= AN496

SILICON LABS

CP2112 HID USB-To-SMBuUs AP| SPECIFICATION

1. Introduction

The Silicon Labs HID USB-to-SMBus interface library provides a simple API to configure and operate CP2112
devices. The library provides interface abstraction so that users can develop their application without writing any
USB HID Code. C libraries implementing the CP2112 Interface Specification are provided for Windows 2000 and
later and Mac OS X 10.5 and later. Similarly, various include files are provided to import library functions into

C# .NET, and Visual Basic .NET. Refer to the table below for complete details.

User Application

:

HID to SMBus Library

¢

HID Driver
(Provided by OS)

¢

USB Root Hub

CP2112 HID USB-to-SMBus
Bridge

¢

SMBus Devices

Figure 1. System Architecture Diagram

Table 1. CP2112 Include Files

Operating System Library Include Files Version

Windows 2000 and later SLABHIDtoSMBus.dll* SLABCP2112.h (C/C++) 1.2
SLABCP2112.cs (C# .NET)
SLABCP2112.vb (VB .NET)

Mac OS X 10.5 and later libSLABHIDtoSMBus.dylib SLABCP2112.h (C, C++, Obj-C) 1.0
Types.h (Compatibility)

*Note: Requires SLABHIDDevice.dll version 1.5 during runtime.

Rev. 0.2 11/10 Copyright © 2010 by Silicon Laboratories AN496

AN496

2. APl Functions

Table 2. API Functions Table

Definition Description Page #
HidSmbus_GetNumDevices() Returns the number of devices connected 3
HidSmbus_GetString() Returns a string for a device by index 4
HidSmbus_GetOpenedString() Returns a string for a device by device object pointer 5
HidSmbus_GetindexedString() Returns an indexed USB string descriptor by index 6
(Windows Only)
HidSmbus_GetOpenedindexedString() | Returns an indexed USB string descriptor by device object 6
pointer (Windows Only)
HidSmbus_GetAttributes() Returns the VID, PID, and release number for a device by 7
index
HidSmbus_GetOpenedAttributes() Returns the VID, PID and release number for a device by 7
device object pointer
HidSmbus_Open() Opens a device and returns a device object pointer 8
HidSmbus_Close() Cancels pending 10 and closes a device 8
HidSmbus_IsOpened() Returns the device opened status 9
HidSmbus_ReadRequest() Initiates a fixed length read request to the desired slave 9
device
HidSmbus_AddressReadRequest() Initiates a fixed length read request to the desired slave 10
device specifying the memory address to read
HidSmbus_ForceReadResponse() Forces the device to generate and send a read response 11
HidSmbus_GetReadResponse() Returns a read response if available 12
HidSmbus_WriteRequest() Initiates a write request to the desired slave device 13
HidSmbus_TransferStatusRequest() Requests the status of the current read or write request 13
HidSmbus_GetTransferStatusResponse() | Returns the status of the current read or write request 14
HidSmbus_CancelTransfer() Cancels the current read or write request 15
HidSmbus_Cancello() Cancels pending HID reads and writes (Windows Only) 16
HidSmbus_SetTimeouts() Sets the response timeouts for a device 16
HidSmbus_GetTimeouts() Gets the response timeouts for a device 16
HidSmbus_SetSmbusConfig() Sets the bit rate, master address, timeouts, and transfer 17
settings
HidSmbus_GetSmbusConfig() Gets the bit rate, master address, timeouts, and transfer 18
settings
2 Rev. 0.2)

SILICON LABS

AN496

Table 2. API Functions Table (Continued)

Definition Description Page #
HidSmbus_Reset() Resets the device with re-enumeration 18
HidSmbus_SetGpioConfig() Sets GPIO direction and mode configuration 19
HidSmbus_GetGpioConfig() Gets GPIO direction and mode configuration 20
HidSmbus_ReadLatch() Gets the GPIO latch value 21
HidSmbus_WriteLatch() Sets the GPIO latch value using a bitmask 21
HidSmbus_GetPartNumber() Gets the device part number and version 22
HidSmbus_GetLibraryVersion() Gets the DLL Library version 22
HidSmbus_GetHidLibraryVersion() Gets the HID Device Interface Library version 22
HidSmbus_GetHidGuid() Gets the HID GUID (Windows® only) 22

2.1. HidSmbus_GetNumDevices

Description: This function returns the number of devices connected to the host with matching vendor and
product ID (VID, PID).

Prototype: HID_SMBUS STATUS HidSmbus_ GetNumDevices (DWORD* numDevices, WORD vid,
WORD pid)

Parameters: 1. numDevices returns the number of devices connected on return.

2. vid filters device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

3. pid filters device results by product ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_PARAMETER

Rev. 0.2 3

SILICON LABS

AN496

2.2. HidSmbus_GetString

Description: This function returns a null-terminated vendor ID string, product ID string, serial string, device path
string, manufacturer string, or product string for the device specified by an index passed in
deviceNum. The index for the first device is 0, and the last device is the value returned by
HidSmbus_GetNumDevices() — 1.

Prototype: HID_SMBUS_STATUS HidSmbus_GetString (DWORD deviceNum, WORD vid, WORD
pid, char* deviceString, DWORD options)

Parameters: 1. deviceNum is the index of the device for which the string is desired.

2. vid filters device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

3. pid filters device results by product ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

4. deviceString is a variable of type HID_SMBUS_DEVICE_STR, which will contain a null-
terminated ASCII device string on return. The string is 260 bytes on Windows and 512 bytes
on Mac OS X.

5. options determines if deviceString will contain a vendor ID string, product ID string, serial
string, device path string, manufacturer string, or product string.

Definition Value Length Description
HID_SMBUS_GET_VID_STR 0x01 5 Vendor ID
HID_SMBUS_GET PID_STR 0x02 5 Product ID

HID_SMBUS_GET_PATH_STR 0x03 260/512 Device path
HID_SMBUS_GET_SERIAL_STR 0x04 256 Serial string
HID_SMBUS_GET_MANUFACTURER_STR 0x05 256 Manufacturer String
HID_SMBUS_GET_PRODUCT_STR 0x06 256 Product String

Return Value: HID_SMBUS STATUS = HID_SMBUS_ SUCCESS
HID_SMBUS DEVICE_NOT_FOUND
HID_SMBUS_INVALID PARAMETER
HID_SMBUS_DEVICE_ACCESS ERROR

4 Rev. 0.2

SILICON LABS

AN496

2.3. HidSmbus_GetOpenedString

Description: This function returns a null-terminated vendor ID string, product ID string, serial string, device path
string, manufacturer string, or product string for the device specified by device.

Prototype: HID_SMBUS STATUS HidSmbus_ GetOpenedString (HID_SMBUS DEVICE device,
char* deviceString, DWORD options)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. deviceString is a variable of type HID_SMBUS_DEVICE_STR, which will contain a null-
terminated ASCII device string on return. The string is 260 bytes on Windows and 512 bytes
on Mac OS X.

3. options determines if deviceString will contain a vendor ID string, product ID string, serial
string, device path string, manufacturer string, or product string.

