o CYPRESS

-— EMBEDDED IN TOMORROW™

AN92584
Designing for Low Power and Estimating Battery Life for BLE Applications

Authors: Uday Agarwal, Kunal Patel, Vikram, Prathap Reddy, Santosh S
Associated Project: Yes

Associated Part Family: CY8C4XX7-BL, CY8C4XX8-BL, CYBL1XX6X, CYBL1XX7X
Software Version: PSoC® Creator™ 3.3

Related Application Notes: AN91267, AN94020

To get the latest version of this application note, or the associated project file, please
visit http://www.cypress.com/AN92584

More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC code examples, please visit our code
examples web page. You can also explore the PSoC 4 video library here.

AN92584 teaches you how to design low-power applications with PSoC 4/PRoC™ BLE devices. It also guides you

on how to compute the current consumption and battery life for a BLE application and provides tips and tricks to
minimize the current consumption to increase battery life.

Contents 4 BLE ApPIICAtiONSccoviiiiiiiiiiciiieee e 23
4.1 BLE System POWETccccoumiiiiiiieianiniiiieeeen. 23
1 INrOAUCHION.....cii et 1 4.2 Battery Life....o.ooveeeeeeeeeeeeeeeeeeeeeeeeeee e 24
2 Design and Implementation for Low-Power BLE 2 4.3 Techniques for Increasing Battery Life.............. 26
2.1 System CIOCKScovivieeeiiiiic i 2 4.4 Example Application: Heart-Rate Monitor.......... 28
2.2 System Power Modescccoceiviiiiiiniiiecnnn, 3 4.5 Example Application: Remote Control 30
2.3 BLE Subsystem Power Modes............cccceueneenn. 4 4.6 Implementing System Design
2.4 Recommendations for Low Power 5 Recommendations...........ccccevciveiiiieee i 33
2.5 Low-Power Implementation.............cccccceevveennn. 5 5 SUMMANY ..ccoiiiiiiiiiic e 34
3 Example Projects......cccciiiiieiieeiiiiiieeeee e 16 6 REferenCes......cccoiiiiiii e 34
3.1 Example Project 1: Low-Power A Appendix A: Advertising State Current Profile............ 35
Modes in Advertisementccccceevvveeeiinneenn. 16 Al CUMENE PrOfIE oo 36
3.2 Example Project 2: Low-Power B Appendix B: Connection State Current Profile........... 39
Modes in ConNeCtioNncccceevevvieiineee e 17 B.1 Current Profile... 40
3.3 Average Current Measurement............ccccceuuuene. 17
3.4 Power Calculator........ccccovviiiiniiiiiiieec s 22
1 Introduction

Bluetooth Low Energy (BLE) devices such as heart-rate monitors are typically battery operated. A long battery life is a
key requirement for such devices. This application note shows how to implement a low-power solution and estimate
the battery life for the device using Cypress’s BLE solutions.

Before you read this document, you should have a basic knowledge of BLE and have read the Getting Started with
PSoC 4 BLE or Getting Started with PRoC BLE application notes.

WWWw.Cypress.com Document No. 001-92584 Rev. *D 1

http://www.cypress.com/
http://www.cypress.com/go/AN91267
http://www.cypress.com/go/AN94020
http://www.cypress.com/AN92584
http://www.cypress.com/documentation/code-examples/psoc-345-code-examples
http://www.cypress.com/documentation/code-examples/psoc-345-code-examples
http://www.cypress.com/video-library/PSoC
http://www.cypress.com/?rID=102504
http://www.cypress.com/?rID=102504
http://www.cypress.com/?rID=102505

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

This application note is divided into two sections. The first section guides you in implementing low-power BLE
solutions using PSoC 4/PRoC BLE devices. It first provides an overview of the clocks and low-power modes available
in these devices. It then explains how to manage the clocks and the power modes in your application to reduce
current consumption. The implementation is illustrated in the example projects provided with this application note. A
procedure to measure the average current in the CY8CKIT-042-BLE Bluetooth Low Energy (BLE) Pioneer Kit is also
discussed. A power calculator tool provided with this application note makes it easy for you to estimate the current
consumption for a given configuration of the device.

The second section provides a system-level view of a BLE device and shows how to estimate its battery life. Tips and
tricks to reduce the average current consumption and improve the battery life are discussed and illustrated with the
help of two example use-cases: a heart-rate monitor and a remote control. The current consumption in the non-BLE
parts of the system and the idle time between BLE operations adds significantly to the average current consumption.

2 Design and Implementation for Low-Power BLE

It is important that you first understand the different clocks and power modes available in PSoC 4/PRoC BLE devices
that should be managed to conserve power.

2.1 System Clocks
The PSoC 4/PRoC BLE clock system includes the following clock sources:
Two internal clock sources:

® 3-MHz to 48-MHz internal main oscillator (IMO) +2 percent across all frequencies with trim
® 32-kHz internal low-speed oscillator (ILO) +60 percent with trim
Three external clock sources:

m External clock (EXTCLK) generated using a signal from an 1/0O pin

B 24-MHz external crystal oscillator (ECO)

® 32-kHz watch crystal oscillator (WCO)

The five clock sources and the clocks derived from these sources are shown in Figure 1.

Figure 1. PSoC 4/PRoC BLE System Clocks

WCO ‘\
: Low-Frequency Clock to WDT, BLE Low- + LFCLK
Power Logic, LCD, CPU Timer and UDB .
e .| Prescaler To BLE Link Layer .
ILO “172"(n=0..2) > LCLK
To Flash and Peripherals that _
Divider Need Specific Divided Clock > HFCLK
ECO > o
127 (n=0..3) Prescaler To CPU & Bus Interface
| an - »SYSCLK
/2" (n=0..7) of Peripherals
IMO =
Clock Enables to SCB, CSD, TCPWM,
EXTCLK& N Divider 0 LCD, PASS & UDB to Divide HFCLK -
/2"(n=0..16) | . . . 09 - ... :
| Divider 9 - PERO_CLK
"1 /2" (n=0..16) -
Fractional Divider0 ™
Ll /(2M(20-1)/27)
(m=0..16, n=0..5) Fractional Dividerl
>l /(2™+(2"-1)2")
(m=0..16, n=0..5) >
- PER15_CLK
L]

WWW.Cypress.com Document No. 001-92584 Rev. *D 2

http://www.cypress.com/
http://www.cypress.com/go/cy8ckit-042-ble

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Table 1 summarizes the clock sources, their use in the system, and specific system constraints on them. The table
also lists the APIs that are used to turn ON or OFF the clock sources.

Table 1. System Clocks

SC|°Ck Frequency System Requirements System Constraints APls
ource
Either the IMO or ECO is required ON — CySysClkimoStart()
t the CPU.
IMO 3 MHz -48 MHz Ust_ed to run the CPU and all other 0 run the _
peripherals The CPU must use the IMO while
performing flash write operations. |OFF — CySysClkimoStop()
Used by BLE subsystem (BLESS) for . . . ON — CySysCIkEcoStart()
ECO 24 MHz packet transmissions and reception, | Either the IMO or ECO s required
to run the CPU.
Can also be used to run the CPU OFF — CySysCIkEcoStop()
Qst_—:-d by BLESS to maintain link Either the WCO or ILO is required ON — CySysCIkWcoStart()
WCO 32 kHz timing. Can also be used to run the h h :
hdog timer to run the watchdog timer.
watchdog OFF — CySysClkWcoStop()
Can be used to run the watchdog The ILO cannot be used for ON - CySysClkiloStart)
ILO 32 kHz timer if WCO is not available BLESS link timin
g OFF — CySysClklloStop()

2.2 System Power Modes

PSoC 4/PRoC BLE devices support five system power modes. Table 2 summarizes these modes, their currents,
active components, wakeup sources, and the APIs available to put the system into one of the low-power modes.

Table 2. System Power Modes

System Digital Analog Clock
POWEr | imption |Execution| Available| PSTIPherals [Peripherals | Sources | G /E R WEIAR MCEER API
Mode P Available | Available [Available
850 pA +
Active 260 pA per Yes ON All All All - - - -
MHz
850 pA + Any
Sleep 60 UA per No Retention All All All interrupt 0 Active |CySysPmSleep()
MHz source
wDT, Lp ComLZrator
Deep- LCD?, |Comparator,| |\ s GSIOB '
P 1.3 pA No Retention|SCB(I°C/SPI| CTBm™, 7' ' 25us | Active |CySysPmDeepSleep()
Sleep 4 ILO CTBm,
only), POR’, 3
BLESS® BOD® BLESS”®,
WDT, SCB®
LP LP chi
Hibernate|150 nA No Retention No Comparator,| None [Comparator,| 2 ms Resgt CySysPmHibernate()
POR, BOD GPIO
WAKEUP, Chip
Stop 60 nA No OFF No No None XRES® pins 2ms Reset CySysPmStop()
*Watchdog timer 4 Power-on reset 732-kHz internal low-speed oscillator
2 Liquid crystal display ® Brownout detect 8 General-purpose input/output
®BLE subsystem € 32-kHz watch crystal oscillator 9 Serial communication block
% External reset ™ Continuous time block mini

WWW.Cypress.com Document No. 001-92584 Rev. *D 3

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

2.3 BLE Subsystem Power Modes

In addition to the system power modes, PSoC 4/PRoC BLE devices support three BLESS power modes. Table 3
summarizes them, their active components, and their mapping to the internal states of the BLESS while being in
these power modes.

® The BLESS power modes directly map to the input parameters of the CyBle EnterLPM() API that is used to put
the BLESS into the specific power mode.
The BLESS internal states directly map to the states returned from the Get Blessstate () APL

The BLESS DEEPSLEEP and SLEEP modes are entered under application control. The exit may be initiated in
one of two ways:

o The application calls the CyBle EnterLPM() function with the input parameter as ACTIVE.
o The BLESS internally triggers the exit at a time determined by the BLE stack within the BLE Component.

® Upon exit from the DEEPSLEEP or SLEEP mode, the BLESS enters the ACTIVE mode.
® The CYBLE_BLESS_STATE_ECO_ON and CYBLE_BLESS_STATE_ECO_STABLE states are entered for a
short duration (up to a 1-ms period) while the BLESS is transitioning from the DEEPSLEEP mode to the ACTIVE
mode.
Table 3. BLESS Power Modes
| Bll:iliﬁs Internal Allowed
BLESS Internal States
ElH=SE BLESS Operation |, B-ESS | 1iming | Eco | State SR
Power Mode Radio Clock Clock Entry Power
Source Control Modes
Deep-Sleep
CYBLE_BLESS_STATE_DEEPSLEEP |ldle. Maintain link. OFF WCO OFF CPU Sleep
Active
ECO startup and Deep-Sleep
DEEPSLEEP |CYBLE_BLESS_STATE_ECO_ON amplitude OFF WCO ON BLESS Sleep
stabilization Active
ECO frequency
oo |
CYBLE_BLESS_STATE_ECO_STABLE |St@bilizationand BLE |- wco |ON BLEss |oCeP
| _ - — timing Active
synchronization
- Sleep
SLEEP CYBLE_BLESS_STATE_SLEEP Idle. Maintain link. OFF ECO ON CPU Active
1V
- Sleep
CYBLE_BLESS_STATE_ACTIVE Idle. Maintain link. OFF ECO ON CPU Acti
Ctive
) ON Sleep
CYBLE_BLESS_STATE_ACTIVE Transmit) ECO ON BLESS)
- - - (Transmitter) Active
ACTIVE
. ON Sleep
CYBLE_BLESS_STATE_ACTIVE Receive) ECO ON BLESS)
- - - (Receiver) Active
CYBLE_BLESS_STATE_EVENT_CLOSE i?g; Deep-Sleep |5 ECO ON BLESS |Active

The WCO clock source must be ON to use the DEEPSLEEP mode to maintain the BLE link timing during the
DEEPSLEEP mode. The WCO may be turned OFF if BLE is not used or the BLESS DEEPSLEEP power mode is not
used.

