
(https://www.dfrobot.com/product-1744.html)
FireBeetle Covers-OLED12864 Display
(https://www.dfrobot.com/product-1744.html)

FireBeetle Covers-OLED12864 Display
SKU: DFR0507
Contents

1 Introduction
2 Specification
3 Function Diagram
4 Pin Out
5 Tutorial

5.1 Preparation
5.2 Image
5.3 Paint
5.4 Clock
5.5 Progress Bar
5.6 UI

6 Dimension
7 FAQ
8 More Documents

Introduction
DFRobot FireBeetle firefly series is low-power
development component designed for the IoT. This
FireBeetle covers display module is equipped with
128x64 resolution OLED and new version of SSD1360 driver, uses I2C interface, supports for the Arduino
library and microPython, fully compatible with the Gravity I2C OLED-2864 screen. OLED screen has a
protective frame to protect the screen, it prevents the finger from being scratched on the edge of the glass.
The OLED 12864 display module also integrates the GT30L24A3W Chinese / foreign font library chip and
the BMA220 three-axis accelerometer. In addition, the FireBeetle Covers-OLED12864 display features an
analog directional key and two independent digital keys A and B.

Specification
Voltage Range: 3.7V-5.5V
2 User Buttons: Using digital port D4, D8 detection mode
5-way Switch: Using analog port A0 detection mode
Three- axis Accelerometer BMA220: IIC

Data Bus: IIC
Dimension: 0.079x0.079x0.035in/2x2x0.9mm
Resolution: 6 bit
Range: 2/4/8/16g
Power Consumption: 250uA

OLED
Model: UG-2864HLBEG01
Dimension: 0.96in
Color: blue
Data Bus: IIC
Pixel:128x64

Font Chip: GT30L24A3W
Data Bus: SPI

https://www.dfrobot.com/product-1744.html
https://www.dfrobot.com/product-1744.html

Character Set:
GB18030 Simplified Chinese/Traditional Chinese
KSC5601 Korean
JIS0208 Japanese
180 Foreign Font
Support for Multinational Unicode
IS08859 and CODE PAGE

Chinese Character Size:12 dot matrix, 16dot matrix, 24dot matrix
Foreign Character Size:16 dot matrix, 24 dot matrix
Working Current: 12mA

Function Diagram

(/wiki/index.php/File:DFR0507_Function_Module.png)
Fig1: FireBeetle Covers-OLED12864 Display Functional Module

A<->D4
B<->D8
5-way Switch<->A0

Pin Out

https://www.dfrobot.com/wiki/index.php/File:DFR0507_Function_Module.png

(/wiki/index.php/File:DFR0507_Pinout_1.png)
Fig2: FireBeetle Covers-OLED12864 Display Pinout

NOTE: NC do not need to connect, and the VCC is the
power supply voltage output.

Tutorial
Preparation

Hardware
1 x ESP32
1 x FireBeetle Covers-OLED12864

Software
Arduino IDE 1.8+
Please download FireBeetle Covers-OLED12864 Display library first.
(https://github.com/DFRobot/DFRobot_OLED12864)
Do you need to install any additional libraries? Explain it here How to install Libraries in Arduino
IDE (https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0%7C)

(/wiki/index.php/File:Warning_yellow.png)

https://www.dfrobot.com/wiki/index.php/File:DFR0507_Pinout_1.png
https://github.com/DFRobot/DFRobot_OLED12864
https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0%7C
https://www.dfrobot.com/wiki/index.php/File:Warning_yellow.png

NOTE: All of the following examples are belong to
DFRobot_OLED12864 library files

Image
Open Dfrobot_OLED12864 Image Demo

void setup() {
 #include "DFRobot_OLED12864.h"

// Include custom images
#include "images.h"

// Initialize the OLED display using Wire library
DFRobot_OLED12864 display(0x3c);

void setup()
{
 Serial.begin(115200);
 Serial.println();
 Serial.println();
 // Initialising the UI will init the display too.
 display.init();
 display.flipScreenVertically();// flip vertical
 display.clear();
 drawImageDemo();
 display.display();
}

void drawImageDemo()
{
 display.drawXbm(0, 0, Picture_width, Picture_height, Picture_bits);
}

void loop()
{
}

Function: After download this demo the screen will display our logo (notice that the picture file
"images.h" has been in the project folder, if you need to replace the picture, you can use The Dot
Factory (https://github.com/pavius/the-dot-factory) to generate bitmaps)
Function Declaration:
Create an object and write the I2C address

