FireBeetle Covers-OLED12864 Display
SKU: DFR0507

Contents

Introduction
Specification
Function Diagram
Pin Out
Tutorial
5.1 Preparation
5.2 Image
5.3 Paint
5.4 Clock
5.5 Progress Bar
5.6 Ul
6 Dimension
FAQ
8 More Documents

a b~ ON -

~

(https://www.dfrobot.com/product-1744.html)

FireBeetle Covers-OLED12864 Display
(https://www.dfrobot.com/product-1744.html)

Introduction

DFRobot FireBeetle firefly series is low-power

development component designed for the IoT. This

FireBeetle covers display module is equipped with

128x64 resolution OLED and new version of SSD1360 driver, uses 12C interface, supports for the Arduino
library and microPython, fully compatible with the Gravity I2C OLED-2864 screen. OLED screen has a
protective frame to protect the screen, it prevents the finger from being scratched on the edge of the glass.
The OLED 12864 display module also integrates the GT30L24A3W Chinese / foreign font library chip and
the BMA220 three-axis accelerometer. In addition, the FireBeetle Covers-OLED12864 display features an
analog directional key and two independent digital keys A and B.

Specification

® \/oltage Range: 3.7V-5.5V
® 2 User Buttons: Using digital port D4, D8 detection mode
® 5-way Switch: Using analog port AO detection mode
® Three- axis Accelerometer BMA220: |IC
e Data Bus: IIC
® Dimension: 0.079x0.079x0.035in/2x2x0.9mm
® Resolution: 6 bit
® Range: 2/4/8/169g
e Power Consumption: 250uA
® OLED
® Model: UG-2864HLBEGO01
® Dimension: 0.96in
e Color: blue
e Data Bus: IIC
Pixel:128x64
® Font Chip: GT30L24A3W
¢ Data Bus: SPI

https://www.dfrobot.com/product-1744.html
https://www.dfrobot.com/product-1744.html

e Character Set:
e GB18030 Simplified Chinese/Traditional Chinese
e KSC5601 Korean
e JIS0208 Japanese
¢ 180 Foreign Font
e Support for Multinational Unicode
* |S08859 and CODE PAGE
e Chinese Character Size:12 dot matrix, 16dot matrix, 24dot matrix
e Foreign Character Size:16 dot matrix, 24 dot matrix
e Working Current: 12mA

Function Diagram

)
®

B

.3
. Al . ll ll
JIIBTI]]

=

Button

]

Accelerometer

o

A
LR]

OLED Screen

QT

OR2IA'I0—S 1!

ferdsy] ¥
399,
. N ' O N N N N N O O N N N AN

(/wiki/index.php/File:DFR0507_Function_Module.png)
Fig1: FireBeetle Covers-OLED12864 Display Functional Module

e A<->D4
e B<->D8
e 5-way Switch<->A0

Pin Out

https://www.dfrobot.com/wiki/index.php/File:DFR0507_Function_Module.png

L]
L]
L
L]
L
L]
L]
L]
L]
L]
L]
L]
.
L]
L]
.
L]

(/wiki/index.php/File:DFR0507_Pinout_1.png)
Fig2: FireBeetle Covers-OLED 12864 Display Pinout

! NOTE: NC do not need to connect, and the VCC is the
(/wiki/index.php/File:Warning_yellow.png) power supply voltage output.

Tutorial

Preparation

e Hardware
e 1 x ESP32
e 1 x FireBeetle Covers-OLED 12864
e Software
e Arduino IDE 1.8+
e Please download FireBeetle Covers-OLED12864 Display library first.
(https://github.com/DFRobot/DFRobot_ OLED12864)
e Do you need to install any additional libraries? Explain it here How to install Libraries in Arduino
IDE (https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0%7C)

https://www.dfrobot.com/wiki/index.php/File:DFR0507_Pinout_1.png
https://github.com/DFRobot/DFRobot_OLED12864
https://www.arduino.cc/en/Guide/Libraries#.UxU8mdzF9H0%7C
https://www.dfrobot.com/wiki/index.php/File:Warning_yellow.png

! NOTE: All of the following examples are belong to

(/wiki/index.php/File:Warning_yellow.png) DFRobot_ OLED12864 library files

Image

® Open Dfrobot_ OLED12864 Image Demo

void setup() {
#include "DFRobot_OLED12864.h"

