
EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 1 -

Ver.1.17

Contents

CONTENTS .. 1

1 INTRODUCTION .. 3

2 SOFTWARE STRUCTURE .. 3

2.1 Object Model .. 3

2.2 Objects with Interfaces ... 4

3 PSF090640EVMLXMANAGER OBJECT .. 5

3.1 Background ... 5

4 PSF090640EVMLXDEVICE OBJECT .. 6

4.1 Background ... 6

4.2 Scope of the PSF090640EVMLXDevice object ... 7

4.3 Advanced Property.. 7

4.4 ChipVersion Property .. 8

4.5 EVBGeneral Property .. 8

4.6 Emissivity Property .. 9

4.7 UseEmissivityFromEeprom Property ... 10

4.8 ReadFullEeprom Method .. 11

4.9 ProgramEeprom Method .. 11

4.10 DeviceReplaced Method ... 12

4.11 GetEEParameterCode Method .. 12

4.12 SetEEParameterCode Method .. 13

4.13 GetEEIdxParameterCode Method ... 14

4.14 SetEEIdxParameterCode Method .. 14

4.15 GetEEParameterValue Method ... 15

4.16 SetEEParameterValue Method.. 16

4.17 GetEE1Data Method ... 17

4.18 SetEE1Data Method .. 17

4.19 SetVdd Method ... 18

4.20 MeasureVdd Method .. 19

4.21 ContactTest Method ... 19

4.22 ReadMem Method .. 20

4.23 WriteMem Method ... 21

4.24 ReadSingleFrame Method ... 21

4.25 SendStart Method ... 22

4.26 StartDAQ Method ... 23

4.27 ReadDAQ Method ... 24

4.28 StopDAQ Method .. 25

4.29 FilterInterlacing Method ... 25

4.30 FilterThresholdAveraging Method .. 26

4.31 FilterTgc Method ... 27

4.32 UploadFirmwareFromDFU Method... 27

5 PSF090640EVMLXADVANCED OBJECT ... 29

5.1 Background ... 29

5.2 Scope of the PSF090640EVMLXAdvanced object .. 29

5.3 Logging Property ... 29

5.4 QuietCheck Property ... 30

5.5 EepromWritable Property ... 30

5.6 GetSetting Method ... 31

5.7 SetSetting Method .. 32

5.8 OpenProfile Method ... 32

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 2 -

Ver.1.17

5.9 SaveProfile Method ... 33

5.10 SaveProfileAs Method ... 33

5.11 I2CWriteRead Method .. 34

6 ENUMERATION CONSTANTS .. 35

6.1 ParameterCodesEEPROM enumeration .. 35

6.2 SettingCodes enumeration ... 37

6.3 ChipVersionCodes enumeration ... 38

6.4 DataProcessingTypes enumeration ... 38

7 DISCLAIMER .. 39

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 3 -

Ver.1.17

1 Introduction

MLX90640 PSF is MS Windows software library, which meets the requirements for a Product Specific

Functions (PSF) module, defined in Melexis Programmable Toolbox (MPT) object model. The library

implements in-process COM objects for interaction with MLX90640 EVB firmware. It is designed primarily to

be used by MPT Framework application, but also can be loaded as a standalone in-process COM server by other

applications that need to communicate with the above-mentioned Melexis hardware.

The library can be utilized in all programming languages, which support ActiveX automation. This gives great

flexibility in designing the application with the only limitation to be run on MS Windows OS. In many scripting

languages, objects can be directly created and used. In others, though, the first step during implementation is to

include the library in your project. The way it can be done depends on the programming language and the

specific Integrated Development Environment (IDE) used:

• in C++ it can be imported by #import directive

• in Visual Basic it either can be directly used as pure Object or added as a reference to the project

• in C# it has to be added as a reference to the project

• in NI LabView, for each Automation refnum the corresponding ActiveX class has to be selected

• in NI LabWindows an ActiveX Controller has to be created

2 Software Structure

2.12.12.12.1 Object ModelObject ModelObject ModelObject Model

MPT object model specifies that a PSF module must expose two COM objects which implement certain COM

interfaces. MLX90640 PSF implements these two objects and two additional objects for advanced operations.

• PSF090640EVMLXManager object – implements IPSFManager standard MPT interface. This is a

standard PSFManager object. MPT Framework and other client applications create a temporary instance

of that object, just for device scanning procedure. After that this instance is released.

This is the first required object. Refer to MPT Developer Reference document for more information about

PSFManager object and IPSFManager interface.

• PSF090640EVMLXDevice object – implements IPSF090640EVMLXDevice specific interface.

However, this interface derives from IMPTDevice standard MPT interface and therefore

PSF090640EVMLXDevice also implements the functionality of MPTDevice standard MPT object. In

addition to standard IMPTDevice methods, IPSF090640EVMLXDevice interface exposes methods,

which are specific to this library. They are described in this document.

This is the second required COM object. Refer to MPT Developer Reference document for more

information about MPTDevice object and IMPTDevice interface.

• PSF090640EVMLXAdvanced object – implements IPSF090640EVMLXAdvanced library specific

interface. This object implements advanced functions that would be rarely used in order to perform

specific operations not available with the standard device functions. In general, most of the methods of

that object provide direct access to MLX90640 EVB firmware commands.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 4 -

Ver.1.17

2.22.22.22.2 Objects Objects Objects Objects withwithwithwith InterfaceInterfaceInterfaceInterfacessss

PSF090640EV

MLXDevice

IPSF090640EVMLXDevice

ISupportErrorInfo

IMPTDevice

IDispatch

ISpecifyPropertyPages

IPersist

PSF090640EV

MLXManager

ISupportErrorInfo

IDispatch

IPSFManager

PSF090640EV

MLXAdvanced

ISupportErrorInfo

IPSF090640EVMLXAdvanced

IDispatch

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 5 -

Ver.1.17

3 PSF090640EVMLXManager Object

3.13.13.13.1 BackgroundBackgroundBackgroundBackground

This object is created only once and is destroyed when the library is unmapped from process address space. Each

subsequent request for this object returns the same instance.

PSF090640EVMLXManager object implements standard MPT category

CATID_MLXMPTPSFUSBHIDModule, which is required for automatic device scanning. C++ standalone client

applications can create an instance of this object by using the standard COM API CoCreateInstance with class ID

CLSID_PSF090640EVMLXManager, or ProgID “MPT. PSF090640EVMLXManager”:

hRes = ::CoCreateInstance(CLSID_PSF090640EVMLXManager, NULL, CLSCTX_INPROC,

IID_IPSFManager, (void**) &pPSFMan);

Visual Basic applications should call CreateObject function to instantiate PSF090640EVMLXManager:

Set PSFMan = CreateObject(“MPT. PSF090640EVMLXManager”)

The primary objective of this instantiation is to call ScanStandalone method. C++:

hRes = pPSFMan->ScanStandalone(dtUSBHID, varDevices, &pDevArray);

Or in Visual Basic:

Set DevArray = PSFMan.ScanStandalone(dtUSBHID)

ScanStandalone function returns collection of PSF090640EVMLXDevice objects, one for each connected

MLX90640 EVB. The collection is empty if there are no connected evaluation boards.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 6 -

Ver.1.17

4 PSF090640EVMLXDevice Object

4.14.14.14.1 BackgroundBackgroundBackgroundBackground

This object implements standard MPT category CATID_MLXMPTPSFUSBHIDDevice as well as library

specific CATID_MLXMPT90640EVBDevice category. It also declares required specific category

CATID_MLXMPT90640EVBUIModule for identification of required user interface modules.

