC SPI Status

**Short Name:** MSC\_SPI\_STAT

**Address:** 0x108

**Always-On:** No

**Table 46 • MSC\_SPI\_STAT**

| Field Name      | Bit | Access | Description                                | Default |
|-----------------|-----|--------|--------------------------------------------|---------|
| —               | 7:4 | R      | <Reserved>                                 | 0x0     |
| msc_cmd_busy    | 3   | R      | MAC sequencer busy with active SPI command | 0x0     |
| spis_rx_cmd     | 2   | R      | SPI RX command active                      | 0x0     |
| spis_tx_req_cmd | 1   | R      | SPI TX data request command active         | 0x0     |
| spis_tx_cmd     | 0   | R      | SPI TX command active                      | 0x0     |

## 9.4.5 RX Frame Length

**Short Name:** RXC\_FRM\_LEN (comprising RXC\_FRM\_LEN0 and RXC\_FRM\_LEN1)

**Addresses:** Two-byte little-endian starting at 0x109 (comprising 0x109 and 0x10A, respectively)

**Always-On:** No

**Table 47 • RXC\_FRM\_LEN**

| Field Name  | Bit  | Access | Description                                                                                                                                                                                                                                                                                                                                                | Default |
|-------------|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —           | 15:9 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                 | 0x00    |
| rcx_frm_len | 8:0  | R      | Length in bytes of received PHY frame, including headers and FCS. Included in PHY header for Z-Star and user packet formats.<br><br>In all packet modes, if <i>wr_rx_payload_only</i> is set to 0, then the SPI status information returned to the host on MISO includes <i>rcx_frm_len</i> as <b><i>rcx_pkt_buf_len[8:0]</i></b> (see Table 10, page 27). | 0x000   |

## 9.4.6 Fields Received in Z-Star MAC Header

### 9.4.6.1 RX Frame Control for Z-Star Packet Mode

**Short Name:** RXC\_FRM\_CTRL0 and RXC\_FRM\_CTRL1

**Address:** 0x10B and 0x10C, respectively

**Always-On:** No

**Table 48 • RXC\_FRM\_CTRL0**

| Field Name    | Bit | Access | Description                                                                                | Default |
|---------------|-----|--------|--------------------------------------------------------------------------------------------|---------|
| rcx_addr_mode | 7   | R      | RX address mode from RX header:<br>• 0: Short addressing mode<br>• 1: Long addressing mode | 0x0     |

**Table 48 • RXC\_FRM\_CTRL0 (continued)**

| Field Name          | Bit | Access | Description                                                                                                                                                          | Default |
|---------------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| rx_c_rx_reserved[0] | 6   | R      | Reserved bit from RX header (always 0)                                                                                                                               | 0x0     |
| rx_c_frm_stype      | 5:3 | R      | RX frame subtype from RX header; refer to <a href="#">Table 97</a> , page 85, for "Frame Type - Frame Subtype" definition in description of field <i>tx_frm_type</i> | 0x0     |
| rx_c_frm_type       | 2:0 | R      | RX frame type from RX header; refer to <a href="#">Table 97</a> , page 85, for "Frame Type - Frame Subtype" definition in description of field <i>tx_frm_type</i> .  | 0x0     |

**Table 49 • RXC\_FRM\_CTRL1**

| Field Name          | Bit | Access | Description                                                         | Default |
|---------------------|-----|--------|---------------------------------------------------------------------|---------|
| rx_c_secure_en      | 7   | R      | Security indicator from RX header; payload is encrypted if set to 1 | 0x0     |
| rx_c_frm_pend       | 6   | R      | RX frame pending status from RX header                              | 0x0     |
| rx_c_ack_req        | 5   | R      | RX acknowledgment request from RX header                            | 0x0     |
| rx_c_rx_reserved[1] | 4   | R      | Reserved bit in RX header (always 0)                                | 0x0     |
| rx_c_frm_seq_no     | 3:0 | R      | RX frame sequence number from RX header                             | 0x0     |

#### 9.4.6.2 RX Source Short ID

**Short Name:** RXC\_SOURCE\_SID

**Address:** 0x10D

**Always-On:** No

**Table 50 • RXC\_SOURCE\_SID**

| Field Name      | Bit | Access | Description                       | Default |
|-----------------|-----|--------|-----------------------------------|---------|
| rx_c_source_sid | 7:0 | R      | RX source short ID from RX header | 0x00    |

#### 9.4.6.3 RX Network ID

**Short Name:** RXC\_NETWORK\_ID

**Address:** 0x10E

**Always-On:** No

**Table 51 • RXC\_NETWORK\_ID**

| Field Name      | Bit | Access | Description                  | Default |
|-----------------|-----|--------|------------------------------|---------|
| rx_c_network_id | 7:0 | R      | RX network ID from RX header | 0x00    |

#### 9.4.6.4 RX Destination Short ID

**Short Name:** RXC\_DEST\_SID

**Address:** 0x10F

**Always-On:** No

**Table 52 • RXC\_DEST\_SID**

| Field Name    | Bit | Access | Description                            | Default |
|---------------|-----|--------|----------------------------------------|---------|
| rx_c_dest_sid | 7:0 | R      | RX destination short ID from RX header | 0x00    |

#### 9.4.6.5 RX Destination Long ID

**Short Name:** RXC\_DEST\_LID (comprising RXC\_DEST\_LID0, RXC\_DEST\_LID1, RXC\_DEST\_LID2, RXC\_DEST\_LID3, RXC\_DEST\_LID4, RXC\_DEST\_LID5, RXC\_DEST\_LID6, and RXC\_DEST\_LID7)

**Addresses:** Eight-byte little-endian starting at 0x110 (comprising 0x110, 0x111, 0x112, 0x113, 0x114, 0x115, 0x116, and 0x117, respectively)

**Always-On:** No

**Table 53 • RXC\_DEST\_LID**

| Field Name    | Bit  | Access | Description                           | Default                  |
|---------------|------|--------|---------------------------------------|--------------------------|
| rx_c_dest_lid | 63:0 | R      | RX destination long ID from RX header | 0x0000 0000<br>0000 0000 |

#### 9.4.6.6 RX Source Long ID

**Short Name:** RXC\_SOURCE\_LID (comprising RXC\_SOURCE\_LID0, RXC\_SOURCE\_LID1, RXC\_SOURCE\_LID2, RXC\_SOURCE\_LID3, RXC\_SOURCE\_LID4, RXC\_SOURCE\_LID5, RXC\_SOURCE\_LID6, and RXC\_SOURCE\_LID7)

**Addresses:** Eight-byte little-endian starting at 0x118 (comprising 0x118, 0x119, 0x11A, 0x11B, 0x11C, 0x11D, 0x11E, and 0x11F, respectively)

**Always-On:** No

**Table 54 • RXC\_SOURCE\_LID**

| Field Name      | Bit  | Access | Description                      | Default                  |
|-----------------|------|--------|----------------------------------|--------------------------|
| rx_c_source_lid | 63:0 | R      | RX source long ID from RX header | 0x0000 0000<br>0000 0000 |

#### 9.4.7 MAC RX Frame Status

**Short Name:** RXC\_FRM\_STAT0 and RXC\_FRM\_STAT1

**Addresses:** 0x120 and 0x121 (respectively)

**Always-On:** No

**Table 55 • RXC\_FRM\_STAT0**

| Field Name         | Bit | Access | Description                                                          | Default |
|--------------------|-----|--------|----------------------------------------------------------------------|---------|
| -                  | 7   | R      | <Reserved>                                                           | 0x0     |
| rx_c_timeout       | 6   | R      | Reception timeout: bad frame sync or no response (dropped RX packet) | 0x0     |
| rx_c_pcrc_fail     | 5   | R      | PHY CRC reception failed (dropped RX packet)                         | 0x0     |
| rx_c_mcrc_fail     | 4   | R      | MAC CRC reception failed (dropped RX packet)                         | 0x0     |
| rx_c_addr_fail     | 3   | R      | Address reception failed (dropped RX packet)                         | 0x0     |
| rx_c_pkt_fail      | 2   | R      | Packet reception failed (dropped RX packet)                          | 0x0     |
| rx_c_pkt_pass      | 1   | R      | Good packet received status                                          | 0x0     |
| rx_c_rssi_rx_abort | 0   | R      | RX aborted because RSSI went low after frame sync detection          | 0x0     |

**Table 56 • RXC\_FRM\_STAT1**

| Field Name           | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default |
|----------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -                    | 7   | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x0     |
| msc_rx_null_data_frm | 6   | R      | RX null data frame received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x0     |
| msc_rx_data_frm      | 5   | R      | Received RX frame that is neither an acknowledgment, data request, nor null frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0     |
| msc_rx_data_req_frm  | 4   | R      | RX data request type frame received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x0     |
| msc_rx_ack_frm       | 3   | R      | RX acknowledgment type frame received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| -                    | 2   | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x0     |
| rx_c_brdcst_match    | 1   | R      | Broadcast address match on received RX frame. This applies to both long and short broadcast mode: <ul style="list-style-type: none"> <li>In long addressing mode, the network ID is not used for matching. This bit is set if long addressing mode is used (<i>rx_c_addr_mode</i> equals 1), <b>and</b> broadcast is enabled (<i>lng_brdcst_en</i> equals 1), <b>and</b> the destination address is all 1s.</li> <li>In short addressing mode, the unmasked portion of network ID must also match. This bit is set if short addressing mode is used (<i>rx_c_addr_mode</i> equals 0), <b>and</b> broadcast is enabled (<i>shrt_brdcst_en</i> equals 1), <b>and</b> the destination address is all 1s, <b>and</b> the unmasked portion of network ID matches.</li> </ul> | 0x0     |
| rx_c_addr_match      | 0   | R      | Address match on received RX frame. Is automatically set if <b>all</b> of the following are true: <ul style="list-style-type: none"> <li>The destination ID in the received header (<i>rx_c_dest_sid</i> or <i>rx_c_dest_lid</i>) matches local device ID (<i>device_sid</i> or <i>device_lid</i>)</li> <li><b>AND</b> the source ID in the received header (<i>rx_c_source_sid</i> or <i>rx_c_source_lid</i>) matches the unmasked portion of the other ID (<i>other_sid</i> or <i>other_lid</i>)</li> <li><b>AND</b> the network ID in the received header (<i>rx_c_network_id</i>) matches the unmasked portion of the network ID (<i>network_id</i>).</li> </ul>                                                                                                    | 0x0     |

## 9.4.8 MAC Sequencer Status

**Short Name:** MSC\_FRM\_STAT0 and MSC\_FRM\_STAT1

**Addresses:** 0x122 and 0x123 (respectively)

**Always-On:** No

**Table 57 • MSC\_FRM\_STAT0**

| Field Name       | Bit | Access | Description                                               | Default |
|------------------|-----|--------|-----------------------------------------------------------|---------|
| tx_c_tx_frm_pend | 7   | R      | TX frame pending was set in transmitted TX frame          | 0x0     |
| tx_c_tx_ack_req  | 6   | R      | TX acknowledgment request was set in transmitted TX frame | 0x0     |
| -                | 5:0 | R      | <Reserved>                                                | 0x00    |

**Table 58 • MSC\_FRM\_STAT1**

| Field Name           | Bit | Access | Description                                                                              | Default |
|----------------------|-----|--------|------------------------------------------------------------------------------------------|---------|
| msc_rx_dup_frm       | 7   | R      | MAC RX duplicate frame received                                                          | 0x0     |
| msc_rx_frm_type_fail | 6   | R      | RX frame type error: RX acknowledgment/packet error, wrong frame type received in header | 0x0     |
| msc_csma_fail        | 5   | R      | CSMA failure: no transmit                                                                | 0x0     |
| msc_tx_ack_fail      | 4   | R      | TX acknowledgment failure                                                                | 0x0     |
| msc_tx_pkt_fail      | 3   | R      | TX nonacknowledgment packet failure                                                      | 0x0     |
| msc_txreq_fail       | 2   | R      | TX data request failure                                                                  | 0x0     |
| msc_rx_pkt_fail      | 1   | R      | RX nonacknowledgment packet failure                                                      | 0x0     |
| msc_rx_ack_fail      | 0   | R      | RX acknowledgment error                                                                  | 0x0     |

### 9.4.9 Manual Global Enables

**Short Name:** MAN\_GLOBAL\_EN

**Address:** 0x126

**Always-On:** No

**Table 59 • MAN\_GLOBAL\_EN**

| Field Name    | Bit | Access | Description                            | Default |
|---------------|-----|--------|----------------------------------------|---------|
| –             | 7:3 | R      | <Reserved>                             | 0x00    |
| man_pll_en    | 2   | R/W    | Enable PLL in manual mode              | 0x0     |
| rfmac_rcvr_en | 1   | R/W    | Enable receive channel in manual mode  | 0x0     |
| rfmac_xmtr_en | 0   | R/W    | Enable transmit channel in manual mode | 0x0     |

1. *man\_pll\_en* enables the following signals: presc\_en, pa\_en, pll\_clk\_en, pfd\_en, pump\_en, lock\_en, vco\_en, gaus\_en, iref\_const\_en, vrefva\_bgap\_en, vrefva\_buf\_en1, and vrefva\_buf\_en0.
2. *rfmac\_rcvr\_en* enables the following signals: rf\_en, rx\_pkdet\_en, if\_filt\_en, limit\_en, rssi\_en, fm\_det\_en, and all signals enabled by *man\_pll\_en*.
3. *rfmac\_xmtr\_en* enables the following signals: mod\_dac\_en, **pa\_tx\_en**, and all signals enabled by *man\_pll\_en*.

