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AN220929 introduces you to Cypress’ EZ-BLE™ WICED family of Bluetooth modules. EZ-BLE modules are fully 

qualified and certified Bluetooth Low Energy (BLE) solutions. These modules provide a complete Bluetooth solution, 

integrating a Bluetooth radio system, two crystals, antenna, and passive components required for BLE operation. This 

application note helps you explore the EZ-BLE Module architecture and development tools and shows you how to create 

your first project with the WICED Smart SDK, the development tool used for all WICED-based EZ-BLE Modules. This 

application note also guides you to more resources to accelerate in-depth learning about EZ-BLE WICED solutions. 
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1 Introduction 

Bluetooth Low Energy (BLE) is an ultra-low-power wireless standard defined by the Bluetooth Special Interest Group 
(SIG) for low-power, short-range communication. It features a physical layer, protocol stack, and profile architecture, 
all designed and optimized for the lowest power consumption. BLE operates in the 2.4-GHz ISM band, with a data 
rate up to 1 Mbps for 4.2 compliant devices, and up to 2 Mbps for BLE 5.0 compliant devices. 

BLE is used in a wide range of applications. The use of BLE in these applications also varies widely in production 
volume, from very low- to high-volume end products. The use of fully qualified, certified, BLE modules removes time- 
consuming RF board design and costly qualification/certification processes. As such, modules have quickly become 
the design preference. 

WICED (pronounced “wik-id”) is Cypress IoT platform that enables rapid development and deployment of connected 
IoT products. Wireless Internet Connectivity for Embedded Devices (WICED) in conjunction with EZ-BLE modules 
provides a great feature set to simplify development and release of BLE-enabled products by eliminating the 
complexity of wireless RF hardware design, allowing customers to focus on their IoT product development.   

The WICED SMART™ SDK is pre-integrated, pre-tested and continuously updated, containing: 

 WICED APIs and drivers to make wireless connectivity easy and flexible  

 Proven production ready stacks (e.g., networking, security) 

 Pre-integrated world-class IoT cloud platforms (e.g., Amazon AWS, IBM BlueMix) 

 

The EZ-BLE module and WICED ecosystem accelerate your time-to-market, by providing: 

 Partners who are experts in product development with the WICED SDK 

 Partners who are experts in integrating embedded systems with mobile and cloud applications 

 A professional, highly engaged community 

 

The Cypress EZ-BLE WICED Module family provides fully integrated, qualified, and certified BLE systems that 
integrate 24-MHz crystal oscillators, passive components, on-board chip or trace antennas, and the WICED BLE 
chip, which includes the Bluetooth radio, analog-to-digital converter inputs, PWM control, serial communication 
protocols (I

2
C, SPI, UART), memory, and an ARM

®
 Cortex

®
-M3 microcontroller.  

EZ-BLE WICED Modules enable quick time-to-market by eliminating time-consuming and costly RF hardware 
development, certification, and qualification processes, offering an effective alternative to completing a BLE system 
design from the ground up.  

EZ-BLE WICED Modules provide the most cost-effective solution for sensor-based Internet of Things (IoT) solutions, 
while providing world-class RF performance by utilizing the latest Cypress WICED silicon devices.  

2 More Information 

This section provides a list of EZ-BLE Module learning resources that can help you to get started and develop 
complete applications with your EZ-BLE Module.  

2.1 EZ-BLE WICED Module Datasheet 

The EZ-BLE WICED Module datasheets list the features, pinouts, device-level specifications, and fixed-function 
peripheral electrical specifications of the EZ-BLE WICED Modules.  

2.2 EZ-BLE WICED Evaluation Boards 

Each EZ-BLE WICED Module offers a low-cost Arduino-compatible evaluation board to provide an easy-to-use 
vehicle to develop and evaluate EZ-BLE WICED Modules without requiring custom hardware design. These 
evaluation boards are standalone Arduino-compatible baseboards, capable of interfacing to Arduino-compatible 
shields.   

http://www.cypress.com/
http://www.cypress.com/search/all/EZ-BLE%E2%84%A2%20WICED%20Module?f%5b0%5d=meta_type%3Atechnical_documents
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=field_related_products%3A37896&f%5b2%5d=software_tools_meta_type%3A577
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=field_related_products%3A37896&f%5b2%5d=software_tools_meta_type%3A577
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2.3 Silicon Device Datasheet 

Cypress WICED BLE datasheets lists the features, pinouts, device-level specifications, and fixed-function peripheral 
electrical specifications of all Cypress WICED BLE devices. Datasheets for applicable WICED BLE devices 
discussed in this application note can be found at the below links:  

 CYW20737 Single-Chip Bluetooth Low Energy-Only System-On-Chip  

2.4 Cypress WICED Bluetooth Community 

Whether you’re a customer, partner, or a developer interested in the latest Cypress innovations, the Cypress WICED 
Bluetooth Community offers you a place to learn, share and engage with both Cypress experts and other embedded 
engineers around the world. 

2.5 Application Notes 

Application notes assist you with understanding specific features of your device for designing your BLE application. 
For a complete list, visit Cypress WICED BLE application notes. 

2.6 Technical Support 

If you have any questions, our technical support team is happy to assist you. You can create a support request by 
visiting Cypress Technical Support.  

If you are in the United States, you can talk to our technical support team by calling our toll-free number: +1-800-541-
4736.  You can also use the following support resources if you need quick assistance. 

 Self-help 

 Local sales office locations 

3 EZ-BLE WICED Module Overview  

This application note introduces the reader specifically to the EZ-BLE WICED Module solution and how to get started.  
If you are looking for a detailed overview of the Bluetooth Low Energy standard, see AN91267 - Getting Started with 
PSoC

®
 4 BLE.   

EZ-BLE WICED Modules offer fully integrated and fully certified BLE solutions allowing rapid development and 
deployment of your BLE product. This section provides an overview of the EZ-BLE WICED Modules available today. 
For detailed information on each module referenced in this section, see Appendix B: EZ-BLE Module Product Details.  

All EZ-BLE WICED Modules ship with all required components to achieve full BLE functionality, including:  

 PCB substrate 

 Cypress WICED BLE IC  

 Refer to the Module datasheet for references and links to the datasheet of the silicon used in each module.  

 Crystal oscillators 

 24.0-MHz external crystal oscillator  

 EZ-BLE WICED BLE Modules do not contain a 32-kHz external crystal oscillator, but utilize the integrated 
oscillator on the silicon device.  Each module does provide an option for an external 32-kHz input if desired.  

 Chip or Trace antenna 

 Passive components (resistor, capacitor, inductor) 

 RF Shield, unless otherwise noted 

 

  

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cyw20737-single-chip-bluetooth-low-energy-only-system-chip-support-wireless
https://community.cypress.com/community/wiced-smart
https://community.cypress.com/community/wiced-smart
http://www.cypress.com/search/all/WICED%20APPLICATION%20NOTE?f%5b0%5d=meta_type%3Atechnical_documents
https://secure.cypress.com/myaccount/?id=25&techSupport=1&source=an79953
http://www.cypress.com/support
http://www.cypress.com/?id=1062
http://www.cypress.com/documentation/application-notes/an91267-getting-started-psoc-4-ble?source=search&cat=technical_documents
http://www.cypress.com/documentation/application-notes/an91267-getting-started-psoc-4-ble?source=search&cat=technical_documents
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3.1 EZ-BLE WICED Module Family Features 

Table 1 summarizes the features and capabilities of every EZ-BLE WICED Module available from Cypress. 

Table 1. EZ-BLE WICED Module Features and Capabilities 

Features Details 

BLE Subsystem BLE radio and link-layer hardware  

CPU ARM Cortex-M3 32-bit processor  

Flash Memory Up to 128 KB (module dependent) 

SRAM 60 KB 

ROM 320-KB ROM, containing BLE stack and specific BLE profiles 

GPIOs Up to 14 (module-dependent) 

CapSense
®
 None (See Getting Started with EZ-BLE Creator Modules for this functionality) 

CapSense Gestures None (See Getting Started with EZ-BLE Creator Modules for this functionality) 

ADC 10-bit auxiliary ADC with nine analog channels 

Opamps None (See Getting Started with EZ-BLE Creator Modules for this functionality)  

Comparators None (See Getting Started with EZ-BLE Creator Modules for this functionality) 

Current DACs None (See Getting Started with EZ-BLE Creator Modules for this functionality) 

Power Supply Range 1.62 V to 3.6 V (module dependent) 

Low-Power Modes Deep-Sleep (HIDOFF) mode at 1.5 µA typical 
Stop mode at 50 µA typical 

Serial Communication I
2
C, SPI, Peripheral-UART (application interface), HCI-UART (programming) 

I
2
S Communication Interface Module dependent 

Pulse-Width Modulator (PWM) 4 

Universal Digital Blocks (UDBs) None (See Getting Started with EZ-BLE Creator Modules for this functionality) 

Clocks  32-kHz LPCLK (Low Power Clock) 

Power Supply Monitoring Power-on reset (POR)  

Integrated Crystal Oscillators 24-MHz integrated on module 

32-kHz connection available (optional) 

Antenna Type Trace or Chip Antenna (module dependent) 

Certifications FCC, ISED, MIC, CE, unless otherwise noted in the datasheet 

Each EZ-BLE WICED Module has a Cypress Knowledge Base Article, which 
contains the regulatory testing reports and certificates for all countries the module 
is certified against.  See the More Information section of the module datasheet for 
links to this information.   

 

  

http://www.cypress.com/
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
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3.2 EZ-BLE WICED Module Low Power Modes 

EZ-BLE WICED Modules support the following power modes as illustrated in Table 2: 

 Active mode: This is the primary mode of operation. In this mode, all peripherals are available. 

 Sleep mode: In this mode, the CPU is in Sleep mode; SRAM is in retention. A GPIO interrupt or timer interrupt 
from the local oscillator (LO) can transition the device from sleep state to active state. Peripherals are not 
available in this state. Bluetooth connections can be maintained in this state.  

 Deep-Sleep mode, also known as HIDOFF: In this mode, the baseband and core are powered OFF by disabling 
internal LDO output (LDOOUT). Only a GPIO interrupt can wake the device and transition it to active state. This 
mode minimizes chip power consumption and is intended for long periods of inactivity. Bluetooth connections 
cannot be maintained in this state because the baseband and core are powered OFF.   

 

Table 2. Power Modes 

Mode Interval 
Current  

Consumption  
(Typical) 

Code  
Execution 

SRAM 
Retention 

Maintain 
Bluetooth 

Connection 

Peripherals  
Available 

Clock  
Sources  
Available 

Wake-Up  
Sources 

Active (CPU Only)1 – 
3.56 mA  

@ 24 MHz 
Yes Yes – – LO, 24 MHz - 

Sleep – 50 µA No Yes Yes None LO 
GPIO,  
Internal LO Timer 

Deep Sleep – 1.5 µA No No No None None GPIO 

Advertisement Only 20 ms2 1.9 mA Yes Yes – All LO, 24 MHz 

GPIO,  
Internal LO Timer 

Active Connection 10 ms2 1.85 mA Yes Yes Yes All LO, 24 MHz 

Active Connection 1,000 ms2 80 µA Yes Yes Yes All LO, 24 MHz 

Active Connection 4,000 ms2 70 µA Yes Yes Yes All LO, 24 MHz 

 

3.3 EZ-BLE WICED Module Device Security 

EZ-BLE WICED Modules provide mechanisms for implementing security and authentication schemes using the 
following: 

 RSA (Public Key Cryptography) 

 X.509 (excluding parsing) 

 Hash functions: MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 

 Message authentication code: HMAC MD5, HMAC SHA-1 

  

                                            
1
 CPU is active with no RF activity, and no peripheral interface.  

2
 The module is in Sleep mode when there is no radio activity. Typically, radio activity (TX and RX) will be approximately 1 ms.  The 

module is in Sleep mode for the remaining time during the interval specified.  

http://www.cypress.com/
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3.4 EZ-BLE WICED Marketing Part Number Overview  

Each device within the EZ-BLE WICED Module family has a unique Marketing Part Number (MPN) used for ordering. 
The MPN format is shown in Figure 1. 

Figure 1. EZ-BLE Module Marketing Part Numbering Format 

 

Table 3 summarizes the features and capabilities of each specific EZ-BLE WICED Module MPN available from 
Cypress. Click on the specific part number for more detailed information on the device or refer to Appendix B: EZ-
BLE Module Product Details. 
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3
 Measured in meters and is specified as Full Line-of-Sight (LoS) in a Noise-Free environment. 

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cyw20737-single-chip-bluetooth-low-energy-only-system-chip-support-wireless
http://www.cypress.com/documentation/datasheets/cyw20737-single-chip-bluetooth-low-energy-only-system-chip-support-wireless
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4 Development Tools 

Cypress supports EZ-BLE WICED Modules with high-quality, integrated software tools. These include the following 
software: 

1. WICED SMART SDK and IDE (used for EZ-BLE modules based on CYW20737 silicon) 

2. CySmart PC application  

3. CySmart Android app 

4. CySmart iOS app 

 

4.1 WICED SMART SDK and IDE 

The WICED SMART SDK provides an Eclipse-based IDE and complete software library for developing on 
CYW20737-based EZ-BLE modules. This tool enables a simple build and download process as well as debugging 
capabilities on supported development kits. It also includes the graphical WICED Bluetooth Designer tool for quickly 

defining new BLE designs and custom GATT database structures. 

Note, this SDK is only applicable to EZ-BLE WICED Modules, and should not be used with EZ-BT WICED Modules 

or EZ-BLE Creator modules. 

The WICED SMART SDK includes the following: 

 Bluetooth 4.1 software stack including GAP, ATT, GATT, and SMP profiles 

 Generic profile-level API 

 Drivers to access onboard peripherals including UART, SPI, I
2
C, ADC, PWM, Keyscan, etc. 

 Reference applications for the devices with profiles defined by the Bluetooth SIG 

 WICED SMART API documentation and related documents 

 Utilities to support development in Windows, OS X, and Linux environments 

 Drivers and detailed information to access the five sensors on the WICED_SENSE2 evaluation kit 

 

The WICED SMART SDK runs on 32- and 64-bit versions of Microsoft Windows, OS X, and Linux. The SDK is 
distributed as both a standalone 7-zip file suitable for all operating systems and a bundle with the WICED Integrated 
Development Environment as an executable installer for Windows and Mac operating systems. The development 
computer requires a single USB port to connect to the WICED SMART tag. 

Note that a 32-bit version of Java is required to run the Eclipse-based IDE. 

4.1.1 WICED SMART IDE Overview 

The WICED SMART SDK comes with an Eclipse-based IDE that provides a comprehensive environment for creating, 
building, programming, and debugging WICED BLE applications. Figure 2 below shows the default layout with 
various sections of the IDE. 

Building and downloading WICED SMART projects requires a slightly different procedure than some IDEs and 
toolchains use, so it is a good idea to familiarize yourself with the application early. 

http://www.cypress.com/
https://community.cypress.com/community/wiced-smart/wiced-smart-documentation
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en
https://itunes.apple.com/us/app/cysmart/id928939093?mt=8
http://www.cypress.com/documentation/development-kitsboards/bcm9wicedsense2-evaluation-and-development-kit
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Figure 2. WICED SMART IDE Layout 

 

4.1.2 Project Explorer 

This pane in the IDE provides access to all of the source files for the projects active in the current workspace. The 
WICED SDK comes with a significant set of example projects inside the /Apps subfolder where the SDK is installed. 
All of these projects are visible in the Project Explorer view by default. When you create a new project as described in 
Section 7 (My First EZ-BLE WICED Module Design), it will be added to this list of projects. 

The standard workspace root folder is the SDK installation root folder, containing the following items: 

 /Apps folder with all example projects and any created projects 

 /build folder with build output files (created when using “Make” targets as intended) 

 /Doc folder with various SDK-related HTML and PDF reference materials 

 /Drivers folder with FTDI USB-to-UART bridge device drivers for Microsoft Windows 

 /include folder with header files supporting various chipset hardware features 

 /Platforms folder with board-specific toolchain and build definition files 

 /Tools folder with various toolchain binaries and helper applications used for building and downloading 

 /Wiced-Smart folder with header and source files for many application-visible APIs 

 Top-level Makefile template and make scripts for building all WICED SMART projects 

 Changelog, license, version, and general README text files 

 

Once you get started, the /Apps folder containing your project(s) will be the most relevant location. However, the 
documentation and header/source files provide a lot of helpful reference information during development as well. 

 

 4.1.5 Console 

4.1.4 Make Target List 

4.1.3 Code Editor 4.1.2 Project Explorer 

http://www.cypress.com/
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4.1.3 Code Editor 

This pane allows editing all source code present in any project in the workspace. Open-source files are arranged by 
tabs for easy navigation. The Eclipse IDE foundation provides comprehensive syntax highlighting features, code 
completion, and other helpful functionality. 

4.1.3.1 Eliminating False Code Analysis Errors 

The ARM-GCC toolchain that WICED SMART uses to compile source files is not directly accessible to the Eclipse 
editor’s built-in code analysis tools. Instead, the IDE uses a different compiler for live analysis, and this may result in 
identified errors that are not actually errors. For example, you may encounter this error while following the example 
project instructions contained in this guide: 

Figure 3. Incorrect Code Analysis Error Identification 

 

The best test for syntax errors in your code is the compile process, as any real warnings or errors will be included in 
the build output. However, you can selectively disable the code analysis features that trigger these errors by following 
these simple steps: 

1. Click the Window menu, then “Preferences” item. 

2. Expand C/C++ and select the Code Analysis entry. 

3. Uncheck the Syntax and Semantic Errors box (may need to scroll down in the “Problems” section to see this). 

4. Click OK to save changes. 

Figure 4 shows what the final Preferences subsection looks like after disabling all of the Code Analysis syntax errors 
as described above. 

Figure 4. Disabling Syntax and Semantic Analysis 

 

http://www.cypress.com/
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4.1.3.2 Improving Search Results 

Because the workspace includes multiple example projects and many SDK resources, global code searches often 
return more information than you need. To mitigate this, you can configure narrower search parameters to allow 
searching a single project at a time by defining working sets: 

1. Click the Search menu, then “Search…” item (or press Ctrl + H). 

2. Click the Customize... button and disable all items except “File Search”, and then click OK. 

3. Click the Choose… button next to the “Working set” selection field. 

4. Click the New… button to define a new working set, and then choose “C/C++” and click Next. 

5. Expand Wiced-Smart-SDK > Apps and select your project folder. 

6. Enter a working set name (e.g., the same name as your project). 

7. Click Finish to complete the working set definition. 

8. Click the Selected Working Sets option and enable only the new set, then click OK. 

9. Change the Scope setting to “Working set” if it does not change automatically. 

10. Search as desired with these settings to obtain results only within your project. 

You can still perform global searches simply by changing the scope back to “Workspace” at any time, or by 
highlighting any text in the code editor and pressing Ctrl + Alt + G. 

4.1.3.3 Taking Advantage of Code Completion 

The WICED SMART SDK provides numerous APIs to use all of the features available on supported target chipsets, 
and it can be challenging to keep the names and parameters straight. To help with this, use the Ctrl + Space shortcut 

key after typing the first few letters or prefix of a function name; Eclipse will pop up a quick list of potential completed 
names, as shown in the figure below. 