Definition Value Length Description
HID_SMBUS_GET VID_STR 0x01 5 Vendor ID
HID_SMBUS_ GET_PID_STR 0x02 5 Product ID

HID_SMBUS _GET_PATH_STR 0x03 260/512 Device path
HID_SMBUS_ GET_SERIAL_STR 0x04 256 Serial string
HID_SMBUS_GET_MANUFACTURER_STR 0x05 256 Manufacturer String
HID_SMBUS_GET_PRODUCT_STR 0x06 256 Product String

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT

HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_ACCESS_ERROR

Rev. 0.2 5

SILICON LABS

AN496

2.4. HidSmbus_GetIindexedString

Description: This function returns a null-terminated USB string descriptor for the device specified by an index
passed in deviceNum (Windows Only).

Prototype: HID_SMBUS STATUS HidSmbus_GetlndexedString (DWORD deviceNum, WORD vid,
WORD pid, DWORD stringlndex, char* deviceString)

Parameters: 1. deviceNum is the index of the device for which the string is desired.

2. vid filters device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

3. pid filters device results by product ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

4. stringlndex specifies the device-specific index of the USB string descriptor to return.

5. deviceString is a variable of type HID_SMBUS_DEVICE_STR (260-byte ASCII string), which
will contain a NULL terminated device descriptor string on return.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_DEVICE_NOT_FOUND
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_ACCESS_ERROR

2.5. HidSmbus_GetOpenedindexedString

Description: This function returns a null-terminated USB string descriptor for the device specified by device
(Windows Only).

Prototype: HID_SMBUS_ STATUS HidSmbus_GetOpenedlndexedString (HID_SMBUS _DEVICE
device, DWORD stringlndex, char* deviceString)

Parameters: 1. deviceNum is the device object pointer as returned by HidSmbus_Open().

2. stringlndex specifies the device-specific index of the USB string descriptor to return.

3. deviceString is a variable of type HID_SMBUS_DEVICE_STR (260-byte ASCII string), which
will contain a NULL terminated device descriptor string on return.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_ACCESS_ERROR

6 Rev. 0.2

SILICON LABS

AN496

2.6. HidSmbus_GetAttributes

Description: This function returns the device vendor ID, product ID, and release number for the device specified
by an index passed in deviceNum.

Prototype: HID_SMBUS_ STATUS HidSmbus_GetAttributes (DWORD deviceNum, WORD vid, WORD
pid, WORD* deviceVid, WORD* devicePid, WORD* deviceReleaseNumber)

Parameters: 1.

2.

4,
5.
6.

deviceNum is the index of the device for which the string is desired.

vid filters device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

pid filters device results by product ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

deviceVid returns the device vendor ID.
devicePid returns the device product ID.

deviceReleaseNumber returns the USB device release number in binary-coded decimal.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

HID_SMBUS_DEVICE_NOT_FOUND
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_ACCESS_ERROR

2.7. HidSmbus_GetOpenedAttributes

Description: This function returns the device vendor ID, product ID, and release number for the device specified
by device.

Prototype: HID_SMBUS_STATUS HidSmbus_GetOpenedAttributes (HID_SMBUS DEVICE device,
WORD* deviceVid, WORD* devicePid, WORD* deviceReleaseNumber)

Parameters: 1.
2.
3.
4.

device is the device object pointer as returned by HidSmbus_Open().
deviceVid returns the device vendor ID.
devicePid returns the device product ID.

deviceReleaseNumber returns the USB device release number in binary-coded decimal.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_ACCESS_ERROR

SILICON LABS

Rev. 0.2 7

AN496

2.8. HidSmbus_Open

Description:
Prototype:

Parameters:

Return Value:

Remarks:

This function opens a device using a device number between 0 and HidSmbus_GetNumDevices()

— 1 and returns a device object pointer that is used for subsequent accesses.

HID_SMBUS_STATUS HidSmbus Open (HID_SMBUS DEVICE* device, DWORD

deviceNum, WORD vid, WORD pid)

1. device returns a pointer to an HID USB-to-SMBus device object. This pointer will be used by
all subsequent accesses to the device.

2. deviceNum is a zero-based device index, between 0 and (HidSmbus_GetNumDevices() — 1).

3. vid filters device results by vendor ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

4. pid filters device results by product ID. If both vid and pid are set to 0x0000, then HID devices
will not be filtered by VID/PID.

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_DEVICE_NOT_FOUND
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED
HID_SMBUS_DEVICE_ACCESS_ERROR
HID_SMBUS_DEVICE_NOT_SUPPORTED

Be careful when opening a device. Any HID device may be opened by this library. However, if the

device is not a CP2112, use of this library will cause undesirable results. The best course of action

is to designate a unique VID/PID for CP2112 devices only. The application should then filter

devices using this VID/PID.

2.9. HidSmbus_Close

Description:

Prototype:
Parameters:

Return Value:

Remarks:

This function closes an opened device using the device object pointer provided by
HidSmbus_Open().

HID_SMBUS_STATUS HidSmbus_Close (HID_SMBUS_DEVICE device)

device is the device object pointer as returned by HidSmbus_Open().

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_HANDLE

HID_SMBUS_DEVICE_ACCESS_ERROR
device is invalid after calling HidSmbus_Close(). Set device to NULL.

Rev. 0.2

SILICON LABS

AN496

2.10. HidSmbus_IsOpened

Description:
Prototype:

Parameters:

Return Value:

This function returns the device opened status.

HID_SMBUS_STATUS HidSmbus_IsOpened (HID_SMBUS_DEVICE device, BOOL*
opened)

1. device is the device object pointer as returned by HidSmbus_Open().

2. opened returns TRUE if the device object pointer is valid and the device has been opened
using HidSmbus_Open().

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER

2.11. HidSmbus_ReadRequest

Description:

Prototype:

Parameters:

Return Value:

Remarks:

This function intiates a read transfer to the specified slave device address. Read and write
timeouts as well as transfer retries can be set using HidSmbus_SetSmbusConfig() as described in
"HidSmbus_SetSmbusConfig" on page 17.

HID_SMBUS_ STATUS HidSmbus_ ReadRequest (HID_SMBUS DEVICE device, BYTE
slaveAddress, WORD numBytesToRead)

1. device is the device object pointer as returned by HidSmbus_Open().

2. slaveAddress is the address of the slave device to read from. This value must be between
0x02 - OXFE. The least significant bit is the read/write bit for the SMBus transaction and must
be 0.

3. numBytesToRead is the number of bytes to read from the device (1-512).

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_INVALID_REQUEST_LENGTH
HID_SMBUS_DEVICE_IO_FAILED
HidSmbus_ReadRequest() initiates a read transfer. SMBus is a half-duplex bus, which means that
only one read, address read, or write transfer can be active at a time. The device will attempt to
read up to transferRetries number of times and for readTimeout milliseconds before timing out.
See HidSmbus_SetSmbusConfig() for more information on configuring read timeouts. If the
autoReadRespond setting is enabled, then call HidSmbus_GetReadResponse() to return the
results of the read transfer.

SILICON LABS

Rev. 0.2 9

AN496

2.12. HidSmbus_AddressReadRequest

Description:

Prototype:

Parameters:

Return Value:

Remarks:

This function intiates a read transfer to the specified slave device address and specifies the
address to read from on the device. Read and write timeouts as well as transfer retries can be set
using HidSmbus_SetSmbusConfig() as described in "HidSmbus_SetSmbusConfig" on page 17.
HID_SMBUS_ STATUS HidSmbus_AddressReadRequest (HID_SMBUS DEVICE device,
BYTE slaveAddress, WORD numBytesToRead, BYTE targetAddressSize, BYTE
targetAddress[16])

1. device is the device object pointer as returned by HidSmbus_Open().