### 9.4.10 Manual Miscellaneous

**Short Name:** MAN\_TEST

**Address:** 0x12E

**Always-On:** No

**Table 60 • MAN\_TEST**

| Field Name     | Bit | Access | Description                                                                                                  | Default |
|----------------|-----|--------|--------------------------------------------------------------------------------------------------------------|---------|
| –              | 7:3 | R/W    | <Reserved; always write 0x00 (or 5'b00000) to these bits>                                                    | 0x00    |
| rfmac_synth_tx | 2   | R/W    | Synth TX: 1 for TX mode; 0 for RX mode (manual control via system bus to the digital synthesizer controller) | 0x1     |
| –              | 1:0 | R/W    | <Reserved; always write 0x0 (or 2'b00) to these bits>                                                        | 0x0     |

### 9.4.11 Clock Enable Tests

**Short Name:** CLK\_TEST

**Address:** 0x131

**Always-On:** No

**Table 61 • CLK\_TEST**

| Field Name      | Bit | Access | Description                                                                              | Default |
|-----------------|-----|--------|------------------------------------------------------------------------------------------|---------|
| –               | 7:4 | R/W    | <Reserved; always write 0x00 (or 4'b0000) to these bits>                                 | 0x00    |
| sys_clk_en_test | 3   | R/W    | Connect system clock output ( <b>cg_sys_clk</b> ) from the clock generator to <b>GP1</b> | 0x0     |
| –               | 1:0 | R/W    | <Reserved; always write 0x0 (or 2'b00) to these bits>                                    | 0x0     |

1. The system clock **cg\_sys\_clk** should be 1.2MHz. The PLL clock should be 300kHz.

### 9.4.12 ADC Mode Conversion

**Short Name:** ADC\_CONV\_START

**Address:** 0x13A

**Always-On:** No

**Table 62 • ADC\_CONV\_START**

| Field Name      | Bit | Access      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|-----------------|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| –               | 7:2 | R           | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x00    |
| single_avg_conv | 1   | R/W/<br>CoS | Single ADC average conversion enable.<br>When set high, start a single ADC average conversion.<br>The number of ADC samples used for the average is set by <i>2adc_pow_n_conv</i> defined in <b>ADC_POW_N_CONV</b> . An ADC conversion for only one sample can be run by setting <i>adc_pow_n_conv</i> to 0. Automatically stopped at the end of the conversion and bit <i>single_avg_conv</i> is cleared when the first conversion starts. | 0x0     |
| cont_avg_conv   | 0   | R/W         | Continuous ADC average conversion enable.<br>When set high, start continuous ADC average conversions made of back-to-back single ADC average conversions.<br>Stop when <i>cont_avg_conv</i> is manually set to 0.                                                                                                                                                                                                                           | 0x0     |

1. Using RSSI in CSMA-CA mode has higher priority than ADC modes. ADC continuous average conversions has higher priority than ADC single average conversion if they are both started at the same time.  
Bit *single\_avg\_conv* is cleared when first conversion starts and therefore always returns 0 on a read operation.

### 9.4.13 Maximum Result in ADC Modes and When Using RSSI in CSMA-CA Modes

**Short Name:** ADC\_MAX

**Address:** 0x13B

**Always-On:** No

**Table 63 • ADC\_MAX**

| Field Name | Bit | Access | Description                                                                                                                                                                                            | Default |
|------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -          | 7   | R      | <Reserved>                                                                                                                                                                                             | 0x0     |
| adc_max    | 6:0 | R      | ADC maximum value.<br>In ADC modes, maximum value over the last $2^{adc\_pow\_n\_conv}$ conversions.<br>Using RSSI in CSMA-CA modes, maximum value over the last $2^{rssl\_pow\_n\_conv}$ conversions. | 0x00    |

### 9.4.14 Average Result in ADC Modes and When Using RSSI in CSMA-CA Modes

**Short Name:** ADC\_AVG

**Address:** 0x13C

**Always-On:** No

**Table 64 • ADC\_AVG**

| Field Name | Bit | Access | Description                                                                                                                                                                                            | Default |
|------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -          | 7   | R      | <Reserved>                                                                                                                                                                                             | 0x0     |
| adc_avg    | 6:0 | R      | ADC average value.<br>In ADC modes, average value over the last $2^{adc\_pow\_n\_conv}$ conversions.<br>Using RSSI in CSMA-CA modes, average value over the last $2^{rssl\_pow\_n\_conv}$ conversions. | 0x00    |

### 9.4.15 Trimmed RSSI Average at Completion of DC Restore Process in RSSI Detect Modes with CSMA Not Active

**Short Name:** ADC\_AVG\_TRMD\_PKT\_RSSI

**Address:** 0x13F

**Always-On:** No

**Table 65 • ADC\_AVG\_TRMD\_PKT\_RSSI**

| Field Name            | Bit | Access | Description                                                                                                                                                                                                                                                                                                                           | Default |
|-----------------------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -                     | 7   | R      | <Reserved>                                                                                                                                                                                                                                                                                                                            | 0x0     |
| adc_avg_trmd_pkt_rssi | 6:0 | R      | ADC trimmed RSSI average value at the completion of the DC restore.<br>In RSSI detect mode with CSMA not active, value of RSSI captured at the completion of the DC restore process.<br>Not used in ADC modes. For this to have any effect, the RSSI threshold register <b>ADC_RSSI_THRESH</b> must be set to a value greater than 0. | 0x00    |

### 9.4.16 IRQ Status

**Short Name:** IRQ0, IRQ1, and IRQ2

**Addresses:** 0x143, 0x144, and 0x145 (respectively)

**Always-On:** No

**Table 66 • IRQ0**

| Field Name      | Bit | Access | Description                                         | Default |
|-----------------|-----|--------|-----------------------------------------------------|---------|
| —               | 7:3 | R      | <Reserved>                                          | 0x0     |
| csma_done_irq   | 2   | CoR    | CSMA done IRQ status                                | 0x0     |
| rx_ack_done_irq | 1   | CoR    | RX acknowledgment process done IRQ status           | 0x0     |
| rx_pkt_done_irq | 0   | CoR    | RX nonacknowledgment packet process done IRQ status | 0x0     |

**Table 67 • IRQ1**

| Field Name       | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|------------------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| synth_rdy_irq    | 7   | CoR    | Synthesizer ready IRQ status                                                                                                                                                                                                                                                                                                                                                                                                                | 0x0     |
| trim_done_irq    | 6   | CoR    | Trim done interrupt status. All the trim routines (except the continuous frequency trim) have determinate duration and should result in this interrupt when all activated trim operations are complete.<br>Make sure all settings necessary for the trim are correct before trying again. See Section 7 Calibrations, page 40, for details of setup.                                                                                        | 0x0     |
| trim_fail_irq    | 5   | CoR    | Trimming and tune process failed interrupt status. This interrupt occurs whenever a trim ends up at one of its limits. It might not indicate a failure but generally does mean a failure of the trim for some reason.                                                                                                                                                                                                                       | 0x0     |
| adc_avg_done_irq | 4   | CoR    | ADC average done interrupt status.<br>In single ADC average conversion mode and continuous ADC average conversion mode, <i>adc_avg_done_irq</i> shall be generated every $2^{adc\_pow\_n\_conv}$ conversions.<br>Using RSSI in CSMA-CA modes, <i>adc_avg_done_irq</i> is not generated.                                                                                                                                                     | 0x0     |
| rssi_nosig_irq   | 3   | CoR    | RSSI no signal interrupt status. In single ADC average conversion mode and continuous ADC average conversion mode, <i>rssi_nosig_irq</i> is generated every $2^{adc\_pow\_n\_conv}$ conversions if RSSI input <i>rx_rssi</i> is selected and the RSSI average value is less than the selected threshold. When CSMA operation is active, the threshold is <i>ADC_CSMA_THRESH</i> . In other cases, the threshold is <i>ADC_RSSI_THRESH</i> . | 0x0     |

**Table 67 • IRQ1 (continued)**

| Field Name      | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default |
|-----------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| sync_detect_irq | 2   | CoR    | Frame synchronization detect IRQ status                                                                                                                                                                                                                                                                                                                                                                                                              | 0x0     |
| pream_det_irq   | 1   | CoR    | Preamble detect IRQ status. Goes high during receive when the preamble is detected.                                                                                                                                                                                                                                                                                                                                                                  | 0x0     |
| rssi_high_irq   | 0   | CoR    | RSSI high interrupt status. In single ADC average conversion mode and continuous ADC average conversion mode, <i>rssi_high_irq</i> is generated every $2^{adc\_pow\_n\_conv}$ conversions if RSSI input <i>rx_rssi</i> is selected and the RSSI average value is greater than or equal to the selected threshold. When CSMA operation is active, the threshold is <b>ADC_CSMA_THRESH</b> . In other cases, the threshold is <b>ADC_RSSI_THRESH</b> . | 0x0     |

**Table 68 • IRQ2**

| Field Name       | Bit | Access | Description                                                                                                                                                                                                                                                                                   | Default |
|------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| tx_ack_done_irq  | 7   | CoR    | TX acknowledgment process done                                                                                                                                                                                                                                                                | 0x0     |
| tx_pkt_done_irq  | 6   | CoR    | TX nonacknowledgment packet process done IRQ status                                                                                                                                                                                                                                           | 0x0     |
| pll_lock_err_irq | 5   | CoR    | PLL lock error IRQ status                                                                                                                                                                                                                                                                     | 0x0     |
| rx_hdr_rdy_irq   | 4   | CoR    | RX header / buffer ready IRQ status                                                                                                                                                                                                                                                           | 0x0     |
| rx_frm_pend_irq  | 3   | CoR    | Frame pending IRQ status. The is asserted for FP set in a packet and a subsequent packet is not received, a failed data request after retries, or a failed RX after TN and FP are both set on an acknowledgment packet. This IRQ on a node implies that a data request packet should be sent. | 0x0     |
| rx_pkt_rdy_irq   | 2   | CoR    | RX packet ready in RX buffer IRQ status                                                                                                                                                                                                                                                       | 0x0     |
| cmd_fail_irq     | 1   | CoR    | SPI MAC command fail IRQ status. Set on any packet error of any type, including packet timeout, but not necessarily frame sync timeout if it does not result in a packet timeout.                                                                                                             | 0x0     |
| cmd_done_irq     | 0   | CoR    | SPI MAC command complete IRQ status. The interrupt <i>cmd_done_irq</i> is the last interrupt to be asserted in a packet transaction, so it may be best to keep other interrupts on the node disabled and used as status that can be checked when <i>cmd_done_irq</i> is asserted.             | 0x0     |

### 9.4.17 Trim Command

**Short Name:** TRIM\_CMD  
**Address:** 0x147  
**Always-On:** No

**Table 69 • TRIM\_CMD**

| Field Name | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default |
|------------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —          | 7:4 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x0     |
| trim_cmd   | 3:0 | R/W    | A write to <i>trim_cmd</i> starts the trim indicated below:<br><ul style="list-style-type: none"> <li>• 0x1: current reference trim</li> <li>• 0x2: VCO full tune all modes</li> <li>• 0x3: VCO fine tune SAR in RX mode</li> <li>• 0x4: VCO fine tune SAR in TX PA off mode</li> <li>• 0x5: VCO fine tune periodic one-bit in TX PA on mode</li> <li>• 0x6: VCO amplitude trim</li> <li>• 0x7: frequency modulator deviation trim</li> <li>• 0x8: blocker peak detector offset trim</li> <li>• 0x9: LNA load tune</li> <li>• 0xA: antenna tune</li> <li>• 0xB: transconductor (IF filter, FM detector, and Gaussian filter) trim</li> <li>• 0xB: RC oscillator tune</li> <li>• Other: no function</li> </ul> | 0x0     |

### 9.4.18 LNA Trim Peak ADC Value

**Short Name:** LNA\_PEAK\_ADC  
**Address:** 0x14A  
**Always-On:** No

**Table 70 • LNA\_PEAK\_ADC**

| Field Name   | Bit | Access | Description                                                    | Default |
|--------------|-----|--------|----------------------------------------------------------------|---------|
| —            | 7:5 | R      | <Reserved>                                                     | 0x0     |
| lna_peak_adc | 4:0 | R      | Peak (highest) value from the ADC during the latest LNA tuning | 0x00    |

### 9.4.19 Antenna Trim Peak ADC Value

**Short Name:** ANT\_PEAK\_ADC  
**Address:** 0x14B  
**Always-On:** No

**Table 71 • ANT\_PEAK\_ADC**

| Field Name   | Bit | Access | Description                                                                                                                                                                                          | Default |
|--------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —            | 7:5 | R      | <Reserved>                                                                                                                                                                                           | 0x0     |
| ant_peak_adc | 4:0 | R      | Peak (highest) value from the ADC during the latest antenna tuning<br><b>Note:</b> It is recommended that the default value (or reset value) be used. Always write 0x00 (or 5'b00000) to these bits. | 0x00    |

## 9.5 Always-On System Bus Control and Status Registers

Addresses 0x200 to 0x29F comprise the always-on system bus control and status registers, which use long addressing mode.