WWW.Cypress.com Document No. 001-92584 Rev. *D 4

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

The system can be in the Sleep or Active power modes during the BLESS SLEEP and ACTIVE power modes. It can
be put into the Deep-Sleep mode only when the BLESS is in the DEEPSLEEP mode and the BLESS link layer and
modem logic are not using the ECO clock. To ensure that invalid combinations of the system and BLESS modes are
not entered, the application should check the BLESS internal state first and then put the system into the appropriate
low-power mode.

2.4 Recommendations for Low Power

The user application should manage the system clocks, system power modes, and BLESS power modes to
implement a low-power design in PSoC 4/PRoC BLE devices.

The following are the recommendations for implementing low-power designs (see Figure 2):
B The BLESS should be put into the DEEPSLEEP mode between BLE events. The system should be put into the
Deep-Sleep mode during this time if there is no pending application processing.

B The system should be put into the Sleep mode when the BLESS is in the ACTIVE or SLEEP modes if no
application processing is required. The system can also be put into the Sleep mode when the BLESS is in the
CYBLE_BLESS_STATE_ECO_STABLE state.

m |f the system is in the Sleep mode while the BLESS is in the ACTIVE or SLEEP modes, the ECO clock source
should be used for the CPU clock. This allows the IMO to be turned OFF to reduce current consumption.

m |f the ECO is used in the system Sleep mode, the ECO clock should be divided down from 24 MHz to 3 MHz.
The 3-MHz frequency is enough to keep the system in the Sleep mode and switch back to the IMO clock when
the system exits the Sleep mode.

B The WCO must be selected with a low ppm variation. You should further tune it to reduce the ppm variation. A
lower ppm reduces the listening window time in the BLE Peripheral role, thus reducing the current consumed.
Refer to AN95089 — PSoC 4/PRoC BLE Crystal Oscillator Selection and Tuning Techniques for details on WCO
crystal tuning.

m |f your application does not use the ILO, the ILO should be stopped to reduce current consumption.
Figure 2. Low-Power Implementation Recommendations

€ ‘Interval between BLE events -

v

ECO Stable|
BLE Active BLE
ECO ON| Event Event Close Frent
Deep-Sleep| Deep-Sleep
BLE Activity “
Active or Sleep| Sleep (A Application pre-processing
Active or Deep-Slﬁ W P @ive or Sleep Application post-processing
Deep-Sleep &
< | Deep-Sleep i
System Activity —+—t-----! = ‘
E004MWWWWWWWWWWWWWWWW ﬂ”
wco

2.5 Low-Power Implementation

This section discusses how to implement the low-power-mode recommendations of section 2.4 in your BLE project. It
involves two steps:

1. Configure your project in PSoC Creator™.

2. Implement the recommendations in your application code.

WWW.Cypress.com Document No. 001-92584 Rev. *D 5

http://www.cypress.com/
http://www.cypress.com/?rID=107332

A
s

CYPRESS

EMBEDDED IN TOMORROW™

Designing for Low Power and Estimating Battery Life for BLE Applications

2.5.1 PSoC Creator Configuration

The following configurations should be implemented in your project to ensure a low-power operation.

2511

Low-Frequency Clock (LFCLK) Selection

The LFCLK in the system must be set to use the WCO to operate the BLESS in the DEEPSLEEP mode.

1.

o > 0N

25.1.2

Access this setting in the Clocks tab of the .cydwr file in your project.

Click Edit Clock to open the Configure System Clocks window, as shown in Figure 3.
Go to the Low Frequency Clocks tab.

Confirm that the WCO tab is selected and the WCO is selected as LFCLK.

Close the window.

Figure 3. LFCLK Setting

-
Configure System Clocks - [2 [
High Frequency C\od(s)/ Low Frequency Clocks] 4 b
1LO (32 kHz)

Accuracy: 0%

ok | [cocel |

WCO Power Mode

The WCO supports two modes of operation: low power and high power. The high-power mode is required for a fast
start up of the oscillator block upon power up of the chip. After the oscillation has stabilized, the WCO must be set to
operate in the low-power mode to reduce current consumption.

1.

a k> 0N

Access this setting under the Clocks tab of the .cydwr file.

Click Edit Clock to open the Configure System Clocks window, as shown in Figure 4.
Go to the Low Frequency Clocks tab.

Select the Low Power option.

Close the window.

WWW.Cypress.com Document No. 001-92584 Rev. *D 6

http://www.cypress.com/

o CYPRESS

~gg»” EMBEDDED IN TOMORROW™

Designing for Low Power and Estimating Battery Life for BLE Applications

Figure 4. WCO Low-Power Mode Settings

@ Delete Design-Wide Clock @ Edit Clock...

. Desired MNominal | Accuracy | Tolerance . . Start on
!
Type . Name . Domain Frequency Frequency 5 (%) . Dn.ru:lerI .‘. Source Clock
-
Configure System Clocks - - -
High Frequency [ﬂodcs/]/ Low Frequency Clocks] L

LFCLE

| ok | concel

“F System ‘g Directives (51 Flash Security

i Pins [\ Analog (B Clocks | # Interrupts

WWW.Cypress.com Document No. 001-92584 Rev. *D 7

http://www.cypress.com/

&% CYPRESS

~»” EMBEDDED IN TOMORROW"™

Designing for Low Power and Estimating Battery Life for BLE Applications

2.5.1.3 BLE Component Deep-Sleep Mode

The Use BLE low power mode button in the BLE Component customization window must be selected to use the
BLESS DEEPSLEEP mode. This setting is available in the Advanced tab of the BLE Component configuration, as
shown in Figure 5. If this setting is selected, the WCO must be configured as the LFCLK source in the Design-Wide
Resources (DWR) Clock Editor, as shown in Figure 3. If the WCO is not configured for LFCLK and this button is
selected, then an error is reported when you build the project.

Figure 5. Deep Sleep Setting for BLE Component

Configure 'ELE ? P

Name: CYBLE
General - Profiles | GAP Settings ©~ L2CAP Settings -~ Advanced] Buwilt-in 4k

I Use BLE low power mode (extemal watch crystal is required) I
[7] Enable extemal Power Amplfier cortrol {enables pa_en terminal)

2.5.1.4 Stop Mode

If you are using the Stop mode in your application, make sure that the WAKEUP pin is configured correctly to exit the
Stop mode successfully:

1. Configure P2.2 as the WAKEUP pin.
2. Setthe WAKEUP pin active HIGH or active LOW as required by your application.
Setting the WAKEUP pin to the configured level will cause the device to wake up from the Stop mode. The WAKEUP
pin is active LOW by default.
2.5.1.5 SWD Pin Configuration

SWD pins are used for runtime firmware debug during development stages. Configuring the SWD pins for debug
increases the current consumption. Therefore, in the production release, SWD pins should be switched to the GPIO
mode. They will still be available for programming the device upon chip reset.

1. Go to the System tab in the .cydwr file.
2. Click Debug Select under Programming\Debugging, as shown in Figure 6.

3. Change the value to GPIO.

WWW.Cypress.com Document No. 001-92584 Rev. *D 8

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Workspace Explorer (1 project) » & X||s.c | CYBLE_HAL PVT.c | CYBLE_HAL_PVT.h " Power_Mea..ment.cydwr | ¥ 4 b X
) *> Reset | Ty Expand | Tjg Collapse
@ Workspace 'Power_Measurement-000" = Option Value I
=+Pa| Project 'P: M nt' [C 5
_—I e n.:rwer: casurement’ | E‘ [z Configuration
ii Power_Measurement.cydwr I § - Device Configuration Mode Compressed
M Header Files =l o - Unused Bonded IO Allow but warn
2
~-|n] bassh E ~ Heap Size (bytes) 0400
~|n] common.h] -
(1] hrssh % - Stack Size (bytes) 00800
ﬂ server.h - Include CMSIS Core Peripheral Library Files
. (=
B Source Files & | | & Programming\Debugging
¢ ieg] main.c I8 i -
-~ Chip Protect O
My Generated_Source % [P rorechen pen
BH PSoC4 [- Debug Select GPIC]
EHOD cy_boot % | | & Operating Conditions
H c
»L1 emOgecld 3 - VDDA (V) 33
-] Crn0lar.icf -
-] CmORealView.scat Ceeiatlls
g CmiStart.c - VDDD (W) 33
- VDDR (V) 33

Figure 6. Debug Pin Setting

2.5.2 Implementing Low-Power Operations in Application Code

The implementation is divided into three functional blocks in your application:

System initialization and main loop
BLE stack event handler
Power management functions

2.5.2.1 System Initialization and Main Loop

After a power on or reset, the system initializes various components by calling the respective start functions. The
following steps are performed at initialization for a low-power operation. Refer to the code snippet with comments
(comments are labeled with “C<number>") for the reference implementation.

[C1] Stop the ILO to reduce current consumption.
[C2] Configure the divider values for the ECO so that a 3-MHz ECO divided clock can be provided to the CPU in

the Sleep mode. The clock to the CPU is switched from the IMO to the ECO before entering the Sleep mode.
The ECO-derived clock is available when the CPU wakes up from the Sleep mode.

[C3] In the main while loop, call the function CyBle EnterLPM () () to put the BLESS into the DEEPSLEEP
mode soon after the BLE event processing is completed. Note that this function will internally check the BLESS
conditions if it can enter the DEEPSLEEP mode. Therefore, no check is required before calling this function.

[C4, C5] If the system is active, run your application as illustrated by calling the run_application () function
[C4]. Once the application completes all its tasks, check if it is ready to enter a low-power mode. The
application can enter a low-power mode if all the non-BLE components used in the application are idle. The
application should enter the Sleep mode if some of the components need the high-frequency clock (ECO or IMO)
to wake up the system. The application should enter the Deep-Sleep mode if the clock to all the components can
be shut down. This is done by setting a flag (called applicationPower inthe code)to SLEEP or
DEEPSLEEP. The flag is used by the ManageApplicationPower () function to put the components into the
Sleep or Deep-Sleep modes. Note that the definition of the Sleep and Deep-Sleep modes are application-
specific. Refer to the function definition of run_application () for a reference implementation [C5].

