
Silicon Laboratories, Inc. Rev 0.1 1

Design Considerations in Adding USB Communications to Embedded Applications

Designing universal serial bus (USB) communications into an application enables a system to
communicate with a variety of USB host devices and provides a convenient power option through
the USB connection. Today’s printers, cell phones, digital cameras, media players, external hard
drives and gaming systems all transfer data using the USB protocol. Having both power and data
communication capability in one cable adds convenience and flexibility to applications. USB
communications can be designed into new systems or added to upgrade legacy systems through
the addition of a fixed-function USB communication bridge or a USB microcontroller (MCU) with
custom USB firmware. The main issues with USB development options are data throughput versus
development time and whether USB expertise is required for implementation. Small USB MCUs
and fixed-function USB communication bridges provide cost-effective solutions for adding USB
communications to designs.

The USB communications interface contains four signals: D+, D-, Ground and VBUS. The D+ and
D- signals are differential data lines, and the VBUS signal is a 5 V line provided by the USB host
device. The VBUS signal is used to indicate the presence of a USB cable in a USB port but can
also provide a system with up to 500 mA from a powered hub or 100 mA from an unpowered hub.
An MCU or fixed-function USB communication bridge with an on-chip 5 to 3 V regulator can use the
regulator output to power an entire application. The specification also supports a variety of USB
connectors that vary in size and shape, including standard, mini and micro connectors. The variety
of USB connector sizes gives developers many options for integrating USB communications into
their applications.

In addition, the USB specification allows up to 127 devices to be attached to a single bus and
supports a variety of device classes, including the human interface device (HID) class, which is
natively supported by most operating systems and does not require driver installation. During the
enumeration process, host machines determine the type of USB device connected. After plugging a
USB device into a host, the USB device sends descriptors to the host that indicate the device type
and which drivers to load.

Developers can upgrade legacy systems to add USB connectivity, or they can design new systems
that include USB from the beginning. A USB MCU or a fixed-function USB bridge can address both
scenarios. Table 1 shows options for adding USB communications to a system, as well as
developer and end-user requirements.

Silicon Laboratories, Inc. Rev 0.1 2

Table 1. USB Connectivity Options

Choosing the right USB communications option depends on several factors, such as whether a
developer is upgrading an existing system or creating a new system. First, let’s examine how to
design a new system with USB capability.

Developers creating a new system have flexibility in choosing the best method of adding USB
communications. They can design the system around a USB MCU or a fixed-function USB
communication bridge and change aspects of the design to fit the USB solution. For example, the
initial printed circuit board (PCB) design contains all necessary components, including the USB
device and USB connector, and the board designer can reposition them as needed. In addition, the
method of interfacing USB communications to the system is unrestricted, and developers can
choose any of the four USB communications options listed in Table 1.

Fixed-function USB communication bridges provide the easiest solution for adding USB
communications to a new design but offer the least flexibility. They are available as HID or non-HID
fixed-function USB communication bridges, such as the USB-to-UART virtual COM port (VCP)
bridges. When using these communication bridges, USB expertise is not necessary because USB
firmware and driver development are not required. For non-HID class devices, manufacturers
provide the necessary drivers for supported operating systems. In addition, manufacturers often
provide dynamic-link libraries (DLLs), which aid in the development of USB host applications. The
lack of USB firmware, DLL and driver development reduces the application’s time to market. With
this approach, the USB interface is not directly connected to the target system. Instead, another
bridge device interface, such as UART, serial peripheral interface (SPI), or inter-integrated circuit
(I2C), directly connects to the target application. In the following system, a USB-to-UART VCP
bridge communicates with a target system through the UART interface.

Figure 1. USB-to-UART VCP Bridge

Silicon Laboratories, Inc. Rev 0.1 3

Developers using this option to add USB communications to a system must ensure that the target
system can communicate using the UART interface and consider the throughput of the bridge
device, which is usually limited by the UART communication speed. In addition, the developer will
need to provide a driver and driver installation package to the end-user. The end-user will need to
install the driver in order to use the device. In this example, the bridge device appears as a COM
port to the USB host system. Developers desiring a fixed-function USB communication bridge that
does not require host-side driver installation should consider an HID communication bridge.

The HID device class is gaining acceptance as a general connection option for embedded systems
because of its flexibility, overall throughput and lack of driver installation. Because the HID class is
natively supported by most operating systems, driver development is not required, and end-users
can plug in a device right out of the box and begin using it. There is no need for driver installation
by the end-user. In the previous USB-to-UART VCP example, the bridge device can be replaced
with an HID USB-to-UART device, as shown in Figure 2.

Figure 2. HID USB-to-UART Device

The majority of the design considerations for the HID bridge are identical to the VCP bridge
example, but there are a few design differences between the HID and VCP USB-to-UART bridge
example. With the HID configuration, the limit of the bridge device’s throughput is the maximum HID
throughput, which is 64 kilobytes per second. Also, the device will not appear as a COM port to the
USB host, but instead as an HID-class device. HID fixed-function communication bridges provide a
drop-in solution for developers who want to minimize the overall USB development time while
adding USB communications to a system. If the throughput or general functionality of a fixed-
function USB communication bridge is insufficient for an application, developers should instead
consider adding a USB MCU.

