

Storage conditions

SMD devices are usually moisture/reflow sensitive. Moisture from atmospheric humidity enters permeable packaging materials by diffusion. Assembly processed used to solder SMD packages to PCBs expose the entire package body to temperature between 160°C - 260°C. During solder reflow, rapid moisture expansion can result in package cracking, delamination of critical interfaces within the package, or damaged gold wire.

1. Scope: Application notes listed in this document apply to SMD products include the AA, AP, AM, APK, and AT series.
2. Unopened moisture barrier bag (MBB) shall be stored at temperature below 40° with humidity below 90%RH.
3. After the MBB has been opened, the LEDs should be used according to the floor life specified in the table below.

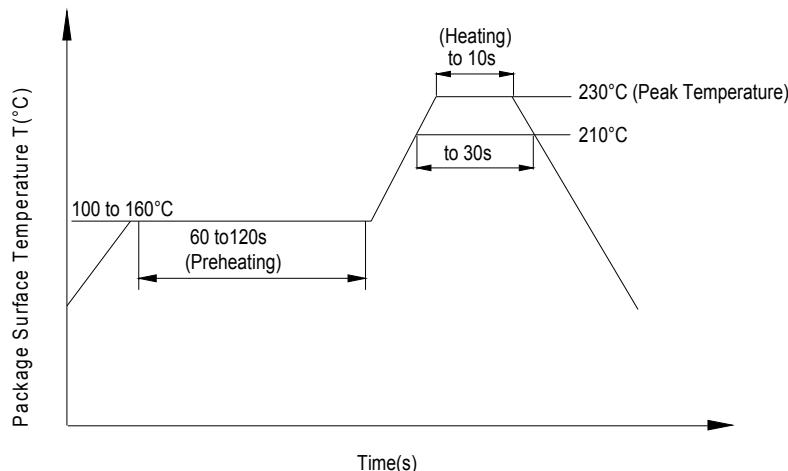
3.1 : IPC/JEDEC J-STD-020 Moisture Sensitivity Levels

LEVEL	FLOOR LIFE	
	TIME	CONDITIONS
1	Unlimited	≤30 °C/85% RH
2	1 year	≤30 °C/60% RH
2a	4 weeks	≤30 °C/60% RH
3	168 hours	≤30 °C/60% RH
4	72 hours	≤30 °C/60% RH
5	48 hours	≤30 °C/60% RH
5a	24 hours	≤30 °C/60% RH
6	Time on Label (TOL)	≤30 °C/60% RH

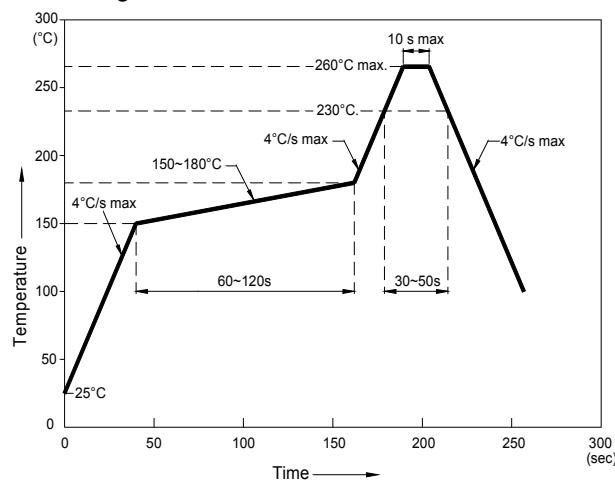
4. If the Humidity Indicator Card (HIC)'s 10 % mark has changed, or the LEDs have not been used within the floor life specified, they should be baked with the following conditions to reset the floor life:

NO.	temperature	humidity	Bake Time
When still in carrier tape	60±3°C	<5%RH	100H
When out of carrier tape	110°C	/	10H

5. Do not store LEDs in an environment where high humidity or acidic/basic chemicals are present, as they will degrade the LED's metallic surfaces.