[C6] Call the ManageApplicationPower () function to manage the power mode transitions for the
application-specific, non-BLE components.

[C7] Call the ManageSystemPower () function. The function checks both the application power mode and the
BLESS power mode to put the entire system into the Sleep or Deep-Sleep mode.

WWW.Cypress.com Document No. 001-92584 Rev. *D 9

http://www.cypress.com/

& CYPRESS

~a»” EMBEDDED IN TOMORROW™

Designing for Low Power and Estimating Battery Life for BLE Applications

int main ()

{
/* Variable declarations */
CYBLE _LP MODE T lpMode;
CYBLE BLESS STATE T blessState;
uint8 interruptStatus;

/* Enable global interrupts */
CyGlobalIntEnable;

/* Cl. Stop the ILO to reduce current consumption */
CySysClkIloStop();

/* C2. Configure the divider values for the ECO, so that a 3-MHz ECO divided
clock can be provided to the CPU in Sleep mode */
CySysClkWriteEcoDiv (CY SYS CLK ECO_DIV8);

/* Start the BLE Component and register the generic event handler */
apiResult = CyBle Start (AppCallBack);

/* Wait for BLE Component to initialize */
while (CyBle_GetState() == CYBLE_STATE_INITIALIZING)
{
CyBle ProcessEvents() ;
}
/*Application-specific Component and other initialization code below */
applicationPower = ACTIVE;

/* main while loop of the application */

while (1)

{
/* Process all pending BLE events in the stack */
CyBle ProcessEvents();

/* C3. Call the function that manages the BLESS power modes */
CyBle EnterLPM(CYBLE BLESS DEEPSLEEP) ;
/*C4. Run your application specific code here */
if (applicationPower == ACTIVE)
{
RunApplication();
}

/*C6. Manage Application power mode */
ManageApplicationPower () ;

/*C7. Manage System power mode */
ManageSystemPower () ;
}
}

/**

* C5. Function Name: RunApplication()
Ahhkkhkhkhkhkkhkhkhkhkhhkhhkhrhkhkhkhhhhkkhkhkhrhhkkhkhhhhkhhrhhkhkhkhkhhkhkhkrhkhkkhkhkhhhkhkhkrhkkhkkhkhhhrhkkhkhkrhkhkkhkhhhhkkxx
*
Summary:
This function is a template to run Application-specific code.

none

*
*
*
* Parameters:
*
*
*

***/

WWW.Cypress.com Document No. 001-92584 Rev. *D 10

http://www.cypress.com/

& CYPRESS

~a»” EMBEDDED IN TOMORROW™

Designing for Low Power and Estimating Battery Life for BLE Applications

inline void RunApplication ()

{

/**********k**************k***
* Place your application code here

**/

/* if you are done with everything and ready to go to sleep,
then set it up to go to sleep. Update the code inside if () specific
to your application*/
i£(0)
{
applicationPower = SLEEP;
}

/* 1if you are done with everything and ready to go to deepsleep,
then set it up to go to deepsleep. Update the code inside if () specific
to your application*/
if (1)
{
applicationPower = DEEPSLEEP;

WWW.Cypress.com Document No. 001-92584 Rev. *D 11

http://www.cypress.com/

& CYPRESS

~amp»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

2.5.2.2 BLE Stack Event Handler

The BLE stack event handler function handles the events generated by the BLE stack. Employ the following low-
power techniques in the event-handling section soon after the BLE stack is initialized (an EVT_STACK_ON event is
received):

m [C8] Set the device sleep-clock accuracy (SCA) based on the tuned ppm of the WCO. The SCA is defined by the
Bluetooth specifications in seven subranges in the total range of 0 ppm to 500 ppm.

The code snippet for these is shown below:

void AppCallBack (uint32 event, void* eventParam)

{
CYBLE BLESS CLK CFG PARAMS T clockConfig;

switch (event)

{
/* Handle stack events */
case CYBLE EVT STACK ON:

/* C8. Get the configured clock parameters for BLE subsystem */
CyBle GetBleClockCfgParam(&clockConfig);

/* C8. Set the device sleep-clock accuracy (SCA) based on the tuned ppm
of the WCO */
clockConfig.bleLlSca = CYBLE LL SCA 000 TO 020 PPM;

/* C8. Set the clock parameter of BLESS with updated values */
CyBle_SetBleClockCngaram(&clockConfig);

/* Put the device into discoverable mode so that a Central device can
connect to it. */
apiResult = CyBle GappStartAdvertisement (CYBLE ADVERTISING FAST);

/* RApplication-specific event handling here */
break;

/* Other application-specific event handling here */
case CYBLE EVT GAP DEVICE CONNECTED:

WWW.Cypress.com Document No. 001-92584 Rev. *D 12

http://www.cypress.com/

&% CYPRESS

~»” EMBEDDED IN TOMORROW"™

Designing for Low Power and Estimating Battery Life for BLE Applications

2.5.2.3 Power Management Functions
The power management functions control the application and system power mode transitions.
Application Power Management

The function ManageApplicationPower () manages the power state transitions for all the components used by
the application, except the BLE Component. Five application power states are defined. You should customize this
function for your application.

The ACTIVE power state indicates that the application is active. There is no specific action required when the
application is active.

The WAKEUP_SLEEP and WAKEUP_DEEPSLEEP states indicate that the system is waking up from the Sleep or
Deep-sleep mode, respectively. The application should also wake up the components from their Sleep or Deep-
Sleep modes.

The SLEEP and DEEP SLEEP states are entered when the application has completed all application processing and
is requested at the end of it to enter the Sleep or Deep-Sleep modes. The non-BLE components used by the
application are put into their respective Sleep or Deep-Sleep modes. Note that the definition of the Sleep and Deep-
Sleep are application-specific.

void ManageApplicationPower ()

{
switch (applicationPower)
{
case ACTIVE: // don’t need to do anything
break;

case WAKEUP_ SLEEP: // do whatever wakeup needs to be done

applicationPower = ACTIVE;
break;

case WAKEUP DEEPSLEEP: // do whatever wakeup needs to be done.

applicationPower = ACTIVE;
break;

case SLEEP:
/***

* Place code to place the application components to sleep here
**/

break;

case DEEPSLEEP:
/***

* Place code to place the application components to deepsleep here
**/

break;

WWW.Cypress.com Document No. 001-92584 Rev. *D 13

http://www.cypress.com/

&% CYPRESS

EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

2.5.2.4

System Power Management

The application should call the ManageSystemPower () function to put the system into low-power modes. The
function puts the system into the allowed low-power modes as follows:

B [C9] Get the current internal state of the BLESS by calling the CyBle GetBleSsState () function.
m [C10, C11] If the BLESS is in the DEEPSLEEP mode and the non-BLE application components are also in the

Deep-Sleep mode [C10], then put the system into the Deep-Sleep mode [C11]. The code execution halts here
until the system wakes up from the Deep-Sleep mode due to an interrupt.

® [C12] If the BLESS does not enter the DEEPSLEEP mode, it is either because it is at the beginning or in the

middle of an event. The system can be put into the Sleep mode in this period except in the
CYBLE BLESS STATE EVENT CLOSE state.

m [C13, C14, C15, C16] There are two possibilities about the application power mode under the above condition. If

the application is in the Deep-Sleep mode [C13], the system can use the ECO instead of the IMO as the clock
source in the Sleep mode. First, the HFCLK source is switched to the ECO and the IMO is stopped [C14]. The
system is then put into the Sleep mode [C15]. The code execution halts here until the system wakes up from the
Sleep mode due to an interrupt. The IMO is restarted upon wakeup and the clock source for HFCLK is reverted
to the IMO [C16].

m [C17, C18] If the application is in the Sleep mode and requires the IMO [C17], then the system is put into the

Sleep mode [C18], without switching OFF the IMO.

Note 1: It is important that the code to handle the low-power transitions is protected in a critical section and that
interrupts are not allowed to change the thread of operation. In the code snippet, this critical section is bound by
the CyEnterCriticalSection() function at the beginning and the CyExitCriticalSection() function at
the end. If you do not put the code in this critical section, it may result in race conditions between the system and
the BLESS in entering the BLESS low-power modes, causing the device to enter an unknown state from which it
cannot recover.

Note 2: When you put the BLESS into the DEEPSLEEP mode in the application using the
CyBle EnterLPM/()function call, the ECO is configured to be OFF within the function. Therefore, the
application need not do an explicit ECO OFF. However, if you are not using the BLESS, then you need to
explicitly stop the ECO in the system if it is not required. This is because the system APl call,
CySysPmDeepSleep (), will not tun OFF the ECO. This can be done by calling the
cySysClkEcoStop () API, described previously, just before putting the system into the Deep-Sleep mode.

The code snippet follows.

void ManageSystemPower ()

{
/* Variable declarations */
CYBLE BLESS STATE T blePower;
uint8 interruptStatus ;

/* Disable global interrupts to avoid any other tasks from interrupting this
section of

code*/

interruptStatus = CyEnterCriticalSection();

/* C9. Get current state of BLE sub system to check if it has successfully
entered deep

sleep state */

blePower = CyBle GetBleSsState();

/* Cl0. System can enter Deep-Sleep only when BLESS and rest of the application
are in
DeepSleep or equivalent power modes */

if ((blePower == CYBLE BLESS STATE DEEPSLEEP || blePower ==
CYBLE BLESS STATE ECO ON) &&
applicationPower == DEEPSLEEP)

{

applicationPower = WAKEUP DEEPSLEEP;

WWW.Cypress.com Document No. 001-92584 Rev. *D 14

http://www.cypress.com/

& CYPRESS

~a»” EMBEDDED IN TOMORROW™

Designing for Low Power and Estimating Battery Life for BLE Applications

/* Cll. Put system into Deep-Sleep mode*/

CySysPmDeepSleep () ;
}
/* Cl2. BLESS is not in Deep Sleep mode. Check if it can enter Sleep mode */
else if ((blePower != CYBLE BLESS STATE EVENT CLOSE))
{

/* C13. Application is in Deep Sleep. IMO is not required */

if (applicationPower == DEEPSLEEP)

{

applicationPower = WAKEUP DEEPSLEEP;

/* Cl4. change HF clock source from IMO to ECO*/
CySysClkWriteHfclkDirect (CY SYS CLK HFCLK ECO);
/* Cl4. stop IMO for reducing power consumption */
CySysClkImoStop () ;
/*C15. put the CPU to sleep */
CySysPmSleep () ;
/* Cl6. starts execution after waking up, start IMO */
CySysClkImoStart();
/* Cl6. change HF clock source back to IMO */
CySysClkWriteHfclkDirect (CY SYS CLK HFCLK IMO);

}

/*C1l7. Application components need IMO clock */

else if (applicationPower == SLEEP)

{
/* C18. Put the system into Sleep mode*/
applicationPower = WAKEUP SLEEP;
CySysPmSleep () ;

}

/* Enable interrupts */
CyExitCriticalSection (interruptStatus);

WWW.Cypress.com Document No. 001-92584 Rev. *D 15

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

3.1

Example Projects

Two example projects are included with this application note to show the implementation of low-power mode
techniques described in the Implementing Low-Power Operations in Application Code section. These example
projects require the BLE Pioneer Kit and the following software to build and test:

B PSoC Creator 3.3 or later with PSoC Programmer 3.23.0 or later
® CySmart™ PC application

Example Project 1: Low-Power Modes in Advertisement

This project shows how to implement low-power modes in a PSoC 4/PRoC BLE device during the advertising state.
You can also use this project to configure and measure the device’s current consumption for different advertising
intervals. Refer to Appendix A: Advertising State Current Profile for details on how the low-power mode transitions
occur when the device is in the advertising state.