This object can be created directly with CoCreateInstance/CreateObject or by calling the device scanning

procedure ScanStandalone of PSF090640EVMLXManager object. The following Visual Basic subroutine shows

how to instantiate PSF090640EVMLXDevice object by performing device scan on the system:

Sub CreateDevice()
 Dim PSFMan As PSF090640EVMLXManager, DevicesCol As ObjectCollection, I As Long
 On Error GoTo lError

 Set PSFMan = CreateObject("MPT.PSF090640EVMLXManager")
 Set DevicesCol = PSFMan.ScanStandalone(dtUSBHID
 If DevicesCol.Count <= 0 Then

 MsgBox ("No EVB90640 devices were found!")
 Exit Sub
 End If

 ' Dev is a global variable of type PSF090640EVMLXDevice
 ‘ Select first device from the collection
 Set Dev = DevicesCol(0)
 MsgBox (Dev.Name & " device found on " & Dev.Channel.Name)
 If DevicesCol.Count > 1 Then

 For I = 1 To DevicesCol.Count - 1
 ' We are responsible to call Destroy(True) on the device objects we do not need
 Call DevicesCol(I).Destroy(True)

 Next I
 End If
 Exit Sub

lError:
 MsgBox Err.Description

 Err.Clear
End Sub

Developers can also manually connect the device object to a USB HID channel object thus bypassing standard

device scanning procedure. The following Visual Basic subroutine allows manual connection along with

standard device scanning depending on input parameter bAutomatic:

Sub CreateDevice(bAutomatic As Boolean)
 Dim PSFMan As PSF090640EVMLXManager, DevicesCol As ObjectCollection, I As Long
 Dim CommMan As CommManager, Chan As MPTChannel
 On Error GoTo lError

 If bAutomatic Then
 ' Automatic device scanning begins here
 Set PSFMan = CreateObject("MPT.PSF090640EVMLXManager")
 Set DevicesCol = PSFMan.ScanStandalone(dtUSBHID)
 If DevicesCol.Count <= 0 Then

 MsgBox ("No EVB90640 devices were found!")
 Exit Sub
 End If

 If DevicesCol.Count > 1 Then
 For I = 1 To DevicesCol.Count - 1

 'We are responsible to call Destroy(True) on device objects we do not need
 Call DevicesCol(I).Destroy(True)
 Next I

 End If
 Set MyDev = DevicesCol(0)
 Else

 ' Manual connection begins here
 Set CommMan = CreateObject("MPT.CommManager")
 Set MyDev = CreateObject("MPT.PSF090640EVMLXDevice")

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 7 -

Ver.1.17

 I = ActiveWorkbook.Names("USB HID Port").RefersToRange.Value2
 Set Chan = CommMan.Channels.CreateChannel(CVar(I), ctUSBHID)
 MyDev.Channel = Chan
 ' Check if an EVB is connected to this channel
 Call MyDev.CheckSetup(False)

 End If
 MsgBox (MyDev.Name & " device found on " & MyDev.Channel.Name)
 Exit Sub

lError:
 MsgBox Err.Description

 Err.Clear
End Sub

PSF090640EVMLXDevice object implements IMPTDevice standard MPT interface. Please refer to MPT

Developer reference document for description of the properties and methods of this interface.

In addition PSF090640EVMLXDevice object implements IPSF090640EVMLXDevice library specific interface,

which derives from IMPTDevice. The following is a description of its properties and methods.

4.24.24.24.2 Scope of the Scope of the Scope of the Scope of the PSF0PSF0PSF0PSF090640906409064090640EVMLXEVMLXEVMLXEVMLXDevice objectDevice objectDevice objectDevice object

This object supports all needs for a standard user.

With these basic functions, you’re able to discover this Melexis Product.

4.34.34.34.3 AdvancedAdvancedAdvancedAdvanced PropertyPropertyPropertyProperty

4.3.14.3.14.3.14.3.1 DescriptionDescriptionDescriptionDescription

This is a read-only property which returns a reference to PSF090640EVMLXAdvanced co-object.

4.3.24.3.24.3.24.3.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Property Advanced as PSF090640EVMLXAdvanced

Read only

C++:

HRESULT get_Advanced(/*[out][retval]*/ IPSF090640EVMLXAdvanced* pVal);

4.3.34.3.34.3.34.3.3 ParametersParametersParametersParameters

pVal

Address of IPSF090640EVMLXAdvanced* pointer variable that receives the interface pointer to the

Advanced object. If the invocation succeeds, the caller is responsible for calling IUnknown::Release()

on the pointer when it is no longer needed.

4.3.44.3.44.3.44.3.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A reference to the Advanced co-object.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 8 -

Ver.1.17

S_OK The operation completed successfully. *pVal contains a valid pointer.

Any other error code The operation failed. *pVal contains NULL.

4.44.44.44.4 ChipVersionChipVersionChipVersionChipVersion PropertyPropertyPropertyProperty

4.4.14.4.14.4.14.4.1 DescriptionDescriptionDescriptionDescription

This property specifies which the version of the device is connected to the board. Its value can be one of the

constants defined in the ChipVersionCodes enumeration.

4.4.24.4.24.4.24.4.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Property ChipVersion as ChipVersionCodes

C++:

HRESULT get_ChipVersion(/*[out][retval]*/ ChipVersionCodes* pVal);

HRESULT set_ChipVersion(/*[in] */ ChipVersionCodes Val);

4.4.34.4.34.4.34.4.3 ParametersParametersParametersParameters

pVal

Address of ChipVersionCodes variable that receives the currently selected device version.

Val

A ChipVersionCodes constant, specifying the required device version.

4.4.44.4.44.4.44.4.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A ChipVersionCodes value corresponding to the currently selected device version.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pVal contains a valid value.

Any other error code The operation failed.

4.54.54.54.5 EVBGeneralEVBGeneralEVBGeneralEVBGeneral PropertyPropertyPropertyProperty

4.5.14.5.14.5.14.5.1 DescriptionDescriptionDescriptionDescription

This property holds a reference to GenericPSFDevice co-object.

4.5.24.5.24.5.24.5.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Property EVBGeneral as Object

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 9 -

Ver.1.17

C++:

HRESULT get_EVBGeneral(/*[out][retval]*/ LPDISPATCH* pVal);

HRESULT set_EVBGeneral(/*[in]*/ LPDISPATCH Value);

4.5.34.5.34.5.34.5.3 ParametersParametersParametersParameters

Value

An IDispatch* specifying new EVBGeneral object. Nothing happens if the object is the same instance as

the existing one. Otherwise PSF090640EVMLXDevice object releases its current EVBGeneral object and

connects to the new one. This also includes replacing of the communication Channel object with the one

from the new GenericPSFDevice object.

pVal

Address of IDispatch* pointer variable that receives the interface pointer to the EVBGeneral device

object. If the invocation succeeds, the caller is responsible for calling IUnknown::Release() on the

pointer when it is no longer needed.

4.5.44.5.44.5.44.5.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A reference to the GenericPSFDevice co-object.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pVal contains valid pointer.

Any other error code The operation failed. *pVal contains NULL.

4.64.64.64.6 EmissivitEmissivitEmissivitEmissivityyyy PropertyPropertyPropertyProperty

4.6.14.6.14.6.14.6.1 DescriptionDescriptionDescriptionDescription

Specifies Emissivity parameter to be used during object temperature calculation.

Default value is 1.0.

4.6.24.6.24.6.24.6.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Property Emissivity as Single

C++:

HRESULT get_Emissivity (/*[out,retval]*/ float* pValue);

HRESULT set_Emissivity(/*[in]*/ float Value);

4.6.34.6.34.6.34.6.3 ParametersParametersParametersParameters

pValue

An address of float variable that receives current value of the property.

