

www.cypress.com Document No. 001-75705 Rev. *H 1

AN75705

Getting Started with EZ-USB® FX3™

Associated Part Family: EZ-USB® FX3™

Software Version: SDK 1.3.4

Related Application Notes: AN70707

For a complete list of FX3 design resources, click here

To get the latest version of this application note, or the associated project file, please visit
http://www.cypress.com/go/AN75705.

More code examples? We heard you.
For a consolidated list of USB SuperSpeed Code Examples, visit http://www.cypress.com/101781.

AN75705 gets you started with the Cypress EZ-USB FX3 USB 3.0 device controller. This note highlights key FX3 features

and applications while providing signposts along the way to various design resources to help with FX3 development. It

also walks you through the steps to get started with FX3 firmware development using free Cypress tools featuring the

Eclipse integrated development environment (IDE). Finally, it provides an overview of FX3 software and hardware

development kits.

Contents

1 Introduction .. 2
2 Related Resources .. 2

2.1 EZ-USB FX3 Software Development Kit 3
2.2 GPIF™ II Designer .. 3

3 What is FX3? ... 3
4 FX3 Features ... 4

4.1 USB Interface .. 4
4.2 GPIF II .. 4
4.3 CPU .. 5
4.4 JTAG Interface .. 5
4.5 UART Interface ... 5
4.6 I2C Interface .. 5
4.7 I2S Interface .. 5
4.8 SPI Interface ... 5
4.9 Boot Options ... 5
4.10 Clocking .. 6
4.11 Voltage Domains ... 6

5 Application Development with FX3 6
5.1 FPGA/ASIC Interfaced to FX3 6
5.2 Configuring an FPGA via FX3 6
5.3 Image Sensor Interfaced to FX3 7
5.4 Designing FX3 Hardware 7
5.5 Upgrading an FX2LP Design to FX3 7

6 Design Resources ... 7

7 FX3 Terminology ... 8
8 My First USB 3.0 Transfer Using FX3 13
9 Development Tools ... 22

9.1 Introduction to SuperSpeed Explorer Kit 22
9.2 Introduction to FX3 SDK 23
9.3 FX3 Firmware Examples 25
9.4 FX3 Firmware Development Tools 26
9.5 Windows Software Overview 26
9.6 Application Interface ... 27
9.7 Windows Software Examples 28
9.8 Streamer Example .. 28
9.9 FX3 SDK and Software for Linux 29
9.10 Useful Debug Tools .. 30

Appendix A. USB 3.0 Overview 31
A.1 Electrical Interface .. 31
A.2 Cables and Connectors 31
A.3 USB 3.0 Versus 2.0 .. 33

Appendix B. FX3 DVK Driver
Installation on Windows ... 34

Appendix C. Introduction to FX3 DVK 36
C.1 JTAG Debuggers for FX3 DVK 37

Document History .. 38
Worldwide Sales and Design Support 39

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 2

1 Introduction

Cypress’s EZ-USB FX3 (hereafter abbreviated to FX3) is a powerful USB 3.0 peripheral controller, providing integrated
and flexible features. FX3 enables developers to add USB 3.0 functionality to their systems.

AN75705 helps you get started with FX3. It highlights the key uses, applications, and features of FX3. A comprehensive
list of design resources available from Cypress is also provided. This application note walks you through the steps to
get started with USB transfers using the SuperSpeed Explorer Kit (CYUSB3KIT-003).

Appendix A provides an overview of USB 3.0. Appendix B explains how to install the FX3 Windows driver if not already
installed. See Appendix C for information on FX3 DVK(CYUSB3KIT-001).

2 Related Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right FX3 device for your design, and
to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see
the knowledge base article KBA87889, How to design with FX3/FX3S.

▪ Training Videos: EZ-USB FX3 Architecture Overview (available on the same web page as this application note)

▪ Knowledge Base Articles: EZ-USB FX3 Knowledge Base Articles

▪ To understand the basics of EZ-USB FX3 and accelerate your design, see the book, SuperSpeed Device Design
by Example by John Hyde.

▪ Overview: USB Portfolio, USB Roadmap

▪ USB 3.0 Product Selectors: FX3, FX3S, CX3, HX3, West Bridge Benicia

▪ Application notes: Cypress offers a large number of USB application notes covering a broad range of topics, from
basic to advanced level. Recommended application notes for getting started with FX3 are:

 AN75705 – Getting Started with EZ-USB FX3

 AN76405 – EZ-USB FX3 Boot Options

 AN70707 – EZ-USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist

 AN65974 – Designing with the EZ-USB FX3 Slave FIFO Interface

 AN75779 – How to Implement an Image Sensor Interface with EZ-USB FX3 in a USB Video Class (UVC)
Framework

 AN86947 – Optimizing USB 3.0 Throughput with EZ-USB FX3

 AN84868 – Configuring an FPGA over USB Using Cypress EZ-USB FX3

 AN68829 – Slave FIFO Interface for EZ-USB FX3: 5-Bit Address Mode

 AN73609 – EZ-USB FX2LP/ FX3 Developing Bulk-Loop Example on Linux

 AN77960 – Introduction to EZ-USB FX3 High-Speed USB Host Controller

 AN76348 – Differences in Implementation of EZ-USB FX2LP and EZ-USB FX3 Applications

 AN89661 – USB RAID 1 Disk Design Using EZ-USB FX3S

 AN90369 – How to Interface a MIPI CSI-2 Image Sensor With EZ-USB® CX3

▪ Code Examples:

 USB Hi-Speed

 USB Full-Speed

 USB SuperSpeed

▪ Technical Reference Manual (TRM):

 EZ-USB FX3 Technical Reference Manual

▪ Development Kits:

 CYUSB3KIT-003, EZ-USB FX3 SuperSpeed Explorer Kit

▪ Models: IBIS

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 3

2.1 EZ-USB FX3 Software Development Kit

Cypress delivers the complete software and firmware stack for FX3, in order to easily integrate SuperSpeed USB into
any embedded application. The Software Development Kit (SDK) comes with tools, drivers and application examples,
which help accelerate application development.

Table 1. FX3 Design Resources

Design Resources Where to Find Resources

FX3 Firmware Eclipse IDE installation with GCC compiler Included with EZ-USB FX3 SDK installation

APIs for performing various functions

Firmware examples

Documentation on using the SDK FX3 Programmer’s Manual

Documentation on all APIs provided in the SDK FX3 SDK API Guide

Host Software USB 3.0 driver – cyusb3.sys Available with EZ-USB FX3 SDK installation

Host application examples - Control Center and
Streamer applications

Cypress USBSuite Application Development - Quick
Start Guide

Cypress USBSuite Application Development - Quick
Start Guide

GPIF II
Interface
Design

Using the GPIF II Designer Tool, you can design a
custom GPIF II interface using state machine entry.
The tool then generates the necessary code to be
integrated into your FX3 firmware.

Included with EZ-USB FX3 SDK installation

Examples of popular GPIF II implementations
including Slave FIFO, SRAM slave, and ADMux slave

GPIF II Designer Tool - included with EZ-USB FX3
SDK installation

GPIF II documentation, including instructions for
using the tool

GPIF II Design Guide - available with GPIF II
Designer Tool (EZ-USB FX3 SDK installation)

Firmware
Debug

Setting up and using the JTAG debugger Chapter 12 of FX3 Programmer’s Manual

2.2 GPIF™ II Designer

The GPIF II Designer is a graphical software that allows designers to configure the GPIF II interface of the EZ-USB
FX3 USB 3.0 Device Controller.

The tool allows users the ability to select from one of five Cypress supplied interfaces, or choose to create their own
GPIF II interface from scratch. Cypress has supplied industry standard interfaces such as Asynchronous and
Synchronous Slave FIFO, Asynchronous and Synchronous SRAM, and Asynchronous SRAM. Designers who already
have one of these pre-defined interfaces in their system can simply select the interface of choice, choose from a set of
standard parameters such as bus width (x8, 16, x32) endianness, clock settings, and compile the interface. The tool
has a streamlined three step GPIF interface development process for users who need a customized interface. Users
are able to first select their pin configuration and standard parameters. Secondly, they can design a virtual state
machine using configurable actions. Finally, users can view output timing to verify that it matches the expected timing.
Once the three step process is complete, the interface can be compiled and integrated with FX3.

3 What is FX3?

FX3 is a USB 3.0 peripheral controller with an integrated Arm® Arm9 processor. Parallel and serial interfaces provide
high-speed connectivity with other devices in the user system.