The project configures the device in the Peripheral role with the default settings shown in Table 4. The advertising
interval can be set per your requirement. The Central device sleep-clock accuracy is assumed to be 0 ppm to 20
ppm. The IMO clock is 16 MHz in the example, but it can be lower in real applications.

Table 4. Advertisement Settings

GAP role Peripheral

Advertising type Nonconnectable advertising
IMO clock 16 MHz

Transmit power 0dBm

WCO clock accuracy 0-20 ppm

ADV packet length 14 bytes

The default clock settings used for the project are listed in Table 5.
Table 5. Clock Settings

IMO Enabled

ECO Enabled
Direct_Sel

DBL_Sel IMO (16 MHz)
PLL_Sel

SYSCLK Divider 1

WCO Enabled

WCO Power Mode Low Power
LFCLK WCO (32 kHz)

After you build and program the project into the kit, measure the current and capture the current profile for analysis.
You can modify these configuration parameters and choose the optimum parameters according to your application.

Note: The cy_boot Component in the project should be updated to version 5.3 or later.

WWW.Cypress.com Document No. 001-92584 Rev. *D 16

http://www.cypress.com/
http://www.cypress.com/go/cy8ckit-042-ble
http://www.cypress.com/go/creator
http://www.cypress.com/go/programmer
http://www.cypress.com/go/cysmart

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

3.2

3.3

Example Project 2: Low-Power Modes in Connection

This example project shows you how to implement low-power modes in a PSoC 4/PRoC BLE device in a Peripheral
role. The project can also be used to measure the current consumption of the device for various connection intervals.
Refer to Appendix B: Connection State Current Profile for details on how the low-power mode transitions occur in the
connection state.

The project uses the default connection settings listed in Table 6. The Central-side sleep-clock accuracy is assumed
to be O ppm to 20 ppm.

Table 6. Connection Settings

GAP role Peripheral
Connection interval 100 ms
Slave latency 0

IMO clock 16 MHz
WCO clock accuracy 0-20 ppm
Remote device sleep clock 0-20 ppm
accuracy

Transmit power 0dBm

The default clock settings used in the project are shown in Table 7.
Table 7. Clock Settings

IMO Enabled

ECO Enabled
Direct_Sel

DBL_Sel IMO (16 MHz)
PLL_Sel

SYSCLK Divider 1

WCO Enabled

WCO Power Mode Low Power
LFCLK WCO (32 kHz)

After you build and program the project into the kit, you can measure the current and capture the current profile for
analysis. You can also modify these configuration parameters and choose the optimum parameters for your design.

Note: The cy_boot Component in the project should be updated to version 5.3 or later.

Average Current Measurement
The example projects can be used to measure the average current consumption and observe the current profile.

The instantaneous current consumed by the device is not a steady value but varies depending on the state of the
chip that dynamically changes with the power-mode transitions. Therefore, it is practically impossible to measure
each individual instantaneous current with a handheld multimeter because the duration of these current bursts is very
small. Therefore, you should use a multimeter that provides the option to set the “aperture” of the measurement. The
aperture is the period “T” during which the multimeter measures the instantaneous currents, integrates them, and
then displays the average current for the period “T”. For accurate measurements, the aperture of the multimeter must
be set to be the same as the advertising or the connection interval.

To measure the current, follow this procedure:

WWW.Cypress.com Document No. 001-92584 Rev. *D 17

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

3.3.1

1. Build the chosen example project provided with this application note and program the binary into the BLE
Pioneer Kit.

2. Connect a multimeter across jumper J15 of the BLE Pioneer Kit. A multimeter such as the Keysight 34410A
digital multimeter should be used.

3. Set the aperture for the measurement based on the advertising interval or connection interval. If the exact

aperture is not available, then set it to an integral multiple of the advertising or connection interval.
4. Measure the current. The current measured is the average current over one interval.

Note For advertising/connection intervals where the aperture is more than that supported by the instrument, a
different method is required to measure the average current. For example, the Keysight 34410A multimeter has a
maximum one-second aperture. Measuring the average current for intervals greater than one second requires a
different approach. For these cases, set the integration method on the instrument to Number of Power Line Cycles
(NPLC) and set the NPLC number to 100. Enable the “stats” option in the “math” menu. This will run an averaging
filter on the current samples measured. After allowing a few samples (approximately 100x interval time), the value
settles to a stable value, which is the average current.

Average Current in Advertising and Connection States

Table 8 and Table 9 list the average currents measured for different values of advertising and connection intervals
using the example projects. The remote device used is another BLE Pioneer Kit. You can also use the kit USB dongle
with the CySmart PC tool for connection-related measurements. The currents measured will be higher, however, due
to the higher WCO clock inaccuracy of the dongle WCO crystal.

Table 8. Advertising Interval Versus Average current

Advertising Interval (ms) CY8CA4XXT7-BL Current (LA) CYBC4XX8-BL Current (HA)
100 261.8 276.06
120 219.5 231.0
150 175.6 184.8
180 147.0 154.6
200 132.3 139.1
250 106.4 111.8
300 88.8 93.43
400 66.5 70.26
500 53.3 56.61
1000 26.6 29.05
4000 7.5 8.32

Table 9. Connection Interval Versus Average Current

Connection Interval (ms) | CY8C4XX7-BL Average Current (uA) | CYBC4AXX8-BL Average Current (HA)
10 1501.3 1691.0

20 783.6 861.1

30 522.7 574.1

40 389.0 428.5

50 313.4 343.9

60 264.2 289.3

70 224.9 246.7

80 197.3 216.2

WWW.Cypress.com Document No. 001-92584 Rev. *D 18

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Connection Interval (ms) | CY8C4AXX7-BL Average Current (uA) | CYBCAXX8-BL Average Current (nA)
90 175.4 192.48
100 157.2 173.2
200 80.3 87.85
300 53.9 58.84
400 41.0 44.6
500 33.2 36.2
600 27.9 30.47
700 24.3 26.44
800 21.4 23.2
900 19.3 20.89
1000 17.6 19.03
4000 5.8 6.21

Note: For 256-KB flash devices (CY8C4XX8-BL), the current consumption will be 5% - 10% higher than the current
consumption for the 128-KB flash variants (CY8C4XX7-BL) due to the increase in Deep Sleep and Sleep currents.

Figure 7 and Figure 8 show graphs of the measured current values for different advertising and connection intervals,
respectively. The graphs can be used to get a quick estimate of the average current for any interval in the range.

300 *\
250

Figure 7. Average Current Versus Advertising Interval

< \X\
2
= 200
c
e
5 150
(8]
[J]
o0
S 100
g
<

50

0

100 200 300 400 500 600 700 800 900 1000

Advertising Interval (ms)

—@— CY8C4AXX7-BL Current (pA) —@— CY8CAXX8-BL Current (pA)

WWW.Cypress.com Document No. 001-92584 Rev. *D 19

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Figure 8. Average Current Versus Connection Interval

200 |

180
- 160 §
3 140
€
o 120
5 100
(%]
@ 80 \
o
:% 60

40

. +—

0
100 200 300 400 500 600 700 800 900 1000
Connection Interval (ms)
—@— CY8CAXX7-BL Average Current (1A) —@— CY8C4XX8-BL Average Current (pA)

3.3.2 Current Profile for Advertising and Connection States
To observe the current profile described previously for the advertising and connection events, follow this procedure.
1. Connect a current probe such as Tektronix TCP0030 across the jumper wire on the J15 connector.
2. Connect the probe to a high-performance oscilloscope such as Tektronix DPO 4054.

3. Set the range of resolution for the current axis between 2 mA and 5 mA and the range of resolution for the time
axis between 500 ps and 800 ps.

4. Trigger the oscilloscope to capture the waveform.

Figure 9 and Figure 10 show the current profile oscilloscope captures for the advertising interval and connection
interval of 100 ms each, respectively. The letters marked in the capture map to the different power stages the device
goes through during the advertising and connection states, as described in Appendix A: Advertising State Current
Profile and Appendix B: Connection State Current Profile.

WWW.Cypress.com Document No. 001-92584 Rev. *D 20

http://www.cypress.com/

& CYPRESS

~»” EMBEDDED IN TOMORROW

Designing for Low Power and Estimating Battery Life for BLE Applications

Figure 9. Current Profile Scope Capture for Advertising Interval

3.368ms ~500.04A |
8.000us 16.50mA
A3.360ms A17.00mA

1 (W}

0M points |

[an 20151
1 01

2.752ms 300.04A
8.000pus 20.60mA
A2.744ms A20.30mA

(@ 5.00mA & l"LszS/s

(3+¥1.76800ms 10M points

WWW.Cypress.com Document No. 001-92584 Rev. *D 21

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

34 Power Calculator

To make it easy to estimate the current consumption for your design, a power calculator based on an Excel
worksheet is provided with this application note. This tool allows you to calculate the average current consumption for
PSoC 4/PRoC BLE devices for the advertising and connection states of different system settings and BLESS
parameters. You can use this tool during the system design stage to derive the optimum set of parameters to achieve
the required low current consumption. Note that the calculator provides only an estimation of the current
consumption. The actual current measured in your system may be different depending on your system design and
how you use the various low-power modes.

The workbook has two calculators: the advertisement calculator and the connection calculator. In each calculator
sheet, the user input parameters are entered in the yellow cells provided in the Input Parameters table. The
calculated values are shown in the blue cells. The grey cells are for information purposes only. You are required to
edit only the yellow cells and not modify the other cells. The allowed range of values for each input parameter is
highlighted when you click on any input cell.

The advertisement calculator allows you to calculate the average current for different advertisement settings. The
advertisement calculator input parameters are shown in Table 10. Select the advertising type, interval, and size of the
data based on the configuration done in the BLE Component of your project. The CPU clock frequency can be 6,
12, or 16 MHz. You should also select the transmit power level configured in the BLE Component configuration.

Table 10. Advertisement Calculator Input Parameters

Table A - Input Parameters

Advertisement Settings (From BLE Component Configuration Value Units
Advertisement Type Unconnectable Advertising
Advertisement Interval 1000 ms
Advertisement payload 14 bytes
System Settings

CPU clock (IMO) frequency 16 MHz
Transmit Power 0 dbm
Estimate Average Current Consumption _I

Based on the inputs, the sheet automatically updates the average current in the blue cell.