// Include custom images
#include "images.h"

// Initialize the OLED display using Wire Library
DFRobot_OLED12864 display(@x3c);

void setup()

{
Serial.begin(115200);
Serial.println();
Serial.println();
// Initialising the UI will init the display too.
display.init();
display.flipScreenVertically();// flip vertical
display.clear();
drawImageDemo();
display.display();

¥

void drawImageDemo()

{
display.drawXbm(@, @, Picture_width, Picture_height, Picture_bits);
}

void loop()
{
¥

e Function: After download this demo the screen will display our logo (notice that the picture file
"images.h" has been in the project folder, if you need to replace the picture, you can use The Dot
Factory (https://github.com/pavius/the-dot-factory) to generate bitmaps)

e Function Declaration:

e Create an object and write the 12C address

DFRobot _OLED12864 display(@x3c)

@ |nitialize OLED and library

init()

e Flip screen vertically

flipScreenVertically

https://github.com/pavius/the-dot-factory
https://www.dfrobot.com/wiki/index.php/File:Warning_yellow.png

® Clear data

clear()

e Import the specified width-high data at the x, y-axis position, starting at the top left corner.

drawXbm(@, @, Picture_width, Picture_height, Picture_bits)

® Flush the data from OLED to the screen. If not called, the data will only be stored in the OLED and will
not be displayed.

display()

Paint

® Open DFRobot_OLED12864 Drawing Demo

#include "DFRobot OLED12864.h"

// Initialize the OLED display using Wire Llibrary
DFRobot_OLED12864 display(@x3c);

void drawLines()
{
for (int16_t i=0; i<DISPLAY_WIDTH; i+=4) {
display.drawlLine(@, @, i, DISPLAY_HEIGHT-1);
display.display();
delay(10);
}
for (int16_t i=0; i<DISPLAY_HEIGHT; i+=4) {
display.drawlLine(@, ©, DISPLAY_WIDTH-1, i);
display.display();
delay(10);
}
delay(250);

display.clear();

for (intl6_t i=0; i<DISPLAY_WIDTH; i+=4) {
display.drawlLine(@, DISPLAY_HEIGHT-1, i, ©);
display.display();
delay(10);

}

for (intl6_t i=DISPLAY HEIGHT-1; i>=0; i-=4) {
display.drawLine(®, DISPLAY HEIGHT-1, DISPLAY WIDTH-1, i);
display.display();
delay(10);

}
delay(250);

display.clear();

for (intl6_t i=DISPLAY_WIDTH-1; i>=0; i-=4) {
display.drawLine(DISPLAY_WIDTH-1, DISPLAY_HEIGHT-1, i, 0);
display.display();
delay(10);

}

for (int16_t i=DISPLAY HEIGHT-1; i>=0; i-=4) {
display.drawLine(DISPLAY_WIDTH-1, DISPLAY_HEIGHT-1, 0, i);
display.display();
delay(10);

}

delay(250);

display.clear();

for (int16_t i=0; i<DISPLAY_HEIGHT; i+=4) {
display.drawlLine(DISPLAY_WIDTH-1, @, @, i);
display.display();
delay(10);

}

for (intl6_t i=0; i<DISPLAY_WIDTH; i+=4) {
display.drawlLine(DISPLAY_WIDTH-1, @, i, DISPLAY_HEIGHT-1);
display.display();
delay(10);

}

delay(250);

}

void drawRect(void)

{

}

for (intl6_t i=0; i<DISPLAY_HEIGHT/2; i+=2) {
display.drawRect(i, i, DISPLAY_WIDTH-2*i, DISPLAY_HEIGHT-2*i);
display.display();
delay(10);

}

void fillRect(void)

{

}

uint8_t color = 1;

for (intl6_t i=0; i<DISPLAY_HEIGHT/2; i+=3) {
display.setColor((color % 2 == @) ? BLACK : WHITE); // alternate colors
display.fillRect(i, i, DISPLAY_WIDTH - i*2, DISPLAY_HEIGHT - i*2);
display.display();
delay(10);
color++;

}

// Reset back to WHITE

display.setColor(WHITE);

void drawCircle(void)

{

for (intl6_t i=0; i<DISPLAY HEIGHT; i+=2) {
display.drawCircle(DISPLAY_WIDTH/2, DISPLAY HEIGHT/2, i);
display.display();
delay(10);