These registers contain information that is essential for the wake-up process and are therefore powered directly from VSUP (that is, these registers are always-on registers).

### 9.5.1 VCO Frequency Tune Value for RX Mode

**Short Name:** VCO\_FRQ\_RX\_TRIM (comprising VCO\_FRQ\_RX\_TRIM\_L and VCO\_FRQ\_RX\_TRIM\_H)

**Addresses:** Two-byte little-endian starting at 0x201 (comprising 0x201 and 0x202, respectively)

**Always-On:** Yes

**Table 72 • VCO\_FRQ\_RX\_TRIM**

| Field Name | Bit   | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default |
|------------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —          | 15:11 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x00    |
| vco_frq_rx | 10:0  | R/W    | VCO frequency tune value for the RX mode<br><br><b>Note:</b> <i>vco_frq_trim</i> is directly driven by value <i>vco_frq_rx</i> when internal signals $\{pa\_tx\_en, rfmac\_synth\_tx\}$ =2'b00 or 2'b10. So, in order to prevent intermediary 11-bit values from controlling the VCO input, <i>vco_frq_trim</i> drives a new value of <i>vco_frq_rx</i> only when the MSB is written (that is, VCO_FRQ_RX_TRIM_H at address 0x202). This means that the LSB (in VCO_FRQ_RX_TRIM_L at address 0x201) must be written first, then the MSB to update the 11-bit VCO input. | 0x088   |

### 9.5.2 VCO Frequency Tune Value for TX mode (with modulation off) with Power Amplifier Off (only bias on)

**Short Name:** VCO\_FRQ\_TXPAOFF\_TRIM (comprising VCO\_FRQ\_TXPAOFF\_TRIM\_L and VCO\_FRQ\_TXPAOFF\_TRIM\_H)

**Addresses:** Two-byte little-endian starting at 0x203 (comprising 0x203 and 0x204, respectively)

**Always-On:** Yes

**Table 73 • VCO\_FRQ\_TXPAOFF\_TRIM**

| Field Name      | Bit   | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|-----------------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —               | 15:11 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| vco_frq_txpaoff | 10:0  | R/W    | VCO frequency tune value for the TX PA off mode. It is with modulation off with the power amplifier off (only bias on).<br><br><b>Note:</b> <i>vco_frq_trim</i> is directly driven by value <i>vco_frq_txpaoff</i> when internal signals $\{pa\_tx\_en, rfmac\_synth\_tx\}$ =2'b01. So, in order to prevent intermediary 11-bit values from controlling the VCO input, <i>vco_frq_trim</i> drives a new value of <i>vco_frq_txpaoff</i> only when the MSB is written (that is, VCO_FRQ_TXPAOFF_TRIM_H at address 0x204). This means that the LSB (in VCO_FRQ_TXPAOFF_TRIM_L at address 0x203) must be written first, then the MSB to update the 11-bit VCO input. | 0x097   |

### 9.5.3 VCO Frequency Tune Value for TX mode (with modulation off) with Power Amplifier On

**Short Name:** VCO\_FRQ\_TXPAON\_TRIM (comprising VCO\_FRQ\_TXPAON\_TRIM\_L and VCO\_FRQ\_TXPAON\_TRIM\_H)

**Addresses:** Two-byte little-endian starting at 0x205 (comprising 0x205 and 0x206, respectively)

**Always-On:** Yes

**Table 74 • VCO\_FRQ\_TXPAON\_TRIM**

| Field Name     | Bit   | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default |
|----------------|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —              | 15:11 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x00    |
| vco_frq_txpaon | 10:0  | R/W    | VCO frequency tune value for the TX PA on mode. It is with modulation off with the power amplifier on.<br><br><b>Note:</b> <i>vco_frq_trim</i> is directly driven by value <i>vco_frq_txpaon</i> when internal signals $\{pa\_tx\_en, rfmac\_synth\_tx\}$ =2'b11. So, in order to prevent intermediary 11-bit values from controlling the VCO input, <i>vco_frq_trim</i> drives a new value of <i>vco_frq_txpaon</i> only when the MSB is written (that is, VCO_FRQ_TXPAON_TRIM_H at address 0x208). This means that the LSB (in VCO_FRQ_TXPAON_TRIM_L at address 0x205) must be written first, then the MSB to update the 11-bit VCO input. | 0x498   |

### 9.5.4 VCO Frequency Tune Value at Output of Multiplexer

**Short Name:** VCO\_FRQ\_TRIM (comprising VCO\_FRQ\_TRIM\_L and VCO\_FRQ\_TRIM\_H)

**Addresses:** Two-byte little-endian starting at 0x207 (comprising 0x207 and 0x208, respectively)

**Always-On:** Yes

**Table 75 • VCO\_FRQ\_TRIM**

| Field Name   | Bit   | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
|--------------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —            | 15:11 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x00    |
| vco_frq_trim | 10:0  | R      | Frequency tune port at input to VCO (read-only)<br><br><b>Note:</b> <i>vco_frq_trim</i> is directly driven by value <i>vco_frq_rx</i> when internal signals $\{pa\_tx\_en, rfmac\_synth\_tx\}$ =2'b00 or 2'b10, by value <i>vco_frq_txpaoff</i> when internal signals $\{pa\_tx\_en, rfmac\_synth\_tx\}$ =2'b01 and by value <i>vco_frq_txpaon</i> when internal signals $\{pa\_tx\_en, rfmac\_synth\_tx\}$ =2'b11. See programming details in for <i>vco_frq_rx</i> , <i>vco_frq_txpaoff</i> , and <i>vco_frq_txpaon</i> . | 0x_FF   |

## 9.5.5 VCO Frequency Band Trim Value

**Short Name:** VCO\_FRQ\_BAND\_TRIM  
**Address:** 0x209  
**Always-On:** Yes

**Table 76 • VCO\_FRQ\_BAND\_TRIM**

| Field Name        | Bit | Access | Description                   | Default |
|-------------------|-----|--------|-------------------------------|---------|
| —                 | 7:4 | R      | <Reserved>                    | 0x0     |
| vco_frq_band_trim | 3:0 | R/W    | VCO frequency band trim value | 0x7     |

## 9.5.6 Modulator DAC Trim Value

**Short Name:** MOD\_DAC\_TRIM  
**Address:** 0x20A  
**Always-On:** Yes

**Table 77 • MOD\_DAC\_TRIM**

| Field Name   | Bit | Access | Description                  | Default |
|--------------|-----|--------|------------------------------|---------|
| —            | 7:5 | R      | <Reserved>                   | 0x0     |
| mod_dac_trim | 4:0 | R/W    | VCO FSK deviation trim value | 0x00    |

## 9.5.7 Frequency Deviation Trim Target

**Short Name:** FSK\_DEV\_TRIM\_TARGET  
**Address:** 0x20C  
**Always-On:** Yes

**Table 78 • FSK\_DEV\_TRIM\_TARGET**

| Field Name          | Bit | Access | Description                                                 | Default |
|---------------------|-----|--------|-------------------------------------------------------------|---------|
| fsk_dev_trim_target | 7:0 | R/W    | FSK deviation trim target (default target is mod index 0.5) | 0x66    |

1. For recommended initial register setting, see "Recommended Value" column of [Table 35](#), page 53. The recommended value for this register assumes a 200-bit/s bit rate and a 24-MHz crystal.

## 9.5.8 RC Oscillator Frequency Trim Value

**Short Name:** RCOSC\_FREQ\_TRIM  
**Address:** 0x20D  
**Always-On:** Yes

**Table 79 • RCOSC\_FREQ\_TRIM**

| Field Name      | Bit | Access | Description                        | Default |
|-----------------|-----|--------|------------------------------------|---------|
| —               | 7:6 | R      | <Reserved>                         | 0x0     |
| rcosc_freq_trim | 5:0 | R/W    | RC oscillator frequency trim value | 0x00    |

## 9.5.9 LNA Frequency Trim

**Short Name:** LNA\_FRQ\_TRIM

**Address:** 0x20E

**Always-On:** Yes

**Table 80 • LNA\_FRQ\_TRIM**

| Field Name   | Bit | Access | Description                                             | Default |
|--------------|-----|--------|---------------------------------------------------------|---------|
| –            | 7:5 | R      | <Reserved>                                              | 0x0     |
| Ina_frq_trim | 4:0 | R/W    | Binary trimming code for tuning LNA resonance frequency | 0x16    |

1. The LNA load is an inductor that should be tuned to obtain the highest gain from the LNA. Higher trim values represent higher capacitance and therefore lower resonant frequency. Use the trim and tune block to automatically trim. See Section [7.5.7 LNA Load Tuning](#), page 49.

## 9.5.10 Manual LNA Trim Value

**Short Name:** LNA\_BIAS\_TRIM

**Address:** 0x20F

**Always-On:** Yes

**Table 81 • LNA\_BIAS\_TRIM**

| Field Name    | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                           | Default |
|---------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| –             | 7:6 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                            | 0x0     |
| Ina_bias_trim | 5:2 | R/W    | Binary trimming code for LNA bias current.<br>Higher gain LNA modes (decimal 4 to 15) should be used only when Ina_gain_ctrl is set to highest gain.<br><b>Note:</b> For normal LNA gain, it is recommended that the default value of 0x1 (or 4'b001) be used.<br>For high LNA gain, it is recommended that 0xA (or 4'b1010) be written to these bits upon initialization and after every chip reset. | 0x1     |
| mix_bias_trim | 1:0 | R/W    | Binary trimming code for mixer bias current                                                                                                                                                                                                                                                                                                                                                           | 0x1     |

1. LNA and mixer biases can be set higher to get more gain on the receiver front-end but more current is used. The default is recommended when trying to stay below 2mA for chip current consumption.

## 9.5.11 IREF Resistor Trim Value

**Short Name:** IREF\_TRIM

**Address:** 0x210

**Always-On:** Yes

**Table 82 • IREF\_TRIM**

| Field Name | Bit | Access | Description       | Default |
|------------|-----|--------|-------------------|---------|
| –          | 7:5 | R      | <Reserved>        | 0x0     |
| iref_trim  | 4:0 | R/W    | Resistor trim bus | 0x0F    |

1. A higher trim code means a higher resistor value (and lower current).

## 9.5.12 Crystal Oscillator Trim Value

**Short Name:** XO\_TRIM

**Address:** 0x211

**Always-On:** Yes

**Table 83 • XO\_TRIM**

| Field Name | Bit | Access | Description                  | Default |
|------------|-----|--------|------------------------------|---------|
| –          | 7:6 | R      | <Reserved>                   | 0x0     |
| xo_trim    | 5:0 | R/W    | Crystal oscillator trim code | 0x26    |

1. A higher trim code means higher frequency.

## 9.5.13 Gaussian Filter Trim Value

**Short Name:** GAUS\_TRIM

**Address:** 0x214

**Always-On:** Yes

**Table 84 • GAUS\_TRIM**

| Field Name   | Bit | Access | Description                   | Default |
|--------------|-----|--------|-------------------------------|---------|
| gaus_gm_trim | 7:0 | R/W    | Transconductor tuning voltage | 0x62    |

1. Filter width BT=0.7, so there may be no need to overwrite calibration value with 0xFF.

## 9.5.14 VCO Amplitude Trim Value

**Short Name:** VCO\_AMP\_TRIM

**Address:** 0x215

**Always-On:** Yes

**Table 85 • VCO\_AMP\_TRIM**

| Field Name   | Bit | Access | Description           | Default |
|--------------|-----|--------|-----------------------|---------|
| –            | 7:6 | R      | <Reserved>            | 0x0     |
| vco_amp_trim | 5:0 | R/W    | Current level control | 0x3F    |

1. Higher trim value means a larger amplitude of oscillations in the VCO. The default is at the highest level to make sure the VCO starts. The trim and tune block should be used to trim the amplitude to 300mV, 350mV, 400mV or 450mV.