 DFRobot _OLED12864 display(0x3c)

Initialize OLED and library

 init()

Flip screen vertically

 flipScreenVertically

(/wiki/index.php/File:Warning_yellow.png)

https://github.com/pavius/the-dot-factory
https://www.dfrobot.com/wiki/index.php/File:Warning_yellow.png

Clear data

 clear()

Import the specified width-high data at the x, y-axis position, starting at the top left corner.

 drawXbm(0, 0, Picture_width, Picture_height, Picture_bits)

Flush the data from OLED to the screen. If not called, the data will only be stored in the OLED and will
not be displayed.

 display()

Paint
Open DFRobot_OLED12864 Drawing Demo

#include "DFRobot_OLED12864.h"

// Initialize the OLED display using Wire library
DFRobot_OLED12864 display(0x3c);

void drawLines()
{
 for (int16_t i=0; i<DISPLAY_WIDTH; i+=4) {
 display.drawLine(0, 0, i, DISPLAY_HEIGHT-1);
 display.display();
 delay(10);
 }
 for (int16_t i=0; i<DISPLAY_HEIGHT; i+=4) {
 display.drawLine(0, 0, DISPLAY_WIDTH-1, i);
 display.display();
 delay(10);
 }
 delay(250);

 display.clear();
 for (int16_t i=0; i<DISPLAY_WIDTH; i+=4) {
 display.drawLine(0, DISPLAY_HEIGHT-1, i, 0);
 display.display();
 delay(10);
 }
 for (int16_t i=DISPLAY_HEIGHT-1; i>=0; i-=4) {
 display.drawLine(0, DISPLAY_HEIGHT-1, DISPLAY_WIDTH-1, i);
 display.display();
 delay(10);
 }
 delay(250);

 display.clear();
 for (int16_t i=DISPLAY_WIDTH-1; i>=0; i-=4) {
 display.drawLine(DISPLAY_WIDTH-1, DISPLAY_HEIGHT-1, i, 0);
 display.display();
 delay(10);
 }
 for (int16_t i=DISPLAY_HEIGHT-1; i>=0; i-=4) {
 display.drawLine(DISPLAY_WIDTH-1, DISPLAY_HEIGHT-1, 0, i);
 display.display();
 delay(10);
 }
 delay(250);
 display.clear();
 for (int16_t i=0; i<DISPLAY_HEIGHT; i+=4) {
 display.drawLine(DISPLAY_WIDTH-1, 0, 0, i);
 display.display();
 delay(10);
 }
 for (int16_t i=0; i<DISPLAY_WIDTH; i+=4) {
 display.drawLine(DISPLAY_WIDTH-1, 0, i, DISPLAY_HEIGHT-1);
 display.display();
 delay(10);
 }
 delay(250);
}

void drawRect(void)
{

 for (int16_t i=0; i<DISPLAY_HEIGHT/2; i+=2) {
 display.drawRect(i, i, DISPLAY_WIDTH-2*i, DISPLAY_HEIGHT-2*i);
 display.display();
 delay(10);
 }
}

void fillRect(void)
{
 uint8_t color = 1;
 for (int16_t i=0; i<DISPLAY_HEIGHT/2; i+=3) {
 display.setColor((color % 2 == 0) ? BLACK : WHITE); // alternate colors
 display.fillRect(i, i, DISPLAY_WIDTH - i*2, DISPLAY_HEIGHT - i*2);
 display.display();
 delay(10);
 color++;
 }
 // Reset back to WHITE
 display.setColor(WHITE);
}

void drawCircle(void)
{
 for (int16_t i=0; i<DISPLAY_HEIGHT; i+=2) {
 display.drawCircle(DISPLAY_WIDTH/2, DISPLAY_HEIGHT/2, i);
 display.display();
 delay(10);
 }
 delay(1000);
 display.clear();