Soldering

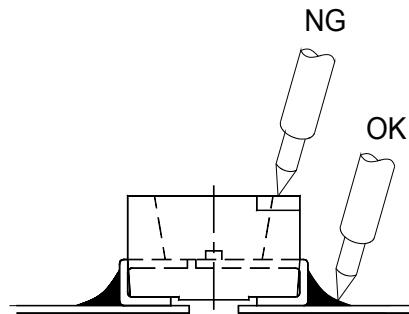
1. Do not apply stress to the leads when the component is heated above 85°C, otherwise internal wire bonds may be damaged.


2. SMD products must be mounted according to specified soldering pad patterns. Refer to the product datasheet for details. Solder paste must be evenly applied to each soldering pad to insure proper bonding and positioning of the component.
3. After soldering, allow at least three minutes for the component to cool to room temperature before further operations.
4. The SMD LED Iron Soldering (with 1.5mm Iron tip) condition:

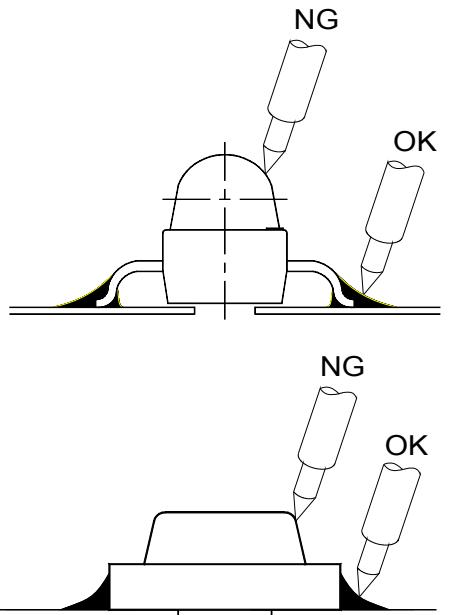
Temperature of Soldering Iron	Maximum Soldering time
<=350°C	3s

5. Soldering Profile With Pb-Sn Solder

6. Lead-Free Soldering Profile

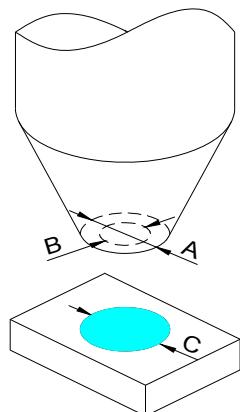


NOTE:

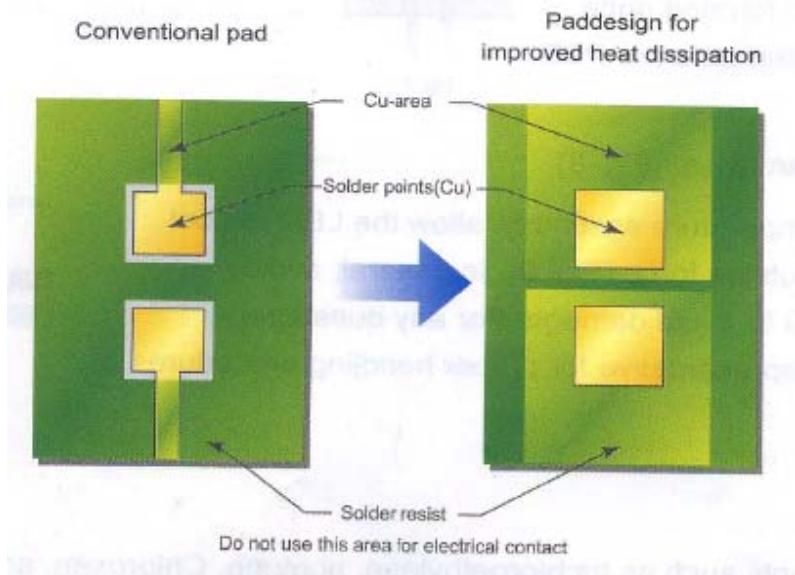

1. We recommend the reflow temperature 245°C (+/- 5°C). The maximum soldering temperature should be limited to 260°C.
2. Don't cause stress to the epoxy resin while it is exposed to high temperature.
3. Number of reflow process shall be 2 times or less.