Figure 5. Code Completion Example 

 

Try code completion with any of the following API method prefixes (not a comprehensive list): 

 blecm – Core BLE application functions, callbacks, and some connection management 

 bleprofile – Profile-specific behavior, NVRAM access, sleep requests, and other functions 

 gpio – General-purpose I/O (GPIO) features 

 leatt – GATT Client and Server callbacks, responses, and constants 

 legattdb – GATT Client and Server operations 

http://www.cypress.com/


 

Getting Started with EZ-BLE WICED Modules 

www.cypress.com Document No. 002-20929 Rev. **                     11 

 lesmp – Security Manager Protocol (SMP) features such as pairing/bonding 

 lel2cap – L2CAP connectivity features (includes some connection and ATT-related behavior) 

 puart – Peripheral UART features 

 devlpm – Low-power-mode features 

 adc – Analog/Digital Conversion (ADC) features 

 pwm – Pulse Width Modulation (PWM) features 

4.1.4 Make Target List 

This pane contains individual build targets for all of the example projects that come pre-installed with the WICED 
SMART SDK, as well as make targets for any new projects that you create. Each build target provides a unique 
combination of the following items: 

 Project name (e.g., “find_me”) 

 Target platform (e.g., “CYBLE_013025_EVAL”) 

 Operational arguments (e.g., “download”, “UART=COM5”, and others) 

 

Double-clicking on a make target will trigger the build process for that target. You can also use the F9 keyboard 

shortcut in the Eclipse IDE to rebuild the last selected make target. 

The project name and target platform are separated by a dash (“–”), while the name/target and all subsequent 
operational arguments are separated by spaces. Possible arguments are described in the output from the “help” 
target, which you can build at any time to see details. The output from this target is reproduced here for quick 
reference: 

http://www.cypress.com/
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Any single project may have one or more defined make targets. For instance, one target might perform only the 
compile step, while another performs both compile and download, and another may explicitly provide the 
programming COM port to avoid the serial port detection step if the port is known. 

Here are some examples of make targets that come with the SDK: 

 glucose_meter-BCM920736TAG_Q32 download 

 ibeacon_device-BCM920736TAG_Q32 download 

 puart_control-BCM920737TAG_Q32 download 

 

The platforms shipped with the SDK are used with the various WICED “Tag” evaluation products that are built around 
the CYW2073x chipsets. However, for EZ-BLE WICED Module evaluation, we will be working with the CYBLE-
013025-EVAL board instead, which requires a different platform definition. Section 7.3 (My First EZ-BLE WICED 
Module Design) provides instructions on where to obtain and how to install this platform, or you can refer to KBA 
220379 on the Cypress website. 

Usage: make <target> [download]  [recover] [DEBUG=1|0] [VERBOSE=1] [UART=yyyy] [JOBS=x] [PLATFORM_NV=EEPROM|SFLASH] 

[BT_DEVICE_ADDRESS=zzzzzzzzzzzz|random] 

 

  <target> 

    One each of the following mandatory [and optional] components separated by '-' 

      * Application (Apps in sub-directories are referenced by subdir.appname) 

      * Hardware Platform (BCM920737TAG_Q32 BCM920736 BCM920736TAG_Q32 CYBLE_013025_EVAL) 

      * [BASE location] (BASErom BASEram BASEflash) 

      * [SPAR location] (SPARrom SPARram SPARflash) 

      * [Toolchain] (RealView Wiced CodeSourcery) 

 

  [download] 

    Download firmware image to target platform 

 

  [build] 

    Builds the firmware and OTA images. 

 

  [recover] 

    Recover a corrupted target platform 

 

  [DEBUG=1|0] 

    Enable or disable debug code in application. When DEBUG=1, watchdog will be disabled, 

    sleep will be disabled and the app may optionally wait in a while(1) for the debugger 

    to connect 

 

  [VERBOSE=1] 

    Shows the commands as they are being executed 

 

  [JOBS=x] 

    Sets the maximum number of parallel build threads (default=4) 

 

  [UART=yyyy] 

    Use the uart specified here instead of trying to detect the Wiced-Smart device. 

    This is useful when you are working on multiple smart devices simultaneously. 

 

  [PLATFORM_NV=EEPROM|SFLASH] 

    The non-volatile storage. Default is EEPROM. 

 

  [BT_DEVICE_ADDRESS=zzzzzzzzzzzz|random] 

    Use the 48-bit Bluetooth address specified here instead of the default setting from 

    Platform/*/*.btp file. The special string 'random' (without the quotes) will generate 

    a random Bluetooth device address on every download. 

 

  Notes 

    * Component names are case sensitive 

    * 'Wiced', 'SPI', 'UART' and 'debug' are reserved component names 

    * Component names MUST NOT include space or '-' characters 

    * Building for release is assumed unless '-debug' is appended to the target 

 

  Example Usage 

    Build for Release 

       make proximity-BCM920737TAG_Q32 build 

 

    Build, Download and Run using the default programming interface 

       make proximity-BCM920737TAG_Q32 download 

 

    Build, Download and Run using specific UART port, with a specific Bluetooth decice address 

       make proximity-BCM920737TAG_Q32 download UART=COMx BT_DEVICE_ADDRESS=20736A1C0FFE 

 

    Build, Download to Serial Flash and Run using default programming interface, select a random Bluetooth device address 

       make proximity-BCM920737TAG_Q32 download PLATFORM_NV=SFLASH BT_DEVICE_ADDRESS=random 

 

    Clean output directory 

       make clean 

http://www.cypress.com/
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4.1.5 Console 

This pane provides access to compiler output, which is helpful for status updates and critical for error analysis. The 
same area of the IDE window also allows a quick look at search results after performing a search, and enabled code 
analysis warnings or errors, and tasks identified by “TODO” comments in source files. 

4.1.5.1 Debug Trace Output 

One other key feature that the console pane optionally provides is specially decoded output from debug traces. This 
feature allows one-way output during normal code execution on the module. This debug output typically comes out 
the HCI UART TX pin (though it may be reconfigured in code to use the peripheral UART TX pin if PUART is not 
otherwise used). It allows printf-like formatting of output strings with between zero and six variable arguments in 

addition to the format string, via the following set of functions: 

 ble_trace0(string) 

 ble_trace1(string, arg1) 

 ble_trace2(string, arg1, arg2) 

 ... 

 ble_trace6(string, arg1, arg2, arg3, arg4, arg5, arg6) 

 

This set of functions behaves like the typical variable-argument printf function in C, except that the maximum 

supported variable argument count is six. 

Most examples and the automatically generated code from the WICED Bluetooth Designer tool use this debug trace 
output for simple execution flow monitoring. Since it is not possible to perform true break/step debugging with the 
WICED SMART SDK, this type of debug output is immensely helpful during the development phase. 

To use debug tracing with the CYBLE-013025-EVAL board, follow this procedure: 

1. Set SW1 positions 1-4 (PUART) to the OFF state and positions 5-6 (HCI UART) to the ON state. 

2. Compile and download the firmware into the module (application will begin executing immediately). 

3. Set SW1 position 6 (HCI UART RX) to the OFF state to disconnect it from the host. 

4. Use the Trace menu and select Start Debug Traces to begin capturing and decoding data. 

Figure 6. Starting Debug Traces 

 

5. Optionally, reboot the board with the SW2 (RESET) button if you need to capture boot-time output. 

6. When finished, use the Trace menu and Stop Debug Traces item to detach the console and release the serial 

port to allow downloading firmware again. 

The console output with debug traces enabled in the “find_me” example illustrated in this document looks like Figure 
7 below. The standard behavior begins with a create() message followed by a GATT database structure dump, and 

then the module begins advertising. 

http://www.cypress.com/
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Figure 7. Example Debug Trace Output 

 

If necessary, you can also use the Trace menu and Tracing Setup item to enable logging to a file, or to configure 

whether to use a specific serial port or the last one automatically determined by the download process. 

Figure 8. Example Debug Trace Output 

 

If your make target specifies the port with a UART=COMn argument, you should also manually select the debug trace 

port to match this because the IDE will not perform the discovery process necessary to make it work otherwise. 

Follow these guidelines when using debug traces for the smoothest experience: 

1. Ensure that the HCI UART RX pin is disconnected from the host before capturing traces. This prevents the 

module from booting back into HCI/programming mode unexpectedly if/when a chipset reset occurs. 

2. Ensure that the HCI UART RX pin is reconnected to the host before attempting to download firmware again. 

3. Ensure that you stop debug traces before attempting to download updated firmware into the module. 

4. Ensure that you configure the debug trace port manually if your target also specifies the COM port manually. 

5. Ensure that you configure the debug trace setup options only when tracing is disabled. Reconfiguring it while 
enabled is not possible. 

4.2 CySmart PC Application 

The CySmart Host Emulation Tool is a Windows application that emulates a BLE Central device using the CY5670 or 
CY5677 USB dongle. It provides a platform for you to test your EZ-BLE WICED Module Peripheral implementation 
over GATT or L2CAP connection-oriented channels by allowing you to discover and configure BLE services, 
characteristics, and attributes on your Peripheral. 

The CySmart PC application provides only BLE functions; it cannot communicate over any non-low-energy Bluetooth 
protocols (RFCOMM, SCO, etc.) that are supported on EZ-BT WICED Modules. 

Operations that you can perform with CySmart Host Emulation Tool include, but are not limited to: 

 Scan BLE Peripherals to discover available devices to which you can connect. 

 Discover available BLE attributes including services and characteristics on the connected Peripheral device. 

 Perform read and write operations on characteristic values and descriptors. 

 Receive characteristic notifications and indications from the connected Peripheral device. 

http://www.cypress.com/
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 Establish a bond with the connected Peripheral device using BLE Security Manager procedures. 

 Establish a BLE L2CAP connection-oriented session with the Peripheral device and exchange data per the 
Bluetooth 4.1 specification. 

 

Figure 9 and Figure 10 show the user interface of CySmart Host Emulation Tool. For more information on how to set 
up and use this tool, see the CySmart user guide from the Help menu. 

Figure 9. CySmart Host Emulation Tool Master Device Tab 

Advertisement and 

Scan Response Data

Discovered Device List

Log Window

Trusted Device List
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Figure 10. CySmart Host Emulation Tool Peripheral Device Attributes Tab 

Attribute Display 

and 

Configuration

List of Discovered 

Attributes

4.3 CySmart Mobile App 

In addition to the PC tool, you can download the CySmart mobile app for iOS or Android from the respective app 
stores. This app uses the iOS Core Bluetooth framework and the Android built-in platform framework for BLE 
respectively to configure your BLE-enabled smartphone as a Central device that can scan and connect to Peripheral 
devices. 

The CySmart mobile app provides only BLE functions; it cannot communicate over any non-low-energy Bluetooth 
protocols (RFCOMM, SCO, etc.) that are supported on EZ-BT WICED Modules. 

The mobile app supports SIG-adopted BLE standard profiles through an intuitive GUI and abstracts the underlying 
BLE service and characteristic details. Figure 11 and Figure 12 show a set of CySmart app screenshots for the Heart 
Rate Profile user interface.  

http://www.cypress.com/
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Figure 11. CySmart iOS App Heart Rate Profile Example  

 

Figure 12. CySmart Android App Heart Rate Profile Example  
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5 Development Kits and Evaluation Boards 

Cypress provides easy-to-use evaluation boards to help you develop your EZ-BLE WICED Module design.  

5.1 EZ-BLE WICED Module Evaluation Boards 

Each EZ-BLE WICED Module provides an evaluation board that can be used to develop and test the performance of 
the Cypress EZ-BLE WICED Module. EZ-BLE WICED evaluation boards are Arduino-compatible baseboards, 
designed to work as stand-alone evaluation vehicles, or in conjunction with Arduino-compatible shields.  

EZ-BLE WICED evaluation boards allow you to evaluate Cypress EZ-BLE Modules without having to design custom 
hardware to mount the Cypress EZ-BLE Module.   

Table 4 lists available EZ-BLE WICED Modules and their corresponding evaluation board part numbers. Click on your 
evaluation board for additional information.  

Table 4. EZ-BLE Modules and Corresponding Evaluation Board Part Numbers 

EZ-BLE WICED Module Part Number EZ-BLE WICED Evaluation Board Part Number 

CYBLE-013025-00 CYBLE-013025-EVAL 

CYBLE-013030-00 CYBLE-013025-EVAL 
 

Each EZ-BLE WICED evaluation board contains the following components:  

 Cypress EZ-BLE Module – soldered directly to the evaluation board 

 PCB substrate 

 Arduino-compatible baseboard headers 

 USB-to-UART Bridge 

 USB connection (for WICED SMART SDK PC interface, programming, and EZ-Serial interface) 

 Connection headers for HCI-UART direct connection (as needed) 

 A configuration switch network is provided to configure the UART connection to the USB connector. This 
switch network can be configured to enable either HCI-UART or Peripheral-UART to the USB connector.  

 Header connection for current consumption measurement 

 Configuration headers for setting the desired power supply level 

 Power supply jumper for current consumption measurement 

 Reset and switch 

 User-defined switch element 

 Inductors (for power supply noise reduction) – refer to your EZ-BLE WICED Module datasheet for recommended 
external components)  

 

EZ-BLE WICED evaluation boards are designed to simulate the placement and connection of the EZ-BLE Modules in 
a final application. All host-side layout pattern recommendations (as shown in each specific module’s datasheet) are 
followed for each evaluation board.   

See Appendix C: EZ-BLE WICED Evaluation Board Details for details on the connections available for each of the 
EZ-BLE WICED evaluation boards.  

http://www.cypress.com/
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6 EZ-BLE WICED Module Development Setup (WICED SMART SDK) 

Figure 13 shows the hardware and software tools required for evaluating BLE Peripheral designs using the EZ-BLE 
WICED Module evaluation boards. The EZ-BLE WICED evaluation board is a self-contained Peripheral device that 
can communicate with either a CySmart iOS/Android app or the CySmart Host Emulation Tool that acts as a Central 
device. The CySmart Host Emulation Tool also requires a BLE dongle (black board in Figure 13) for its operation. 
The dongle is included in the CY5677 kit. 

Figure 13. BLE Functional Setup with EZ-BLE WICED Evaluation Board 

 

The My First EZ-BLE WICED Module Design section will walk you through a step-by-step configuration and 
programming of the EZ-BLE WICED Module by creating a simple Peripheral application.  

 

http://www.cypress.com/
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7 My First EZ-BLE WICED Module Design 

This section gives you a step-by-step process for building a simple design with the CYBLE-013025-EVAL kit using 
the WICED SMART SDK and IDE. 

7.1 About the Design 

This design implements the BLE Find Me Profile in the Target role that consists of an Immediate Alert Service (IAS). 
Alert levels triggered by the Find Me Locator are indicated by varying the state of a LED on the evaluation board, as 
Figure 14 shows. A single status LED indicates the state of the alert level. 

Figure 14. My First EZ-BLE WICED Module Design 
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7.2 Prerequisites 

Before you get started with the implementation, make sure that you have the following software and hardware 
available: 

 WICED SMART SDK v2.2.3 or later 

 CySmart Host Emulation Tool or CySmart iOS/Android app 

 CYBLE-013025-EVAL EZ-BLE WICED Evaluation Board 

 

You can create your first EZ-BLE WICED Module design in four steps: 

1. Configure the design in the WICED SMART SDK’s WICED Bluetooth Designer. 

2. Write the firmware to initialize and handle BLE events. 

3. Program the EZ-BLE WICED Module on the Evaluation Kit. 

4. Test your design using the CySmart Host Emulation Tool or mobile application. 

 

7.3 Part 1: Configure the Design 

This section takes you on a step-by-step guided tour of the design process. It starts with creating a new project and 
guides you through the Bluetooth Designer. You can skip this section if you simply wish to try the example project 
provided with this application note without going through the build process, and you already have the WICED SMART 
SDK installed on your computer. 

1. Install WICED SMART SDK v2.2.3 or newer on your PC. If you are using Windows, the automatic installer option 
provides the easiest way to do this. Other options are available as described in Section 4.1. 

2. Start the WICED SMART IDE, and from the File menu, choose New > WICED Bluetooth Designer, as Figure 

15 shows. 

http://www.cypress.com/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239389
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.immediate_alert.xml
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Figure 15. Creating a New Project 

 

 

3. Enter an appropriate name for your project (this example uses “find_me”), and select '20737' as the target.  The 

target chip for any given EZ-BLE Module can be found in the module datasheet.  

Figure 16. Project Name and Target Chip 

 

 

4. Click Finish. Your workspace opens into with a new WICED Smart Device tab as shown in Figure 17. This tab is 

the graphical interface for editing the find_me.wic file that defines the functionality of your project at a high level 
using the WICED Bluetooth Designer tool. 

Figure 17. New Bluetooth Designer View 
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5. Because the project uses the LED on the kit to indicate the alert level for the Immediate Alert Service, check the 
'LED' box on the Device Settings tab to enable the LED peripheral driver, as shown in Figure 18. 

Figure 18. Enabling LED Support in the Bluetooth Designer 

  

6. Click the Characteristics tab at the bottom of the Bluetooth Designer view to switch to the area that allows you 
to define the GATT structure. Select the Immediate Alert entry from the list of services under the Add Service 
title on the Characteristics tab, then click the 'plus' icon to the right, as shown in Figure 19.  

Figure 19. Adding the Immediate Alert Service to the GATT Database 

 

This adds the service to the GATT structure after the two required services (Generic Access and Generic 
Attribute). Because this is a predefined service, the required Alert Level characteristic is also added for you and 
given the correct permissions. 

The WICED SMART SDK supports a number of standard Bluetooth SIG profiles, and also supports generation of 
custom profiles/services to suit the needs of your application. The Find Me example project in this application 
note is specifically focused on the Immediate Alert service profile.   

http://www.cypress.com/
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7. Expand the new 'Immediate Alert' entry in the list of services on the left, then select the 'Alert Level' characteristic 
entry to view detailed information about that characteristic. No changes are required at this time (nor are they 
available because the characteristic is predefined), but take note of the information available the view shown in 
Figure 20. 

Figure 20. Viewing Characteristic Definition Details 

 

8. Scroll down inside the main Bluetooth Designer view’s Characteristic tab (or Device Settings tab) and click the 
Generate Code as shown in Figure 21.  

This generates or updates three files (GATT database header and source file and the project’s makefile) in the 
project source folder. If these files already exist, the originals will be copied to backup files and then replaced 
with new ones. You will use these files later in Section 7.4. 

Figure 21. Generating Source Files 

 

If your own projects require the use of additional source files, add these to the makefile.mk file manually. See 
Appendix F: Makefile Customization for details on makefile customization. 

9. If you have not installed the SDK platform definition files for the CYBLE-013025-EVAL board before, then you 
should do so now. The platform defines the functional GPIO assignments, NVRAM type, and some other low-
level values that control the firmware image download process for a specific target device. This custom platform 
definition is required to properly use the CYBLE-013025-EVAL board, but it is not currently bundled with the 
WICED SMART SDK. To install it, follow these steps: 

a. Visit http://www.cypress.com/knowledge-base-article/platform-files-cyble-013025-eval-kba220379 and 
download the CYBLE_013025_EVAL Platform files.zip platform archive. (This page also contains the 
instructions below.) 

b. Extract the downloaded file to your computer. 

c. Navigate to the CYBLE_013025_EVAL Platform files location and copy the CYBLE_013025_EVAL folder 
into the \WICED-Smart-SDK\Platforms\ location inside the SDK’s main installation folder. 

http://www.cypress.com/
http://www.cypress.com/knowledge-base-article/platform-files-cyble-013025-eval-kba220379


 

Getting Started with EZ-BLE WICED Modules 

www.cypress.com Document No. 002-20929 Rev. **                     24 

d. Navigate to the CYBLE_013025_EVAL Platform files\include _ platforms\ location and copy the 
CYBLE_013025_EVAL folder into the \WICED-Smart-SDK\include\Platforms\ location inside the SDK’s main 

installation folder. 