Value

A float specifying new value for the property.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 10 -

Ver.1.17

4.6.44.6.44.6.44.6.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

Emissivity parameter used during object temperature calculation.

C++:
 The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pValue contains valid value.

Any other error code The operation failed.

4.74.74.74.7 UseEmissivitUseEmissivitUseEmissivitUseEmissivityFromEepromyFromEepromyFromEepromyFromEeprom PropertyPropertyPropertyProperty

4.7.14.7.14.7.14.7.1 DescriptionDescriptionDescriptionDescription

Specifies whether Emissivity property will be overwritten by CodeEmissivity parameter when ReadFullEeprom

is called. This option is applicable only for MLX90641.

Default value is False.

4.7.24.7.24.7.24.7.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Property UseEmissivityFromEeprom as Boolean

C++:

HRESULT get_UseEmissivityFromEeprom(/*[out,retval]*/ VARIANT_BOOL* pValue);

HRESULT set_UseEmissivityFromEeprom(/*[in]*/ VARIANT_BOOL Value);

4.7.34.7.34.7.34.7.3 ParametersParametersParametersParameters

pValue

An address of VARIANT_BOOL variable that receives current value of the property.

Value

A VARIANT_BOOL specifying new value for the property. VARIANT_TRUE activates the Emissivity

update during EEPROM reading, VARIANT_FALSE deactivates it.

4.7.44.7.44.7.44.7.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

True if Emissivity will be updated during EEPROM reading or False otherwise.

C++:

 The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pValue contains valid value.

Any other error code The operation failed.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 11 -

Ver.1.17

4.84.84.84.8 ReadFullReadFullReadFullReadFullEepromEepromEepromEeprom MethodMethodMethodMethod

4.8.14.8.14.8.14.8.1 DescriptionDescriptionDescriptionDescription

Reads the whole EEPROM of the device. Updates the internal EEPROM cache with values taken from the

module.

4.8.24.8.24.8.24.8.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub ReadFullEeprom()

C++:

HRESULT ReadFullEeprom();

4.8.34.8.34.8.34.8.3 ParametersParametersParametersParameters

None

4.8.44.8.44.8.44.8.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.94.94.94.9 ProgramProgramProgramProgramEepromEepromEepromEeprom MethodMethodMethodMethod

4.9.14.9.14.9.14.9.1 DescripDescripDescripDescriptiontiontiontion

Programs the EEPROM of the device. Takes the values from the internal EEPROM cache.

Only the variables that are modified will be programmed.

Note that this method be called only if Advanced.EepromWritable property is True. Otherwise it will

immediately return an error.

4.9.24.9.24.9.24.9.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub ProgramEeprom()

C++:

HRESULT ProgramEeprom();

4.9.34.9.34.9.34.9.3 ParametersParametersParametersParameters

None

4.9.44.9.44.9.44.9.4 Return valueReturn valueReturn valueReturn value

C++:

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 12 -

Ver.1.17

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.104.104.104.10 DeviceReplacedDeviceReplacedDeviceReplacedDeviceReplaced MethodMethodMethodMethod

4.10.14.10.14.10.14.10.1 DescriptionDescriptionDescriptionDescription

Informs the object that the sensor is replaced and the EEPROM cache and some internal variables should be

invalidated.

4.10.24.10.24.10.24.10.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub DeviceReplaced()

C++:

HRESULT DeviceReplaced();

4.10.34.10.34.10.34.10.3 ParametersParametersParametersParameters

None

4.10.44.10.44.10.44.10.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.114.114.114.11 GetEEParameterCodeGetEEParameterCodeGetEEParameterCodeGetEEParameterCode MethodMethodMethodMethod

4.11.14.11.14.11.14.11.1 DescriptionDescriptionDescriptionDescription

Returns the code of a particular EEPROM parameter as it is represented in EEPROM. It is optimized because it

uses the EEPROM cache maintained by the library. ReadFullEeprom method must be called before calling

GetEEParameterCode to update the whole cache.

4.11.24.11.24.11.24.11.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function GetEEParameterCode(paramID as ParameterCodesEEPROM) as Long

C++:

HRESULT GetEEParameterCode(/*[in]*/ ParameterCodesEEPROM paramID, /*[out,retval]*/

long* pVal);

4.11.34.11.34.11.34.11.3 ParametersParametersParametersParameters

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 13 -

Ver.1.17

paramID

A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

pVal

An address of Long variable that will receive the return value of the method.

4.11.44.11.44.11.44.11.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A Long containing the code of an EEPROM parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pVal contains a valid value.

Any other error code The operation failed. *pVal is 0.

4.124.124.124.12 SetEEParameterCodeSetEEParameterCodeSetEEParameterCodeSetEEParameterCode MethodMethodMethodMethod

4.12.14.12.14.12.14.12.1 DescriptionDescriptionDescriptionDescription

Changes the code of a particular EEPROM parameter. The method works with the EEPROM cache maintained

by the library.

ProgramEeprom method must be called in order to update the EEPROM of the module with the codes from the

cache.

4.12.24.12.24.12.24.12.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SetEEParameterCode(paramID as ParameterCodesEEPROM, Value as Long)

C++:

HRESULT SetEEParameterCode(/*[in]*/ ParameterCodesEEPROM paramID,

/*[in]*/ long Value);

4.12.34.12.34.12.34.12.3 ParametersParametersParametersParameters

paramID

A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

Value

A Long containing new code for the parameter.

4.12.44.12.44.12.44.12.4 RRRReturn valueeturn valueeturn valueeturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The operation completed successfully.

Any other error code The operation failed.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 14 -

Ver.1.17

4.134.134.134.13 GetEEIdxParameterCodeGetEEIdxParameterCodeGetEEIdxParameterCodeGetEEIdxParameterCode MethodMethodMethodMethod

4.13.14.13.14.13.14.13.1 DescriptionDescriptionDescriptionDescription

Returns the code of a particular indexed EEPROM parameter as it is represented in EEPROM. It is optimized

because it uses the EEPROM cache maintained by the library. ReadFullEeprom method must be called before

calling GetEEIdxParameterCode to update the whole cache.

Note that this method is applicable only to parameters with defined index range in ParameterCodesEEPROM

table.

4.13.24.13.24.13.24.13.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function GetEEIdxParameterCode(paramID as ParameterCodesEEPROM, Index as Long) as

Long

C++:

HRESULT GetEEIdxParameterCode(/*[in]*/ ParameterCodesEEPROM paramID,

/*[in]*/ long Index, /*[out,retval]*/ long* pVal);

4.13.34.13.34.13.34.13.3 ParametersParametersParametersParameters

paramID

A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

Index

A Long number, specifying the requested index.

pVal

An address of Long variable that will receive the return value of the method.

4.13.44.13.44.13.44.13.4 Return valueReturn valueReturn valueReturn value

Visual Basic:
A Long containing the code of an EEPROM parameter.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pVal contains a valid value.

Any other error code The operation failed. *pVal is 0.

4.144.144.144.14 SetEEIdxParaSetEEIdxParaSetEEIdxParaSetEEIdxParameterCodemeterCodemeterCodemeterCode MethodMethodMethodMethod

4.14.14.14.14.14.14.14.1 DescriptionDescriptionDescriptionDescription

Changes the code of a particular indexed EEPROM parameter. The method works with the EEPROM cache

maintained by the library.

ProgramEeprom method must be called in order to update the EEPROM of the module with the codes from the

cache.

