& CYPRESS

~gg@y” EMBEDDED IN TOMORROW™

AN220929

Getting Started with EZ-BLE WICED Modules

Author: David Solda
Associated Project: Yes
Associated Part Family: CYBLE-0130XX-00

Software Version: WICED® SMART™ SDK v2.2.3

Related Application Notes: For a complete list of the application notes, click here.

AN220929 introduces you to Cypress’ EZ-BLE™ WICED family of Bluetooth modules. EZ-BLE modules are fully
qualified and certified Bluetooth Low Energy (BLE) solutions. These modules provide a complete Bluetooth solution,
integrating a Bluetooth radio system, two crystals, antenna, and passive components required for BLE operation. This
application note helps you explore the EZ-BLE Module architecture and development tools and shows you how to create
your first project with the WICED Smart SDK, the development tool used for all WICED-based EZ-BLE Modules. This
application note also guides you to more resources to accelerate in-depth learning about EZ-BLE WICED solutions.

Contents

1 INtrodUCtiON......ceiiiiiiiiieeee e 2

2 More Information ... 2
2.1 EZ-BLE WICED Module Datasheet 2
2.2 EZ-BLE WICED Evaluation Boards 2
2.3 Silicon Device Datasheet...........cccceeeuvninrnnnnnnnnnn. 3
2.4 Cypress WICED Bluetooth Community............... 3

2.5 Application NOtES.........eveiiiiieriiiie e
2.6 Technical Support
3 EZ-BLE WICED Module Overview

3.1 EZ-BLE WICED Module Family Features........... 4

3.2 EZ-BLE WICED Module Low Power Modes 5

3.3 EZ-BLE WICED Module Device Security............ 5
3.4 EZ-BLE WICED Marketing

Part Number OVErvieW...........ccoccvveiiiieeeiiiieeee 6

4 Development TOOIS.........cooiuiiieiiiiiiiiee e 7

4.1 WICED SMART SDK and IDEccccceivvirennnne 7

4.2 CySmart PC Applicationcccoccuvveeveeerininnnns 14

4.3 CySmart Mobile APPccueveeviieiiieee s 16

5 Development Kits and Evaluation Boards 18

5.1 EZ-BLE WICED Module Evaluation Boards...... 18

6 EZ-BLE WICED Module Development
Setup (WICED SMART SDK)cooiviiiiiriieeeiiiieens 19

7 My First EZ-BLE WICED Module Design 20
7.1 About the Design
7.2 PrerequisiteS.......ccooeuveeeiieeiiiiiiieeeeeennn
7.3 Part 1: Configure the Design
7.4 Part 2: Write the Firmwarecocceevveeenns
7.5 Part 3: Program the Device...........cccceeeinvinenns

7.6 Part4: Test Your Design.......cccceevveeeeenieeeennneen. 40

7.7 DESION SOUICEccoiriieiiiiie et 43
8 Module Placement and

Enclosure Considerations............cccocvevvienieeniieennens 43

8.1 Antenna Ground Clearancecccccoecvvveerunnen. 43

8.2 Module Placement in a Host System 44

8.3 Enclosure Effects on

Antenna Performance...........cccccooveeiniinec e, 45
8.4 Guidelines for Enclosures
and Ground Plane..........occvvieiiiiiiiniiieiceeeeee a7

9 Manufacturing with EZ-BLE WICED Modules ...49

9.1 SMT Manufacturing Pick-and-Place 49

9.2 Manufacturing Solder Reflow...........cccccvvernnnen. 49
10 SUMMAINY ccciiiiiiiiiiiiiiiie e 50
11 Related Application NOteScooovuriieeeeeiiiiiiiieeen. 50
Appendix A. Cypress Terms of Art.....cccoovcvveeevinenene 51
Appendix B. EZ-BLE WICED Module

Product DetailSueeeeiieiiiiiiieee e 52

B.1 EZ-BLE WICED Part Number Details 53
Appendix C. EZ-BLE WICED Evaluation

Board Details...........ccccevevvveennnn
Appendix D. Code Examples
Appendix E. Example Project main.c..........cccccceeevne 67
Appendix F. Makefile Customization.............ccccceenne 73
Appendix G. Regulatory Information.................occuueee 74

G.1 Module Regulatory Reports and Certificates76
Document HiStOrY..........eeeiiiiiiiiiiiieeeeiecee e
Worldwide Sales and Design Support

WWW.Cypress.com

Document No. 002-20929 Rev. ** 1

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cyble-0130xx-00-ez-ble-wiced-module
https://community.cypress.com/community/wiced-smart

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

1 Introduction

Bluetooth Low Energy (BLE) is an ultra-low-power wireless standard defined by the Bluetooth Special Interest Group
(SIG) for low-power, short-range communication. It features a physical layer, protocol stack, and profile architecture,
all designed and optimized for the lowest power consumption. BLE operates in the 2.4-GHz ISM band, with a data
rate up to 1 Mbps for 4.2 compliant devices, and up to 2 Mbps for BLE 5.0 compliant devices.

BLE is used in a wide range of applications. The use of BLE in these applications also varies widely in production
volume, from very low- to high-volume end products. The use of fully qualified, certified, BLE modules removes time-
consuming RF board design and costly qualification/certification processes. As such, modules have quickly become
the design preference.

WICED (pronounced “wik-id”) is Cypress loT platform that enables rapid development and deployment of connected
IoT products. Wireless Internet Connectivity for Embedded Devices (WICED) in conjunction with EZ-BLE modules
provides a great feature set to simplify development and release of BLE-enabled products by eliminating the
complexity of wireless RF hardware design, allowing customers to focus on their IoT product development.

The WICED SMART™ SDK is pre-integrated, pre-tested and continuously updated, containing:

m WICED APIs and drivers to make wireless connectivity easy and flexible
= Proven production ready stacks (e.g., networking, security)

®m Pre-integrated world-class 10T cloud platforms (e.g., Amazon AWS, IBM BlueMix)

The EZ-BLE module and WICED ecosystem accelerate your time-to-market, by providing:

m Partners who are experts in product development with the WICED SDK
® Partners who are experts in integrating embedded systems with mobile and cloud applications

m A professional, highly engaged community

The Cypress EZ-BLE WICED Module family provides fully integrated, qualified, and certified BLE systems that
integrate 24-MHz crystal oscillators, passive components, on-board chip or trace antennas, and the WICED BLE
chip, which includes the Bluetooth radio, analog-to-digital converter inputs, PWM control, serial communication
protocols (IZC, SPI, UART), memory, and an ARM Cortex®-M3 microcontroller.

EZ-BLE WICED Modules enable quick time-to-market by eliminating time-consuming and costly RF hardware
development, certification, and qualification processes, offering an effective alternative to completing a BLE system
design from the ground up.

EZ-BLE WICED Modules provide the most cost-effective solution for sensor-based Internet of Things (IoT) solutions,
while providing world-class RF performance by utilizing the latest Cypress WICED silicon devices.

2 More Information

This section provides a list of EZ-BLE Module learning resources that can help you to get started and develop
complete applications with your EZ-BLE Module.

2.1 EZ-BLE WICED Module Datasheet
The EZ-BLE WICED Module datasheets list the features, pinouts, device-level specifications, and fixed-function
peripheral electrical specifications of the EZ-BLE WICED Modules.

2.2 EZ-BLE WICED Evaluation Boards

Each EZ-BLE WICED Module offers a low-cost Arduino-compatible evaluation board to provide an easy-to-use
vehicle to develop and evaluate EZ-BLE WICED Modules without requiring custom hardware design. These
evaluation boards are standalone Arduino-compatible baseboards, capable of interfacing to Arduino-compatible
shields.

WWW.Cypress.com Document No. 002-20929 Rev. ** 2

http://www.cypress.com/
http://www.cypress.com/search/all/EZ-BLE%E2%84%A2%20WICED%20Module?f%5b0%5d=meta_type%3Atechnical_documents
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=field_related_products%3A37896&f%5b2%5d=software_tools_meta_type%3A577
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=field_related_products%3A37896&f%5b2%5d=software_tools_meta_type%3A577

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

2.3

Silicon Device Datasheet

Cypress WICED BLE datasheets lists the features, pinouts, device-level specifications, and fixed-function peripheral
electrical specifications of all Cypress WICED BLE devices. Datasheets for applicable WICED BLE devices
discussed in this application note can be found at the below links:

m CYW20737 Single-Chip Bluetooth Low Energy-Only System-On-Chip

Cypress WICED Bluetooth Community

Whether you’re a customer, partner, or a developer interested in the latest Cypress innovations, the Cypress WICED
Bluetooth Community offers you a place to learn, share and engage with both Cypress experts and other embedded
engineers around the world.

Application Notes
Application notes assist you with understanding specific features of your device for designing your BLE application.
For a complete list, visit Cypress WICED BLE application notes.

Technical Support

If you have any questions, our technical support team is happy to assist you. You can create a support request by
visiting Cypress Technical Support.

If you are in the United States, you can talk to our technical support team by calling our toll-free number: +1-800-541-
4736. You can also use the following support resources if you need quick assistance.

m Self-help
o Local sales office locations

EZ-BLE WICED Module Overview

This application note introduces the reader specifically to the EZ-BLE WICED Module solution and how to get started.
If you are looking for a detailed overview of the Bluetooth Low Energy standard, see AN91267 - Getting Started with
PSoC® 4 BLE.

EZ-BLE WICED Modules offer fully integrated and fully certified BLE solutions allowing rapid development and
deployment of your BLE product. This section provides an overview of the EZ-BLE WICED Modules available today.
For detailed information on each module referenced in this section, see Appendix B: EZ-BLE Module Product Detalls.

All EZ-BLE WICED Modules ship with all required components to achieve full BLE functionality, including:

m PCB substrate

m Cypress WICED BLE IC
o Refer to the Module datasheet for references and links to the datasheet of the silicon used in each module.

m Crystal oscillators
o 24.0-MHz external crystal oscillator

o EZ-BLE WICED BLE Modules do not contain a 32-kHz external crystal oscillator, but utilize the integrated
oscillator on the silicon device. Each module does provide an option for an external 32-kHz input if desired.

m Chip or Trace antenna
m Passive components (resistor, capacitor, inductor)

m RF Shield, unless otherwise noted

WWW.Cypress.com Document No. 002-20929 Rev. ** 3

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cyw20737-single-chip-bluetooth-low-energy-only-system-chip-support-wireless
https://community.cypress.com/community/wiced-smart
https://community.cypress.com/community/wiced-smart
http://www.cypress.com/search/all/WICED%20APPLICATION%20NOTE?f%5b0%5d=meta_type%3Atechnical_documents
https://secure.cypress.com/myaccount/?id=25&techSupport=1&source=an79953
http://www.cypress.com/support
http://www.cypress.com/?id=1062
http://www.cypress.com/documentation/application-notes/an91267-getting-started-psoc-4-ble?source=search&cat=technical_documents
http://www.cypress.com/documentation/application-notes/an91267-getting-started-psoc-4-ble?source=search&cat=technical_documents

o CYPRESS

- EMBEDDED IN TOMORROW™

Getting Started with EZ-BLE WICED Modules

3.1

EZ-BLE WICED Module Family Features
Table 1 summarizes the features and capabilities of every EZ-BLE WICED Module available from Cypress.

Table 1. EZ-BLE WICED Module Features and Capabilities

Features

Details

BLE Subsystem

BLE radio and link-layer hardware

CPU ARM Cortex-M3 32-bit processor

Flash Memory Up to 128 KB (module dependent)

SRAM 60 KB

ROM 320-KB ROM, containing BLE stack and specific BLE profiles

GPIOs Up to 14 (module-dependent)

CapSense® None (See Getting Started with EZ-BLE Creator Modules for this functionality)

CapSense Gestures

None (See Getting Started with EZ-BLE Creator Modules for this functionality)

ADC 10-bit auxiliary ADC with nine analog channels
Opamps None (See Getting Started with EZ-BLE Creator Modules for this functionality)
Comparators None (See Getting Started with EZ-BLE Creator Modules for this functionality)

Current DACs

None (See Getting Started with EZ-BLE Creator Modules for this functionality)

Power Supply Range

1.62 V to 3.6 V (module dependent)

Low-Power Modes

Deep-Sleep (HIDOFF) mode at 1.5 pA typical
Stop mode at 50 pA typical

Serial Communication

I°C, SPI, Peripheral-UART (application interface), HCI-UART (programming)

IS Communication Interface

Module dependent

Pulse-Width Modulator (PWM)

4

Universal Digital Blocks (UDBs)

None (See Getting Started with EZ-BLE Creator Modules for this functionality)

Clocks

32-kHz LPCLK (Low Power Clock)

Power Supply Monitoring

Power-on reset (POR)

Integrated Crystal Oscillators

24-MHz integrated on module
32-kHz connection available (optional)

Antenna Type

Trace or Chip Antenna (module dependent)

Certifications

FCC, ISED, MIC, CE, unless otherwise noted in the datasheet

Each EZ-BLE WICED Module has a Cypress Knowledge Base Article, which
contains the regulatory testing reports and certificates for all countries the module
is certified against. See the More Information section of the module datasheet for
links to this information.

Www.Cypress.com

Document No. 002-20929 Rev. **

http://www.cypress.com/
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module

A
s

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with EZ-BLE WICED Modules

3.2

EZ-BLE WICED Module Low Power Modes

EZ-BLE WICED Modules support the following power modes as illustrated in Table 2:

m Active mode: This is the primary mode of operation. In this mode, all peripherals are available.

m Sleep mode: In this mode, the CPU is in Sleep mode; SRAM is in retention. A GPIO interrupt or timer interrupt
from the local oscillator (LO) can transition the device from sleep state to active state. Peripherals are not
available in this state. Bluetooth connections can be maintained in this state.

m Deep-Sleep mode, also known as HIDOFF: In this mode, the baseband and core are powered OFF by disabling
internal LDO output (LDOOUT). Only a GPIO interrupt can wake the device and transition it to active state. This
mode minimizes chip power consumption and is intended for long periods of inactivity. Bluetooth connections
cannot be maintained in this state because the baseband and core are powered OFF.

Table 2. Power Modes
Current Maintain - Clock
: Code SRAM Peripherals Wake-Up
Mode Interval | Consumption - A Bluetooth - Sources
(Typical) Execution | Retention Connection Available Available Sources
3.56 mA
Acti P) R Y Y — - LO, 24 MHz |-
ctive (CPU Only) @ 24 MHz es es O, z
GPIO,
Sleep - 50 pA No Yes Yes None LO Internal LO Timer
Deep Sleep - 1.5 pA No No No None None GPIO
Advertisement Only | 20 ms? 1.9mA Yes Yes - All LO, 24 MHz
Active Connection 10 ms? 1.85 mA Yes Yes Yes All LO, 24 MHz GPIO,)
- - Internal LO Timer
Active Connection 1,000 ms® | 80 pA Yes Yes Yes All LO, 24 MHz
Active Connection 4,000 ms? |70 pA Yes Yes Yes All LO, 24 MHz

3.3

EZ-BLE WICED Module Device Security

EZ-BLE WICED Modules provide mechanisms for implementing security and authentication schemes using the

following:

® RSA (Public Key Cryptography)

® X.509 (excluding parsing)
m Hash functions: MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
® Message authentication code: HMAC MD5, HMAC SHA-1

! CPU is active with no RF activity, and no peripheral interface.

2 The module is in Sleep mode when there is no radio activity. Typically, radio activity (TX and RX) will be approximately 1 ms. The
module is in Sleep mode for the remaining time during the interval specified.

WWW.Cypress.com

Document No. 002-20929 Rev. **

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

3.4 EZ-BLE WICED Marketing Part Number Overview

Each device within the EZ-BLE WICED Module family has a unique Marketing Part Number (MPN) used for ordering.
The MPN format is shown in Figure 1.

Figure 1. EZ-BLE Module Marketing Part Numbering Format

EZ-BLE Module Part Numbering Decoder

CY BLE-X XX X XX - N X
I— Bluetooth Version: 0 = Bluetooth 4.1, 1 = Bluetooth 4.2
Integration Type: 0 = Full Integration With Shield, 1 = No Shield
Device Identification Number: Unique sequential product number for each module
Temperature Range: 0 = Industrial, 1 = Extended Industrial
EZ-BLE Module Type: 2 = PRoC Module, 3 = WICED Module, 4 = PSoC Module
Antenna Type: 0 = No Antenna, 1 = PCB Antenna, 2 = Chip Antenna
Flash Size: 0 = 128KB, 2 = 256KB
Marketing Code: BLE = BLE Product Family
Company ID: CY = Cypress

Table 3 summarizes the features and capabilities of each specific EZ-BLE WICED Module MPN available from
Cypress. Click on the specific part number for more detailed information on the device or refer to Appendix B: EZ-
BLE Module Product Details.

Table 3. EZ-BLE Module MPN Features and Capabilities

=5/ 5| & =l s 5 o | 2 2
w |[8€| 2| & S | 25| &8_ | g - 25 L5 &
© |8S5| g © g O e) o i o5 |B|=|E
c S = - = o= =¥ = o = = 0 o @
§ |35l o | £ S | &3] =¥ |2 gl 3 | 82 |5/g|&
: » @ Q5| w g o = o 04 o 8% s| O
Marketing Part BLE Silicon xo = = =3 » %) = & O
Number Device | Module Size (mm) =
CYBLE-013025-00 |[CYW20737 |14.52x19.2x225| 75 Yes | 4.1 | Trace | 31-SMT 14 128 60 No 4 | Yes No
CYBLE-013030-00 |[CYW20737 |14.52x19.2x225| 75 Yes | 4.1 | Trace | 31-SMT 14 - 60 No 4 | Yes No

% Measured in meters and is specified as Full Line-of-Sight (LoS) in a Noise-Free environment.

WWW.Cypress.com Document No. 002-20929 Rev. ** 6

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cyw20737-single-chip-bluetooth-low-energy-only-system-chip-support-wireless
http://www.cypress.com/documentation/datasheets/cyw20737-single-chip-bluetooth-low-energy-only-system-chip-support-wireless

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

411

Development Tools

Cypress supports EZ-BLE WICED Modules with high-quality, integrated software tools. These include the following
software:

1. WICED SMART SDK and IDE (used for EZ-BLE modules based on CYW20737 silicon)
2. CySmart PC application

3. CySmart Android app

4, CySmartiOS app

WICED SMART SDK and IDE

The WICED SMART SDK provides an Eclipse-based IDE and complete software library for developing on
CYW20737-based EZ-BLE modules. This tool enables a simple build and download process as well as debugging
capabilities on supported development kits. It also includes the graphical WICED Bluetooth Designer tool for quickly
defining new BLE designs and custom GATT database structures.

Note, this SDK is only applicable to EZ-BLE WICED Modules, and should not be used with EZ-BT WICED Modules
or EZ-BLE Creator modules.

The WICED SMART SDK includes the following:

m Bluetooth 4.1 software stack including GAP, ATT, GATT, and SMP profiles

m Generic profile-level API

m Drivers to access onboard peripherals including UART, SPI, I°C, ADC, PWM, Keyscan, etc.
m Reference applications for the devices with profiles defined by the Bluetooth SIG

m WICED SMART API documentation and related documents

= Utilities to support development in Windows, OS X, and Linux environments

m Drivers and detailed information to access the five sensors on the WICED_SENSE2 evaluation kit

The WICED SMART SDK runs on 32- and 64-bit versions of Microsoft Windows, OS X, and Linux. The SDK is
distributed as both a standalone 7-zip file suitable for all operating systems and a bundle with the WICED Integrated
Development Environment as an executable installer for Windows and Mac operating systems. The development
computer requires a single USB port to connect to the WICED SMART tag.