2. slaveAddress is the address of the slave device to read from. This value must be between
0x02 - OXFE. The least significant bit is the read/write bit for the SMBus transaction and must
be 0.

3. numBytesToRead is the number of bytes to read from the device (1-512).
4. targetAddressSize is the size of the target address in bytes (1-16).
5. targetAddress is the address to read from the slave device.

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_INVALID_REQUEST_LENGTH
HID_SMBUS_DEVICE_IO_FAILED
HidSmbus_AddressReadRequest() initiates a read transfer. SMBus is a half-duplex bus which
means that only one read, address read, or write transfer can be active at a time. The device will
attempt to read up to transferRetries number of times and for readTimeout milliseconds before
timing out. See HidSmbus_SetSmbusConfig() for more information on configuring read timeouts. If
the autoReadRespond setting is enabled, then call HidSmbus_GetReadResponse() to return the
results of the read transfer. The device will transmit the target address on the bus after the slave
device has acknowledged its address. This function is designed to read from EEPROMs with an
SMBus interface.

10

Rev. 0.2

SILICON LABS

AN496

2.13. HidSmbus_ForceReadResponse

Description:
Prototype:

Parameters:

Return Value:

Remarks:

This function causes the device to send a read response to the host after a read transfer has been
issued.

HID_SMBUS_ STATUS HidSmbus_ForceReadResponse (HID_SMBUS DEVICE device,
WORD numBytesToRead)

1. device is the device object pointer as returned by HidSmbus_Open().

2. numBytesToRead is the number of bytes to read from the device (1-512).

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_REQUEST_LENGTH
HID_SMBUS_DEVICE_IO_FAILED

HidSmbus_ForceReadResponse() should only be called if autoReadRespond is disabled using

HidSmbus_SetSmbusConfig(). This allows the user to read data in a polled mode.

Call HidSmbus_ReadRequest() or HidSmbus_AddressReadRequest() first.

Next, call HidSmbus_TransferStatusRequest() and HidSmbus_TransferStatusResponse() to

check if the device has received data.

Next, call HiIdSmbus_ForceReadResponse().

Finally, call HidSmbus_GetReadResponse() repeatedly until all read data is returned.

Typically, this procedure is not necessary as users should enable the autoReadRespond setting.

SILICON LABS

Rev. 0.2 11

AN496

2.14. HidSmbus_GetReadResponse

Description: This function returns the read response to a read request. Read and write timeouts as well as
transfer retries can be set using HidSmbus_SetSmbusConfig() as described in
"HidSmbus_SetSmbusConfig" on page 17.

Prototype: HID_SMBUS_ STATUS HidSmbus_GetReadResponse (HID_SMBUS DEVICE device,
HID_SMBUS_SO* status, BYTE* buffer, BYTE bufferSize, BYTE* numBytesRead)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. status returns the status of the read request.

Definition Value Description
HID_SMBUS_SO_IDLE 0x00 No transfers are currently active on the bus.
HID_SMBUS_SO0_BUSY 0x01 A read or write transfer is in progress.

HID_SMBUS_S0_COMPLETE 0x02 A read or write transfer completed without error and
without retry.
HID_SMBUS_SO0_ERROR 0x03 A read or write transfer completed with an error.

Return Value:

Remarks:

3. buffer returns up to 61 read data bytes.
4. bufferSize is the size of buffer and must be at least 61 bytes.
5. numBytesRead returns the number of valid data bytes returned in buffer.

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_READ_TIMED_OUT
HID_SMBUS_READ ERROR
HidSmbus_GetReadResponse() waits for up to readTimeout milliseconds for the device to send a
read response interrupt report to the host. This function should be called repeatedly until all read
data has been received or an error occurs. Call HidSmbus_ReadRequest() or
HidSmbus_AddressReadRequest() followed by HidSmbus_GetReadResponse() to read data
when autoReadResponse is enabled using HidSmbus_SetSmbusConfig().
HidSmbus_GetReadResponse() will wait for up to responseTimeout milliseconds before returning
HID_SMBUS_READ_TIMED_OUT

12

Rev. 0.2

SILICON LABS

AN496

2.15. HidSmbus_WriteRequest

Description:

Prototype:

Parameters:

Return Value:

Remarks:

This function writes the specified number of bytes from the supplied buffer to the specified slave
device and returns immediately after sending the request to the CP2112. Read and write timeouts
can be set using HidSmbus_SetTimeouts() as described in "2.20. HidSmbus_SetTimeouts" on
page 16.

HID_SMBUS_STATUS HidSmbus_WriteRequest (HID_SMBUS_DEVICE device, BYTE
slaveAddress, BYTE* buffer, BYTE numBytesToWrite)

1. device is the device object pointer as returned by HidSmbus_Open().

2. slaveAddress is the address of the slave device to write to. This value must be between 0x02
- OXFE. The least significant bit is the read/write bit for the SMBus transaction and must be 0.

3. buffer is the address of a buffer to be sent to the device.

4. numBytesToWrite is the number of bytes to write to the device (1-61). This value must be less
than or equal to the size of buffer.

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_INVALID_REQUEST_LENGTH
HID_SMBUS_DEVICE_IO_FAILED
Call HidSmbus_ TransferStatusRequest()/HidSmbus_GetTransferStatusResponse() to wait for the
write transfer to complete before issuing another transfer request. The device waits for up to
transferRetries number of retries and writeTimeout number of milliseconds before timing out.

2.16. HidSmbus_TransferStatusRequest

Description:
Prototype:

Parameters:

Return Value:

Remarks:

This function requests the status of the current read or write transfer.
HID_SMBUS_ STATUS HidSmbus_TransferStatusRequest (HID_SMBUS_DEVICE
device)

1. device is the device object pointer as returned by HidSmbus_Open().

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_DEVICE_IO_FAILED
Call HidSmbus_TransferStatusRequest() followed by HidSmbus_GetTransferStatusResponse() to
get the status of the current read or write transfer.

SILICON LABS

Rev. 0.2 13

AN496

2.17. HidSmbus_GetTransferStatusResponse

Description: This function returns the status of the current read or write transfer.
Prototype: HID_SMBUS STATUS HidSmbus_GetTransferStatusResponse (HID_SMBUS DEVICE
device, HID _SMBUS SO* status, HID SMBUS S1* detailedStatus, WORD*

numRetries, WORD* bytesRead)
Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. status returns the status of the read or write transfer.

Definition Value Description
HID_SMBUS_SO_IDLE 0x00 No transfers are currently active on the bus
HID_SMBUS_S0_BUSY 0x01 A read or write transfer is in progress
HID_SMBUS_S0_COMPLETE 0x02 A read or write transfer completed without error and

without retry
HID_SMBUS SO0 ERROR 0x03 A read or write transfer completed with an error

3. detailedStatus returns the extended status of the read or write transfer.