Note that this method is applicable only to parameters with defined index range in ParameterCodesEEPROM

table.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 15 -

Ver.1.17

4.14.24.14.24.14.24.14.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SetEEIdxParameterCode(paramID as ParameterCodesEEPROM, Index as Long,

Value as Long)

C++:

HRESULT SetEEParameterCode(/*[in]*/ ParameterCodesEEPROM paramID,

/*[in]*/ long Index, /*[in]*/ long Value);

4.14.34.14.34.14.34.14.3 ParametersParametersParametersParameters

paramID

A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

Index

A Long number, specifying the requested index.

Value

A Long containing new code for the parameter.

4.14.44.14.44.14.44.14.4 Return valueReturn valueReturn valueReturn value

C++:
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.154.154.154.15 GetEEParameterValueGetEEParameterValueGetEEParameterValueGetEEParameterValue MethodMethodMethodMethod

4.15.14.15.14.15.14.15.1 DescriptionDescriptionDescriptionDescription

Returns the translated value of a particular EEPROM parameter. It first calls GetEEParameterCode method

and then translates the code of the parameter into a suitable value.

Translation is not defined for all parameters and this method returns an error if it receives paramID which is not

supported.

Note, that currently no parameter has defined translation.

4.15.24.15.24.15.24.15.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function GetEEParameterValue(paramID as ParameterCodesEEPROM)

C++:

HRESULT GetEEParameterValue(/*[in]*/ ParameterCodesEEPROM paramID,

/*[out,retval]*/ TVariant* pVal);

4.15.34.15.34.15.34.15.3 ParametersParametersParametersParameters

paramID

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 16 -

Ver.1.17

A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

pVal
An address of VARIANT variable that will receive the return value of the method. The caller is

responsible to call VariantClear on that variable when it is no longer needed.

4.15.44.15.44.15.44.15.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A Variant containing the translated value of an EEPROM parameter.

C++:
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pVal contains a valid value.

Any other error code The operation failed. *pVal is Empty.

4.164.164.164.16 SetEEParameterValueSetEEParameterValueSetEEParameterValueSetEEParameterValue MethodMethodMethodMethod

4.16.14.16.14.16.14.16.1 DescriptionDescriptionDescriptionDescription

Changes the value of a particular EEPROM parameter. It first translates the value to a corresponding code and

then calls SetEEParameterCode method to modify the parameter in the cache.

Translation is not defined for all parameters and this method returns an error if it receives paramID which is not

supported.

ProgramEeprom method must be called in order to update the EEPROM of the module with the codes from the

cache.

Note, that currently no parameter has defined translation.

4.16.24.16.24.16.24.16.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SetEEParameter(paramID as ParameterCodesEEPROM, Value)

C++:

HRESULT SetEEParameter(/*[in]*/ ParameterCodesEEPROM paramID, /*[in]*/

TVariantInParam Value);

4.16.34.16.34.16.34.16.3 ParametersParametersParametersParameters

paramID

A ParameterCodesEEPROM constant specifying the ID of the EEPROM parameter.

Value

A VARIANT containing new value for the parameter.

4.16.44.16.44.16.44.16.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 17 -

Ver.1.17

Any other error code The operation failed.

4.174.174.174.17 GetEEGetEEGetEEGetEE1111Data MethodData MethodData MethodData Method

4.17.14.17.14.17.14.17.1 DescriptionDescriptionDescriptionDescription

This method returns the full contents (832*2 bytes) of EEPROM from the internal cache on the PC. In order to

perform a real reading from the device, ReadFullEeprom method must be called first.

4.17.24.17.24.17.24.17.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function GetEE1Data([Format As Long = 1]) as Variant

C++:

HRESULT GetEE1Data(/*[in,defaultvalue=1]*/ long Format

/*[out,retval]*/ VARIANT* ReadData);

4.17.34.17.34.17.34.17.3 ParametersParametersParametersParameters

Format

A long specifying the format of the returned data. Possible values are:

Value Format

1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.

2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the

string can contain zeroes and may not be zero terminated. Callers can get its real length

by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

ReadData

An address of Variant variable that will receive the read data. The type of content is specified by Format

parameter. The caller is responsible to call VariantClear on that variable when it is no longer needed.

4.17.44.17.44.17.44.17.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A Variant, containing the read data. The type of content is specified by Format parameter.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.184.184.184.18 SetEESetEESetEESetEE1111Data MethodData MethodData MethodData Method

4.18.14.18.14.18.14.18.1 DescriptionDescriptionDescriptionDescription

This method sets the full contents (832*2 bytes) of EEPROM to the internal cache on the PC. In order to perform

a real programming to the device, ProgramEeprom method must be called afterwards.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 18 -

Ver.1.17

4.18.24.18.24.18.24.18.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SetEE1Data(Data as Variant, [Format As Long = 1])

C++:

HRESULT SetEE1Data(/*[in]*/ VARIANT Data, /*[in,defaultvalue=1]*/ long Format);

4.18.34.18.34.18.34.18.3 ParametersParametersParametersParameters

Data

A Variant containing 832*2 bytes which will be set in the cache. The type of content is specified by

Format parameter.

Format
A long specifying the format of the returned data. Possible values are:

Value Format

1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.

2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the

string can contain zeroes and may not be zero terminated. Callers can get its real length

by calling SysStringByteLen API on bstrVal member.

4.18.44.18.44.18.44.18.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.194.194.194.19 SetSetSetSetVdd MethodVdd MethodVdd MethodVdd Method

4.19.14.19.14.19.14.19.1 DescriptionDescriptionDescriptionDescription

Sets supply voltage.

4.19.24.19.24.19.24.19.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SetVdd(Volt As Single)

C++:

HRESULT SetVdd(/*[in]*/ float Volt);

4.19.34.19.34.19.34.19.3 ParametersParametersParametersParameters

Volt

A Single (float) specifying supply voltage. Valid values are between 0 and 5V.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 19 -

Ver.1.17

4.19.44.19.44.19.44.19.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.204.204.204.20 MeasureVddMeasureVddMeasureVddMeasureVdd MethodMethodMethodMethod

4.20.14.20.14.20.14.20.1 DescriptionDescriptionDescriptionDescription

This method will measure the supply voltage of the device.

4.20.24.20.24.20.24.20.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function MeasureVdd() as Single

C++:

HRESULT MeasureVdd(/*[out, retval]*/ float* pVal);

4.20.34.20.34.20.34.20.3 ParametersParametersParametersParameters

pVal

An address of float variable that will receive the measured supply voltage.

4.20.44.20.44.20.44.20.4 RRRReturn valueeturn valueeturn valueeturn value

Visual Basic:

A Single containing the measured supply voltage.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.214.214.214.21 ContactTest MethodContactTest MethodContactTest MethodContactTest Method

4.21.14.21.14.21.14.21.1 DescriptionDescriptionDescriptionDescription

This method checks if the device is properly connected. A valid I2C read command will be sent and checked for

acknowledge. Then the same command will be sent to an invalid address and the result must be NAK.

4.21.24.21.24.21.24.21.2 SyntSyntSyntSyntaxaxaxax

Visual Basic:

Function ContactTest() as Boolean

C++:

HRESULT ContactTest(/*[out, retval]*/ VARIANT_BOOL* pVal);

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 20 -

Ver.1.17

4.21.34.21.34.21.34.21.3 ParametersParametersParametersParameters

pVal

An address of VARIANT_BOOL variable that will receive the result of the contact test.

4.21.44.21.44.21.44.21.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A Boolean containing the result of the contact test.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.224.224.224.22 ReadReadReadReadMeMeMeMem Methodm Methodm Methodm Method

4.22.14.22.14.22.14.22.1 DesDesDesDescriptioncriptioncriptioncription

This method reads the specified memory area from IC.