Note that a 32-bit version of Java is required to run the Eclipse-based IDE.

WICED SMART IDE Overview

The WICED SMART SDK comes with an Eclipse-based IDE that provides a comprehensive environment for creating,
building, programming, and debugging WICED BLE applications. Figure 2 below shows the default layout with
various sections of the IDE.

Building and downloading WICED SMART projects requires a slightly different procedure than some IDEs and
toolchains use, so it is a good idea to familiarize yourself with the application early.

WWW.Cypress.com Document No. 002-20929 Rev. ** 7

http://www.cypress.com/
https://community.cypress.com/community/wiced-smart/wiced-smart-documentation
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en
https://itunes.apple.com/us/app/cysmart/id928939093?mt=8
http://www.cypress.com/documentation/development-kitsboards/bcm9wicedsense2-evaluation-and-development-kit

o CYPRESS

g EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 2. WICED SMART IDE Layout
4.1.2 Project Explorer | /|4.1.3 Code Editor | - oo
v‘ =

#= C/C++ - WICED-Smart-SDK/Appshello_sensor/hello_sensor.c - WICED Smart IDE

File Edit Source Refactor Navigate Search Project Trace Help

BN A= RGeS R R N i AR e

Tk 8- %5 (Quckrcces]| =8| Fcicer
N Project Explorer 52 = 8] hello_sensor.c £ = B8 | | ® MakeTarget 32 & @& | &= 0
B & = 28 = Copyright 2015, Broadeom Corporation[] ~ @) long_characteristic-BCMO20736TAG_Q32 download ~

(& hello_client " (@ my_APP-CYBLE_013025_EVAL download

(& mybeacon-BCMI20736TAG_Q32 download

@) ota_firmware_upgrade-BCMI20736TAG_032 download
@) ota_secure_firmware_upgrade-BCM20737TAG_032 dowr
@ proximity_client-BCM920737TAG_Q32 download

@ proximity-BCMO20737TAG_Q32 download

@) puart_control_big_mtu-BCMI20T37TAG_Q32 download

(& hello_puart_flow
~ & hello_sensor
(= peerapps
[£] hello_sensor.c
(€] hello_sensor.h

L& makefilemk
(2 hello_sensor_mtk @) puart_control-BCM920737TAG_Q32 download
(= hitp_client @) pwm_tones-BCM20737TAG_Q32 download

@) running_speed_cadence-BCMI20736TAG_Q32 download
(@ speed_test-BCMI20T36TAG_Q32 download

@) spi_comm_master-BCM20736TAG_032 download

@ spi_comm_slave-BCMI20736TAG_Q32 download

@) spi_pressure_sensor-BCMI20736TAG_Q32 download

@) uart_firmware_upgrade-BCM20737TAG_032 download

[i2¢_temperature_sensor
(& ibeacon_device

(= ibeacon_managed

[indoer_position

= location_and_navigation
(= long_char_big_mtu

(= long_characteristic (@) watch-BCM820737TAG_Q32 download ~
(& mtk_dut < >
(= my_APP B

(= mybeacon B Help 5 g8 ¢ =8

(= ot firmware upgrade [Contents \{ Search &4 Related Topics Ll Bookmarks

[ota_secure_firmware_upgrade

& proximity (5 Index
= proximity_client } Search expressio
v (= puart_control .

(& ClientControl - v [lastChartid \ BIES
[makefilemk } Scope Default
(€] puart_control.c - - - = - i
[§ pusrt_controlh [ECooe & oL Probiems lese I Properier 4 seare AT Local Help (0 hits)
= PUART-Control,pdf COT Build Console [WICED-Smart-SDK]

(&= puart_control_big_mtu
(= pwm _tones

revp—— 1 [[4.1.4 Make Target List |

Patches start at

Patches end at (RM address)
(= rtc_semple
(& running_speed_cadence Application starts at (RAM address)
Epplication ends at 0x00208820 (RAM address)
(& speed_test
(= spi_comm_master .
- i Patch size (including reused RAM) 5152 bytes
splcomm_slave Patch size 2075 bytes
& spi_pressure_sensor Application size 26060 bytes
=t
T 1
& vart firmware_upgrade Total RAM footprint 30136 bytes (29.4KiB) 4.1.5 COI"ISO|e
& watch
(> wiced_sense v
< > v

Converting CGS to HEX...
———

WICED-Smart-SDK/Apps/hello_sensor/hello_sensor.c

41.2 Project Explorer

This pane in the IDE provides access to all of the source files for the projects active in the current workspace. The
WICED SDK comes with a significant set of example projects inside the /Apps subfolder where the SDK is installed.
All of these projects are visible in the Project Explorer view by default. When you create a hew project as described in
Section 7 (My First EZ-BLE WICED Module Design), it will be added to this list of projects.

The standard workspace root folder is the SDK installation root folder, containing the following items:

= /Apps folder with all example projects and any created projects

= /build folder with build output files (created when using “Make” targets as intended)

m /Doc folder with various SDK-related HTML and PDF reference materials

m /Drivers folder with FTDI USB-to-UART bridge device drivers for Microsoft Windows

® /include folder with header files supporting various chipset hardware features

m /Platforms folder with board-specific toolchain and build definition files

m /Tools folder with various toolchain binaries and helper applications used for building and downloading
® /Wiced-Smart folder with header and source files for many application-visible APIs

m Top-level Makefile template and make scripts for building all WICED SMART projects

m Changelog, license, version, and general README text files

Once you get started, the /Apps folder containing your project(s) will be the most relevant location. However, the
documentation and header/source files provide a lot of helpful reference information during development as well.

WWW.Cypress.com Document No. 002-20929 Rev. ** 8

http://www.cypress.com/

EMBEDDED IN TOMORROW™

& CYPRESS

Getting Started with EZ-BLE WICED Modules

41.3 Code Editor
This pane allows editing all source code present in any project in the workspace. Open-source files are arranged by
tabs for easy navigation. The Eclipse IDE foundation provides comprehensive syntax highlighting features, code
completion, and other helpful functionality.

4.1.3.1 Eliminating False Code Analysis Errors

The ARM-GCC toolchain that WICED SMART uses to compile source files is not directly accessible to the Eclipse
editor’s built-in code analysis tools. Instead, the IDE uses a different compiler for live analysis, and this may result in
identified errors that are not actually errors. For example, you may encounter this error while following the example
project instructions contained in this guide:

Figure 3. Incorrect Code Analysis Error Identification

21 #define FIND MEZ FINE TIMER 0
22 #define FIND ME? DEVICE NAME "find me"

23 gdefine FIND ME2 DEVICE APPEARENCE 0

#define FIND ME2 MATN_SERVICE UUID UUID SERVICE_IMMEDIATE ALERT

#define FIND ME2 MATN_CHAR_UUID UUID CHARACTERISTIC ALERT_LEVEL
#define FIND ME? MATN_CHAR_HANDLE HDLG_IMMEDIATE ALERT ALERT LEVEL VALUF

Press 'F2' for focus|

The best test for syntax errors in your code is the compile process, as any real warnings or errors will be included in
the build output. However, you can selectively disable the code analysis features that trigger these errors by following
these simple steps:

1. Click the Window menu, then “Preferences” item.

2. Expand C/C++ and select the Code Analysis entry.

3. Uncheck the Syntax and Semantic Errors box (may need to scroll down in the “Problems” section to see this).
4. Click OK to save changes.

Figure 4 shows what the final Preferences subsection looks like after disabling all of the Code Analysis syntax errors
as described above.

Figure 4. Disabling Syntax and Semantic Analysis

= Preferences O x
Code Analysis - -
General Problems
w C/C++
Appearance Mame Severity ~

Autotools ~ [] Syntax and Semantic Errors

Library Hover
LY FUYEN

Build [] Abstract class cannot be instantiated @ Error
Code Analysis [Ambiguous problem @ Error
Code Style [Circular inheritance @ Error
Debug [J Field cannot be reschved @ Error
Editer [] Function cannot be resolved @ Error
File Types [Invalid arguments @ Error
Indexer O Invalid overload @ Error
Language Mapping: [Invalid redeclaration @ Error
Mew CDT Project Wi [Invalid redefinition @ Error
Profiling Categories [] Invalid template argument @ Error
Property Pages Setti [] Label statement not found @ Error
Task Tags [Member declaration not found @ Error
Template Default Va [Method cannot be resolved @ Error
Changelog [Symbaol is not resolved @ Error
Help [Type cannot be resolved D Error
Install/Update
JavaScript Customize Selected...

Restore Defaults

Apply

Cancel

Www.Cypress.com

Document No. 002-20929 Rev. **

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

4.1.3.2 Improving Search Results

Because the workspace includes multiple example projects and many SDK resources, global code searches often
return more information than you need. To mitigate this, you can configure narrower search parameters to allow
searching a single project at a time by defining working sets:

Click the Search menu, then “Search...” item (or press Ctrl + H).

Click the Customize... button and disable all items except “File Search”, and then click OK.
Click the Choose... button next to the “Working set” selection field.

Click the New... button to define a new working set, and then choose “C/C++” and click Next.
Expand Wiced-Smart-SDK > Apps and select your project folder.

Enter a working set name (e.g., the same name as your project).

Click Finish to complete the working set definition.

Click the Selected Working Sets option and enable only the new set, then click OK.

© © N o g > DR

Change the Scope setting to “Working set” if it does not change automatically.
10. Search as desired with these settings to obtain results only within your project.

You can still perform global searches simply by changing the scope back to “Workspace” at any time, or by
highlighting any text in the code editor and pressing Ctrl + Alt + G.

4.1.3.3 Taking Advantage of Code Completion
The WICED SMART SDK provides numerous APIs to use all of the features available on supported target chipsets,
and it can be challenging to keep the names and parameters straight. To help with this, use the Ctrl + Space shortcut
key after typing the first few letters or prefix of a function name; Eclipse will pop up a quick list of potential completed
names, as shown in the figure below.

Figure 5. Code Completion Example
blecm_configFlag |= BLECM DBGUART_LOG | BLECM DBGUART_LOG_L2ZCAP | BLECM DBGUART_LOG_SMF; ~

ble_tracel("hello_sensor create(}"):;
ble_trace0 (bleprofile p cfg->ver):

// dump the database to debug uart.
legattdb_dumpDb () 7
blecml

1ey @ blecm_configlag : UINTZ2 "
L=}
P o blecm_AddConMux(int index, UINT16 con_handle UINT16

blep
@ blecm_ConMuxInit{int con_num) : void

ne11 @ blecm_ConnectionUpdate(int connHandleint connMinln (47 numker
@ blecm_CreateConnection(int scaninterval int scanWindov

/1 @ bleem_CreateConnectionCancel(void) : void pandler.

blep e blecm DelConMux{int index) : void [UP, hello_sensor_connection_up):

bleg o blecm_EndTest{void) : void | DOWN, hello_sensor_connection_down);

blep @ blecrn_FindConMux(UINT16 con_handle) : int FIMECUT, hello sensor_advertisement stopped)
@ blecm_FindFreeConMux(void) : int

#if defi
r d @ blecm_GetDbConMux(UINT16 con_handle) : void * hd
>

Press 'Ctr\fskpace‘ to show Template Proposals
LESME LU CHE DISE UNLY,

#ifdef COOB PAIRING
LESMP_OCB_AUTH DATA FROM REMOTE PRESENT,// COBDataFlag,
f#else "

lesm

< >

Try code completion with any of the following API method prefixes (not a comprehensive list):

m blecm— Core BLE application functions, callbacks, and some connection management

® bleprofile — Profile-specific behavior, NVRAM access, sleep requests, and other functions
® gpio— General-purpose I/O (GPIO) features

m leatt — GATT Client and Server callbacks, responses, and constants

m legattdb — GATT Client and Server operations

WWW.Cypress.com Document No. 002-20929 Rev. ** 10

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

m lesmp — Security Manager Protocol (SMP) features such as pairing/bonding

m lel2cap — L2CAP connectivity features (includes some connection and ATT-related behavior)
® puart - Peripheral UART features

m devlpm— Low-power-mode features

® adc — Analog/Digital Conversion (ADC) features

® pwm — Pulse Width Modulation (PWM) features

Make Target List

This pane contains individual build targets for all of the example projects that come pre-installed with the WICED
SMART SDK, as well as make targets for any new projects that you create. Each build target provides a unique
combination of the following items:

m Project name (e.g., “find_me”)
m Target platform (e.g., “CYBLE_013025_EVAL”")
m Operational arguments (e.g., “download”, “UART=COMb5”, and others)

Double-clicking on a make target will trigger the build process for that target. You can also use the F9 keyboard
shortcut in the Eclipse IDE to rebuild the last selected make target.

The project name and target platform are separated by a dash (“-"), while the name/target and all subsequent
operational arguments are separated by spaces. Possible arguments are described in the output from the “help”
target, which you can build at any time to see details. The output from this target is reproduced here for quick
reference:

WWW.Cypress.com Document No. 002-20929 Rev. ** 11

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with EZ-BLE WICED Modules

Usage: make <target> [download] [recover] [DEBUG=1|0] [VERBOSE=1] [UART=yyyy] [JOBS=x] [PLATFORM NV=EEPROM|SFLASH]
[BT DEVICE_ ADDRESS=zzzzzzzzzzzz|random]

<target>

One each of the following mandatory [and optional] components separated by '-'
Application (Apps in sub-directories are referenced by subdir.appname)
Hardware Platform (BCM920737TAG_Q32 BCM920736 BCM920736TAG_Q32 CYBLE_013025_EVAL)
[BASE location] (BASErom BASEram BASEflash)
[SPAR location] (SPARrom SPARram SPARflash)
[Toolchain] (RealView Wiced CodeSourcery

* ok k% of

[download]
Download firmware image to target platform

[build]
Builds the firmware and OTA images.

[recover]
Recover a corrupted target platform

[DEBUG=1|0]
Enable or disable debug code in application. When DEBUG=1, watchdog will be disabled,

sleep will be disabled and the app may optionally wait in a while(1l) for the debugger
to connect

[VERBOSE=1]
Shows the commands as they are being executed

[JOBS=x]
Sets the maximum number of parallel build threads (default=4

[UART=yyyy]
Use the uart specified here instead of trying to detect the Wiced-Smart device.
This is useful when you are working on multiple smart devices simultaneously.

[PLATFORM NV=EEPROM|SFLASH]
The non-volatile storage. Default is EEPROM.

[BT_DEVICE_ ADDRESS=zzzzzzzzzzzz|random]
Use the 48-bit Bluetooth address specified here instead of the default setting from
Platform/*/*.btp file. The special string 'random' (without the quotes) will generate
a random Bluetooth device address on every download.

Notes
* Component names are case sensitive
* 'Wiced', 'SPI', 'UART' and 'debug' are reserved component names
* Component names MUST NOT include space or '-' characters
*

Building for release is assumed unless '-debug' is appended to the target

Example Usage
Build for Release
make proximity-BCM920737TAG_Q32 build

Build, Download and Run using the default programming interface
make proximity-BCM920737TAG_Q32 download

Build, Download and Run using specific UART port, with a specific Bluetooth decice address
make proximity—BCM920737TAGiQ32 download UART=COMx BT_DEVICE_ADDRESS=20736A1COFFE

Build, Download to Serial Flash and Run using default programming interface, select a random Bluetooth device address
make proximity-BCM920737TAG_Q32 download PLATFORM NV=SFLASH BT_DEVICE_ ADDRESS=random

Clean output directory
make clean

Any single project may have one or more defined make targets. For instance, one target might perform only the
compile step, while another performs both compile and download, and another may explicitly provide the
programming COM port to avoid the serial port detection step if the port is known.

Here are some examples of make targets that come with the SDK:

m glucose_meter-BCM920736TAG_Q32 download
m jbeacon_device-BCM920736TAG_Q32 download
® puart_control-BCM920737TAG_Q32 download

The platforms shipped with the SDK are used with the various WICED “Tag” evaluation products that are built around
the CYW2073x chipsets. However, for EZ-BLE WICED Module evaluation, we will be working with the CYBLE-
013025-EVAL board instead, which requires a different platform definition. Section 7.3 (My First EZ-BLE WICED
Module Design) provides instructions on where to obtain and how to install this platform, or you can refer to KBA
220379 on the Cypress website.

Www.Ccypress.com

Document No. 002-20929 Rev. ** 12

http://www.cypress.com/
http://www.cypress.com/knowledge-base-article/platform-files-cyble-013025-eval-kba220379
http://www.cypress.com/knowledge-base-article/platform-files-cyble-013025-eval-kba220379

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

415

4.1.5.1

Console

This pane provides access to compiler output, which is helpful for status updates and critical for error analysis. The
same area of the IDE window also allows a quick look at search results after performing a search, and enabled code
analysis warnings or errors, and tasks identified by “TODO” comments in source files.

Debug Trace Output

One other key feature that the console pane optionally provides is specially decoded output from debug traces. This
feature allows one-way output during normal code execution on the module. This debug output typically comes out
the HCI UART TX pin (though it may be reconfigured in code to use the peripheral UART TX pin if PUART is not
otherwise used). It allows printf-like formatting of output strings with between zero and six variable arguments in
addition to the format string, via the following set of functions:

m ble_traced(string)
® ble_tracel(string, argl)
m ble_trace2(string, argl, arg2)

m ble trace6(string, argl, arg2, arg3, argd, arg5, arg6)

This set of functions behaves like the typical variable-argument printf function in C, except that the maximum
supported variable argument count is six.

Most examples and the automatically generated code from the WICED Bluetooth Designer tool use this debug trace
output for simple execution flow monitoring. Since it is not possible to perform true break/step debugging with the
WICED SMART SDK, this type of debug output is immensely helpful during the development phase.

To use debug tracing with the CYBLE-013025-EVAL board, follow this procedure:
1. Set SW1 positions 1-4 (PUART) to the OFF state and positions 5-6 (HCI UART) to the ON state.
2. Compile and download the firmware into the module (application will begin executing immediately).
3. Set SW1 position 6 (HCI UART RX) to the OFF state to disconnect it from the host.
4. Use the Trace menu and select Start Debug Traces to begin capturing and decoding data.
Figure 6. Starting Debug Traces

o= C/C++ - WICED-Smart-5DK/Apps/find_me/find_me.c - WICED Smart IDE
File Edit Source Refactor Mavigate Search Project Trace Run Window Help

T |®v%vﬁo§ﬂ@ 3w Lo Start Debug Traces L\\)é'v
3 Stop Debug Traces

I3 Project Expl = 8 ¢ find .
5 Project Explorer &3 lg| find_n % Tracing Setup
== | = %Z‘ 7. status_led con blir
v > Apps P g /*.ztatus_led di a3

5. Optionally, reboot the board with the SW2 (RESET) button if you need to capture boot-time output.

6. When finished, use the Trace menu and Stop Debug Traces item to detach the console and release the serial
port to allow downloading firmware again.