Definition Value Description

HID_SMBUS_S1 BUSY_ADDRESS ACK 0x00 The slave address was acknowledged
ED

HID_SMBUS_S1_BUSY_ADDRESS_NA 0x01 The slave address has not been acknowledged

CKED

HID_SMBUS_S1 BUSY_READING 0x02 Read data phase in progress

HID_SMBUS S1 BUSY_WRITING 0x03 Write data phase in progress

14 Rev. 0.2)

SILICON LABS

AN496

Detailed Status for Status = HID_SMBUS SO0 _ERROR
Definition Value Description
HID_SMBUS S1 ERROR_TIMEOUT_NACK 0x00 Tranfer timeout: SMBus slave address was
NACKed
HID_SMBUS_S1 ERROR_TIMEOUT_BUS 0x01 Tranfser timeout: SMBus not free (or SCL low
NOT_FREE timeout occurred)
HID_SMBUS_S1 ERROR_ARB_LOST 0x02 Bus arbitration was lost
HID_SMBUS_S1_ERROR_READ_INCOMPL 0x03 Read was incomplete
ETE
HID_SMBUS_S1_ERROR_WRITE_INCOMPL 0x04 Write was incomplete
ETE
HID_SMBUS S1 ERROR_SUCCESS AFTE 0x05 Transfer completed after numRetries number of
R_RETRY retries

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_READ_TIMED_OUT
HID_SMBUS_READ_ERROR
Remarks: Call HidSmbus_ TransferStatusRequest() followed by HidSmbus_GetTransferStatusResponse() to
get the status of the current read or write transfer. HidSmbus_GetTransferStatusResponse() will
wait for up to responseTimeout milliseconds before returning HID_SMBUS_READ_TIMED_OUT.

2.18. HidSmbus_CancelTransfer

Description: This function cancels the current read or write transfer.

Prototype: HID_SMBUS_ STATUS HidSmbus_TransferStatusRequest (HID_SMBUS_DEVICE
device)

Parameters: 1l.device is the device object pointer as returned by HidSmbus_Open().

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_DEVICE_IO_FAILED
Remarks: This function will clear any read responses received.

Rev. 0.2 15

SILICON LABS

AN496

2.19. HidSmbus_Cancello

Description:
Prototype:
Parameters:

Return Value:

This function cancels any pending HID reads and writes (Windows Only).
HID_SMBUS_ STATUS HidSmbus_Cancello (HID_SMBUS DEVICE device)
device is the device object pointer as returned by HidSmbus_Open().

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_DEVICE_IO_FAILED

2.20. HidSmbus_SetTimeouts

Description:

Prototype:

Parameters:

Return Value:

Remarks:

This function sets the response timeouts. Response timeouts are used by
HidSmbus_GetReadResponse() and HidSmbus_ GetTransferStatusResponse(). The default value
for response timeouts is 1000 ms, but timeouts can be set to wait for any number of milliseconds
between 1 and OxFFFFFFFF. Specifying a response timeout of 0, will wait indefinitely.
HID_SMBUS_STATUS HidSmbus_SetTimeouts (HID_SMBUS DEVICE device, DWORD
responseTimeout)

1. device is the device object pointer as returned by HidSmbus_Open().

2. responseTimeout is the HidSmbus_GetReadResponse() and HidSmbus_GetTransferStatusResponse()
timeout.

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

HID_SMBUS_INVALID_DEVICE_OBJECT
If timeouts are set to a large value and no data is received, the application may appear
unresponsive. It is recommended to set timeouts appropriately before using the device. Typically,
users will want to specify a response timeout that is greater than the read and write timeouts.

2.21. HidSmbus_GetTimeouts

Description:

Prototype:

Parameters:

Return Value:

Remarks:

This function returns the current response timeouts specified in milliseconds. A response timeout
value of 0 indicates an infinite timeout.

HID_SMBUS_STATUS HidSmbus_GetTimeouts (HID_SMBUS_DEVICE device, DWORD*
responseTimeout)
1. device is the device object pointer as returned by HidSmbus_Open().

2. responseTimeout is the response operation timeout in milliseconds.

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
Timeouts are maintained for each device but are not persistent across HidSmbus_Open()/
HidSmbus_Close().

16

Rev. 0.2

SILICON LABS

AN496

2.22. HidSmbus_SetSmbusConfig

This function sets the SMBus bit rate, address, and transfer settings such as timeouts and retries.
Refer to the device data sheet for a list of supported configuration settings.

HID_SMBUS_ STATUS HidSmbus_SetSmbusConfig (HID_SMBUS DEVICE device, DWORD
bitRate, BYTE address, BOOL autoReadRespond, WORD writeTimeout, WORD
readTimeout, BOOL sclLowTimeout, WORD transferRetries)

Description:

Prototype:

Parameters:

1.
2.

device is the device object pointer as returned by HidSmbus_Open().

bitRate is the bit rate for SMBus communication. The default is 100 kHz. This value must be
non-zero.

. address is the device’s slave address (0x02— OXFE). The device will only acknowledge this

address. The default is 0x02. The least significant bit is the read/write bit for the SMBus
transaction and must be 0.

. autoReadRespond controls the read response behavior of the device. If enabled, the device will

automatically send read response interrupt reports to the device after initiating a read transfer.
If disabled, the user must call HidSmbus_ForceReadResponse() before read response interrupt
reports will be sent to the host. The default is FALSE (0).

. writeTimeout is the time limit in milliseconds (0—-1000) before the device will automatically

cancel a write transfer. A value of 0 indicates an infinite timeout. In this case, a write transfer will
wait indefinitely for a write to complete or until HidSmbus_CancelTransfer() is called.
The default is 0.

. readTimeout is the time limit in milliseconds (0 - 1000) before the device will automatically

cancel a read transfer. A value of 0 indicates an infinite timeout. In this case, a read transfer will
wait indefinitely for a read to complete or until HlIdSmbus_CancelTransfer() is called.
The default is 0.

. sclLowTimeout is a timeout that will reset the SMBus if the SCL line is held low for more than 25

ms. If enabled and an SCL Low Timeout occurs, the status byte of the Transfer Status
Response command will be set appropriately. The default is FALSE (0).

. transferRetries is the number of times to retry (0 - 1000) a failed read or write transfer. A value of

0 indicates an infinite number of retries until the specified read or write timeout has elapsed.
The default is 0.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

SILICON LABS

Rev. 0.2 17

AN496

2.23.

Description:

Prototype:

Parameters:

Return Value:

HidSmbus_GetSmbusConfig

This function gets the SMBus bit rate, address, and transfer settings such as timeouts and retries.
Refer to the device data sheet for a list of supported configuration settings.

HID_SMBUS_STATUS HidSmbus_GetSmbusConfig (HID_SMBUS_DEVICE device,
DWORD* bitRate, BYTE* address, BOOL* autoReadRespond, WORD*
writeTimeout, WORD* readTimeout, BOOL* scl LowTi meout , WORD™*
transferRetries)

1. device is the device object pointer as returned by HidSmbus_Open().

2. bitRate returns the bit rate for SMBus communication. The default is 100 kHz. This value must
be non-zero.

3. address returns the device’s slave address (0x02—-0xFE). The device will only acknowledge this
address. The default is 0x02.

4. autoReadRespond returns the read response behavior of the device. If auto read respond is
enabled, then the device will automatically send read response interrupt reports to the device
after initiating a read transfer. If disabled, the user must call HidSmbus_ForceReadResponse()
before read response interrupt reports will be sent to the host. The default is FALSE (0).

5. writeTimeout returns the time limit in milliseconds (0—1000) before the device will automatically
cancel a write transfer. A value of 0 indicates an infinite timeout. In this case, a write transfer will
wait indefinitely for a write to complete or until HIdSmbus_CancelTransfer() is called. The
default is 0.