4.22.24.22.24.22.24.22.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function ReadMem(Addr As Long, NWords As Long, [Format As Long = 1]) as Variant

C++:

HRESULT ReadRam(/*[in]*/ long Addr, /*[in]*/ long NWords,

/*[in]*/ long Format, /*[out,retval]*/ VARIANT* ReadData);

4.22.34.22.34.22.34.22.3 ParametersParametersParametersParameters

Addr

A Long specifying the first address to be read.

NWords
A Long specifying the number of words to be read.

Format

A long specifying the format of the read data. Possible values are:

Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.

2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the

string can contain zeroes and may not be zero terminated. Callers can get its real length

by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

ReadData

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 21 -

Ver.1.17

An address of Variant variable that will receive the read data. The type of content is specified by Format

parameter. The caller is responsible to call VariantClear on that variable when it is no longer needed.

4.22.44.22.44.22.44.22.4 Return valueReturn valueReturn valueReturn value

Visual Basic:
A Variant, containing the read data. The type of content is specified by Format parameter.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.234.234.234.23 WriteMem MethodWriteMem MethodWriteMem MethodWriteMem Method

4.23.14.23.14.23.14.23.1 DescriptionDescriptionDescriptionDescription

Writes a word in memory of IC.

4.23.24.23.24.23.24.23.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub WriteMem(Addr as Long, Data As Long)

C++:

HRESULT WriteMem(/*[in]*/ long Addr, /*[in]*/ long Data);

4.23.34.23.34.23.34.23.3 ParametersParametersParametersParameters

Addr

A Long specifying the address to be written.

Data
A Long specifying data to be written.

4.23.44.23.44.23.44.23.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.244.244.244.24 ReadReadReadReadSingleFrame MethodSingleFrame MethodSingleFrame MethodSingleFrame Method

4.24.14.24.14.24.14.24.1 DescriptionDescriptionDescriptionDescription

This method reads a frame with the whole IR array as well as PTAT and Cyclop sensors from IC.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 22 -

Ver.1.17

4.24.24.24.24.24.24.24.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function ReadSingleFrame(Processing As DataProcessingTypes, Format As Long,

ByRef PTAT As Long, ByRef Cyclop As Long) as Variant

C++:

HRESULT ReadSingleFrame(/*[in]*/ DataProcessingTypes Processing, /*[in]*/ long Format,

/*[out]*/ long* PTAT, /*[out]*/ long* Cyclop, /*[out,retval]*/ VARIANT* IRData);

4.24.34.24.34.24.34.24.3 ParametersParametersParametersParameters

Processing

A DataProcessingTypes constant, specifying whether raw or compensated data will be returned.

Format

A long specifying the format of the read data. Possible values are:

Value Format

1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.

2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the

string can contain zeroes and may not be zero terminated. Callers can get its real length

by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

PTAT
An address of Long variable that will receive the value of PTAT register.

Cyclop

An address of Long variable that will receive the value of Cyclop register.

IRData
An address of Variant variable that will receive the content of IR sensors array. The type of content is

specified by Format parameter. The caller is responsible to call VariantClear on that variable when it is no

longer needed.

4.24.44.24.44.24.44.24.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A Variant, containing IR sensors array. The type of content is specified by Format parameter.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.254.254.254.25 SendSendSendSendStartStartStartStart MethodMethodMethodMethod

4.25.14.25.14.25.14.25.1 DescriptionDescriptionDescriptionDescription

This method sends Start Conversion command to the device.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 23 -

Ver.1.17

4.25.24.25.24.25.24.25.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SendStart()

C++:

HRESULT SendStart();

4.25.34.25.34.25.34.25.3 ParametersParametersParametersParameters

None

4.25.44.25.44.25.44.25.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.264.264.264.26 StartDAQ MethodStartDAQ MethodStartDAQ MethodStartDAQ Method

4.26.14.26.14.26.14.26.1 DescriptionDescriptionDescriptionDescription

This method initiates continuous data acquisition on the evaluation board. After starting, ReadDAQ must be

called regularly in order to receive data. At the end, StopDAQ must be called to terminate acquisition process on

EVB.

Note, that this method doesn’t send Start command, but just reads whatever is in ICs RAM. Thus if the device

is configured in Step mode, successive reads will give the same result.

4.26.24.26.24.26.24.26.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub StartDAQ(FramePeriodUS As Long, Processing As DataProcessingTypes)

C++:

HRESULT StartDAQ(/*[in]*/ long FramePeriodUS, /*[in]*/ DataProcessingTypes Processing);

4.26.34.26.34.26.34.26.3 ParametersParametersParametersParameters

FramePeriodUS

A long specifying the delay between successive frames reads in [us]. It must be bigger than 0.

Processing

A DataProcessingTypes constant, specifying the type of data acquisition to start. The meaningful modes

are listed below:

Constant DAQ type

1237 MLX90640 32x24 pixels frame measured in continuous mode.

1238 MLX90641 16x12 pixels frame measured in continuous mode.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 24 -

Ver.1.17

4.26.44.26.44.26.44.26.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.274.274.274.27 ReadDAQ MethodReadDAQ MethodReadDAQ MethodReadDAQ Method

4.27.14.27.14.27.14.27.1 DescriptionDescriptionDescriptionDescription

This method reads all the buffered data on the EVB. If no data has been buffered yet, it’ll return an empty

Variant.

4.27.24.27.24.27.24.27.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function ReadDAQ(ByVal err As Byte, [Format As Long = 1]) as Variant

C++:

HRESULT ReadDAQ(/*[out]*/ unsigned char* err, /*[in,defaultvalue=1]*/ long Format,

/*[out,retval]*/ VARIANT* pData);

4.27.34.27.34.27.34.27.3 ParametersParametersParametersParameters

err
An address of Byte variable that will receive an error code (0=no error, 1=I2C NAK, 2=EVB buffer

overflow)

Format

A long specifying the format of the read data. Possible values are:

Value Format
1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.

2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the

string can contain zeroes and may not be zero terminated. Callers can get its real length

by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

pData

An address of Variant variable that will receive the buffered data. The type of content is specified by

Format parameter. The caller is responsible to call VariantClear on that variable when it is no longer

needed.

4.27.44.27.44.27.44.27.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

A Variant, containing the buffered data. If it’s not empty, the result will be an array of Variants. Each

of the later will be the data of an IR frame.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 25 -

Ver.1.17

The type of the frame variant is specified by Format parameter. Each pixel is represented by a 16 bit

integer number. The frame contains pixel data twice – first time with calculated temperatures in

Kelvin * 50 and second time the raw data.

For MLX90640, a frame will contain 32*(24 + 2)*2 16-bit numbers, as follows:

For MLX90641, a frame will contain (16*12 + 32*2)*2 16-bit numbers, as follows:

C++:
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.284.284.284.28 StopDAQStopDAQStopDAQStopDAQ MethodMethodMethodMethod

4.28.14.28.14.28.14.28.1 DescriptionDescriptionDescriptionDescription

This method will terminate data acquisition process running on EVB. If DAQ hasn’t been started, there will be

no effect.

4.28.24.28.24.28.24.28.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub StopDAQ()

C++:

HRESULT StopDAQ();

4.28.34.28.34.28.34.28.3 ParametersParametersParametersParameters

None

4.28.44.28.44.28.44.28.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.294.294.294.29 FilterInterlacingFilterInterlacingFilterInterlacingFilterInterlacing MethodMethodMethodMethod

4.29.14.29.14.29.14.29.1 DescriptionDescriptionDescriptionDescription

This method specifies if de-interlacing filter will be applied during data acquisition (DAQ).

By default, de-interlacing filter is disabled.

Note that this filter is applicable only for MLX90640.