10. Identify the project’s make target entry in the list near the top right of the IDE. If you used the 'find_me' name for 
the project as what is in this guide, then the make target will be named find_me-CYBLE_013025_EVAL 
download in the list, as Figure 22 shows. The Make Target list provides the mechanism that you use for 

compiling and downloading firmware to the target device. The default Make Target is added when you create a 
new project is suitable for re-flashing; however, the build system supports some custom arguments to assist with 
troubleshooting or special cases. These arguments are discussed in Section 4.1.4 (Make Target List). 

Figure 22. Default Download Make Target for Find Me Project 

 

11. To confirm that the unmodified auto-generated code compiles successfully, double-click the find_me-
CYBLE_013025_EVAL download make target and observe the output from the compile process. If everything is 

working normally, the project will build successfully and show a memory usage summary, as shown in Figure 23. 
However, it will not download because no suitable target device is connected and ready to flash, as shown in 
Figure 24. 

Figure 23. Successful Build and Memory Footprint 
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Figure 24. Expected Download Failure After Compiling 

  
 

Note that the Application Size value shown in the memory footprint output should not exceed approximately 
25 KB when using EZ-BLE WICED Modules based on the CYW20737 device. The chip will not boot or run 
properly with applications larger than this. 

In addition, the WICED SMART IDE may show some symbol resolution errors in the main code window. Often, 
these symbols can be resolved correctly, and the IDE is misidentifying issues in the code due to differences 
between the code analysis toolchain and the one used for the final build process. For instructions on how to 
disable these errors, see Section 4.1.3.1 (Eliminating False Code Analysis Errors). 

7.4 Part 2: Write the Firmware  

The EZ-BLE WICED Module contains ROM, RAM, and Serial Flash (SFLASH). The ROM area of the module 
contains the full Bluetooth Low Energy stack. The RAM area is used for applying patches to the ROM-stored stack as 
well as for running application code. The on-module SFLASH is non-volatile memory, which stores the application 
code for embedded module configurations (i.e., not needing a host device to load the application program into RAM).  
The application provides the configuration for the stack such as advertisement content and interval or output power 
during transmission. Also, the application focuses on application-specific functionality while the stack deals with the 
low-level details. For example, the stack transparently handles a GATT Client read request or discovery. 

Stack patches and most application logic are stored outside of the chip itself in SFLASH memory. This is also the 
memory used for temporary image storage during an over-the-air (OTA) firmware update process. This non-volatile 
storage area is integrated on the EZ-BLE WICED Module. 

The following main steps are required to develop an application for an EZ-BLE WICED Module: 

 Define the data to be exchanged between the Client and Server, and prepare a GATT database. (In this 
example, this is already accomplished using the WICED Bluetooth Designer tool in Part 1 to add the Immediate 
Alert Service and Alert Level characteristic.) 

 Determine whether additional devices such as a UART-connected MCU or an SPI-connected peripheral sensor 
will be included in the solution. The UART and GPIO configurations of the application depend on the connected 
Peripheral devices. In the example project, you have enabled the LED with the WICED Bluetooth Designer tool in 
Part 1: Configure the Design; the generated code includes pre-configured GPIO settings based on this selection. 

 Adjust the application configuration to provide the parameters required by the application. Common changes 
include transmit power, advertisement parameters, and device name. 

 Define and code the functions for the BLE Stack callbacks required by the application. The application typically 
requires notifications from the stack when certain Bluetooth events occur such as connection establishment, 
disconnection, GATT write operations, or bonding. 

 

Three main firmware blocks are required for designing BLE standard profile applications using the WICED SMART 
SDK: 

1. System initialization 

2. BLE stack event handlers 

3. BLE service-specific event handlers 
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The following sections discuss these blocks with respect to the design that you configured in Part 1: Configure the 
Design. Many of the functions involved in these are auto-generated for you based on the settings chosen in the 
WICED Bluetooth Designer; however, some of these functions need to have additional code added in order to 
achieve the specific behavior that your application requires. 

Unlike other platforms, the WICED SMART BLE stack does not require or provide an application-level “main loop” 
function that repeats forever. Instead, the main loop is handled internally along with low-power transitions, and all 
application behavior must be fully event-driven based on interrupts triggered by timers, wireless (BLE) activity, or 
wired (GPIO, UART, etc.) activity. 

7.4.1  System In it ia l iza t ion  

When the EZ-BLE WICED Module starts up, it initializes the BLE stack and executes the application initialization 
function named APPLICATION_INIT. This initialization function must call the bleapp_set_cfg function, which 

provides the BLE stack with pointers to application data structures, including the GATT database, application 
configuration, UART configuration, GPIO configuration, and a pointer to a create function that is called when the 

application starts. 

The ROM image in the module also contains some basic application logic. The full source code for these functions is 
included in the WICED SMART SDK in the /Wiced-Smart/bleapp/app directory. The new application is flexible in what 
portions of the ROM code to use. If the ROM code completely matches the requirements, the APPLICATION_INIT 

function should simply point to the data structures and then create functions from the ROM code. However, most 
designs will need more customized behavior than this provides. 

The following data structures are present in every EZ-BLE WICED application: 

 The GATT database identifies data objects to the BLE stack that are exchanged between the peripheral and the 
client application. 

 Application configuration, which specifies parameters shared between the application and the BLE stack. 

 UART and GPIO configurations. In some cases, the application requires a connection to a Peripheral device (for 
example, a measurement sensor). Although drivers for most Peripheral buses are included in the CYW20737 
ROM, some code must be written to support the hardware. For example, some applications may require 
processing of data received over the UART or SPI interfaces. 

 

Figure 25 shows the flowchart and firmware source code for system initialization. 
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Figure 25. System Initialization Flow Chart 
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Before looking at the application initialization routines, look over the large configuration structure near the top of the 
find_me.c source file: 

Code 1. find_me_cfg: Main Project Configuration Structure 

const BLE_PROFILE_CFG find_me_cfg = 

{ 

    /*.fine_timer_interval            =*/ FIND_ME_FINE_TIMER, // ms 

    /*.default_adv                    =*/ 4,    // HIGH_UNDIRECTED_DISCOVERABLE 

    /*.button_adv_toggle              =*/ 0,    // pairing button make adv toggle (if 1) or always on (if 0) 

    /*.high_undirect_adv_interval     =*/ 32,   // slots 

    /*.low_undirect_adv_interval      =*/ 1024, // slots 

    /*.high_undirect_adv_duration     =*/ 30,   // seconds 

    /*.low_undirect_adv_duration      =*/ 300,  // seconds 

    /*.high_direct_adv_interval       =*/ 0,    // seconds 

    /*.low_direct_adv_interval        =*/ 0,    // seconds 

    /*.high_direct_adv_duration       =*/ 0,    // seconds 

    /*.low_direct_adv_duration        =*/ 0,    // seconds 

    /*.local_name                     =*/ FIND_ME_DEVICE_NAME, // [LOCAL_NAME_LEN_MAX]; 

    /*.cod                            =*/ BIT16_TO_8(FIND_ME_DEVICE_APPEARENCE),0x00, // [COD_LEN]; 

    /*.ver                            =*/ "1.00",         // [VERSION_LEN]; 

    /*.encr_required                  =*/ 0,    //(SECURITY_ENABLED | SECURITY_REQUEST),    // data 

encrypted and device sends security request on every connection 

    /*.disc_required                  =*/ 0,    // if 1, disconnection after confirmation 

    /*.test_enable                    =*/ 1,    // TEST MODE is enabled when 1 

    /*.tx_power_level                 =*/ 0x04, // dbm 

    /*.con_idle_timeout               =*/ 30,   // second  0-> no timeout 

    /*.powersave_timeout              =*/ 0,    // second  0-> no timeout 

    /*.hdl                            =*/ {FIND_ME_MAIN_CHAR_HANDLE, 0x00, 0x00, 0x00, 0x00}, // 

[HANDLE_NUM_MAX]; 

    /*.serv                           =*/ {FIND_ME_MAIN_SERVICE_UUID, 0x00, 0x00, 0x00, 0x00}, 

    /*.cha                            =*/ {FIND_ME_MAIN_CHAR_UUID, 0x00, 0x00, 0x00, 0x00}, 

    /*.findme_locator_enable          =*/ 0,    // if 1 Find me locator is enable 

    /*.findme_alert_level             =*/ 0,    // alert level of find me 

    /*.client_grouptype_enable        =*/ 0,    // if 1 grouptype read can be used 

    /*.linkloss_button_enable         =*/ 0,    // if 1 linkloss button is enable 

    /*.pathloss_check_interval        =*/ 0,    // second 
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    /*.alert_interval                 =*/ 0,    // interval of alert 

    /*.high_alert_num                 =*/ 0,    // number of alert for each interval 

    /*.mild_alert_num                 =*/ 0,    // number of alert for each interval 

    /*.status_led_enable              =*/ 1,    // if 1 status LED is enable 

    /*.status_led_interval            =*/ 0,    // second 

    /*.status_led_con_blink           =*/ 0,    // blink num of connection 

    /*.status_led_dir_adv_blink       =*/ 0,    // blink num of dir adv 

    /*.status_led_un_adv_blink        =*/ 0,    // blink num of undir adv 

    /*.led_on_ms                      =*/ 0,    // led blink on duration in ms 

    /*.led_off_ms                     =*/ 0,    // led blink off duration in ms 

    /*.buz_on_ms                      =*/ 100,  // buzzer on duration in ms 

    /*.button_power_timeout           =*/ 0,    // seconds 

    /*.button_client_timeout          =*/ 0,    // seconds 

    /*.button_discover_timeout        =*/ 0,    // seconds 

    /*.button_filter_timeout          =*/ 0,    // seconds 

#ifdef BLE_UART_LOOPBACK_TRACE 

    /*.button_uart_timeout            =*/ 15,   // seconds 

#endif 

}; 

 
This configuration structure allows simple control over default advertisement parameters, some of the profile-specific 
behavior, encryption requirements, power output, and hardware peripherals. In many cases, the SDK provides APIs 
that allow you to trigger behavior with custom settings rather than the values that are set here. However, you can 
often use these configuration values as-is and avoid further complexity in your code. 

The 'find_me' example described in this guide does not require any modifications to this structure. 

The first visible entry point in the 'find_me' example application you have created here is the APPLICATION_INIT 
function, as shown in Code 2 here: 

Code 2. APPLICATION_INIT: ROM-Driven Initialization 

// Application initialization 

APPLICATION_INIT() 

{ 

    bleapp_set_cfg((UINT8 *)gatt_database, 

                   gatt_database_len, 

                   (void *)&find_me_cfg, 

                   (void *)&find_me_puart_cfg, 

                   (void *)&find_me_gpio_cfg, 

                   find_me_create); 

} 

 
This small function simply calls the bleapp_set_cfg function as described above, with pointers to various 

application-specific implementations of the GATT database, application configuration, UART configuration, GPIO 
configuration, and the create function. 

Note that this function already exists and does not need to be added to your project source file. The blapp_set_cfg 
function is declared in the bleapp.h standard SDK library include file, although the implementation is in ROM. 

These key structures, values, and functions used as arguments here are implemented in two different parts of the 
automatically generated source files coming from the WICED Bluetooth Designer tool. 

The find_me.c source file contains the following: 

 The find_me_cfg variable, which has the BLE_PROFILE_CFG structure type, and defines default advertisement 

and connection intervals, security requirements, transmit power, device name, appearance, timeouts, and other 
settings. 

 The find_me_puart_cfg variable, which has the BLE_PROFILE_PUART_CFG structure type, and defines the 

peripheral UART baud rate and pin assignment. 

 The find_me_create function, which runs once after the BLE stack itself has initialized, and is ready to hand off 

the execution to the application-level initialization routine. 

 

The find_me_db.c/.h source files contain the following: 
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 The gatt_database variable, which is a contiguous byte array and defines the complete GATT structure to be 

used by the Server. 

 The gatt_database_len variable, which defines the length of the GATT database definition in bytes. 

 The find_me_gpio_cfg variable, which has the BLE_PROFILE_GPIO_CFG structure type and defines the GPIO 

configuration used by the application. 

 

These files and the data structures and functions they contain make up all of the application-specific functionality 
currently in the application. 

The next function to look at is find_me_create, which runs after the ROM-driven BLE stack initialization finishes. 

This function sets up all of the application-specific behavior and registers many application callbacks to occur when 
various link layer, GAP, or GATT events occur within the stack as shown in Code 3. 

Code 3. find_me_create: Application-Driven Initialization 

// Create device 

void find_me_create(void) 

{ 

    extern UINT8 bleprofile_adv_num; 

    extern UINT8 bleprofile_scanrsp_num; 

 

    ble_trace0("create()"); 

    ble_trace0(bleprofile_p_cfg->ver); 

 

    bleprofile_adv_num = 0x0; 

    bleprofile_scanrsp_num = 0x0; 

 

    // dump the database to debug uart. 

    legattdb_dumpDb(); 

 

    bleprofile_Init(bleprofile_p_cfg); 

    bleprofile_GPIOInit(bleprofile_gpio_p_cfg); 

 

    // Initialized ROM code which will monitor the battery 

    blebat_Init(); 

 

    // Read NVRAM 

    bleprofile_ReadNVRAM(VS_BLE_HOST_LIST, sizeof(find_me_hostinfo), (UINT8 *)&find_me_hostinfo); 

 

    // register connection up and connection down handler. 

    bleprofile_regAppEvtHandler(BLECM_APP_EVT_LINK_UP, find_me_connection_up); 

    bleprofile_regAppEvtHandler(BLECM_APP_EVT_LINK_DOWN, find_me_connection_down); 

    bleprofile_regAppEvtHandler(BLECM_APP_EVT_ADV_TIMEOUT, find_me_advertisement_stopped); 

 

    // handler for Encryption changed. 

    blecm_regEncryptionChangedHandler(find_me_encryption_changed); 

 

    // handler for Bond result 

    lesmp_regSMPResultCb((LESMP_SINGLE_PARAM_CB) find_me_smp_bond_result); 

 

    // register to process client writes 

    legattdb_regWriteHandleCb((LEGATTDB_WRITE_CB)find_me_write_handler); 

 

    // register interrupt handler 

    bleprofile_regIntCb((BLEPROFILE_SINGLE_PARAM_CB) find_me_interrupt_handler); 

 

    //registers timer 

    find_me_reg_timer(); 

 

    // advertise first vendor specific service 

    if(sizeof(find_me_uuid_main_service) > 1) 

    { 

        // total length should be less than 31 bytes 

        BLE_ADV_FIELD adv[3]; 

        BLE_ADV_FIELD scr[1]; 

 

        // flags 

        adv[0].len     = 1 + 1; 

        adv[0].val     = ADV_FLAGS; 

        adv[0].data[0] = LE_LIMITED_DISCOVERABLE | BR_EDR_NOT_SUPPORTED; 

 

        adv[1].len     = sizeof(find_me_uuid_main_service) + 1; 
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        adv[1].val     = sizeof(find_me_uuid_main_service) == 16 ? 

                                ADV_SERVICE_UUID128_COMP : ADV_SERVICE_UUID16_COMP; 

        memcpy(adv[1].data, &find_me_uuid_main_service[0], sizeof(find_me_uuid_main_service)); 

 

        // Tx power level 

        adv[2].len     = TX_POWER_LEN+1; 

        adv[2].val     = ADV_TX_POWER_LEVEL; 

        adv[2].data[0] = bleprofile_p_cfg->tx_power_level; 

 

  // name 

        scr[0].len      = strlen(bleprofile_p_cfg->local_name) + 1; 

        scr[0].val      = ADV_LOCAL_NAME_COMP; 

        memcpy(scr[0].data, bleprofile_p_cfg->local_name, scr[0].len - 1); 

 

        bleprofile_GenerateADVData(adv, 3); 

        bleprofile_GenerateScanRspData(scr, 1); 

    } 

 

    blecm_setTxPowerInADV(0); 

 

    // start device advertisements.  By default Advertisements will contain flags, device name, 

    // appearance and main service UUID. 

    bleprofile_Discoverable(HIGH_UNDIRECTED_DISCOVERABLE, NULL); 

 

    // ToDo: Do your initialization on app startup 

} 

 
The find_me_write_handler callback function is of particular interest because it lets the application process 

incoming GATT write operations. This will be discussed in more detail in the next section. 

Take note of how the find_me_create initialization function ends, which occurs right before the stack gets execution 

control again. The code sets advertisement output power to +0 dBm and begins fast undirected/connectable 
advertisements. Because of this, a remote device is able to connect to the find_me Peripheral, which will trigger a 
new callback (the find_me_connection_up event handler registered above) and allow further application-specific 

behavior. 

7.4.2  BLE Stack Event Handlers  

The BLE stack residing on EZ-BLE WICED Modules requires individual event handler callbacks for most types of 
BLE activity. In the previous section, the find_me_create function registers application functions to handle some of 

these events like connection, disconnection, advertisement timeout, and GATT write. This section describes the 
purpose and functionality of each of these callbacks within the context of the 'find_me' example project. 

Unlike the single BLE event handler 'master' function found in PSoC
®
/PRoC™-based BLE designs, the EZ-BLE 

WICED stack does not bundle every application-level event into one top-level callback function. Instead, most events 
have dedicated callbacks that must be registered independently, as shown in Code 3 above. If you are exploring 
EZ-BLE WICED solutions after previously learning PSoC/PRoC EZ-BLE solution practices, keep this architectural 
difference in mind. 

The first event handler to examine is find_me_connection_up, which is called when a new BLE connection is 

established. Aside from some debug output through the module’s trace UART mechanism, this function performs the 
following notable operations: 

1. Stores the connection handle in a global variable 

2. Calls the generic __on_connection_up function (internally tests for existing bonded device entry) 

3. Stops advertising to prevent additional incoming connection attempts 

4. Checks encryption requirements and requested bonding as necessary 

The Bluetooth Designer tool also provides some “TODO” code comments to help explain where certain 
customizations should go. 