6. readTimeout returns the time limit in milliseconds (0-1000) before the device will automatically
cancel a read transfer. A value of 0 indicates an infinite timeout. In this case, a read transfer will
wait indefinitely for a read to complete or until HidSmbus_CancelTransfer() is called. The default
is 0.

7. sclLowTimeout is a timeout that will reset the SMBus if the SCL line is held low for more than 25
ms. If enabled and an SCL Low Timeout occurs, the status byte of the Transfer Status
Response command will be set appropriately. The default is FALSE (0).

8. transferRetries returns the number of times to retry (0—1000) a failed read or write transfer. A
value of 0 indicates an infinite number of retries until the specified read or write timeout has
elapsed. The default is 0.

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

2.24. HidSmbus_Reset

Description:

Prototype:
Parameters:

Return Value:

Remarks:

This function initiates a full device reset. All configuration settings will be reset to their default
values after the device re-enumerates.

HID_SMBUS_ STATUS HidSmbus_Reset (HID_SMBUS DEVICE device)

device is the device object pointer as returned by HidSmbus_Open().

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_DEVICE_IO_FAILED

Resetting the device will make the device’s handle stale. Users must close the device using the
old handle before proceeding to reconnect to the device. See more information on surprise
removal. See HidSmbus_SetSmbusConfig() and HidSmbus_SetGpioConfig() for default
configuration settings.

18

Rev. 0.2

SILICON LABS

AN496

2.25. HidSmbus_SetGpioConfig

Description: This function configures the GPIO pins’ directions and modes.

Prototype: HID_SMBUS STATUS HidSmbus_SetGpioConfig (HID _SMBUS DEVICE device, BYTE
direction, BYTE mode, BYTE special, BYTE clkDiv)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. direction is a bitmask that specifies each GPIO pin’s direction.

Definition Bit Value Description
HID_SMBUS_DIRECTION_INPUT 0 Input
HID_SMBUS_DIRECTION_OUTPUT 1 Output

3. mode is a bitmask that specifies each GPIO pin’'s mode.

Definition Bit Value Description
HID_SMBUS_MODE_OPEN_DRAIN 0 Open-Drain
HID_SMBUS_MODE_PUSH_PULL 1 Push-Pull

4. special is a bitmask that specifies the special behavior of GP10.0, GPIO.1, and GPIO.7

Definition Value Description
HID_SMBUS MASK_FUNCTION_GPIO 7 CLK 0x01 Enables or disables the clock output func-
tion of GPIO.7
HID_SMBUS_MASK_FUNCTION_GPIO_O0_TXT 0x02 Enables or disables the TX toggle function
of GPI0O.0
HID_SMBUS_MASK_FUNCTION_GPIO_1 RXT 0x04 Enables or disables the RX toggle function
of GPIO.1
Definition Bit Value Description
HID_SMBUS_GPIO_FUNCTION 0 GPIO function as configured using direction
and mode
HID_SMBUS_SPECIAL_FUNCTION 1 Special function:
GPIO.0 - TX Toggle (push-pull output)
GPIO.1 - RX Toggle (push-pull output)
GPIO.7 - Clock Output (push-pull output)

5. clkDiv is the clock output divider value used for GPIO.7 when configured in clock output mode.
The frequency is equal to 48 MHz / (2 x clkDiv) when clkDiv is between 1 and 255 and equal to

48 MHz when clkDiv is 0.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_DEVICE_IO_FAILED

SILICON LABS

Rev. 0.2

19

AN496

2.26. HidSmbus_GetGpioConfig

Description: This function returns the GPIO pins’ directions and modes.

Prototype: HID_SMBUS_ STATUS HidSmbus GetGpioConfig (HID_SMBUS DEVICE device, BYTE*
direction, BYTE* mode, BYTE* special, BYTE* clkDiv)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. direction returns a bitmask that specifies each GPIO pin’s direction.

3. mode returns a bitmask that specifies each GPIO pin’s mode.

Definition Bit Value Description
HID_SMBUS_MODE_OPEN_DRAIN 0 Open-Drain
HID_SMBUS_MODE_PUSH_PULL 1 Push-Pull

4. special returns a bitmask that specifies the special behavior of GPIO.0, GPIO.1, and GPIO.7.

Definition Value Description
HID_SMBUS_MASK_FUNCTION_GPIO_7_CLK 0x01 Enables or disables the clock output func-
tion of GPIO.7
HID_SMBUS_MASK_FUNCTION_GPIO_0_TXT 0x02 Enables or disables the TX toggle function
of GPIO.0
HID_SMBUS_MASK_FUNCTION_GPIO_1 RXT 0x04 Enables or disables the RX toggle function
of GPIO.1
Definition Bit Value Description
HID_SMBUS_GPIO_FUNCTION 0 GPIO function as configured using direction
and mode
HID_SMBUS_SPECIAL_FUNCTION 1 Special function:
GPIO.0 - TX Toggle (push-pull output)
GPIO.1 - RX Toggle (push-pull output)
GPIO.7 - Clock Output (push-pull output)

5. clkDiv returns the clock output divider value used for GP10.7 when configured in clock output
mode. The frequency is equal to 48 MHz / (2 x clkDiv) when clkDiv is between 1 and 255 and
equal to 48 MHz when clkDiv is 0.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

20

Rev. 0.2

SILICON LABS

AN496

2.27. HidSmbus_ReadLatch

Description:
Prototype:

Parameters:

Return Value:

Remarks:

This function returns the current GPIO latch value.

HID_SMBUS_STATUS HidSmbus_ReadlLatch (HID_SMBUS_DEVICE device, BYTE*
latchValue)

1. device is the device object pointer as returned by HidSmbus_Open().

2. latchValue returns the current GPIO latch value.

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED
If a pin is configured as an input, then the latchValue bit represents the logical voltage level
received on the pin. If a pin is configured as an output, then the latchValue bit represents the
logical voltage level driven on the pin.

2.28. HidSmbus_WriteLatch

Description:
Prototype:

Parameters:

Return Value:

Remarks:

This function sets the current GPIO latch value for the specified bits.
HID_SMBUS_STATUS HidSmbus_WriteLatch (HID_SMBUS DEVICE device, BYTE
latchValue, BYTE latchMask)

1. device is the device object pointer as returned by HidSmbus_Open().
2. latchValue is the output value to drive on GPIO pins configured as outputs.

3. latchMask is the bitmask specifying which bits to modify.

Definition Value
HID_SMBUS_MASK_GPIO_0 0x01
HID_SMBUS_MASK_GPIO_1 0x02
HID_SMBUS_MASK_GPIO 2 0x04
HID_SMBUS_MASK_GPIO_3 0x08
HID_SMBUS_MASK_GPIO 4 0x10
HID_SMBUS_MASK_GPIO_5 0x20
HID_SMBUS_MASK_GPIO_6 0x40
HID_SMBUS_MASK_GPIO_7 0x80

HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_DEVICE_IO_FAILED

Only GPIO pins configured as outputs with their corresponding latchMask bits set can be written

to.

SILICON LABS

Rev. 0.2 21

AN496

2.29. HidSmbus_GetPartNumber

Description: This function retrieves the part number and version of the CP2112 device.
Prototype: HID_SMBUS_ STATUS HidSmbus_ GetPartNumber (HID_SMBUS DEVICE device, BYTE*
partNumber, BYTE* version)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. partNumber returns the device part number.