The console output with debug traces enabled in the “find_me” example illustrated in this document looks like Figure
7 below. The standard behavior begins with a create() message followed by a GATT database structure dump, and
then the module begins advertising.

WWW.Cypress.com Document No. 002-20929 Rev. ** 13

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 7. Example Debug Trace Output

El Consale 3% | [Problems %] Tasks [Properties " Search ® QE| A E~-riy= 0
Broadcom Debug Viewer

15:14:21 Attribute bytes LY
15:14:21 Handle: 0102

15:14:21 Perm : 0004

15:14:21 Len, Max Len : 0001, 0001

15:14:21 UUID o 2RO6

15:14:21 Attribute bytes

15:14:21 Gatt DB Dump complete

15:14:21 bd addr[5:2] = 20 73 TA& 15

15:14:21 bd addr[l1:0] = 00 00

15:14:21 GPIC_LED:OFF=1

15:14:21 Battery lewvel: 100/100

15:14:21 ELE_high un_adv:timer(0)

15:14:51 AppTimer (adv, conn) stopped: 0

15:14:51 ELE_low_un_adv:timer (0) v

If necessary, you can also use the Trace menu and Tracing Setup item to enable logging to a file, or to configure
whether to use a specific serial port or the last one automatically determined by the download process.

Figure 8. Example Debug Trace Output

|£| COM Port Setup *
Configure COM Port |UseCDM port last used for download |v|
[] Log To File | | | Browse.. |

| Connect | | Cancel |

If your make target specifies the port with a UART=COMn argument, you should also manually select the debug trace
port to match this because the IDE will not perform the discovery process necessary to make it work otherwise.

Follow these guidelines when using debug traces for the smoothest experience:

1. Ensure that the HClI UART RX pin is disconnected from the host before capturing traces. This prevents the
module from booting back into HCl/programming mode unexpectedly ifiwhen a chipset reset occurs.

Ensure that the HClI UART RX pin is reconnected to the host before attempting to download firmware again.
Ensure that you stop debug traces before attempting to download updated firmware into the module.

Ensure that you configure the debug trace port manually if your target also specifies the COM port manually.

a » w D

Ensure that you configure the debug trace setup options only when tracing is disabled. Reconfiguring it while
enabled is not possible.

4.2 CySmart PC Application

The CySmart Host Emulation Tool is a Windows application that emulates a BLE Central device using the CY5670 or
CY5677 USB dongle. It provides a platform for you to test your EZ-BLE WICED Module Peripheral implementation
over GATT or L2CAP connection-oriented channels by allowing you to discover and configure BLE services,
characteristics, and attributes on your Peripheral.

The CySmart PC application provides only BLE functions; it cannot communicate over any non-low-energy Bluetooth
protocols (RFCOMM, SCO, etc.) that are supported on EZ-BT WICED Modules.

Operations that you can perform with CySmart Host Emulation Tool include, but are not limited to:

m Scan BLE Peripherals to discover available devices to which you can connect.
m Discover available BLE attributes including services and characteristics on the connected Peripheral device.
m Perform read and write operations on characteristic values and descriptors.

m Receive characteristic notifications and indications from the connected Peripheral device.

WWW.Cypress.com Document No. 002-20929 Rev. ** 14

http://www.cypress.com/

o CYPRESS

~»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

m Establish a bond with the connected Peripheral device using BLE Security Manager procedures.

m Establish a BLE L2CAP connection-oriented session with the Peripheral device and exchange data per the
Bluetooth 4.1 specification.

Figure 9 and Figure 10 show the user interface of CySmart Host Emulation Tool. For more information on how to set
up and use this tool, see the CySmart user guide from the Help menu.

Figure 9. CySmart Host Emulation Tool Master Device Tab

E) CySmart 1.0 = I
File Help
3 Select Dongle # Configure Master Settings $& Manage PSMs & Disconnect

Master | Find Me Target [00:A0:50:00.00:03]

rtScan @ Disconnect B3 Add to Whitelist

Device: Blustooth Address Address Type RSSI Advertisement Type Connecled

Description Value ndex

AD Dats 0: <<Flags>>
+ Length of this data 002 |11
- <clags>> 01 [11]
- Flag Data: 06 006 |121
LE Limed Discoverble Mode OFF
Discovered Device List LE General Discoverable Mode oN
BR/EDR Not Supported on
Advertisement and ‘Simutanzous LE and BR/EDR to Same Device Capable (Controller) | OFF
Scan Response Data - Simuitaneous LE and BR/EDR to Same Device Capable (Hosl. |OFF
Reserved OFF
- Reserved OFF
Reserved OFF
- AD Data 1: <<Complete List of 16:bi Service Class UUIDs>>
o 2dd [Remove [i] Clear All €3 Refresh Lengh ofti ceta 003 |61
B <<Complete List of 165 Service Class UUIDs:> 03 141
Blustooth Address Address Type Bonded I Sorvon: bredide Aot
o 02 | 5]
Trusted Device List]

02:01:06:03:03:02:18

] Clear Log | Save Log

[150328:283]: Request OP Code: GiFED7
[i503:28:283]: Status: BLE_STATUS_OK
(150328283 Raw Bytes: BD A7 06 00 7F 04 07 FE 00 00

Log Window

A=

WWW.Cypress.com Document No. 002-20929 Rev. ** 15

http://www.cypress.com/

o CYPRESS

~a” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 10. CySmart Host Emulation Tool Peripheral Device Attributes Tab

CySmart 1.0 e >

Bosmntio T s e R —— |2t
Fle Help

3 Select Dongle 9 Configure Master Settings $¢ Manage PSMs &) Disconnect

- Find Me Target [00:A0:50:00-00:03]

Aitbute Detais | Send Commands
(® Discover All Attributes | [Enable All Notifications [Read All Characteristics (@ Pair | EB Export | il Clear View: B Honde 00003
Handie uuio UUID Desoiption Value Froperties uui: 2400
- Primary Service Deciaration: Generic: Accsss UUID Description: Device Name
- 00001 ‘mzmu | Primary Service Declarstion ‘m 18 (Generic Access) | Value Find Me Target
I%j Charactenistic Declaration: Device Name R 0
| SN2 |02B03 | Charscterisic Declaration 0203:00:002A i
Characterisic Declaration: Appearance ook g
50004 [Ba803 | Characterisi Declartion (205000124 [Properties — B
00005 | B2ADT | Appearance oz Broadosst
Charsctetstc: Deslaration: Perpheral Prefemed Cornection Parsmeters nend
50006 D803 |Characterisic Declartion 20700042 [[P Rpp——
0007 ‘mznm |Peﬂpheﬁ\ Prefemed Connection Parﬁmam‘ |ﬂd]2 b = fif PSCONSISl =
ttributes Virte
Primary Servics Dsdlaration: Generc Attributs. Attribute Display Notfy
5 0:0008 [wasoe [Primary Service Declarsion [01:18 (Generc Atrbute) [and dods
E}- Characteritic Declaration: Service Changed Configlration Athenicated signed wries
500003 |02B03 | Charsdteniic Declaration 2204000524 Beonded propetios -
- 0000A|02A05 | Service Changed o2
0<000B | (2902 Client Characteristic Configuration
- Frimary Service Dedaration: Inmedate Alrt
& GO0 [o2600 [Primary Service Declartion [02:18 (mmediate Ar) [
E}- Characteristic Declaration: Alett Level
500D 02803 |Charectenstc Declartion [os0E 000624 [
(0<000E | Bx2A06 Alert Level 004

Attributes | L2ZCAP Channels

llog

[Clear Log gl Save Log

[151200:407): Request OP Code: BeFEDS. ~
[151200:407]: Status: BLE_STATUS_OK 3
[15:12:00:407]: Raw Bytes: BD A7 06 00 7F 04 06 FE 00 00

4.3 CySmart Mobile App

In addition to the PC tool, you can download the CySmart mobile app for iOS or Android from the respective app
stores. This app uses the iOS Core Bluetooth framework and the Android built-in platform framework for BLE

respectively to configure your BLE-enabled smartphone as a Central device that can scan and connect to Peripheral
devices.

The CySmart mobile app provides only BLE functions; it cannot communicate over any non-low-energy Bluetooth
protocols (RFCOMM, SCO, etc.) that are supported on EZ-BT WICED Modules.

The mobile app supports SIG-adopted BLE standard profiles through an intuitive GUI and abstracts the underlying

BLE service and characteristic details. Figure 11 and Figure 12 show a set of CySmart app screenshots for the Heart
Rate Profile user interface.

WWW.Cypress.com Document No. 002-20929 Rev. ** 16

http://www.cypress.com/

AR,

ws CYPRESS

g EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules
Figure 11. CySmart iOS App Heart Rate Profile Example
No Service 8:54 pm 3 48% W4 No Sarvice L) % 52% WL} No Service 8:58 pm 3 53% W)+

BLE Devices

Pull down to refresh...

= BLE Devices

Refreshing, Please wait...

Heart Rate Sensor RSSI:

£ Services = < Heart Rate M=

96 bem

Heart Rate Service

Dev
Heart Rate E

Bluetooth Pairing Request

“Heart Rate Sensor” would like to pair

Sensor Location :

Wrist

oy IS

0 kcal 610 s

with your iPhone.

Cancel Pair

Energy Expended RR- Interval

Figure 12. CySmart Android App Heart Rate Profile Example

Heart Rate

= Services

& 84

Heart Rate Service

00:A0:50:00:00:06 -47 dBm
Dev
Bonding —
Heart Rate Sensor Location:
” E Bonding is in process Wrist
please wait..
0 keal 714 s
Energy Expended RR-Interval
o o :
WWW.Cypress.com Document No. 002-20929 Rev. ** 17

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Development Kits and Evaluation Boards

Cypress provides easy-to-use evaluation boards to help you develop your EZ-BLE WICED Module design.

EZ-BLE WICED Module Evaluation Boards

Each EZ-BLE WICED Module provides an evaluation board that can be used to develop and test the performance of
the Cypress EZ-BLE WICED Module. EZ-BLE WICED evaluation boards are Arduino-compatible baseboards,
designed to work as stand-alone evaluation vehicles, or in conjunction with Arduino-compatible shields.

EZ-BLE WICED evaluation boards allow you to evaluate Cypress EZ-BLE Modules without having to design custom
hardware to mount the Cypress EZ-BLE Module.

Table 4 lists available EZ-BLE WICED Modules and their corresponding evaluation board part numbers. Click on your
evaluation board for additional information.

Table 4. EZ-BLE Modules and Corresponding Evaluation Board Part Numbers

EZ-BLE WICED Module Part Number EZ-BLE WICED Evaluation Board Part Number
CYBLE-013025-00 CYBLE-013025-EVAL
CYBLE-013030-00 CYBLE-013025-EVAL

Each EZ-BLE WICED evaluation board contains the following components:

m Cypress EZ-BLE Module — soldered directly to the evaluation board

m PCB substrate

m Arduino-compatible baseboard headers

m USB-to-UART Bridge

m USB connection (for WICED SMART SDK PC interface, programming, and EZ-Serial interface)

m Connection headers for HCI-UART direct connection (as needed)

o A configuration switch network is provided to configure the UART connection to the USB connector. This
switch network can be configured to enable either HCI-UART or Peripheral-UART to the USB connector.

m Header connection for current consumption measurement

m Configuration headers for setting the desired power supply level
m Power supply jumper for current consumption measurement

m Reset and switch

m User-defined switch element

m Inductors (for power supply noise reduction) — refer to your EZ-BLE WICED Module datasheet for recommended
external components)

EZ-BLE WICED evaluation boards are designed to simulate the placement and connection of the EZ-BLE Modules in
a final application. All host-side layout pattern recommendations (as shown in each specific module’s datasheet) are
followed for each evaluation board.

See Appendix C: EZ-BLE WICED Evaluation Board Details for details on the connections available for each of the
EZ-BLE WICED evaluation boards.

WWW.Cypress.com Document No. 002-20929 Rev. ** 18

http://www.cypress.com/

o CYPRESS

g EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

6 EZ-BLE WICED Module Development Setup (WICED SMART SDK)

Figure 13 shows the hardware and software tools required for evaluating BLE Peripheral designs using the EZ-BLE
WICED Module evaluation boards. The EZ-BLE WICED evaluation board is a self-contained Peripheral device that
can communicate with either a CySmart iOS/Android app or the CySmart Host Emulation Tool that acts as a Central
device. The CySmart Host Emulation Tool also requires a BLE dongle (black board in Figure 13) for its operation.
The dongle is included in the CY5677 kit.

Figure 13. BLE Functional Setup with EZ-BLE WICED Evaluation Board

Host PC Application
CySmart BLE Host Emulator

Power through
el

|

|

|

|

|

|

|

| BLE

| Central

|

| Heart Rate Service

| Dev|
| ! !
|

| o
|

|

|

|

|

|

|

|

|

|

|

|

|

Power through f
usB

The My First EZ-BLE WICED Module Design section will walk you through a step-by-step configuration and
programming of the EZ-BLE WICED Module by creating a simple Peripheral application.

WWW.Cypress.com Document No. 002-20929 Rev. ** 19

http://www.cypress.com/
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool

o CYPRESS

g EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

7.3

My First EZ-BLE WICED Module Design

This section gives you a step-by-step process for building a simple design with the CYBLE-013025-EVAL kit using
the WICED SMART SDK and IDE.

About the Design

This design implements the BLE Find Me Profile in the Target role that consists of an Immediate Alert Service (IAS).
Alert levels triggered by the Find Me Locator are indicated by varying the state of a LED on the evaluation board, as
Figure 14 shows. A single status LED indicates the state of the alert level.

Figure 14. My First EZ-BLE WICED Module Design

Find Me Collector Find Me Target
(CySmart PC/Mobile App) (Tag4 Evaluation Kit)

IAS GATT Server

IAS GATT Client

Service

Write Alert Level

Immediate Alert Service

Characteristic
Alert Level

Prerequisites
Before you get started with the implementation, make sure that you have the following software and hardware

available:

m WICED SMART SDK v2.2.3 or later

m CySmart Host Emulation Tool or CySmart iOS/Android app
m CYBLE-013025-EVAL EZ-BLE WICED Evaluation Board

You can create your first EZ-BLE WICED Module design in four steps:

1. Configure the design in the WICED SMART SDK’s WICED Bluetooth Designer.
2. Write the firmware to initialize and handle BLE events.

3. Program the EZ-BLE WICED Module on the Evaluation Kit.

4

Test your design using the CySmart Host Emulation Tool or mobile application.

Part 1: Configure the Design

This section takes you on a step-by-step guided tour of the design process. It starts with creating a new project and
guides you through the Bluetooth Designer. You can skip this section if you simply wish to try the example project
provided with this application note without going through the build process, and you already have the WICED SMART
SDK installed on your computer.

1. Install WICED SMART SDK v2.2.3 or newer on your PC. If you are using Windows, the automatic installer option
provides the easiest way to do this. Other options are available as described in Section 4.1.

2. Start the WICED SMART IDE, and from the File menu, choose New > WICED Bluetooth Designer, as Figure
15 shows.

WWW.Cypress.com Document No. 002-20929 Rev. ** 20

http://www.cypress.com/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239389
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.immediate_alert.xml
https://community.cypress.com/docs/DOC-3046
http://www.cypress.com/go/cysmart
https://itunes.apple.com/us/app/cysmart/id928939093?mt=8
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en

CYPRESS

EMBEDDED IN TOMORROW™

A
e
-

Getting Started with EZ-BLE WICED Modules

Figure 15. Creating a New Project

= C/Cr+ - WICED Smart IDE
File Edit Source Refoctor Mavigate Search Project Trace Run Window Help
Mew Alt+Shift+M > Y Makefile Project with Existing Code
Open File... B9 C++ Project
Close Ctrl+W G EbryaE
-
Close Al CtrleShift=wy [Project..
Save CirleS Convert to a C/C++ Autotools Project
—_ Convertto a C/C++ Project (Adds C/C++ Nature)
G
Save All GirleShiftrs | B3 Source Folder
—_— 4 Folder
|¢ SourceFile
y L [Header File
af [ErEmes P % File from Template
&
&1 Refresh F5 @ Class
Convert Line Delimiters To) 8 Tk
Print... Ctrl+P & WICED Bluetooth Designer X
Switch Workspace > Y Bample..
=t E Other.. Ctrl+N
a3 Import... |

3. Enter an appropriate name for your project (this example uses “find_me”), and select '20737' as the target. The
target chip for any given EZ-BLE Module can be found in the module datasheet.

Figure 16. Project Name and Target Chip

#= Mew WICED Bluetooth Device

WICED Smart Designer
Create a new WICED Smart device.

O x

Device name: | find_me

Target chip: | 20737

@

2

Cancel

4. Click Finish. Your workspace opens into with a new WICED Smart Device tab as shown in Figure 17. This tab is
the graphical interface for editing the find_me.wic file that defines the functionality of your project at a high level
using the WICED Bluetooth Designer tool.

Figure 17. New Bluetooth Designer View

@ WICED Smart Device 53

Appearance | Unknown v

Device Peripherals and Interfaces
[Button

J uaRT

[Timer (1 sec)

[JLep

Osel

[Buzzer

[Battery

[] Maximum Bonded Devices

[Fine Timer (12 msec)

Over the Air Upgrades

[support Qver the Air Upgrades
1d

Major Version:

Minor Version:

Generate Code.

Device Settings | Characteristics| find_me.wic

Www.Ccypress.com

Document No. 002-20929 Rev. **

21

http://www.cypress.com/

CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Because the project uses the LED on the kit to indicate the alert level for the Immediate Alert Service, check the
'LED' box on the Device Settings tab to enable the LED peripheral driver, as shown in Figure 18.

Figure 18. Enabling LED Support in the Bluetooth Designer

& “WICED Smart Device &3

Device name | find_me

Appearance | Unknown ~

Device Peripherals and Interfaces
[Button

[JuarT

[Timer (1 sec)

[spi
[Buzzer
[Battery

[[] Maximum Bonded Devices

] Fine Timer (12 msec)

Over the Air Upgrades
[Support Over the Air Upgrades
Id:

Major Version:

Minor Version:

Generate Code

Device Settings Characteristics | find_me.wic

Click the Characteristics tab at the bottom of the Bluetooth Designer view to switch to the area that allows you
to define the GATT structure. Select the Immediate Alert entry from the list of services under the Add Service
titte on the Characteristics tab, then click the 'plus' icon to the right, as shown in Figure 19.

Figure 19. Adding the Immediate Alert Service to the GATT Database

Add Service

Immediate Alert Pl R

Device Settings | Characteristics | find_me.wic

This adds the service to the GATT structure after the two required services (Generic Access and Generic

Attribute). Because this is a predefined service, the required Alert Level characteristic is also added for you and
given the correct permissions.

The WICED SMART SDK supports a number of standard Bluetooth SIG profiles, and also supports generation of
custom profiles/services to suit the needs of your application. The Find Me example project in this application
note is specifically focused on the Immediate Alert service profile.