## 9.5.15 Antenna Trim Value

**Short Name:** ANT\_TRIM

**Address:** 0x216

**Always-On:** Yes

**Table 86 • ANT\_TRIM**

| Field Name | Bit | Access | Description                                        | Default |
|------------|-----|--------|----------------------------------------------------|---------|
| –          | 7:5 | R      | <Reserved>                                         | 0x0     |
| ant_trim   | 4:0 | R/W    | Binary code for antenna resonance frequency tuning | 0x16    |

1. This trim is for the peak detector DC offset. Higher values cause positive offset. The trim and tune block should be used to automatically trim this block. See Section [7.5.6 Antenna Tuning](#), page 48.

### 9.5.16 RX Peak Detector Trim Value

**Short Name:** RX\_PKDET\_TRIM  
**Address:** 0x217  
**Always-On:** Yes

**Table 87 • RX\_PKDET\_TRIM**

| Field Name    | Bit | Access | Description                                          | Default |
|---------------|-----|--------|------------------------------------------------------|---------|
| —             | 7:5 | R      | <Reserved>                                           | 0x0     |
| rx_pkdet_trim | 4:0 | R/W    | Binary trimming code for peak detector scale (rng=0) | 01001   |

### 9.5.17 Initial DC Correct/AFC Value

**Short Name:** DC\_CNTR\_TRIM  
**Address:** 0x218  
**Always-On:** Yes

**Table 88 • DC\_CNTR\_TRIM**

| Field Name   | Bit | Access | Description                                     | Default |
|--------------|-----|--------|-------------------------------------------------|---------|
| dc_cntr_trim | 7:0 | R/W    | Initial DC correct / AFC center (trimmed) value | 0x62    |

1. This value, [written by the FM detector trim function], represents the trimming needed to take out process variations but not offsets due to transmitter carrier frequency offset.

### 9.5.18 IRQ Enables

**Short Name:** IRQ\_EN0, IRQ\_EN1, and IRQ\_EN2  
**Addresses:** 0x219, 0x21A, and 0x21B (respectively)  
**Always-On:** Yes

**Table 89 • IRQ\_EN0**

| Field Name         | Bit | Access | Description                               | Default |
|--------------------|-----|--------|-------------------------------------------|---------|
| —                  | 7:4 | R/W    | <Reserved>                                | 0x00    |
| spi_rdy_irq_en     | 3   | R/W    | SPI ready IRQ enable                      | 0x1     |
| csma_done_irq_en   | 2   | R/W    | CSMA done IRQ enable                      | 0x0     |
| rx_ack_done_irq_en | 1   | R/W    | RX acknowledgment process done IRQ enable | 0x0     |
| rx_pkt_done_irq_en | 0   | R/W    | RX packet process done IRQ enable         | 0x0     |

**Table 90 • IRQ\_EN1**

| Field Name          | Bit | Access | Description                                       | Default |
|---------------------|-----|--------|---------------------------------------------------|---------|
| synth_rdy_irq_en    | 7   | R/W    | Synthesizer ready IRQ enable                      | 0x0     |
| trim_done_irq_en    | 6   | R/W    | Trim done interrupt enable                        | 0x0     |
| trim_fail_irq_en    | 5   | R/W    | Trimming and tune process failed interrupt enable | 0x0     |
| adc_avg_done_irq_en | 4   | R/W    | ADC average done interrupt enable                 | 0x0     |
| rssi_nosig_irq_en   | 3   | R/W    | RSSI no signal interrupt enable                   | 0x0     |

**Table 90 • IRQ\_EN1 (continued)**

| Field Name         | Bit | Access | Description                                   | Default |
|--------------------|-----|--------|-----------------------------------------------|---------|
| sync_detect_irq_en | 2   | R/W    | Frame synchronization detect interrupt enable | 0x0     |
| pream_det_irq_en   | 1   | R/W    | Preamble detect IRQ enable                    | 0x0     |
| rssi_high_irq_en   | 0   | R/W    | RSSI high interrupt enable                    | 0x0     |

**Table 91 • IRQ\_EN2**

| Field Name          | Bit | Access | Description                                 | Default |
|---------------------|-----|--------|---------------------------------------------|---------|
| tx_ack_done_irq_en  | 7   | R/W    | TX acknowledgment done IRQ enable           | 0x0     |
| tx_pkt_done_irq_en  | 6   | R/W    | TX nonacknowledgment packet done IRQ enable | 0x0     |
| pll_lock_err_irq_en | 5   | R/W    | PLL lock error IRQ enable                   | 0x0     |
| rx_hdr_rdy_irq_en   | 4   | R/W    | RX header / buffer ready IRQ enable         | 0x0     |
| rx_frm_pend_irq_en  | 3   | R/W    | RX frame pending IRQ enable                 | 0x0     |
| rx_pkt_rdy_irq_en   | 2   | R/W    | RX packet ready in buffer IRQ enable        | 0x0     |
| cmd_fail_irq_en     | 1   | R/W    | SPI command fail IRQ enable                 | 0x0     |
| cmd_done_irq_en     | 0   | R/W    | SPI command done IRQ enable                 | 0x0     |

## 9.5.19 Pad Enable

**Short Name:** PAD\_EN0

**Addresses:** 0x21C

**Always-On:** Yes

**Table 92 • PAD\_EN0**

| Field Name | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default |
|------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| gpio_oen   | 7:4 | R/W    | GPIO pin output enable. Tristate control of the <b>GP3..0</b> pins. 0x0<br>For each bit, setting to 1 means signal is driven out on GPIO and setting to 0 means pin is tristated (high impedance). <ul style="list-style-type: none"> <li>• If <b>PAD_EN0[7]</b> is 1 then pin <b>GP3</b> is enabled</li> <li>• If <b>PAD_EN0[6]</b> is 1 then pin <b>GP2</b> is enabled</li> <li>• If <b>PAD_EN0[5]</b> is 1 then pin <b>GP1</b> is enabled. Write 0 to this bit if <b>GP1</b> is used for TX data input (that is, if <b>PAD_EN0[1]</b> is 1)</li> <li>• If <b>PAD_EN0[4]</b> is 1 then pin <b>GP0</b> is enabled</li> </ul> | 0x0     |
| gpio_ien   | 3:0 | R/W    | GPIO pin input enable. <ul style="list-style-type: none"> <li>• 0000: Input is disabled for all <b>GP3..0</b> pins, which are logically gated off to prevent driving signals into the internal logic.</li> <li>• 0010: Used in raw bit mode to enable TX data input on <b>GP1</b>.</li> <li>• Others: not supported</li> </ul>                                                                                                                                                                                                                                                                                                | 0x0     |

## 9.5.20 TX Control

**Short Name:** TX\_CTRL0, TX\_CTRL1, and TX\_CTRL2

**Addresses:** 0x21E, 0x21F, and 0x220 (respectively)

**Always-On:** Yes

**Table 93 • TX\_CTRL0**

| Field Name    | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                      | Default |
|---------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| pkt_retry_max | 7:4 | R/W    | Maximum number of packet retries per transaction sequence. Valid for all packet modes.                                                                                                                                                                                                                                                           | 0x1     |
| hme_enc_en    | 3   | R/W    | Enable hamming encoding on TX. Valid for all packet modes.                                                                                                                                                                                                                                                                                       | 0x1     |
| tx_mode       | 2:0 | R/W    | Transmit packet mode: <ul style="list-style-type: none"> <li>000: TX in raw bit mode, no frame sync, no length</li> <li>001: TX in raw packet mode, fixed length or no length</li> <li>010: TX in user packet mode, length in PHY header</li> <li>011: Z-Star packet mode, normal frame format</li> <li>1XX: Not supported (reserved)</li> </ul> | 0x3     |

**Table 94 • TX\_CTRL1**

| Field Name      | Bit | Access | Description                                                                                                                                                                                                                                     | Default |
|-----------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -               | 7   | R      | <Reserved>                                                                                                                                                                                                                                      | 0x0     |
| tx_reserved_1   | 6   | R/W    | Reserved TX MAC header bit, transmitted in TX MAC header in Z-Star packet mode. Always write 0 to this bit.                                                                                                                                     | 0x0     |
| tx_pkt_frm_pend | 5   | R/W    | For Z-Star packet mode, set TX frame pending (FP) bit transmitted in MAC header for nonacknowledgment packets. Used only for TX frames, nonacknowledgment, non-data-request. TX1 and TX2                                                        | 0x0     |
| tx_ack_frm_pend | 4   | R/W    | For Z-Star packet mode, set TX frame pending (FP) bit for acknowledgment packets. Used only for acknowledgment frame of RX command, TX_ACK1                                                                                                     | 0x0     |
| tx_only         | 3   | R/W    | Transmit once only, and then exit. Valid for all packet modes.<br><b>Note:</b> Typically set to 1 on hub.                                                                                                                                       | 0x0     |
| tx_null_frm     | 2   | R/W    | Send null frame in response to data request. Valid only for TX frame of RX command, TX2.<br>Setting this bit automatically sets the AR bit in the TX MAC header to 0 in Z-Star packet mode.                                                     | 0x0     |
| tx_tn           | 1   | R/W    | For Z-Star packet mode, set TX transmit now (TN) bit in TX MAC header, TX packet immediately after current TX. Used only for acknowledgment frame of RX command, TX_ACK1. This is the same bit location as the acknowledgment request (AR) bit. | 0x0     |
| tx_ack_req      | 0   | R/W    | For Z-Star packet mode, set TX acknowledgment request (AR) bit in TX MAC header. Not used in acknowledgment frame, data request frame, and null data frame. Used in TX1 and TX2                                                                 | 0x1     |

1. Note that TX1, TX2, TX\_ACK1, and TX\_ACK2 correspond to the state machine diagram shown in Figure 14, page 23.

**Table 95 • TX\_CTRL2**

| Field Name        | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default |
|-------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| data_req_retry_en | 7   | R/W    | For Z-Star packet mode, enable retries on data request when RX packet fails in RX2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x1     |
| –                 | 6   | R/W    | <Internal bit; always write 0 to this bit>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x0     |
| tx_auto_hdr       | 5   | R/W    | <p>For Z-Star packet mode, automatic PHY/MAC header generation. By default, auto header is always used in Z-Star for nonacknowledgment, nonnull, and non-data-request packets. For acknowledgments, null and data request packets, auto-header generation is always used. The only exception is if these packet types are sent in TX1 with a TX command and <i>tx_auto_hdr</i> = 0.</p> <p>For data request packets and acknowledgment packet in TX_ACK2: payload=0, AR=0, FP=0, FSN=last RX FSN+1 for data request or last RX FSN for acknowledgment, SFRM=0, fcs_len=2.</p> <p>For acknowledgment packets in TX_ACK1: payload=0, FP=tx_ack_frm_pend, AR=tx_tn, FSN=RX FSN, SFRM=0, fcs_len=2.</p> <p>For null packets, payload=0, FP=0, AR=0, FSN=0, FRM=DATA, SFRM=0, fcs_len=2.</p> <p>For nonacknowledgment, nonnull, non-data-request packets:</p> <ul style="list-style-type: none"> <li>• If <i>tx_auto_hdr</i> = 1, all info comes from always-on registers</li> <li>• If <i>tx_auto_hdr</i> = 0, all info comes from TX buffer, except length</li> </ul> <p>This bit is valid only for Z-Star packet mode as described above and for user packet mode with the following settings. For user packet mode with an eight-bit frame length field and one byte of PHY header and no offset, setting this bit will automatically generate the PHY header on TX.</p> | 0x1     |

- 
1. Note that TX1, TX2, TX\_ACK1, and TX\_ACK2 correspond to the state machine diagram shown in [Figure 14](#), page 23.