USB MCUs provide the most flexibility and control over the USB communication interface but
require the most design effort. Developers must generate all USB firmware, and if a non-HID class
device is created, they must write device drivers. This requires some USB experience since writing
USB firmware and device drivers is not a trivial exercise. Since all of the MCU firmware is
customizable, the USB MCU can perform additional tasks as needed. This gives added flexibility
that is not available with a communication bridge. For example, if the USB MCU has an analog-to-
digital converter (ADC), the developer can add firmware to configure the ADC and take
measurements as needed. The USB descriptors are also fully customizable in firmware. USB hosts
determine if a device is an HID or non-HID device through the descriptors received from it during
the enumeration process.

When using a USB MCU, the USB communications provides a direct interface to a target system,
and the system can be built around the USB MCU.

Silicon Laboratories, Inc. Rev 0.1 4

Figure 3. USB Host System Configuration

In addition to increased development time, developers should also consider the required
throughput. The throughput limit of an HID class device is 64 kilobytes per second, or 512 kilobits
per second. The throughput limit of a non-HID class device is 12 Megabits per second, or 12,000
kilobits per second. The non-HID class device can achieve much higher throughput than the HID
device but also requires the development of a custom driver and installation of a driver by the end-
user. This will add to the application’s overall development time. Driver development and
installation can be avoided by using an HID-configured USB MCU but only if the throughput of HID
is sufficient for the application.

Creating a system containing a USB MCU provides flexibility in changing aspects of the design to fit
the best USB solution as needed. For example, developers designing a medical device that sends
measurements to a host using USB communications can change the USB MCU’s data transfer type
to meet the throughput limits of a desired USB MCU solution or implement a multi-interface device,
such as a device with an isochronous and HID interface. When designing a new USB application,
developers can analyze the requirements of each USB option and choose the best fit. Next, let’s
examine the scenario of upgrading a legacy design with USB communications.

Developers upgrading a legacy system with USB communications can choose any of the four
options available for new designs, but they must select a USB solution that fits an existing
application instead of designing an application to fit a USB solution. In this case, developers need
to consider the current means of communication, the required USB data throughput and the
available PCB space for additional components. Legacy designs have an established means of
communicating with host systems. The addition of a fixed-function USB communication bridge is
only an option if the interface used to communicate with a host is available in a bridge device. In
most applications, this will be the UART interface. For these applications, a USB-to-UART
communication bridge chip can be added to a design. Figures 4 and 5 show how the addition of a
bridge device fits into a legacy design.

Figure 4. Legacy UART Design

Silicon Laboratories, Inc. Rev 0.1 5

Figure 5. Legacy Design USB-to-UART Upgrade

From a hardware perspective, the existing PCB needs a redesign to allow the USB device and USB
connector to fit on the existing board. From a software perspective, the manufacturer of the USB-to-
UART device often provides a VCP driver to the developer; therefore, no driver development is
required. In this example, the throughput limit of the bridge device is the baud rate of the UART
interface. As long as the bridge device supports the application’s required baud rate, throughput
should not be an issue. The device still appears as a COM port to the USB host, which allows
legacy host applications to function correctly without modification. The main difference between the
legacy design and the upgraded design is the provision of an interface to the host through USB and
the need for driver installation by the end-user.

If a driverless option is needed, an HID fixed-function USB communication bridge is a potential
solution. With this choice, the same design considerations are necessary as with the VCP fixed-
function communication bridge, but the bridge’s throughput is limited to 64 kilobytes per second,
which is the maximum HID throughput. In the previous legacy design upgrade example, developers
could instead use an HID USB-to-UART bridge, but the device would not appear as a COM port to
the host system. The device would instead appear as an HID. As a result, the legacy host
application would not function correctly without modifications. Although a driver installation is not
required with this solution, existing host applications will need to be modified to talk to the HID OS
application programming interface (API) instead of the COM port API. In the majority of legacy
design upgrades, fixed-function USB communications bridges are ideal because they provide the
easiest solution for adding USB communications to a design without the need for USB expertise.

For legacy designs that require higher throughput, additional functionality or custom USB firmware,
a USB MCU is the best choice. Many of the same design considerations apply in this scenario as in
the new design scenario. This option requires some USB expertise because developers must write
all USB firmware. Driver development and installation is also required for VCP USB devices. The
USB MCU must have a means of communicating to the existing legacy application through GPIO
pins or a peripheral interface, such as a system management bus (SMBus) or SPI, on the USB
MCU.

Figure 6. USB Communications with Legacy Application

Silicon Laboratories, Inc. Rev 0.1 6

In addition, the existing PCB will need a redesign with additional components. Upgrading a legacy
application with a USB MCU is the best choice for developers who need higher throughput than
bridge devices can achieve or use a communication method that is not available in a bridge device.

Choosing whether to add a fixed-function communication bridge or a USB MCU to a design
depends on the target application, the developer’s USB experience and the amount of development
time available. Using a USB MCU provides the most flexibility but also requires USB expertise and
possible driver development. Choosing a fixed-function USB communication bridge does not
require any USB firmware or driver development, which reduces overall development time. It is the
easiest way to add USB to a system with minimal redesign.

Adding USB functionality to a system adds convenience and flexibility by enabling communications
with a wide array of USB host devices as well as adding a power option that can provide up to
500mA in a single cable. Silicon Labs offers a wide variety of USB MCUs as well as fixed-function
USB communication bridges, including USB-to-UART, HID USB-to-UART and HID USB-to-SMBus
bridge devices. Small USB MCUs and fixed-function USB communication bridges provide a cost-
effective way to add USB communications to new designs or legacy systems.