WWW.Cypress.com Document No. 002-20929 Rev. ** 22

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

~

Expand the new 'Immediate Alert' entry in the list of services on the left, then select the 'Alert Level' characteristic
entry to view detailed information about that characteristic. No changes are required at this time (nor are they
available because the characteristic is predefined), but take note of the information available the view shown in

Figure 20.
Figure 20. Viewing Characteristic Definition Details
& “WICED Smart Device 2 = O
5 A
ervices :
sz Immediate Alert
Generic Access
Generic Attribute Service UUID 1802
v Ir_nmediata Alert Service Description | This service exposes a control point to allow a peer device to cause the device to immediately
(5 Alert Level alert.
Characteristic Properties Permissions User Description Formats
Name Alert Level
The level of an alert a device is to sound. If this level is
Description changed while the alert is being sounded, the new level
should take effect.
Characteristic UUID 2AD6
Device Role Host writes to or read from sensor
Size (bytes) 1 =
Initial Value 00
Add Service To add a new service, select the service type in the 'Add Service' combo box, and click on the + sign. To add a characteristic,
select the characteristic type in the 'Add Characteristic' combe bex, and click on the + sign.
(Select Service) ~
Add Optional Characteristic hd

Device Settings | Characteristics | find_me.wic

8. Scroll down inside the main Bluetooth Designer view’'s Characteristic tab (or Device Settings tab) and click the
Generate Code as shown in Figure 21.

This generates or updates three files (GATT database header and source file and the project’'s makefile) in the
project source folder. If these files already exist, the originals will be copied to backup files and then replaced
with new ones. You will use these files later in Section 7.4.

Figure 21. Generating Source Files

v Add Service
| find_me_db.c .
[find_me_db.h (Select Service) -
@ find_me.c
& find_me.wic

makefile.mk

(= glucose_meter Generate Code

= health_thermometer

If your own projects require the use of additional source files, add these to the makefile.mk file manually. See
Appendix F: Makefile Customization for details on makefile customization.

9. If you have not installed the SDK platform definition files for the CYBLE-013025-EVAL board before, then you
should do so now. The platform defines the functional GPIO assignments, NVRAM type, and some other low-
level values that control the firmware image download process for a specific target device. This custom platform
definition is required to properly use the CYBLE-013025-EVAL board, but it is not currently bundled with the
WICED SMART SDK. To install it, follow these steps:

a. Visit http://www.cypress.com/knowledge-base-article/platform-files-cyble-013025-eval-kba220379 and
download the CYBLE_013025_EVAL Platform files.zip platform archive. (This page also contains the
instructions below.)

b. Extract the downloaded file to your computer.

c. Navigate to the CYBLE_013025_EVAL Platform files location and copy the CYBLE_013025_EVAL folder
into the \WICED-Smart-SDK\Platforms\ location inside the SDK’s main installation folder.

WWW.Cypress.com Document No. 002-20929 Rev. ** 23

http://www.cypress.com/
http://www.cypress.com/knowledge-base-article/platform-files-cyble-013025-eval-kba220379

A
s

-

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with EZ-BLE WICED Modules

d. Navigate to the CYBLE_013025_EVAL Platform files\include

installation folder.

platforms\ location and copy the
CYBLE_013025_EVAL folder into the \WICED-Smart-SDK\include\Platforms\ location inside the SDK’s main

10. Identify the project’'s make target entry in the list near the top right of the IDE. If you used the 'find_me' name for
the project as what is in this guide, then the make target will be named find_me-CYBLE_013025_ EVAL
download in the list, as Figure 22 shows. The Make Target list provides the mechanism that you use for
compiling and downloading firmware to the target device. The default Make Target is added when you create a
new project is suitable for re-flashing; however, the build system supports some custom arguments to assist with
troubleshooting or special cases. These arguments are discussed in Section 4.1.4 (Make Target List).

Figure 22. Default Download Make Target for Find Me Project

v 15 WICED-Smat-SDK
~ = Apps

#1nclude *b

= C/Ce+ - WICED. Sart-SOK/Appain meffnd.me. - WICED Smart DE - o0 x
Fle ESt Soure Relactor Mevigate Seach Projet Tice Aum Window Help

R SAETFT- IR WrE TG BRSO - © | B
25 Project Explarer 33 > B [find,mec & = H | @ MokeTarget & Ne= 8

(& adwp_powes_receiver

#in
#1include

16 #inolude =1y

ure_sensor-BCMO20TIETAG Q32 download
« >

rrrrr 3 Help ¢ g =g

#deri. Contents T’ Search = Relsted Topics I Bookmarks

#dafin
4 #defi
#defin
#defin
#derin

(& glue s
(& health thermometes
(& heart_rate_monitor
2 hello_chient

v & hello_sensor

8 Index
+ Search expression:
LsstCharlluid v| 6a

» Scope Default

~ Local Help (0 hits)
B Console T
COT Build Console [WICED-Sman-SDK]

& makefile.mk
(& hello_sensor_mtk

Patch size (including reused RAM)

Patch size
Application size

. upgrade. Total RRM footprinl

11. To confirm that the unmodified auto-generated code compiles successfully, double-click the find_me-
CYBLE_013025_EVAL download make target and observe the output from the compile process. If everything is
working normally, the project will build successfully and show a memory usage summary, as shown in Figure 23.
However, it will not download because no suitable target device is connected and ready to flash, as shown in
Figure 24.

Figure 23. Successful Build and Memory Footprint

& Console 52 E‘._, Problems % Tasks [=] Properties
CDT Build Console [WICED-Smart-SDK]

4 GE| Bt B = 8

S

Patches start at 0x00204568 (RAM address)

Patches end at 0x00205988 (RAM address)

Application starts at 0x00205554 (RAM address)

Application ends at 0x00205C14 (RAM address)

Patch size (including reused RAM) 5152 bytes

Patch size 4076 bytes

Application size 1734 bytes

Total RAM footprint 5810 bytes (5.7kiB)

Converting CGS to HEX...

Conversion complete

Creating OTA images...

Conversion complete

OTA image footprint in NV is 8011 bytes ©
WWW.Cypress.com Document No. 002-20929 Rev. ** 24

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 24. Expected Download Failure After Compiling

B Console 32 % Problems % Tasks = Properties b9 <P::>| q &b ul = E~-r9-=0
COT Build Console [WICED-Smart-SDK]

Detecting device...

| No CYBLE-013025-00 detected

| 1. Verify the CYBLE-013025-EVAL is connected AND powered

| . Verify jumper J1 is populated

| . Ensure for switch SW1 1,2,3,4 are in OFF position and 5,6 are in ON position
| . Press the reset button (5W2) on the CYBLE-013025-EVAL and retry

PR

Download failed. This version of the 5DE only supports download to BCM20736R1 and BCHM20737A1 deviceg

10:20:49 Build Finished (toock 2s.78%ms))

Note that the Application Size value shown in the memory footprint output should not exceed approximately
25 KB when using EZ-BLE WICED Modules based on the CYW20737 device. The chip will not boot or run
properly with applications larger than this.

In addition, the WICED SMART IDE may show some symbol resolution errors in the main code window. Often,
these symbols can be resolved correctly, and the IDE is misidentifying issues in the code due to differences
between the code analysis toolchain and the one used for the final build process. For instructions on how to
disable these errors, see Section 4.1.3.1 (Eliminating False Code Analysis Errors).

7.4 Part 2: Write the Firmware

The EZ-BLE WICED Module contains ROM, RAM, and Serial Flash (SFLASH). The ROM area of the module
contains the full Bluetooth Low Energy stack. The RAM area is used for applying patches to the ROM-stored stack as
well as for running application code. The on-module SFLASH is non-volatile memory, which stores the application
code for embedded module configurations (i.e., not needing a host device to load the application program into RAM).
The application provides the configuration for the stack such as advertisement content and interval or output power
during transmission. Also, the application focuses on application-specific functionality while the stack deals with the
low-level details. For example, the stack transparently handles a GATT Client read request or discovery.

Stack patches and most application logic are stored outside of the chip itself in SFLASH memory. This is also the
memory used for temporary image storage during an over-the-air (OTA) firmware update process. This non-volatile
storage area is integrated on the EZ-BLE WICED Module.

The following main steps are required to develop an application for an EZ-BLE WICED Module:

m Define the data to be exchanged between the Client and Server, and prepare a GATT database. (In this
example, this is already accomplished using the WICED Bluetooth Designer tool in Part 1 to add the Immediate
Alert Service and Alert Level characteristic.)

m Determine whether additional devices such as a UART-connected MCU or an SPI-connected peripheral sensor
will be included in the solution. The UART and GPIO configurations of the application depend on the connected
Peripheral devices. In the example project, you have enabled the LED with the WICED Bluetooth Designer tool in
Part 1: Configure the Design; the generated code includes pre-configured GPIO settings based on this selection.

® Adjust the application configuration to provide the parameters required by the application. Common changes
include transmit power, advertisement parameters, and device name.

m Define and code the functions for the BLE Stack callbacks required by the application. The application typically
requires notifications from the stack when certain Bluetooth events occur such as connection establishment,
disconnection, GATT write operations, or bonding.

Three main firmware blocks are required for designing BLE standard profile applications using the WICED SMART
SDK:

1. System initialization
2. BLE stack event handlers

3. BLE service-specific event handlers

WWW.Cypress.com Document No. 002-20929 Rev. ** 25

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

The following sections discuss these blocks with respect to the design that you configured in Part 1: Configure the
Design. Many of the functions involved in these are auto-generated for you based on the settings chosen in the
WICED Bluetooth Designer; however, some of these functions need to have additional code added in order to
achieve the specific behavior that your application requires.

Unlike other platforms, the WICED SMART BLE stack does not require or provide an application-level “main loop”
function that repeats forever. Instead, the main loop is handled internally along with low-power transitions, and all
application behavior must be fully event-driven based on interrupts triggered by timers, wireless (BLE) activity, or
wired (GPIO, UART, etc.) activity.

7.4.1 System Initialization

When the EZ-BLE WICED Module starts up, it initializes the BLE stack and executes the application initialization
function named APPLICATION_INIT. This initialization function must call the bleapp_set_cfg function, which
provides the BLE stack with pointers to application data structures, including the GATT database, application
configuration, UART configuration, GPIO configuration, and a pointer to a create function that is called when the
application starts.

The ROM image in the module also contains some basic application logic. The full source code for these functions is
included in the WICED SMART SDK in the /Wiced-Smart/bleapp/app directory. The new application is flexible in what
portions of the ROM code to use. If the ROM code completely matches the requirements, the APPLICATION_INIT
function should simply point to the data structures and then create functions from the ROM code. However, most
designs will need more customized behavior than this provides.

The following data structures are present in every EZ-BLE WICED application:

m The GATT database identifies data objects to the BLE stack that are exchanged between the peripheral and the
client application.

m Application configuration, which specifies parameters shared between the application and the BLE stack.

m UART and GPIO configurations. In some cases, the application requires a connection to a Peripheral device (for
example, a measurement sensor). Although drivers for most Peripheral buses are included in the CYW20737
ROM, some code must be written to support the hardware. For example, some applications may require
processing of data received over the UART or SPI interfaces.

Figure 25 shows the flowchart and firmware source code for system initialization.

WWW.Cypress.com Document No. 002-20929 Rev. ** 26

http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 25. System Initialization Flow Chart

(1
C Reset)
A
S ROM Stack Init
R
N
E A
E Register Event and
E Interrupt Handlers
g
2
%) A
Start Advertising
A

Internal Stack
Processing Loop

Before looking at the application initialization routines, look over the large configuration structure near the top of the
find_me.c source file:

Code 1. find_me_cfg: Main Project Configuration Structure

const BLE PROFILE CFG find me cfg =
{

/*.fine_timer interval =*/ FIND ME FINE TIMER, // ms

/*.def&ultiadv =x/ 4, // HIGH_UNDIRECTED_DISCOVERABLE

/*.button_adv_toggle =*/ 0, // pairing button make adv toggle (if 1) or always on (if 0)
/*.high_ undirect adv interval =*/ 32, // slots

/*.low undirect adv interval =*/ 1024, // slots

/*.hlghiunulrectiauvidurdtlon =%

/*.low undirect adv duration =*

/*.high direct adv_ interval =*

/*.low direct adv interval =*/ 0, //

/*,highiclrevtiacviduratlon =*/ 0, //

/*.low direct adv duration =%/ 0, // seconds

/*.local name =*/ FIND ME DEVICE NAME, // [LOCAL NAME LEN MAX];

/*.cod =+/ BIT16_TO 8 (FIND ME_DEVICE APPEARENCE),0x00, // [COD LEN];
/*.ver =%/ "1.00", // [VERSION LEN];

/*.encr_required =%/ 0, // (SECURITY_ENABLED | SECURITY_ REQUEST), // data
encrypted and device sends security request on every connection

/*.disc_required =x/ 0, // if 1, disconnection after confirmation

/*.test enable =x/ 1, // TEST MODE is enabled when 1

/*.tx_power level =*/ 0x04, // dbm

/*.con_idle_timeout =*/ 30, // second 0-> no timeout

/*.powersave_timeout =*/ 0, // second 0-> no timeout

/*.hdl =%/ {FIND ME_MATN_CHAR_HANDLE, 0x00, 0x00, 0x00, 0x00}, //
[HAI\/DLhil\UMiMAXW ;

/*.serv =%/ {FIND ME_MATN_SERVICE UUID, 0x00, 0x00, 0x00, 0x00},

/*.cha =%/ {FIND ME_MATN_CHAR UUID, 0x00, 0x00, 0x00, 0x00},

/*.findme_locator enable =*/ 0, // if 1 Find me locator is enable

/*.findme alert level =*/ 0, // alert level of find me

/*.client grouptype enable =%/ 0, // if 1 grouptype read can be used

/*.linkloss_button_enable =*/ 0, // if 1 linkloss button is enable

/*.pathloss_check interval =%/ 0, // second

WWW.Cypress.com Document No. 002-20929 Rev. ** 27

http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

/*.alert interval =*/ 0, // interval of
/*.high alert num =x/ 0, // number a al
/*.mild alert num =x/ 0, // number a al
/*.stat ed enable =x/ 1, // tus
/*.stat i interval =x/ 0, //
/*.stat 7(on_blink =*/ 0, // Hf
/*.stat =*/ 0, // of
/*.status_ =*/ 0, // of
/*.led_on_ms =*/ 0, // led bl 1nk on
/*.led off ms =*/ 0, // led blink off duration i
/*.buz_on_ms =*/ 100, // 1 duration in ms
/*.button power timeout =*/ 0, //
/*.button_client timeout =*/ 0, //
/*.button discover timeout =~/ 0, //
/*.pbutton filter timeout =~/ 0, //
#ifdef BLE_ UART LOOPBACK TRACE
/* bu‘rtor17udr‘r7‘r imeout =x/ 15, // se ds
#endif
bi

This configuration structure allows simple control over default advertisement parameters, some of the profile-specific
behavior, encryption requirements, power output, and hardware peripherals. In many cases, the SDK provides APIs
that allow you to trigger behavior with custom settings rather than the values that are set here. However, you can
often use these configuration values as-is and avoid further complexity in your code.

The 'find_me' example described in this guide does not require any modifications to this structure.

The first visible entry point in the ‘find_me' example application you have created here is the APPLICATION_INIT
function, as shown in Code 2 here:

Code 2. APPLICATION_INIT: ROM-Driven Initialization

// Application initialization

APPLICATION_INIT ()

{

bleapp_set cfg((UINT8 *)gatt database,

gatt_database_len,
(void *)&find me cfg,
(void *)&find me puart cfg,
(void *)&find me gpio_cfg,
find_me_create);

This small function simply calls the bleapp_set_cfg function as described above, with pointers to various
application-specific implementations of the GATT database, application configuration, UART configuration, GPIO
configuration, and the create function.

Note that this function already exists and does not need to be added to your project source file. The blapp_set_cfg
function is declared in the bleapp.h standard SDK library include file, although the implementation is in ROM.

These key structures, values, and functions used as arguments here are implemented in two different parts of the
automatically generated source files coming from the WICED Bluetooth Designer tool.

The find_me.c source file contains the following:
m The find_me_cfg variable, which has the BLE_PROFILE_CFG structure type, and defines default advertisement

and connection intervals, security requirements, transmit power, device name, appearance, timeouts, and other
settings.

m The find_me_puart_cfg variable, which has the BLE_PROFILE_PUART_CFG structure type, and defines the
peripheral UART baud rate and pin assignment.

m The find_me_create function, which runs once after the BLE stack itself has initialized, and is ready to hand off
the execution to the application-level initialization routine.

The find_me_db.c/.h source files contain the following:

WWW.Cypress.com Document No. 002-20929 Rev. ** 28

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

m The gatt_database variable, which is a contiguous byte array and defines the complete GATT structure to be
used by the Server.

m The gatt_database_len variable, which defines the length of the GATT database definition in bytes.

m The find_me_gpio_cfg variable, which has the BLE_PROFILE_GPIO_CFG structure type and defines the GPIO
configuration used by the application.

These files and the data structures and functions they contain make up all of the application-specific functionality
currently in the application.

The next function to look at is find_me_create, which runs after the ROM-driven BLE stack initialization finishes.
This function sets up all of the application-specific behavior and registers many application callbacks to occur when
various link layer, GAP, or GATT events occur within the stack as shown in Code 3.

Code 3. find_me_create: Application-Driven Initialization

// Create device

void find me_create (void)

{
extern UINT8 bleprofile adv_num;
extern UINT8 bleprofile scanrsp num;

ble trace0("create()");
ble trace0O(bleprofile p cfg->ver);

bleprofile adv_num = 0x0;
bleprofile scanrsp_num = 0x0;

// dump the database to debug uart.
legattdb_ dumpDb () ;

bleprofile Init (bleprofile p cfg);
bleprofile GPIOInit (bleprofile gpio p cfg);

// Initialized ROM code which will monitor the battery
blebat Init();

// Read NVRAM
bleprofile ReadNVRAM(VS_BLE_HOST_LIST, sizeof (find me hostinfo), (UINT8 *)&find me_ hostinfo);

// register connection up and connection down handler.

bleprofile regAppEvtHandler (BLECM APP EVT LINK UP, find me connection up);

bleprofile regAppEvtHandler (BLECM APP EVT LINK DOWN, find me connection down) ;
bleprofile regAppEvtHandler (BLECM APP EVT ADV TIMEOUT, find me advertisement stopped);

// handler for Encryption changed.
blecm_regEncryptionChangedHandler (find me_encryption_changed) ;

// handler for Bond result
lesmp_regSMPResultCb ((LESMP_SINGLE_PARAM CB) find_me_smp_bond_result);

// register to process client writes
legattdb_regWriteHandleCb ((LEGATTDB_WRITE_CB) find me_write_handler);

// register interrupt handler
bleprofile regIntCb ((BLEPROFILE SINGLE PARAM CB) find me_ interrupt_handler);

//registers timer
find me reg timer();

// advertise first vendor specific service

if (sizeof (find me uuid main_service) > 1)

{
// total length should be less than 31 bytes
BLE ADV_FIELD adv([3];
BLE ADV_FIELD scr(l];

// flags

adv([0].len =1+ 1;

adv[0].val = ADV_FLAGS;

adv([0].data[0] = LE_LIMITED DISCOVERABLE | BR_EDR NOT_SUPPORTED;
adv[l].len = sizeof (find me uuid main service) + 1;

WWW.Cypress.com Document No. 002-20929 Rev. ** 29

http://www.cypress.com/

EMBEDDED IN TOMORROW™

& CYPRESS

Getting Started with EZ-BLE WICED Modules

adv[l].val = sizeof (find me uuid main service) == 16 ?