Code 4. find_me_connection_up: New Connection Event Handler 

// Connection up callback function is called on every connection establishment 

void find_me_connection_up(void) 

{ 

    find_me_connection_handle = (UINT16)emconinfo_getConnHandle(); 

    UINT8 *bda = (UINT8 *)emconninfo_getPeerPubAddr(); 
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    // Save address of the connected device and print it out. 

    memcpy(find_me_remote_addr, bda, sizeof(find_me_remote_addr)); 

 

    ble_trace3("connection_up: %08x%04x h=%d", 

                (find_me_remote_addr[5] << 24) + (find_me_remote_addr[4] << 16) + 

                (find_me_remote_addr[3] << 8) + find_me_remote_addr[2], 

                (find_me_remote_addr[1] << 8) + find_me_remote_addr[0], 

                find_me_connection_handle); 

 

 

    // Prepare generated code for connection - write persistent values from __HOSTINFO to GATT DB 

    __on_connection_up(); 

 

    // ToDo: Write custom persistent values into GATT database using functions 

    // changed_<service_name>_<char_name>() generated by smart designer 

 

    // If device supports a single connection, stop advertising 

    bleprofile_Discoverable(NO_DISCOVERABLE, NULL); 

 

    // If security is required for every connection following function will start bonding or 

    // will setup encryption.  No indications or notifications should be sent until 

    // encryption is done. 

    if (bleprofile_p_cfg->encr_required & SECURITY_REQUEST) 

    { 

        if (emconninfo_deviceBonded()) 

        { 

            ble_trace0("device bonded"); 

        } 

        else 

        { 

            ble_trace0("device not bonded"); 

            lesmp_sendSecurityRequest(); 

        } 

    } 

} 

 
The next stack event handler to examine is find_me_connection_down, which is called when the BLE connection is 

closed intentionally or drops unexpectedly. This function clears the connection handle value back to zero and 
resumes connectable advertising at a low (infrequent) rate. 

Code 5. find_me_connection_down: Connection Terminated Event Handler 

// Connection down callback 

void find_me_connection_down(void) 

{ 

    ble_trace1("connection_down:handle:%d", find_me_connection_handle); 

 

    find_me_connection_handle = 0; 

 

    // If disconnection was caused by the peer, start low advertisements 

    bleprofile_Discoverable(LOW_UNDIRECTED_DISCOVERABLE, NULL); 

 

    ble_trace2("ADV start: %08x%04x", 

                  (find_me_remote_addr[5] << 24 ) + (find_me_remote_addr[4] <<16) + 

                  (find_me_remote_addr[3] << 8 ) + find_me_remote_addr[2], 

                  (find_me_remote_addr[1] << 8 ) + find_me_remote_addr[0]); 

} 

 
Next, check the find_me_advertisement_stopped handler, which is called when the stack automatically 

terminates advertising after the configured timeout period elapses. The default advertisement timeouts for fast ('high') 
and slow ('low') rates are defined in the find_me_cfg structure near the top of find_me.c file, and are 30 and 300 

seconds respectively. The code in this event handler ensures that advertisements always resume automatically 
whenever either mode times out. 

Code 6. find_me_advertisement_stopped: Advertisement Timeout Event Handler 

// Callback function indicates to the application that advertising has stopped. 

// restart advertisement if needed 

void find_me_advertisement_stopped(void) 

{ 

    ble_trace0("ADV stop!!!!"); 
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    // If disconnection was caused by the peer, start low advertisements 

    bleprofile_Discoverable(LOW_UNDIRECTED_DISCOVERABLE, NULL); 

} 

 
After this handler, there are two which concern bonding and encryption. First is the find_me_smp_bond_result 
event shown in Code 7, which occurs after the remote peer successfully bonds with the local device. The auto-
generated code in this function calls the find_me_add_bond function to store the bonded device address in the 

hostinfo structure, then writes that structure into the non-volatile memory for later retrieval (remember that the 

__on_connection_up function call inside find_me_connection_up searches for previous bond information to 

initialize client-specific persistent GATT values). 

Code 7. find_me_smp_bond_result: Bonding Event Handler 

// Process SMP bonding result.  If pairing is successful with the central device, 

// save its BDADDR in the NVRAM and initialize associated data 

void find_me_smp_bond_result(LESMP_PARING_RESULT  result) 

{ 

    ble_trace1("smp_bond_result %02x", result); 

 

    if (result == LESMP_PAIRING_RESULT_BONDED) 

    { 

        // saving bd_addr in nvram 

        UINT8 *bda; 

        UINT8 writtenbyte; 

 

        bda = (UINT8 *)emconninfo_getPeerPubAddr(); 

 

        // initialize persistent values in the hostinfo to add bonded peer 

        find_me_add_bond(bda); 

 

        // ToDo: initialize persistent variables in HOSTINFO 

 

        //now write hostinfo into NVRAM 

        writtenbyte = bleprofile_WriteNVRAM(VS_BLE_HOST_LIST, sizeof(find_me_hostinfo), 

                        (UINT8 *)&find_me_hostinfo); 

        ble_trace1("NVRAM write:%04x", writtenbyte); 

    } 

} 

 
Another security-related function is the find_me_encryption_changed handler, which is called when the stack 

encryption state changes. This typically occurs during the bonding process after the link is successfully encrypted. 
While it is not strictly necessary to catch this event, the auto-generated function makes it easy to modify as your 
application requires, and also triggers a connection parameter update to more power-efficient values (100-500 ms 
interval and longer supervision timeout). 

Code 8. find_me_encryption_changed: Encryption State Change Event Handler 

// Notification from the stack that encryption has been set. 

void find_me_encryption_changed(HCI_EVT_HDR *evt) 

{ 

    UINT8 *bda = emconninfo_getPeerPubAddr(); 

 

    ble_trace2("encryption changed %08x%04x", 

                (bda[5] << 24) + (bda[4] << 16) + 

                (bda[3] << 8) + bda[2], 

                (bda[1] << 8) + bda[0]); 

 

    // ToDo: do your on-encryption-change actions here. 

 

    // Slow down the pace of master polls to save power.  Following request asks 

    // host to setup polling every 100-500 msec, with link supervision timeout 5 seconds. 

    bleprofile_SendConnParamUpdateReq(80, 400, 0, 500); 

} 

 
After the security-related events, the find_me_write_handler function shown in Code 9 processes GATT write 

events that occur when a connected remote client writes a new value to any supported GATT characteristic. Note that 
this high-level code first gets a few details about the written attribute, then passes that information to a function called 
__write_handler. This function’s implementation is found in the GATT-specific find_me_db.c file, which you will look 

through in the next section. 
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An important feature of the __write_handler function is that it returns a boolean value indicating whether to write 

updated host details to non-volatile RAM. This might be the case for a client characteristic configuration value set by 
a bonded peer, or for the Device Name characteristic (if the “write” permission is enabled). The Find Me example 
project described in this application note does not use this functionality. 

Code 9. find_me_write_handler: Top-Level GATT Write Event Handler 

// Process write request or command from peer device 

int find_me_write_handler(LEGATTDB_ENTRY_HDR *p) 

{ 

    UINT8  writtenbyte; 

    UINT16 handle   = legattdb_getHandle(p); 

    int    len      = legattdb_getAttrValueLen(p); 

    UINT8  *attrPtr = legattdb_getAttrValue(p); 

    BOOL changed; 

 

    ble_trace1("write_handler: handle %04x", handle); 

 

    changed = __write_handler(handle, len, attrPtr); 

 

    // Save update to NVRAM if it has been changed. 

    if (changed) 

    { 

        writtenbyte = bleprofile_WriteNVRAM(VS_BLE_HOST_LIST, 

                        sizeof(find_me_hostinfo), (UINT8 *)&find_me_hostinfo); 

        ble_trace1("NVRAM write:%04x", writtenbyte); 

    } 

    return 0; 

} 

 
Two final callbacks remain in this section, neither of which are required for specific behavior in this example 
application. First is the find_me_interrupt_handler function shown in Code 10, which handles any configured 

GPIO interrupt. Second is the find_me_indication_cfm handler shown in Code 11, which is triggered when a 

remote GATT Client device confirms receipt of an 'indication' transfer. These functions are predefined in empty 'stub' 
form to provide a foundation for adding related behavior, but the Find Me project does not use them. 

Code 10. find_me_interrupt_handler: GPIO Interrupt Handler Stub 

// Three Interrupt inputs (Buttons) can be handled here. 

// If the following value == 1, Button is pressed. Different than initial value. 

// If the following value == 0, Button is depressed. Same as initial value. 

// Button1 : value&0x01 

// Button2 : (value&0x02)>>1 

// Button3 : (value&0x04)>>2 

void find_me_interrupt_handler(UINT8 value) 

{ 

    // ToDo: handle the interrupts here. 

} 

 
Code 11. find_me_indication_cfm: Top-Level Indication Confirmation Event Handler 

// Process indication confirmation.  if client service indication, each indication 

// should be acknowledged before the next one can be sent. 

void find_me_indication_cfm(void) 

{ 

} 

 

A few of the example projects that come with the WICED SMART SDK use one or both of these functions, including 
the following: 

 hello_sensor 

 ota_firmware_upgrade 

 puart_control 

 automation_io_server 

 pwm_tones 

http://www.cypress.com/


 

Getting Started with EZ-BLE WICED Modules 

www.cypress.com Document No. 002-20929 Rev. **                     34 

One final callback remains in the main find_me.c file, which is discussed in the next section because it is specific to 
the Immediate Alert Service (IAS). 

7.4.3  BLE Service -Specif ic  Event Handler  

A service-specific behavior occurs when a remote client interacts with particular GATT attributes in pre-defined ways. 
In this project, the Alert Level characteristic value is the only one of importance for peripheral behavior modification. 

The code generated by the WICED Bluetooth Designer tool implements characteristic write handling through different 
layers, some of which were dscussed in the previous section. First, the create function registers the 

find_me_write_handler top-level handler function to be called when a GATT write occurs. This function obtains 

details about the attribute and its new value, and then passes this information to the __write_handler mid-level 

function shown in Code 12. 

Code 12. __write_handler: Mid-Level GATT Write Event Handler 

// Updates __HOSTINFO by the value written by peer. 

// Returns true if any persistent value is changed 

BOOL __write_handler(UINT16 handle, int len, UINT8 *attrPtr) 

{ 

    BOOL res = FALSE; 

    if (handle == HDLC_IMMEDIATE_ALERT_ALERT_LEVEL_VALUE) 

    { 

        if (len > 1) 

        { 

            ble_trace2("bad length:%d handle:%04x", len, handle); 

        } 

        else 

        { 

            //call custom on_write function 

            ble_trace1("write handle:%04x", handle); 

            res = on_write_immediate_alert_alert_level(len, attrPtr); 

        } 

    } 

    return res; 

} 

 
The __write_handler function checks to see which handle was written, and then finally calls the appropriate 

application callback function with the value length and pointer to data as arguments. This brings you to the final link in 
the GATT write execution chain, the on_write_immediate_alert_alert_level callback shown in Code 13 below. 

This function is the only one you need to modify to provide the intended user experience for this Find Me example 
project. 

Code 13. on_write_immediate_alert_alert_level: Original IAS “Alert Level” GATT Write Event Handler 

// It will be called at the write handler and should return TRUE if any persistent value is changed 

BOOL on_write_immediate_alert_alert_level(int len, UINT8 *attrPtr) 

{ 

    // Todo: do your actions here when value is written by the peer 

    // and return TRUE if any persistent value is changed 

    return FALSE; 

} 

 
Note that the WICED Bluetooth Designer tool will automatically create these callbacks for any writable characteristics 
that are defined. 

The modifications required concern updates to the LED behavior based on a single-byte value written to the Alert 
Level characteristic. Specifically, you need to watch for three alert values: 

 0x00 = No alert (LED OFF) 

 0x01 = Mild alert (LED blinking) 

 0x02 = High alert (LED ON) 
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To accomplish this, first, add one GPIO configuration line to the end of the find_me_create function towards the 

beginning of the file: 

Code 14. Preparing LED GPIO for Output Logic Control in the create Function 

    ... 

 

    // ToDo: Do your initialization on app startup 

    gpio_configurePinWithSingleBytePortPinNum(GPIO_PIN_LED, GPIO_OUTPUT_ENABLE, 1); 

} 

 
The specifically named gpio_configurePinWithSingleBytePortPinNum API method sets the drive mode and 

(when applicable) output logic state of a single numbered pin. The GPIO_PIN_LED constant is pre-defined by the 
platform definition file, but in the case of the CYBLE-013025-EVAL board, it is set to 14 because the active LOW LED 

on this board is connected to P14. The GPIO_OUTPUT_ENABLE constant sets the pin to output mode, and the final 1 

argument initializes it to the HIGH (VDD) logic state. The pin is now ready to be used for driving the LED. 

Next, replace the content of the on_write_immediate_alert_alert_level callback with the code shown here: 

Code 15. on_write_immediate_alert_alert_level: Updated IAS “Alert Level” GATT Write Event Handler 

// It will be called at the write handler and should return TRUE if any persistent value is changed 

BOOL on_write_immediate_alert_alert_level(int len, UINT8 *attrPtr) 

{ 

    // check the first byte of the value written to this characteristic 

    switch (attrPtr[0]) 

    { 

    case 0x00: 

        // alert level = 0x00 (none), turn LED off 

        bleprofile_KillLEDTimer(); 

        bleprofile_LEDOff(); 

        break; 

    case 0x01: 

        // alert level = 0x01 (mild), blink LED at 1 Hz cycle (units are 12.5ms) 

        bleprofile_LEDBlink(40, 40, 0); 

        break; 

    case 0x02: 

        // alert level = 0x02 (high), turn LED on 

        bleprofile_KillLEDTimer(); 

        bleprofile_LEDOn(); 

        break; 

    } 

 

    // return FALSE since no persistent value is changed 

    return FALSE; 

} 

 
These API calls take advantage of the built-in LED management library, which includes non-blocking 'blink' support 
and simple ON/OFF control. It is also possible to control the LED pin directly with lower-level GPIO functions. 

7.4.4  Low-Power Implementat ion  

Most BLE applications require minimal power consumption to support long life. The WICED SMART SDK 
automatically handles most low-power transitions internally, and it is not possible to force entry into a low-power state 
regardless of any other tasks. However, the SDK does provide a mechanism to either allow or prevent otherwise 
automatic entry into Sleep mode. Using this mechanism is optional, but usually desirable. 

Without any low-power modifications, this 'find_me' example project will consume at least 3.5 mA constantly on 
average since the CPU will never sleep. This level of consumption is typically much higher than a small device 
powered by a coin cell can sustain. 

The simplest solution to allow automatic sleep mode usage in this project requires making a single modification to the 
configuration setting structure, particularly the fine timer interval: 

Code 16. Updating Fine Timer Interval to Non-Zero Value 

/****************************************************** 

 *                     Constants 

 ******************************************************/ 

 

#define FIND_ME_FINE_TIMER           1000 
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#define FIND_ME_DEVICE_NAME          "find_me" 

#define FIND_ME_DEVICE_APPEARENCE    0 

#define FIND_ME_MAIN_SERVICE_UUID    UUID_SERVICE_IMMEDIATE_ALERT 

 
The default value for this interval is 0, which effectively results in disabling sleep, even if the application does not 
make use of any fine timer functions (which this example does not). A value of 1000 indicates a 1-second interval (as 
this is measurement is miliseconds), and with this, the module can properly sleep automatically. With this 
configuration change, this 'find_me' example project will consume approximately the following amounts of current, on 
average: 

 1.8 mA during fast advertising (on boot, for up to 30 seconds) 

 106 µA during slow advertising (30 seconds after boot or immediately after disconnection) 

 250 µA while connected to a remote peer @ 100 ms connection interval 

7.4.4.1 Managing Low-Power Operation in the Application 

Sometimes, you need more control over sleep states, particularly if you are using certain peripherals. For example, 
the peripheral UART interface is disabled while in sleep mode, so if you need to remain awake due to expected 
incoming UART data, automatic sleep mode may not be suitable. 

In order to manage low-power operation in your application, you will need some or all of the following APIs: 

 devlpm_init() 

 devlpm_registerForLowPowerQueries(callback, context) 

 devlpm_enableWakeFrom(source) 

 devlpm_enterLowPowerMode() 

 bleprofile_PrepareHidOff() 

 

These functions enable Sleep/Deep Sleep low-power entry, wake sources, and an application-level callback, which 
you can use to keep the CPU from entering Sleep or Deep Sleep states. To add some additional low-power support 
to your project, first place the following initialization code into the find_me_create function: 

Code 17. find_me_create: Application-Driven Initialization 

// Create device 

void find_me_create(void) 

{ 

    ... 

 

    bleprofile_Init(bleprofile_p_cfg); 

    bleprofile_GPIOInit(bleprofile_gpio_p_cfg); 

 

    // Initialize low-power system and application control callback 

    devlpm_init(); 

    devlpm_registerForLowPowerQueries(find_me_lpm_queriable, 0); 

 

    // Initialized ROM code which will monitor the battery 

    blebat_Init(); 

 

    ... 

} 

Next, add a new find_me_lpm_queriable callback function declaration and implementation to handle queries about 

allowable sleep states: 

Code 18. find_me_lpm_queriable: Application-Driven Sleep Prevention 

/****************************************************** 

 *               Function Prototypes 

 ******************************************************/ 

    ... 

static void find_me_encryption_changed( HCI_EVT_HDR *evt ); 

static int  find_me_write_handler( LEGATTDB_ENTRY_HDR *p ); 
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static void find_me_interrupt_handler( UINT8 value ); 

UINT32 find_me_lpm_queriable(LowPowerModePollType type, UINT32 context); 

 

    ... 

 

// Callback called by the FW when ready to sleep/deep-sleep. 

// Do not allow any sleep if UART transmissions are ongoing. 

// Do not allow deep sleep if BLE activity is ongoing. 

UINT32 find_me_lpm_queriable(LowPowerModePollType type, UINT32 context) 

{ 

    UINT32 result = 0; // assume sleep disabled 

 

    // check sleep type query 

    switch (type) 

    { 

        case LOW_POWER_MODE_POLL_TYPE_SLEEP: 

            // return 0 to prevent standard sleep, otherwise max microsecond count to allow 

            // (other processes may wake earlier than your specified max) 

            result = 0xFFFFFFFF; // max 

            break; 

 

        case LOW_POWER_MODE_POLL_TYPE_POWER_OFF: 

            // return 0 to prevent deep sleep, non-zero to allow 

            result = 1; // allow 

            break; 

    } 

 

    // should not reach this point since only two types of sleep exist 

    return result; 

} 

 
Notice the basic logic in this implementation. There are two possible types of Sleep queries; the 'sleep' type concerns 
standard sleep, while the 'power off' type concerns Deep Sleep (also known as HIDOFF). You should not allow 
standard Sleep if you need continuing UART operation, but BLE advertising and connectivity will continue to function 
in this state. You should not allow Deep Sleep if you need any BLE activity to continue. 

Finally, to demonstrate the ultra-low-power Deep Sleep state, you can optionally make the following modification to 
the find_me_connection_down method so that the firmware enters Deep Sleep after the client disconnects: 

Code 19. find_me_connection_down Modification: Deep Sleep After Disconnection 

// Connection down callback 

void find_me_connection_down(void) 

{ 

    ble_trace1("connection_down:handle:%d", find_me_connection_handle); 

 

    find_me_connection_handle = 0; 

 

    // If disconnection was caused by the peer, start low advertisements 

    //bleprofile_Discoverable(LOW_UNDIRECTED_DISCOVERABLE, NULL); 

 

    // If disconnection was caused by the peer, enter deep sleep mode 

    bleprofile_PrepareHidOff(); 

 

    ... 

 
The average current while in Deep Sleep mode should be on the order of 1.5 µA. 

Note that if you change the 'power off' (Deep Sleep) query result assignment to '0' in the find_me_lpm_queriable 

function, the bleprofile_PrepareHidOff() API will not put the module into Deep Sleep despite being explicitly 

called, because the application-level query function is still called and the result is tested before the chipset enters 
Deep Sleep. 