The main function of the FX3 device in a system is to transfer high-bandwidth data between a USB host and a peripheral
device, such as a camera or scanner. The presence of a powerful Arm9 processor on-chip also allows FX3 to access
the data stream and efficiently process data. In systems where FX3 is not required to perform data processing, the
Arm9 firmware only initializes and manages data transfers between two interfaces—USB and a data
consuming/providing device.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 4

FX3 has a highly flexible, programmable interface known as the General Programmable Interface Generation 2 (GPIF
II) in addition to I2C, SPI, UART, and I2S serial interfaces. GPIF II programmability allows FX3 to be connected to
various types of devices including FPGAs, image sensors, ADCs, and application processors. This makes FX3 a good
controller choice in a wide range of high-performance USB 3.0 applications.

Figure 1. FX3 Block Diagram

32
EPs

GPIF™ II

SS
Peripheral

HS/FS/LS

OTGHost

JTAG

UART SPI

CTL[15:0]

INT#

RESET#

TD
I

TD
O

TR
S
T#

TM
S

TC
K

DQ[31:0]/[15:0]

PMODE[2:0]

SSRX +

SSRX -

SSTX +

SSTX -

D +

D -

FSLC[0]

FSLC[1]
FSLC[2]

CLKIN

CLKIN_32

XTALIN

XTALOUT

OTG_ID

I2SI2C

 SRAM

(512kB/256kB)ARM9

USB

HS/FS

Peripheral

Charger

Detect

DMA

Interconnect

I2
C

_
S

C
L

I2
C

_
S

D
A

T
X

R
X

C
T

S

R
T

S

S
S

N

S
C

L
K

M
IS

O

M
O

S
I

I2
S

_
C

L
K

I2
S

_
S

D

I2
S

_
W

S
I2

S
_

M
C

L
K

4 FX3 Features

This section briefly describes the key features of FX3.

4.1 USB Interface

FX3’s USB interface supports the following features:

▪ USB SuperSpeed and Hi-Speed peripheral functionality compliant with the USB 3.0 Specification, Revision 1.0.
Devices designed to this specification, such as FX3, are backward compatible with the USB 2.0 Specification.

▪ Compliant with the OTG Supplement, Revision 2.0. FX3 supports Hi-Speed, Full-Speed, and Low-Speed OTG
dual-role device capability. As a peripheral, FX3 is capable of super-speed, high-speed, and full-speed
functionality. As a host, it is capable of high-speed, full-speed, and low-speed functionality.

▪ Carkit Pass-through UART functionality on USB D+/D– lines based on the CEA-936A Specification.

▪ Up to 16 IN and 16 OUT endpoints.

4.2 GPIF II

The high-performance GPIF II (a part of the processor interface block (PIB)) enables functionality similar to, but more
advanced than, FX2LP's GPIF and Slave FIFO interfaces. GPIF II is a programmable state machine that enables a
flexible interface running on its own high-speed clock, autonomous to the Arm9. GPIF II may either function as a master
or slave in industry-standard or proprietary interfaces. Both parallel and serial interfaces may be implemented with
GPIF II.

The key features of GPIF II are:

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 5

▪ Functions as master or slave.

▪ Provides 256 programmable states.

▪ Supports 8-bit, 16-bit, 24-bit, and 32-bit parallel data bus.

▪ Supports interface frequencies up to 100 MHz.

▪ Supports 14 configurable I/O pins (to function as control signals) when a 32- bit data bus is used. Control pins can
be input, output, or bidirectional.

▪ Supports 16 control I/O pins when a 16/8 data bus is used. Control pins can be input, output, or bi-directional.

Cypress’s GPIF II Designer Tool enables fast development of GPIF II state machines and includes examples for
common interfaces. The GPIF II Designer Tool is available with the EZ-USB FX3 SDK installation.

A popular implementation of GPIF II is a synchronous Slave FIFO interface, used in many FPGA interfaces. For details
on the synchronous Slave FIFO interface, refer to AN65974 - Designing with the EZ-USB FX3 Slave FIFO Interface.

4.3 CPU

FX3 has an on-chip 32-bit, 200-MHz ARM926EJ-S core CPU. The core has direct access to 16 KB of instruction tightly
coupled memory (TCM) and 8 KB of data TCM. The ARM926EJ-S core provides a JTAG interface for firmware
debugging.

FX3 integrates 512 KB or 256 KB of embedded SRAM (depending on the part number selected) and supports four
methods for booting the code—USB, GPIF II, I2C, or SPI.

FX3 enables efficient and flexible DMA connectivity between its various peripherals (such as, USB, GPIF II, I2S, SPI,
and UART). After the FX3 firmware configures data accesses between peripherals, the DMA fabric manages transfers
without involving the Arm9 core. The example FX3 firmware is available with the EZ-USB FX3 SDK installation.

4.4 JTAG Interface

FX3’s JTAG interface has a standard five-pin interface to connect to a JTAG debugger to debug firmware through the
CPU-core's on-chip-debug circuitry. Industry-standard debugging tools for the ARM926EJ-S core can be used for the
FX3 application development.

4.5 UART Interface

FX3’s UART interface supports full-duplex communication and consists of the TX, RX, CTS, and RTS signals. The
UART is capable of generating a range of baud rates, from 300 bps to 4608 Kbps, selectable by the FX3 firmware.

4.6 I2C Interface

FX3’s I2C interface operates as an I2C master enabling communication with I2C slave devices. For example, FX3 may
boot from an EEPROM connected to the I2C interface. FX3’s I2C master controller supports multi-master functionality
and allows for I2C clock stretch. The I2C controller supports bus frequencies of 100 kHz, 400 kHz, and 1 MHz.

4.7 I2S Interface

FX3 has an I2S transmitter to support external audio codecs and other I2S receivers. The sampling frequencies
supported by the I2S interface are 32 kHz, 44.1 kHz, and 48 kHz.

4.8 SPI Interface

FX3 supports an SPI master interface at a maximum operation frequency of 33 MHz. The SPI controller supports four
modes of SPI communication with transaction sizes ranging from 4 bits to 32 bits.

4.9 Boot Options

FX3 can load boot images from the following sources:

USB, I2C, SPI, GPIF II (over the synchronous ADMux, asynchronous ADMux, or asynchronous SRAM interface
supported by the bootloader).

AN76405 - EZ-USB FX3 Boot Options contains details for deciding on the appropriate boot method for your design.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 6

4.10 Clocking

FX3 allows either a crystal or an external clock to be connected. The crystal frequency supported is 19.2 MHz, while
the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.

Clock inputs to FX3 must meet the phase noise and jitter requirements specified in the EZ-USB FX3 Datasheet.

4.11 Voltage Domains

FX3 has independent voltage supply domains for each of the functional blocks (GPIF II, UART/SPI/I2S, I2C, JTAG,
USB, Clock, and Core).

Voltage inputs to FX3 must meet the requirements specified in the EZ-USB FX3 Datasheet.

Refer to AN70707 - EZ-USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist when designing the FX3
hardware.

5 Application Development with FX3

This section highlights some typical applications of FX3 in a system.

A complete FX3 design involves software, firmware, and hardware development. Cypress provides design resources
for each of these aspects. FX3 design resources are listed in Table 1.

5.1 FPGA/ASIC Interfaced to FX3

Several applications connect an FPGA or ASIC to FX3 over a high-speed parallel GPIF II interface. Another device,
which is the source or sink of data, is connected to the FPGA or ASIC. Examples of such applications are data
acquisition devices, printers, scanners, and imaging devices.

In such applications, FX3 serves as a fast data pipe to and from a USB host. For these applications, the FX3-to-
FPGA/ASIC interface is typically the synchronous Slave FIFO interface (Figure 2).

Figure 2. FPGA/ASIC Interfaced to FX3

High Bandwidth USB Peripheral such as Camera, Scanner, Printer

USB
D[15:0]/ D[31:0]

SLCS#

A[1:0]

SLRD#

SLOE#

SLWR#

PKTEND#

FLAGA

FLAGB

PCLK

EZ-USB

FX3

USB Host
(Typically a PC with

a USB3.0 Port)

Sync

Slave

FIFO

I/F

Rest of the

system

(Data Source/

Sink)

External FPGA/

ASIC

For a detailed description of the Slave FIFO interface and an example of a complete design in which an FPGA connects
to FX3, refer to AN65974 - Designing with the EZ-USB FX3 Slave FIFO Interface.

Another popular interface that the GPIF II can implement is the Synchronous Address Data Multiplexed interface.

5.2 Configuring an FPGA via FX3

In applications where FX3 connects to an FPGA, it may be preferred to load the FPGA bit file through FX3. In this case,
the FPGA configuration file can be transferred from a USB host through FX3 to the FPGA. This saves the cost of an
FPGA boot memory and enables FPGA reconfiguration (including updates) from the PC. For an example
implementation, refer to AN84868 - Configuring an FPGA over USB Using Cypress EZ-USB FX3.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 7

Figure 3. Configuring an FPGA via FX3

FPGA FX3 PC

Boot

Memory

Bitstream

FPGA FX3 PC

Bitstream

(a) FPGA boots from

external memory.