32*24 pixels calculated To in K*50 32*2 internal 32*24 pixels raw 32*2 internal

16*12 pixels calculated To in K*50 32*2 internal 16*12 pixels raw 32*2 internal

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 26 -

Ver.1.17

4.29.24.29.24.29.24.29.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub FilterInterlacing(Enable As Boolean)

C++:

HRESULT FilterInterlacing(/*[in]*/ VARIANT_BOOL Enable);

4.29.34.29.34.29.34.29.3 ParametersParametersParametersParameters

Enable

A Boolean, specifying if de-interlacing filter will be applied during data acquisition of MLX90640.

4.29.44.29.44.29.44.29.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.304.304.304.30 FilterThresholdAveragingFilterThresholdAveragingFilterThresholdAveragingFilterThresholdAveraging MethodMethodMethodMethod

4.30.14.30.14.30.14.30.1 DescriptionDescriptionDescriptionDescription

This method specifies if averaging filter will be applied during data acquisition (DAQ).

By default, averaging filter is disabled.

4.30.24.30.24.30.24.30.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub FilterThresholdAveraging(Enable As Boolean, Depth as Long, Threshold as Single)

C++:

HRESULT FilterThresholdAveraging(/*[in]*/ VARIANT_BOOL Enable, /*[in]*/ long Depth,

/*[in]*/ float Threshold);

4.30.34.30.34.30.34.30.3 ParametersParametersParametersParameters

Enable
A Boolean, specifying if averaging filter will be applied during data acquisition.

Depth

A Long, specifying the depth of the filter.

Threshold
A Single, temperature difference (in degC) which if met would reset the filter to the current temperature.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 27 -

Ver.1.17

4.30.44.30.44.30.44.30.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.314.314.314.31 FilterTgcFilterTgcFilterTgcFilterTgc MethodMethodMethodMethod

4.31.14.31.14.31.14.31.1 DescriptionDescriptionDescriptionDescription

This method specifies if TGC filter will be applied during data acquisition (DAQ).

By default, TGC filter is disabled.

4.31.24.31.24.31.24.31.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub FilterTgc(Enable As Boolean, Depth as Long)

C++:

HRESULT FilterTgc(/*[in]*/ VARIANT_BOOL Enable, /*[in]*/ long Depth);

4.31.34.31.34.31.34.31.3 ParametersParametersParametersParameters

Enable

A Boolean, specifying if TGC filter will be applied during data acquisition.

Depth

A Long, specifying the depth of the filter.

4.31.44.31.44.31.44.31.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

4.324.324.324.32 UploadFirmwareFromDFUUploadFirmwareFromDFUUploadFirmwareFromDFUUploadFirmwareFromDFU MethodMethodMethodMethod

4.32.14.32.14.32.14.32.1 DescriptionDescriptionDescriptionDescription

This method writes new firmware on the evaluation board.

4.32.24.32.24.32.24.32.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub UploadFirmwareFromDFU(DfuFilename As String)

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 28 -

Ver.1.17

C++:

HRESULT UploadFirmwareFromDFU(/*[in]*/ BSTR DfuFilename);

4.32.34.32.34.32.34.32.3 ParametersParametersParametersParameters

DfuFilename
A String, specifying the full path to a DFU file, containing the firmware to be written.

4.32.44.32.44.32.44.32.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 29 -

Ver.1.17

5 PSF090640EVMLXAdvanced Object

5.15.15.15.1 BackgroundBackgroundBackgroundBackground

This object cannot be created directly; it is only accessible as “Advanced” property of

PSF090640EVMLXDevice object.

PSF090640EVMLXAdvanced object implements IPSF090640EVMLXAdvanced library specific interface. The

following is a description of its methods.

5.25.25.25.2 Scope of the PSF0Scope of the PSF0Scope of the PSF0Scope of the PSF090640906409064090640EVMLXAdvanced objectEVMLXAdvanced objectEVMLXAdvanced objectEVMLXAdvanced object

This object implements advanced functions that would be rarely used in order to perform specific operations not

available with the standard device functions. In general, most of the methods of that object provide direct access

to MLX90640 EVB firmware commands.

5.35.35.35.3 LoggingLoggingLoggingLogging PropertyPropertyPropertyProperty

5.3.15.3.15.3.15.3.1 DescriptionDescriptionDescriptionDescription

Specifies whether logging information is generated while working with the library, mostly for the solving

process.

5.3.25.3.25.3.25.3.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Property Logging as Boolean

C++:

HRESULT get_Logging(/*[out,retval]*/ VARIANT_BOOL* pValue);

HRESULT set_Logging(/*[in]*/ VARIANT_BOOL Value);

5.3.35.3.35.3.35.3.3 ParametersParametersParametersParameters

pValue
An address of VARIANT_BOOL variable that receives current value of the property.

VARIANT_TRUE means that logging is active, VARIANT_FALSE means inactive.

Value

A VARIANT_BOOL specifying new value for the property. VARIANT_TRUE activates the logging,

VARIANT_FALSE deactivates it.

5.3.45.3.45.3.45.3.4 Return valueReturn valueReturn valueReturn value

Visual Basic:
True if logging is active, False otherwise.

C++:

 The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The operation completed successfully. *pValue contains valid value.

Any other error code The operation failed.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 30 -

Ver.1.17

5.45.45.45.4 QuietCheckQuietCheckQuietCheckQuietCheck PropertyPropertyPropertyProperty

5.4.15.4.15.4.15.4.1 DescriptionDescriptionDescriptionDescription

Specifies whether connection and configuration check, performed in front of each high level method, can show

warning and confirmation messages or will directly return an error message.

5.4.25.4.25.4.25.4.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Property QuietCheck as Boolean

C++:

HRESULT get_QuietCheck(/*[out,retval]*/ VARIANT_BOOL* pValue);

HRESULT set_QuietCheck(/*[in]*/ VARIANT_BOOL Value);

5.4.35.4.35.4.35.4.3 ParametersParametersParametersParameters

pValue

An address of VARIANT_BOOL variable that receives current value of the property.

VARIANT_TRUE means that checks are “quiet”, VARIANT_FALSE means that warnings can be

shown.

Value
A VARIANT_BOOL specifying new value for the property. VARIANT_TRUE suppress dialogs,

VARIANT_FALSE allows them.

5.4.45.4.45.4.45.4.4 ReturnReturnReturnReturn valuevaluevaluevalue

Visual Basic:

True if checks are “quiet”, False if warnings can be shown.

C++:
 The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pValue contains valid value.

Any other error code The operation failed.

5.55.55.55.5 EepromWritableEepromWritableEepromWritableEepromWritable PropertyPropertyPropertyProperty

5.5.15.5.15.5.15.5.1 DescriptionDescriptionDescriptionDescription

This property specifies whether EEPROM of the device can be written. By default its value is False, meaning

EEPROM cannot be written.

5.5.25.5.25.5.25.5.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Property EepromWritable as Boolean

C++:

HRESULT get_ EepromWritable(/*[out,retval]*/ VARIANT_BOOL* pValue);

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 31 -

Ver.1.17

HRESULT set_ EepromWritable(/*[in]*/ VARIANT_BOOL Value);

5.5.35.5.35.5.35.5.3 ParametersParametersParametersParameters

pValue

An address of VARIANT_BOOL variable that receives current value of the property.

VARIANT_TRUE means that calls to ProgramEeprom method will write to the device,

VARIANT_FALSE means that such calls will return an error.

Value

A VARIANT_BOOL specifying new value for the property. VARIANT_TRUE enables writing,

VARIANT_FALSE disables it.

5.5.45.5.45.5.45.5.4 RRRReturn valueeturn valueeturn valueeturn value

Visual Basic:

True if ProgramEeprom method will write to the device, False if it will return an error.