}

delay(1000);

display.clear();

// This will draw the part of the circel in quadrant 1
// Quadrants are numberd Like this:
// oele | eee1

/R [-----
// ©elee | 1ee0
//

display.drawCircleQuads(DISPLAY_WIDTH/2, DISPLAY_HEIGHT/2, DISPLAY_HEIGHT/4,
display.display();

delay(200);

display.drawCircleQuads(DISPLAY_WIDTH/2, DISPLAY_HEIGHT/2, DISPLAY_HEIGHT/4,
display.display();

delay(200);

display.drawCircleQuads(DISPLAY_WIDTH/2, DISPLAY_HEIGHT/2, DISPLAY_HEIGHT/4,
display.display();

delay(200);

display.drawCircleQuads (DISPLAY WIDTH/2, DISPLAY HEIGHT/2, DISPLAY HEIGHT/4,
display.display();

void printBuffer(void)

{

// Initialize the Llog buffer
// allocate memory to store 8 lines of text and 30 chars per Line.
display.setLogBuffer(5, 30);

// Some test data
const char* test[] = {
"Hello",
"World" ,

0b00000001) ;

0b000oe011);

0bo0000111);

©bo0ee1111);

3

"Show off",
"how",

"the log buffer",
"is",

"working.",
"Even",
"scrolling is",
"working"

1

for (uint8_t i = 0; i < 11; i++) {
display.clear();
// Print to the screen
display.println(test[i]);
// Draw it to the internal screen buffer
display.drawLogBuffer(0, 0);
// Display it on the screen
display.display();
delay(500);

void setup()

{
display.init();

// display.flipScreenVertically();
display.setContrast(255);

drawLines();
delay(1000);
display.clear();

drawRect();
delay(1000);
display.clear();

fillRect();
delay(1000);
display.clear();

drawCircle();
delay(1000);
display.clear();

printBuffer();
delay(1000);
display.clear();

void loop() { }

e The program will do some acts of drawing, display some characters at the end, and then stop

® Function Declaration:
® Set contrast

setContrast(contrast)

® Draw lines

drawLines()

e Draw rectangle

drawRect()

® Draw circle

drawCircle()

® Print character

printBuffer()

Clock

® Open DFRobot OLED12864 Clock Demo

#include <Timelib.h>
#include "DFRobot_OLED12864.h" // alias for “#include "DFRobot_ OLED12864Wire.h""

// Include the UI Lib
#include "OLEDDisplayUi.h"

// Include custom images
#include "images.h"

DFRobot_OLED12864 display(@x3c);
OLEDDisplayUi ui (&display);

int screeniW 128;

int screenH 64;

int clockCenterX screenW/2;

int clockCenterY = ((screenH-16)/2)+16; // top yellow part is 16 px height
int clockRadius = 23;

// utility function for digital clock display: prints leading ©
String twoDigits(int digits)
{
if(digits < 10) {
String i = '@'+String(digits);
return i;
}
else {
return String(digits);
}
}

void clockOverlay(OLEDDisplay *display, OLEDDisplayUiState* state)
{

void analogClockFrame(OLEDDisplay *display, OLEDDisplayUiState* state, intl6_t x, intl6_t vy

{
// ui.disableIndicator();

// Draw the clock face
// display->drawCircle(clockCenterX + x, clockCenterY + y, clockRadius);
display->drawCircle(clockCenterX + x, clockCenterY + y, 2);
//
//hour ticks
for(int z=0; z < 360;z= z + 30){
//Begin at @° and stop at 360°
float angle = z ;
angle = (angle / 57.29577951) ; //Convert degrees to radians

int x2 = (clockCenterX + (sin(angle) * clockRadius));
int y2 = (clockCenterY - (cos(angle) * clockRadius));
int x3 = (

)

clockCenterX + (sin(angle) * (clockRadius - (clockRadius / 8))));
int y3 = (clockCenterY - (cos(angle) * (clockRadius - (clockRadius / 8))))
display->drawLine(x2 + x , y2 +y , X3 + X , Y3 +VY);