(b) FPGA boots from PC. No

external memory required.

5.3 Image Sensor Interfaced to FX3

In imaging applications, an image sensor is connected directly to FX3 over a parallel GPIF II interface and video is
streamed from the sensor to a USB host through FX3.

The system can be made compatible with the USB Video Class by programming the FX3 with the appropriate firmware.
For an example of such an application, refer to AN75779 - How to Implement an Image Sensor Interface with EZ-USB
FX3 in a USB Video Class (UVC) Framework.

Figure 4. Image Sensor Interfaced to FX3

Camera

PCLK

Frame Valid

Line Valid

Reset#

I2C control

Video

Capture

Application

UVC

Driver

USB

Host

Controller

DQ[15:0]/DQ[7:0]

GPIO

GPIF II

I2C

Master

USB

Image Sensor EZ-USB FX3

USB Host

5.4 Designing FX3 Hardware

Because of the speed and power of USB 3.0, pay careful attention to PC design and layout. Refer to AN70707 - EZ-
USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist when designing the FX3 hardware. For an
example schematic design, you may also refer to the FX3 DVK Schematic.

5.5 Upgrading an FX2LP Design to FX3

If you are upgrading an existing FX2LP design to use FX3, refer to AN76348 - Differences in Implementation of EZ-
USB FX2LP and EZ-USB FX3 Applications.

6 Design Resources

Table 1 lists the various resources available from Cypress to help with development using FX3. For the complete list
of USB SuperSpeed Code Examples, click here.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 8

7 FX3 Terminology

To understand the data transfer in and out of FX3, it is important to know the following terms:

▪ Socket

▪ DMA Descriptor

▪ DMA buffer

▪ GPIF thread

A socket is a point of connection between a peripheral hardware block and the FX3 RAM. Each peripheral hardware

block on FX3, such as USB, GPIF, UART, and SPI, has a fixed number of sockets associated with it. The number of
independent data flows through a peripheral is equal to the number of its sockets. The socket implementation includes
a set of registers that point to the active DMA descriptor and enable or flag interrupts associated with the socket.

A DMA Descriptor is a set of registers allocated in the FX3 RAM. It holds information about the address and size of a

DMA buffer as well as pointers to the next DMA Descriptor. These pointers create DMA Descriptor chains.

A DMA buffer is a section of RAM used for intermediate storage of data transferred through the FX3 device. DMA

buffers are allocated from the RAM by the FX3 firmware, and their addresses are stored as part of DMA Descriptors.

A GPIF thread is a dedicated data path in the GPIF II block that connects the external data pins to a socket.

Sockets can directly signal each other through events or they can signal the FX3 CPU via interrupts. The firmware
configures this signaling. Take, for example, a data stream from the GPIF II block to the USB block. The GPIF socket
can tell the USB socket that it has filled data in a DMA buffer, and the USB socket can tell the GPIF socket that a DMA
buffer is empty. This implementation is called an automatic DMA channel. The automatic DMA channel implementation
is typically used when the FX3 CPU does not have to modify any data in a data stream.

Alternatively, the GPIF socket can send an interrupt to the FX3 CPU to notify it that the GPIF socket filled a DMA buffer.
The FX3 CPU can relay this information to the USB socket. The USB socket can send an interrupt to the FX3 CPU to
notify it that the USB socket emptied a DMA buffer. Then, the FX3 CPU can relay this information back to the GPIF
socket. This is called the manual DMA channel implementation. This implementation is typically used when the FX3
CPU has to add, remove, or modify data in a data stream. The firmware example of the UVC application note (AN75779)
uses the manual DMA channel implementation because the firmware needs to add the UVC video data header.

A socket that writes data to a DMA buffer is called a producer socket. A socket that reads data from a DMA buffer is
called a consumer socket. A socket uses the values of the DMA buffer address, DMA buffer size, and DMA Descriptor
chain stored in a DMA Descriptor for data management. A socket takes a finite amount of time (up to a few
microseconds) to switch from one DMA Descriptor to another after it fills or empties a DMA buffer. The socket cannot
transfer any data while this switch is in progress. This latency can be a problem for interfaces that have no flow control.
One such example is an image sensor interface.

This issue is addressed in the GPIF II block using multiple GPIF threads. The GPIF II block implements four GPIF
threads. Only one GPIF thread can transfer data at a time. The GPIF II state machine must select an active GPIF
thread to transfer data.

The GPIF thread selection mechanism is like a mux. The GPIF II state machine uses internal control signals or external
inputs (address lines A1, A0 in case of Slave FIFO 2-bit application note) to select the active GPIF thread. Switching
the active GPIF thread switches the active socket for the data transfer, thereby changing the DMA buffer used for data
transfers. The GPIF thread switch has no latency.

The default mapping of the sockets and GPIF threads is shown in Figure 5 — Socket 0 to GPIF thread 0, Socket 1 to
GPIF thread 1, Socket 2 to GPIF thread 2, and Socket 3 to GPIF thread 3.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 9

Figure 5. Default GPIF II Socket/Thread Mapping

To understand DMA transfers, the concept of a socket is illustrated in the following four figures.

Figure 6. Socket Routes Data According to a List of DMA Descriptors

DMA Descriptor 1
Address A1, Length L,

Next Descriptor 2

Socket Linked List

FX3 RAM Socket

Data

DMA Buffer 1

DMA Buffer 2

DMA Buffer 3

DMA Descriptor 2

Address A2, Length L,
Next Descriptor 3

DMA Descriptor 3
Address A3, Length L,

Next Descriptor 1

The socket linked list is a set of data structures in the main memory called DMA descriptors. Each descriptor specifies
a DMA buffer address and length as well as a pointer to the next DMA descriptor. As the socket operates, it retrieves
the DMA descriptors individually, routing the data to the DMA buffer specified by the descriptor address and length.
When L bytes are transferred, the socket retrieves the next descriptor and continues transferring bytes to a different
DMA buffer.

This structure makes a socket versatile because any number of DMA buffers can be created anywhere in memory and
can be automatically chained together. For example, the socket in Figure 6 retrieves DMA descriptors in a repeating
loop.

Processor Interface Block

(PIB)

GPIF II

Socket 0 Thread 0

Thread 1

Thread 2

Thread 3

Socket 1

Socket 2

Socket 3

External

Data Bus

S
w

it
c
h

in
g

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 10

Figure 7. Socket Operating with DMA Descriptor 1

In Figure 7, the socket has loaded DMA Descriptor 1, which tells it to transfer bytes starting at A1 until it has transferred
L bytes, at which time it retrieves DMA Descriptor 2. Then, it continues with its address and length settings A2 and L
(see Figure 8).

Figure 8. Socket Operating with DMA Descriptor 2

In Figure 9 the socket retrieves the third DMA descriptor and transfers data, starting at A3. When it has transferred L
bytes, the sequence repeats with DMA Descriptor 1.

Figure 9. Socket Operating with DMA Descriptor 3

DMA Descriptor 1

Address A1, Length L,

Next Descriptor 2

Socket Linked List

FX3 RAM

Socket

Data

A1
DMA Buffer 1

DMA Buffer 2

DMA Buffer 3

DMA Descriptor 2

Address A2 Length L,

Next Descriptor 3

DMA Descriptor 3

Address A3, Length L,

Next Descriptor 1

L

DMA Descriptor 1

Address A1, Length L,

Next Descriptor 2

Socket Linked List

FX3 RAM

Socket

Data

A2

DMA Buffer 1

DMA Buffer 2

DMA Buffer 3

DMA Descriptor 2

Address A2 Length L,

Next Descriptor 3

DMA Descriptor 3

Address A3, Length L,

Next Descriptor 1

L

DMA Descriptor 1

Address A1, Length L,

Next Descriptor 2

Socket Linked List

FX3 RAM

Socket

Data

A3

DMA Buffer 1

DMA Buffer 2

DMA Buffer 3

DMA Descriptor 2

Address A2 Length L,

Next Descriptor 3

DMA Descriptor 3

Address A3, Length L,

Next Descriptor 1

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 11

Figure 10 shows a DMA data transfer in detail. Take, for example, an application using three DMA buffers of length L
chained in a circular loop. The FX3 memory addresses are on the left. The blue arrows show the socket loading the
socket linked list descriptors from the memory. The red arrows show the resulting data paths. The following steps show
the socket sequence as the data is moved to the internal DMA buffers.

Step 1: Load DMA Descriptor 1 from the memory into the socket. Get the DMA buffer location (A1), DMA buffer size

(L), and the next descriptor (DMA Descriptor 2) information. Go to step 2.

Step 2: Transfer data to the DMA buffer location starting at A1. After transferring DMA buffer size L amount of data, go

to step 3.

Figure 10. DMA Transfer Example

Step 3: Load DMA Descriptor 2 as pointed to by the current DMA Descriptor 1. Get the DMA buffer location (A2), DMA

buffer size (L), and the next descriptor (DMA Descriptor 3) information.