7. If wave soldering or reflow soldering is to be performed more than twice, please consult with Kingbright first.
8. Manual soldering is not recommended unless necessary such as when repair or rework is required.

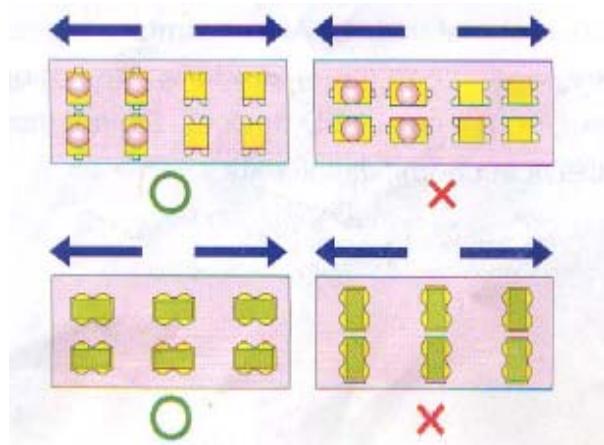
9. Soldering iron power shall not exceed 30 W. The recommended maximum temperature for lead and unlead soldering is 300°C and 350°C respectively. For blue (typical λ_d 465 nm), blue-green (typical λ_d 525 nm), and all white LEDs, the maximum soldering iron temperature is 280°. Do not place the soldering iron on the component for more than 3 seconds.



The tip of the soldering iron should never touch the LED body.


The tip of the soldering iron should never touch the lens

10. For LEDs with silicone encapsulation such as the AA and AT series, the outer diameter of the pick-up nozzle must be longer than that of the LED's light emitting area. i. e. A >C, and B shall be shorter than the width of the LED.



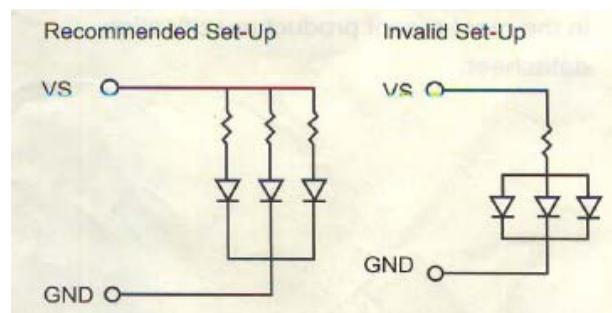
A is the outer diameter pick-up nozzle, B is the inner diameter of pick-up nozzle, and C is the light emitting area of LED

11. There shall be no gap between the nozzle and the surface of the LED when picking up. It is recommended to use a soft nozzle to avoid damage caused by excessive stress. Slowing down the pick-up process may help if the nozzle is having difficulty picking up the LED.
12. Optimal usage of high-power LED devices requires careful design by the end-user to optimize heat dissipation, such as increasing the size of the metal backing around the soldering pad. Refer to the product datasheet for specific design recommendations regarding heat dissipation.

13. During soldering, SMD components should be mounted such that the leads are placed perpendicular to the direction of PCB travel to insure the solder on each lead melts simultaneously during reflow.

Design Precautions

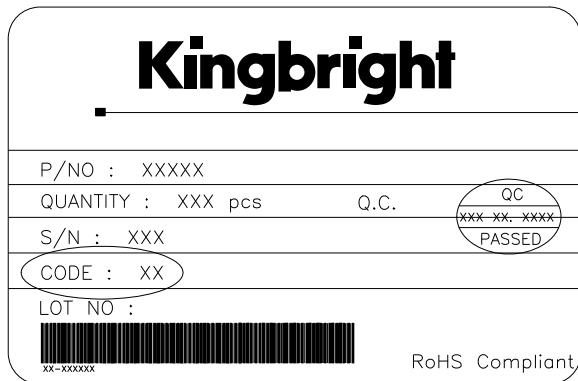
Products using InGaN/GaN components must incorporate protection circuitry to prevent ESD and voltage spikes from reaching the vulnerable component.