To estimate the battery life for an application such as iBeacon, where the device is in the Broadcaster role, select the
battery capacity and the number of hours in a day the device is active. It is assumed that for the rest of the time, the
device is in the OFF state and does not consume any power. Based on these inputs, the battery life is estimated, as
given in Table 11.

Table 11. Advertisement — Battery Life Calculation

Table B - Battery Life Estimator
hours of usage per day 24 hours
Battery Capacity 2200 mAh

Estimate Battery Life _E

The connection calculator allows you to estimate the current consumption of a PSoC 4/PRoC BLE device in the
connection state in a Peripheral role. The connection calculator input parameters are shown in Table 12. Select the
connection interval and the slave latency based on the configuration done in the BLE Component of your project. The
CPU clock frequency can be 6, 12, or 16 MHz. You should also select the crystal clock accuracy of the WCO crystal
used in your design. The clock accuracy of the Central device, typically 031_TO_050_PPM, must also be entered.
The transmit power level configured in the BLE Component is also selected.

WWW.Cypress.com Document No. 001-92584 Rev. *D 22

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Table 12. Connection Calculator Input Parameters

Table A - Input Parameters

Connection Settings (From BLE Component Configuration) Value Units
GAP Role Peripheral

Connection Interval 1000 ms
Slave Latency 0

Number of bytes to be sent 0

System Settings

CPU clock (IMO) frequency 16 MHz
WCO clock accuracy 000 TO_020 PPM ppm
Remote Device clock accuracy 000 _TO_020_PPM ppm
Transmit Power 0 dbm
Estimate Average Current Consumption _E

Based on the inputs, the sheet updates the average current in the blue cell.

4 BLE Applications

4.1 BLE System Power

A typical BLE application involves sending the sensor data from a BLE Peripheral device (such as a heart-rate
monitor) to a BLE Central device (such as a smartphone). The system-level architecture of a Peripheral device for
such applications has three major functional blocks, as shown in Figure 11: sensing, data and event processing, and
BLE connectivity. Each block contributes to the average current of the overall system.

4.1.1 Sensing Block

The sensing block comprises a sensor and transducer hardware that converts the sensor information into an analog
electrical signal, followed by a signal-conditioning circuit that is used for filtering and amplification of the analog
signal. The conditioned analog signal is converted into digital data for processing by an analog-to-digital converter
(ADC). The key factors that determine the current consumption in the sensing operation are the following:

B Signal conditioning and analog-to-digital conversion: The signal-conditioning circuit and the ADC consume
significant current during the sensing operation.

B Sampling rate: The sampling rate is the minimum rate at which the sensor data must be captured by the ADC to
have enough samples for accurate processing of the sensor data.

B Scan rate: The scan rate is the rate at which a sensor must be polled to detect an activity. This allows the system
to be in low-power states if there is no activity.

Figure 11. System Block Diagram

Flash for
Data logging
Y [+ processing
I
[

-

Sensor & Signal ' BLE
Transducer%Conditioning% ADC %ﬁ CPU j>{Conneotivity

Sensing

4.1.2 Data and Event Processing Block

The sensor data requires processing to derive meaningful and actionable information. You may also need to
compress the data to reduce the over-the-air bandwidth required to transfer the data to the peer device.

WWW.Cypress.com Document No. 001-92584 Rev. *D 23

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Sometimes, a BLE device may use more than one sensor. For example, a heart-rate monitor device may measure
the battery level in the device to detect a low-battery condition, in addition to heart-rate sensing. A BLE touch mouse
may have an optical sensor, a touch sensor, a scroll key, a trackpad, and multiple buttons to detect key presses. In
such systems, you need to detect activities in multiple sensors, process the data from multiple sensors, and send the
data from multiple sensors over the BLE link. Each sensor’s scan rate can be asynchronous to the others and the
BLE link. Efficient management of these multiple asynchronous activities is an important factor that contributes to the
current consumption.

4.1.3 BLE Connectivity Block

The sensor data is sent to a Central device through BLE notifications or through Read requests from the Central
device. The time taken to process the notifications and send the sensor data to the peer device efficiently will
determine the current consumption.

4.2 Battery Life

Most BLE devices are battery operated. A long battery life is typically the most important requirement for a battery-
operated device. A long battery life helps reduce the maintenance cost of replacing the batteries often. It ensures
high availability of the devices in the deployed environment. It also allows using a lower-capacity battery for a given
lifetime of device usage, reducing the battery cost and allowing the devices to be smaller (See Table 13).

Table 13. CR Battery Comparison

Type Capacity (mAh) Size (d x h, mm)
CR1025 30 10x 2.5
CR1220 35-40 12.5x 2.0
CR1616 50-55 16 x 1.6
CR1620 75-78 16 x 2.0
CR1632 140 16 x 3.2
CR2032 225 20 x 3.2
CR2450 610-620 245x5.0

The battery life is a function of the time that the device is used over the lifetime of the battery and the average current
consumption of the system during its use. A device usage profile is the time pattern of a typical user using the BLE
device through a normal day or a week—how long the device is used for the intended function, how long the device is
idle, how long the device is switched OFF, and so on.

Based on the usage profile, the device can be put through different low-power states to reduce current consumption.
The duration that the device is put in a specific state is determined by the usage profile and the application
requirements. The current consumed in each state is determined by the system architecture, low-power modes used,
and the current consumed by the different parts of the system in that state. Therefore, it is important to determine the
usage profile and a current profile in various system states to estimate the battery life.

An illustration of the usage and current profile for an activity-monitoring (sleep and activity levels) device is shown in
Figure 12. A user uses this device through the day; the user may switch it OFF intermittently. The current consumed
varies accordingly.

WWW.Cypress.com Document No. 001-92584 Rev. *D 24

http://www.cypress.com/
http://en.wikipedia.org/wiki/CR2032_battery

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Figure 12. Usage and Current Profile

Morning Noon Evening
Jog Cycling Jog

Sleep Device Device Device Sleep

= Monitor OFF OFF OFF Monitor
[|

3 _ Il I [

INTUUEE I PUTTT § ITUT S
8 Tinai 8 8 88 8 8 8 8
g Tmeinady g g % 85 T g

The battery life can be measured by a simple formula that combines the usage profile and the current profile, as
shown in Equation 1:

Equation 1. Battery Life

Batterv Life L h _ Battery Capacity(mAh)
attery Life, L hours _Average Current, lav(mA)

(Zioli * Ti)
o T

lav =
Where,
Iav = Average Current (mA)
n = number of dif ferent device states
Ii = Average Current in state i

Ti = Time spent in state i

The current in any state is a function of the current consumed in the different blocks in that state. Broadly speaking,
this is the sum of the current consumed in the three major blocks, shown as:

Equation 2. Average current in a state

Is = Isense + Iprocess + Ile
Where,

Is = Current in any state
Isense = Current in sensing block(mA)

Iprocess = Current used for processing (CPU subsystem)(mA)

Ile = Current in BLE subsystem (mA)

WWW.Cypress.com Document No. 001-92584 Rev. *D 25

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

4.3

4.3.1

4.3.1.1

4.3.1.2

4.3.1.3

4.3.1.4

4.3.2

Techniques for Increasing Battery Life

From these equations, it is evident that battery life can be increased by using the following approaches to reduce the
average current consumed:

B Reduce the Active mode current: The sensing and processing functions contribute equally, if not more, to the
overall system current consumption. Therefore, you should take a system view and reduce the current
consumption in all active operations such as sensing, data processing, and BLE transactions.

B Reduce the active time: Reduce the time spent in CPU or RF operations so that the system can be in the idle or
OFF states more often. The current consumed in these idle or OFF states is as important as the current
consumed during active operations. The current consumption in these states should be reduced by using the
available low-power modes.

The following is a list of suggestions to reduce the average current in PSoC 4/PRoC BLE devices and effectively
increase the battery life.

Reducing the Active Current

Operate at Lower CPU Clock Frequency

The application should be designed to allow the CPU to operate at lower clock frequencies to reduce the current. For
example, power-optimal algorithms and implementations tuned to the CPU architecture should be used to reduce the
processing power required for sensor data processing.

Shut Down Unused Resources

The application can put the unused peripherals and clocks into the available low-power modes permanently. In
addition, peripherals and clocks that are not required often or that are required only in specific usage modes should
be put into their lowest power modes, wherever possible.

For example, you can turn the ILO OFF for most BLE applications. The WCO can be used for all LFCLK
requirements such as the watchdog timer or BLESS.

Utilize Chip-Level Integration

Integration of the sensing circuit and other external interfaces in a single chip reduces the overall system current
consumption due to improved performance, reduced I/O switching, and communication overheads. PSoC 4 BLE is a
highly integrated device that includes Cypress CapSense®, programmable analog with 12-bit ADC, four opamps with
comparator mode, two low-power comparators that can operate in the Deep-Sleep mode, a programmable digital
block, and up to 32 GPIOs multiplexed with different communication interfaces such as I2C, SPI, and UART. This
system integration must be utilized to reduce the external components that need to be present on a PCB for the
application and improve the overall system-level current consumption.

Reduce Transmit Power

Most applications require 0-dBm RF transmit power. However, the transmit power can be lowered if the device is
designed to work for ranges of less than 5 m. This reduces the RF current consumption. For example, by operating
the device at —6 dBm, the transmit current can be reduced by 3 mA.

Reducing the Active Time
Schedule Activities Around the Connection Event

The application should align the sensing and data processing operations to the beginning or end of BLE connection
events. The application can then complete all the processing and put the system into the Deep-Sleep mode along
with the BLESS until the next BLE connection event. This is more power efficient than processing asynchronous to
the BLE events, because it allows the system to be in the Deep-Sleep mode for longer times (refer to Figure 1).

However, note that the application activity should be avoided during the BLE events when the BLESS is transmitting
or receiving packets. This reduces the peak current consumption that adversely impacts the battery life of some types
of batteries such as coin-cell batteries.

WWW.Cypress.com Document No. 001-92584 Rev. *D 26

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Lower Sensor Scan Rates

If no sensor use or activity is detected for some time, the device can reduce the rate at which it scans for the activity.
In addition, it can increase the connection interval of the BLE link and enter low-power modes to reduce the system
current. While this may introduce latency in reacting when an activity occurs, the overall system power can be
significantly reduced. For example, in trackpad designs, scanning alternate sensors instead of all the sensors to
detect a movement can save power. The sampling rate for data can also be minimized where and when possible.

Lower Data Sampling Rates

The sampling rate of the SAR ADC in the device should be reduced to the minimum frequency required to effectively
reproduce the analog signal being sampled. Based on the sampling frequency, the SAR ADC configurations (such as
the ICONT_LV register fields) that allow low-power operation should be used. In addition, the channel resolution can
also be reduced to decrease the conversion time and thus save power.

Use Asynchronous Wakeup

PSoC 4 BLE provides a low-power comparator that continues to operate while the system is in the Deep-Sleep mode.
If any sensor activity is detected through the comparator, it can wake the entire system from the Deep-Sleep mode.
This avoids keeping the CPU active for periodic scanning for sensor activity. In addition, the GPIOs are available as
asynchronous wakeup sources, which can be used to wake up the system from the Deep-Sleep mode based on the
detection of an external activity.