// display second hand

float angle = second() * 6 ;

angle = (angle / 57.29577951) ; //Convert degrees to radians

int x3 = (clockCenterX + (sin(angle) * (clockRadius - (clockRadius / 5))));

int y3 = (clockCenterY - (cos(angle) * (clockRadius - (clockRadius / 5))));
display->drawLine(clockCenterX + x , clockCenterY +y , X3 + X , y3 +VY);

//

// display minute hand

angle = minute() * 6 ;

angle = (angle / 57.29577951) ; //Convert degrees to radians

x3 = (clockCenterX + (sin(angle) * (clockRadius - (clockRadius / 4))));
y3 = (clockCenterY - (cos(angle) * (clockRadius - (clockRadius / 4))));
display->drawLine(clockCenterX + x , clockCenterY + vy , X3 + x , y3 +Vy);

//

// display hour hand

angle = hour() * 30 + int((minute() / 12) *6)

angle = (angle / 57.29577951) ; //Convert degrees to radians

x3 = (clockCenterX + (sin(angle) * (clockRadius - (clockRadius / 2))));
y3 = (clockCenterY - (cos(angle) * (clockRadius - (clockRadius / 2))));

display->drawlLine(clockCenterX + x , clockCenterY + vy , X3 + x , y3 +Vy);

void digitalClockFrame(OLEDDisplay *display, OLEDDisplayUiState* state, intl6_t x, intl6_t
{

String timenow = String(hour())+":"+twoDigits(minute())+":"+twoDigits(second());
display->setTextAlignment (TEXT_ALIGN_CENTER);
display->setFont(ArialMT_Plain_24);

display->drawString(clockCenterX + x , clockCenterY + y, timenow);

// This array keeps function pointers to all frames
// frames are the single views that slide in
FrameCallback frames[] = { analogClockFrame, digitalClockFrame };

// how many frames are there?
int frameCount = 2;

// Overlays are statically drawn on top of a frame eg. a clock
OverlayCallback overlays[] = { clockOverlay };
int overlaysCount = 1;

void setup()

{
Serial.begin(115200);
Serial.println();

// The ESP 1is capable of rendering 60fps in 86Mhz mode

// but that won't give you much time for anything else

// run it in 160Mhz mode or just set it to 30 fps
ui.setTargetFPS(60);

// Customize the active and inactive symbol
ui.setActiveSymbol(activeSymbol);
ui.setInactiveSymbol(inactiveSymbol);

// You can change this to
// TOP, LEFT, BOTTOM, RIGHT
ui.setIndicatorPosition(TOP);

// Defines where the first frame is located in the bar.
ui.setIndicatorDirection(LEFT_RIGHT);

// You can change the transition that is used
// SLIDE LEFT, SLIDE RIGHT, SLIDE _UP, SLIDE DOWN

ui.setFrameAnimation(SLIDE_LEFT);

// Add frames
ui.setFrames(frames, frameCount);

// Add overlays
ui.setOverlays(overlays, overlaysCount);

// Initialising the UI will 1init the display too.
ui.init();

display.flipScreenVertically();

unsigned long secsSinceStart = millis();

// Unix time starts on Jan 1 1970. In seconds, that's 2208988860:
const unsigned long seventyYears = 2208988800UL;

// subtract seventy years:

unsigned long epoch = secsSinceStart - seventyYears * SECS_PER_HOUR;
setTime(epoch);

void loop()
{

int remainingTimeBudget = ui.update();

if (remainingTimeBudget > 0) {
// You can do some work here
// Don't do stuff if you are below your
// time budget.
delay(remainingTimeBudget);

® Function:Switch between an analog dial frame and a digital clock frame every 5 seconds.
® Function Declaration:
e Create an Ul object and specify its OLED object

OLEDDisplayUi ui (&display):

® Set FPS

setTargetFPS(fps)

® Set active screen identification

setActiveSymbol(activeSymbol)

® Set inactive screen identification

setInactiveSymbol(inactiveSymbol)

e Set the position of the indicator

setIndicatorPosition(pos)

® Set the direction of indicator

setIndicatorDirection(direction)

® Set the slide direction of the frame

setFrameAnimation(direction)

® Set frames

setFrames(frames, count)

® Set overlays

setOverlays(overlays, count)

® Settime

setTime(time)

e Update frame

update()

® Set the time to automatically Update the Screen(the unit is ms)

setTimePerFrame(time)

® Allow automatic scrolling

enableAutoTransition()