The devlpm_enterLowPowerMode() API behaves similarly to this, requesting entry into standard Sleep mode when 

called. However, it is often not necessary to use this function explicitly because internal power management routines 
will automatically attempt to enter Sleep mode as often as reasonably possible. 

The devlpm_enableWakeFrom() API can be used to set up specific wake sources, such as GPIOs, to be used in 

conjunction with any configured GPIO interrupts. If Sleep states do not need GPIO intervention but can be logically 
controlled by application code, then this API is not needed. 
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7.4.4.2 Eliminating Leakage Current 

Depending on the peripheral connections present in your final hardware design, you may need to make special 
considerations to avoid leakage on the P0 pin (PUART TX if peripheral UART is enabled). This pin defaults to a 
digital-mode high-impedance “floating” state in the ROM-based initialization code, and will leak a noticeable amount 
of current if left unconnected in this state. 

There are three basic ways to eliminate leakage on this pin: 

1. Externally drive or pull the P0 pin to a known state 

2. Enable peripheral UART operation in your application (PUART initialization will set P0 to digital output mode) 

3. Configure P0 to a non-floating state manually in your application code 

On the CYBLE-013025-EVAL board, you can pull P0 high by setting SW1 position 1 to the ON state. This will connect 
P0 (PUART TX) to the on-board USB-to-UART bridge IC’s RX pin, which is weakly pulled high. However, you should 
ensure that you do not also simultaneously set SW1 position 5 to the ON state and enable PUART operation in the 
application. This could potentially result in PUART TX and HCI UART TX to drive in opposite logic states, resulting in 
a short between VDD and GND and possibly damaging the module. 

You can configure P0 to an internally pulled state by adding the following single line of code to the end of the 
find_me_create function: 

Code 20. find_me_create Modification: Configure P0 to Known State 

    ... 

 

    // start device advertisements.  By default Advertisements will contain flags, device name, 

    // appearance and main service UUID. 

    bleprofile_Discoverable(HIGH_UNDIRECTED_DISCOVERABLE, NULL); 

 

    // ToDo: Do your initialization on app startup 

    gpio_configurePinWithSingleBytePortPinNum(GPIO_PIN_LED, GPIO_OUTPUT_ENABLE, 1); 

    gpio_configurePinWithSingleBytePortPinNum(0, GPIO_PULL_UP, 1); 

} 

 

This call to the gpio_configurePinWithSingleBytePortPinNum() API will internally pull P0 to the HIGH logic state 

and eliminate leakage. 

7.5 Part 3: Program the Device 

This section shows how to program the EZ-BLE WICED Evaluation Board. The CYBLE-013025-00 module on this 
evaluation board includes a UART-based bootloader in the onboard chipset ROM, and therefore does not require an 
external programmer of any kind. 

Note: The source project for this design is available on this application note’s webpage. 

7.5.1 Host UART Interface Selection and Preparation 

Host access to the HCI UART interface required for programming is available using either the built-in USB-to-UART 
bridge or the 4-pin J2 header on the module and an external UART device. The SW1 six-position DIP switch controls 

whether the USB-to-UART bridge is connected to the HCI UART or Peripheral UART pins on the module, and 
therefore you must set it properly to provide the correct pin routing. 

Table 5. SW1 DIP Switch Settings for Programming 

Programming 
Interface 

SW1 Positions 
Detail 

1 2 3 4 5 6 

Built-in USB-to-UART OFF OFF OFF OFF ON ON PUART disconnected, HCI UART connected 

J2 and external UART any any any any OFF OFF PUART irrelevant, HCI UART disconnected 

 
Switch positions 1, 2, 3, and 4 control the Peripheral UART connection to the USB-to-UART bridge IC on the 
evaluation board, while positions 5 and 6 control the HCI UART connection to the same USB-to-UART bridge IC. You 
should not set all six SW1 positions to ON under any circumstances, as this will directly connect both module UARTs 
RX and TX pairs together. This could result in a state where both TX pins are driving in opposite directions, causing 
an internal short between VDD and GND. 
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7.5.2  Boot Modes and Effect ive Operat ional  States  

Beginning from a power-on or reset, the boot sequence for the CYW20737 chipset inside the EZ-BLE WICED Module 
follows the process defined below: 

1. Code in ROM executes and initializes the device processor, clock domains, peripherals, etc. 

2. The following checks then occur: 

a. The boot ROM checks for connected EEPROM and for a valid configuration, issuing several commands on 
the I2C pins. If no configuration or EEPROM is found via I

2
C, it will check Serial Flash (SFLASH) for a valid 

configuration via SPI.  

b. The boot ROM calculates the checksum of the first 11 bytes of the Static Section (SS) of the non-volatile 
memory. If the checksum fails, it will increment through certain locations in memory until it finds a valid SS to 
use. If it does not find one, it will only boot from ROM. The first three bytes of the SS in use should always 
be 0x01 0x00 0x08. The mini-driver contained in the WICED SMART SDK will ensure that the SS section of 
the non-volatile memory contains the correct information.  

3. The chipset then proceeds to either application mode or programming (HCI) mode depending first on the state of 
the HCI_UART RX pin, and secondarily on whether a valid configuration was found in the previous step: 

a. If HCI_UART RX is asserted, the chipset will boot into programming (HCI) mode regardless of whether a 
valid configuration was found in nonvolatile memory. 

b. If HCI_UART RX is not asserted and a valid configuration is found in either memory location, the Boot ROM 
will continue to load the rest of the configuration, patch data, and user application code from the external 
non-volatile memory. 

c. If HCI_UART RX is not asserted and no valid configuration was found, the Boot ROM will stop executing 
further instructions. 

To ensure that you have placed the module into the correct mode for programming, press the SW2 RESET button on 
the evaluation board after adjusting the DIP switch positions and/or external UART connection as described in the 
previous section. 

7.5.3  Compil ing and Downloading into the Module  

Now that you have completed the code updates and prepared the programming interface, all that remains is to 
compile and flash the firmware image into the target device. To do this, simply double-click on the make target that 
you defined previously (find_me-CYBLE_013025_EVAL download).  

After a brief compile process, the Console output in the WICED SMART IDE should indicate success, as shown in 
Figure 26. 

Figure 26. Programming the Firmware 

 

If you do not see this success message, ensure that you have correctly connected and configured the programming 
interface from the host as described in the previous sections, and try downloading again. If it continues to fail, refer to 
the recovery steps outlined below. 
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7.5.4  Performing a Recovery Procedure  

In some cases, the normal firmware download procedure does not succeed even though all connections and 
switches are correct. This may happen as a result of SFLASH corruption due to incorrect application design, or 
attempting to load too-large of a firmware image (application size should not exceed ~26 KB), or power loss during a 
normal firmware download process. If this happens, you may need to recover the device. To do this: 

1. Copy and paste the original make target to a new entry. 

2. Name the new target the same, but replace 'download' with ’recover' and add UART=COMxx as an additional 

argument. The COMxx value should be the host serial port that is connected to the HCI UART programming 

interface on the module. The final make target name should be similar to this: 

find_me-CYBLE_013025_EVAL recover UART=COM17 

3. Press and hold the Recover button on the evaluation board, and press and release the Reset button. Release 

the Recover button after a moment. This will cause the module to boot into a recovery mode. 

4. Double-click on the new make target to perform a recovery download. The application should now boot properly. 

7.6 Part 4: Test Your Design 

This section describes how to test your BLE design using the CySmart mobile apps and PC tool. The setup for testing 
your design using the EZ-BLE WICED evaluation board is shown in Figure 13.  

1. Turn ON Bluetooth on your iOS or Android device. 

2. Launch the CySmart app. Press the reset switch on the EZ-BLE WICED evaluation board to start BLE 
advertisements from your design. 

3. Pull down the CySmart app home screen to start scanning for BLE Peripherals. Your device name will now 
appear in the CySmart app home screen. Select your device to establish a BLE connection. 

4. Select the Find Me Profile from the carousel view. 

5. Select one of the Alert Level values on the Find Me Profile screen and observe the state of the LED on your 
EZ-BLE WICED evaluation board change based on your selection. 

A step-by-step configuration screenshot of the CySmart mobile app is shown in Figure 27 and Figure 28. 

Figure 27. Testing with CySmart iOS App  

Select your 
device

Select Find Me 
Profile

Select Alert 
Level
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Figure 28. Testing with CySmart Android App 
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Similar to the CySmart mobile app, you can also use the CySmart Host Emulation Tool on a PC to establish a BLE 
connection with your design and perform read or write operations on BLE Characteristics.  This method requires the 
CY5677 kit.  

1. Connect the BLE dongle to your Windows machine. Wait for the driver installation to complete. 

2. Launch the CySmart Host Emulation Tool; it automatically detects the BLE Dongle. Click Refresh if the BLE 
Dongle does not appear in the Select BLE Dongle Target pop-up window. Click Connect, as shown in Figure 

29. 

Figure 29. CySmart BLE Dongle Selection 

 

3. Select Configure Master Settings and restore the values to the default settings, as shown in Figure 30. 
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Figure 30. CySmart Master Settings Configuration 

 

4. Press the reset switch on the EZ-BLE WICED Evaluation board to start BLE advertisements from your design. 
Note that the HCI UART must not be connected when you reset or power on the board, or else the module will 
boot into programming mode instead of application mode. To accomplish this, set positions 5 and 6 of SW1 to 
the OFF position. For information on all DIP switch settings, see Table 11 in Appendix C (EZ-BLE WICED 
Evaluation Board Details). 

5. On the CySmart Host Emulation Tool, click Start Scan. Your device name should appear in the Discovered 
devices list, as shown in Figure 31.. 

Figure 31. CySmart Device Discovery 

   

6. Select your device and click Connect to establish a BLE connection between the CySmart Host Emulation Tool 

and your device, as shown in Figure 32. 

Figure 32. CySmart Device Connection 

 

7. Once connected, discover all the Attributes on your design from the CySmart Host Emulation Tool, as shown in 
Figure 33. 
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Figure 33. CySmart Attribute Discovery 

 

8. Write a value of 0, 1, or 2 to the Alert Level Characteristic under the Immediate Alert Service, as Figure 34 
shows. Observe the state of the LED on your device change per your Alert Level Characteristic configuration.  

Figure 34. Testing with CySmart Host Emulation Tool 

 

7.7 Design Source  

The functional WICED SMART SDK project for the BLE example design described in this application note is 
distributed on this application note’s web page.  

8 Module Placement and Enclosure Considerations 

EZ-BLE WICED Modules are designed to be soldered to a host PCB to provide seamless BLE connectivity. To 
maximize the RF performance of the final product, care needs to be taken on the placement of the module and 
antenna. This section describes in detail the recommended placement of the module on a host board to ensure 
optimal RF performance. This section also details the effect of metallic or nonmetallic enclosure and metal 
obstructions near the module. 

8.1 Antenna Ground Clearance  

A monopole antenna requires that no ground plane is present below the antenna. The ground plane below it will not 
allow the field to propagate. This is defined as the Ground Clearance requirement. However, after some distance, a 
ground must be present for a monopole antenna. Defining this region is a very significant step for any antenna 
design. The Ground Clearance region defines the bandwidth and efficiency of the antenna.  

Each specific EZ-BLE WICED Module marketing part number specifies the Ground Clearance used for the design of 
the module, and offers recommended additional ground keep-out area to maximize the RF performance. The 
examples below reference the CYBLE-013025-00 module specifically. For details on other modules, see the specific 
module datasheet.  
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The example below references a PCB trace antenna implementation (shown in the green hatched area), but the 
same rules and properties apply for chip antennas used on other Cypress EZ-BLE Modules. The specific PCB trace 
antenna shown in Figure 35 requires a Ground Clearance area of 4.62 mm × 14.52 mm.  To maximize the RF 
performance, an additional 4 mm of ground clearance is recommended.  This is denoted in the blue hatched area. 
This additional ground clearance is not required, but may improve the RF performance if implemented.  

Figure 35. Antenna Clearance 

 

In Figure 35, the PCB trace antenna is placed at the edge of the module. The green area in Figure 35 does not have 
any ground on any layer. The module placement in a host board needs to ensure that no traces or ground layers of 
the host board comes within this region. Any ground plane below a monopole antenna degrades the radiation and 
adversely affects the RF efficiency. 

8.2 Module Placement in a Host System 

The EZ-BLE Module is soldered to a host board and a clearance must be provided for the antenna where no routing 
or ground is allowed on any layer. Placing the module at the edge of the host board is recommended because it 
provides the best RF performance and simplifies the requirement of not routing signal or ground traces under the 
antenna Ground Clearance region. Figure 36 shows four placement options on a host board, with option 1 being the 
most efficient.  
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Figure 36. Module Placement in a Host Board 

 
 

Figure 36 shows an example of four positions of the module in a host board, “1”, “2”, “3”, and “4”. The white area 
shown around the module is the additional clearance area. For the antenna in question, it is recommended to provide 
a clearance area of 4 mm in each direction. For details on the recommended clearance area for your EZ-BLE 
Module, see the specific module datasheet.  

As can be seen in Figure 36, when placing the module at the edge (placement options “1” or “3”) of the host board, 
the additional clearance area is only required facing inwards towards the center of the main board.  In all cases, there 
must be no possibility of signal or ground traces to be beneath the antenna Ground Clearance region. Conversely, if 
the module is placed in the middle (placement option “2”) of the host board, the clearance area must be provided in 
order to achieve an optimal RF performance.   

Placement option “1” or “3” are the best options shown in Figure 36, because it removes the need to reroute signal or 
ground traces away from the Ground Clearance region of the module (because no GPIO are located at the top left or 
right corner of the module). Furthermore, it minimizes additional clearance area if optimal RF performance is desired, 
because the antenna faces outward with the antenna exposed to open space.  

In placement option “4”, although the module is placed at the edge of the host board, the antenna is not exposed to 
the maximum amount of free space.  

Placement option “2” not only wastes PCB real estate, but also provides diminished RF performance compared to 
position “1” and “3”. 

8.3 Enclosure Effects on Antenna Performance  

Antennas used in consumer products are sensitive to the PCB RF ground size, the product’s plastic casing, and 
metallic enclosures. This section describes the effect of each of these environmental factors on RF performance.  

8.3.1  Antenna Near-Fie ld and Far-Field  

Every antenna contains two regions surrounding it: 1) the near-field and 2) the far-field.  

The near-field is the region where the radiated field has not yet formed. In this region, the electric and magnetic fields 
are not orthogonal to each other. This region is very close to the antenna. The near-field region has two regions: the 
reactive near-field region and the radiating near-field region. The transition to a far-field region happens in the 
radiating near-field region. 

Shield 
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outside of module 
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The radiation field is formed after the transition to the far-field region. In this region, the relative angular variation of 
the field does not depend on the distance. This means that if you plot the angular radiation field at a distance from the 
antenna in the far-field region, their shapes remain the same. Only with distance, the field strength decreases. 
However, the shape of the radiation pattern remains the same with respect to the angular variation. This region is 
called the far-field region. An object in the far field does not affect the radiation pattern much. However, any 
obstruction in the near-field can completely change the radiation pattern. If the obstruction is metal, the effect on the 
radiation pattern is much more pronounced.  Figure 37 shows the regions for a dipole antenna. 

Figure 37. Near and Far Field 

 
 

For a module based on a 2.4-GHz chip antenna, the near-field extends up to 4 mm. 

8.3.2  Effect  of  Nonmeta l l ic  Enclosure  

Any plastic enclosure changes the resonating frequency of the antenna. The antenna can be modeled as an LC 
resonator whose resonant frequency decreases when either L (inductance) or C (capacitance) increases. A larger RF 
ground plane and plastic casing increase the effective capacitance and thus reduce the resonant frequency. See the 
application note AN91445 for more details on the effect of an enclosure.   

Figure 38 details a module antenna in a plastic enclosure. The clearance from the antenna to the plastic enclosure 
can be as little as 2 mm. However, clearance of this amount can affect the tuning of the antenna. This can be 
resolved by retuning the antenna; however for a module solution, it is not recommended to attempt retuning of the 
antenna. To minimize effects on the module antenna, it is recommended to have a minimum clearance of 5 mm. 

Figure 38. EZ-BLE WICED Module Inside of a Plastic Mouse Enclosure 

 
 

8.3.3  Effect  of  Meta l l ic  Objects  

An antenna is sensitive to the presence of metallic objects in its vicinity. A metallic object shorts the electric field and 
thus changes the radiation field. Depending on the size of the obstruction, electromagnetic waves go through different 
diffraction patterns or may be completely shielded by the metallic object. 
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Metallic objects in the near-field can have a drastic impact on the radiation pattern. The thickness of the  
CYBLE-013025-00 module is 2.25 mm (including the shield) and the near field of this module extends up to 4 mm 
from the antenna. Therefore, it is recommended that any metallic obstruction be at least 6.2 mm away from the PCB 
plane to avoid negative effects to the RF performance. Cypress recommends an 8-mm gap from the module PCB 
plane to any metallic enclosure. Figure 39 details the required clearance from the EZ-BLE WICED Module to small 
metal obstructions.  

Figure 39. Clearance from Small Metal Obstructions 

 

8.3.4  Recommendations for Placement over a  Large Metal  Plane  

The other effect of metal is the formation of an image antenna. The best practice in this case is to orient the metal 
orthogonal to the antenna to ensure minimum effects. If the length or width of the plane approaches the size of the 
module, it is considered a large metal object near the antenna. Figure 40 details two placement options for this 
scenario. Of these two placement options, option “1” should be avoided. 

It is recommended to not have any large metallic objects parallel to the antenna. This has a drastic effect because the 
image antenna is of opposite polarity. The interference caused by such an antenna is destructive to RF radiation. 

If it is not possible to avoid a large metallic object running parallel to the module plane, you should maintain a 
distance (h) of at least 30 mm. This will ensure that the interference caused by the image antenna will not be 
completely destructive. The radiation will be strongly directional below the 30-mm distance; the efficiency will 
dramatically drop at a distance (h) below 8 mm. At a distance (h) of around 2 mm, the radiation efficiency can go 
below 20%. 

Figure 40. Clearance from a Large Metal Plane 

 

8.4 Guidelines for Enclosures and Ground Plane 

Use the following best practices with respect to enclosure design and ground planes:  

 Ensure that there is no component, mounting screw or ground plane near the tip or the length of the antenna 
located on the EZ-BLE WICED Module.  

 Ensure that no battery cable, microphone cable, or trace crosses the antenna trace on the PCB. 

 Ensure that the antenna is not completely covered by a metallic enclosure. If the product has a metallic casing or 
shield, the casing should not cover the antenna. No metal is allowed in the antenna near the field.  
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 Ensure that paint on plastic enclosures is nonmetallic near the antenna. 

 Ensure that the orientation of the antenna is in-line with the final product orientation (if possible) so that radiation 
is maximized in the desired direction. The polarization and position of the receive antenna should be taken into 
account so that the module can be oriented to maximize the radiation. 

 Ensure that there is no ground directly below the antenna Ground Clearance region of the module.  
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9 Manufacturing with EZ-BLE WICED Modules 

EZ-BLE WICED Modules are intended to be used with traditional Surface Mount Technology (SMT) manufacturing 
lines and are compatible with industry-standard reflow profiles for Pb-free solders.  