ADV SERVICE UUID128 COMP : ADV SERVICE UUID16 COMP;
memcpy (adv[1l].data, &find me uuid main_service[0], sizeof(find me uuid main service));
// Tx power level

adv([2].len
adv([2].val
adv([2].data[0]

TX POWER LEN+1;
ADV TX POWER LEVEL;
bleprofile p cfg->tx power level;

// name
scr[0].len = strlen(bleprofile p cfg->local name) + 1;
scr(0].val = ADV_LOCAL NAME COMP;

memcpy (scr[0] .data, bleprofile p cfg->local name, scr[0].len - 1);
bleprofile_ GenerateADVData (adv, 3);
bleprofile_GenerateScanRspData(scr, 1);

}

blecm_setTxPowerInADV (0);

// start device advertisements. By default Advertisements will contain flags, device name,
// appearance and main service UUID.

bleprofile_Discoverable(HIGH_UNDIRECTED_DISCOVERABLE, NULL) ;

// : Do your initialization on app startup

The find_me_write_handler callback function is of particular interest because it lets the application process
incoming GATT write operations. This will be discussed in more detail in the next section.

Take note of how the find_me_create initialization function ends, which occurs right before the stack gets execution
control again. The code sets advertisement output power to +0 dBm and begins fast undirected/connectable
advertisements. Because of this, a remote device is able to connect to the find_me Peripheral, which will trigger a
new callback (the find_me_connection_up event handler registered above) and allow further application-specific
behavior.

7.4.2 BLE Stack Event Handlers

The BLE stack residing on EZ-BLE WICED Modules requires individual event handler callbacks for most types of
BLE activity. In the previous section, the find_me_create function registers application functions to handle some of
these events like connection, disconnection, advertisement timeout, and GATT write. This section describes the
purpose and functionality of each of these callbacks within the context of the 'find_me' example project.

Unlike the single BLE event handler 'master' function found in PSoC®/PRoC™-based BLE designs, the EZ-BLE
WICED stack does not bundle every application-level event into one top-level callback function. Instead, most events
have dedicated callbacks that must be registered independently, as shown in Code 3 above. If you are exploring
EZ-BLE WICED solutions after previously learning PSoC/PRoC EZ-BLE solution practices, keep this architectural
difference in mind.

The first event handler to examine is find_me_connection_up, which is called when a new BLE connection is
established. Aside from some debug output through the module’s trace UART mechanism, this function performs the
following notable operations:

1. Stores the connection handle in a global variable

2. Calls the generic __on_connection_up function (internally tests for existing bonded device entry)
3. Stops advertising to prevent additional incoming connection attempts

4. Checks encryption requirements and requested bonding as necessary

The Bluetooth Designer tool also provides some “TODO” code comments to help explain where certain
customizations should go.

Code 4. find_me_connection_up: New Connection Event Handler

// Connection up callback function is called on every connection establishment

void find_me_connection_pp(void)

{
find me connection handle = (UINT16)emconinfo getConnHandle();
UINT8 *bda = (UINT8 *)emconninfo getPeerPubAddr () ;

WWW.Cypress.com Document No. 002-20929 Rev. ** 30

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

// Save address of the connected device and print it out.
memcpy (find me remote_ addr, bda, sizeof(find me remote addr));

ble trace3("connection up: %08x%04x h=%d",
(find me remote addr[5] << 24) + (find me remote addr([4] << 16) +
(find me remote addr[3] << 8) + find me remote addr([2]
(find me remote addr[l] << 8) + find me remote addr([0]
find_me_connection_handle);

’
’

// Prepare generated code for connection - write persistent values from _ HOSTINFO to GATT DB
__on_connection up();

// : Write custom persistent values into GATT database using functions
// changed <service name> <char name> () generated by smart designer

// If device supports a single connection, stop advertising
bleprofile Discoverable (NO DISCOVERABLE, NULL);

// If security is required for every connection following function will start bonding or
// will setup encryption. No indications or notifications should be sent until
// encryption is done.
if (bleprofile p cfg->encr required & SECURITY REQUEST)
{
if (emconninfo deviceBonded ()
{
ble trace0("device bonded");
}
else
{
ble trace0("device not bonded");
lesmp_sendSecurityRequest () ;

The next stack event handler to examine is find_me_connection_down, which is called when the BLE connection is
closed intentionally or drops unexpectedly. This function clears the connection handle value back to zero and
resumes connectable advertising at a low (infrequent) rate.

Code 5. find_me_connection_down: Connection Terminated Event Handler

// Connection down callback
void find me_connection_down (void)

{
ble_tracel ("connection down:handle:%d", find me_connection_handle);

find me connection handle = 0;

// If disconnection was caused by the peer, start low advertisements
bleprofile Discoverable (LOW UNDIRECTED DISCOVERABLE, NULL);

ble trace2("ADV start: %08x%04x",

(find me remote addr([5] << 24) + (find me remote addr[4] <<16) +
(find me remote addr[3] << 8) + find me remote addr([2],
(find me remote addr[1l] << 8) + find me remote addr([0]);

Next, check the find_me_advertisement_stopped handler, which is called when the stack automatically
terminates advertising after the configured timeout period elapses. The default advertisement timeouts for fast (*high")
and slow ('low") rates are defined in the find_me_cfg structure near the top of find_me.c file, and are 30 and 300
seconds respectively. The code in this event handler ensures that advertisements always resume automatically
whenever either mode times out.

Code 6. find_me_advertisement_stopped: Advertisement Timeout Event Handler

// Callback function indicates to the application that advertising has stopped.
// restart advertisement if needed
void find me_advertisement_stopped (void)
{
ble_trace0 ("ADV stop!!!!");

WWW.Cypress.com Document No. 002-20929 Rev. ** 31

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

// If disconnection was caused by the peer, start low advertisements
bleprofile_Discoverable(LOW_UNDIRECTED_DISCOVERABLE, NULL) ;

After this handler, there are two which concern bonding and encryption. First is the find_me_smp_bond_result
event shown in Code 7, which occurs after the remote peer successfully bonds with the local device. The auto-
generated code in this function calls the find_me_add_bond function to store the bonded device address in the
hostinfo structure, then writes that structure into the non-volatile memory for later retrieval (remember that the
__on_connection_up function call inside find_me_connection_up searches for previous bond information to
initialize client-specific persistent GATT values).

Code 7. find_me_smp_bond_result: Bonding Event Handler

th the central device,
ta

// Process SMP bonding result. If pairing is su

// save its BDADDR in the NVRAM and initialize a ciate
void find me_smp_bond_ result (LESMP_PARING RESULT result)
{

ble tracel ("smp bond result %02x", result);

if (result == LESMP PAIRING RESULT BONDED)
{

// saving bd addr in nvram

UINT8 *bda;

UINT8 writtenbyte;

bda = (UINT8 *)emconninfo_getPeerPubAddr () ;

// initialize persistent values in the hostinfo to add bonded peer
find me_add bond (bda) ;

// : initialize persistent variables in HOSTINFO

writtenbyte = bleprofile WriteNVRAM(VS_BLE HOST_LIST, sizeof (find me_hostinfo),
(UINT8 *)&find me hostinfo);
ble tracel ("NVRAM write:%04x", writtenbyte);

Another security-related function is the find_me_encryption_changed handler, which is called when the stack
encryption state changes. This typically occurs during the bonding process after the link is successfully encrypted.
While it is not strictly necessary to catch this event, the auto-generated function makes it easy to modify as your
application requires, and also triggers a connection parameter update to more power-efficient values (100-500 ms
interval and longer supervision timeout).

Code 8. find_me_encryption_changed: Encryption State Change Event Handler

// Notification from the stack that encryption has been set.
void find me_encryption_changed (HCI_EVT_HDR *evt)
{

UINT8 *bda = emconninfo getPeerPubAddr();

ble trace2("encryption changed %08x%04x",
(bda[5] << 24) + (bdal[4] << 16) +
(bda[3] << 8) + bdal2],
(bda[l] << 8) + bdal[0]):;

// : do your on-encryption-change actions here.
// Slow down the pace of master polls to save power. Following request asks
// host to setup polling every 100-500 msec, with link supervision timeout 5 seconds.

bleprofile SendConnParamUpdateReq(80, 400, 0, 500);

After the security-related events, the find_me_write_handler function shown in Code 9 processes GATT write
events that occur when a connected remote client writes a new value to any supported GATT characteristic. Note that
this high-level code first gets a few details about the written attribute, then passes that information to a function called
__write_handler. This function’s implementation is found in the GATT-specific find_me_db.c file, which you will look
through in the next section.

WWW.Cypress.com Document No. 002-20929 Rev. ** 32

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

An important feature of the __write_handler function is that it returns a boolean value indicating whether to write
updated host details to non-volatile RAM. This might be the case for a client characteristic configuration value set by
a bonded peer, or for the Device Name characteristic (if the “write” permission is enabled). The Find Me example
project described in this application note does not use this functionality.

Code 9. find_me_write_handler: Top-Level GATT Write Event Handler

// Process write request or command from peer device
int find me write handler (LEGATTDB_ENTRY HDR *p)
{
UINT8 writtenbyte;
UINT16 handle = legattdb_getHandle (p);
int len legattdb_getAttrValueLen (p);
UINT8 “*attrPtr legattdb_getAttrvValue (p) ;
BOOL changed;

ble tracel ("write handler: handle %04x", handle);
changed = __write_handler(handle, len, attrPtr);

// Save update to NVRAM if it has been changed.
if (changed)
{
writtenbyte = bleprofile WriteNVRAM (VS BLE HOST LIST,
sizeof (find me hostinfo), (UINT8 *)&find me hostinfo);
ble tracel ("NVRAM write:%04x", writtenbyte);
}

return 0;

Two final callbacks remain in this section, neither of which are required for specific behavior in this example
application. First is the find_me_interrupt_handler function shown in Code 10, which handles any configured
GPIO interrupt. Second is the find_me_indication_cfm handler shown in Code 11, which is triggered when a
remote GATT Client device confirms receipt of an 'indication’ transfer. These functions are predefined in empty 'stub’
form to provide a foundation for adding related behavior, but the Find Me project does not use them.

Code 10. find_me_interrupt_handler: GPIO Interrupt Handler Stub

// Three Interrupt inputs (Buttons) can be handled here.

// If the following value == 1, Button is pre Different than initial value.
// If the following value == 0, Button is depressed. Same as initial value.

// Buttonl : value&0x01

// Button2 : (value&0x02)>>1

// Button3 : (value&0x04)>>2

void find me_interrupt_handler (UINT8 value)
{

// : handle the interrupts here.

}

Code 11. find_me_indication_cfm: Top-Level Indication Confirmation Event Handler

// Process indication confirmation. if client service indication, each indication
// should be acknowledged before the next one can be sent.

void find me_indication_cfm(void)

{

}

A few of the example projects that come with the WICED SMART SDK use one or both of these functions, including
the following:

e hello_sensor

e ota_firmware_upgrade
e puart_control

e automation_io_server

e pwm_tones

WWW.Cypress.com Document No. 002-20929 Rev. ** 33

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

One final callback remains in the main find_me.c file, which is discussed in the next section because it is specific to
the Immediate Alert Service (IAS).

7.4.3 BLE Service-Specific Event Handler

A service-specific behavior occurs when a remote client interacts with particular GATT attributes in pre-defined ways.
In this project, the Alert Level characteristic value is the only one of importance for peripheral behavior modification.

The code generated by the WICED Bluetooth Designer tool implements characteristic write handling through different
layers, some of which were dscussed in the previous section. First, the create function registers the
find_me_write_handler top-level handler function to be called when a GATT write occurs. This function obtains
details about the attribute and its new value, and then passes this information to the _ write_handler mid-level
function shown in Code 12.

Code 12. __write_handler: Mid-Level GATT Write Event Handler

// Updates HOSTINFO by the value written by peer.
// Returns true if any persistent value is changed
BOOL _ write handler (UINT16 handle, int len, UINT8 *attrPtr)
{

BOOL res = FALSE;

if (handle == HDLC IMMEDIATE ALERT ALERT LEVEL VALUE)

{

if (len > 1)
{
ble_traceZ("bad length:%d handle:%04x", len, handle);
}
else
{
//call custom on write function
ble tracel ("write handle:%04x", handle);
res = on _write immediate alert alert level(len, attrPtr);
}
}

return res;

The __write_handler function checks to see which handle was written, and then finally calls the appropriate
application callback function with the value length and pointer to data as arguments. This brings you to the final link in
the GATT write execution chain, the on_write_immediate_alert_alert_level callback shown in Code 13 below.
This function is the only one you need to modify to provide the intended user experience for this Find Me example
project.

Code 13. on_write_immediate_alert_alert_level: Original IAS “Alert Level” GATT Write Event Handler

// It will be called at the write handler and should return TRUE if any persistent value is changed
BOOL on_write_immediate_alert_alert_level(int len, UINT8 *attrPtr)
{

// : do your actions here when value is written by the peer
// and return TRUE if any per
return FALSE;

sistent value is changed

Note that the WICED Bluetooth Designer tool will automatically create these callbacks for any writable characteristics
that are defined.

The modifications required concern updates to the LED behavior based on a single-byte value written to the Alert
Level characteristic. Specifically, you need to watch for three alert values:

m 0x00 = No alert (LED OFF)

m 0x01 = Mild alert (LED blinking)
m 0x02 = High alert (LED ON)

WWW.Cypress.com Document No. 002-20929 Rev. ** 34

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

7.4.4

To accomplish this, first, add one GPIO configuration line to the end of the find_me_create function towards the
beginning of the file:

Code 14. Preparing LED GPIO for Output Logic Control in the create Function

// : Do your initialization on app startup
gpio_configurePinWithSingleBytePortPinNum(GPIO PIN LED, GPIO OUTPUT ENABLE, 1);

The specifically named gpio_configurePinWithSingleBytePortPinNum API method sets the drive mode and
(when applicable) output logic state of a single numbered pin. The GPIO_PIN_LED constant is pre-defined by the
platform definition file, but in the case of the CYBLE-013025-EVAL board, it is set to 14 because the active LOW LED
on this board is connected to P14. The GPIO_OUTPUT_ENABLE constant sets the pin to output mode, and the final 1
argument initializes it to the HIGH (VDD) logic state. The pin is now ready to be used for driving the LED.

Next, replace the content of the on_write_immediate_alert_alert_level callback with the code shown here:

Code 15. on_write_immediate_alert_alert_level: Updated IAS “Alert Level” GATT Write Event Handler

// It will be called at the write handler and should return TRUE if any persistent value is changed
BOOL on_write immediate alert alert level (int len, UINT8 *attrPtr)
{
// check the first byte of the value written to this characteristic
switch (attrPtr([0])
{
case 0x00:
// alert level = 0x00 (none), turn LED off
bleprofile KillLEDTimer ();
bleprofile LEDOff ();
break;
case 0x01:
// alert level = 0x01 (mild), blink LED at 1 Hz cycle (units are 12.5ms)
bleprofile LEDBlink (40, 40, 0);
break;
case 0x02:
// alert level = 0x02 (high), turn LED on
bleprofile KillLEDTimer () ;
bleprofile LEDOn();
break;

}

// return FALSE since no persistent value is changed
return FALSE;

These API calls take advantage of the built-in LED management library, which includes non-blocking 'blink' support
and simple ON/OFF control. It is also possible to control the LED pin directly with lower-level GPIO functions.

Low-Power Implementation

Most BLE applications require minimal power consumption to support long life. The WICED SMART SDK
automatically handles most low-power transitions internally, and it is not possible to force entry into a low-power state
regardless of any other tasks. However, the SDK does provide a mechanism to either allow or prevent otherwise
automatic entry into Sleep mode. Using this mechanism is optional, but usually desirable.

Without any low-power modifications, this 'find_me' example project will consume at least 3.5 mA constantly on
average since the CPU will never sleep. This level of consumption is typically much higher than a small device
powered by a coin cell can sustain.

The simplest solution to allow automatic sleep mode usage in this project requires making a single modification to the
configuration setting structure, particularly the fine timer interval:

Code 16. Updating Fine Timer Interval to Non-Zero Value

#define FIND ME FINE TIMER 1000

WWW.Cypress.com Document No. 002-20929 Rev. ** 35

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

The default value for this interval is 0, which effectively results in disabling sleep, even if the application does not
make use of any fine timer functions (which this example does not). A value of 1000 indicates a 1-second interval (as
this is measurement is miliseconds), and with this, the module can properly sleep automatically. With this
configuration change, this 'find_me' example project will consume approximately the following amounts of current, on
average:

® 1.8 mA during fast advertising (on boot, for up to 30 seconds)
m 106 pA during slow advertising (30 seconds after boot or immediately after disconnection)

m 250 pA while connected to a remote peer @ 100 ms connection interval

7.4.4.1 Managing Low-Power Operation in the Application

Sometimes, you need more control over sleep states, particularly if you are using certain peripherals. For example,
the peripheral UART interface is disabled while in sleep mode, so if you need to remain awake due to expected
incoming UART data, automatic sleep mode may not be suitable.

In order to manage low-power operation in your application, you will need some or all of the following APIs:

® devlpm_init()

m devlpm_registerForLowPowerQueries(callback, context)
m devlpm_enableWakeFrom(source)

m devlpm_enterLowPowerMode()

® bleprofile_PrepareHidOff()

These functions enable Sleep/Deep Sleep low-power entry, wake sources, and an application-level callback, which
you can use to keep the CPU from entering Sleep or Deep Sleep states. To add some additional low-power support
to your project, first place the following initialization code into the find_me_create function:

Code 17. find_me_create: Application-Driven Initialization

// Create device
void find me create (void)

{

// Initialize low-power system and application control callback
devlpm init();
devlpm registerForLowPowerQueries(find me lpm queriable, 0);

}

Next, add a new find_me_lpm_queriable callback function declaration and implementation to handle queries about
allowable sleep states:

Code 18. find_me_lpm_queriable: Application-Driven Sleep Prevention

WWW.Cypress.com Document No. 002-20929 Rev. ** 36

http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

UINT32 find me_lpm queriable (LowPowerModePollType type, UINT32 context);

// Callback called by the FW when ready to sleep/deep-sleep.

// Do not allow dIV sleep if UART tra are ongoing.

// Do not allow deep sleep if BLE activity is going.

UINT32 find me lpm queriable (LowPowerModePollType type, UINT32 context)
{

issio

UINT32 result = 0; // assume sleep disabled

// check sleep type query
switch (type)
{
case LOW POWER MODE POLIL TYPE SLEEP:

// return 0 to prevent standard sleep, otherwise max microsecond count to allow
// (other processes may wake earlier than your specified max)

result = OxXFFFFFFFF; // max

break;

case LOW_POWER MODE POLL TYPE POWER OFF:
// return 0 to prevent deep sleep, non-zero to allow
result = 1; // allow
break;
}

// should not reach this point since only two types of sleep exist
return result;

Notice the basic logic in this implementation. There are two possible types of Sleep queries; the 'sleep' type concerns
standard sleep, while the 'power off' type concerns Deep Sleep (also known as HIDOFF). You should not allow
standard Sleep if you need continuing UART operation, but BLE advertising and connectivity will continue to function
in this state. You should not allow Deep Sleep if you need any BLE activity to continue.