® Prohibit automatic scrolling

disableAutoTransition()

® Set the content of display

transitionToFrame(frame)

Progress Bar

#include "DFRobot OLED12864.h" // alias for “#include "DFRobot OLED12864Wire.h""

// Initialize the OLED display using Wire Library
DFRobot_OLED12864 display(@x3c);

int counter = 1;

void setup()

{
Serial.begin(115200);

Serial.println();
Serial.println();

// Initialising the UI will init the display too.
display.init();
display.flipScreenVertically();

void drawProgressBarDemo()

{
int progress = (counter / 5) % 100;
// draw the progress bar
display.drawProgressBar(@, 32, 120, 10, progress);

// draw the percentage as String
display.setTextAlignment(TEXT_ALIGN_CENTER);
display.drawString(64, 15, String(progress) + "%");

void loop()

{
// clear the display

display.clear();
// draw the current demo method
drawProgressBarDemo();

// write the buffer to the display
display.display();

counter++;

delay(10);

® Function: Display the progress bar on the screen
@ Function Declaration:
® Draw progress bar

drawProgressBar(x, y, width, height, progress)

e Formatting fonts

setTextAlignment(alignment)

e Draw string in specified location

drawString(x, y, string)

Ul

® Open DFRobot_ OLED12864 Ul Demo

#include "DFRobot OLED12864.h"

// Include the UI lib
#include "OLEDDisplayUi.h"

// Include custom images
#include "images.h"

// Initialize the OLED display using Wire Library
DFRobot_OLED12864 display(@x3c);

OLEDDisplayUi ui(&display);

void msOverlay(OLEDDisplay *display, OLEDDisplayUiState* state)
{
display->setTextAlignment (TEXT_ALIGN_RIGHT);
display->setFont(ArialMT_Plain_10);
display->drawString(128, @, String(millis()));
}

void drawFramel(OLEDDisplay *display, OLEDDisplayUiState* state,
{

// draw an xbm image.

// Please note that everything that should be transitioned

// needs to be drawn relative to x and y

intl6_t x, intl6_t y)

display->drawXbm(x + 34, y + 14, WiFi_Logo_width, WiFi_Logo_height, WiFi_Logo_bits);

}

void drawFrame2(OLEDDisplay *display, OLEDDisplayUiState* state,
{

int16_t x, int16_t y)

// Demonstrates the 3 included default sizes. The fonts come from DFRobot_OLED12864Fonts.
// Besides the default fonts there will be a program to convert TrueType fonts into this

display->setTextAlignment (TEXT_ALIGN_LEFT);
display->setFont(ArialMT_Plain_10);
display->drawString(0 + x, 10 + y, "Arial 10");

display->setFont(ArialMT_Plain_16);
display->drawString(® + x, 20 + y, "Arial 16");

display->setFont(ArialMT_Plain_24);
display->drawString(® + x, 34 + y, "Arial 24");

void drawFrame3(OLEDDisplay *display, OLEDDisplayUiState* state,
{

// Text alignment demo

display->setFont(ArialMT_Plain_10);

// The coordinates define the left starting point of the text
display->setTextAlignment(TEXT_ALIGN_LEFT);
display->drawString(e + x, 11 + y, "Left aligned (0,10)");

// The coordinates define the center of the text
display->setTextAlignment (TEXT_ALIGN_CENTER);
display->drawString(64 + x, 22 + y, "Center aligned (64,22)");

// The coordinates define the right end of the text
display->setTextAlignment (TEXT_ALIGN RIGHT);
display->drawString(128 + x, 33 + y, "Right aligned (128,33)");

int16_t x, int16_t y)

void drawFrame4(OLEDDisplay *display, OLEDDisplayUiState* state, intl16_t x, intl6_t y)

{
// Demo for drawStringMaxWidth :
// with the third parameter you can define the width after which words will be wrapped.
// Currently only spaces and "-" are allowed for wrapping
display->setTextAlignment(TEXT_ALIGN_LEFT);
display->setFont(ArialMT_Plain_10);
display->drawStringMaxWidth(@ + x, 10 + y, 128, "Lorem ipsum\n dolor sit amet, consetetur

void drawFrame5(OLEDDisplay *display, OLEDDisplayUiState* state, intl6_t x, intl6_t y)
{