 // This will draw the part of the circel in quadrant 1
 // Quadrants are numberd like this:
 // 0010 | 0001
 // ------|-----
 // 0100 | 1000
 //
 display.drawCircleQuads(DISPLAY_WIDTH/2, DISPLAY_HEIGHT/2, DISPLAY_HEIGHT/4, 0b00000001);
 display.display();
 delay(200);
 display.drawCircleQuads(DISPLAY_WIDTH/2, DISPLAY_HEIGHT/2, DISPLAY_HEIGHT/4, 0b00000011);
 display.display();
 delay(200);
 display.drawCircleQuads(DISPLAY_WIDTH/2, DISPLAY_HEIGHT/2, DISPLAY_HEIGHT/4, 0b00000111);
 display.display();
 delay(200);
 display.drawCircleQuads(DISPLAY_WIDTH/2, DISPLAY_HEIGHT/2, DISPLAY_HEIGHT/4, 0b00001111);
 display.display();
}

void printBuffer(void)
{
 // Initialize the log buffer
 // allocate memory to store 8 lines of text and 30 chars per line.
 display.setLogBuffer(5, 30);

 // Some test data
 const char* test[] = {
 "Hello",
 "World" ,

The program will do some acts of drawing, display some characters at the end, and then stop
Function Declaration:
Set contrast

 "----",
 "Show off",
 "how",
 "the log buffer",
 "is",
 "working.",
 "Even",
 "scrolling is",
 "working"
 };

 for (uint8_t i = 0; i < 11; i++) {
 display.clear();
 // Print to the screen
 display.println(test[i]);
 // Draw it to the internal screen buffer
 display.drawLogBuffer(0, 0);
 // Display it on the screen
 display.display();
 delay(500);
 }
}

void setup()
{
 display.init();

 // display.flipScreenVertically();

 display.setContrast(255);

 drawLines();
 delay(1000);
 display.clear();

 drawRect();
 delay(1000);
 display.clear();

 fillRect();
 delay(1000);
 display.clear();

 drawCircle();
 delay(1000);
 display.clear();

 printBuffer();
 delay(1000);
 display.clear();
}

void loop() { }

 setContrast(contrast)

Draw lines

 drawLines()

Draw rectangle

 drawRect()

Draw circle

 drawCircle()

Print character

 printBuffer()

Clock
Open DFRobot_OLED12864 Clock Demo

#include <TimeLib.h>
#include "DFRobot_OLED12864.h" // alias for `#include "DFRobot_OLED12864Wire.h"`

// Include the UI lib
#include "OLEDDisplayUi.h"

// Include custom images
#include "images.h"

DFRobot_OLED12864 display(0x3c);

OLEDDisplayUi ui (&display);

int screenW = 128;
int screenH = 64;
int clockCenterX = screenW/2;
int clockCenterY = ((screenH-16)/2)+16; // top yellow part is 16 px height
int clockRadius = 23;

// utility function for digital clock display: prints leading 0
String twoDigits(int digits)
{
 if(digits < 10) {
 String i = '0'+String(digits);
 return i;
 }
 else {
 return String(digits);
 }
}

void clockOverlay(OLEDDisplay *display, OLEDDisplayUiState* state)
{

}

void analogClockFrame(OLEDDisplay *display, OLEDDisplayUiState* state, int16_t x, int16_t y
{
 // ui.disableIndicator();

 // Draw the clock face
 // display->drawCircle(clockCenterX + x, clockCenterY + y, clockRadius);
 display->drawCircle(clockCenterX + x, clockCenterY + y, 2);
 //
 //hour ticks
 for(int z=0; z < 360;z= z + 30){
 //Begin at 0° and stop at 360°
 float angle = z ;
 angle = (angle / 57.29577951) ; //Convert degrees to radians
 int x2 = (clockCenterX + (sin(angle) * clockRadius));
 int y2 = (clockCenterY - (cos(angle) * clockRadius));
 int x3 = (clockCenterX + (sin(angle) * (clockRadius - (clockRadius / 8))));
 int y3 = (clockCenterY - (cos(angle) * (clockRadius - (clockRadius / 8))));
 display->drawLine(x2 + x , y2 + y , x3 + x , y3 + y);
 }