Electrostatic discharge protection

SMD products are electrostatic discharge (ESD) sensitive. Common symptoms observed in an ESD damaged device include unusual forward voltage and reverse current measurements. To prevent devices from being damaged by ESD, please adhere to the advices listed below (summarized from ANSI/ESD S20.20-2007).

1. Minimize friction between the product and surroundings to avoid static buildup.
2. All manufacturing and testing equipment should be grounded.
3. All personnel in an ESD protected area should wear antistatic garments and wrist straps.
4. Set up ESD protection areas using grounded metal plating for component handling.
5. All workstations that handle IC and ESD-sensitive components must maintain an electrostatic potential of 150V or less.
6. Maintain a humidity level of 50% or higher in production areas.
7. Use anti-static packaging for transport and storage.
8. All anti-static equipment and procedures should be periodically inspected and evaluated for proper functionality.

Circuit Design Notes


1. Protective current-limiting resistors may be necessary to operate the LEDs within the specified range.
2. LEDs mounted in parallel should each be placed in series with its own current-limiting resistor.

3. Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).
4. The driving circuit should be designed to avoid reverse voltages and transient voltage spikes when the circuit is powered up or shut down.
5. High temperatures can reduce device performance and reliability. Keep LED devices away from heat sources for best performance.
6. It is recommended to operate the LED at the binning current 20 mA to reduce visible difference in chromaticity and intensity. If the LEDs are to be driven at very small current(eg.2mA) , please consult with Kingbright first.

Restrictions on Product Use

1. If a reverse bias continuously applied to the products, such operation can cause migration resulting in LED damage
2. The information contained within this document is subject to change without notice. Before referencing this document, please confirm that it is the most current version available.
3. Not all devices and product families are available in every country.
4. The light output from UV, blue, white, and other high-power LEDs may cause injury to the human eye when viewed directly.
5. LED devices may contain gallium arsenide (GaAs) material. GaAs is harmful if ingested. GaAs dust and fumes are toxic. Do not break, cut, or pulverize LED devices. Do not dissolve LEDs in chemical solvents.
6. Semiconductor devices can fail or malfunction due to their sensitivity to electrical fluctuation and physical stress. It is the responsibility of the user to observe all safety standards when using Kingbright products, in order to avoid situations in which the malfunction or failure of a Kingbright product could cause injury, property damage, or the loss of human life. In developing designs, please insure that Kingbright products are used within specified operating conditions as set forth in the most recent product specification datasheet.
7. Mixing bins is not recommended as it could result in visible difference in chromaticity or intensity (Bin code is printed on the label as shown below).

8. For the 1608 and 1005 series, an ESD ionizer should be used during SMT pick-and-place process to neutralize the charge and hence reduce electrostatic attraction.

9. Please do not apply stress directly to the LED during handling.
10. As silicone encapsulation is permeable to gases, some corrosive substances such as H₂S might corrode silver plating of leadframe. Special care should be taken if an LED with silicone encapsulation is to be used near such substances.
11. The LEDs should not be exposed to an environment where high level of moisture or corrosive gases are present.
12. Prolonged reverse bias should be avoided, as it could cause metal migration, leading to an increase in leakage current or causing a short circuit.

Disclaimer: Kingbright site and its contents are delivered on an "as-is" and "as-available" basis. All information provided on the site is subject to change without notice including, but not limited to corrections, modifications, enhancements, and improvements. Kingbright disclaims all warranties, express or implied, including any warranties of accuracy and assumes no liability to customer's product design using the information provided. Customer shall assume total responsibility for the use of site's information for its products and applications. Kingbright, in no event, will be liable for any direct or indirect, consequential, exemplary, incidental or punitive damages incurred from the use of its products. It is customer's responsibility to obtain the latest documents, specifications, application notes, and verify that the information is current.