9.1 SMT Manufacturing Pick-and-Place 

The modules should be picked up from the topside of the module using industry-standard pick-and-place machinery 
and nozzles. The ideal location for picking up the module is on the shield area of the module. For the optimal location 
for your EZ-BLE WICED Module, see the module’s datasheet.   

Each module MPN has a unique center-of-mass detailed in each product’s datasheet. This center-of-mass is the area 
that represents the optimal location to pick up the unit with the nozzle. Using the center-of-mass guidelines for the 
pick-and-place location minimizes SMT line disturbances caused by units releasing prematurely from the nozzle.   

Figure 41 shows an image of a nozzle used by Cypress for manufacturing the CYBLE-013025-EVAL Evaluation 
Board product. See the center-of-mass dimensions in each module’s datasheet to select an appropriate nozzle for 
your manufacturing line equipment.   

Figure 41. Nozzle Used by Cypress for Evaluation Board Production 

 

Figure 42 shows an image of a Cypress EZ-BLE Module being picked up at the center-of-mass by the nozzle 
referenced above.  

Figure 42. Image of Nozzle Used by Cypress for Evaluation Board Production 

 

9.2 Manufacturing Solder Reflow 

EZ-BLE WICED Modules are compatible with industry-standard reflow profiles for Pb-free solder. Table 6 details the 
solder reflow specifications for all modules.  

Table 6. EZ-BLE WICED Module Solder Reflow Specification 

Module Package Maximum Peak Temperature Time at Maximum Temperature 

All Packages 260 
o
C 30 seconds 
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10 Summary 

This application note explores the EZ-BLE WICED Module solutions, architectures, development tools, host board 
placement and orientation, and production manufacturing. EZ-BLE WICED Modules are fully integrated BLE solutions 
that allow rapid development and production release for customer applications. The core of the EZ-BLE WICED 
Modules is the Cypress WICED Bluetooth Smart ICs, integrating the Bluetooth radio, analog and digital peripheral 
functions, memory, and an ARM Cortex-M3 microcontroller. The Cypress EZ-BLE Module family provides multiple 
module options to service the needs of any customer application.  

11 Related Application Notes 

 AN91445 – Antenna Design Guide  

 AN96841 – Getting Started With EZ-BLE Creator Modules 

About the Author 
Name: David Solda (DSO) 

Title: Senior Business Unit Director 

Background: David Solda has a BS in Computer/Electrical Engineering, a BS in Mathematics, and an MBA from 
Santa Clara University, California. 
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Appendix A. Cypress Terms of Art 

This section lists the most commonly used terms that you might hear while working with Cypress’s PSoC family of 
devices. 

PSoC – PSoC is a programmable, embedded design platform that includes a CPU, such as the 32-bit ARM Cortex-

M0, with both analog and digital programmable blocks. It accelerates embedded system design with reliable, easy-to-
use solutions, such as touch sensing and enables low-power designs. 

PRoC BLE – PRoC BLE is a 32-bit, 48-MHz ARM Cortex-M0 BLE solution with CapSense, 12-bit ADC, four timers, 

counters, pulse-width modulators (TCPWM), thirty-six GPIOs, two serial communication blocks (SCBs), LCD, and 
I2S. PRoC BLE includes a royalty-free BLE stack compatible with Bluetooth 4.1 and provides a complete, 
programmable, and flexible solution for HID, remote controls, toys, beacons, and wireless chargers. In addition to 
these applications, PRoC BLE provides a simple, low-cost way to add BLE connectivity to any system. 

PSoC 4 BLE – A PSoC 4 IC with an integrated BLE radio that includes a royalty-free BLE protocol stack compatible 

with the Bluetooth 4.1 or 4.2 specifications. 

EZ-BLE
™

 PRoC Module (EZ-BLE PRoC) – EZ-BLE PRoC Module is a fully integrated, fully certified, 10 mm × 10 

mm × 1.8 mm, programmable, Bluetooth Smart or Bluetooth Low Energy (BLE) module designed for ease-of-use and 
reducing time-to-market. It contains Cypress’s PRoC BLE chip, two crystals, chip antenna, shield and passive 
components. EZ-BLE PRoC Module provides a simple and low cost way to add a microcontroller, CapSense touch 
controller and Bluetooth Smart connectivity to any system. 

EZ-BLE
™ 

PSoC Module (EZ-BLE PSoC) – An integrated, easy-to-use, fully certified Bluetooth Smart module 

designed to reduce time-to-market and development cost.  Contains PSoC 4 BLE, two crystals, an antenna and 
passive components. 

EZ-BLE™ WICED Module (EZ-BLE WICED) - EZ-BLE WICED Modules are fully integrated, fully certified, Bluetooth 

Smart or Bluetooth Low Energy (BLE) module designed for ease-of-use and reducing time-to-market. It contains 
Cypress’s WICED BLE chip, one crystal, PCB trace antenna, shield and passive components. EZ-BLE WICED 
Module provides a simple and low cost way to add a microcontroller and Bluetooth Smart connectivity to any system. 

EZ-BT™ WICED Modules (EZ-BT WICED) - EZ-BT WICED Modules are fully integrated, fully certified, Bluetooth 

Smart Ready (Bluetooth Basic Rate, Enhanced Data Rate, and Bluetooth Low-Energy) modules designed for ease-
of-use and reducing time-to-market. They contain Cypress’ WICED dual-mode chip, one crystal, PCB trace antenna, 
shield and passive components. EZ-BT WICED Modules provide a simple and low-cost way to add a microcontroller 
and Bluetooth Smart Ready connectivity to any system. 

PSoC Creator
™

 – PSoC 3, PSoC 4, and PSoC 5LP Integrated Design Environment (IDE) software that installs on 

your PC and allows concurrent hardware and firmware design of PSoC systems, or hardware design followed by 
export to other popular IDEs. 

WICED SMART SDK – Cypress' WICED (Wireless Connectivity for Embedded Devices) is a full-featured platform 

with proven Software Development Kits (SDKs) and turnkey hardware solutions from partners to readily enable Wi-Fi 
and Bluetooth connectivity in system design.  
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Appendix B. EZ-BLE WICED Module Product Details 

The information contained for each module part number includes the following:  

 Physical image for each EZ-BLE WICED Module marketing part number  

 Pinout and functionality for each EZ-BLE WICED Module marketing part number 

 Recommended host PCB layout footprint for each EZ-BLE WICED Module marketing part number  

 Recommended additional clearance area for each EZ-BLE WICED Module marketing part number 

 

To jump to your specific EZ-BLE WICED Module, click the marketing part number in the below list:  

 CYBLE-0130XX-00 
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B.1 EZ-BLE WICED Part Number Details 

B.1.1  CYBLE-0130XX-00   

The CYBLE-0130XX-00 is available in two marketing part numbers:  CYBLE-013025-00 (includes 128 KB of 
SFLASH) and the CYBLE-013030-00 (which does not contain nonvolatile memory on the module). Figure 43 shows a 
physical picture of the CYBLE-0130XX-00 EZ-BLE WICED Module.   

Figure 43. CYBLE-0130XX-00 Module Top View   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For more details on this module’s dimensions, external component connections, and module placement 
recommendations, see the CYBLE-0130XX-00 datasheet specification.  

B.1.1.1 Pinout and Functionality 

The CYBLE-0130XX-00 module is designed to mount as a component on an end-product PCB. Only a portion of the 
available I/O of the CYW20737 WICED BLE silicon device is exposed on the CYBLE-0130XX-00 module in order to 
minimize the module footprint size. The CYBLE-0130XX-00 module contains 31 connections on the bottom side of 
the module.  Figure 44 details the bottom side connections available on the CYBLE-0130XX-00 module.  

14.5 
mm 

Shield  

Trace Antenna 

19.2 mm 

http://www.cypress.com/
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 Figure 44. CYBLE-0130XX-00 Module Bottom View (Seen from Bottom) 
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A list of the available I/Os and supported functionality for each I/O of the CYBLE-013025-00 is shown in Table 7. 

Table 7. CYBLE-013025-00 Module Available Connections and Functionality 

Solder 
Pad  

Pad/Silicon 
Pin Name 

Functionality 

UART SPI
4
 I2C ADC PWM CLK/XTAL GPIO OTHER 

1 XRES External Reset (Active Low) 

2 GND/NC Ground Connection/No Connect 

3 GND/NC Ground Connection/No Connect 

4 P11/P27
5
  

SPI2_MOSI 
(P27) 

(master/slave) 

 

Yes  

(P11 
only) 

PWM1  

(P27) 

XTALI32K 

(P11) 
Yes  

5 P12/P26
12

  
SPI2_CS (P26) 

(slave) 
 

Yes  

(P12 
only) 

PWM0 

(P26) 

XTALO32K 

(P12) 
Yes  

6 P15    Yes   Yes SWDIO 

7 P14/P38
12

  

SPI2_MOSI 
(P38) 

(master/slave) 

 Yes 
PWM2  

(P14) 
 Yes  

8 P13/P28
12

    Yes 

PWM3 
(P13) 

PWM2 
(P28) 

 Yes  

9 P24 PUART_TX 
SPI2_CLK 

(master/slave) 
    Yes  

10 NC No Connect 

11 NC No Connect 

12 P25 PUART_RX 
SPI2_MISO  

(master/slave) 
    Yes  

13 P4 PUART_RX 
SPI2_MOSI  

(master/slave) 
    Yes  

14 P2 PUART_RX 

SPI2_MOSI 
(master) / 

SPI2_CS 
(slave) 

    Yes  

15 VDD Power Supply Input (2.3 V ~ 3.63 V) 

16 P3 PUART_CTS 
SPI2_CLK 

(master/slave) 
    Yes  

17 P8/P33
12

 No Connect (Used for on-module memory SPI Interface for CYBLE-013025-00) 

18 P32 No Connect (Used for on-module memory SPI Interface for CYBLE-013025-00) 

19 P1 PUART_RTS 
SPI2_MISO 

(master/slave) 
 Yes   Yes  

                                            
4
 The CYBLE-013025-00 contains a single SPI (SPI2) peripheral supporting both master and slave configurations.  SPI1 is used for 

on-module serial memory interface.   

5
 This chip pin for this connection is dual-bonded. Use of the internal chip super-mux is required to configure the desired output 

signal on these connections.  
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Solder 
Pad  

Pad/Silicon 
Pin Name 

Functionality 

UART SPI
4
 I2C ADC PWM CLK/XTAL GPIO OTHER 

20 P0 PUART_TX 
SPI2_MOSI 

(master/slave) 
 Yes   Yes  

21 SDA   I2C_SDA    Yes  

22 SCL   I2C_SCL    Yes  

23 UP_TX UART_TX        

24 UP_RX UART_RX        

25 GND Ground Connection 

26 GND Ground Connection 

27 GND Ground Connection 

28 GND Ground Connection 

29 NC No Connect 

30 NC No Connect 

31 NC No Connect 
 

Table 8 details the available I/Os and supported functionality for each I/O of the CYBLE-013030-00 module.  NOTE 
that the only difference between the CYBLE-013025-00 (128 KB SFLASH) and the CYBLE-013030-00 (No Flash) is 
the amount of flash on-board the module. This fact also allows for the SPI1 connection to exist on the CYBLE-
013030-00 module.   

Table 8. CYBLE-013030-00 Module Available Connections and Functionality 

Solder 
Pad  

Pad/Silicon 
Pin Name 

Functionality 

UART SPI
6
 I2C ADC PWM CLK/XTAL GPIO OTHER 

1 XRES External Reset (Active Low) 

2 GND/NC Ground Connection/No Connect 

3 GND/NC Ground Connection/No Connect 

4 P11/P27
7
  

SPI2_MOSI (P27) 

(master/slave) 
 

Yes  

(P11 only) 

PWM1  

(P27) 

XTALI32K 

(P11) 
Yes  

5 P12/P26
14

  

SPI1_MISO (P26, 
master) 

SPI2_CS (P26, slave) 

 
Yes  

(P12 only) 

PWM0 

(P26) 

XTALO32K 

(P12) 
Yes  

6 P15    Yes   Yes SWDIO 

7 P14/P38
14

  
SPI2_MOSI (P38) 

(master/slave) 
 Yes 

PWM2  

(P14) 
 Yes  

8 P13/P28
14

    Yes 
PWM3 (P13) 

PWM2 (P28) 
 Yes  

9 P24 PUART_TX 
SPI1_MISO (master) 

SPI2_CLK (master/slave) 
    Yes  

10 NC No Connect 

11 NC No Connect 

                                            
6
 The CYBLE-013030-00 contains a two SPI peripherals (SPI1 and SPI2).  SPI2 supports both master and slave configurations.   

SPI1 supports only master configuration.  If external SPI memory is used with the CYBLE-013030-00 module, SPI1 must be the 
interface used to the memory.   

7
 This chip pin for this connection is dual-bonded. Use of the internal chip super-mux is required to configure the desired output 

signal on these connections.  
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Solder 
Pad  

Pad/Silicon 
Pin Name 

Functionality 

UART SPI
6
 I2C ADC PWM CLK/XTAL GPIO OTHER 

12 P25 PUART_RX 
SPI2_MISO  

(master/slave) 
    Yes  

13 P4 PUART_RX 
SPI2_MOSI  

(master/slave) 
    Yes  

14 P2 PUART_RX 
SPI2_MOSI (master) / 

SPI2_CS (slave) 
    Yes  

15 VDD Power Supply Input (2.3 V ~ 3.63 V) 

16 P3 PUART_CTS 
SPI2_CLK 

(master/slave) 
    Yes  

17 P8/P33
14

 
PUART_RX 

(P33) 

SPI2_MOSI (P33, slave) 

SPI1_CS (P33, master) 
 Yes  

ACLK1 

(P33) 
Yes   

18 P32 PUART_TX 
SPI1_MISO (slave) 

SPI1_CS (slave) 
 Yes  ACLK0 Yes  

19 P1 PUART_RTS 
SPI2_MISO 

(master/slave) 
 Yes   Yes  

20 P0 PUART_TX 
SPI2_MOSI 

(master/slave) 
 Yes   Yes  

21 SDA  SPI1_MOSI (master) I2C_SDA    Yes  

22 SCL  SPI1_CLK (master) I2C_SCL    Yes  

23 UP_TX UART_TX        

24 UP_RX UART_RX        

25 GND Ground Connection 

26 GND Ground Connection 

27 GND Ground Connection 

28 GND Ground Connection 

29 NC No Connect 

30 NC No Connect 

31 NC No Connect 
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B.1.1.2 Host Recommended PCB Layout 

To assist in the host PCB layout design for the CYBLE-0130XX-00, Cypress provides three host PCB landing pattern 
reference drawings in Figure 45, Figure 46, and in Figure 47, and Table 9. Figure 45 provides a dimensioned view of 
the host PCB layout. Figure 46 provides the location to the center edge of each solder pad relative to the origin of the 
module (upper right PCB outline). Figure 47 and Table 9 provides the location to each solder pad center location for 
the host PCB layout.  Dimensions shown are in mm unless otherwise stated. 

Figure 45. Host Board Required PCB Layout Pattern (Dimensioned View) 

  

Note: Pad length shown includes overhang of the host pad beyond the module pad outline. The minimum 

recommended pad length on the host PCB is 1.27 mm.   
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Figure 46. Host Board Required PCB Layout Pattern: To Pad Center Edge Relative to Origin 
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Figure 47. Host Board Required PCB Layout Pattern 
     To Pad Center Relative to Origin 

Table 9. Location to Pad Center from Origin 
(dimensions in mm and mils)  

 

Solder Pad 
(Center of Pad) 

Location (X,Y) from 
Origin (mm) 

Location (X,Y) from 
Origin (mils) 

1 (0.39, 4.88)  (15.35, 192.13) 

2 (0.39, 6.15) (15.35, 242.13) 

3 (0.39, 7.42) (15.35, 292.13) 

4 (0.39, 8.69) (15.35, 342.13) 

5 (0.39, 9.96) (15.35, 392.13) 

6 (0.39, 11.23) (15.35, 442.13) 

7 (0.39, 12.50) (15.35, 492.13) 

8 (0.39, 13.77) (15.35, 542.13) 

9 (0.39, 15.04) (15.35, 592.13) 

10 (0.39, 16.31) (15.35, 642.13) 

11 (0.39, 17.58) (15.35, 492.13) 

12 (2.04, 18.82) (80.31, 740.94) 

13 (3.31 , 18.82) (130.31 , 740.94) 

14 (4.58 , 18.82) (180.31 , 740.94) 

15 (5.85 , 18.82) (230.31 , 740.94) 

16 (7.12 , 18.82) (280.31 , 740.94) 

17 (8.39 , 18.82) (330.31 , 740.94) 

18 (9.66 , 18.82) (380.31 , 740.94) 

19 (10.93 , 18.82) (430.31 , 740.94) 

20 (12.20 , 18.82) (480.31 , 740.94) 

21 (13.47, 18.82) (530.31, 740.94) 

22 (14.14, 16.31) (556.69, 642.12) 

23 (14.14, 15.04) (556.69, 592.12) 

24 (14.14, 13.77) (556.69, 542.12) 

25 (14.14, 12.50) (556.69, 492.12) 

26 (14.14, 11.23) (556.69, 442.12) 

27 (14.14, 9.96) (556.69, 392.12) 

28 (14.14, 8.69) (556.69, 342.12) 

29 (14.14, 7.42) (556.69, 292.12) 

30 (14.14, 6.15) (556.69, 242.12) 

31 (14.14, 4.88) (556.69, 192.12) 
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Figure 48 below details additional host board keep out area to achieve optimal RF performance with the CYBLE-
0130XX-00 module (denoted in blue hatched area).  

Figure 48. Host Board Additional Keep Out Area for Optimal RF Performance 
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Appendix C. EZ-BLE WICED Evaluation Board Details 

Appendix C provides detailed information on each EZ-BLE WICED Evaluation Boards. The information contained for 
each subsection below includes the following:  

 Physical image for each EZ-BLE WICED Evaluation marketing part number  

 What’s included on the specific EZ-BLE WICED Evaluation board 

 

To jump to your specific EZ-BLE WICED Evaluation board, click the marketing part number in the below list:  

 CYBLE-013025-EVAL 
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C.1.1  CYBLE-013025-EVAL 

The CYBLE-013025-EVAL is the evaluation board for both the CYBLE-013025-00 and the CYBLE-013030-00 
EZ-BLE WICED Modules.  Figure 49 shows the CYBLE-013025-EVAL board and calls out the main components and 
connections available on the board.   

Figure 49. CYBLE-013025-EVAL Evaluation Board 

 

The section below explains the main items shown in Figure 49 above.  

Note: Connections not called out on J3, J4, J5, and J7 Arduino compatible headers are NC (No Connect), where no 

physical connection is present between the CYBLE-013025-00 EZ-BLE WICED Module and the associated headers.   

The CYBLE-013025-EVAL includes the following elements:  

Active Devices 

 EZ-BLE WICED Module:  The EZ-BLE WICED Module is mounted to the evaluation board as shown in Figure 
49. 

 USB-to-UART bridge device:  A USB-to-UART bridge device is provided on the evaluation board to translate 
USB communication to UART communication.  The UART communication is routed based on the configuration 
settings of SW1, as described below.  

 

Connectors and Headers 

 USB receptacle:  The USB connection on the CYBLE-013025-EVAL board provides power to the evaluation 
board, and also provides communication to the board via USB, which is translated to UART communication and 
routed to either the HCI UART or PUART connection on the EZ-BLE WICED Module depending on the 
configuration of SW1.   