 // display second hand
 float angle = second() * 6 ;
 angle = (angle / 57.29577951) ; //Convert degrees to radians
 int x3 = (clockCenterX + (sin(angle) * (clockRadius - (clockRadius / 5))));

 int y3 = (clockCenterY - (cos(angle) * (clockRadius - (clockRadius / 5))));
 display->drawLine(clockCenterX + x , clockCenterY + y , x3 + x , y3 + y);
 //
 // display minute hand
 angle = minute() * 6 ;
 angle = (angle / 57.29577951) ; //Convert degrees to radians
 x3 = (clockCenterX + (sin(angle) * (clockRadius - (clockRadius / 4))));
 y3 = (clockCenterY - (cos(angle) * (clockRadius - (clockRadius / 4))));
 display->drawLine(clockCenterX + x , clockCenterY + y , x3 + x , y3 + y);
 //
 // display hour hand
 angle = hour() * 30 + int((minute() / 12) * 6) ;
 angle = (angle / 57.29577951) ; //Convert degrees to radians
 x3 = (clockCenterX + (sin(angle) * (clockRadius - (clockRadius / 2))));
 y3 = (clockCenterY - (cos(angle) * (clockRadius - (clockRadius / 2))));
 display->drawLine(clockCenterX + x , clockCenterY + y , x3 + x , y3 + y);
}

void digitalClockFrame(OLEDDisplay *display, OLEDDisplayUiState* state, int16_t x, int16_t
{
 String timenow = String(hour())+":"+twoDigits(minute())+":"+twoDigits(second());
 display->setTextAlignment(TEXT_ALIGN_CENTER);
 display->setFont(ArialMT_Plain_24);
 display->drawString(clockCenterX + x , clockCenterY + y, timenow);
}

// This array keeps function pointers to all frames
// frames are the single views that slide in
FrameCallback frames[] = { analogClockFrame, digitalClockFrame };

// how many frames are there?
int frameCount = 2;

// Overlays are statically drawn on top of a frame eg. a clock
OverlayCallback overlays[] = { clockOverlay };
int overlaysCount = 1;

void setup()
{
 Serial.begin(115200);
 Serial.println();

 // The ESP is capable of rendering 60fps in 80Mhz mode
 // but that won't give you much time for anything else
 // run it in 160Mhz mode or just set it to 30 fps
 ui.setTargetFPS(60);

 // Customize the active and inactive symbol
 ui.setActiveSymbol(activeSymbol);
 ui.setInactiveSymbol(inactiveSymbol);

 // You can change this to
 // TOP, LEFT, BOTTOM, RIGHT
 ui.setIndicatorPosition(TOP);

 // Defines where the first frame is located in the bar.
 ui.setIndicatorDirection(LEFT_RIGHT);

 // You can change the transition that is used
 // SLIDE_LEFT, SLIDE_RIGHT, SLIDE_UP, SLIDE_DOWN

Function:Switch between an analog dial frame and a digital clock frame every 5 seconds.
Function Declaration:
Create an UI object and specify its OLED object

 OLEDDisplayUi ui (&display):

Set FPS

 setTargetFPS(fps)

Set active screen identification

 setActiveSymbol(activeSymbol)

Set inactive screen identification

 setInactiveSymbol(inactiveSymbol)

Set the position of the indicator

 setIndicatorPosition(pos)

 ui.setFrameAnimation(SLIDE_LEFT);

 // Add frames
 ui.setFrames(frames, frameCount);

 // Add overlays
 ui.setOverlays(overlays, overlaysCount);

 // Initialising the UI will init the display too.
 ui.init();

 display.flipScreenVertically();

 unsigned long secsSinceStart = millis();
 // Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
 const unsigned long seventyYears = 2208988800UL;
 // subtract seventy years:
 unsigned long epoch = secsSinceStart - seventyYears * SECS_PER_HOUR;
 setTime(epoch);
}

void loop()
{
 int remainingTimeBudget = ui.update();

 if (remainingTimeBudget > 0) {
 // You can do some work here
 // Don't do stuff if you are below your
 // time budget.
 delay(remainingTimeBudget);

 }
}

Set the direction of indicator

 setIndicatorDirection(direction)

Set the slide direction of the frame

 setFrameAnimation(direction)

Set frames

 setFrames(frames, count)

Set overlays

setOverlays(overlays, count)

Set time

 setTime(time)