Reduce WCO Crystal ppm

The WCO crystal accuracy (measured in ppm) affects the listening window at the connection events in a Peripheral
device. Due to the drift in timing caused by an inaccurate crystal, the Peripheral will have to listen for a larger window
to “locate” the packet from the Central device. The higher the inaccuracy, the larger is the listening window and the
higher is the current consumption. Refer to AN95089 — PSoC 4/PRoC BLE Crystal Oscillator Selection and Tuning
Techniques for details on WCO crystal selection and tuning.

Figure 13 shows the improvement in average current for a one-second connection interval in PSoC 4 BLE as the ppm
is reduced. A 500-ppm crystal is considered for the chart.

Figure 13. ppm Versus Current Reduction

. _~
: R
/
4 Jrd
3 e
2 o~

T

L

Average Currentreduction (uA)

20 40 60 80 100 120 140 160 180 200

DeltaPPMfrom range max

By using a more accurate crystal, the active time for which the radio is listening can be reduced. For example, in the
PSoC 4/ PRoC BLE device, reducing the WCO inaccuracy by 50 ppm reduces the average current by approximately
2 YA, thus increasing the battery life.

Increase Connection Interval

The connection interval for a BLE link is set by the Central device when a connection is created with the Peripheral
device. It is preferable that the Peripheral have a connection interval that matches the rate at which the sensor data
from the Peripheral is sent to the Central device. If the initial connection interval set by the Central is lower than
necessary, then the Peripheral should request the Central to increase the connection interval to reduce current
consumption.

WWW.Cypress.com Document No. 001-92584 Rev. *D 27

http://www.cypress.com/
http://www.cypress.com/?rID=107332
http://www.cypress.com/?rID=107332

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

4.4

4.4.1

4.4.2

Use Slave Latency

Slave latency is a BLE feature that allows a Peripheral to listen to the Central device on connection events at a
reduced rate. This is useful if the Peripheral device is inactive for some time and has to wait for some activity to occur
to send data to the Central device. If no activity is detected for some time, the Peripheral can enter slave latency by
sending a connection update request to the Central. The Peripheral can extend the interval between the connection
events at which it listens to the Central. This allows the BLESS and the system to be put into the Deep-Sleep mode
for longer time. The key advantage of using slave latency is that when the Peripheral application detects an activity, it
can switch the BLESS back ON to listen to the Central at the original connection interval until the data transfer is
completed. This avoids the latency in sending the data upon the first activity.

For example, maintaining an idle connection with a 100-ms interval consumes 148 pA. If the same connection is
updated with a slave latency value of 9, the current consumption drops to 17 pA.

These points are illustrated with two example BLE use cases: a fitness application and an HID application.

Example Application: Heart-Rate Monitor

A common usage segment of BLE connectivity is the fitness and wearable segment. Many BLE devices track

distance cycled, number of steps climbed, heart rate, number of hours slept, and so on. A heart-rate monitor (HRM) is

one of the most common fitness applications that use BLE today to monitor fitness levels.

System Architecture

An HRM performs the following high-level activities (see Figure 14):

B Sensing: The HRM has an analog front end to capture signals from the human body. In general, it consists of
one or more of the following activities:

o Sensor: The sensor captures the input signal. Optical sensors (LED-photodiode pairs) and electrodes are
commonly used.

o Filtering and amplification: The input signal is filtered and amplified for accurate detection. Usually,
operational amplifiers and hardware filters are used for this purpose.

o Analog-to-digital conversion: This stage converts the analog signal to a digital signal, which is sent to the
application firmware for further processing.

o Firmware processing: The application implements further filtering and amplification, followed by an algorithm
to convert the signal into a heart-rate value by using a timing procedure.

B BLE connectivity: The HRM maintains a BLE connection when in use and transmits the converted heart-rate
value to a heart-rate collector device, usually with a refresh rate of once per second.

Figure 14. HRM System Block Diagram

Heart Rate Monitor
4

Sensing

Signal
Conditioning}:% ADC

Jput Siana Sensor and
Transducer

-

U

CPU- Firmware

. BLE Connectivity
Processing

HRM Usage Profile
An HRM is typically used in one of these ways.
1. Using the HRM during a training or exercise routine, generally for 1-2 hours per day.

2. Wearing the HRM all day in an ultra-low-power mode and turning it active multiple times during the day for short
durations. The average active time is approximately one hour per day.

WWW.Cypress.com Document No. 001-92584 Rev. *D 28

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

4.4.3

Ultra-low-power mode

All functionality

turned off; wait for Yes No Connection Event handled
user assertion v asynchronous to
Push a natification packet to the main

Application Design for Low Power

For the typical usage profile, the application design is shown in Figure 15. When the device is in use, it scans the
heart-rate sensor at a constant rate and processes the sensor output to get a heart-rate value. For an HRM, the
sensor scan rate is usually about 20 milliseconds. During the sensor scan, the system is put in the Sleep mode.

The BLE connection events are asynchronous to this operation, and the connection interval is much larger than the
sensor scan rate. The typical connection interval is one second for HRM applications. At every connection event, the
device sends the sensor data to the heart-rate collector device through notifications. The system then goes to the
Deep-Sleep mode when all the BLE and system processing is completed.

When the user no longer needs the heart-rate information, the device disconnects from the peer device and enters an
idle state with a very low current consumption (such as the Hibernate or Stop mode) where all the system
functionality is turned OFF and a low-power wakeup source (such as a GPIO or the WAKEUP pin) is set up to
resume functionality. For example, an external piezo can be used as a wakeup source by driving a GPIO. The piezo
is activated and triggers an interrupt when the user wears the HRM. For this application, the SAR ADC and three
CTBms available on the chip (PSoC 4 BLE only) are used to interface to the external sensor.

Figure 15. HRM Firmware Design

Application Flow

a N

4>{ Scan sensor and get raw data

Process raw data to get Heart
Rate value

BLE Connectivity

1 second
elapsed since last
check?

BLE connection

Disconnection
| — event (RX/Tx)

GPIO Wakeup) BLE link layer application
] Timer Interrupt to
maintain sensor L
scan rate
Process BLE events €«

|

Enter Lowest Power Mode
possible (Sleep or Deep Sleep)
depending on BLE activity

WWW.Cypress.com Document No. 001-92584 Rev. *D 29

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

4.5

4.5.1

4.5.2

4.5.3

Example Application: Remote Control

An emerging application of BLE connectivity is in the HID market with products such as the smart remote control for
smart TVs and set-top boxes. These applications differ from the wearable device applications mainly in the BLE data
rate and the usage profile that involves start-idle-stop cycles. This example discusses a simple BLE remote control
with a trackpad. It demonstrates an additional level of complexity in the system compared with the HRM and shows
how a low-power design should be done in such a case.

System Architecture

A BLE remote control with a trackpad as a BLE Peripheral device performs the following functions:

® Trackpad sensing: The touchpad of the remote device will have an array of sensor rows and columns. The
number of rows and columns will vary depending on the size and resolution of the touchpad required. The

trackpad sensor array implements capacitive sensing (CapSense). The CapSense block converts the
capacitance of the sensor to a digital quantity, which can be processed by the firmware.

B Firmware processing: The sensor array data from the CapSense block is processed by the application firmware
to detect mouse pointer movements and recognize gestures such as zoom, scroll, rotate, click, double-click, and
so on. This data is sent as an HID report over BLE to the BLE Central device.

® BLE connectivity: The remote control device sends the HID reports to its host typically at a 10-ms connection
interval whenever there is a user activity. However, in the absence of a user activity, this interval should be
increased using slave latency to save power and maintain a BLE connection.

The overall system can be represented as shown in Figure 16.

Figure 16. Remote Control System Architecture

HID Trackpad Remote Control

l@lﬂ#} Track pad Sensor BLE Connectivity
Array
T

Capacitive Sigma

CPU- Gesture
Detta (CSD) — Recogpnition
Sensing

System on Chip

Remote Control Usage Profile
A typical usage model for the remote control follows:

® |f the remote is used for 25 minutes a day, it will be in a low-power state for the rest of the day.

® Out of the total usage of 25 minutes, it is estimated that the user will actively use the remote with intermittent
breaks when the remote is idle. The remote is assumed to be in active use for 80 percent of the time and idle for
the remaining 20 percent of the time.

Application Design for Low Power

The activities that are carried out by the application are as follows:

B Scanning the trackpad

B Processing the trackpad data

® Sending the trackpad report over BLE

B Staying in a low-power mode for the rest of the time

A watchdog timer is used to interrupt the PSoC BLE/ PRoC BLE device periodically to scan the trackpad to detect
user activity. A low current consumption can be achieved by keeping the system in a low-power mode between
interrupts. If an activity is detected on the trackpad, the trackpad is scanned to process the finger movements and to
send the data over BLE to the host device. Thus, the firmware of the remote implements a simple algorithm, as
shown in Figure 17.

WWW.Cypress.com Document No. 001-92584 Rev. *D 30

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Figure 17. Remote Control Firmware Flowchart

Scan Trackpad T

Wakeup

Timer
Interrupt

erS

Process Gestures

¥ No
Prepare HID report l
Exchange BLE
Packets
System in Deep-
Sleep Mode

I

The trackpad scan is aligned with the BLE connection events so the system can be in the Deep-Sleep mode for the
maximum possible time. Scanning of sensors and processing of gestures take a finite amount of time every scan
cycle. When these activities are completed at the connection event, the system is put into the Deep-Sleep mode to
save power. The connection interval must be chosen appropriately. If the connection interval is higher, the HID report
rate for the device may be lower than required, which will degrade the user experience due to latency in transmitting
the data. If the connection interval is lower, then the current consumption increases. To satisfy the conflicting needs
of a good user experience and a power-efficient system, the application needs to switch adaptively between the
required connection intervals.

A similar challenge is faced with respect to the trackpad scan rate. The trackpad must be scanned at a higher rate to
recognize gestures, but it should be scanned at a lower rate when there is no movement for a long time. The lower
rate must be just enough to detect user activity. To meet these requirements, the application implements a state
machine, as shown in Figure 18.

Figure 18. Remote Control State Machine

Device Init State

Initialization Complete

Active State

No user activity for short duration

Idle State

No user activity for long duration

Low-Power State

Low Battery Voltage

Shutdown State

User Activity

WWW.Cypress.com Document No. 001-92584 Rev. *D 31

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

B Active state: The Active state denotes that all the scanning and processing activities are carried out at the
highest required rate. Typically, the trackpad scan is done every 10 ms in the Active state. Therefore, most of the
current consumption of the system originates in the Active state. The firmware will remain in the Active state as
long as user activities are happening.

m |dle state: When using the trackpad, users may keep the trackpad idle for several seconds between touch
activities. The Idle state saves power when the trackpad in not being used for an idle period. This state is entered
if no touch activity is detected for a specified timeout in the Active state. In this state, the trackpad is scanned at
a rate lower than needed for a smooth mouse movement, but sufficient to detect the start of a touch activity
without an observable delay. The BLE connection uses slave latency to reduce the use of the radio, while
maintaining readiness to send the data without latency when a user activity is detected. The system and BLESS
are in the Deep-Sleep mode for most of the time.