Step 4: Transfer data to the DMA buffer location starting at A2. After transferring DMA buffer size L amount of data, go

to step 5.

Step 5: Load DMA Descriptor 3 as pointed to by the current DMA Descriptor 2. Get the DMA buffer location (A3), DMA

buffer size (L), and next Descriptor (DMA Descriptor 1) information.

Step 6: Transfer data to the DMA buffer location starting at A3. After transferring DMA buffer size L amount of data, go

to step 1.

This simple scheme causes data loss if the external peripheral sends data when the socket retrieves the next DMA
descriptor from the memory, typically 1 microsecond. A better solution is to take advantage of the fact that the sockets
can be switched without latency—in one clock cycle. Therefore, it makes sense to use two sockets if the external
peripheral does not have any flow control mechanism. Data transfer using dual sockets is described in Figure 11, with
numbered execution steps. The access of Socket0 and Socket1 to the DMA buffers is differentiated by red and green
arrows (data paths for individual sockets), respectively. The ‘a’ and ‘b’ parts of each step occur simultaneously. This
parallel operation of the hardware eliminates DMA descriptor retrieval dead time and allows the GPIF II to stream data
continuously into internal memory.

DMA Descriptor 1

Buffer Address: A1 – Size L

Next DMA Descriptor: 2

DMA Descriptor 2

Buffer Address: A2 – Size L

Next DMA Descriptor: 3

DMA Descriptor 3

Buffer Address: A3 – Size L

Next DMA Descriptor: 1

DMA Buffer 1

A1

A1+L

A2

A2+L

DMA Buffer 2

DMA Buffer 3

A3

A3+L

0

Socket

S
tep 1

Step 2

Step 3

S
te

p
4

Step 5

S
te

p
6

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 12

Figure 11. Dual Sockets Yield Seamless Transfers

Step 1: At initialization of the sockets, Socket 0 and Socket 1, load the DMA Descriptor 1 and DMA Descriptor 2,

respectively.

Step 2: As soon as the data is available, Socket 0 transfers the data to DMA Buffer 1. The transfer length is L. At the

end of this transfer, go to step 3.

Step 3: GPIF II switches the GPIF thread and, therefore, the socket for data transfer. Socket 1 starts to transfer data

to DMA Buffer 2, and, at the same time, Socket 0 loads the DMA Descriptor 3. By the time Socket 1 finishes transferring
L amount of data, Socket 0 is ready to transfer data to DMA Buffer 3.

Step 4: GPIF II now switches back to the original GPIF thread. Socket 0 now transfers the data of length L into DMA

Buffer 3. At the same time, Socket 1 loads the DMA Descriptor 4, making it ready to transfer data to DMA Buffer 4.
After Socket 0 finishes transferring the data of length L, go to step 5.

Step 5: GPIF II routes the Socket 1 data into DMA Buffer 4. At the same time, Socket 0 loads DMA Descriptor 1 to

prepare to transfer data into DMA Buffer 1. Note that Step 5a is the same as Step 1a except that Socket 1 is not
initializing but, rather, transferring data simultaneously.

Step 6: GPIF II switches sockets again and Socket 0 starts to transfer data of length L into DMA Buffer 1. It is assumed

that by now, the DMA buffer is empty, having been depleted by the UIB consumer socket. At the same time, Socket 1
loads DMA Descriptor 2 and is ready to transfer data into DMA Buffer 2. The cycle now goes to Step 3 in the execution
path.

GPIF II sockets can transfer data only if the consuming side (USB) empties and releases the DMA buffers in time to
receive the next chunk of data from GPIF II. If the consumer is not fast enough, the sockets drop data because their
DMA buffer writes are ignored.

DMA Descriptor 1

Buffer Address: A1 – Size L

Next DMA Descriptor: 3

DMA Descriptor 2

Buffer Address: A2 – Size L

Next DMA Descriptor: 4

DMA Descriptor 3

Buffer Address: A3 – Size L

Next DMA Descriptor: 1

0

Socket 0

S
tep 1a

Step 2

Step 3a

S
te

p
4b

S
te

p
 5

a

Step 6b

Socket 1

DMA Descriptor 4

Buffer Address: A4 – Size L

Next DMA Descriptor: 2

A2

A2+L

DMA Buffer 2

DMA Buffer 3

A3

A3+L

DMA Buffer 1

A1

A1+L

DMA Buffer 4

A4

A4+L

Step 1b

Ste
p

3b

Step 4a

S
te

p
5b

S
tep 6a

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 13

8 My First USB 3.0 Transfer Using FX3

This section walks you through building and running a simple firmware example, which enables you to perform BULK
OUT and BULK IN transfers from a USB host to the FX3 device.

Before starting this exercise, do the following:

1. Obtain an EZ-USB® FX3™ SuperSpeed Explorer Kit (CYUSB3KIT-003). In this exercise, the FX3 firmware is
downloaded from the USB host, so the SuperSpeed Explorer Kit board must be configured for USB boot. To select
USB boot, keep all the jumpers CLOSED as shown in Figure 12. These jumper settings are highlighted with a red
box or circle. For details on the Kit board, refer to the Kit User Guide. The SuperSpeed Explorer kit board can only
be powered from the USB cable (bus-powered).

Figure 12. SuperSpeed Explorer Kit Board Setting for USB Boot

2. Install the EZ-USB FX3 SDK. When asked to choose the Installation Type, select the default Typical setting. After

installing the FX3 SDK, import the firmware examples into the Eclipse IDE workspace (an Eclipse IDE installation
is provided as part of the SDK). To import all of the firmware examples into the IDE, follow these steps:

a. Open the Eclipse IDE by going to your Start menu. Select All Programs > Cypress > Eclipse > EZ USB
Suite. Accept the default workspace folder; however, you can define your own location later.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 14

Figure 13. Open Eclipse IDE from Start Menu

b. This starts an empty Eclipse IDE with no projects in the Project Explorer tab. The next step is to import
the Cypress example projects into the Project Explorer.

Figure 14. Eclipse IDE Before Importing Projects

c. Select File > Import.
d. Select General > Existing Projects into Workspace and click Next.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 15

Figure 15. Select Existing Projects into Workspace

e. Browse to the firmware directory in your SDK installation. Click the Browse… button and navigate to the

Cypress SDK firmware folder. For a typical Windows installation, this folder is located at C:\Program Files

(Program Files (x86 on 64-bit machines)\Cypress\EZ-USB FX3 SDK\firmware.

Figure 16. Select Root Directory

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 16

Figure 17. Browse to “firmware” Directory in SDK Installation

f. All the Cypress example projects should be selected with check marks. Otherwise, press the Select All button.
Also, check Copy projects into workspace, then click Finish.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 17

Figure 18. Select All Projects in Firmware Directory

g. All the firmware examples are imported into the workspace and become visible in the Eclipse Project Explorer.
Because the projects are built automatically on importing, it may take several minutes for the import operation to
load and build them all. When loaded, you can run them as they are or modify and rebuild them.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 18

Figure 19. All Projects Imported into Workspace

8.1.1 Bui lding and Running the USBBulkLoopAuto F irmware

The next part of the exercise is to build and run a basic firmware example.

The USBBulkLoopAuto firmware example provided in the FX3 SDK configures BULK endpoint 1 IN and BULK endpoint
1 OUT by default. The data sent by the USB host to the OUT endpoint is looped back to the IN endpoint by the FX3
firmware. The same data can be received back by the USB host from the IN endpoint.

1. Open the USBBulkLoopAuto firmware in the Eclipse IDE by double-clicking its name or clicking on the little
expansion arrow to the left of its name. You can build this firmware with its default settings or modify it by changing
the endpoint numbers as explained in the following steps. To run this firmware without making any changes, jump
to section 8.1.2. To make a minor modification and then run, continue on to step 2. The modification steps are
recommended to give a more detailed look at the Eclipse tool chain.

2. In the list of files, double-click cyfxbulkloopauto.h to bring it up in the editor window. The endpoint numbers and
their associated sockets are defined in cyfxbulkloopauto.h, using identifiers CY_FX_EP_PRODUCER,

CY_FX_EP_CONSUMER, CY_FX_EP_PRODUCER_SOCKET, and CY_FX_EP_CONSUMER_SOCKET near
the end of the .h file.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 19

Figure 20. Endpoint and Socket Definitions in cyfxbulklpauto.h

3. Using the identifiers highlighted above, the endpoint numbers and associated sockets are changed from EP1 to
EP2, as shown in Figure 21. Now EP2 IN is the BULK IN and EP2 OUT is BULK OUT in the modified firmware.

Note: In USB, an endpoint is identified by a byte comprising bit 7 as the direction (1=in, 0=out) and a 7-bit address
in bits 6:0. An FX3 “socket” is equivalent to an endpoint in the context of USB transfers. The socket in the USB
domain interfaces with a socket in another peripheral domain (for example, the GPIF II or even the CPU) for data
transfers.