Definition Value Description

HID_SMBUS_PART_CP2112 0x0C CP2112

3. version returns the version. This value is not user-programmable.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

2.30. HidSmbus_GetLibraryVersion

Description: This function returns the HID USB-to-SMBus Interface Library version.

Prototype: HID_SMBUS_STATUS HidSmbus_GetLibraryVersion (BYTE* major, BYTE* minor,
BOOL* release)

Parameters: 1. major returns the major library version number. This value ranges from 0 to 255.

2. minor returns the minor library version number. This value ranges from 0 to 255.
3. release returns TRUE if the library is a release build; otherwise, the library is a Debug build.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_PARAMETER

2.31. HidSmbus_GetHidLibraryVersion

Description: This function returns the version of the HID Device Interface Library that is currently in use.

Prototype: HID_SMBUS STATUS HidSmbus_GetHidLibraryVersion (BYTE* major, BYTE*
minor, BOOL* release)

Parameters: 1. major returns the major library version number. This value ranges from 0 to 255.

2. minor returns the minor library version number. This value ranges from 0 to 255.
3. release returns TRUE if the library is a release build; otherwise, the library is a Debug build.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_PARAMETER

2.32. HidSmbus_GetHidGuid

Description: This function obtains the HID GUID. This can be used to register for surprise removal notifications
(Windows Only).

Prototype: HID_SMBUS_STATUS HidSmbus_GetHidGuid (void* guid)

Parameters: 1. quid returns the HID GUID.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_PARAMETER

22 Rev. 0.2

SILICON LABS

AN496

3. User Customization API Functions

The following parameters are programmable on the device. Different functions are provided to program these
parameters. Each parameter may only be programmed once and only if the parameter is not locked.

Name Size Short Description
VID 2 USB Vendor ID
PID 2 USB Product ID
Power 1 Power request in mA/2
Power Mode 1 Bus Powered

Self Powered - Regulator Off
Self Powered - Regulator On

Release Version

2 Major and Minor release version

Manufacturer String

60 Product Manufacturer (English Unicode)

Product Description String

60 Product Description (English Unicode)

Serial String

60 Serialization String (English Unicode)

The following API functions are provided to allow user customization/one-time programming:

Definition Description Page #
HidSmbus_SetLock() Prevents further OTP programming/customization 24
HidSmbus_GetLock() Gets the OTP lock status 25
HidSmbus_SetUsbConfig() Sets VID, PID, power, power mode, and release version 26
HidSmbus_GetUsbConfig() Gets VID, PID, power, power mode, and release version 27
HidSmbus_SetManufacturingString() | Sets the USB manufacturing string 28
HidSmbus_GetManufacturingString() | Gets the USB manufacturing string 28
HidSmbus_SetProductString() Sets the USB product string 28
HidSmbus_GetProductString() Gets the USB product string 29
HidSmbus_SetSerialString() Sets the USB serial string 29
HidSmbus_GetSerialString() Gets the USB serial string 29

) Rev. 0.2 23

SILICON LABS

AN496

3.1. HidSmbus_SetLock
Description: This function permanently locks/disables device customization.
Prototype: HID_SMBUS_STATUS HidSmbus_SetlLock (HID_SMBUS_DEVICE device, BYTE lock)
Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().
2. lock is the bitmask specifying which fields can be customized/programmed and which fields
are already customized.

Bit Definition Mask Description

0 |HID_SMBUS_LOCK_VID 0x01 VID

1 HID_SMBUS_LOCK_PID 0x02 PID

2 |HID_SMBUS_LOCK_POWER 0x04 Power

3 HID_SMBUS_LOCK_POWER_MODE 0x08 Power Mode

4 HID_SMBUS_LOCK_RELEASE_ VERSION 0x10 Release Version

5 HID_SMBUS LOCK_MFG_STR 0x20 Manufacturing String

6 HID_SMBUS LOCK_PRODUCT_STR 0x40 Product String

7 HID_SMBUS_LOCK_SERIAL_STR 0x80 Serial String

Definition Bit Value Description

HID_SMBUS_LOCK_UNLOCKED 1 Field can be customized
HID_SMBUS_LOCK_LOCKED 0 Field has already been customized or has

been locked

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

Remarks:

HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_DEVICE_|O_FAILED

When this function is successfully called, the specified fields are fully locked and cannot be further
customized. The user customization functions can be called and may return
HID_SMBUS_SUCCESS even though the device was not programmed. Call the function’s
corresponding get function to verify that customization was successful. Each field is stored in one
time programmable memory (OTP) and can only be customized once. After a field is customized,

the corresponding lock bits are set to O.

24

Rev. 0.2

SILICON LABS

AN496

3.2. HidSmbus_GetLock

Description: This function returns the device customization lock status.
Prototype: HID_SMBUS_STATUS HidSmbus_GetLock (HID_SMBUS_DEVICE device, BYTE* lock)
Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().
2. lock returns a bitmask specifying which fields are locked.

Bit Definition Mask Description

0 HID_SMBUS_LOCK_VID 0x01 VID

1 |HID_SMBUS_LOCK_PID 0x02 PID

2 HID_SMBUS_LOCK_POWER 0x04 Power

3 HID_SMBUS_LOCK_POWER_MODE 0x08 Power Mode

4 HID_SMBUS_LOCK_RELEASE_VERSION 0x10 Release Version

5 HID_SMBUS LOCK_MFG_STR 0x20 Manufacturing String

6 |HID_SMBUS_LOCK_PRODUCT_STR 0x40 Product String

7 HID_SMBUS_LOCK_SERIAL_STR 0x80 Serial String

Definition Bit Value Description

HID_SMBUS_LOCK_UNLOCKED 1 Field can be customized
HID_SMBUS_LOCK_LOCKED 0 Field has already been customized or has

been locked

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS

HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

Rev. 0.2

SILICON LABS

25

AN496

3.3. HidSmbus_SetUsbConfig

Description: This function allows one-time customization of the USB configuration, which includes vendor ID,
product ID, power, power mode, and release version settings. Each field can be independently
programmed one time via the mask field.

Prototype: HID_SMBUS_ STATUS HidSmbus_SetUsbConfig (HID_SMBUS DEVICE device, WORD
vid, WORD pid, BYTE power, BYTE powerMode, WORD releaseVersion, BYTE
mask)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. vid is the vendor ID.

3. pidis the product ID.

4. power specifies the current requested by the device in milliamps/2. The maximum power
setting is 500 mA or 250 (OxFA). This value only applies when the device is configured to be
bus-powered.

5. powerMode configures the device as bus-powered or self-powered.

Definition Value Description

HID_SMBUS_BUS POWER 0x00 Device is bus powered

HID_SMBUS_SELF _POWER_VREG_DIS 0x01 Device is self powered (voltage regulator

disabled)

HID_SMBUS_SELF_POWER_VREG_EN 0x02 Device is self powered (voltage regulator

enabled)

6. releaseVersion is the user-programmable release version. The MSB is the major revision and
the LSB is the minor revision. Both revisions can be programmed to any value from 0 to 255.
This version is not the same as the device release number described in the USB device
descriptor.

7. mask is the bitmask specifying which fields to customize.