**Table 95 • TX\_CTRL2 (continued)**

| Field Name   | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default |
|--------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| tx_forever   | 4   | R/W    | Restart transmit operation after current transaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x0     |
| tx_secure_en | 3   | R/W    | In Z-Star packet mode, set security/encryption bit in TX MAC header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x0     |
| tx_fcs_len   | 2:0 | R/W    | TX FCS length (frame check sequence) CRC byte count in TX packet <ul style="list-style-type: none"> <li>• 000: No FCS (valid for all packet modes except Z-Star)</li> <li>• 001: One-byte FCS (valid for all packet modes except Z-Star)</li> <li>• 010: Two-byte FCS (valid for all packet modes including Z-Star)</li> <li>• 011: Three-byte FCS (valid for all packet modes except Z-Star)</li> <li>• 100: Four-byte FCS (valid for all packet modes including Z-Star)</li> </ul> In Z-Star packet mode, bit [2] is the FCS length bit transmitted in the PHY header.<br>In user and raw packet mode, the <i>tx_fcs_len</i> for the transmitting device must be equal to the <i>rx_fcs_len</i> on the receiving device. | 0x2     |

1. Note that TX1, TX2, TX\_ACK1, and TX\_ACK2 correspond to the state machine diagram shown in [Figure 14](#), page 23.

### 9.5.21 TX Frame-Packet Buffer Length

**Short Name:** TX\_BUF\_LEN (comprising TX\_BUF\_LEN0 and TX\_BUF\_LEN1)

**Addresses:** Two-byte little-endian starting at 0x221 (comprising 0x221 and 0x222, respectively)

**Always-On:** Yes

**Table 96 • TX\_BUF\_LEN**

| Field Name | Bit  | Access | Description                                                                                                                                                                          | Default |
|------------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| –          | 15:9 | R      | <Reserved>                                                                                                                                                                           | 0x00    |
| tx_buf_len | 8:0  | R/W    | TX frame-packet buffer length. Number of bytes in transmit buffer for transmission. This value is automatically updated on a write packet command if <i>tx_auto_len_en</i> equals 1. | 0x00    |

### 9.5.22 TX Frame Control for Z-Star Packet Mode

**Short Name:** TX\_FRM\_CTRL

**Address:** 0x223

**Always-On:** Yes

**Table 97 • TX\_FRM\_CTRL**

| Field Name    | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default |
|---------------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| tx_addr_mode  | 7   | R/W    | Addressing mode. Controls bit setting in TX MAC header, and address insertion into TX MAC header. <ul style="list-style-type: none"> <li>• 0: Short addressing mode</li> <li>• 1: Long addressing mode</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| tx_reserved_0 | 6   | R/W    | Reserved TX MAC header bit, transmitted in MAC header. Always write 0 to this bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x0     |
| tx_frm_stype  | 5:3 | R/W    | Frame subtype for TX MAC header; see below for "Frame Type - Frame Subtype" definition in description of field <i>tx_frm_type</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| tx_frm_type   | 2:0 | R/W    | Frame type setting for TX MAC header:<br><b>Frame Type - Frame Subtype : Description</b> <ul style="list-style-type: none"> <li>• 000 - 000 : Beacon frame</li> <li>• 001 - xxx : Data frame (default value)</li> <li>• 010 - 000 : Acknowledgment frame</li> <li>• 011 - 001 : Association request frame</li> <li>• 011 - 010 : Association response frame</li> <li>• 011 - 011 : Disassociation request frame</li> <li>• 011 - 100 : Data request frame</li> <li>• 011 - 111 : Beacon request frame</li> <li>• 100 - 000 : Channel table request frame</li> <li>• 100 - 001 : Channel table frame</li> <li>• 100 - 010 : Channel change command frame</li> <li>• 100 - 011 : Link quality request frame</li> <li>• 100 - 100 : Link quality data frame</li> </ul> | 0x1     |

### 9.5.23 TX Frame Sequence Number for Z-Star Packet Mode

**Short Name:** TX\_FRM\_SEQ\_NO

**Address:** 0x224

**Always-On:** Yes

**Table 98 • TX\_FRM\_SEQ\_NO**

| Field Name    | Bit | Access | Description                                                                                                                                                                                   | Default |
|---------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -             | 7:4 | R      | <Reserved>                                                                                                                                                                                    | 0x0     |
| tx_frm_seq_no | 3:0 | R/W    | TX frame sequence number setting for TX MAC header for nonacknowledgment and non-data-request frames. This may be autoincremented by the SPI command if not disabled with tx_fsn_incr_dis = 1 | 0x0     |

## 9.5.24 RX Control for Z-Star Packet Mode

**Short Name:** RX\_CTRL0, RX\_CTRL1, and RX\_CTRL2

**Addresses:** 0x225, 0x226, and 0x227 (respectively)

**Always-On:** Yes

**Table 99 • RX\_CTRL0**

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                     | Default |
|----------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| match_ntwrk    | 7   | R/W    | Must match network ID on long addressing                                                                                                                                                                                                                                                                                                        | 0x0     |
| match_lsrc     | 6   | R/W    | Must match source address on long addressing                                                                                                                                                                                                                                                                                                    | 0x0     |
| shrt_brdcst_en | 5   | R/W    | Enable receiving short-address broadcast. Unmasked portion of network ID must match.                                                                                                                                                                                                                                                            | 0x0     |
| lng_brdcst_en  | 4   | R/W    | Enable receiving long-address broadcast. Network ID is not used for matching.<br>Set to 1 on the hub.                                                                                                                                                                                                                                           | 0x0     |
| hmd_dec_en     | 3   | R/W    | Enable hamming decoding on receiver.                                                                                                                                                                                                                                                                                                            | 0x1     |
| rx_mode        | 2:0 | R/W    | Receive packet mode: <ul style="list-style-type: none"> <li>000: RX in raw bit mode, no frame sync, no length</li> <li>001: RX in raw packet mode, fixed length or no length</li> <li>010: RX in user packet mode, length in PHY header</li> <li>011: Z-Star packet mode, normal frame format</li> <li>1XX: Not supported (reserved)</li> </ul> | 0x3     |

**Table 100 • RX\_CTRL1**

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                                                                                  | Default |
|----------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -              | 7   | R/W    | <Internal bit; always write 0 to this bit>                                                                                                                                                                                                                                                                   | 0x0     |
| rx_only        | 6   | R/W    | Receive once only, then exit.                                                                                                                                                                                                                                                                                | 0x0     |
| dup_frm_irq_en | 5   | R/W    | Enable rx_pkt_rdy interrupt on duplicate frame. Otherwise, duplicate packets do not generate the rx_pkt_rdy IRQ.<br><b>Note:</b> Set to 1 on the hub.<br><b>Note:</b> This is not an interrupt enable for rx_pkt_rdy IRQ. It only enables rx_pkt_rdy IRQ to be generated, if enabled, on a duplicate packet. | 0x0     |

**Table 100 • RX\_CTRL1 (continued)**

| Field Name | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default |
|------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| auto_fp_en | 4   | R/W    | Enable auto frame pending response. If TN and FP = 1 in RX_ACK1, then this enables the device to receive the packet (RX2). Otherwise, it exits.                                                                                                                                                                                                                                                                                                                                                  | 0x1     |
| rx_forever | 3   | R/W    | Receive continuously. Upon exit, return to receive RX1. This setting disables rx_timeout in RX1.<br>Set to 1 on the hub.                                                                                                                                                                                                                                                                                                                                                                         | 0x0     |
| rx_fcs_len | 2:0 | R/W    | RX FCS (frame check sequence) byte count in PHY_PKT mode: <ul style="list-style-type: none"> <li>• 000: no FCS (not valid for Z-Star)</li> <li>• 001: 1 byte FCS (not valid for Z-Star)</li> <li>• 010: 2 byte FCS (valid for Z-Star)</li> <li>• 011: 3 byte FCS (not valid for Z-Star)</li> <li>• 100: 4 bytes FCS (valid for Z-Star)</li> </ul> In user and raw packet mode, the <i>tx_fcs_len</i> for the transmitting device must be equal to the <i>rx_fcs_len</i> on the receiving device. | 0x2     |

**Table 101 • RX\_CTRL2**

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                                                     | Default |
|----------------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| pkt_cntr_en    | 7   | R/W    | Enable packet counters to be incremented in the always-on section. This includes all the packet statistic counters.                                                                                                                                                             | 0x1     |
| rx_hdr_rdy_en  | 6   | R/W    | Buffer threshold pulse enable, used to generate <i>rx_hdr_rdy_irq</i> . Allows generating an interrupt when the RX buffer reaches the specified level of fullness, as defined by <i>rx_hdr_thresh</i> . To generate the IRQ, the <i>rx_hdr_rdy_irq_en</i> bit must also be set. | 0x0     |
| rx_ignore_addr | 5   | R/W    | Ignore source, destination and network address for packet reception. If set, the address match is not required for good packet detection.                                                                                                                                       | 0x0     |
| phdr_in_crc    | 4   | R/W    | Include PHY header in user packet CRC calculation. Otherwise, the CRC calculation starts after the PHY header.                                                                                                                                                                  | 0x0     |
| exit_data_req  | 3   | R/W    | Exit RX on data request. If a data request packet is received in RX1, this bit forces an exit. Otherwise, it continues to TX2.                                                                                                                                                  | 0x0     |

**Table 101 • RX\_CTRL2 (continued)**

| Field Name         | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                           | Default |
|--------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| wr_rx_payload_only | 2   | R/W    | Write payload only to RX buffer. Setting this bit to 1 omits the PHY header, MAC header, and CRC remainder from being written to the RX buffer. If this bit is cleared then the entire packet, minus preamble and frame sync, is written to the RX buffer.<br><br>Set to 0 on hub if it is better for the hub to write the header into the TX buffer. | 0x1     |
| rx_phdr_len        | 1   | R/W    | PHY header length in non-Z-Star packet mode for RX packets:<br>• 0: One byte<br>• 1: Two bytes                                                                                                                                                                                                                                                        | 0x0     |
| rx_pkt_len_msb     | 0   | R/W    | Bit ordering of packet length field in RX PHY header, Set to 1 for MSB first                                                                                                                                                                                                                                                                          | 0x0     |

## 9.5.25 Address Mask

**Short Name:** ADDR\_MASK (comprising ADDR\_MASK0 and ADDR\_MASK1)

**Addresses:** Two-byte little-endian starting with 0x229 (comprising 0x229 and 0x22A, respectively)

**Always-On:** Yes

**Table 102 • ADDR\_MASK**

| Field Name | Bit  | Access | Description                                                                                                                                                               | Default |
|------------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| addr_mask  | 15:0 | R/W    | Address mask. Mask for received source ID in MAC header, if 1, bit used, if 0, bit ignored for address match and qualification.<br><br><b>Note:</b> Set to 0xFF00 on hub. | 0xFFFF  |

## 9.5.26 RX Buffer Length

**Short Name:** RX\_FRM\_LEN (comprising RX\_FRM\_LEN0 and RX\_FRM\_LEN1)

**Addresses:** Two-byte little-endian starting with 0x22B (comprising 0x22B and 0x22C, respectively)

**Always-On:** Yes

**Table 103 • RX\_FRM\_LEN**

| Field Name | Bit  | Access | Description                                                                                                                                                                                                     | Default |
|------------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —          | 15:9 | R      | <Reserved>                                                                                                                                                                                                      | 0x00    |
| rx_frm_len | 8:0  | R/W    | RX frame length. Includes headers and CRC in length. This is used to terminate packets in raw packet mode, and can be dynamically updated from the SPI during packet reception to set the length of the packet. | 0x00    |

### 9.5.27 RX Buffer Write Threshold

**Short Name:** RX\_HDR\_THRESH  
**Address:** 0x22D  
**Always-On:** Yes

**Table 104 • RX\_HDR\_THRESH**

| Field Name    | Bit | Access | Description                                                                                                                                    | Default |
|---------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| rx_hdr_thresh | 7:0 | R/W    | RX buffer fullness threshold for <i>rx_hdr_rdy_irq</i> . Determines the number of bytes written to the RX buffer before the IRQ status is set. | 0x00    |

### 9.5.28 Network ID

**Short Name:** NETWORK\_ID  
**Address:** 0x22E  
**Always-On:** Yes

**Table 105 • NETWORK\_ID**

| Field Name | Bit | Access | Description                                              | Default |
|------------|-----|--------|----------------------------------------------------------|---------|
| network_id | 7:0 | R/W    | Network ID, should match for both devices unless masked. | 0x00    |

### 9.5.29 Device Short ID: Address of This Device

**Short Name:** DEVICE\_SID  
**Address:** 0x22F  
**Always-On:** Yes

**Table 106 • DEVICE\_SID**

| Field Name | Bit | Access | Description                                                                                                          | Default |
|------------|-----|--------|----------------------------------------------------------------------------------------------------------------------|---------|
| device_sid | 7:0 | R/W    | Device short ID/address of this device<br>Device ID = source ID on TX side,<br>Device ID = Destination ID on RX side | 0x00    |

### 9.5.30 Short ID: Address of Other Device

**Short Name:** OTHER\_SID  
**Address:** 0x230  
**Always-On:** Yes

**Table 107 • OTHER\_SID**

| Field Name | Bit | Access | Description                                                                    | Default |
|------------|-----|--------|--------------------------------------------------------------------------------|---------|
| other_sid  | 7:0 | R/W    | Short address – ID of other device<br>Destination ID on TX,<br>Source ID on RX | 0x00    |

### 9.5.31 Long ID of This Device

**Short Name:** DEVICE\_LID (comprising DEVICE\_LID0, DEVICE\_LID1, DEVICE\_LID2, DEVICE\_LID3, DEVICE\_LID4, DEVICE\_LID5, DEVICE\_LID6, and DEVICE\_LID7)

**Addresses:** Eight-byte little-endian starting with 0x231 (comprising 0x231, 0x232, 0x233, 0x234, 0x235, 0x236, 0x237, and 0x238, respectively)

**Always-On:** Yes

**Table 108 • DEVICE\_LID**

| Field Name | Bit  | Access | Description    | Default                |
|------------|------|--------|----------------|------------------------|
| device_lid | 63:0 | R/W    | Device long ID | 0x00000000<br>00000000 |

### 9.5.32 Long ID of Other Device

**Short Name:** OTHER\_LID (comprising OTHER\_LID0, OTHER\_LID1, OTHER\_LID2, OTHER\_LID3, OTHER\_LID4, OTHER\_LID5, OTHER\_LID6, and OTHER\_LID7)