C++:

 The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The operation completed successfully. *pValue contains valid value.

Any other error code The operation failed.

5.65.65.65.6 GetSettingGetSettingGetSettingGetSetting MethodMethodMethodMethod

5.6.15.6.15.6.15.6.1 DescriptionDescriptionDescriptionDescription

Returns the value of a particular setting.

5.6.25.6.25.6.25.6.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function GetSetting(settingID as SettingCodes)

C++:

HRESULT GetSetting(/*[in]*/ SettingCodes settingID, /*[out,retval]*/ TVariant* pVal);

5.6.35.6.35.6.35.6.3 ParametersParametersParametersParameters

settingID

A SettingCodes constant specifying the ID of the setting.

pVal

An address of VARIANT variable that will receive the return value of the method. The caller is

responsible to call VariantClear on that variable when it is no longer needed.

5.6.45.6.45.6.45.6.4 Return valueReturn valueReturn valueReturn value

Visual Basic:

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 32 -

Ver.1.17

A Variant containing the value of a setting.

C++:
The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully. *pVal contains valid value.

Any other error code The operation failed. *pVal is Empty.

5.75.75.75.7 SetSettingSetSettingSetSettingSetSetting MethodMethodMethodMethod

5.7.15.7.15.7.15.7.1 DescriptionDescriptionDescriptionDescription

Changes the value of a particular setting. Sets an associated internal variable. The setting is also sent

immediately to MLX90640 evaluation board.

NOTE: If necessary, the changes can be saved in the profile with a subsequent call to SaveProfile or

SaveProfileAs methods.

5.7.25.7.25.7.25.7.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SetSetting(settingID as SettingCodes, Value)

C++:

HRESULT SetSetting(/*[in]*/ SettingCodes settingID, /*[in]*/ TVariantInParam Value);

5.7.35.7.35.7.35.7.3 ParametersParametersParametersParameters

settingID

A SettingCodes constant specifying the ID of the setting to modify.

Value

A VARIANT containing new value for the setting.

5.7.45.7.45.7.45.7.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The operation completed successfully.

Any other error code The operation failed.

5.85.85.85.8 OpenProfile MethodOpenProfile MethodOpenProfile MethodOpenProfile Method

5.8.15.8.15.8.15.8.1 DescriptionDescriptionDescriptionDescription

Opens the specified file and updates the settings.

5.8.25.8.25.8.25.8.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 33 -

Ver.1.17

Sub OpenProfile(FileName as String)

C++:

HRESULT OpenProfile(/*[in]*/ BSTR FileName);

5.8.35.8.35.8.35.8.3 ParametersParametersParametersParameters

FileName

A String specifying the path of the file to open.

5.8.45.8.45.8.45.8.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The operation completed successfully.

Any other error code The operation failed.

5.95.95.95.9 SaveProfile MethodSaveProfile MethodSaveProfile MethodSaveProfile Method

5.9.15.9.15.9.15.9.1 DescriptionDescriptionDescriptionDescription

Saves the settings into a previously opened profile. This function fails if there is not a profile in use.

5.9.25.9.25.9.25.9.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SaveProfile()

C++:

HRESULT SaveProfile();

5.9.35.9.35.9.35.9.3 ParametersParametersParametersParameters

None

5.9.45.9.45.9.45.9.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning
S_OK The operation completed successfully.

Any other error code The operation failed.

5.105.105.105.10 SaveProfileAs MethodSaveProfileAs MethodSaveProfileAs MethodSaveProfileAs Method

5.10.15.10.15.10.15.10.1 DescriptionDescriptionDescriptionDescription

Saves the settings into the specified file.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 34 -

Ver.1.17

5.10.25.10.25.10.25.10.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Sub SaveProfileAs(FileName as String)

C++:

HRESULT SaveProfileAs(/*[in]*/ BSTR FileName);

5.10.35.10.35.10.35.10.3 ParametersParametersParametersParameters

FileName

A String specifying the path of the file.

5.10.45.10.45.10.45.10.4 Return valueReturn valueReturn valueReturn value

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

5.115.115.115.11 I2CWriteReadI2CWriteReadI2CWriteReadI2CWriteRead MethodMethodMethodMethod

5.11.15.11.15.11.15.11.1 DescriptionDescriptionDescriptionDescription

This method is for general I2C master-to-slave communication. It could be used for write or read transmissions,

and also for write then read. Start and Stop conditions are generated respectively at the beginning and the end of

the transmission. A Repeated Start Condition is inserted between Write-then-Read requests.

5.11.25.11.25.11.25.11.2 SyntaxSyntaxSyntaxSyntax

Visual Basic:

Function I2CWriteRead(DevAddr As Byte, WriteData as Variant, Format As Long,

NReadBytes As Long, err As Byte) as Variant

C++:

HRESULT I2CWriteRead(/*[in]*/ unsigned char DevAddr, /*[in]*/ VARIANT WriteData,

/*[in]*/ long Format, /*[in]*/ long NReadBytes, /*[out]*/ unsigned char* err,

/*[out,retval]*/ VARIANT* ReadData);

5.11.35.11.35.11.35.11.3 ParametersParametersParametersParameters

DevAddr

A Byte specifying the address of the slave device.

WriteData

A Variant specifying the data to be send by the master. The content of the variant depends on the Format

parameter.

Format

A long specifying the format of data in WriteData and ReadData. Possible values are:

Value Format

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 35 -

Ver.1.17

1 Data is an array of bytes. This is the preferred format for Visual Basic applications. This

is the default value.

2 Data is an ANSI string packed in bstrVal member of *pvarID. This is the preferred

format for C++ applications because of the best performance. It is a binary data so the

string can contain zeroes and may not be zero terminated. Callers can get its real length

by calling SysStringByteLen API on bstrVal member.

4 Data is an array of 16 bit integers.

NReadBytes
A Long specifying the number of bytes to read after (eventual) writing.

err

An address of Byte variable that will receive an error code (0=no error, 1=I2C NAK).

ReadData

An address of Variant variable that will receive the read data. The type of content is specified by Format

parameter. The caller is responsible to call VariantClear on that variable when it is no longer needed.

5.11.45.11.45.11.45.11.4 Return valuReturn valuReturn valuReturn valueeee

Visual Basic:

A Variant, containing the read data. The type of content is specified by Format parameter.

C++:

The return value obtained from the returned HRESULT is one of the following:

Return value Meaning

S_OK The operation completed successfully.

Any other error code The operation failed.

6 Enumeration constants

6.16.16.16.1 ParamParamParamParametereteretereterCodesEEPROM enumerationCodesEEPROM enumerationCodesEEPROM enumerationCodesEEPROM enumeration

The following constants refer to parameters in EEPROM. They are used by GetEEParameterCode,

SetEEParameterCode, GetEEIdxParameterCode, SetEEIdxParameterCode,

GetEEParameterValue and SetEEParameterValue methods.

Parameters with translation value ‘-‘ are not supported by GetEEParameterValue and

SetEEParameterValue methods.