Finally, to demonstrate the ultra-low-power Deep Sleep state, you can optionally make the following modification to
the find_me_connection_down method so that the firmware enters Deep Sleep after the client disconnects:

Code 19. find_me_connection_down Modification: Deep Sleep After Disconnection

//bleprofile Discoverable (LOW UNDIRECTED DISCOVERABLE, NULL);

// If disconnection was caused by the peer, enter deep sleep mode
bleprofile PrepareHidOff ()

The average current while in Deep Sleep mode should be on the order of 1.5 pA.

Note that if you change the 'power off' (Deep Sleep) query result assignment to '0' in the find_me_lpm_queriable
function, the bleprofile_PrepareHidOff() API will not put the module into Deep Sleep despite being explicitly
called, because the application-level query function is still called and the result is tested before the chipset enters
Deep Sleep.

The devlpm_enterLowPowerMode() APl behaves similarly to this, requesting entry into standard Sleep mode when
called. However, it is often not necessary to use this function explicitly because internal power management routines
will automatically attempt to enter Sleep mode as often as reasonably possible.

The devlpm_enableWakeFrom() API can be used to set up specific wake sources, such as GPIOs, to be used in
conjunction with any configured GPIO interrupts. If Sleep states do not need GPIO intervention but can be logically
controlled by application code, then this API is not needed.

WWW.Cypress.com Document No. 002-20929 Rev. ** 37

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

7.4.4.2

7.5

7.5.1

Eliminating Leakage Current

Depending on the peripheral connections present in your final hardware design, you may need to make special
considerations to avoid leakage on the PO pin (PUART TX if peripheral UART is enabled). This pin defaults to a
digital-mode high-impedance “floating” state in the ROM-based initialization code, and will leak a noticeable amount
of current if left unconnected in this state.

There are three basic ways to eliminate leakage on this pin:

1. Externally drive or pull the PO pin to a known state

2. Enable peripheral UART operation in your application (PUART initialization will set PO to digital output mode)
3. Configure PO to a non-floating state manually in your application code

On the CYBLE-013025-EVAL board, you can pull PO high by setting SW1 position 1 to the ON state. This will connect
PO (PUART TX) to the on-board USB-to-UART bridge IC’s RX pin, which is weakly pulled high. However, you should
ensure that you do not also simultaneously set SW1 position 5 to the ON state and enable PUART operation in the
application. This could potentially result in PUART TX and HCI UART TX to drive in opposite logic states, resulting in
a short between VDD and GND and possibly damaging the module.

You can configure PO to an internally pulled state by adding the following single line of code to the end of the
find_me_create function:

Code 20. find_me_create Modification: Configure PO to Known State

gpio_configurePinWithSingleBytePortPinNum(0, GPIO PULL UP, 1);

This call to the gpio_configurePinWithSingleBytePortPinNum() API will internally pull PO to the HIGH logic state
and eliminate leakage.

Part 3: Program the Device

This section shows how to program the EZ-BLE WICED Evaluation Board. The CYBLE-013025-00 module on this
evaluation board includes a UART-based bootloader in the onboard chipset ROM, and therefore does not require an
external programmer of any kind.

Note: The source project for this design is available on this application note’s webpage.

Host UART Interface Selection and Preparation

Host access to the HCI UART interface required for programming is available using either the built-in USB-to-UART
bridge or the 4-pin J2 header on the module and an external UART device. The SW1 six-position DIP switch controls
whether the USB-to-UART bridge is connected to the HCI UART or Peripheral UART pins on the module, and
therefore you must set it properly to provide the correct pin routing.

Table 5. SW1 DIP Switch Settings for Programming

Programming SW1 Positions
Interface 1 2 3 4 5 B
Built-in USB-to-UART | OFF | OFF | OFF | OFF ON ON PUART disconnected, HCI UART connected
J2 and external UART | any | any | any any OFF | OFF PUART irrelevant, HCl UART disconnected

Detail

Switch positions 1, 2, 3, and 4 control the Peripheral UART connection to the USB-to-UART bridge IC on the
evaluation board, while positions 5 and 6 control the HCI UART connection to the same USB-to-UART bridge IC. You
should not set all six SW1 positions to ON under any circumstances, as this will directly connect both module UARTSs
RX and TX pairs together. This could result in a state where both TX pins are driving in opposite directions, causing
an internal short between VDD and GND.

WWW.Cypress.com Document No. 002-20929 Rev. ** 38

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

7.5.2 Boot Modes and Effective Operational States

Beginning from a power-on or reset, the boot sequence for the CYW20737 chipset inside the EZ-BLE WICED Module
follows the process defined below:

1. Code in ROM executes and initializes the device processor, clock domains, peripherals, etc.
2. The following checks then occur:

a. The boot ROM checks for connected EEPROM and for a valid configuration, issuing several commands on
the 12C pins. If no configuration or EEPROM is found via I°C, it will check Serial Flash (SFLASH) for a valid
configuration via SPI.

b. The boot ROM calculates the checksum of the first 11 bytes of the Static Section (SS) of the non-volatile
memory. If the checksum fails, it will increment through certain locations in memory until it finds a valid SS to
use. If it does not find one, it will only boot from ROM. The first three bytes of the SS in use should always
be 0x01 0x00 0x08. The mini-driver contained in the WICED SMART SDK will ensure that the SS section of
the non-volatile memory contains the correct information.

w

The chipset then proceeds to either application mode or programming (HCI) mode depending first on the state of
the HCI_UART RX pin, and secondarily on whether a valid configuration was found in the previous step:

a. If HCI_UART RX is asserted, the chipset will boot into programming (HCI) mode regardless of whether a
valid configuration was found in nonvolatile memory.

b. If HCI_UART RX is not asserted and a valid configuration is found in either memory location, the Boot ROM
will continue to load the rest of the configuration, patch data, and user application code from the external
non-volatile memory.

c. If HCI_UART RX is not asserted and no valid configuration was found, the Boot ROM will stop executing
further instructions.

To ensure that you have placed the module into the correct mode for programming, press the SW2 RESET button on
the evaluation board after adjusting the DIP switch positions and/or external UART connection as described in the
previous section.

7.5.3 Compiling and Downloading into the Module
Now that you have completed the code updates and prepared the programming interface, all that remains is to

compile and flash the firmware image into the target device. To do this, simply double-click on the make target that
you defined previously (find_me-CYBLE_013025_EVAL download).

After a brief compile process, the Console output in the WICED SMART IDE should indicate success, as shown in
Figure 26.

Figure 26. Programming the Firmware

&l Conscle &3 {j"_ Problems 4% Tasks [Properties L4 <===:'>| B @A ||| gl = S A |
COT Build Console [WICED-5mart-5DK]

. . -
Detecting device...

Device found

Downloading application...

Download complete

Application running

10:35:50 Build Finished (took £=.968ms=)
If you do not see this success message, ensure that you have correctly connected and configured the programming

interface from the host as described in the previous sections, and try downloading again. If it continues to fail, refer to
the recovery steps outlined below.

WWW.Cypress.com Document No. 002-20929 Rev. ** 39

http://www.cypress.com/

o CYPRESS

-

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

7.5.4

Performing a Recovery Procedure

In some cases, the normal firmware download procedure does not succeed even though all connections and
switches are correct. This may happen as a result of SFLASH corruption due to incorrect application design, or
attempting to load too-large of a firmware image (application size should not exceed ~26 KB), or power loss during a
normal firmware download process. If this happens, you may need to recover the device. To do this:

1. Copy and paste the original make target to a new entry.

2. Name the new target the same, but replace 'download" with 'recover’ and add UART=COMxx as an additional
argument. The COMxx value should be the host serial port that is connected to the HClI UART programming
interface on the module. The final make target name should be similar to this:

find me-CYBLE 013025 EVAL recover UART=COM17

w

Press and hold the Recover button on the evaluation board, and press and release the Reset button. Release
the Recover button after a moment. This will cause the module to boot into a recovery mode.

4. Double-click on the new make target to perform a recovery download. The application should now boot properly.

7.6 Part 4: Test Your Design
This section describes how to test your BLE design using the CySmart mobile apps and PC tool. The setup for testing
your design using the EZ-BLE WICED evaluation board is shown in Figure 13.
1. Turn ON Bluetooth on your iOS or Android device.
2. Launch the CySmart app. Press the reset switch on the EZ-BLE WICED evaluation board to start BLE
advertisements from your design.
3. Pull down the CySmart app home screen to start scanning for BLE Peripherals. Your device name will now
appear in the CySmart app home screen. Select your device to establish a BLE connection.
4. Select the Find Me Profile from the carousel view.
5. Select one of the Alert Level values on the Find Me Profile screen and observe the state of the LED on your
EZ-BLE WICED evaluation board change based on your selection.
A step-by-step configuration screenshot of the CySmart mobile app is shown in Figure 27 and Figure 28.
Figure 27. Testing with CySmart iOS App
No Service & 8:27 pm b 28% M4 No Service & 8:27 pm } 28% 024
Pull down to refresh...
find_me RSSI
1 Service Advertised -71 dBm

Find Me

Find Me

Select your
device

©§

T No Alert
Select Find Me Mid Alert
Profile
High Alert
|7 =
Cancel
WWW.Cypress.com Document No. 002-20929 Rev. ** 40

http://www.cypress.com/

AR,

ws CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 28. Testing with CySmart Android App

LA VIl EAE]

= BLE Devices <

Pull down to refresh...

find_me RSSI: '
- Find Me Mid Alert

20:73:TAN5IAAI1E -52

T

Select your
device

30 o4 @817 3ok VI KAk
Q = Services < . < B8
Immediate Alert Select 4
No Alert

High Alert

l Find Me | T—
n 0‘ [Seleth thelAIert

Select Find Me
Profile

Similar to the CySmart mobile app, you can also use the CySmart Host Emulation Tool on a PC to establish a BLE
connection with your design and perform read or write operations on BLE Characteristics. This method requires the

CY5677 kit.

1. Connect the BLE dongle to your Windows machine. Wait for the driver installation to complete.

2. Launch the CySmart Host Emulation Tool; it automatically detects the BLE Dongle. Click Refresh if the BLE
Dongle does not appear in the Select BLE Dongle Target pop-up window. Click Connect, as shown in Figure

29.

Figure 29. CySmart BLE Dongle Selection

Select BLE Dongle Target X
=+ Supported targets Details
Manufacturer: Cypress Semiconductor
Unsupported targets Product: Cy'Smart BLE 4.1 USE Dongle
Firmware version: 12124
Hardware version: 1.0.0.0

Description:
CySmart BLE dongle

Show all ~

Refresh | Connect | Close

3. Select Configure Master Settings and restore the values to the default settings, as shown in Figure 30.

Www.Cypress.com

Document No. 002-20929 Rev. ** 41

http://www.cypress.com/
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool

A
s

CYPRESS

~»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules
Figure 30. CySmart Master Settings Configuration
&= CySmart 1.2
Eile Tools Help
ﬂ' Select Dongle | g Configure Ma;terSettingsl‘thanage PSMs 6 Disconnect
Master
taSca Master Configuration
Device [=)- Settings E Device
[=)- Master Configuration Device 10 Capabilties Keyboard and Display
B Local Bluetooth Device Address
Fublic Address x00A050010C18
Random Address Type Static Random
Random Address OxFF4922190091
Idertity address Public
Device 10 Capabilities
Local device |0 capabilities
<
4. Press the reset switch on the EZ-BLE WICED Evaluation board to start BLE advertisements from your design.
Note that the HCI UART must not be connected when you reset or power on the board, or else the module will
boot into programming mode instead of application mode. To accomplish this, set positions 5 and 6 of SW1 to
the OFF position. For information on all DIP switch settings, see Table 11 in Appendix C (EZ-BLE WICED
Evaluation Board Details).
5. On the CySmart Host Emulation Tool, click Start Scan. Your device name should appear in the Discovered

devices list, as shown in Figure 31..

Figure 31. CySmart Device Discovery

B CySmart 1.2 = CySmart 12
Eile

E) Select Dongle ®g Configure Master Settings

Tools Help File Tools Help

B‘ Select Dongle ®@& Configure Master Settings & Manage PSMs 6 Disconnect

Master
'Discovered devices

& Connect 3 Add to Whitelist

Device Bluetooth Address

Master
@ Stop Scan & Connect EAdd to Whitelist n Update Firmware

Device Connected

1 |ﬂnd_me

Bluetooth Address Address Type RSSI
|20737415:A816 |Public |-52dBm |Connectable undirected

Advertisement Type

6. Select your device and click Connect to establish a BLE connection between the CySmart Host Emulation Tool
and your device, as shown in Figure 32.

Figure 32. CySmart Device Connection

Eile Tools

Master

Device

1 Hfind_me

B CySmart 1.2

Help
a‘ Select Dongle @ Configure Master Settings & Manage PSMs 6 Disconnect

@ Stop Scan E Add to Whitelist n Update Firmware

Bluetooth Address Address Type RSSI Connected

AA16 Public

Advertisement Type

-52dBm Coi

7. Once connected, discover all the Attributes on your design from the CySmart Host Emulation Tool, as shown in

Figure 33.

Www.Ccypress.com

Document No. 002-20929 Rev. ** 42

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

7.7

8.1

Figure 33. CySmart Attribute Discovery

B CySmart1.2
File Tools Help

B‘ Select Dongle % Configure Master Settings “$¢ Manage PSMs ﬁ Disconnect
Master find_me [20:73:7A:15:AA:16]

Aitributes
@D\scuverAllAttributesl ‘,’Pair Enable All Notifications Disable All Motific
Handle uuiD UUID Description Value

8. Write a value of 0, 1, or 2 to the Alert Level Characteristic under the Immediate Alert Service, as Figure 34
shows. Observe the state of the LED on your device change per your Alert Level Characteristic configuration.

Figure 34. Testing with CySmart Host Emulation Tool

= CySmart 1.2 - O x
File Tools Help

‘ Select Dongle #@ Configure Master Settings ‘X’ Manage P5SMs ﬁ Disconnect
Master find_me [20.73:7A:15:AA:16]

Agtributes Agtribute: Details — Send Commands
(B Discover All Attributes | ¥ Pair | [Enable All Notifications [E) Disable All Notifications View: | Category [- T B0102
Handle uuID UUID Description Value Properties uui: 2706

UUID Description: Alert Level

Value:

2

B Primary Service Declaration: Generic Access
= 0001 2800 ‘ Primary Service Declaration | 00:18 {Generic Access)

FI- Charactenistic Declaration: Device Name:

B 10002 2803 Characteristic Declaration | 02:03:00:00:2A
b (0003 | (e2ADD Device Name 02
5} Craracteristic Dedlaration: Aupearance Read Value ™ | | Wiite Value Without Response’ ™
Ié <0004 2803 Characteristic Declarstion | 02:05:00:01:24 Properties Enabled ~
= D005 | B2ADT Appearance (02 Broadcast
[+ Primary Service Declaration: Generic Attribute Read
Pl Q<0006 |MBDD ‘ Primary Service Declaration | 01:18 {Generic Attribute) | Wiite without response
[=}- Primary Service Declaration: Immediate Alert Wite
5 oD |pcaon | Prmary Servies Deciaration 0218 (mmediate Aler) | oty
[=}- Characteristic Declaration: Alert Level Indicate
[=- (0101 2803 Characteristic Declaration | 04:02:01:06:2A Authenticated signed wrtes
0102 B2ADG Alert Level Extended properties v

Design Source

The functional WICED SMART SDK project for the BLE example design described in this application note is
distributed on this application note’s web page.

Module Placement and Enclosure Considerations

EZ-BLE WICED Modules are designed to be soldered to a host PCB to provide seamless BLE connectivity. To
maximize the RF performance of the final product, care needs to be taken on the placement of the module and
antenna. This section describes in detail the recommended placement of the module on a host board to ensure
optimal RF performance. This section also details the effect of metallic or nonmetallic enclosure and metal
obstructions near the module.

Antenna Ground Clearance

A monopole antenna requires that no ground plane is present below the antenna. The ground plane below it will not
allow the field to propagate. This is defined as the Ground Clearance requirement. However, after some distance, a
ground must be present for a monopole antenna. Defining this region is a very significant step for any antenna
design. The Ground Clearance region defines the bandwidth and efficiency of the antenna.

Each specific EZ-BLE WICED Module marketing part number specifies the Ground Clearance used for the design of
the module, and offers recommended additional ground keep-out area to maximize the RF performance. The
examples below reference the CYBLE-013025-00 module specifically. For details on other modules, see the specific
module datasheet.

WWW.Cypress.com Document No. 002-20929 Rev. ** 43

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

The example below references a PCB trace antenna implementation (shown in the green hatched area), but the
same rules and properties apply for chip antennas used on other Cypress EZ-BLE Modules. The specific PCB trace
antenna shown in Figure 35 requires a Ground Clearance area of 4.62 mm x 14.52 mm. To maximize the RF
performance, an additional 4 mm of ground clearance is recommended. This is denoted in the blue hatched area.
This additional ground clearance is not required, but may improve the RF performance if implemented.

Figure 35. Antenna Clearance

1852
-4.00

-4.00

€000, 0.0

4.62

13.20

In Figure 35, the PCB trace antenna is placed at the edge of the module. The green area in Figure 35 does not have
any ground on any layer. The module placement in a host board needs to ensure that no traces or ground layers of
the host board comes within this region. Any ground plane below a monopole antenna degrades the radiation and
adversely affects the RF efficiency.

8.2 Module Placement in a Host System

The EZ-BLE Module is soldered to a host board and a clearance must be provided for the antenna where no routing
or ground is allowed on any layer. Placing the module at the edge of the host board is recommended because it
provides the best RF performance and simplifies the requirement of not routing signal or ground traces under the
antenna Ground Clearance region. Figure 36 shows four placement options on a host board, with option 1 being the
most efficient.

WWW.Cypress.com Document No. 002-20929 Rev. ** 44

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™

Getting Started with EZ-BLE WICED Modules

Ground Clearance
Region

Figure 36. Module Placement in a Host Board

4 mm

7

J
/

Shield Clearance Region

8.3

8.3.1

outside of module

Figure 36 shows an example of four positions of the module in a host board, “1”7, “2”, “3”, and “4”. The white area
shown around the module is the additional clearance area. For the antenna in question, it is recommended to provide
a clearance area of 4 mm in each direction. For details on the recommended clearance area for your EZ-BLE
Module, see the specific module datasheet.

As can be seen in Figure 36, when placing the module at the edge (placement options “1” or “3”) of the host board,
the additional clearance area is only required facing inwards towards the center of the main board. In all cases, there
must be no possibility of signal or ground traces to be beneath the antenna Ground Clearance region. Conversely, if
the module is placed in the middle (placement option “2”) of the host board, the clearance area must be provided in
order to achieve an optimal RF performance.

Placement option “1” or “3” are the best options shown in Figure 36, because it removes the need to reroute signal or
ground traces away from the Ground Clearance region of the module (because no GPIO are located at the top left or
right corner of the module). Furthermore, it minimizes additional clearance area if optimal RF performance is desired,
because the antenna faces outward with the antenna exposed to open space.