**Addresses:** Eight-byte little-endian starting with 0x239 (comprising 0x239, 0x23A, 0x23B, 0x23C, 0x23D, 0x23E, 0x23F, and 0x240, respectively)

**Always-On:** Yes

**Table 109 • OTHER\_LID**

| Field Name | Bit  | Access | Description          | Default                |
|------------|------|--------|----------------------|------------------------|
| other_lid  | 63:0 | R/W    | Other device long ID | 0x00000000<br>00000000 |

### 9.5.33 MAC Controls

**Short Name:** MAC\_CTRL

**Address:** 0x241

**Always-On:** Yes

**Table 110 • MAC\_CTRL**

| Field Name     | Bit | Access | Description                                                                                                                                                                         | Default |
|----------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -              | 7:5 | R      | <Reserved>                                                                                                                                                                          | 0x0     |
| mac_pwrdown_en | 4   | R/W    | Enable automatic power-down of VDDD at command done, putting the device into the SLEEP state                                                                                        | 0x0     |
| dp_pwrdown_en  | 3   | R/W    | Enable data port power-down on sniff auto off when auto_off is 1.<br><b>Note:</b> Set to 0 on hub                                                                                   | 0x0     |
| crc_seed       | 2   | R/W    | CRC polynomial initial value. For non-Z-Star packet modes only.<br>• 1: all ones<br>• 0: all zeros                                                                                  | 0x0     |
| msc_blk_en     | 1   | R/W    | MAC enable. When low, acts as synchronous reset to MAC. When this bit is high, the PLL is enabled. This bit must be set (high) before a SPI MAC command is received on the SPI bus. | 0x0     |
| hub_node_n     | 0   | R/W    | Hub enable. This effects the SPI status byte [3].<br>• 1: hub<br>• 0: node                                                                                                          | 0x0     |

### 9.5.34 CRC Polynomial

**Short Name:** CRC\_POLY (comprising CRC\_POLY0, CRC\_POLY1, CRC\_POLY2, and CRC\_POLY3)

**Addresses:** Four-byte little-endian starting with 0x242 (comprising 0x242, 0x243, 0x244, and 0x245, respectively)

**Always-On:** Yes

**Table 111 • CRC\_POLY**

| Field Name | Bit  | Access | Description                                                                                               | Default    |
|------------|------|--------|-----------------------------------------------------------------------------------------------------------|------------|
| crc_poly   | 31:0 | R/W    | CRC polynomial. Default value is for 16-bit CRC. Longer packets normally require a longer CRC polynomial. | 0x00008F01 |

### 9.5.35 SPI Control

**Short Name:** SPI\_CTRL

**Address:** 0x24A

**Always-On:** Yes

**Table 112 • SPI\_CTRL**

| Field Name      | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default |
|-----------------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —               | 7:4 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x0     |
| tx_fsn_incr_dis | 3   | R/W    | Disable automatic TX frame seq no increment on SPI packet write operations.<br><br><b>Note:</b> Set to 1 on hub with multiple nodes; leave at 0 on hub in point-to-point configurations.<br>Set to 0 on node for Z-Star packet mode; this bit is ignored on the node for other modes.                                                                                                                                                                                                             | 0x0     |
| tx_auto_len_en  | 2   | R/W    | Transmit frame/packet length auto generate enable, 1=auto from SPI, the buffer length is calculated and written to the <i>tx_buf_len</i> at the end of the packet write.                                                                                                                                                                                                                                                                                                                          | 0x1     |
| auto_tx_cmd     | 1   | R/W    | Set TX command on packet buffer write. When 0, a TX MAC command is not automatically generated to the MAC. In this case, the packet write could be followed by a PKT_TX_CMD if a transmit command is needed.<br>Set to 0 on hub for loading the TX buffer after an ACK with TN/FP equal to 1. Typically, the hub does not initiate packets except beacon.                                                                                                                                         | 0x1     |
| tx_cmd_imm      | 0   | R/W    | Set TX command to take effect immediately after the first byte. When 0, <i>spis_tx_cmd</i> is asserted when SPI_SEL_B goes high at the end of the packet write. This needs to be set to 0 if the packet write cannot be completed before the packet header starts its transmission and the packet length has not been written to <i>tx_buf_len</i> .<br>Set to 0 on hub for loading the TX buffer after an ACK with TN/FP equal to 1. Typically, the hub does not initiate packets except beacon. | 0x1     |

### 9.5.36 CSMA Control

**Short Name:** CSMA\_CTRL

**Address:** 0x24B

**Always-On:** Yes

**Table 113 • CSMA\_CTRL**

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                                                                                           | Default |
|----------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —              | 7   | R      | <Reserved>                                                                                                                                                                                                                                                                                                            | 0x0     |
| csma_mode      | 6   | R/W    | Enable CSMA mode on transmit. On TX command or data request command, CSMA is performed prior to packet transmission. Set to 0 on hub if the hub is <b>not</b> operating in transaction mode. Typically, the HUB does not initiate packets, except beacon. Typically, the hub does not initiate packets except beacon. | 0x1     |
| csma_only      | 5   | R/W    | Perform only CSMA on TX command, and then exit                                                                                                                                                                                                                                                                        | 0x0     |
| —              | 4   | R/W    | <Internal bit; always write 0 to this bit>                                                                                                                                                                                                                                                                            | 0x0     |
| csma_retry_max | 3:0 | R/W    | CSMA retry count (0 to 15)                                                                                                                                                                                                                                                                                            | 0x5     |

### 9.5.37 CSMA 100-µs Counts Per Interval

**Short Name:** CSMA\_TIME (comprising CSMA\_TIME0 and CSMA\_TIME1)

**Addresses:** Two-byte little-endian starting with 0x24C (comprising 0x24C and 0x24D, respectively)

**Always-On:** Yes

**Table 114 • CSMA\_TIME**

| Field Name | Bit   | Access | Description                                                                                                    | Default |
|------------|-------|--------|----------------------------------------------------------------------------------------------------------------|---------|
| —          | 15:12 | R      | <Reserved>                                                                                                     | 0x0     |
| csma_time  | 11:0  | R/W    | 100µs counts per CSMA interval; an interval is both the sense dwell time and the multiplier for back-off times | 0x00A   |

### 9.5.38 CSMA Maximum Random Number of Intervals in Back-Off

**Short Name:** CSMA\_MAX\_RAND\_BACKOFF (comprising CSMA\_MAX\_RAND\_BACKOFF0 and CSMA\_MAX\_RAND\_BACKOFF1)

**Addresses:** Two-byte little-endian starting with 0x24E (comprising 0x24E and 0x24F, respectively)

**Always-On:** Yes

**Table 115 • CSMA\_MAX\_RAND\_BACKOFF**

| Field Name            | Bit   | Access | Description                                             | Default |
|-----------------------|-------|--------|---------------------------------------------------------|---------|
| —                     | 15:12 | R      | <Reserved>                                              | 0x0     |
| csma_max_rand_backoff | 11:0  | R/W    | CSMA maximum random number of intervals in the back-off | 0x032   |

1. An interval is defined by *csma\_time*.

### 9.5.39 CSMA Retry Minimum Back-Off in Intervals

**Short Name:** CSMA\_RETRY\_MIN\_BACKOFF (comprising CSMA\_RETRY\_MIN\_BACKOFF0 and CSMA\_RETRY\_MIN\_BACKOFF1)

**Addresses:** Two-byte little-endian starting with 0x250 (comprising 0x250 and 0x251, respectively)

**Always-On:** Yes

**Table 116 • CSMA\_RETRY\_MIN\_BACKOFF**

| Field Name             | Bit   | Access | Description                              | Default |
|------------------------|-------|--------|------------------------------------------|---------|
| –                      | 15:12 | R      | <Reserved>                               | 0x0     |
| csma_retry_min_backoff | 11:0  | R/W    | CSMA retry minimum back-off in intervals | 0x019   |

1. An interval is defined by *csma\_time*.

### 9.5.40 Synchronization Threshold Minimum Number of Bits That Need to Match the 40-Bit Sync Word

**Short Name:** SYNC\_THRESH

**Address:** 0x252

**Always-On:** Yes

**Table 117 • SYNC\_THRESH**

| Field Name  | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                              | Default |
|-------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| –           | 7:6 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                               | 0x0     |
| sync_thresh | 5:0 | R/W    | Synchronization threshold: minimum number of bits that need to match the sync word (40 bits). This needs to be reduced for smaller frame sync patterns: <ul style="list-style-type: none"> <li>For five-byte sync pattern: 0x23</li> <li>For four-byte sync pattern: 0x1C</li> <li>For three-byte sync pattern: 0x15</li> <li>For two-byte sync pattern: 0x0E</li> </ul> | 0x24    |

1. For recommended initial register setting, see "Recommended Value" column of Table 92, page 81.

### 9.5.41 Delay Time Count for *ptx\_tx\_trig*

**Short Name:** TX\_TRIG\_CNT

**Address:** 0x254

**Always-On:** Yes

**Table 118 • TX\_TRIG\_CNT**

| Field Name      | Bit | Access | Description                                                                                                                                                                                                                                                              | Default |
|-----------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| tx_trig_dly_cnt | 7:0 | R/W    | Time delay count for asserting <i>ptx_tx_trig</i> . This count starts at the beginning of the preamble, and counts in resolution of 10 µs. When counter counts down to zero, <i>ptx_tx_trig</i> is asserted and remains high until the end of the packet. Supports TDMA. |         |

### 9.5.42 Selection for GP Input/Output

**Short Name:** GPIO\_0\_SEL, GPIO\_1\_SEL, GPIO\_2\_SEL, and GPIO\_3\_SEL

**Address:** 0x261, 0x262, 0x263, and 0x264 (respectively)

**Always-On:** Yes

**Table 119 • GPIO\_0\_SEL**

| Field Name | Bit | Access | Description              | Default |
|------------|-----|--------|--------------------------|---------|
| gpio_0_sel | 7:0 | R/W    | Selection for <b>GP0</b> | 0x00    |

**Table 120 • GPIO\_1\_SEL**

| Field Name | Bit | Access | Description              | Default |
|------------|-----|--------|--------------------------|---------|
| gpio_1_sel | 7:0 | R/W    | Selection for <b>GP1</b> | 0x00    |

**Table 121 • GPIO\_2\_SEL**

| Field Name | Bit | Access | Description              | Default |
|------------|-----|--------|--------------------------|---------|
| gpio_2_sel | 7:0 | R/W    | Selection for <b>GP2</b> | 0x00    |

**Table 122 • GPIO\_3\_SEL**

| Field Name | Bit | Access | Description              | Default |
|------------|-----|--------|--------------------------|---------|
| gpio_3_sel | 7:0 | R/W    | Selection for <b>GP3</b> | 0x00    |

### 9.5.43 Frame Sync Pattern

**Short Name:** SYNC\_PTRN (comprising SYNC\_PTRN0, SYNC\_PTRN1, SYNC\_PTRN2, SYNC\_PTRN3, and SYNC\_PTRN4)

**Addresses:** Five-byte little-endian starting at 0x265 (comprising 0x265, 0x266, 0x267, 0x268, and 0x269, respectively)

**Always-On:** Yes

**Table 123 • SYNC\_PTRN**

| Field Name | Bit  | Access | Description                                                                                                | Default          |
|------------|------|--------|------------------------------------------------------------------------------------------------------------|------------------|
| sync_ptrn  | 39:0 | R/W    | Frame sync pattern.<br><br><b>Note:</b> It is recommended that the default value (or reset value) be used. | 0x79EC32<br>DA13 |

### 9.5.44 PLL Start-Up Delay (100- $\mu$ s count)

**Short Name:** PLL\_START\_DLY

**Address:** 0x26A

**Always-On:** Yes

**Table 124 • PLL\_START\_DLY**

| Field Name    | Bit | Access | Description                                                                                                                                                    | Default |
|---------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| pll_start_dly | 7:0 | R/W    | PLL start-up delay (100 $\mu$ s counts). This is the time for the PLL to settle when it is first turned on. (Used in protocols and certain trimming commands.) | 0x14    |

### 9.5.45 RX Time Limit for Acknowledgment Timeout (100- $\mu$ s count)

**Short Name:** ACK\_TIME\_LIMIT

**Address:** 0x270

**Always-On:** Yes

**Table 125 • ACK\_TIME\_LIMIT**

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default |
|----------------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ack_time_limit | 7:0 | R/W    | <p>RX acknowledgment packet timeout for Z-Star packet mode. The timeout period is from when the receiver is enabled until frame sync is detected. This results in a dropped packet.</p> <p>The timeout is disabled with a value of zero. This timeout is automatically scaled for different data rates:</p> <ul style="list-style-type: none"> <li>• If <i>rx_rate</i> is 2'b00, then 100<math>\mu</math>s per bit</li> <li>• If <i>rx_rate</i> is 2'b01, then 200<math>\mu</math>s per bit</li> <li>• If <i>rx_rate</i> is 2'b10, then 400<math>\mu</math>s per bit</li> </ul> | 0x18    |

1. For recommended initial register setting, see "Recommended Value" column of [Table 92](#), page 81. The timeout is sensitive to the preamble length and the response time of the transmitter, when the transmitter is not in transaction mode. For longer preambles, the value of *ack\_time\_limit* should be increased.