// This array keeps function pointers to all frames
// frames are the single views that slide in
FrameCallback frames[] = { drawFramel, drawFrame2, drawFrame3, drawFrame4, drawFrame5 };

// how many frames are there?
int frameCount = 5;

// Overlays are statically drawn on top of a frame eg. a clock
OverlayCallback overlays[] = { msOverlay };
int overlaysCount = 1;

void setup()

{
Serial.begin(115200);
Serial.println();
Serial.println();

// The ESP 1is capable of rendering 60fps in 86Mhz mode

// but that won't give you much time for anything else

// run it in 160Mhz mode or just set it to 30 fps
ui.setTargetFPS(60);

// Customize the active and inactive symbol
ui.setActiveSymbol(activeSymbol);
ui.setInactiveSymbol(inactiveSymbol);

// You can change this to
// TOP, LEFT, BOTTOM, RIGHT
ui.setIndicatorPosition(BOTTOM);

// Defines where the first frame 1is located in the bar.
ui.setIndicatorDirection(LEFT_RIGHT);

// You can change the transition that 1is used
// SLIDE_LEFT, SLIDE_RIGHT, SLIDE UP, SLIDE_DOWN
ui.setFrameAnimation(SLIDE_LEFT);

// Add frames
ui.setFrames(frames, frameCount);

// Add overlays
ui.setOverlays(overlays, overlaysCount);

// Initialising the UI will init the display too.
ui.init();

display.flipScreenVertically();
}

void loop()
{

int remainingTimeBudget = ui.update();

if (remainingTimeBudget > 0) {
// You can do some work here
// Don't do stuff if you are below your
// time budget.
delay(remainingTimeBudget);

}
}

® Function: Switch between 5 frames
® Function declaration:
® User can edit the frame

drawFrame5(*display, *state, x, y)

Dimension

® Pin Spacing: 2.54mm/0.1in

® Mounting hole spacing: 24mm/53mm 0.94/2.09in
® Mounting hole size: 3.1mm/0.12in

® Board Size: 29.00mmx58.00mm/1.14x2.28in

® Thickness:1.6mm/0.06in

25.40mm
24 00mm
-) f
N
} [}
£
< oM 5
0 0 1K)
— A
0 X (“_-
B (=puag=] —
P E* o ™
L) aand [
I" ._I I/ |
[
O
- E
E
~ 3
W) [ed
{0
¢ .\fl E E
— E E
==
=]
[]
e TS
| -H'I
s
|_.'|
A
) \.l
P
[
| -\]
S
[')
|'._.'I
Ry
)

Ny u

@ 3.10mm
(/wiki/index.php/File:DFR0507_Dimensions.png)

FireBeetle Covers-OLED 12864 Display Dimensions

FAQ

For any questions, advice or cool ideas to share, please visit the DFRobot Forum
(http://www.dfrobot.com/forum/).

More Documents

® Hardware Design
(https://github.com/Arduinolibrary/FireBeetle_Covers_OLED12864_Display/raw/master/FireBeetle%20Covers-

https://www.dfrobot.com/wiki/index.php/File:DFR0507_Dimensions.png
http://www.dfrobot.com/forum/
https://github.com/Arduinolibrary/FireBeetle_Covers_OLED12864_Display/raw/master/FireBeetle%20Covers-OLED12864%20Display%20Hardware%20Design.PDF

OLED12864%20Display%20Hardware%20Design.PDF)

E (http://www.dfrobot.com/) Get FireBeetle Covers-OLED12864 Display
(https://www.dfrobot.com/product-1744.html) from DFRobot Store or [DFRobot Distributor.]

This page was last modified on 25 June 2018, at 18:48.
Content is available under GNU Free Documentation License 1.3 or later (https://www.gnu.org/copyleft/fdl.html) unless
otherwise noted.

GNU FDL

FREE DOC (https://iwww.gnu.org/copyleft/fdl.html) [F® il pesawm (//www.mediawiki.org/)

https://github.com/Arduinolibrary/FireBeetle_Covers_OLED12864_Display/raw/master/FireBeetle%20Covers-OLED12864%20Display%20Hardware%20Design.PDF
http://www.dfrobot.com/
https://www.dfrobot.com/product-1744.html
https://www.gnu.org/copyleft/fdl.html
https://www.gnu.org/copyleft/fdl.html
https://www.mediawiki.org/