Figure 21. Endpoint Number and Associated Socket Modified from EP1 to EP2

4. Make sure you save the edited cyfxbulklpauto.h file (File > Save). The Eclipse build process does not automatically

save freshly edited files. Build the project by ensuring that the USBBulkLoopAuto project is expanded in the Project
Explorer pane, and then selecting Project > Build Project.

You can also select Build Configurations before building the project. Right-click on the project name in the Project
Explorer pane; then, select Build Configurations > Set Active > Debug/Release (see Figure 22).

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 20

Figure 22. Selecting Build Configuration in Eclipse IDE

Note: The firmware image size in Release mode is smaller compared to the Debug mode image. The Debug mode

image contains additional debug symbols to allow the user to debug using JTAG.

8.1.2 Loading USBBulkLoopAuto F irmware into FX3 RAM

An application called the Cypress Control Center loads the code into the FX3. The Control Center application installs
as part of the FX3 SDK.

1. Open the Cypress Control Center application by going to your Start menu. Select Start > All Programs >
Cypress > Cypress USBSuite > Control Center.

2. Using the USB 3.0 cable provided along with the Kit, connect the Kit board to your development PC using either a
SuperSpeed or Hi-Speed USB port. If you previously installed the Kit setup and driver software, the USB Control
Center should show the “Cypress USB Bootloader” as a connected device. However, if you get a “no drive found”
message, refer to Appendix B to install the Windows driver.

3. To load the firmware in the FX3 RAM, select Program > FX3 > RAM.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 21

4. Navigate to the firmware image file to load into FX3. This file is the USBBulkLoopAuto.img file that Eclipse
generated as the last step of its build process. For the default workspace, this file is located at
C:\Users\antioch\Work\USBBulkLoopAuto\Debug. Click Open after selecting the file or double-click the

file name.

After the USB Control Center downloads the new FX3 code, Windows discovers a new USB device called Cypress
USB BulkLoopExample. This is FX3 re-enumeration. FX3 initially appears to Windows as a bootloader, but when
it loads the new code, it electrically disconnects from the USB and then reconnects as a new device defined by the
downloaded code—the BULK looper. Note that the FX3 ‘Cypress USB Bootloader’ disappears and a new USB
peripheral appears in the Control Center menu as ‘Cypress USB BulkloopExample’. FX3 has re-enumerated with
the new Vendor ID/Product ID combination of 0x04B4 and 0x00F0.

Note: When you are ready to load a new project, reset FX3 using the RESET Switch, to jump back to the bootloader
mode.

8.1.3 Performing BULK Transfers

1. Expand all the sub-fields under the ‘Cypress USB Bulkloop Example’ entry. If you modified and built the firmware
as explained in steps 1 to 6, then you will see BULK EP2 OUT and BULK EP 2 IN appear inside Interface 0,
Alternate Setting 0 (Figure 23).

Note: If you did not modify the firmware, you will see the default ‘BULK out endpoint (0x01)’ and ‘BULK in endpoint
(0x81)’ in the Control Center.

2. To perform a BULK OUT transfer, click the Data Transfers tab, then select the BULK out endpoint (0x02) in the
left pane. Enter the number of bytes to transfer in the Bytes to Transfer field and the data to be transferred in the
Data to send (Hex) field. The Control Center automatically inserts spaces between pairs of hex digits. Click on
Transfer Data-OUT. Figure 23 shows the transfer of 5 bytes to the BULK OUT endpoint (0x02).

Figure 23. BULK OUT Transfer

3. The BULK Loop program sends back any data it receives over the OUT endpoint using the correspondingly-numbered
IN endpoint. To perform the BULK IN transfer, select the BULK in endpoint (0x82) in the left pane. Enter the number
of bytes to transfer in the Bytes to Transfer field. Click on Transfer Data-IN. Figure 24 shows the same 5 bytes being

received back on IN endpoint (0x82).

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 22

Figure 24. BULK IN Transfer

9 Development Tools

Now that you have performed basic operations with the FX3 device, this section gives a brief introduction to
SuperSpeed Explorer Kit (CYUSB3KIT-003) and FX3 SDK.

9.1 Introduction to SuperSpeed Explorer Kit

Cypress’s SuperSpeed Explorer Kit provides the hardware that you need to get started. The PCB provides the
necessary clocks and voltages for the FX3 as well as configurable I/O voltages. The Kit board has high-speed
connectors for interfacing with external devices. The SuperSpeed Explorer Kit supports USB boot and I2C boot options.
An 8-Mbit I2C EEPROM is provided on the Kit board to store firmware and test booting from I2C EEPROM. Cypress
example projects supplied with the SDK contain firmware to program these devices using the DVK board. If you do not
already have a SuperSpeed Explorer Kit, you can find one here.

Two important pieces of hardware, external to the FX3 DVK board, are the USB 3.0 host (typically the PC) and the
external device connected to the GPIF II interface (such as an image sensor or FPGA). For details on using the
SuperSpeed Explorer Kit, refer to the Kit User Guide. Figure 25 shows a picture of the SuperSpeed Explorer Kit board
with the key areas called out.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 23

Figure 25. FX3 DVK Board

Table 2 shows the key jumpers and their default settings on the DVK board.

Table 2. SuperSpeed Explorer Kit Board Jumpers

Jumper Jumper State Function

J2 Short Power domain VIO1, VIO2, and VOI3 voltages set to 3.3 V to support external 3.3-V interfaces
and the onboard SRAM.

J3 Short Development board is powered from USB 3.0 VBUS. This jumper must be in place for normal
operation.

J4 Open Boot from I2C EEPROM on the development board, if a valid firmware image is present in
EEPROM; otherwise, fall back to USB boot.

Note By default, USBBulkSourceSink with LED Blink firmware is stored by EEPROM.

J5 Open Deselect external SRAM.

9.2 Introduction to FX3 SDK

Cypress provides a complete software and firmware stack for FX3 to integrate USB applications in the embedded
system environment. The software development kit (SDK) comes with application examples that accelerate application
development. The SDK is available for download from the Cypress website. Figure 26 shows the directory structure
created when the SDK is installed.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 24

Figure 26. Directory Structure

9.2.1 Firmware Stack and APIs

Cypress provides a powerful API library to make developing firmware easier even for complex designs. Here are some
of the advantages of the FX3 SDK:

▪ RTOS

The included ThreadX Real Time OS (RTOS) simplifies the firmware development process. With the RTOS,
multiple threads can easily be created to simplify the firmware flow.

▪ Modular approach

An API-based approach means that the developer does not require knowledge of FX3’s registers and bits, but can
focus on the firmware logic and flow. This approach is easy to use, debug, modify, and support.

Figure 27. Structure of Firmware SDK

FX3 Firmware Stack

Customer

Firmware

FX3 Firmware

 Examples

FX3 Firmware Framework

FX3 API Library

RTOS

FX3 Firmware

 Examples

Customer software

Cypress provided software

Third-party software

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 25

The APIs enable:

▪ Programming each individual block of the FX3 device, the GPIF II, USB, and serial interfaces

▪ Programming the DMA engine and setting up of data flow between these blocks

▪ ThreadX OS calls as required by the application

▪ Debug capability

▪ USB host mode of operation

▪ Power management features

9.2.2 Framework API

The firmware (or application) framework contains startup and initialization codes. Also included are the individual drivers
for the USB, GPIF II, and serial interface blocks. The framework performs the following functions:

▪ Defines the program entry point

▪ Performs the stack setup

▪ Performs kernel initialization

▪ Provides placeholders for application thread startup code

9.3 FX3 Firmware Examples

The SDK includes many firmware examples as seen in the Eclipse Installation above. This section details several of
the more common example firmware projects. A complete list of currently available firmware examples is in the SDK
release notes. The examples work at both USB 2.0 and USB 3.0 speeds.

Note Example firmware is provided in the form of individual Eclipse projects. This allows your complete example

firmware inventory to be seen at a glance in the Eclipse Project Explorer.

9.3.1 USB BULK Data Loopback Examples

These illustrate a simple loopback mechanism between USB BULK endpoints. All standard setup requests from the
USB host PC are handled by the FX3 application example. The examples implement the loop back using DMA AUTO
or MANUAL channels.

The DMA multichannel examples use three endpoints for the loopback.

9.3.2 USB ISOCHRONOUS Data Loopback Examples

These examples illustrate a loopback mechanism between USB ISOCHRONOUS endpoints. This is similar to the BULK
loopback examples, except that the endpoints used here are isochronous instead of BULK.

9.3.3 Slave FIFO Appl icat ion Examples

The Slave FIFO application example demonstrates data transfer between the USB host and an external FIFO controller.
The example consists of two unidirectional data pipes between the USB host and the external master. The GPIF II
interface can be configured for either synchronous or asynchronous Slave FIFO transfers, using a 16-bit or 32-bit bus.