### 9.5.46 RX Time Limit for Packet Timeout (100- $\mu$ s count)

**Short Name:** PKT\_TIME\_LIMIT

**Address:** 0x271

**Always-On:** Yes

**Table 126 • PKT\_TIME\_LIMIT**

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default |
|----------------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| pkt_time_limit | 7:0 | R/W    | <p>RX nonacknowledgment packet timeout. The timeout period is from when the receiver is enabled until frame sync is detected. This results in a dropped packet.</p> <p>The timeout is disabled with a value of zero. It is also disabled if <i>rx_forever</i> is high. This timeout is automatically scaled for different data rates:</p> <ul style="list-style-type: none"> <li>• If <i>rx_rate</i> is 2'b00, then 100<math>\mu</math>s per bit</li> <li>• If <i>rx_rate</i> is 2'b01, then 200<math>\mu</math>s per bit</li> <li>• If <i>rx_rate</i> is 2'b10, then 400<math>\mu</math>s per bit</li> </ul> | 0x24    |

1. For recommended initial register setting, see "Recommended Value" column of [Table 92](#), page 81. The timeout is sensitive to the preamble length and the response time of the transmitter, when the transmitter is not in transaction mode. For longer preambles, the value of *pkt\_time\_limit* should be increased.

### 9.5.47 RX Frame Sequence Number

**Short Name:** RX\_FRM\_SEQ\_NO  
**Address:** 0x272  
**Always-On:** Yes

**Table 127 • RX\_FRM\_SEQ\_NO**

| Field Name    | Bit | Access | Description                                                                                                                                    | Default |
|---------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —             | 7:4 | R      | <Reserved>                                                                                                                                     | 0x0     |
| rx_frm_seq_no | 3:0 | R/W    | Latest nonacknowledgment received frame sequence number. This is automatically updated by the receiver FSM. Valid only for Z-Star packet mode. | 0x0     |

### 9.5.48 TX Non-Acknowledgment Packet Transmitted Count

**Short Name:** TX\_PKT\_CNT  
**Address:** 0x273  
**Always-On:** Yes

**Table 128 • TX\_PKT\_CNT**

| Field Name | Bit | Access | Description                                                                                                        | Default |
|------------|-----|--------|--------------------------------------------------------------------------------------------------------------------|---------|
| tx_pkt_cnt | 7:0 | R/W    | Number of nonacknowledgment packets transmitted. Clear on read, freeze at 0xFF. Valid only for Z-Star packet mode. | 0x00    |

### 9.5.49 TX Packet Retry Accumulated Count (after ACK failure)

**Short Name:** TX\_PKT\_RETRY\_CNT  
**Address:** 0x274  
**Always-On:** Yes

**Table 129 • TX\_PKT\_RETRY\_CNT**

| Field Name       | Bit | Access | Description                                                                                     | Default |
|------------------|-----|--------|-------------------------------------------------------------------------------------------------|---------|
| tx_pkt_retry_cnt | 7:0 | R/W    | Number of TX packet auto-retries (after acknowledgment failure). Clear on read, freeze at 0xFF. | 0x00    |

### 9.5.50 TX Packet Drop Accumulated Count (after ACK failure)

**Short Name:** TX\_PKT\_DROP\_CNT  
**Address:** 0x275  
**Always-On:** Yes

**Table 130 • TX\_PKT\_DROP\_CNT**

| Field Name      | Bit | Access | Description                                                                                                                                                                                        | Default |
|-----------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| tx_pkt_drop_cnt | 7:0 | R/W    | Number of TX packet dropped after max auto-retries (after acknowledgment failure). Clear on read, freeze at 0xFF. Results in <i>cmd_fail_irq</i> . This is operational only in Z-Star packet mode. | 0x00    |

### 9.5.51 RX Non-Acknowledgment Packet Received Count

**Short Name:** RX\_PKT\_CNT

**Address:** 0x276

**Always-On:** Yes

**Table 131 • RX\_PKT\_CNT**

| Field Name | Bit | Access | Description                                                                                                                                                                 | Default |
|------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| rx_pkt_cnt | 7:0 | R/W    | Number of nonacknowledgment packets received. Clear on read, freeze at 0xFF. Wrong frame type and duplicate packets are not included. Corresponded to rx_pkt_rdy_irq count. | 0x00    |

### 9.5.52 RX Packet Received Count for All Types

**Short Name:** RX\_ALL\_PKT\_CNT

**Address:** 0x277

**Always-On:** Yes

**Table 132 • RX\_ALL\_PKT\_CNT**

| Field Name     | Bit | Access | Description                                                                                                                                                           | Default |
|----------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| rx_all_pkt_cnt | 7:0 | R/W    | Number of packets received of all types without error. Clear on read, freeze at 0xFF. Includes duplicate packets, and type error packets, and acknowledgment packets. | 0x00    |

### 9.5.53 RX Non-Acknowledgment Packet Drop Accumulated Count

**Short Name:** RX\_PKT\_DROP\_CNT

**Address:** 0x278

**Always-On:** Yes

**Table 133 • RX\_PKT\_DROP\_CNT**

| Field Name      | Bit | Access | Description                                                                                                                                                                                                                                   | Default |
|-----------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| rx_pkt_drop_cnt | 7:0 | R/W    | Number of nonacknowledgment RX packet dropped for packet error or timeout after all auto-retries (after acknowledgment failure). Clear on read, freeze at 0xFF. (Sync error is not included if timeout is disabled.) Results in cmd_fail_irq. | 0x00    |

### 9.5.54 RX Packet Sync Error Accumulated Count

**Short Name:** RX\_SYNC\_ERR\_CNT

**Address:** 0x279

**Always-On:** Yes

**Table 134 • RX\_SYNC\_ERR\_CNT**

| Field Name      | Bit | Access | Description                                                                                                                                                                                         | Default |
|-----------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| rx_sync_err_cnt | 7:0 | R/W    | Number of RX packet frame sync errors. Clear on read, freeze at 0xFF. This is typically frame sync timeout after preamble detect, independent of packet timeout. May be from false preamble detect. | 0x00    |

## 9.5.55 RX Packet All Error Accumulated Count for All Errors

**Short Name:** RX\_ALL\_ERR\_CNT  
**Address:** 0x27A  
**Always-On:** Yes

Table 135 • RX\_ALL\_ERR\_CNT

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                         | Default |
|----------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| rx_all_err_cnt | 7:0 | R/W    | Number of RX packets with errors of all types. Clear on read, freeze at 0xFF. Includes all packet timeout, CRC, and frame type errors. Frame sync errors are only included if they result in packet timeout error. Results in <i>cmd_fail_irq</i> . | 0x00    |

## 9.5.56 CSMA Retry Count

**Short Name:** CSMA\_RETRY\_CNT  
**Address:** 0x27B  
**Always-On:** Yes

Table 136 • CSMA\_RETRY\_CNT

| Field Name     | Bit | Access | Description                                            | Default |
|----------------|-----|--------|--------------------------------------------------------|---------|
| csma_retry_cnt | 7:0 | R/W    | Number of CSMA retries. Clear on read, freeze at 0xFF. | 0x00    |

## 9.5.57 CSMA Fail Count

**Short Name:** CSMA\_FAIL\_CNT  
**Address:** 0x27C  
**Always-On:** Yes

Table 137 • CSMA\_FAIL\_CNT

| Field Name    | Bit | Access | Description                                                                                                | Default |
|---------------|-----|--------|------------------------------------------------------------------------------------------------------------|---------|
| csma_fail_cnt | 7:0 | R/W    | Number of CSMA failures after max retries. Clear on read, freeze at 0xFF. Results in <i>cmd_fail_irq</i> . | 0x00    |

## 9.5.58 PHY RX Mode Select

**Short Name:** PHY\_RX\_MODE\_SEL  
**Address:** 0x282  
**Always-On:** Yes

Table 138 • PHY\_RX\_MODE\_SEL

| Field Name     | Bit | Access | Description                                                                                          | Default |
|----------------|-----|--------|------------------------------------------------------------------------------------------------------|---------|
| —              | 7:4 | R/W    | <Reserved; always write 0x0 (or 4'b0000) to these bits>                                              | 0x4     |
| raw_rx_mode    | 3   | R/W    | Operate RX in raw bit mode                                                                           | 0x0     |
| —              | 2:1 | R/W    | <Reserved; always write 0x2 (or 2'b10) to these bits>                                                | 0x2     |
| pream_det_mode | 0   | R/W    | Enable preamble packet detection:<br>• 0: disabled<br>• 1: enabled.<br><b>Note:</b> Set to 1 on hub. | 0x1     |

1. For recommended initial register setting, see "Recommended Value" column of Table 92, page 81.

## 9.5.59 Frame Sync Control 2

**Short Name:** DPORT\_CTRL

**Address:** 0x287

**Always-On:** Yes

**Table 139 • DPORT\_CTRL**

| Field Name | Bit | Access | Description                                                                                                                                                                                                                                                                                  | Default |
|------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| –          | 7:3 | R      | <Reserved; always write 0x03 (or 5'b00011) to these bits>                                                                                                                                                                                                                                    | 0x03    |
| sync_len   | 2:0 | R/W    | Length in bytes of frame sync pattern for both TX and RX. This must be the same for both devices.<br><br><b>Note:</b> For recommended setting, see "Recommended Value" column of <a href="#">Table 35</a> , page 53. The recommended value for these bits assumes three bytes of frame sync. | 0x5     |

## 9.5.60 PHY TX Raw Mode Control

**Short Name:** PHY\_TX\_RAW\_MODE\_CTRL

**Address:** 0x288

**Always-On:** Yes

**Table 140 • PHY\_TX\_RAW\_MODE\_CTRL**

| Field Name  | Bit | Access | Description                                                                                                                                                                                                           | Default |
|-------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| –           | 7:2 | R      | <Reserved>                                                                                                                                                                                                            | 0x00    |
| raw_tx_mode | 1   | R/W    | Operate TX in raw bit mode                                                                                                                                                                                            | 0x0     |
| gpio_tx_sel | 0   | R/W    | Select GPIO for input of data to be transmitted. Valid only for raw bit mode (TX).<br><ul style="list-style-type: none"><li>• 0: normal (e.g., TX data from TX buffer)</li><li>• 1: TX data from <b>GP1</b></li></ul> | 0x0     |

## 9.5.61 Data Rate Control

**Short Name:** RATE\_CTRL

**Address:** 0x289

**Always-On:** Yes

**Table 141 • RATE\_CTRL**

| Field Name        | Bit | Access | Description                                                                                                                                                                                                                       | Default |
|-------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| tx_follow_rx_fec  | 7   | R/W    | Transmit in same FEC mode as last packet received                                                                                                                                                                                 | 0x0     |
| adapt_fec_en      | 6   | R/W    | Enable for adaptive FEC in receive, based on frame sync polarity, negative sync enables FEC. Must be high to transmit inverted sync if other device is in adaptive FEC mode, which means both devices must have the same setting. | 0x0     |
| tx_follow_rx_rate | 5   | R/W    | Transmit at rate of last received packet                                                                                                                                                                                          | 0x0     |

**Table 141 • RATE\_CTRL (continued)**

| Field Name    | Bit | Access | Description                                                                   | Default |
|---------------|-----|--------|-------------------------------------------------------------------------------|---------|
| adapt_rate_en | 4   | R/W    | Enable for adaptive rate on receiver                                          | 0x0     |
| rx_rate       | 3:2 | R/W    | RX rate selection:<br>• 00: 200 kbit/s<br>• 01: 100 kbit/s<br>• 10: 50 kbit/s | 0x0     |
| tx_rate       | 1:0 | R/W    | TX rate selection:<br>• 00: 200 kbit/s<br>• 01: 100 kbit/s<br>• 10: 50 kbit/s | 0x0     |

## 9.5.62 M Divide Counter Value

**Short Name:** SYNTH\_M\_DIV

**Address:** 0x28A

**Always-On:** Yes

**Table 142 • SYNTH\_M\_DIV**

| Field Name | Bit | Access | Description                                                                                        | Default |
|------------|-----|--------|----------------------------------------------------------------------------------------------------|---------|
| m_div      | 7:0 | R/W    | M div counter value: number of times the prescaler counts to 16 within one phase comparison period | 0xB5    |

1. The M divider should be set greater than or equal to 16. See Section 6.4 Synthesizer Controller and Channel Selection, page 36, for instructions on calculating the A and M values for a given channel frequency.
2. This register should be written first, then SYNTH\_A\_DIV. At that time, the outputs of both registers are updated.