Update frame

 update()

Set the time to automatically Update the Screen(the unit is ms)

 setTimePerFrame(time)

Allow automatic scrolling

 enableAutoTransition()

Prohibit automatic scrolling

 disableAutoTransition()

Set the content of display

 transitionToFrame(frame)

Progress Bar

#include "DFRobot_OLED12864.h" // alias for `#include "DFRobot_OLED12864Wire.h"`

// Initialize the OLED display using Wire library
DFRobot_OLED12864 display(0x3c);

int counter = 1;

void setup()
{
 Serial.begin(115200);
 Serial.println();
 Serial.println();

 // Initialising the UI will init the display too.
 display.init();
 display.flipScreenVertically();

}

void drawProgressBarDemo()
{
 int progress = (counter / 5) % 100;
 // draw the progress bar
 display.drawProgressBar(0, 32, 120, 10, progress);

 // draw the percentage as String
 display.setTextAlignment(TEXT_ALIGN_CENTER);
 display.drawString(64, 15, String(progress) + "%");
}

void loop()
{
 // clear the display
 display.clear();
 // draw the current demo method
 drawProgressBarDemo();

 // write the buffer to the display
 display.display();
 counter++;
 delay(10);
}

Function: Display the progress bar on the screen
Function Declaration:
Draw progress bar

 drawProgressBar(x, y, width, height, progress)

Formatting fonts

 setTextAlignment(alignment)

Draw string in specified location

 drawString(x, y, string)

UI
Open DFRobot_OLED12864 UI Demo

#include "DFRobot_OLED12864.h"

// Include the UI lib
#include "OLEDDisplayUi.h"

// Include custom images
#include "images.h"

// Initialize the OLED display using Wire library
DFRobot_OLED12864 display(0x3c);

OLEDDisplayUi ui(&display);

void msOverlay(OLEDDisplay *display, OLEDDisplayUiState* state)
{
 display->setTextAlignment(TEXT_ALIGN_RIGHT);
 display->setFont(ArialMT_Plain_10);
 display->drawString(128, 0, String(millis()));
}

void drawFrame1(OLEDDisplay *display, OLEDDisplayUiState* state, int16_t x, int16_t y)
{
 // draw an xbm image.
 // Please note that everything that should be transitioned
 // needs to be drawn relative to x and y

 display->drawXbm(x + 34, y + 14, WiFi_Logo_width, WiFi_Logo_height, WiFi_Logo_bits);
}

void drawFrame2(OLEDDisplay *display, OLEDDisplayUiState* state, int16_t x, int16_t y)
{
 // Demonstrates the 3 included default sizes. The fonts come from DFRobot_OLED12864Fonts.
 // Besides the default fonts there will be a program to convert TrueType fonts into this
 display->setTextAlignment(TEXT_ALIGN_LEFT);
 display->setFont(ArialMT_Plain_10);
 display->drawString(0 + x, 10 + y, "Arial 10");

 display->setFont(ArialMT_Plain_16);
 display->drawString(0 + x, 20 + y, "Arial 16");

 display->setFont(ArialMT_Plain_24);
 display->drawString(0 + x, 34 + y, "Arial 24");
}

void drawFrame3(OLEDDisplay *display, OLEDDisplayUiState* state, int16_t x, int16_t y)
{
 // Text alignment demo
 display->setFont(ArialMT_Plain_10);

 // The coordinates define the left starting point of the text
 display->setTextAlignment(TEXT_ALIGN_LEFT);
 display->drawString(0 + x, 11 + y, "Left aligned (0,10)");

 // The coordinates define the center of the text
 display->setTextAlignment(TEXT_ALIGN_CENTER);
 display->drawString(64 + x, 22 + y, "Center aligned (64,22)");

 // The coordinates define the right end of the text
 display->setTextAlignment(TEXT_ALIGN_RIGHT);
 display->drawString(128 + x, 33 + y, "Right aligned (128,33)");