In placement option “4”, although the module is placed at the edge of the host board, the antenna is not exposed to
the maximum amount of free space.

Placement option “2” not only wastes PCB real estate, but also provides diminished RF performance compared to
position “1” and “3”.

Enclosure Effects on Antenna Performance

Antennas used in consumer products are sensitive to the PCB RF ground size, the product’s plastic casing, and
metallic enclosures. This section describes the effect of each of these environmental factors on RF performance.
Antenna Near-Field and Far-Field

Every antenna contains two regions surrounding it: 1) the near-field and 2) the far-field.

The near-field is the region where the radiated field has not yet formed. In this region, the electric and magnetic fields
are not orthogonal to each other. This region is very close to the antenna. The near-field region has two regions: the

reactive near-field region and the radiating near-field region. The transition to a far-field region happens in the
radiating near-field region.

WWW.Cypress.com Document No. 002-20929 Rev. ** 45

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

The radiation field is formed after the transition to the far-field region. In this region, the relative angular variation of
the field does not depend on the distance. This means that if you plot the angular radiation field at a distance from the
antenna in the far-field region, their shapes remain the same. Only with distance, the field strength decreases.
However, the shape of the radiation pattern remains the same with respect to the angular variation. This region is
called the far-field region. An object in the far field does not affect the radiation pattern much. However, any
obstruction in the near-field can completely change the radiation pattern. If the obstruction is metal, the effect on the
radiation pattern is much more pronounced. Figure 37 shows the regions for a dipole antenna.

Figure 37. Near and Far Field

ar Field Region

Dipole Antenna
With length D

Reactive Near Field - . .
Region — - Eadianng Near Field
Region

For a module based on a 2.4-GHz chip antenna, the near-field extends up to 4 mm.
8.3.2 Effect of Nonmetallic Enclosure

Any plastic enclosure changes the resonating frequency of the antenna. The antenna can be modeled as an LC
resonator whose resonant frequency decreases when either L (inductance) or C (capacitance) increases. A larger RF
ground plane and plastic casing increase the effective capacitance and thus reduce the resonant frequency. See the
application note AN91445 for more details on the effect of an enclosure.

Figure 38 details a module antenna in a plastic enclosure. The clearance from the antenna to the plastic enclosure
can be as little as 2 mm. However, clearance of this amount can affect the tuning of the antenna. This can be
resolved by retuning the antenna; however for a module solution, it is not recommended to attempt retuning of the
antenna. To minimize effects on the module antenna, it is recommended to have a minimum clearance of 5 mm.

Figure 38. EZ-BLE WICED Module Inside of a Plastic Mouse Enclosure

5mm

j

8.3.3 Effect of Metallic Objects

An antenna is sensitive to the presence of metallic objects in its vicinity. A metallic object shorts the electric field and
thus changes the radiation field. Depending on the size of the obstruction, electromagnetic waves go through different
diffraction patterns or may be completely shielded by the metallic object.

WWW.Cypress.com Document No. 002-20929 Rev. ** 46

http://www.cypress.com/
http://www.cypress.com/?rid=102512

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Metallic objects in the near-field can have a drastic impact on the radiation pattern. The thickness of the
CYBLE-013025-00 module is 2.25 mm (including the shield) and the near field of this module extends up to 4 mm
from the antenna. Therefore, it is recommended that any metallic obstruction be at least 6.2 mm away from the PCB
plane to avoid negative effects to the RF performance. Cypress recommends an 8-mm gap from the module PCB
plane to any metallic enclosure. Figure 39 details the required clearance from the EZ-BLE WICED Module to small
metal obstructions.

Figure 39. Clearance from Small Metal Obstructions

/

ﬁ

8.3.4 Recommendations for Placement over a Large Metal Plane
The other effect of metal is the formation of an image antenna. The best practice in this case is to orient the metal
orthogonal to the antenna to ensure minimum effects. If the length or width of the plane approaches the size of the
module, it is considered a large metal object near the antenna. Figure 40 details two placement options for this
scenario. Of these two placement options, option “1” should be avoided.

|
|
|
!
Module :
i
|
|

8 mm

It is recommended to not have any large metallic objects parallel to the antenna. This has a drastic effect because the
image antenna is of opposite polarity. The interference caused by such an antenna is destructive to RF radiation.

If it is not possible to avoid a large metallic object running parallel to the module plane, you should maintain a
distance (h) of at least 30 mm. This will ensure that the interference caused by the image antenna will not be
completely destructive. The radiation will be strongly directional below the 30-mm distance; the efficiency will
dramatically drop at a distance (h) below 8 mm. At a distance (h) of around 2 mm, the radiation efficiency can go
below 20%.

Figure 40. Clearance from a Large Metal Plane
(1) 2)

— Module
———

< Conducting plate

8.4 Guidelines for Enclosures and Ground Plane
Use the following best practices with respect to enclosure design and ground planes:

m Ensure that there is no component, mounting screw or ground plane near the tip or the length of the antenna
located on the EZ-BLE WICED Module.

m Ensure that no battery cable, microphone cable, or trace crosses the antenna trace on the PCB.

® Ensure that the antenna is not completely covered by a metallic enclosure. If the product has a metallic casing or
shield, the casing should not cover the antenna. No metal is allowed in the antenna near the field.

WWW.Cypress.com Document No. 002-20929 Rev. ** 47

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

m Ensure that paint on plastic enclosures is nonmetallic near the antenna.

m Ensure that the orientation of the antenna is in-line with the final product orientation (if possible) so that radiation
is maximized in the desired direction. The polarization and position of the receive antenna should be taken into
account so that the module can be oriented to maximize the radiation.

m Ensure that there is no ground directly below the antenna Ground Clearance region of the module.

WWW.Cypress.com Document No. 002-20929 Rev. ** 48

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

9.2

Manufacturing with EZ-BLE WICED Modules

EZ-BLE WICED Modules are intended to be used with traditional Surface Mount Technology (SMT) manufacturing
lines and are compatible with industry-standard reflow profiles for Ph-free solders.

SMT Manufacturing Pick-and-Place

The modules should be picked up from the topside of the module using industry-standard pick-and-place machinery
and nozzles. The ideal location for picking up the module is on the shield area of the module. For the optimal location
for your EZ-BLE WICED Module, see the module’s datasheet.

Each module MPN has a unique center-of-mass detailed in each product’s datasheet. This center-of-mass is the area
that represents the optimal location to pick up the unit with the nozzle. Using the center-of-mass guidelines for the
pick-and-place location minimizes SMT line disturbances caused by units releasing prematurely from the nozzle.

Figure 41 shows an image of a nozzle used by Cypress for manufacturing the CYBLE-013025-EVAL Evaluation
Board product. See the center-of-mass dimensions in each module’s datasheet to select an appropriate nozzle for
your manufacturing line equipment.

Figure 41. Nozzle Used by Cypress for Evaluation Board Production

Figure 42 shows an image of a Cypress EZ-BLE Module being picked up at the center-of-mass by the nozzle
referenced above.

Figure 42. Image of Nozzle Used by Cypress for Evaluation Board Production

Manufacturing Solder Reflow
EZ-BLE WICED Modules are compatible with industry-standard reflow profiles for Pb-free solder. Table 6 details the
solder reflow specifications for all modules.

Table 6. EZ-BLE WICED Module Solder Reflow Specification

Module Package Maximum Peak Temperature Time at Maximum Temperature

All Packages 260 °C 30 seconds

WWW.Cypress.com Document No. 002-20929 Rev. ** 49

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

10 Summary

This application note explores the EZ-BLE WICED Module solutions, architectures, development tools, host board
placement and orientation, and production manufacturing. EZ-BLE WICED Modules are fully integrated BLE solutions
that allow rapid development and production release for customer applications. The core of the EZ-BLE WICED
Modules is the Cypress WICED Bluetooth Smart ICs, integrating the Bluetooth radio, analog and digital peripheral
functions, memory, and an ARM Cortex-M3 microcontroller. The Cypress EZ-BLE Module family provides multiple
module options to service the needs of any customer application.

11 Related Application Notes

m AN91445 — Antenna Design Guide
® AN96841 — Getting Started With EZ-BLE Creator Modules

About the Author
Name: David Solda (DSO)

Title: Senior Business Unit Director

Background: David Solda has a BS in Computer/Electrical Engineering, a BS in Mathematics, and an MBA from
Santa Clara University, California.

WWW.Cypress.com Document No. 002-20929 Rev. ** 50

http://www.cypress.com/
http://www.cypress.com/go/AN91445
http://www.cypress.com/documentation/application-notes/an96841-getting-started-ez-ble-module

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Appendix A. Cypress Terms of Art

This section lists the most commonly used terms that you might hear while working with Cypress’s PSoC family of
devices.

PSoC — PSoC is a programmable, embedded design platform that includes a CPU, such as the 32-bit ARM Cortex-
MO, with both analog and digital programmable blocks. It accelerates embedded system design with reliable, easy-to-
use solutions, such as touch sensing and enables low-power designs.

PRoC BLE — PRoC BLE is a 32-bit, 48-MHz ARM Cortex-M0 BLE solution with CapSense, 12-bit ADC, four timers,
counters, pulse-width modulators (TCPWM), thirty-six GPIOs, two serial communication blocks (SCBs), LCD, and
I12S. PRoC BLE includes a royalty-free BLE stack compatible with Bluetooth 4.1 and provides a complete,
programmable, and flexible solution for HID, remote controls, toys, beacons, and wireless chargers. In addition to
these applications, PRoC BLE provides a simple, low-cost way to add BLE connectivity to any system.

PSoC 4 BLE — A PSoC 4 IC with an integrated BLE radio that includes a royalty-free BLE protocol stack compatible
with the Bluetooth 4.1 or 4.2 specifications.

EZ-BLE" PRoC Module (EZ-BLE PRoC) — EZ-BLE PRoC Module is a fully integrated, fully certified, 10 mm x 10
mm x 1.8 mm, programmable, Bluetooth Smart or Bluetooth Low Energy (BLE) module designed for ease-of-use and
reducing time-to-market. It contains Cypress’s PRoC BLE chip, two crystals, chip antenna, shield and passive
components. EZ-BLE PRoC Module provides a simple and low cost way to add a microcontroller, CapSense touch
controller and Bluetooth Smart connectivity to any system.

EZ-BLE" PSoC Module (EZ-BLE PSoC) — An integrated, easy-to-use, fully certified Bluetooth Smart module
designed to reduce time-to-market and development cost. Contains PSoC 4 BLE, two crystals, an antenna and
passive components.

EZ-BLE™ WICED Module (EZ-BLE WICED) - EZ-BLE WICED Modules are fully integrated, fully certified, Bluetooth
Smart or Bluetooth Low Energy (BLE) module designed for ease-of-use and reducing time-to-market. It contains
Cypress’s WICED BLE chip, one crystal, PCB trace antenna, shield and passive components. EZ-BLE WICED
Module provides a simple and low cost way to add a microcontroller and Bluetooth Smart connectivity to any system.

EZ-BT™ WICED Modules (EZ-BT WICED) - EZ-BT WICED Modules are fully integrated, fully certified, Bluetooth
Smart Ready (Bluetooth Basic Rate, Enhanced Data Rate, and Bluetooth Low-Energy) modules designed for ease-
of-use and reducing time-to-market. They contain Cypress’ WICED dual-mode chip, one crystal, PCB trace antenna,
shield and passive components. EZ-BT WICED Modules provide a simple and low-cost way to add a microcontroller
and Bluetooth Smart Ready connectivity to any system.

PSoC Creator’ — PSoC 3, PSoC 4, and PSoC 5LP Integrated Design Environment (IDE) software that installs on
your PC and allows concurrent hardware and firmware design of PSoC systems, or hardware design followed by
export to other popular IDEs.

WICED SMART SDK — Cypress' WICED (Wireless Connectivity for Embedded Devices) is a full-featured platform
with proven Software Development Kits (SDKs) and turnkey hardware solutions from partners to readily enable Wi-Fi
and Bluetooth connectivity in system design.

WWW.Cypress.com Document No. 002-20929 Rev. ** 51

http://www.cypress.com/
http://www.cypress.com/go/psoc
http://www.cypress.com/go/PRoC%20BLE
http://www.cypress.com/go/psoc4ble
http://www.cypress.com/ez-blemodule/
http://www.cypress.com/ez-blemodule/
http://www.cypress.com/documentation/datasheets/cyble-0130xx-00-ez-ble-wiced-module
http://www.cypress.com/documentation/datasheets/cyble-0130xx-00-ez-ble-wiced-module
http://www.cypress.com/go/creator
http://www.cypress.com/products/wiced-software

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Appendix B. EZ-BLE WICED Module Product Details

The information contained for each module part number includes the following:

m Physical image for each EZ-BLE WICED Module marketing part number

® Pinout and functionality for each EZ-BLE WICED Module marketing part number

m Recommended host PCB layout footprint for each EZ-BLE WICED Module marketing part number

m Recommended additional clearance area for each EZ-BLE WICED Module marketing part number

To jump to your specific EZ-BLE WICED Module, click the marketing part number in the below list:

m CYBLE-0130XX-00

WWW.Cypress.com Document No. 002-20929 Rev. ** 52

http://www.cypress.com/

o CYPRESS

~a” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

B.1 EZ-BLE WICED Part Number Details

B.1.1 CYBLE-0130XX-00
The CYBLE-0130XX-00 is available in two marketing part numbers: CYBLE-013025-00 (includes 128 KB of
SFLASH) and the CYBLE-013030-00 (which does not contain nonvolatile memory on the module). Figure 43 shows a
physical picture of the CYBLE-0130XX-00 EZ-BLE WICED Module.

Figure 43. CYBLE-0130XX-00 Module Top View

19.2 mm

) 14.5 !

For more details on this module’s dimensions, external component connections, and module placement
recommendations, see the CYBLE-0130XX-00 datasheet specification.

B.1.1.1 Pinout and Functionality
The CYBLE-0130XX-00 module is designed to mount as a component on an end-product PCB. Only a portion of the
available 1/0 of the CYW20737 WICED BLE silicon device is exposed on the CYBLE-0130XX-00 module in order to
minimize the module footprint size. The CYBLE-0130XX-00 module contains 31 connections on the bottom side of
the module. Figure 44 details the bottom side connections available on the CYBLE-0130XX-00 module.

WWW.Cypress.com Document No. 002-20929 Rev. ** 53

http://www.cypress.com/
http://www.cypress.com/documentation/datasheets/cyble-0130xx-00-ez-ble-wiced-module

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 44. CYBLE-0130XX-00 Module Bottom View (Seen from Bottom)

21 1=z

| = uy

P
P

=
e 2
UOF EX
GND
END Pla
END 12/P26
END
NC
N
31 1

WWW.Cypress.com Document No. 002-20929 Rev. ** 54

http://www.cypress.com/

AR,

ws CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with EZ-BLE WICED Modules

A list of the available I/Os and supported functionality for each 1/0 of the CYBLE-013025-00 is shown in Table 7.

Table 7. CYBLE-013025-00 Module Available Connections and Functionality

Functionalit
Solder |Pad/Silicon v
Pad | PinName | ,\pt spi* 12 | ADC | PWM |CLKIXTAL |GPIO| OTHER
1 XRES External Reset (Active Low)
GND/NC Ground Connection/No Connect
3 GND/NC Ground Connection/No Connect
. SPI2_MOSI Yes | pwm1 | XTALI32K
4 | PYP27 (P27) (P11 Po7 o Yes
(master/slave) only) (P27) (P11)
SPI2_CS (P26) Yes | pwMo | XTALO32K
5 | P12/P26™ — (P12 Yes
(slave) only) (P26) (P12)
6 P15 Yes Yes | SWDIO
SPI2_MOSI
v PWM2
7 | P14/P38Y (P38) Yes Yes
(P14)
(master/slave)
PWM3
8 | P13/P28* Yes (P13) Yes
PWM2
(P28)
9 P24 PUART_TX SPI2_CLK Yes
(master/slave)
10 NC No Connect
11 NC No Connect
12 P25 PUART_RX SPI2_MISO Yes
- (master/slave)
P12_MOSI
13 P4 PUART_RX SPI2_MOS Yes
- (master/slave)
SPI2_MOSI
14 P2 PUART Rx | (masten/ Yes
- SPI2_CS
(slave)
15 VDD Power Supply Input (2.3 V ~ 3.63 V)
16 P3 PUART_CTS SPI2_CLK Yes
- (master/slave)
17 P8/P33" No Connect (Used for on-module memory SPI Interface for CYBLE-013025-00)
18 P32 No Connect (Used for on-module memory SPI Interface for CYBLE-013025-00)
19 P1 PUART_RTS SPI2_MISO Yes Yes
(master/slave)

* The CYBLE-013025-00 contains a single SPI (SPI2) peripheral supporting both master and slave configurations. SPI1 is used for
on-module serial memory interface.

® This chip pin for this connection is dual-bonded. Use of the internal chip super-mux is required to configure the desired output
signal on these connections.

Www.Cypress.com

Document No. 002-20929 Rev. **

55

http://www.cypress.com/

A
s

CYPRESS

EMBEDDED IN TOMORROW ™ Getting Started with EZ-BLE WICED Modules
Solder |Pad/Silicon Functionality

Pad | PinName | gy SPI* I2c | ADC | PWM |CLK/XTAL [GPIO| OTHER

20 PO PUART_TX (ri:slf;”;/slijlz) Yes Yes

21 SDA 12C_SDA Yes

22 SCL 12C_SCL Yes

23 UP_TX UART_TX

24 UP_RX | UART_RX

25 GND Ground Connection

26 GND Ground Connection

27 GND Ground Connection

28 GND Ground Connection

29 NC No Connect

30 NC No Connect

31 NC No Connect

Table 8 details the available I/Os and supported functionality for each 1/O of the CYBLE-013030-00 module. NOTE
that the only difference between the CYBLE-013025-00 (128 KB SFLASH) and the CYBLE-013030-00 (No Flash) is
the amount of flash on-board the module. This fact also allows for the SPI1 connection to exist on the CYBLE-
013030-00 module.

Table 8. CYBLE-013030-00 Module Available Connections and Functionality

Functionality

Solder | Pad/Silicon
e L e T SPI° 12C ADC PWM | CLK/XTAL | GPIO | OTHER
1 XRES External Reset (Active Low)
GND/NC Ground Connection/No Connect
3 GND/NC Ground Connection/No Connect
4 P11/P27" SPI2_MOSI (P27) Yes PWM1 XTALIB2K |
(master/slave) (P11 only) (P27) (P11)
A sp|1ﬁ1|v:§g)(|:26, Yes PWMO | XTALOS2K | .
SPI2_CS (P26, slave) (P12only) | (P26) (P12)
6 P15 Yes Yes SWDIO
. p14/P38Y SPI2_MOSI (P38) Ves PWM2 Ves
(master/slave) (P14)
1 PWM3 (P13)
8 P13/P28 Yes PWM2 (P28) Yes
SPI1_MISO (master)
9 P24 PUART_TX SPI2_CLK (master/slave) Yes
10 NC No Connect
11 NC No Connect

® The CYBLE-013030-00 contains a two SPI peripherals (SPI1 and SPI2). SPI2 supports both master and slave configurations.

SPI1 supports only master configuration.

interface used to the memory.