9.3.4 Serial Interface Examples

These examples demonstrate data accesses to the GPIOs, I2C, SPI, and UART.

9.3.5 USB BULK/ ISOCHRONOUS Data Source Sink Examples

These examples illustrate data source and data sink mechanism with two USB BULK/ISOCHRONOUS endpoints.

9.3.6 Flash Programmer Example

This example illustrates the programming of I2C EEPROMS and SPI flash devices from USB. The read or write
operations are done using pre-defined vendor commands. The utility can be used to flash the boot images to these
devices.

9.3.7 Mass Storage Class Example

This example illustrates the implementation of a USB mass storage class (BULK Only Transport) device using a small
section of the FX3 device RAM as the storage device. The example shows how mass storage commands can be parsed
and handled in the FX3 firmware.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 26

9.3.8 USB Audio Class Example

This example creates a USB Audio Class compliant microphone device, which streams PCM audio data stored on the
SPI flash memory to the USB host. This example works only at USB 2.0 speeds.

9.3.9 Two Stage Booter Example

A simple set of APIs have been provided as a separate library to implement two-stage booting. This example
demonstrates the use of these APIs. Configuration files that can also be used for Real View Tool chain are provided.

9.3.10 USB Host and OTG Examples

These examples demonstrate the host mode and OTG mode operation of the FX3 USB port.

9.4 FX3 Firmware Development Tools

9.4.1 Ecl ipse IDE

The Eclipse IDE for C/C++ Developer is provided as part of the FX3 SDK. This IDE comprises the base Eclipse platform
and the CPP feature. The IDE includes plug-ins required for development.

▪ GNU Arm C/C++ Development support

▪ Zylin Embedded CDT

This is a generic plug-in for the Eclipse IDE, which enables debugging of the FX3 firmware using the GNU debugger

▪ Java(TM) Platform, Standard Edition Runtime Environment Version 7 (JRE)

9.4.2 GNU Tool Chain

The GNU tool chain provided as part of the FX3 SDK comprises the following:

▪ GCC compiler (gcc)

▪ GNU Linker (ld)

▪ GNU Assembler (as)

▪ GNU Debugger (gdb)

The Eclipse IDE invokes these executables.

9.4.3 GPIF I I Designer

The GPIF II Interface Design Tool is a Windows application that FX3 customers receive as part of the FX3 SDK. The
tool provides a graphical user interface to specify the necessary interface for the target device. The user designs an
interface using state machine entry, and the tool translates this into a C header file to be included in the Eclipse project.

9.4.4 Integrated Debugger

The SuperSpeed Explorer Kit uses CY7C65215 USB-Serial IC as an integrated Debugger. CY7C65215 is a full-speed
USB-Serial bridge controller that offers two configurable serial communications blocks (SCBs). The SuperSpeed
Explorer Kit uses the first serial channel of the CY7C65215 as a UART and the second serial channel as a JTAG
interface.

The SuperSpeed Explorer Kit supports only the JTAG interface provided by the integrated debugger. The integrated
debugger works on the OpenJTAG protocol and uses the OpenOCD daemon tool on the host to conduct a debugging
session.

For more details on the Integrated Debugger, see the SuperSpeed Explorer Kit User Guide.

9.5 Windows Software Overview

Cypress delivers device driver and interface APIs with libraries to develop FX3 USB applications in Windows.

9.5.1 Windows USB Device Driver

cyusb3.sys is a USB device driver for 32-bit Windows XP, 32/64-bit Windows Vista, 32/64-bit Windows 7, and 32/64-
bit Windows 8. The driver is capable of communicating with any device that complies with the USB 2.0 and USB 3.0
specifications. The driver is general-purpose and understands primitive USB commands. However, it does not
implement USB device-class protocols. For example, the driver does not directly interface a USB mass storage device
to the Windows file system. The application firmware must implement this logic.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 27

The generic Cypress driver is signed for a VID of 0x04B4 and PIDS of 0x00F0, 0x00F1, and 0x00F3. If you want to use
your own VID/PID pair, you must get the driver signed by Microsoft WHQL. During the development phase, you can
use an unsigned driver by disabling driver signature enforcement on your computer. The driver is ideal for
communicating with a vendor-specific device from a custom USB application. Alternatively, the driver might be used to
send low-level USB requests to any USB device for experimental or diagnostic applications. To use the driver to
communicate with a device, Windows must match the device to the driver. The class library (CyAPI.lib and Cyusb.dll)
provides a high-level programming interface to the driver.

9.5.2 Features

▪ Windows Driver Foundation (WDF)-compliant

▪ Compatible with any USB 2.0-compliant device

▪ Compatible with Cypress USB 3.0-compliant device

▪ Supports basic USB 3.0 features

▪ Supports Windows plug-and-play and power management

▪ Supports USB remote wake-up

▪ Supports CONTROL, BULK, INTERRUPT, and ISOCHRONOUS endpoints

▪ Supports multiple USB devices connected simultaneously

▪ Supports customizable driver GUID without rebuilding the driver

▪ Supports high-bandwidth data transfers passing multiple packets per frame

You are not required to use the Cypress-supplied driver. FX3 can be programmed to implement standard USB class
devices. When implementing such a device, the USB class driver should be used instead. For example, if an FX3 is
implementing the USB Video Class (UVC) it does not need the Cypress generic driver and instead uses the OS-
provided UVC driver. This makes Windows, Linux, and Mac support simple because certain standard drivers are
already provided by the OS.

9.6 Application Interface

9.6.1 CyAPI. l ib

CyAPI.lib provides a simple and powerful C++ programming interface to the USB devices. A C++ class library provides
a high-level programming interface to the cyusb3.sys device driver. The library can communicate only with USB devices

served by this driver.

For further details on CyAPI.lib, refer to the Programmer’s Reference C++ Library. This is available in the USB Suite
Help documentation as part of the SDK.

9.6.2 CyUSB.dl l

CyUSB.dll is a managed Microsoft .NET class library that provides a high-level programming interface to the USB

devices. Rather than communicate with the USB device drivers directly via low-level Win32 API calls, applications can
access USB devices through library methods and properties. Because CyUSB.dll is a managed .NET library, its classes
and methods can be accessed from any of the Microsoft Visual Stuido.NET managed languages, such as Visual
Basic.NET, C#, Visual J#, and managed C++. To use the library, add a reference to CyUSB.dll to your project's
References folder. Then, any source file that accesses the CyUSB namespace must include a line to add the

namespace in the appropriate syntax.

For further details on CyUSB.dll, refer to the Programmer’s Reference C# Library. This is distributed in the USB Suite
Help documentation as part of the SDK.

Refer to the Cypress USBSuite Application Development - Quick Start Guide for details on using CyAPI.lib and
CyUSB.dll.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 28

9.7 Windows Software Examples

9.7.1 BULKLoop example

The application BULKLoop is used to test the loopback of data transfer through BULK endpoints.

Figure 28. Cypress C++ BULKLoop Application

9.8 Streamer Example

The application streamer is used to test the data transfer on the BULK/ISOCHRONOUS endpoints.

Figure 29. Cypress C++ Streamer Application

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 29

Figure 30. Cypress C# Streamer Application (Running Traffic in a Slave FIFO Application)

On installing the FX3 SDK, both C++ and C# implementations of the BULKLoop and Streamer applications are available
in the ‘applications’ directory.

9.9 FX3 SDK and Software for Linux

9.9.1 EZ-USB FX3 SDK for Linux

The FX3 SDK supports firmware development with Eclipse IDE and debug using the J-Link JTAG debugger probe on
a Linux platform.

The EZ-USB FX3 SDK for Linux contains the following:

▪ The FX3 firmware library and examples

▪ Sourcery Arm GNU toolchain

▪ Eclipse IDE for 32-bit Linux OS installations

▪ Eclipse IDE for 64-bit Linux OS installations

▪ The CyUSB Suite for Linux software

The installation procedure extracts these archives and set environment variables. See FX3_SDK_Linux_Support.pdf
available in the FX3 SDK for Linux for detailed installation steps.

9.9.2 CyUSB Suite for Linux

The CyUSB Suite for Linux software enables you to download firmware images to FX3 devices and test the various
interfaces on the device. See cyusb_linux_user_guide.pdf available in the FX3 SDK for Linux installation folder:

fx3_sdk_<version>_linux\cyusb_linux_1.0.4\docs. This document describes how to install the software,

download firmware to FX3, test Vendor Extensions, BULK OUT/IN transfers, and ISOCHRONOUS OUT/IN transfers.