 Power Supply Option Header (J8): J8 allows for configuration of three different power supplies to the EZ-BLE 
WICED Module.  All power is sourced from the USB connection, as mentioned above, but the power supply 
directly inputted to the CYBLE-013025-00 module can be configured to either 2.3 V, 3.3 V, or 3.6 V using the 
provided three-pin header. The power supply input is configured by shorting two neighboring header positions or 
leaving the header open.  Table 10 details the available power supply options and the associated header position 
connections required.   
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Table 10. J8 Header Power Supply Connection Options 
 

2.3 V Supply 
Leave connections open; do not short any 
header connections 

3.3 V Supply Short J8 header positions 2 & 3 

3.6 V Supply Short J8 header positions 1 & 2 

All Other Configurations Not Allowed 

 

 Arduino-compatible base headers – headers J3/J4/J5/J7: The CYBLE-013025-EVAL provides Arduino-
compatible base headers that can be used for Arduino shield interfacing.  The associated signals that are routed 
out to these headers are noted on the PCB silk screen on both the top and bottom side of the evaluation board.     

 HCI UART direct connection header (J2):  The J2 header provides all HCI UART communication lines to the 
user.  This allows for connection to the EZ-BLE WICED Module without having to connect through USB.  This 
can be used to connect a host controller evaluation board directly to the EZ-BLE WICED Module HCI UART 
connection.  HCI UART connections are not brought out to the Arduino-compatible headers.   

 Power consumption measurement header (J1): J1 is provided to allow for easy power consumption 
measurement reading with a multi-meter or current measurement probe.   

 User Element Disconnection Headers (J9 and J10):  J9 (USER SW2) and J10 (USER D6 - LED) are provided to 
allow for disconnection of these elements from the CYBLE-013025-00 module.  In both cases, the GPIO that is 
routed to these USER elements is also routed to the Arduino-compatible headers. This may be desired if you 
plan to use either of these GPIOs through the Arduino-compatible headers.   

 

Switches and LEDs 

 SW1 (UART configuration switch):  SW1 controls the configuration of which UART connection is active, HCI 
UART or Peripheral UART (PUART).  SW1 is a six-position switch, and provides the following configuration 
states:  

Table 11. SW1 UART Communication Configuration Options 

SW1 

Switch Position State 

Position 1, 2, 3, and 4 are set 
to ON Position 

Position 1, 2, 3, and 4 are set to 
OFF Position 

Position 5 and 6 are set to ON 
Position 

CONFIGURATION IS NOT 
ALLOWED  

HCI UART Communication 

Programming Mode 

Position 5 and 6 are set to 
OFF Position 

Peripheral UART (PUART) 
Communication 

Application Mode 

Application Mode 

 

Notes on the above table are below:  

 It is not allowed to have all six switch positions set to the ON state. This would lead to both HCI UART and 

PUART being actively connected to the EZ-BLE WICED Module, and could lead to a VDD to GND short.   

 The HCI UART Communication Configuration (Positions 5 and 6 = ON; Positions 1-4 = OFF) is the mode that the 

evaluation board should be in when interfacing to the WICED SMART SDK, with the goal of downloading a 
compiled image to the EZ-BLE WICED Module.   

 The PUART/Application Mode (Positions 5 and 6 = OFF; Positions 1-4 = ON) is the configuration mode to use 

when running application code from SFLASH on the EZ-BLE WICED Module.  NOTE that the EZ-BLE WICED 
Module will not boot from SFLASH if HCI UART Mode is active on SW1.  This mode also provides the PUART 
communication interface, which can be used for terminal communication on a PC.   

 The Application mode (All switch positions = OFF) allows the EZ-BLE WICED Module to boot from SFLASH and 

run application code developed and programmed into the module previously. This mode disables both the HCI 
UART and PUART communication from host PC.  PUART communication can still be accomplished through the 
Arduino-compatible headers if desired.  Similarly, HCI communication can be accomplished through the J2 
header.  
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 SW2 (RESET switch):  SW2 is a tactile switch that is connected directly to the XRES connection of the CYBLE-
013025-00 module.  Activating this switch will reset the EZ-BLE WICED Module.  

 SW3 (USER switch):  SW3 is provided as an element that the user can configure as desired.  The SW3 element 
is connected to P24 on the CYBLE-013025-00 module (solder pad 9). 

 SW4 (RECOVER switch):  SW4 is provided to recover a module that has the standard programming bootloader 
and/or application image corrupted or erased. Recovery mode is activated by holding this button down while 
pressing and releasing SW2 (RESET). Recovery mode is not typically necessary during normal development. 

 D1 and D2 LEDs are provided to display programming activity while in progress. 

 D7 LED is provided to show that power is provided from the host PC.  

 D6 USER LED is provided for user-configured behavior as desired.  The D6 LED is connected to the module 
P14/P26 connection (solder pad 7).   
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Appendix D. Code Examples 

The WICED SMART SDK comes with a set of example projects 
that demonstrate a variety of BLE and peripheral functionality. 
These projects are available in the Project Explorer inside the 
IDE, as Figure 50 shows. 

Example projects can speed up your design process by starting 
you off with a complete design, instead of a blank page. Code 
examples include comments describing their functionality and 
basic demonstration instructions near the top of the main .c 

source file for each project. 

Each example also has a dedicated make target available to 
provide an easy way to build and download onto a BLE module. 
However, these make targets should be renamed before use in 
order to provide compatibility with the CYBLE-013025-EVAL 
board. Simply change the “BCM92073x…” portion of the target 
name to “CYBLE_013025_EVAL” instead. For example: 

Before: puart_control-BCM920737TAG_Q32 download 

After: puart_control-CYBLE_013025_EVAL download 

Some examples assume peripheral devices that are not present 
or that are routed differently on the CYBLE-013025-EVAL board 
compared to older “Tag” evaluation products, such as a button or 
a PWM-controlled piezo buzzer. The table below defines all built-
in peripherals and their routed pin connections. 

Table 12. CYBLE-013025-EVAL Pin Assignments 

Pin Function Macro 

P24 Button (active HIGH) GPIO_PIN_BUTTON 

P14 LED (active LOW) GPIO_PIN_LED 

P2 PUART RXD GPIO_PIN_UART_RX 

P0 PUART TXD GPIO_PIN_UART_TX 

P1 PUART RTS GPIO_PIN_UART_RTS 

P3 PUART CTS GPIO_PIN_UART_CTS 

 
These pins are defined in the custom platform files described in 
Step 9 of Section 7.3 (Part 1: Configure the Design), accessible 
via compiler macros to improve code portability. However, some 
projects may also use pin numbers directly. As you explore the 
examples that come with the SDK, be sure to double-check any 
instances of GPIO pin usage if you encounter compiler errors or 
missing peripheral functionality. 

 

Figure 50. Code Examples in WICED 
SMART 

 

 

http://www.cypress.com/


 

Getting Started with EZ-BLE WICED Modules 

www.cypress.com Document No. 002-20929 Rev. **                     67 

Appendix E. Example Project main.c 

 /** @file 
 * 

 * This file has been automatically generated by the WICED Smart Designer.  

 * Device configuration and functions required for the BLE device. 

 * 

 */ 

 

#include "bleprofile.h" 

#include "bleapp.h" 

#include "gpiodriver.h" 

#include "string.h" 

#include "stdio.h" 

#include "platform.h" 

#include "devicelpm.h" 

 

#include "find_me_db.h" 

 

/****************************************************** 

 *                     Constants 

 ******************************************************/ 

 

#define FIND_ME_FINE_TIMER           1000 

#define FIND_ME_DEVICE_NAME          "find_me" 

#define FIND_ME_DEVICE_APPEARENCE    0 

#define FIND_ME_MAIN_SERVICE_UUID    UUID_SERVICE_IMMEDIATE_ALERT 

#define FIND_ME_MAIN_CHAR_UUID       UUID_CHARACTERISTIC_ALERT_LEVEL 

#define FIND_ME_MAIN_CHAR_HANDLE     HDLC_IMMEDIATE_ALERT_ALERT_LEVEL_VALUE 

 

/****************************************************** 

 *                     Structures 

 ******************************************************/ 

 

#pragma pack(1) 

//host information for NVRAM 

typedef PACKED struct 

{ 

    //part of HOSTINFO generated by wizard 

    __HOSTINFO generated; 

    // ToDo: add your variables here which need to be saved in the NVRAM 

}  HOSTINFO; 

#pragma pack() 

 

/****************************************************** 

 *               Function Prototypes 

 ******************************************************/ 

 

static void find_me_create(void); 

static void find_me_connection_up( void ); 

static void find_me_connection_down( void ); 

static void find_me_advertisement_stopped( void ); 

static void find_me_smp_bond_result( LESMP_PARING_RESULT result ); 

static void find_me_encryption_changed( HCI_EVT_HDR *evt ); 

static int  find_me_write_handler( LEGATTDB_ENTRY_HDR *p ); 

static void find_me_interrupt_handler( UINT8 value ); 

UINT32 find_me_lpm_queriable(LowPowerModePollType type, UINT32 context); 

 

/****************************************************** 

 *               Variables Definitions 

 ******************************************************/ 

 

const BLE_PROFILE_CFG find_me_cfg = 

{ 

    /*.fine_timer_interval            =*/ FIND_ME_FINE_TIMER, // ms 

    /*.default_adv                    =*/ 4,    // HIGH_UNDIRECTED_DISCOVERABLE 

    /*.button_adv_toggle              =*/ 0,    // pairing button make adv toggle (if 1) or always on (if 0) 

    /*.high_undirect_adv_interval     =*/ 32,   // slots 

    /*.low_undirect_adv_interval      =*/ 1024, // slots 

    /*.high_undirect_adv_duration     =*/ 30,   // seconds 

    /*.low_undirect_adv_duration      =*/ 300,  // seconds 

    /*.high_direct_adv_interval       =*/ 0,    // seconds 

    /*.low_direct_adv_interval        =*/ 0,    // seconds 

    /*.high_direct_adv_duration       =*/ 0,    // seconds 

    /*.low_direct_adv_duration        =*/ 0,    // seconds 

    /*.local_name                     =*/ FIND_ME_DEVICE_NAME, // [LOCAL_NAME_LEN_MAX]; 

    /*.cod                            =*/ BIT16_TO_8(FIND_ME_DEVICE_APPEARENCE),0x00, // [COD_LEN]; 
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    /*.ver                            =*/ "1.00",         // [VERSION_LEN]; 

    /*.encr_required                  =*/ 0,    //(SECURITY_ENABLED | SECURITY_REQUEST),    // data encrypted and 

device sends security request on every connection 

    /*.disc_required                  =*/ 0,    // if 1, disconnection after confirmation 

    /*.test_enable                    =*/ 1,    // TEST MODE is enabled when 1 

    /*.tx_power_level                 =*/ 0x04, // dbm 

    /*.con_idle_timeout               =*/ 30,   // second  0-> no timeout 

    /*.powersave_timeout              =*/ 0,    // second  0-> no timeout 

    /*.hdl                            =*/ {FIND_ME_MAIN_CHAR_HANDLE, 0x00, 0x00, 0x00, 0x00}, // [HANDLE_NUM_MAX]; 

    /*.serv                           =*/ {FIND_ME_MAIN_SERVICE_UUID, 0x00, 0x00, 0x00, 0x00}, 

    /*.cha                            =*/ {FIND_ME_MAIN_CHAR_UUID, 0x00, 0x00, 0x00, 0x00}, 

    /*.findme_locator_enable          =*/ 0,    // if 1 Find me locator is enable 

    /*.findme_alert_level             =*/ 0,    // alert level of find me 

    /*.client_grouptype_enable        =*/ 0,    // if 1 grouptype read can be used 

    /*.linkloss_button_enable         =*/ 0,    // if 1 linkloss button is enable 

    /*.pathloss_check_interval        =*/ 0,    // second 

    /*.alert_interval                 =*/ 0,    // interval of alert 

    /*.high_alert_num                 =*/ 0,    // number of alert for each interval 

    /*.mild_alert_num                 =*/ 0,    // number of alert for each interval 

    /*.status_led_enable              =*/ 1,    // if 1 status LED is enable 

    /*.status_led_interval            =*/ 0,    // second 

    /*.status_led_con_blink           =*/ 0,    // blink num of connection 

    /*.status_led_dir_adv_blink       =*/ 0,    // blink num of dir adv 

    /*.status_led_un_adv_blink        =*/ 0,    // blink num of undir adv 

    /*.led_on_ms                      =*/ 0,    // led blink on duration in ms 

    /*.led_off_ms                     =*/ 0,    // led blink off duration in ms 

    /*.buz_on_ms                      =*/ 100,  // buzzer on duration in ms 

    /*.button_power_timeout           =*/ 0,    // seconds 

    /*.button_client_timeout          =*/ 0,    // seconds 

    /*.button_discover_timeout        =*/ 0,    // seconds 

    /*.button_filter_timeout          =*/ 0,    // seconds 

#ifdef BLE_UART_LOOPBACK_TRACE 

    /*.button_uart_timeout            =*/ 15,   // seconds 

#endif 

}; 

 

// Following structure defines UART configuration 

const BLE_PROFILE_PUART_CFG find_me_puart_cfg = 

{ 

    /*.baudrate   =*/ 115200, 

#ifdef GATT_DB_ENABLE_UART 

    /*.txpin      =*/ GPIO_PIN_UART_TX, 

    /*.rxpin      =*/ GPIO_PIN_UART_RX, 

#else 

    /*.txpin      =*/ PUARTDISABLE | GPIO_PIN_UART_TX, 

    /*.rxpin      =*/ PUARTDISABLE | GPIO_PIN_UART_RX, 

#endif 

}; 

 

// NVRAM save area 

HOSTINFO find_me_hostinfo; 

//pointer to the generated part of hostinfo assuming it is the beginning of the hostinfo 

__HOSTINFO *p_hostinfo_generated = &find_me_hostinfo.generated; 

 

UINT16  find_me_connection_handle      = 0;                  // HCI handle of connection, not zero when connected 

BD_ADDR find_me_remote_addr            = {0, 0, 0, 0, 0, 0}; // Address of currently connected client 

 

// ToDo: Add your static variables here 

 

/****************************************************** 

 *               Function Definitions 

 ******************************************************/ 

 

// Application initialization 

APPLICATION_INIT() 

{ 

    bleapp_set_cfg((UINT8 *)gatt_database, 

                   gatt_database_len, 

                   (void *)&find_me_cfg, 

                   (void *)&find_me_puart_cfg, 

                   (void *)&find_me_gpio_cfg, 

                   find_me_create); 

} 

 

// Create device 

void find_me_create(void) 

{ 

    extern UINT8 bleprofile_adv_num; 

    extern UINT8 bleprofile_scanrsp_num; 

http://www.cypress.com/


 

Getting Started with EZ-BLE WICED Modules 

www.cypress.com Document No. 002-20929 Rev. **                     69 

 

    ble_trace0("create()"); 

    ble_trace0(bleprofile_p_cfg->ver); 

 

    bleprofile_adv_num = 0x0; 

    bleprofile_scanrsp_num = 0x0; 

 

    // dump the database to debug uart. 

    legattdb_dumpDb(); 

 

    bleprofile_Init(bleprofile_p_cfg); 

    bleprofile_GPIOInit(bleprofile_gpio_p_cfg); 

 

    // Initialized ROM code which will monitor the battery 

    blebat_Init(); 

 

    // Read NVRAM 

    bleprofile_ReadNVRAM(VS_BLE_HOST_LIST, sizeof(find_me_hostinfo), (UINT8 *)&find_me_hostinfo); 

 

    // register connection up and connection down handler. 

    bleprofile_regAppEvtHandler(BLECM_APP_EVT_LINK_UP, find_me_connection_up); 

    bleprofile_regAppEvtHandler(BLECM_APP_EVT_LINK_DOWN, find_me_connection_down); 

    bleprofile_regAppEvtHandler(BLECM_APP_EVT_ADV_TIMEOUT, find_me_advertisement_stopped); 

 

    // handler for Encryption changed. 

    blecm_regEncryptionChangedHandler(find_me_encryption_changed); 

 

    // handler for Bond result 

    lesmp_regSMPResultCb((LESMP_SINGLE_PARAM_CB) find_me_smp_bond_result); 

 

    // register to process client writes 

    legattdb_regWriteHandleCb((LEGATTDB_WRITE_CB)find_me_write_handler); 

 

    // register interrupt handler 

    bleprofile_regIntCb((BLEPROFILE_SINGLE_PARAM_CB) find_me_interrupt_handler); 

 

    // register Low Power Mode 

    devlpm_init(); 

    devlpm_registerForLowPowerQueries(find_me_lpm_queriable, 0); 

 

    //registers timer 

    find_me_reg_timer(); 

 

    // advertise first vendor specific service 

    if(sizeof(find_me_uuid_main_service) > 1) 

    { 

        // total length should be less than 31 bytes 

        BLE_ADV_FIELD adv[3]; 

        BLE_ADV_FIELD scr[1]; 

 

        // flags 

        adv[0].len     = 1 + 1; 

        adv[0].val     = ADV_FLAGS; 

        adv[0].data[0] = LE_LIMITED_DISCOVERABLE | BR_EDR_NOT_SUPPORTED; 

 

        adv[1].len     = sizeof(find_me_uuid_main_service) + 1; 

        adv[1].val     = sizeof(find_me_uuid_main_service) == 16 ? ADV_SERVICE_UUID128_COMP : ADV_SERVICE_UUID16_COMP; 

        memcpy(adv[1].data, &find_me_uuid_main_service[0], sizeof(find_me_uuid_main_service)); 

 

        // Tx power level 

        adv[2].len     = TX_POWER_LEN+1; 

        adv[2].val     = ADV_TX_POWER_LEVEL; 

        adv[2].data[0] = bleprofile_p_cfg->tx_power_level; 

 

        // name 

        scr[0].len      = strlen(bleprofile_p_cfg->local_name) + 1; 

        scr[0].val      = ADV_LOCAL_NAME_COMP; 

        memcpy(scr[0].data, bleprofile_p_cfg->local_name, scr[0].len - 1); 

 

        bleprofile_GenerateADVData(adv, 3); 

        bleprofile_GenerateScanRspData(scr, 1); 

    } 

 

    blecm_setTxPowerInADV(0); 

 

    // start device advertisements.  By default Advertisements will contain flags, device name, 

    // appearance and main service UUID. 

    bleprofile_Discoverable(HIGH_UNDIRECTED_DISCOVERABLE, NULL); 
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    // ToDo: Do your initialization on app startup 

    gpio_configurePinWithSingleBytePortPinNum(GPIO_PIN_LED, GPIO_OUTPUT_ENABLE, 1); 

} 

 

// Callback called by the FW when ready to sleep/deep-sleep. 

// Do not allow any sleep if UART transmissions are ongoing. 

// Do not allow deep sleep if BLE activity is ongoing. 