## 9.5.63 A Divide Counter Value

**Short Name:** SYNTH\_A\_DIV

**Address:** 0x28B

**Always-On:** Yes

**Table 143 • SYNTH\_A\_DIV**

| Field Name | Bit | Access | Description                                                                                         | Default |
|------------|-----|--------|-----------------------------------------------------------------------------------------------------|---------|
| —          | 7:6 | R      | <Reserved>                                                                                          | 0x0     |
| a_div      | 5:0 | R/W    | A div counter value: number of times the prescaler counts to 17 within one phase comparison period. | 0x07    |

1. The LO is automatically offset by 600kHz from the channel in use unless bit 1 of address 0x61 is set to 0. The A divider should be set greater than or equal to 5.

### 9.5.64 ADC Modes Multiplexer Input Selection

**Short Name:** ADC\_MUX\_IN\_SEL

**Address:** 0x28E

**Always-On:** Yes

**Table 144 • ADC\_MUX\_IN\_SEL**

| Field Name     | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default |
|----------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —              | 7:3 | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x00    |
| adc_mux_in_sel | 2:0 | R/W    | <p>In ADC modes, ADC multiplexer input selection:</p> <ul style="list-style-type: none"> <li>• 000: none of the inputs is selected (analog multiplexer output floats).</li> <li>• 001: RX mixer output (mix_outp).</li> <li>• 010: blocker peak detector output (pd_out).</li> <li>• 100: RSSI output (rx_rssi).</li> <li>• Others: not recommended. If more than one bit is set, more than one switch is turned on according to the input selection. That is not the normal operation.</li> </ul> <p>Using RSSI in CSMA-CA modes, these bits are ignored because the finite state machine automatically selects the RSSI input rx_rssi.</p> | 0x0     |

## 9.5.65 Number of Conversions Used for Averaging in ADC Modes and When Using RSSI in CSMA-CA Modes

**Short Name:** ADC\_POW\_N\_CONV

**Address:** 0x28F

**Always-On:** Yes

**Table 145 • ADC\_POW\_N\_CONV**

| Field Name      | Bit | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default |
|-----------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| -               | 7   | R      | <Reserved>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0x0     |
| rssi_pow_n_conv | 6:4 | R/W    | <p>Number of ADC conversions when using RSSI in CSMA-CA modes.</p> <p>When using RSSI in CSMA-CA modes, determine the number of ADC conversions before updating <b>ADC_MAX</b> and <b>ADC_AVG</b> and generating interrupts ADC average done.</p> <ul style="list-style-type: none"> <li>• 000: 1 conversion.</li> <li>• 001: 2 conversions.</li> <li>• 010: 4 conversions.</li> <li>• 011: 8 conversions.</li> <li>• 100: 16 conversions.</li> <li>• 101: 32 conversions.</li> <li>• 110: 64 conversions.</li> <li>• 111: 128 conversions.</li> </ul> <p>Not used in ADC modes.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x3     |
| adc_pow_n_conv  | 3:0 | R/W    | <p>Number of ADC conversions in ADC modes.</p> <p>In ADC modes, determine the number of ADC conversions before updating <b>ADC_MAX</b> and <b>ADC_AVG</b> and generating interrupt ADC average done.</p> <ul style="list-style-type: none"> <li>• 0000: 1 conversion.</li> <li>• 0001: 2 conversions.</li> <li>• 0010: 4 conversions.</li> <li>• 0011: 8 conversions.</li> <li>• 0100: 16 conversions.</li> <li>• 0101: 32 conversions.</li> <li>• 0110: 64 conversions.</li> <li>• 0111: 128 conversions.</li> <li>• 1000: 256 conversions.</li> <li>• 1001: 512 conversions.</li> <li>• 1010: 1024 conversions.</li> <li>• 1011 to 1111: 2048 conversions.</li> </ul> <p>Not used in with RSSI in CSMA-CA modes.</p> <p><b>Note:</b> A single ADC conversion takes <math>78 + 6 \times 2^{adc\_pow\_n\_conv}</math> cycles of the clock <b>cg_sys_clk</b>. For example, with the default value, a single ADC conversion takes <math>(78+6 \times 2^0)</math> clock cycles, which corresponds to <math>84 \times 1/1.2 \mu s = 84 \times 0.833 \mu s = 70 \mu s</math>.</p> | 0x0     |

## 9.5.66 ADC CSMA Threshold

**Short Name:** ADC\_CSMA\_THRESH  
**Address:** 0x294  
**Always-On:** Yes

**Table 146 • ADC\_CSMA\_THRESH**

| Field Name      | Bit | Access | Description                                                                                                                                          | Default |
|-----------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —               | 7   | R      | <Reserved>                                                                                                                                           | 0x0     |
| adc_csma_thresh | 6:0 | R/W    | CSMA threshold. Is used to determine whether a channel is clear for transmission. If RSSI signal is below this threshold, then the channel is clear. | 0x20    |

## 9.5.67 LNA Gain

**Short Name:** LNA\_GAIN  
**Address:** 0x295  
**Always-On:** Yes

**Table 147 • LNA\_GAIN**

| Field Name | Bit | Access | Description                                                                                                                                                                                                                | Default |
|------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| —          | 7:4 | R      | <Reserved>                                                                                                                                                                                                                 | 0x0     |
| lna_gain   | 3:0 | R/W    | In all modes, control LNA gain. The gain word is a thermometer code: <ul style="list-style-type: none"> <li>• 1111 = highest gain</li> <li>• 0111</li> <li>• 0011</li> <li>• 0001</li> <li>• 0000 = lowest gain</li> </ul> | 0x7     |

1. For recommended initial register setting, see "Recommended Value" column of [Table 92](#), page 81.

## 9.5.68 PA Power Level

**Short Name:** PA\_PWR\_LEVEL  
**Address:** 0x29A  
**Always-On:** Yes

**Table 148 • PA\_PWR\_LEVEL**

| Field Name   | Bit | Access | Description                                                                                                                                                                                                          | Default |
|--------------|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| pa_pwr_level | 7:0 | R/W    | Power control word<br>$pa\_pwr\_level[7]$ : enable PA soft on-off (default is 1, enabled)<br>$pa\_pwr\_level[6]$ : enable DAC scale down by 1/2 (default is 0, disabled).<br>$pa\_pwr\_level[5:0]$ : PA power level. | 0x88    |

### 9.5.69 PA Buffer Bias Control

**Short Name:** VCO\_BUF\_BIAS

**Address:** 0x29B

**Always-On:** Yes

**Table 149 • VCO\_BUF\_BIAS**

| Field Name   | Bit | Access | Description                                                         | Default |
|--------------|-----|--------|---------------------------------------------------------------------|---------|
| –            | 7:4 | R      | <Reserved>                                                          | 0x0     |
| vco_buf_bias | 3:0 | R/W    | Trim bits to adjust bias current in the buffer amplifier of the VCO | 0x3     |

1. It is recommended that the default (or reset) value be used.

### 9.5.70 VCO Control

**Short Name:** VCO\_CTRL

**Address:** 0x29C

**Always-On:** Yes

**Table 150 • VCO\_CTRL**

| Field Name    | Bit | Access | Description                                               | Default |
|---------------|-----|--------|-----------------------------------------------------------|---------|
| –             | 7   | R      | <Reserved>                                                | 0x0     |
| ch_lo_ctrl    | 6   | R/W    | 1 = LO above channel, 0 = LO below channel                | 0x0     |
| vco_low_range | 5   | R/W    | Enable low VCO frequency operation                        | 0x0     |
| –             | 4:0 | R/W    | <Reserved; always write 0x08 (or 5'b01000) to these bits> | 0x08    |

# 10 Errata

---

The Errata section documents exceptions to the specifications documented for the ZL70550 in the Programmer User's Guide. Each errata item includes:

- Errata title and ID
- Status
- Hardware / software version(s) to which the errata applies
- Description of problem
- Solution or workaround

## 10.1 Full VCO Trim Failure

The full VCO trim failure (bug #8250) affects part number ZL70550LDF1, chip revision 0x11.

### 10.1.1 Description

#### Statement of the problem:

When performing a full VCO trim, it is possible that one of the VCO trims (**VCO\_FRQ\_RX\_TRIM**, **VCO\_FRQ\_TXPAON\_TRIM**, or **VCO\_FRQ\_TXPAOFF\_TRIM**) falls near the edge of a band. The VCO trim algorithm should recognize this and increment or decrement the band (depending on which end of the band limit was reached) to get a more centered VCO trim value. However, due to an error in the VCO trim algorithm, the VCO band increment or decrement does not occur if the VCO band limit is exceeded.

#### Explanation of the impact:

The band limits are set to two by default. With a setting of two, the **VCO\_FRQ\_BAND\_TRIM** result should be a value between the range of 3 and 2044. If any of the VCO trim values fall outside of this range, the intention of the VCO trim algorithm was to force an increment or decrement of the **VCO\_FRQ\_BAND\_TRIM** register in order to keep the **VCO\_FRQ\_BAND\_TRIM** result closer to the middle of the VCO tuning range. However, whenever any of the VCO trims exceed two, the application is notified by the assertion of the *trim\_fail\_irq* interrupt.

### 10.1.2 Solution or Workaround

The workaround is as follows.

If the *trim\_fail\_irq* interrupt occurs, perform another full VCO trim.

# 11 References

---

| Document No.  | Document Title                                                                                                                                                                                                                                                                                                 |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| –             | FCC Part 15 and the European pr ETS 300-220 regulatory documentation                                                                                                                                                                                                                                           |
| –             | Mil-Std-883 Method 3015                                                                                                                                                                                                                                                                                        |
| EN301 357 – 1 | Electromagnetic compatibility and Radio Spectrum Matters (ERM);<br>Cordless audio devices in the range 25 to 2000 MHz; Consumer radio microphones and in-ear monitoring systems operating in the CEPT harmonized band 863 to 865 MHz; Part 1: Technical characteristics and Test methods                       |
| EN301 357 – 2 | Electromagnetic compatibility and Radio Spectrum Matters (ERM);<br>Cordless audio devices in the range 25 to 2000 MHz; Consumer radio microphones and in-ear monitoring systems operating in the CEPT harmonized band 863 to 865 MHz; Part 2: Harmonized EN under article 3.2 of the R&TTE Directive           |
| EN301 489 – 1 | Electromagnetic compatibility and Radio Spectrum Matters (ERM);<br>Electromagnetic Compatibility (EMC) (EMC) standards for radio equipment and services; Part 1: Common technical requirements                                                                                                                 |
| EN301 489 – 9 | Electromagnetic Compatibility and Radio Spectrum Matters (ERM);<br>Electromagnetic Compatibility (EMC) (EMC) standards for radio equipment and services; Part 9: Specific conditions for wireless microphones, similar Radio Frequency (RF) audio link equipment, cordless audio and in-ear monitoring devices |

## 12 Glossary

---

| Term    | Definition                                           |
|---------|------------------------------------------------------|
| Ack     | Acknowledgment                                       |
| ADC     | Analog to Digital Converter                          |
| Addr    | Address                                              |
| ADK     | Application development kit                          |
| AFC     | Automatic frequency control                          |
| AR      | Acknowledgment request                               |
| Cmd     | Command                                              |
| CRC     | Cyclic redundancy check                              |
| CSMA    | Carrier Sense Multiple Access                        |
| CSMA-CA | Carrier Sense Multiple Access -- Collision Avoidance |
| DAC     | Digital to analog converter                          |
| Dec     | Decimal                                              |
| FCS     | Frame check sequence                                 |
| FEC     | Forward error correction                             |
| FIR     | Finite impulse response                              |
| FP      | Frame pending                                        |
| FSN     | Frame sequence number                                |
| Hex     | Hexadecimal                                          |
| I/O     | Input/output                                         |
| IF      | Intermediate frequency                               |
| IRQ     | Interrupt                                            |
| ISM     | Industrial-Scientific-Medical                        |
| LBT     | Listen before talk                                   |
| LDO     | Low dropout                                          |
| LNA     | Low-noise amplifier                                  |
| LO      | Local oscillator                                     |
| LSB     | Least significant bit                                |
| MAC     | Media access controller                              |
| MPU     | Microprocessor unit                                  |
| MSB     | Most significant bit                                 |
| PA      | Power amplifier                                      |
| PHY     | Physical                                             |
| Pkt     | Packet                                               |
| PLL     | Phase locked loop                                    |
| RC      | Resistor-capacitor                                   |
| RCO     | RC oscillator (150-kHz strobe oscillator)            |

| Term | Definition                         |
|------|------------------------------------|
| Rdy  | Ready                              |
| RSSI | Received signal strength indicator |
| RX   | Receive                            |
| SCLA | Source code license agreement      |
| SPI  | Serial peripheral interface        |
| TDMA | Time division multiple access      |
| TN   | Transmit now                       |
| TX   | Transmit                           |
| VCO  | Voltage controlled oscillator      |
| VDDD | VDD digital                        |
| XO   | Crystal oscillator                 |
| XTAL | Crystal                            |
| GPIO | General-purpose I/O                |
| VDDA | VDD analog                         |