B | ow-Power state: The system is expected to stay in the low-power state for most of the time. The application
enters this state from the Idle state if a user activity is not detected during the Idle state for additional time. In this
state, a BLE connection is sustained with no application data exchange. The application may also increase the
slave latency to reduce the use of the radio while sustaining the connection. The trackpad still needs to be
scanned to detect user activity. To detect a touch activity, a high resolution of the touch is not needed. Therefore,
only the alternate rows of the trackpad are scanned. The system is in the Deep-Sleep mode for most of the time.

® Shutdown state: When the battery voltage drops below the operable voltage, the system stops all the activities
and shuts down. This is done by putting the system in the Hibernate or Stop mode.

It should be noted that in each of these states, the system undergoes power mode transitions among the Deep-

Sleep, Sleep, and Active modes for optimizing power, based on the device activity. Only the durations for which the

device remains in the Active or Deep-Sleep mode are different in different states.

WWW.Cypress.com Document No. 001-92584 Rev. *D 32

http://www.cypress.com/

& CYPRESS

~a»” EMBEDDEDIN TOMORROW™

Designing for Low Power and Estimating Battery Life for BLE Applications

4.6 Implementing System Design Recommendations

4,6.1 RF Transmit Power

RF transmit power can be reduced to conserve power. To configure the RF transmit power in your project, open the
Configure BLE window from the BLE Component instance, as shown in Figure 19.

1. Go tothe GAP Settings tab.

2. Configure the TX power level (dBm) to the desired setting from the list.
Figure 19. Changing the RF Transmit Power Level

MName: DMWZ_BLE

i B

General | Profiles /” GAP Settings | L2CAP Settings | Buitin |

-~ General
= Perpheral role
Advertisement settings
Advertisement packet
Scan response packet
; Peripheral prefemed conne
Sec1.|ri1‘y

Ll m

Device address
Public address {Company |0 - Company assigned): D0ADS0-X00000
Silicon generated "Comparny assigned” part of device address

;’.J You can use the user corfiguration section of the supervisory flash
to store the public device address for mass production.

Device name: DMWZ-BLE V1.1

Appearance:

Attribute MTU size (bytes):
Adv/Scan TX power level (dBm):
Connection TX power level (dBm):

Www.Ccypress.com

Document No. 001-92584 Rev. *D

33

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

4.6.2 Connection Parameter Update
The PSoC 4/PRoC BLE device supports the connection parameter update feature of the BLE specification. The

feature allows a Peripheral to negotiate the connection parameters, connection interval, and slave latency with the
Central device as required by the application.

To update either the connection interval or the slave latency parameters, the application on the Peripheral device
must call the CyBle L2capLeConnectionParamUpdateRequest () function with the new connection interval and
slave latency parameters. The function is called when the CYBLE EVT GAP DEVICE CONNECTED event is received
upon device connection.

void AppCallBack (uint32 event, void* eventParam)

{
static CYBLE GAP CONN UPDATE PARAM T hrmConnectionParam =

{

1000, /* Minimum connection interval required */
1000, /* Maximum connection interval required */
0, /* Slave latency */

500 /* Supervision timeout */

}i

switch (event)
{
/* Handle Stack events */
case CYBLE EVT GAP DEVICE CONNECTED:
/* Send Connection Parameter Update request to the Central */
CyBle L2capLeConnectionParamUpdateRequest \
(cyBle connHandle.bdHandle, &hrmConnectionParam);

5 Summary

PSoC 4/PRoC BLE devices support multiple systems and BLESS low-power modes that enable you to design a
highly power-efficient solution. The advertising and connection current profiles indicate that the Deep-Sleep mode
current is equally important to the RF transmit/receive currents when considering a reduction in the overall average
current. The advertising and connection power calculator can help you choose the right set of parameters.

The battery life of a BLE application depends on the system-level current consumption. In most applications, sensing
and processing can consume more power than the BLE operations, so attention must be paid to reduce the overall
system current. The system-level low-power techniques suggested should help you in designing a low-power BLE
solution by including some suggestions, where possible, at the system design stage. You can also use the power
calculator tool to help you make decisions on the system parameters to improve the battery life.

6 References

a. Bluetooth Low Energy — How does it achieve low power?
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=227336

b. Example projects with Low Power Template
https://github.com/cypresssemiconductorco/BLE/tree/master/BLE Low Power Template Examples

WWW.Cypress.com Document No. 001-92584 Rev. *D 34

http://www.cypress.com/
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=227336
https://github.com/cypresssemiconductorco/BLE/tree/master/BLE%20Low%20Power%20Template%20Examples

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

A Appendix A: Advertising State Current Profile

The PSoC 4/PRoC BLE device in the advertising state transmits packets containing the advertising data in periodic
events. Three advertising packets may be sent in an advertising event (one on each of the three enabled advertising
channels). The device may optionally listen for and respond to a peer BLE device that receives the advertising

packets and requests for additional data.
The time between the start of the two consecutive advertising events (T_adv_event) is specified as follows:

T_adv_event = advinterval + advDelay

The advinterval is an integer multiple of 0.625 ms and has different ranges for different advertising packet types. It is
typically chosen in the range 100 ms to 10.24 s. The advDelay is a pseudo-random value with a range of 0 ms to 10
ms. Advertising events are illustrated in Figure 20, with one advertising event as an example.

Figure 20. Advertising Event and Interval

>t ADV_IND ADV_IND SCAN_REQ SCAN_RSP ADV_IND | =
::tz ?,,c*“' Channel 37 Channel 38 Channel 38 < Channel 38 Channel 39 g
g5 T_IFS* T_IFS g
Qa X

.

kS Advertising Advertising Advertising

i Event Event Event

()

% T_advEvent T_advEvent

> > >

S

2| advinterval R advinterval

[} >

>

<2 advDelay advDelay

*T_IFS is Inter Frame Space, which is defined to be 150 us. This is to allow the radio to switch between transmit and receive states.

WWW.Cypress.com Document No. 001-92584 Rev. *D 35

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

A.l Current Profile

The advertising state current profile for a PSoC 4/PRoC BLE Peripheral device implementing the recommendations
for low power is shown in Figure 21. It illustrates the power mode transitions, along with the BLE state transitions and

relative current levels across the states.

Figure 21. Advertising Current Profile

= = = - E
= & o I} % » = §‘ % @ @ £ §‘ 2 g5 o
S °© 2 2 S 3@ 5} § o & 2 [} S ¢ > 2
- O k<] 3 = o S = Q. T S = Qo s 92
£ 4 3 & & 9§ B S e & & 3z L 95 79
sl @ 3 K@ o [P IS T o @ o I IS (RS 8 S
s & ¢ g 3§ &8¢ & S 5§88 & & 3 82 8 8¢
238 = s & & &S S ¢ &€adc £ S ¢ S s 2%
x = = o w > P P >~ P = P j. P -~ S &
TS 8] L8 L L g & 8 L Q &g 8 =
£ 2 2& & 2 == = R EZE § kS < 22 & & &§
5=l =~ el
—_ D —_ (o] —_ —_ D
& = & © & S =
o 8 o 2 k) k) 3
[[0} [c s s [}
c o [© o c o
o ko 2 S o 8 ®
S) e S S |18
o & o < a o ©
= o = & @ =z S
N > N | =] T >
> > = o, >
[=) [=) < = =)
< < 3 Z <
%)
(7]
Current Al B C D IH E D IHI D E DIHF JG
€ Adveﬂisingevent=~8ms——————————————————————————————————_;;—_—_:;—‘ff:?ii: ————— >
Time—>»
Adv Event Avg. Current T T _ _
System Deep-Sleep Current |
<--T_adv_event=~100 ms - »
Document No. 001-92584 Rev. *D 36

Www.Cypress.com

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

The stages of the current profile curve, labeled with the letters A to H, are listed in Table 14 along with the BLESS
internal states and the system and BLESS power modes used. Note that in some of these states, the system is
shown to be in more than one power mode. This is because an interrupt at the beginning of the state transitions the
system into the Active mode. After the interrupt is processed, the system is put back into a low-power mode.

Table 14. Advertising Current Profile Stages

Power Modes
Stage BLESS Internal State BLESS Operation
BLESS System
Active
A CYBLE_BLESS_STATE_ECO_ON Oscillator Startup DEEPSLEEP
Deep-Sleep
Active
B CYBLE_BLESS_STATE_ECO_STABLE | Oscillator Stabilization DEEPSLEEP
Sleep
Active
C CYBLE_BLESS_STATE_ACTIVE Event Start Delay ACTIVE
Sleep
D CYBLE_BLESS_STATE_ACTIVE ADV Transmit ACTIVE Sleep
| CYBLE_BLESS_STATE_ACTIVE Inter-Frame Space ACTIVE Sleep
H CYBLE_BLESS_STATE_ACTIVE Receive ACTIVE Sleep
E CYBLE_BLESS_STATE_ACTIVE Inter-Channel Delay ACTIVE Sleep
CYBLE_BLESS_STATE_EVENT) . .
F CLOSE Post-Processing ACTIVE Active
Enter Deep-Sleep (takes
J CYBLE_BLESS_STATE_DEEPSLEEP two LECLK cycles) DEEPSLEEP Sleep
G CYBLE_BLESS_STATE_DEEPSLEEP Deep-Sleep DEEPSLEEP Deep-Sleep

The BLESS is in the DEEPSLEEP mode (stage G) between advertising events. The system may also be in the Deep-
Sleep mode if no processing is required. The BLESS maintains the link timing by using the WCO clock because the
ECO is OFF. The BLESS automatically wakes up at the programmed instant before the start of the advertising event
and generates an interrupt.

A — The BLESS interrupt wakes up the system from the Deep-Sleep mode. The BLE Component turns ON the ECO
at the beginning of the stage. The ECO ramps up by the end of stage A with a stable clock amplitude. The ramp up
takes approximately 400 ps. The application can put the system back into the Deep-Sleep mode until the ECO is
ready. The ECO interrupts the CPU once the amplitude is stable.

B — The ECO requires more time to stabilize the frequency. The application puts the system into the Sleep mode
during this period. This stabilization takes approximately 400 us. At the end of stage B, the BLESS wakes up from the
DEEPSLEEP mode. It switches from the WCO clock to the stable ECO clock and generates an interrupt.

C — The BLESS interrupt wakes up the CPU. The BLESS enters the ACTIVE mode. If no processing is required, the
application puts the system again into the Sleep mode. The system may remain in the Sleep mode until all BLE
transactions are completed in stage F. The system remains in this stage until the start of the advertising event.