Bit Definition Mask Description

0 HID_SMBUS_SET VID 0x01 VID

1 HID_SMBUS_SET_PID 0x02 PID

2 |HID_SMBUS_SET POWER 0x04 |Power

3 HID_SMBUS_SET_POWER_MODE 0x08 Power Mode

4 HID_SMBUS_SET_RELEASE_VERSION 0x10 Release Version
Definition Bit Value Description

HID_SMBUS SET IGNORE 0 Field will be unchanged

HID_SMBUS_SET_PROGRAM 1 Field will be programmed

26 Rev. 0.2)

SILICON LABS

AN496

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

3.4. HidSmbus_GetUsbConfig

Description: This function retrieves USB configuration, which includes vendor ID, product ID, power, power
mode, release version, and flush buffers settings.

Prototype: HID_SMBUS_ STATUS HidSmbus_GetUsbConfig (HID_SMBUS DEVICE device, WORD*
vid, WORD* pid, BYTE* power, BYTE* powerMode, WORD* releaseVersion)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. vid returns the vendor ID.
3. pid returns the product ID.
4

power returns the current requested by the device in milliamps / 2. This value only applies
when the device is bus-powered.

5. powerMode returns the device power mode.

Definition Value Description
HID_SMBUS_BUS_POWER 0x00 Device is bus powered
HID_SMBUS_SELF_POWER_VREG_DIS 0x01 Device is self powered (voltage regulator

disabled)
HID_SMBUS_SELF POWER_VREG_EN 0x02 Device is self powered (voltage regulator
enabled)

6. releaseVersion returns the user-programmable release version. The MSB is the major
revision, and the LSB is the minor revision. Both revisions can be programmed to any value
from 0 to 255. This version is not the same as the device release number described in the
USB device descriptor.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

Rev. 0.2 27

SILICON LABS

AN496

3.5. HidSmbus_SetManufacturingString

Description: This function allows one-time customization of the USB manufacturing string.

Prototype: HID_SMBUS_STATUS HidSmbus_SetManufacturingString (HID_SMBUS _DEVICE
device, char* manufacturingString, BYTE strlen)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. manufacturingString is a variable of type HID_SMBUS CP2112 MFG_STR, a 30-byte
character buffer containing the ASCIl manufacturing string.

3. strlen is the length of manufacturingString in bytes. The maximum string length is 30 bytes.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

3.6. HidSmbus_GetManufacturingString

Description: This function retrieves the USB manufacturing string.

Prototype: HID_SMBUS_STATUS HidSmbus_GetManufacturingString (HID_SMBUS _DEVICE
device, char* manufacturingString, BYTE* strlen)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. manufacturingString is a variable of type HID_SMBUS CP2112 MFG_STR, a 30-byte
character buffer that will contain the ASCII manufacturing string.

3. strlen returns the length of the string in bytes.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

3.7. HidSmbus_SetProductString

Description: This function allows one-time customization of the USB product string.

Prototype: HID_SMBUS STATUS HidSmbus_SetProductString (HID_SMBUS DEVICE device,
char* productString, BYTE strlen)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. productString is a variable of type HID_SMBUS_CP2112 PRODUCT_STR, a 30-byte
character buffer containing the ASCII product string.

3. strlen is the length of productString in bytes. The maximum string length is 30 bytes.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

28 Rev. 0.2

SILICON LABS

AN496

3.8. HidSmbus_GetProductString

Description: This function retrieves the USB product string.

Prototype: HID_SMBUS STATUS HidSmbus_GetProductString (HID_SMBUS DEVICE device,
char* productString, BYTE* strlen)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. productString is a variable of type HID_SMBUS_CP2112 PRODUCT_STR, a 30-byte
character buffer that will contain the ASCII product string.

3. strlen returns the length of the string in bytes.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

3.9. HidSmbus_SetSerialString

Description: This function allows one-time customization of the USB serial string.

Prototype: HID_SMBUS STATUS HidSmbus_SetSerialString (HID_SMBUS DEVICE device,
char* serialString, BYTE strlen)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. serialString is a variable of type HID_SMBUS_ CP2112 SERIAL_STR, a 30-byte character
buffer containing the ASCII serial string.

3. strlen is the length of serialString in bytes. The maximum string length is 30 bytes.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

3.10. HidSmbus_GetSerialString

Description: This function retrieves the USB product string.

Prototype: HID_SMBUS STATUS HidSmbus GetSerialString (HID_SMBUS DEVICE device,
char* serialString, BYTE* strlen)

Parameters: 1. device is the device object pointer as returned by HidSmbus_Open().

2. serialString is a variable of type HID_SMBUS_ CP2112 SERIAL_STR, a 30-byte character
buffer that will contain the ASCII product string.

3. strlen returns the length of the string in bytes.

Return Value: HID_SMBUS_STATUS = HID_SMBUS_SUCCESS
HID_SMBUS_INVALID_DEVICE_OBJECT
HID_SMBUS_INVALID_PARAMETER
HID_SMBUS_DEVICE_IO_FAILED

Rev. 0.2 29

SILICON LABS

AN496

4, HID SMBUS STATUS Returns Codes

Each library function returns an HID_SMBUS_STATUS return code to indicate that the function returned
successfully or to describe an error. Table 3 describes each error code.

Table 3. Error Code Descriptions

Definition

Value

Description

HID_SMBUS_SUCCESS

0x00

Function returned successfully.*

HID_SMBUS_DEVICE_NOT_FOUND

0x01

Indicates that no devices are connected or that the
specified device does not exist.

HID_SMBUS_INVALID_HANDLE

0x02

Indicates that the handle value is NULL or
INVALID_HANDLE_VALUE or that the device with
the specified handle does not exist.

HID_SMBUS_INVALID_DEVICE_OBJECT

0x03

Indicates that the device object pointer does not
match the address of a valid HID USB-to-SMBus
device.

HID_SMBUS_INVALID_PARAMETER

0x04

Indicates that a pointer value is NULL or that an
invalid setting was specified.

HID_SMBUS_INVALID_REQUEST_LENGTH

0x05

Indicates that the specified number of bytes to read
or write is invalid. Check the read and write length
limits.

HID_SMBUS_READ_ERROR

0x10

Indicates that the read was not successful and did
not time out. This means that the host could not get
an input interrupt report.

HID_SMBUS_WRITE_ERROR

0ox11

Indicates that the write was not successful. This
means that the output interrupt report failed or
timed out.

HID_SMBUS_READ_TIMED_OUT

0x12

Indicates that a read failed to return the number of
bytes requested before the read timeout elapsed.
The read timeout should be increased.

HID_SMBUS_WRITE_TIMED_OUT

0x13

Indicates that a write failed to complete sending the
number of bytes requested before the write timeout
elapsed. The write timeout should be increased.

HID_SMBUS_DEVICE_IO_FAILED

0x14

Indicates that the host was unable to get or set a
feature report. The device might be disconnected.

HID_SMBUS_DEVICE_ACCESS_ERROR

0x15

Indicates that the device or device property could
not be accessed. Either the device is not opened,
already opened when trying to open, or an error
occurred while trying to get HID information.

HID_SMBUS_DEVICE_NOT_SUPPORTED

0x16

Indicates that the current device does not support
the corresponding action. Functions listed in this
document are for the CP2112 only.

HID_SMBUS_UNKNOWN_ERROR

OxFF

This is the default return code value. This value
should never be returned.