The CyUSB Suite for Linux - Programmers Reference Manual (cyusb_linux_programmers_guide.pdf available in the

same folder), describes the cyusb library for Linux and how to build and integrate user-written applications with the
library. With this software, you can:

▪ View the device, configuration, interface, alternate-interface, and endpoint descriptors of attached devices.

▪ Select a specific interface and alternative interface for communication.

▪ Program the device (download firmware) to the FX3 device, downloading into RAM, I2C-based EEPROM, or SPI-
based flash.

▪ Test your own commands (Vendor Extensions) after downloading specific firmware that implements your
commands.

▪ Test the BULK OUT endpoints by sending either constant or random or incrementing data patterns and also
testing the BULK IN endpoints by looping back data after sending the OUT data.

▪ Test the ISOCHRONOUS OUT and IN endpoints and measure the data transfer rates.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 30

Figure 31. CyUSB Suite for Linux

Device selection area: Click on a device to select it

Detailed

Information

Summary

Information

9.10 Useful Debug Tools

9.10.1 USB 3.0 Protocol Analyzer

A USB 3.0 protocol analyzer is a useful debugging tool. It analyzes the traffic on the USB between FX3 and the host.
Software tools included with each analyzer then decode the data into USB transfer packets. By analyzing this data,
issues can be easily identified, and performance can be maximized. Several USB 3.0 analyzers are available in the
market today. Cypress does not recommend any specific analyzer but here are some options:

▪ Standalone USB 3.0 Protocol Analyzer

 Ellisys USB Explorer 280

 LeCory USB Voyager M3i

 Beagle USB 5000 SuperSpeed Protocol Analyzer

▪ PC Software USB 3.0 Protocol Analyzer

 SourceQuest SourceUSB

 SysNucleus USBTrace

9.10.2 Logic Analyzer

Logic analyzers allow simple analysis of digital signals. They can be used to look at various signals between FX3 and
other peripherals. There are two types of logic analyzers in the market:

▪ Standalone Type Logic Analyzer

 Agilent 16800 Series Portable Logic Analyzer

▪ PC-Based Type Logic Analyzer

 USBee Logic Analyzer

 ZeroPlus Logic Analyzer

An important factor to consider is that the signal frequency range of the analyzer should be higher than the
signals to be analyzed.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 31

Appendix A. USB 3.0 Overview

USB 3.0 enables an increased data rate of 5 Gbps, reduces power consumption, and is backward-compatible with
USB 2.0. The USB Specification, published by USB-IF, can be found here. Figure 32 shows the USB 3.0 architecture.

Figure 32. USB 3.0 Dual Bus Architecture

Courtesy: http://usb.org

The physical interface of USB 3.0 consists of two differential pairs and a ground for SuperSpeed transfers in addition
to the USB 2.0 connections. This allows USB 3.0 to ensure backward compatibility with USB 2.0.

A.1 Electrical Interface

The USB 3.0 pinout is different from that of USB 2.0. In addition to the VBUS, D–, D+, and GND pins required for USB
2.0, USB 3.0 has five additional pins – two differential pairs and one ground (GND_DRAIN). The two differential pairs
are for SuperSpeed data transfer, supporting dual simplex SuperSpeed signaling. The GND_DRAIN pin is for drain
wire termination, management of signal integrity, and EMI performance. Table 3 shows a description of the nine pins.

Table 3. USB 3.0 Pin Description

Pins Name Description

VBUS Power

D- USB 2.0 differential pair

D+

GND Ground for power return

SSRX- SuperSpeed receiver differential pair

SSRX+

SSTX- SuperSpeed transmit differential pair

SSTX+

GND_DRAIN Ground for signal return

A.2 Cables and Connectors

USB 3.0 has four additional data lines (SSRX+, SSRX-, SSTX+, SSTX-) for data transfer and one additional ground
line for drain wire termination, signal integrity management, and EMI performance. Figure 33 shows the architecture of
a USB 3.0 cable. Table 4 shows the description of these lines.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 32

Figure 33. USB 3.0 Cable Architecture

Courtesy: http://usb.org

Table 4. USB 3.0 Cable Description

Name Description Color

PWR VBUS Red

UTP_D- USB 2.0 D- White

UTP_D+ USB 2.0 D+ Green

Ground Ground for power drain Black

SDP1- Shielded differential pair 1 Blue

SDP1+ Yellow

SDP1_Drain Drain line for SDP1

SDP2- Shielded differential pair 2 Purple

SDP2+ Orange

SDP2_Drain Drain line for SDP2

The USB 3.0 Specification also defines the following connectors:

▪ USB 3.0 Standard-A Plug and Receptacle

The USB 3.0 Standard-A connector is defined in the SuperSpeed standard as the host connector. It is based on
the design of the USB 2.0 Standard-A connector but has the additional SuperSpeed signals. A USB 3.0 Standard-
A receptacle accepts either a USB 3.0 Standard-A plug or a USB 2.0 Standard-A plug. USB 3.0 capable Standard-
A connectors use a unique color for easy identification. Figure 33 shows the color coding recommendation.

▪ USB 3.0 Standard-B Plug and Receptacle

The USB 3.0 Standard-B connector is defined for large, stationary peripherals, such as external hard drives and
printers. The USB 3.0 Standard-B receptacle accepts either a USB 3.0 Standard-B plug or a USB 2.0 Standard-B
plug. You cannot insert a USB 3.0 Standard-B plug into a USB 2.0 Standard-B receptacle.

▪ USB 3.0 Powered-B Plug and Receptacle

The USB 3.0 Powered-B connector enables a USB 3.0 device to provide power to a USB adapter without an
external power supply. It is identical to the USB 3.0 Standard-B connector in form factor but has two more pins:
one for power (DPWR) and one for ground (DGND).

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 33

▪ USB 3.0 Micro-B Plug and Receptacle

The USB 3.0 Micro-B connector is defined for small handheld devices.

▪ USB 3.0 Micro-AB and USB 3.0 Micro-A Connectors

The USB 3.0 Micro-AB receptacle is similar to the USB 3.0 Micro-B receptacle, except keying is different. It accepts
a USB 3.0 Micro-A plug, a USB 3.0 Micro-B plug, a USB 2.0 Micro-A plug, or a USB 2.0 Micro-B plug. The USB 3.0
Micro-AB receptacle is allowed only on OTG products, which may function as either a host or a device. All other
uses of the USB 3.0 Micro-AB receptacle are prohibited.

The USB 3.0 Micro-A plug is similar to the USB 3.0 Micro-B plug, except for different keying and ID pin connections.
The USB 3.0 Micro-A plug, the USB 3.0 Micro-AB receptacle, and the USB 3.0 Micro-B receptacle and plug, belong
to the USB 3.0 Micro connector family. Their interfaces differ only in keying. Similar to the USB 2.0 Micro-A plug,
the USB 3.0 Micro-A plug is defined only for OTG applications.

A.3 USB 3.0 Versus 2.0

USB 3.0 has a dual-bus architecture that supports USB 2.0 and 3.0. The following table shows the main differences
between USB 3.0 and USB 2.0.

Table 5. Differences Between USB 3.0 and USB 2.0

Feature USB 2.0 USB 3.0

Data rate 480 Mbits/s (High Speed)

12 Mbits/s (Full Speed)

1.5 Mbits/s (Low Speed)

5.0 Gbits/s (SuperSpeed)

480 Mbits/s (High Speed)

12 Mbits/s (Full Speed)

1.5 Mbits/s (Low Speed)

Data interface Half-duplex

Two-wire differential signaling

Dual-simplex

Four-wire differential signaling

Cable signal count Four signals:

- Two for USB 2.0 data (D, D–)

- Two for VBUS and GND

Nine signals:

- Four for SuperSpeed data

- Two for USB 2.0 data (D, D–)

- Three for VBUS and GND

Bus transaction
protocol

Host directed

Polled traffic flow

Packets broadcast to all downstream devices

No multiplexing of data streams

Host directed

Asynchronous notifications

Packets routed only to target device

Multiple data streams possible for BULK transfers

Power management Two modes

- Active

- Suspend

Four modes

- Active (U0)

- Idle, Fast (U1)

- Idle, Slow (U2)

- Suspend, Slow (U3)

Bus power Low-power device : 100 mA

High-power device : 500 mA

Low-power device : 150 mA

High-power device : 900 mA

Port state Port hardware detects connect events.

System software uses port commands to
transition the port into an enabled state.

Port hardware detects connect events and brings the port into
operational state ready for SuperSpeed data communication

Maximum cable length 5 meters Based on electrical specification.

In practice 3 meters for 26 AWG copper

Data transfer types Four data transfer types: CONTROL, BULK,
INTERRUPT, and ISOCHRONOUS.

USB 2.0 types with SuperSpeed capabilities.

BULK has streams capability.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 34

Appendix B. FX3 DVK Driver Installation on Windows

If you have not already installed the FX3 DVK kit on a Windows computer, the first time you connect the DVK to the
computer you will see the following message.