UINT32 find_me_lpm_queriable(LowPowerModePollType type, UINT32 context) 

{ 

    UINT32 result = 0; // assume sleep disabled 

 

    // check sleep type query 

    switch (type) 

    { 

        case LOW_POWER_MODE_POLL_TYPE_SLEEP: 

            // return 0 to prevent standard sleep, otherwise max microsecond count to allow 

            // (other processes may wake earlier than your specified max) 

            result = 0xFFFFFFFF; // max 

            break; 

 

        case LOW_POWER_MODE_POLL_TYPE_POWER_OFF: 

            // return 0 to prevent deep sleep, non-zero to allow 

            result = 1; // allow 

            break; 

    } 

 

    // should not reach this point since only two types of sleep exist 

    return result; 

} 

 

// Connection up callback function is called on every connection establishment 

void find_me_connection_up(void) 

{ 

    find_me_connection_handle = (UINT16)emconinfo_getConnHandle(); 

    UINT8 *bda = (UINT8 *)emconninfo_getPeerPubAddr(); 

 

    // Save address of the connected device and print it out. 

    memcpy(find_me_remote_addr, bda, sizeof(find_me_remote_addr)); 

 

    ble_trace3("connection_up: %08x%04x h=%d", 

                (find_me_remote_addr[5] << 24) + (find_me_remote_addr[4] << 16) + 

                (find_me_remote_addr[3] << 8) + find_me_remote_addr[2], 

                (find_me_remote_addr[1] << 8) + find_me_remote_addr[0], 

                find_me_connection_handle); 

 

 

    // Prepare generated code for connection - write persistent values from __HOSTINFO to GATT DB 

    __on_connection_up(); 

 

    // ToDo: Write custom persistent values into GATT database using functions 

    // changed_<service_name>_<char_name>() generated by smart disigner 

 

    // If device supports a single connection, stop advertising 

    bleprofile_Discoverable(NO_DISCOVERABLE, NULL); 

 

    // If security is required for every connection following function will start bonding or 

    // will setup encryption.  No indications or notifications should be sent until 

    // encryption is not done. 

    if (bleprofile_p_cfg->encr_required & SECURITY_REQUEST) 

    { 

        if (emconninfo_deviceBonded()) 

        { 

            ble_trace0("device bonded"); 

        } 

        else 

        { 

            ble_trace0("device not bonded"); 

            lesmp_sendSecurityRequest(); 

        } 

    } 

} 

 

// Connection down callback 

void find_me_connection_down(void) 

{ 

    ble_trace1("connection_down:handle:%d", find_me_connection_handle); 

 

    find_me_connection_handle = 0; 
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    // If disconnection was caused by the peer, start low advertisements 

    bleprofile_Discoverable(LOW_UNDIRECTED_DISCOVERABLE, NULL); 

    //bleprofile_PrepareHidOff(); 

 

    ble_trace2("ADV start: %08x%04x", 

                  (find_me_remote_addr[5] << 24 ) + (find_me_remote_addr[4] <<16) + 

                  (find_me_remote_addr[3] << 8 ) + find_me_remote_addr[2], 

                  (find_me_remote_addr[1] << 8 ) + find_me_remote_addr[0]); 

} 

 

// Callback function indicates to the application that advertising has stopped. 

// restart advertisement if needed 

void find_me_advertisement_stopped(void) 

{ 

    ble_trace0("ADV stop!!!!"); 

 

    // If disconnection was caused by the peer, start low advertisements 

    bleprofile_Discoverable(LOW_UNDIRECTED_DISCOVERABLE, NULL); 

} 

 

// Process SMP bonding result.  If pairing is successful with the central device, 

// save its BDADDR in the NVRAM and initialize associated data 

void find_me_smp_bond_result(LESMP_PARING_RESULT  result) 

{ 

    ble_trace1("smp_bond_result %02x", result); 

 

    if (result == LESMP_PAIRING_RESULT_BONDED) 

    { 

        // saving bd_addr in nvram 

        UINT8 *bda; 

        UINT8 writtenbyte; 

 

        bda = (UINT8 *)emconninfo_getPeerPubAddr(); 

 

        // initialize persistent values in the hostinfo to add bonded peer 

        find_me_add_bond(bda); 

 

        // ToDo: initialize persistent variables in HOSTINFO 

 

        //now write hostinfo into NVRAM 

        writtenbyte = bleprofile_WriteNVRAM(VS_BLE_HOST_LIST, sizeof(find_me_hostinfo), (UINT8 *)&find_me_hostinfo); 

        ble_trace1("NVRAM write:%04x", writtenbyte); 

    } 

} 

 

// Notification from the stack that encryption has been set. 

void find_me_encryption_changed(HCI_EVT_HDR *evt) 

{ 

    UINT8 *bda = emconninfo_getPeerPubAddr(); 

 

    ble_trace2("encryption changed %08x%04x", 

                (bda[5] << 24) + (bda[4] << 16) + 

                (bda[3] << 8) + bda[2], 

                (bda[1] << 8) + bda[0]); 

 

    // ToDo: do your on-encryption-change actions here. 

 

    // Slow down the pace of master polls to save power.  Following request asks 

    // host to setup polling every 100-500 msec, with link supervision timeout 5 seconds. 

    bleprofile_SendConnParamUpdateReq(80, 400, 0, 500); 

} 

 

// Process write request or command from peer device 

int find_me_write_handler(LEGATTDB_ENTRY_HDR *p) 

{ 

    UINT8  writtenbyte; 

    UINT16 handle   = legattdb_getHandle(p); 

    int    len      = legattdb_getAttrValueLen(p); 

    UINT8  *attrPtr = legattdb_getAttrValue(p); 

    BOOL changed; 

 

    ble_trace1("write_handler: handle %04x", handle); 

 

    changed = __write_handler(handle, len, attrPtr); 

 

    // Save update to NVRAM if it has been changed. 

    if (changed) 

    { 

        writtenbyte = bleprofile_WriteNVRAM(VS_BLE_HOST_LIST, sizeof(find_me_hostinfo), (UINT8 *)&find_me_hostinfo); 
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        ble_trace1("NVRAM write:%04x", writtenbyte); 

    } 

    return 0; 

} 

 

// Three Interrupt inputs (Buttons) can be handled here. 

// If the following value == 1, Button is pressed. Different than initial value. 

// If the following value == 0, Button is depressed. Same as initial value. 

// Button1 : value&0x01 

// Button2 : (value&0x02)>>1 

// Button3 : (value&0x04)>>2 

void find_me_interrupt_handler(UINT8 value) 

{ 

    // ToDo: handle the interrupts here. 

} 

 

// Process indication confirmation.  if client service indication, each indication 

// should be acknowledged before the next one can be sent. 

void find_me_indication_cfm(void) 

{ 

} 

 

//------ generated code 

 

// It will be called at the write handler and should return TRUE if any persistent value is changed 

BOOL on_write_immediate_alert_alert_level(int len, UINT8 *attrPtr) 

{ 

    // check the first byte of the value written to this characteristic 

    switch (attrPtr[0]) 

    { 

    case 0x00: 

        // alert level = 0x00 (none), turn LED off 

        bleprofile_KillLEDTimer(); 

        bleprofile_LEDOff(); 

        break; 

    case 0x01: 

        // alert level = 0x01 (mild), blink LED at 1 Hz cycle for 120 seconds 

        bleprofile_LEDBlink(500, 500, 120); 

        break; 

    case 0x02: 

        // alert level = 0x02 (high), turn LED on 

        bleprofile_KillLEDTimer(); 

        bleprofile_LEDOn(); 

        break; 

    } 

 

    // return FALSE since no persistent value is changed 

    return FALSE; 

} 
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Appendix F. Makefile Customization 

The WICED SMART SDK build system uses a hierarchical Makefile structure when building each project. The root 
Makefile is found in the main SDK installation folder as \WICED-Smart-SDK\Makefile, and each project contains its 
own specific makefile.mk file along with the source files in its dedicated directory. To customize the build process for 
a specific project, always edit the project’s own makefile.mk content instead of modifying the top-level file. 

The most common changes that you may need to make are as follows: 

1. Adding new .c source files to be compiled and linked: 

Splitting the source code into multiple files can greatly improve organization and maintainability as the project 
grows. To add more files to the build process beyond the initial set that is created from the WICED Bluetooth 
Designer tool, use the APP_SRC keyword: 

 

You can include as many extra files as you need. Note that the very first file should use the direct assignment 
operator (“=”), while all subsequent files should use the append operator (“+=”). 

2. Adding extra include folders into the search path: 

Some projects require the use of additional libraries that assume particular 'include' folders are in the compiler’s 
include search path. To avoid having to rewrite source files with explicit include paths throughout, use the INCS 
keyword along with the $(DIR) variable to denote the project’s root folder: 

 

You can add as many extra include search folders as you need. Note that all additional folders should use the 
append operator (“+=”) since the SDK’s top-level Makefile assigns some folders already. Using the direct 
assignment operator (“=”) will wipe out these default folders and break the compile process. 

3. Applying pre-built optional patches that are part of the WICED SDK: 

Since the WICED SMART Bluetooth LE stack is part of the chipset ROM inside the module, updates and fixes to 
low-level functionality require the use of precompiled patches, which are loaded and applied during the boot 
process. These patches must be included especially during the compile process so that they are part of the final 
firmware binary image. To specify patches for this purpose, use the APP_PATCHES_AND_LIBS keyword: 

 

Patches are optional and may be added in any order. You can find a description of all available patches that ship 
with the SDK in the following location: 

\WICED-Smart-SDK\Wiced-Smart\tier2\brcm\libraries\lib\readme 

 

APP_PATCHES_AND_LIBS += config_nvram_fixes.a 

APP_PATCHES_AND_LIBS += disable_sw_timer_as_wake_source.a 

APP_PATCHES_AND_LIBS += bt_clock_based_periodic_timer.a 

INCS += $(DIR)/library1/include 

INCS += $(DIR)/library2/include 
INCS += $(DIR)/some/other/include 

APP_SRC = find_me.c 

APP_SRC += find_me_db.c 

APP_SRC += extrafile1.c 
APP_SRC += extrafile2.c 
APP_SRC += subfolder/subfile1.c 

APP_SRC += subfolder/subfile2.c 
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Appendix G. Regulatory Information 

FCC: 

FCC NOTICE: 

Cypress EZ-BLE Modules, including integrated antennas, comply with Part 15 of the FCC Rules. When stated in the 
module datasheet, the modules meet the requirements for modular transmitter approval as detailed in FCC public 
Notice DA00-1407.transmitter Operation is subject to the following two conditions: (1) This device may not cause 
harmful interference, and (2) This device must accept any interference received, including interference that may 
cause undesired operation. 

 
CAUTION  

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly 
approved by Cypress Semiconductor may void the user's authority to operate the equipment.  

 
Any certified modules provided by Cypress have been tested and found to comply with the limits for a Class B digital 
device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against 
harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency 
energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio 
communications. However, there is no guarantee that interference will not occur in a particular installation. If this 
equipment does cause harmful interference to radio or television reception, which can be determined by turning the 
equipment off and on, the user is encouraged to try to correct the interference by one or more of the following 
measures: 

 Reorient or relocate the receiving antenna.  

 Increase the separation between the equipment and receiver.  

 Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.  

 Consult the dealer or an experienced radio/TV technician for help  
 

LABELING REQUIREMENTS  

The Original Equipment Manufacturer (OEM) must ensure that FCC labeling requirements are met. This includes a 
clearly visible label on the outside of the OEM enclosure specifying the appropriate Cypress Semiconductor FCC 
identifier for this product as well as the FCC Notice above. The FCC identifier for each module is listed in the module 
datasheet, and is of the form “FCC ID: WAPxxxx”, where “xxxx” denotes the module-specific FCC identifier.  
 
In any case, the end product using a certified Cypress module must be labeled on the exterior with "Contains FCC ID: 
WAPxxxx", where “xxxx” is the module-specific FCC identifier.  

 
ANTENNA WARNING  

Please refer to the module datasheet for details on the specific antenna used for the module design.  Each Cypress 
certified module may have a different Antenna design.  When integrated in the OEMs product, these antennas require 
installation preventing end-users from replacing them with non-approved antennas. Any antenna not listed in the 
module datasheet must be tested to comply with FCC Section 15.203 for unique antenna connectors and Section 
15.247 for emissions. 
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RF EXPOSURE  

To comply with FCC RF Exposure requirements, the Original Equipment Manufacturer (OEM) must ensure to install 

the approved antenna in the previous. 
 
The preceding statement must be included as a CAUTION statement in manuals, for products operating with the 
approved antennas listed in the module datasheet, to alert users on FCC RF Exposure compliance.  Any notification 
to the end user of installation or removal instructions about the integrated radio module is not allowed.  
 
The radiated output power of Cypress certified modules with antenna mounted is far below the FCC radio frequency 
exposure limits. Nevertheless, use Cypress modules in such a manner that minimizes the potential for human contact 
during normal operation.  
 
End users may not be provided with the module installation instructions. OEM integrators and end users must be 
provided with transmitter operating conditions for satisfying RF exposure compliance. 

 
Innovation, Science and Economic Development (ISED) Canada Certification 

When indicated in the module datasheet, Cypress EZ-BLE modules are licensed to meet the regulatory requirements 
of Innovation, Science and Economic Development (ISED) Canada.  Refer to the module datasheet for details on the 
specific IC identifier.  The IC identifier will be of the form:  
  
License: IC: 7922A-xxxx, where “xxxx” is the ID for a specific module.   
 
Manufacturers of mobile, fixed or portable devices incorporating this module are advised to clarify any regulatory 
questions and ensure compliance for SAR and/or RF exposure limits. Users can obtain Canadian information on RF 
exposure and compliance from www.ic.gc.ca.  
 
Cypress EZ-BLE modules have been designed to operate with the antennas listed in the module datasheet.   
Antennas not included in the module datasheet or having a gain greater than what is specified in the module 
datasheet are strictly prohibited for use with this device. The required antenna impedance is 50 ohms. The antenna 
used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.  

 
ISED NOTICE  

Cypress EZ-BLE modules, including the built-in antenna complies with Canada RSS-GEN Rules. Cypress EZ-BLE 
modules meet the requirements for modular transmitter approval as detailed in RSS-GEN. Operation is subject to the 
following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any 
interference received, including interference that may cause undesired operation. 
 
Les modules Cypress EZ-BLE, y compris l'antenne intégrée, sont conformes aux Règles RSS-GEN de Canada. Les 
modules Cypress EZ-BLE répondent aux exigences d'approbation de l'émetteur modulaire, tel que décrit dans RSS-
GEN. L'opération est soumise aux deux conditions suivantes: (1) Cet appareil ne doit pas causer d'interférences 
nuisibles, et (2) Cet appareil doit accepter toute interférence reçue, y compris les interférences susceptibles de 
provoquer un fonctionnement indésirable. 
 

ISED INTERFERENCE STATEMENT FOR CANADA  
 

Cypress EZ-BLE modules comply with Innovation, Science and Economic Development (ISED) Canada license-
exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause 
interference, and (2) this device must accept any interference, including interference that may cause undesired 
operation of the device.  
 
Les modules Cypress EZ-BLE sont conformes aux normes RSS, exemptées de licences et exemptées de licence de 
l'Innovation, des Sciences et du Développement (ISED). Le fonctionnement est soumis aux deux conditions 
suivantes: (1) cet appareil ne doit pas provoquer d'interférence, et (2) cet appareil doit accepter toute interférence, y 
compris les interférences susceptibles de provoquer un fonctionnement indésirable de l'appareil. 
 
 

http://www.cypress.com/
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ISED RADIATION EXPOSURE STATEMENT FOR CANADA  
 

Cypress EZ-BLE modules comply with ISED radiation exposure limits set forth for an uncontrolled environment. 
Please refer to the module datasheet for any details on integration requirements for radiation exposure. 
 
Les modules Cypress EZ-BLE sont conformes aux limites d'exposition au rayonnement ISED prévues pour un 
environnement incontrôlé. Veuillez vous référer à la fiche technique du module pour tout détail sur les exigences 
d'intégration pour l'exposition au rayonnement. 
 

LABELING REQUIREMENTS  
 
The Original Equipment Manufacturer (OEM) must ensure that IC labeling requirements are met. This includes a 
clearly visible label on the outside of the OEM enclosure specifying the appropriate Cypress Semiconductor IC 
identifier for this product as well as the IC Notice above. The IC identifier is 7922A-xxxx, where “xxxx” is the specific 
IC ID for a given module. In any case, the end product must be labeled in its exterior with "Contains IC: 7922A-xxxx", 

where “xxxx” is the module specific ID as indicated in the module datasheet.  
 
Le fabricant d'équipement d'origine (OEM) doit s'assurer que les exigences d'étiquetage IC sont respectées. Cela 
comprend une étiquette clairement visible à l'extérieur de l'enceinte OEM spécifiant l'identifiant Cypress 
Semiconductor approprié pour ce produit ainsi que l'avis IC ci-dessus. L'identifiant IC est 7922A-xxxx, où "xxxx" est 
l'ID CI spécifique pour un module donné. En tout cas, le produit final doit être étiqueté dans son extérieur avec 
"Contient IC: 7922A-xxxx", où "xxxx" est l'ID spécifique du module comme indiqué dans la fiche technique du module. 

 
EUROPEAN DECLARATION OF CONFORMITY  

Hereby, Cypress Semiconductor declares that the EZ-BLE Bluetooth modules, when indicated on the module 
datasheet, comply with the essential requirements and other relevant provisions of Directive 2014. As a result of the 
conformity assessment procedure described in Annex III of the Directive 2014, the end-customer equipment should 
be labeled as follows: 

 
 

 
 

 

When indicated in the module datasheet, the module used in the specified reference design can be used in the 
following countries: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, 
Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Poland, Portugal, Slovakia, Slovenia, Spain, 
Sweden, The Netherlands, the United Kingdom, Switzerland, and Norway. 

MIC JAPAN 

When indicated, Cypress EZ-BLE modules are certified as a module with a specific type certification number detailed 
in the module datasheet. End products that integrate modules that are certified for Japan do not need additional MIC 
Japan certification for the end product. 

End product can display the certification label of the embedded module as display in the specific module datasheet.  

G.1 Module Regulatory Reports and Certificates 

Table 13 details the knowledge base articles that contain the test reports and certificates for each EZ-BLE module.  
These knowledge base article can be found by visiting www.cypress.com and searching for the KBA number below, 
or by clicking on the hyperlinks in the below table.   

Table 13. Regulatory Test Report and Certificate KBA Reference 

EZ-BLE Module   

Part Number 
Knowledge Base Article Containing Regulatory Reports and Certificates 

CYBLE-013025-00 
KBA219623 

CYBLE-013030-00 

http://www.cypress.com/
http://www.cypress.com/
http://www.cypress.com/knowledge-base-article/rf-regulatory-certifications-cyble-013025-00-and-cyble-013030-00-ez-ble
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Worldwide Sales and Design Support 

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find 
the office closest to you, visit us at Cypress Locations. 

Products 

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm 

Automotive cypress.com/automotive 

Clocks & Buffers cypress.com/clocks 

Interface cypress.com/interface 

Internet of Things cypress.com/iot 

Memory  cypress.com/memory 

Microcontrollers cypress.com/mcu 

PSoC cypress.com/psoc 

Power Management ICs cypress.com/pmic 

Touch Sensing cypress.com/touch 

USB Controllers cypress.com/usb 

Wireless Connectivity cypress.com/wireless 

PSoC® Solutions 

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 

Cypress Developer Community 

Forums | WICED IOT Forums | Projects | Videos | Blogs | 

Training | Components 

Technical Support 

cypress.com/support 

 
All other trademarks or registered trademarks referenced herein are the property of their respective owners. 
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