*Note: Set functions may return success, indicating that the device received the request; however, there is no
indication that the device actually performed the request (i.e., the setting was invalid). The user must call the
corresponding get function to verify that the settings were properly configured.

30

Rev. 0.2

SILICON LABS

AN496

5. Thread Safety

The HID USB-to-SMBus library and associated functions are not thread safe. This means that calling library
functions simultaneously from multiple threads may have undesirable effects.

To use the library functions in more than one thread, the user should do the following:

1. Call library functions from within a critical section such that only a single function is being called at any given
time. If a function is being called in one thread, then the user must prevent another thread from calling any
function until the first function returns.

2. HidSmbus_GetReadResponse(), HidSmbus_GetTransferStatusResponse(),
HidSmbus_TransferStatusRequest(), and HidSmbus_CancelTransfer() issue pending read requests that cannot
be canceled from another thread. If the user calls HidSmbus_Close() in a different thread than the thread in
which the read request was created, then the device will not be accessible after calling HidSmbus_Close(). The
thread that issued the pending read request must return/terminate successfully before the device can be
accessed again. See “6. Thread Read Access Models (For Windows)” on page 32 for more information.

Rev. 0.2 31

SILICON LABS

AN496

6. Thread Read Access Models (For Windows)

There are several common read access models when using the HID USB-to-SMBus library. There are some
restrictions on the valid use of a device handle based on these models. Cancello() can only cancel pending I/O
(reads/writes) issued in the same thread in which Cancello() is called. Due to this limitation, the user is responsible
for cancelling pending I/O before closing the device. Failure to do so will result in an inaccessible HID USB-to-
SMBus device until the thread releases access to the device handle. The following tables describe five common

access models and the expected behavior.

Notes:

1. HidSmbus_Close() calls Cancello() prior to calling CloseHandle().
2. QueuelnterruptReports() issues a pending interrupt report read request. The request completes if at least one input

report is read. The request is still pending if the operation times out. The following functions call

QueuelnterruptReports():

HidSmbus_GetReadResponse()
HidSmbus_GetTransferStatusResponse()
HidSmbus_TransferStatusRequest()
HidSmbus_CancelTransfer()

3. HidSmbus_Cancello() forces any pending requests issued by the same thread to complete (cancelled).

4. *indicates that a read is still pending and was issued in the specified thread.

5. ? indicates that a read is still pending and was issued in one of the threads (indeterminate).

Table 4. Single Thread Access Model (Safe)

Thread A Thread B Result
HidSmbus_Open() — —
QueuelnterruptReports()* — _
HidSmbus_Close() — OK

Table 5. Split Thread Access Model (Unsafe)

Thread A

Thread B

Result

HidSmbus_Open()

QueuelnterruptReports()*

HidSmbus_Close()

Error: Device inaccessible

Terminate Thread

OK: Thread relinquishes device access

Table 6. Split Thread Access Mode (Safe)

Thread A Thread B Result
HidSmbus_Open() — —
— QueuelnterruptReports()* —
— HidSmbus_Cancello() —
HidSmbus_Close() — OK

32

Rev. 0.2

SILICON LABS

AN496

Table 7. Multi-Thread Access Model (Unsafe)

Thread A

Thread B

Result

HidSmbus_Open()

QueuelnterruptReports()?

QueuelnterruptReports()?

HidSmbus_Close()

QueuelnterruptReports()* Thread A: OK

QueuelnterruptReports()* Thread B: Error: Device inac-

cessible

Terminate Thread

OK: Thread relinquishes device access

Table 8. Multi-Thread Access Model (Safe)

Thread A Thread B Result
HidSmbus_Open() — —
QueuelnterruptReports()? QueuelnterruptReports()? —
— HidSmbus_Cancello() —
HidSmbus_Close() — OK

SILICON LABS

Rev. 0.2

33

AN496

7. Surprise Removal (For Windows)

HidSmbus_GetHidGuid() returns the HID GUID so that Windows applications or services can register for the
WM_DEVICECHANGE Windows message. Once registered, the application will receive device arrival and
removal notices for HID devices. The application must retrieve the device path to filter devices based on VID/PID.
Similarly, if a DBT_DEVICEREMOVECOMPLETE message is received, the application must check to see if the
device path matches the device path of any connected devices. If this is the case, then the device was removed
and the application must close the device. Also, if a DBT_DEVICEARRIVAL message is received, the application
might add the new device to a device list so that users can select any HID device matching the required VID/PID.
See accompanying example code for information on how to implement surprise removal and device arrival. Search
for Knowledge Base Article # 222649, 311158, and 311153 for programming examples for C++, Visual Basic .NET,
and Visual C#.

34 Rev. 0.2

SILICON LABS

AN496

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 2

m Added Table 1.
m Added support for the Mac OS X dynamic library.
m Removed Appendix.

SILICON LABS

Rev. 0.2

35

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

loT Portfolio SW/HW Quality Support and Community
www.silabs.com/loT www.silabs.com/simplicity www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

®

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS http://www.silabs.com

	Document Change List
	1. Introduction
	2. API Functions
	2.1. HidSmbus_GetNumDevices
	2.2. HidSmbus_GetString
	2.3. HidSmbus_GetOpenedString
	2.4. HidSmbus_GetIndexedString
	2.5. HidSmbus_GetOpenedIndexedString
	2.6. HidSmbus_GetAttributes
	2.7. HidSmbus_GetOpenedAttributes
	2.8. HidSmbus_Open
	2.9. HidSmbus_Close
	2.10. HidSmbus_IsOpened
	2.11. HidSmbus_ReadRequest
	2.12. HidSmbus_AddressReadRequest
	2.13. HidSmbus_ForceReadResponse
	2.14. HidSmbus_GetReadResponse
	2.15. HidSmbus_WriteRequest
	2.16. HidSmbus_TransferStatusRequest
	2.17. HidSmbus_GetTransferStatusResponse
	2.18. HidSmbus_CancelTransfer
	2.19. HidSmbus_Cancello
	2.20. HidSmbus_SetTimeouts
	2.21. HidSmbus_GetTimeouts
	2.22. HidSmbus_SetSmbusConfig
	2.23. HidSmbus_GetSmbusConfig
	2.24. HidSmbus_Reset
	2.25. HidSmbus_SetGpioConfig
	2.26. HidSmbus_GetGpioConfig
	2.27. HidSmbus_ReadLatch
	2.28. HidSmbus_WriteLatch
	2.29. HidSmbus_GetPartNumber
	2.30. HidSmbus_GetLibraryVersion
	2.31. HidSmbus_GetHidLibraryVersion
	2.32. HidSmbus_GetHidGuid

	3. User Customization API Functions
	3.1. HidSmbus_SetLock
	3.2. HidSmbus_GetLock
	3.3. HidSmbus_SetUsbConfig
	3.4. HidSmbus_GetUsbConfig
	3.5. HidSmbus_SetManufacturingString
	3.6. HidSmbus_GetManufacturingString
	3.7. HidSmbus_SetProductString
	3.8. HidSmbus_GetProductString
	3.9. HidSmbus_SetSerialString
	3.10. HidSmbus_GetSerialString

	4. HID_SMBUS_STATUS Returns Codes
	5. Thread Safety
	6. Thread Read Access Models (For Windows)
	7. Surprise Removal (For Windows)