Figure 34. Windows Message if Driver is Not Installed

Close the message box and navigate to Windows Device Manager. To do this, click the Windows Start button, right-
click on Computer in the right-hand column, and select Properties to bring up System Information. Then, click Device
Manager at the top of the left column.

Figure 35. Windows Device Manager

Right-click on WestBridge and select Browse my computer for driver software. On a 64-bit Windows 7 machine,

the driver is located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\driver\bin\win7\x64.

Your SDK version number may be higher than 1.2.

The Device Manager window should remove the WestBridge entry and identify the SDK board as the Cypress USB
Bootloader (top entry).

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 35

Figure 36. Cypress USB BootLoader in Device Manager After Driver Installation

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 36

Appendix C. Introduction to FX3 DVK

Cypress’ FX3 DVK provides the hardware that you need to get started. The PCB provides the necessary clocks and
voltages for the FX3 as well as configurable I/O voltages. The DVK has high-speed connectors for interfacing with
external devices. The DVK also implements various boot modes. An I2C EEPROM socket can be used to program and
test booting from an I2C EEPROM. An on-board SPI flash chip allows programming and booting over the SPI bus.
Cypress example projects supplied with the SDK contain firmware to program these devices using the DVK board. If
you do not already have a DVK, you can find one here.

Two important pieces of hardware, external to the FX3 DVK board, are the USB 3.0 host (typically the PC) and the
external device connected to the GPIF II interface (such as an image sensor or FPGA). For details on using the FX3
DVK, refer to the DVK User Guide. Figure 37 shows a picture of the FX3 DVK board with the key areas called out.

Figure 37. FX3 DVK Board

GPIF II Connector

JTAG Header

On/Off Toggle

Switch

5-V Power Jack

FX3 Device

USB Receptacle

RS-232

Connector

I2S HeaderSPI Header
EEPROM

Socket
Reset

Button

Voltage Selection

Jumpers

UART/SPI

Selection Jumper

OTG Host Mode

Selection Jumper

Reset Signal

Jumper

CTRL-4

Signal Jumper

Boot Mode Jumpers

I2C EEPROM

Address Selection

Switch

I2C Connection

Jumpers

Debug Mictors

Crystal Voltage

Selection

Boot Mode

Switch

Bus/Self-Powered Mode

Selection Jumper

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 37

Table 6 shows the key jumpers and their default settings on the DVK board.

Table 6. FX3 DVK Board Jumpers

Jumper/Switch
Pins Shorted using Jumpers

(Default Setting)
Function (Default Setting)

J101 1 and 2 GPIO_46=UART_RTS

J102 1 and 2 GPIO_47=UART_CTS

J103 1 and 2 GPIO_48=UART_TX

J104 1 and 2 GPIO_49=UART_RX

J136 3 and 4 VIO1(3.3 V)

J144 3 and 4 VIO2(3.3 V)

J145 3 and 4 VIO3(3.3 V)

J146 3 and 4 VIO4(3.3 V)

J134 4 and 5 VIO5(3.3 V)

J135 2 and 3 CVDDQ(3.3 V)

J143 1 and 6 VBATT(2.5 V)

J96 & SW25 2 and 3

• PMODE0 Pin state (ON/OFF) selection using SW25.

• SW25.1=OFF

 J97 & SW25 2 and 3

• PMODE0 Pin state (ON/OFF) selection using SW25.

• SW25.2=OFF

J98 1 and 2 PMODE2 Pin Floating

J72 1 and 2 RESET

J42 Not Installed GPIO_58=I2C_SCL

J45 Not Installed GPIO_59=I2C_SDA

J100 1 and 2 GPIO_21=CTL4

C.1 JTAG Debuggers for FX3 DVK

The Segger J-Link probe is the preferred JTAG probe for the FX3 SDK. This probe, along with the Segger J-Link Arm
GDB Server, is used for debug. The Eclipse IDE connects to the J-link GDB server to debug your firmware. To get
Eclipse working with the GDB server, you need to create a debug configuration for the J-link. Details are in Chapter 12
of the FX3 Programmer’s Manual.

To debug, you may also use other JTAG probes such as the Olimex Arm-USB-OCD probe. In this case, the OpenOCD
tools can be used for the GDB connection. Details on how to do this are in Chapter 12 of the FX3 Programmer’s Manual.

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 38

Document History

Document Title: AN75705 - Getting Started with EZ-USB® FX3™

Document Number: 001-75705

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3427934 ATAM 02/23/2012 New application note.

*A 3715875 ATAM/OSG 08/17/2012
Merged with AN75432 USB 3.0 EZ-USB® FX3™ Orientation.

Updated application note for FX3 SDK 1.2.

*B 3981810 OSG 04/25/2013

Restructured application note.

Added sections: What is FX3, Application Development with FX3, Design
Resources.

Added FX3 Block Diagram.

Aligned with SDK 1.2.3.

*C 4183163 RSKV 11/05/2013

Added FX3 Terminology section.

Added the location of the FX3 SDK Linux support document and CyUSB Suite
for the Linux user guide.

*D 4562855 NIKL 11/28/2014
Added references to SuperSpeed Explorer Kit (CYUSB3KIT-003).

Moved references to FX3 DVK (CYUSB3KIT-001) to Appendix C.

*E 4632935 NIKL 01/28/2015

Formatted the document as per new template.

Added a hyperlink to reference the list of USB SuperSpeed Code Examples in
Design Resources.

*F 4827630 NIKL 07/28/2015
Updated template.

Updated Table 1.

*G 5371141 NIKL 08/29/2016

Added section Related Resources

Updated Figure 26 and Figure 29

Updated template

*H 6146396 HPPC 05/16/2018
Removed references to obsoleted CYUSB3KIT-001

Updated template

 Getting Started with EZ-USB® FX3™

www.cypress.com Document No. 001-75705 Rev. *H 39

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2012-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

	1 Introduction
	2 Related Resources
	2.1 EZ-USB FX3 Software Development Kit
	2.2 GPIF™ II Designer

	3 What is FX3?
	4 FX3 Features
	4.1 USB Interface
	4.2 GPIF II
	4.3 CPU
	4.4 JTAG Interface
	4.5 UART Interface
	4.6 I2C Interface
	4.7 I2S Interface
	4.8 SPI Interface
	4.9 Boot Options
	4.10 Clocking
	4.11 Voltage Domains

	5 Application Development with FX3
	5.1 FPGA/ASIC Interfaced to FX3
	5.2 Configuring an FPGA via FX3
	5.3 Image Sensor Interfaced to FX3
	5.4 Designing FX3 Hardware
	5.5 Upgrading an FX2LP Design to FX3

	6 Design Resources
	7 FX3 Terminology
	8 My First USB 3.0 Transfer Using FX3
	8.1.1 Building and Running the USBBulkLoopAuto Firmware
	8.1.2 Loading USBBulkLoopAuto Firmware into FX3 RAM
	8.1.3 Performing BULK Transfers

	9 Development Tools
	9.1 Introduction to SuperSpeed Explorer Kit
	9.2 Introduction to FX3 SDK
	9.2.1 Firmware Stack and APIs
	9.2.2 Framework API

	9.3 FX3 Firmware Examples
	9.3.1 USB BULK Data Loopback Examples
	9.3.2 USB ISOCHRONOUS Data Loopback Examples
	9.3.3 Slave FIFO Application Examples
	9.3.4 Serial Interface Examples
	9.3.5 USB BULK/ISOCHRONOUS Data Source Sink Examples
	9.3.6 Flash Programmer Example
	9.3.7 Mass Storage Class Example
	9.3.8 USB Audio Class Example
	9.3.9 Two Stage Booter Example
	9.3.10 USB Host and OTG Examples

	9.4 FX3 Firmware Development Tools
	9.4.1 Eclipse IDE
	9.4.2 GNU Tool Chain
	9.4.3 GPIF II Designer
	9.4.4 Integrated Debugger

	9.5 Windows Software Overview
	9.5.1 Windows USB Device Driver
	9.5.2 Features

	9.6 Application Interface
	9.6.1 CyAPI.lib
	9.6.2 CyUSB.dll

	9.7 Windows Software Examples
	9.7.1 BULKLoop example

	9.8 Streamer Example
	9.9 FX3 SDK and Software for Linux
	9.9.1 EZ-USB FX3 SDK for Linux
	9.9.2 CyUSB Suite for Linux

	9.10 Useful Debug Tools
	9.10.1 USB 3.0 Protocol Analyzer
	9.10.2 Logic Analyzer

	Appendix A. USB 3.0 Overview
	A.1 Electrical Interface
	A.2 Cables and Connectors
	A.3 USB 3.0 Versus 2.0

	Appendix B. FX3 DVK Driver Installation on Windows
	Appendix C. Introduction to FX3 DVK
	C.1 JTAG Debuggers for FX3 DVK

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