Constant

V
a

lu
e

B
it

s

Translation

value
Description

9
0

6
4

0
A

A
A

9
0

6
4

0
C

A
A

9
0

6
4

1
A

A
A

9
0

6
4

1
C

A
A

CodeOscTrim 1 16 - √ √ √ √

CodeAnalogTrim 2 16 - √ √ √ √

CodeConfiguration 3 16 - √ √ √ √

CodeI2CAddr 4 16 - √ √ √ √

CodeCropPageAddr 5 16 - √ √ √ √

CodeCropCellAddr 6 16 - √ √ √ √

CodeControl1 7 16 - √ √ √ √

CodeControl2 8 16 - √ √ √ √

CodeI2CConf 9 16 - √ √ √ √

CodeID1 10 16 - √ √ √ √

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 36 -

Ver.1.17

Constant

V
a

lu
e

B
it

s

Translation

value
Description

9
0

6
4

0
A

A
A

9
0

6
4

0
C

A
A

9
0

6
4

1
A

A
A

9
0

6
4

1
C

A
A

CodeID2 11 16 - √ √ √ √

CodeID3 12 16 - √ √ √ √

CodeDeviceOptions 13 16 - √ √ √ √

CodeAnalogTrim2 14 16 - √ √

CodeScale_Occ_rem 15 4 - √ √

CodeScale_Occ_col 16 4 - Indexed [0 to 31] √ √

CodeScale_Occ_row 17 4 - Indexed [0 to 23] √ √

CodeAlpha_PTAT 18 » - 4 4 11 11

CodePix_os_average 19 16 - √ √

CodeOCC_row 20 4 - √ √

CodeOCC_column 21 4 - √ √

CodeScale_Acc_rem 22 4 - √ √

CodeScale_Acc_col 23 4 - Indexed [0 to 31] √ √

CodeScale_Acc_row 24 4 - Indexed [0 to 23] √ √

CodeAlpha_scale 25 4 - √ √

CodePix_sens_average 26 16 - √ √

CodeACC_row 27 4 - √ √

CodeACC_column 28 4 - √ √

CodeGAIN 29 » - 16 16 11 11

CodePTAT_25 30 » - 16 16 11 11

CodeKt_PTAT 31 » - 10 10 11 11

CodeKv_PTAT 32 » - 6 6 11 11

CodeVdd_25 33 » - 8 8 11 11

CodeK_Vdd 34 » - 8 8 11 11

CodeKv_Avg_RE_CE 35 4 - √ √

CodeKv_Avg_RO_CE 36 4 - √ √

CodeKv_Avg_RE_CO 37 4 - √ √

CodeKv_Avg_RO_CO 38 4 - √ √

CodeKta_Avg_RE_CO 39 8 - √ √

CodeKta_Avg_RO_CO 40 8 - √ √

CodeKta_Avg_RE_CE 41 8 - √ √

CodeKta_Avg_RO_CE 42 8 - √ √

CodeKta_scale2 43 4 - √ √

CodeKta_scale1 44 4 - √ √

CodeKv_scale 45 4 - √ √

CodeRes_control 46 2 - √ √

CodeAlpha_CP_P0 47 10 - √ √

CodeAlpha_CP_P1_P0 48 6 - √ √

CodeOffset_CP_P0 49 10 - √ √

CodeOffset_CP_P1_P0 50 6 - √ √

CodeKta_CP 51 » - 8 8 6 6

CodeKv_CP 52 » - 8 8 6 6

CodeTGC 53 » - 8 8 9 9

CodeKsTa 54 » - 8 8 11 11

CodeKsTo_R1 55 8 - √ √

CodeKsTo_R2 56 8 - √ √

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 37 -

Ver.1.17

Constant

V
a

lu
e

B
it

s

Translation

value
Description

9
0

6
4

0
A

A
A

9
0

6
4

0
C

A
A

9
0

6
4

1
A

A
A

9
0

6
4

1
C

A
A

CodeKsTo_R3 57 8 - √ √

CodeKsTo_R4 58 8 - √ √

CodeScale_KsTo 59 4 - √ √

CodeCT1 60 4 - √ √

CodeCT2 61 4 - √ √

CodeTemp_Step 62 2 - √ √

CodePixel_Kta 63 » - Indexed [0 to 767] for 90640
Indexed [0 to 191] for 90641

3 3 6 6

CodePixel_Alpha 64 6 - Indexed [0 to 767] √ √

CodePixel_Offset 65 6 - Indexed [0 to 767] √ √

CodeScale_occ_os 66 6 - √ √

CodePix_os_avg 67 11 - √ √

CodeKta_avg 68 11 - √ √

CodeKta_scale_2 69 5 - √ √

CodeKta_scale_1 70 6 - √ √

CodeKv_avg 71 11 - √ √

CodeKv_scale_2 72 5 - √ √

CodeKv_scale_1 73 6 - √ √

CodeScale_row 74 5 - Indexed [0 to 5] √ √

Coderow_max 75 11 - Indexed [0 to 5] √ √

CodeEmissivity 76 11 - √ √

CodeAlpha_CP 77 11 - √ √

CodeAlpha_CP_scale 78 11 - √ √

CodeOffset_CP 79 11 - √ √

CodeKta_CP_scale 80 5 - √ √

CodeKv_CP_scale 81 5 - √ √

CodeCalib_res_cont 82 2 - √ √

CodeKsTo_scale 83 11 - √ √

CodeKsTo 84 11 - √ √

CodePixel_os 85 11 - Indexed [0 to 191] √ √

CodePixel_Sensitivity 86 11 - Indexed [0 to 191] √ √

CodePixel_Kv 87 5 - Indexed [0 to 191] √ √

6.26.26.26.2 SettingCodes enumerationSettingCodes enumerationSettingCodes enumerationSettingCodes enumeration

The following constants specify different settings. They are used by GetSetting and SetSetting methods.

Constant

V
a

lu
e

Type
Default
value

Description

SettingTpor 1 (Long) long 10000 [µs] Power On Reset delay
SettingTreset 2 (Long) long 1000 [µs] Delay to keep Vdd off for resetting
SettingTclock 3 (Single) float 1.0 [µs] IR I2C clock speed
SettingTstart 4 (Single) float 1.0 [µs] IR I2C Start condition delay
SettingTstop 5 (Single) float 1.0 [µs] IR I2C Stop condition delay

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 38 -

Ver.1.17

Constant

V
a

lu
e

Type
Default
value

Description

SettingTwrdelay 6 (Single) float 1.0 [µs] IR delay between the write and read
I2C commands

SettingI2Caddr 7 (Byte)
unsigned char

51 The address of IR device

SettingTEEwrite 8 (Long) long 5000 [µs] EEPROM write delay

6.36.36.36.3 ChipVersionCodes enumerationChipVersionCodes enumerationChipVersionCodes enumerationChipVersionCodes enumeration

The following constants specify different versions of the device. They are used by ChipVersion property.

Constant

V
a

lu
e

Description

ChipVersionUndefined 0 Chip version not recognized
ChipVersion90640AAA 1 Chip version is 90640AAA
ChipVersion90640CAA 2 Chip version is 90640CAA
ChipVersion90641AAA 3 Chip version is 90641AAA
ChipVersion90641CAA 4 Chip version is 90641CAA

6.46.46.46.4 DataProcessingTypes enumerationDataProcessingTypes enumerationDataProcessingTypes enumerationDataProcessingTypes enumeration

The following constants specify different types of data processing. They are used by StartDaq and

ReadSingleFrame method.

Constant

V
a

lu
e

Description

dptRawData 0 Received data will be the same as read from IC
dptAbsoluteToFromPC 2 Received data will be absolute To. Conversion will

be made on PC.
Note, that in current release, StartDaq is expecting constants not listed in this
enumeration. See StartDaq method description.

EVB - PSF - MLX90640
Product Specific Function description Software Library

MLX90640 PSF Library Object Model 08-05-18 - 39 -

Ver.1.17

7 Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be
liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering
of technical or other services.
© 2018 Melexis NV. All rights reserved.

website at:

www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan: All other locations:

Phone: +32 13 67 04 95 Phone: +1 603 223 2362
E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com

QS9000, VDA6.1 and ISO14001 Certified