D — In the advertising event, the Peripheral transmits the advertising packets. The entire BLESS including the RF is
active during this period. The advertising packets are transmitted on the three advertising channels.

| — After transmitting the advertising packet, the Peripheral waits for an Inter-Frame Space time interval (T_IFS) of
150 us (per the BLE specification) to listen to the peer device. This stage is optional and depends on the advertising
type settings.

H — After an Inter-Frame Space time interval, the Peripheral listens on the same channel for a packet from the peer
device. The BLESS times out and stops listening if no packet is received within a specific time. If a packet is received,
it continues to receive until the end of the packet. This state is optional and depends on the advertising type settings.

E — The three packets are spaced at an interval of 1.25 ms. The BLESS is idle during this interval between the
transmissions.

WWW.Cypress.com Document No. 001-92584 Rev. *D 37

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

F — After transmitting the three advertising packets, the BLESS generates an “end-of-event” interrupt that wakes up
the CPU. The BLE stack and application complete any event-specific or other application-specific activities in this
period. The application then programs the BLESS to enter the DEEPSLEEP mode by calling the
CyBle EnterLPM () function in the BLE Component. The BLESS takes two LFCLK cycles (approximately 120 ps)
to switch to the WCO and enter the DEEPSLEEP mode internally. The BLE Component therefore puts the system
into the Sleep mode until the DEEPSLEEP mode entry is complete.

J — The system is in the Sleep mode in this state, waiting for the BLESS to enter the DEEPSLEEP mode. Once the
transition is complete, the BLESS generates an interrupt to indicate successful entry into the DEEPSLEEP mode,
which wakes up the CPU.

G — When the application receives the interrupt at the end of stage J, the application puts the system also into the
Deep-Sleep mode no processing is required.

Note: In the profile described, it is assumed that the application is only managing the BLE advertising events and not
handling any system-level tasks and interrupts. Additional system-level processing will change the current profile
depending on the implementation.

WWW.Cypress.com Document No. 001-92584 Rev. *D 38

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

B Appendix B: Connection State Current Profile

A connection is set up between two BLE devices: one acting as a Central (referred to as the Master at the Link Layer)
and the other as a Peripheral (referred to as a Slave at the Link Layer) for exchanging application data. The Central
and Peripheral devices exchange data by transmitting and receiving packets at connection events. The Central
device starts the connection event by transmitting first. The devices then alternate transmitting and receiving data
until they stop the exchange and close the connection event. The starts of connection events are spaced with a
periodic interval of conninterval. The conninterval is a multiple of 1.25 ms in the range of 7.5 ms to 4 s, per the BLE

specification.

In addition to the connection interval (conninterval), the connSlavelLatency parameter defines the number of
consecutive connection events that the Peripheral device is not required to listen to the Central device. These
parameters together determine the timing for connections. A BLE connection event with zero slave latency is
illustrated in Figure 22.

Figure 22. Connection Event and Interval

= ©
S8 MtosS StoM MtoS stoM |§ 8
S O o T
D - < < < IS
£ 8 T_IFS T_IFS T_IFS S¢
Sa. Jcw
T Legend
§ 8| Connection T Connection | Connection ASA I\S/1/aster
S 3| Event Event Event : ave
c Q
S &| conninterval connlnterval
SRt > >

WWW.Cypress.com Document No. 001-92584 Rev. *D 39

http://www.cypress.com/

&% CYPRESS

~»” EMBEDDED IN TOMORROW"™

Designing for Low Power and Estimating Battery Life for BLE Applications

B.1 Current Profile

A connection state current profile for a PSoC 4/PRoC BLE Peripheral device considering this approach is shown in
Figure 23. The figure illustrates the power modes used, along with the BLESS internal state transitions and relative
current levels.

Figure 23. Peripheral Connection Current Profile

Wake Up &

Turn Oscillator ON
Wait in Deep-Sleep
Wait for Oscillator
Stability

LL Deep-Sleep Exit
Receive Packet
from Central

Inter Frame Space
Transmit Packet
Post Processing
Enter Deep-Sleep
Deep-Sleep

Receive Packet from Central
Transmit Packet to Central

Curtent A B C H | D F J| G

e Connection Event=~3ms - S 2

WWW.Cypress.com Document No. 001-92584 Rev. *D 40

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

The stages of the current profile, labeled using the letters A to |, along with the BLESS internal states, BLESS power
modes, and the system power modes are tabulated in Table 15.

Table 15. Connection Current Profile States

Power Modes
Stage BLESS Internal State Connection Profile State
BLESS System
Active
A CYBLE_BLESS_STATE_ECO_ON Oscillator Startup DEEPSLEEP
Deep-Sleep
Active
B CYBLE_BLESS_STATE_ECO_STABLE Oscillator Stabilization DEEPSLEEP
Sleep
Active
C CYBLE_BLESS_STATE_ACTIVE Event Start Delay ACTIVE
Sleep
H CYBLE_BLESS_STATE_ACTIVE Receive ACTIVE Sleep
| CYBLE_BLESS_STATE_ACTIVE Inter-Frame Space ACTIVE Sleep
D CYBLE_BLESS_STATE_ACTIVE Transmit ACTIVE Sleep
F CYBLE_BLESS_STATE_EVENT CLOSE Post-Processing ACTIVE Active
Enter Deep-Sleep (takes
J CYBLE_BLESS_STATE_DEEPSLEEP two LECLK cycles) DEEPSLEEP Sleep
G CYBLE_BLESS_STATE_DEEPSLEEP Deep-Sleep DEEPSLEEP Deep-Sleep

The BLESS is in the DEEPSLEEP mode (stage G) between the connection events. The system may also be in the
Deep-Sleep mode if no processing is required. The BLESS maintains the link timing by using the low-frequency WCO
because the ECO is OFF. The BLESS automatically wakes up at the programmed instant before the start of the
connection event and generates an interrupt to wake up the system from the Deep-Sleep mode.

Stages A, B, and C in the connection current profile remain the same as that for the advertising current profile.

H — The device first listens to a packet from the Central device. The duration of this first listening window depends on
the drift caused by clock inaccuracies (measured in ppm) of the crystal oscillator (WCO in this case) used by the
Central and Peripheral devices between the events.

| — After receiving a packet, the Peripheral waits for an Inter-Frame Space time interval (T_IFS) of 150 ps (per the
erroBLE specification).

D — After waiting for T_IFS, the Peripheral transmits a response packet. The entire BLESS including the RF is active
during this period.

F — After transmitting the three advertising packets, the BLESS generates an “end-of-event” interrupt that wakes up
the CPU. The BLE stack and application complete any event-specific or other application-specific activities in this
period. The application then programs the BLESS to enter the DEEPSLEEP mode by calling the
CyBle EnterLPM () function in the BLE Component. The BLESS takes two LFCLK cycles (=120 ps) to switch to
the WCO and enter the DEEPSLEEP mode internally. The BLE Component therefore puts the system into the Sleep
mode until the DEEPSLEEP mode entry is complete.

J — The system is in the Sleep mode in this state, waiting for the BLESS to enter the DEEPSLEEP mode. Once the
transition is complete, the BLESS generates an interrupt to indicate successful entry into the DEEPSLEEP mode,
which wakes up the CPU.

G — When the application receives the interrupt at the end of stage J, the application puts the system also into the
Deep-Sleep mode, if no processing is required.

Note: In the profile described, it is assumed that the application is only managing a BLE connection event and not
handling any system-level tasks and interrupts. Additional system-level processing will change the current profile
depending on the implementation.

WWW.Cypress.com Document No. 001-92584 Rev. *D 41

http://www.cypress.com/

&% CYPRESS

~a»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Document History

Document Title: AN92584 — Designing for Low Power and Estimating Battery Life for BLE Applications
Document Number: 001-92584

Revision ECN Orig. of Submission Description of Change
Change Date

ki 4701892 KMVP 03/26/2015 New Application Note

*A 4765378 KMVP 05/14/2015 Updated Associated Part Family

1. Added section 6 ‘References’

2. Updated snapshots for latest PSoC creator in section 2.5 ‘Low-Power
Implementation’

*B 5050946 SASD 12/14/2015 3. Updated Table-8 and Table-9 with CY8C4XX8-BL Average Current

Added note on the estimated current consumption for CY8C4XX8-BL in
section 3.3 ‘Average Current Measurement’

5. Updated Figure-7 and Figure-8 with CY8C4XX8-BL Average Current

*C 5171215 ASPV 03/14/2016 Updated to new template.

*D 5687926 BENV 03/19/2017 Updated logo and copyright

WWW.Cypress.com Document No. 001-92584 Rev. *D 42

http://www.cypress.com/

& CYPRESS

~amp»” EMBEDDED IN TOMORROW"

Designing for Low Power and Estimating Battery Life for BLE Applications

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’'s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products PSoC® Solutions

ARM® Cortex® Microcontrollers cypress.com/arm PSoC 1| PSoC 3| PSoC 4 | PSoC 5LP | PSoC 6
Automotive cypress.com/automotive Cypress Developer Community
Clocks & Buffers cypress.com/clocks . _
Interface cypress.com/interface -Fr?;,lim]z || \éV(I)(r:nignleOn:SForums | Projects | Videas | Blogs |
Internet of Things cypress.com/iot .

Memory cypress.com/memory Technical SUpport

Microcontrollers cypress.com/mcu cypress.com/support

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/ush

Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

A

B Cypress Semiconductor
o CYP R E S S 198 Champion Court
Y San Jose, CA 95134-1709

-~ EMBEDDED IN TOMORROW™

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

WWW.Cypress.com Document No. 001-92584 Rev. *D 43

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	Design and Implementation for Low-Power BLE
	System Clocks
	System Power Modes
	BLE Subsystem Power Modes
	Recommendations for Low Power
	Low-Power Implementation
	PSoC Creator Configuration
	Low-Frequency Clock (LFCLK) Selection
	WCO Power Mode
	BLE Component Deep-Sleep Mode
	Stop Mode
	SWD Pin Configuration

	Implementing Low-Power Operations in Application Code
	System Initialization and Main Loop
	BLE Stack Event Handler
	Power Management Functions
	System Power Management

	Example Projects
	Example Project 1: Low-Power Modes in Advertisement
	Example Project 2: Low-Power Modes in Connection
	Average Current Measurement
	Average Current in Advertising and Connection States
	Current Profile for Advertising and Connection States

	Power Calculator

	BLE Applications
	BLE System Power
	Sensing Block
	Data and Event Processing Block
	BLE Connectivity Block

	Battery Life
	Techniques for Increasing Battery Life
	Reducing the Active Current
	Operate at Lower CPU Clock Frequency
	Shut Down Unused Resources
	Utilize Chip-Level Integration
	Reduce Transmit Power

	Reducing the Active Time

	Example Application: Heart-Rate Monitor
	System Architecture
	HRM Usage Profile
	Application Design for Low Power

	Example Application: Remote Control
	System Architecture
	Remote Control Usage Profile
	Application Design for Low Power

	Implementing System Design Recommendations
	RF Transmit Power
	Connection Parameter Update

	Summary
	References
	Appendix A: Advertising State Current Profile
	Current Profile

	Appendix B: Connection State Current Profile
	Current Profile

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