}

void drawFrame4(OLEDDisplay *display, OLEDDisplayUiState* state, int16_t x, int16_t y)
{
 // Demo for drawStringMaxWidth:
 // with the third parameter you can define the width after which words will be wrapped.
 // Currently only spaces and "-" are allowed for wrapping
 display->setTextAlignment(TEXT_ALIGN_LEFT);
 display->setFont(ArialMT_Plain_10);
 display->drawStringMaxWidth(0 + x, 10 + y, 128, "Lorem ipsum\n dolor sit amet, consetetur
}

void drawFrame5(OLEDDisplay *display, OLEDDisplayUiState* state, int16_t x, int16_t y)
{

}

// This array keeps function pointers to all frames
// frames are the single views that slide in
FrameCallback frames[] = { drawFrame1, drawFrame2, drawFrame3, drawFrame4, drawFrame5 };

// how many frames are there?
int frameCount = 5;

// Overlays are statically drawn on top of a frame eg. a clock
OverlayCallback overlays[] = { msOverlay };
int overlaysCount = 1;

void setup()
{
 Serial.begin(115200);
 Serial.println();
 Serial.println();

 // The ESP is capable of rendering 60fps in 80Mhz mode
 // but that won't give you much time for anything else
 // run it in 160Mhz mode or just set it to 30 fps
 ui.setTargetFPS(60);

 // Customize the active and inactive symbol
 ui.setActiveSymbol(activeSymbol);
 ui.setInactiveSymbol(inactiveSymbol);

 // You can change this to
 // TOP, LEFT, BOTTOM, RIGHT
 ui.setIndicatorPosition(BOTTOM);

 // Defines where the first frame is located in the bar.
 ui.setIndicatorDirection(LEFT_RIGHT);

 // You can change the transition that is used
 // SLIDE_LEFT, SLIDE_RIGHT, SLIDE_UP, SLIDE_DOWN
 ui.setFrameAnimation(SLIDE_LEFT);

 // Add frames
 ui.setFrames(frames, frameCount);

 // Add overlays
 ui.setOverlays(overlays, overlaysCount);

Function: Switch between 5 frames
Function declaration:
User can edit the frame

 drawFrame5(*display, *state, x, y)

Dimension
Pin Spacing: 2.54mm/0.1in
Mounting hole spacing: 24mm/53mm 0.94/2.09in
Mounting hole size: 3.1mm/0.12in
Board Size: 29.00mm×58.00mm/1.14x2.28in
Thickness:1.6mm/0.06in

 // Initialising the UI will init the display too.
 ui.init();

 display.flipScreenVertically();
}

void loop()
{
 int remainingTimeBudget = ui.update();

 if (remainingTimeBudget > 0) {
 // You can do some work here
 // Don't do stuff if you are below your
 // time budget.
 delay(remainingTimeBudget);
 }
}

(/wiki/index.php/File:DFR0507_Dimensions.png)
FireBeetle Covers-OLED12864 Display Dimensions

FAQ
For any questions, advice or cool ideas to share, please visit the DFRobot Forum
(http://www.dfrobot.com/forum/).

More Documents
Hardware Design
(https://github.com/Arduinolibrary/FireBeetle_Covers_OLED12864_Display/raw/master/FireBeetle%20Covers-

https://www.dfrobot.com/wiki/index.php/File:DFR0507_Dimensions.png
http://www.dfrobot.com/forum/
https://github.com/Arduinolibrary/FireBeetle_Covers_OLED12864_Display/raw/master/FireBeetle%20Covers-OLED12864%20Display%20Hardware%20Design.PDF

OLED12864%20Display%20Hardware%20Design.PDF)

 (http://www.dfrobot.com/) Get FireBeetle Covers-OLED12864 Display
(https://www.dfrobot.com/product-1744.html) from DFRobot Store or [DFRobot Distributor.]

This page was last modified on 25 June 2018, at 18:48.
Content is available under GNU Free Documentation License 1.3 or later (https://www.gnu.org/copyleft/fdl.html) unless
otherwise noted.

 (https://www.gnu.org/copyleft/fdl.html) (//www.mediawiki.org/)

https://github.com/Arduinolibrary/FireBeetle_Covers_OLED12864_Display/raw/master/FireBeetle%20Covers-OLED12864%20Display%20Hardware%20Design.PDF
http://www.dfrobot.com/
https://www.dfrobot.com/product-1744.html
https://www.gnu.org/copyleft/fdl.html
https://www.gnu.org/copyleft/fdl.html
https://www.mediawiki.org/