If external SPI memory is used with the CYBLE-013030-00 module, SPI1 must be the

" This chip pin for this connection is dual-bonded. Use of the internal chip super-mux is required to configure the desired output
signal on these connections.

WWW.Cypress.com

Document No. 002-20929 Rev. **

56

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Solder | PadiSilicon FUmEHEnEiy
e | B MEme UART SPI® 12C ADC PWM CLK/XTAL | GPIO | OTHER
12 P25 PUART_RX SPI2_MISO Yes
(master/slave)
SPI2_MOSI
13 P4 PUART_RX - Yes
(master/slave)
SPI2_MOSI (master) /
14 P2 PUART_RX Iy Y
- SPI2_CS (slave) es
15 VDD Power Supply Input (2.3 V ~ 3.63 V)
16 P3 PUART_CTS SPI2_CLK Yes
(master/slave)
PUART_RX | SPI2_MOSI (P33, slave) ACLK1
17 ps/P33" = — Yes Yes
(P33) SPI1_CS (P33, master) (P33)
SPI1_MISO (slave)
1 P32 PUART_TX — Y ACLK Y
8 3 v - SPI1_CS (slave) es CLKO es
19 P1 PUART_RTS SPI2_MISO Yes Yes
(master/slave)
20 PO PUART_TX SPI2_MOsI Yes Yes
(master/slave)
21 SDA SPI1_MOSI (master) 12C_SDA Yes
22 SCL SPI1_CLK (master) 12C_SCL Yes
23 UP_TX UART_TX
24 UP_RX UART_RX
25 GND Ground Connection
26 GND Ground Connection
27 GND Ground Connection
28 GND Ground Connection
29 NC No Connect
30 NC No Connect
31 NC No Connect

WWW.Cypress.com Document No. 002-20929 Rev. ** 57

http://www.cypress.com/

A
s

-

CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

B.1.1.2 Host Recommended PCB Layout

To assist in the host PCB layout design for the CYBLE-0130XX-00, Cypress provides three host PCB landing pattern
reference drawings in Figure 45, Figure 46, and in Figure 47, and Table 9. Figure 45 provides a dimensioned view of
the host PCB layout. Figure 46 provides the location to the center edge of each solder pad relative to the origin of the
module (upper right PCB outline). Figure 47 and Table 9 provides the location to each solder pad center location for
the host PCB layout. Dimensions shown are in mm unless otherwise stated.

Figure 45. Host Board Required PCB Layout Pattern (Dimensioned View)

14.5¢2

4, 85—

-

OoO0ooooOn

19.20
— [=—0.71
HINENNNEE

(-

ol

Mo

I
[
[
I
]
I
]
[
[

4,88 -w=

I
]
]
I

e
on—
]

]
I

ol

[~
o
—

TYP.0.25

—]

0

|

oL O

=—c 04

Note: Pad length shown includes overhang of the host pad beyond the module pad outline. The minimum

recommended pad length on the host PCB is 1.27 mm.

WWW.Cypress.com Document No. 002-20929 Rev. **

58

http://www.cypress.com/

o CYPRESS

g EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 46. Host Board Required PCB Layout Pattern: To Pad Center Edge Relative to Origin

g
)
0,00
TYP.0,25—n{fa—
488—51] | —T
615 1] ——615
7.42——] - Ch—7.42
2.69 1 o [Cl——869
9,96] Yy C—99
11,23 i Cl——11.23
12,50 i] ——12.50
13.77 i | 1377
15,04 i f] ——15.04
16.31—=7 [R et
E]TI?.SS
L (9,20
L]]S
nl MM~ = M g 0d g oo <
N o —0mnMaoc
S0 S o™y M

WWW.Cypress.com Document No. 002-20929 Rev. ** 59

http://www.cypress.com/

o CYPRESS

- EMBEDDED IN TOMORROW™

Getting Started with EZ-BLE WICED Modules

Figure 47. Host Board Required PCB Layout Pattern

To Pad Center Relative to Origin

Table 9. Location to Pad Center from Origin
(dimensions in mm and mils)

(14,52, E[#}]IJEI\F\I Solder Pad Locati_or} (X,Y) from Locati_or_1 (X,Y) from
(Center of Pad) Origin (mm) Origin (mils)
1 (0.39, 4.88) (15.35, 192.13)
PAD31 o PADI 2 (0.39, 6.15) (15.35, 242.13)
E__' DETAIL 3 (0.39, 7.42) (15.35, 292.13)
] 4 (0.39, 8.69) (15.35, 342.13)
g 5 (0.39, 9.96) (15.35, 392.13)
o 6 (0.39, 11.23) (15.35, 442.13)
% 7 (0.39, 12.50) (15.35, 492.13)
PADE2 i - 8 (0.39, 13.77) (15.35, 542.13)
152155 QEOHOEEE DY 105 9 (0.39, 15.04) (15.35, 592.13)
10 (0.39, 16.31) (15.35, 642.13)
a @ 11 (0.39, 17.58) (15.35, 492.13)
2 z 12 (2.04, 18.82) (80.31, 740.94)
Top View (Seen on Host PCB) 13 (3.31,18.82) (130.31, 740.94)
o — 14 (4.58,18.82) (180.31, 740.94)
DETAIL A 15 (5.85, 18.82) (230.31, 740.94)
?EEFE[ET'}J;ER 16 (7.12,18.82) (280.31, 740.94)
_ ; 17 (8.39,18.82) (330.31, 740.94)
|' |‘ L 18 (9.66 , 18.82) (380.31, 740.94)
| “‘“_/ = - ohD CenTeR 19 (10.93, 18.82) (430.31, 740.94)
e S / 20 (12.20, 18.82) (480.31 , 740.94)
- o - 21 (13.47, 18.82) (530.31, 740.94)
22 (14.14, 16.31) (556.69, 642.12)
- 23 (14.14, 15.04) (556.69, 592.12)
24 (14.14, 13.77) (556.69, 542.12)
25 (14.14, 12.50) (556.69, 492.12)
26 (14.14, 11.23) (556.69, 442.12)
27 (14.14, 9.96) (556.69, 392.12)
28 (14.14, 8.69) (556.69, 342.12)
29 (14.14, 7.42) (556.69, 292.12)
30 (14.14, 6.15) (556.69, 242.12)
31 (14.14, 4.88) (556.69, 192.12)

Www.Cypress.com

Document No. 002-20929 Rev. **

60

http://www.cypress.com/

o CYPRESS

g EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Figure 48 below details additional host board keep out area to achieve optimal RF performance with the CYBLE-
0130XX-00 module (denoted in blue hatched area).

Figure 48. Host Board Additional Keep Out Area for Optimal RF Performance

18,58
=400

=4,00

1. FOR BEST RF PERFORMANCE.ADDITIOMAL
KEEFDOUT IM BLUE HATCHED AREA ON THE __——H-—ﬂ-‘r
HOST BOARD OM ALL LAYERS.

2, RECOMMENDATION I[E TO PLACE THE ELE
MODULE IM THE CORMER OF THE HOST
BOARD WITH THE AMTEMNMA AT THE EDGE
OF THE HOST BOARD

C0.00, 0002

o
ANTENNA AREA -

"
e e e e S D i

MODULE OUTLINE —

1920

WWW.Cypress.com Document No. 002-20929 Rev. ** 61

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Appendix C. EZ-BLE WICED Evaluation Board Details

Appendix C provides detailed information on each EZ-BLE WICED Evaluation Boards. The information contained for
each subsection below includes the following:

®m Physical image for each EZ-BLE WICED Evaluation marketing part number

m What's included on the specific EZ-BLE WICED Evaluation board

To jump to your specific EZ-BLE WICED Evaluation board, click the marketing part number in the below list:

= CYBLE-013025-EVAL

WWW.Cypress.com Document No. 002-20929 Rev. ** 62

http://www.cypress.com/

o CYPRESS

g EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

C.1.1 CYBLE-013025-EVAL

The CYBLE-013025-EVAL is the evaluation board for both the CYBLE-013025-00 and the CYBLE-013030-00
EZ-BLE WICED Modules. Figure 49 shows the CYBLE-013025-EVAL board and calls out the main components and
connections available on the board.

Figure 49. CYBLE-013025-EVAL Evaluation Board

Supply Option (J8) USB Connector

Reset Switch (SW2) Recover Switch (SW4)

VDD J J1
RIgareH Operation Mode Switch (SW1)
User Defined Switch (SW3)

P24-SW3 Jumper (J9)

== Module-to-Arduino Headers

Module-to-Arduino Header (J5/ 13)

(Ja/17)

CYBLE-013025-00 Module External UART interface (J2)

The section below explains the main items shown in Figure 49 above.

Note: Connections not called out on J3, J4, J5, and J7 Arduino compatible headers are NC (No Connect), where no
physical connection is present between the CYBLE-013025-00 EZ-BLE WICED Module and the associated headers.

The CYBLE-013025-EVAL includes the following elements:
Active Devices

m EZ-BLE WICED Module: The EZ-BLE WICED Module is mounted to the evaluation board as shown in Figure
49.

m USB-to-UART bridge device: A USB-to-UART bridge device is provided on the evaluation board to translate
USB communication to UART communication. The UART communication is routed based on the configuration
settings of SW1, as described below.

Connectors and Headers

m USB receptacle: The USB connection on the CYBLE-013025-EVAL board provides power to the evaluation
board, and also provides communication to the board via USB, which is translated to UART communication and
routed to either the HClI UART or PUART connection on the EZ-BLE WICED Module depending on the
configuration of SW1.

m Power Supply Option Header (J8): J8 allows for configuration of three different power supplies to the EZ-BLE
WICED Module. All power is sourced from the USB connection, as mentioned above, but the power supply
directly inputted to the CYBLE-013025-00 module can be configured to either 2.3 V, 3.3 V, or 3.6 V using the
provided three-pin header. The power supply input is configured by shorting two neighboring header positions or
leaving the header open. Table 10 details the available power supply options and the associated header position
connections required.

WWW.Cypress.com Document No. 002-20929 Rev. ** 63

http://www.cypress.com/

A
s

CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Table 10. J8 Header Power Supply Connection Options

23V suly Leaue comnectonsopen; do ot shor any
3.3V Supply Short J8 header positions 2 & 3

3.6 V Supply Short J8 header positions 1 & 2

All Other Configurations Not Allowed

Arduino-compatible base headers — headers J3/J4/35/J7: The CYBLE-013025-EVAL provides Arduino-
compatible base headers that can be used for Arduino shield interfacing. The associated signals that are routed
out to these headers are noted on the PCB silk screen on both the top and bottom side of the evaluation board.

HCI UART direct connection header (J2): The J2 header provides all HCI UART communication lines to the
user. This allows for connection to the EZ-BLE WICED Module without having to connect through USB. This
can be used to connect a host controller evaluation board directly to the EZ-BLE WICED Module HCI UART
connection. HCI UART connections are not brought out to the Arduino-compatible headers.

Power consumption measurement header (J1): J1 is provided to allow for easy power consumption
measurement reading with a multi-meter or current measurement probe.

User Element Disconnection Headers (J9 and J10): J9 (USER SW2) and J10 (USER D6 - LED) are provided to
allow for disconnection of these elements from the CYBLE-013025-00 module. In both cases, the GPIO that is
routed to these USER elements is also routed to the Arduino-compatible headers. This may be desired if you
plan to use either of these GPIOs through the Arduino-compatible headers.

Switches and LEDs

SW1 (UART configuration switch): SW1 controls the configuration of which UART connection is active, HCI
UART or Peripheral UART (PUART). SW1 is a six-position switch, and provides the following configuration
states:

Table 11. SW1 UART Communication Configuration Options

Switch Position State
swi Position 1, 2, 3, and 4 are set | Position 1, 2, 3, and 4 are set to
to ON Position OFF Position
Position 5 and 6 are set to ON | CONFIGURATION IS NOT HCI UART Communication
Position ALLOWED Programming Mode
Position 5 and 6 are set to Peripheral UART (PUART) Application Mode
OFF Position Communication
Application Mode

Notes on the above table are below:

It is not allowed to have all six switch positions set to the ON state. This would lead to both HCI UART and
PUART being actively connected to the EZ-BLE WICED Module, and could lead to a VDD to GND short.

The HCI UART Communication Configuration (Positions 5 and 6 = ON; Positions 1-4 = OFF) is the mode that the
evaluation board should be in when interfacing to the WICED SMART SDK, with the goal of downloading a
compiled image to the EZ-BLE WICED Module.

The PUART/Application Mode (Positions 5 and 6 = OFF; Positions 1-4 = ON) is the configuration mode to use
when running application code from SFLASH on the EZ-BLE WICED Module. NOTE that the EZ-BLE WICED
Module will not boot from SFLASH if HCI UART Mode is active on SW1. This mode also provides the PUART
communication interface, which can be used for terminal communication on a PC.

The Application mode (All switch positions = OFF) allows the EZ-BLE WICED Module to boot from SFLASH and
run application code developed and programmed into the module previously. This mode disables both the HCI
UART and PUART communication from host PC. PUART communication can still be accomplished through the
Arduino-compatible headers if desired. Similarly, HCI communication can be accomplished through the J2
header.

WWW.Cypress.com Document No. 002-20929 Rev. ** 64

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

m SW2 (RESET switch): SW2 is a tactile switch that is connected directly to the XRES connection of the CYBLE-
013025-00 module. Activating this switch will reset the EZ-BLE WICED Module.

m SW3 (USER switch): SW3 is provided as an element that the user can configure as desired. The SW3 element
is connected to P24 on the CYBLE-013025-00 module (solder pad 9).

m SW4 (RECOVER switch): SW4 is provided to recover a module that has the standard programming bootloader
and/or application image corrupted or erased. Recovery mode is activated by holding this button down while
pressing and releasing SW2 (RESET). Recovery mode is not typically necessary during normal development.

m D1 and D2 LEDs are provided to display programming activity while in progress.
m D7 LED is provided to show that power is provided from the host PC.

m D6 USER LED is provided for user-configured behavior as desired. The D6 LED is connected to the module
P14/P26 connection (solder pad 7).

WWW.Cypress.com Document No. 002-20929 Rev. ** 65

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Appendix D. Code Examples Figure 50. Code Examples in WICED
SMART
The WICED SMART SDK comes with a set of example projects
that demonstrate a variety of BLE and peripheral functionality. [Project Explorer #3 = B
These projects are available in the Project Explorer inside the — <’=’b| -
IDE, as Figure 50 shows. © 1S WICED-Smart-SDK A

Example projects can speed up your design process by starting
you off with a complete design, instead of a blank page. Code
examples include comments describing their functionality and
basic demonstration instructions near the top of the main .c
source file for each project.

v (= Apps
= adwp_power_receiver
= adwp_power_transmitter
=+ automation_io_client
= automation_io_server
[blood_pressure_maonitor
=+ cycling_speed_cadence
= glucose_meter
= health_thermometer
=~ heart_rate_monitor

Each example also has a dedicated make target available to
provide an easy way to build and download onto a BLE module.
However, these make targets should be renamed before use in
order to provide compatibility with the CYBLE-013025-EVAL
board. Simply change the “BCM92073x...” portion of the target

name to “CYBLE_013025_EVAL” instead. For example: & hello_client
- - = hello_sensor
Before: puart control-BCM920737TAG_Q32 download [= http_client

After: puart control-CYBLE 013025 EVAL download

Some examples assume peripheral devices that are not present
or that are routed differently on the CYBLE-013025-EVAL board
compared to older “Tag” evaluation products, such as a button or
a PWM-controlled piezo buzzer. The table below defines all built-
in peripherals and their routed pin connections.

= i2c_temperature_sensor

= ibeacon_device
= ibeacon_managed
[indoor_position

= location_and_navigation

[long_char_big_mtu
= long_characteristic
= mybeacon

Table 12. CYBLE-013025-EVAL Pin Assignments

= ota_firmware_upgrade

[ota_secure_firmware_upgrade
Pin Function Macro (= proximity
P24 Button (active HIGH) | GPIO_PIN_BUTTON (= proximity_client
- = puart_control
P14 LED (active LOW) GPIO_PIN_LED @ puart_control_big_miu
P2 PUART RXD GPIO_PIN_UART RX (= pwm_tones
= rtc_sample
PO PUART TXD GPIO_PIN_UART_TX & running_speed_cadence
P1 PUART RTS GPIO_PIN_UART_RTS (& speed test
== spi_comm_master
P3 PUART CTS GPIO_PIN_UART_CTS (= spi_comm_slave v
£ >
These pins are defined in the custom platform files described in
Step 9 of Section 7.3 (Part 1: Configure the Design), accessible
via compiler macros to improve code portability. However, some
projects may also use pin numbers directly. As you explore the
examples that come with the SDK, be sure to double-check any
instances of GPIO pin usage if you encounter compiler errors or
missing peripheral functionality.
WWW.Cypress.com Document No. 002-20929 Rev. ** 66

http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Appendix E. Example Project main.c

/** gfile
*

* This file has been automatically generated by the WICED Smart Designer.
* Device configuration and functions required for the BLE device.
*

*/

#include "bleprofile.h"
#include "bleapp.h"
#include "gpiodriver.h"
#include "string.h"
#include "stdio.h"
#include "platform.h"
#include "devicelpm.h"

#include "find me db.h"

[KKK kK ok ok ok ok ok ok ok ok ok ok K ok K ok Kk k kK ok ok ok ok ok ok Kk Kk Kk Kk ok Kk ok ok ok ok ok Kk Kk ok ok Kk

* Constants
**/

#define FIND ME FINE TIMER 1000

#define FIND ME DEVICE NAME "find me"

#define FIND ME DEVICE APPEARENCE 0

#define FIND ME MAIN SERVICE UUID UUID SERVICE IMMEDIATE ALERT

#define FIND ME MAIN CHAR UUID UUID CHARACTERISTIC ALERT LEVEL
#define FIND ME MAIN CHAR HANDLE HDLC IMMEDIATE ALERT ALERT LEVEL VALUE

[/ ok K ok ok ok ok Kk ok K ok ok K ok ok K Sk K ok ok ok ok ok K ok ko ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok K ok ok K

* Structures
**/

#pragma pack(l)
//host information for NVRAM
typedef PACKED struct
{
//part of HOSTINFO generated by wizard
__ HOSTINFO generated;
// ToDo: add your variables here which need to be saved in the NVRAM
} HOSTINFO;
#pragma pack()

[Kk K kK ok ok ok ok ok K ok ok ok ok K ok K ok ok ok K ok ok ok ok k ok K ok K ok Kk ok Kk ok ok ko k ok ok ok Kk Kk Kk Kk

* Function Prototypes
**/

static void find me_create(void) ;

static void find me_connection_up(void);

static void find me_connection_down(void);

static void find me advertisement stopped(void);

static void find me smp bond result(LESMP PARING RESULT result);
static void find me encryption changed(HCI_EVT HDR *evt);

static int find me write handler(LEGATTDB_ ENTRY HDR *p);

static void find me interrupt handler(UINT8 value);

UINT32 find me lpm queriable(LowPowerModePollType type, UINT32 context);

/o ok K ok kK ok ok ok ok K ok ok ok ok ok K ok K ok ok ok ok ok K ok ok o ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok K ok Kk ok ok

* Variables Definitions
‘k*/

const BLE PROFILE CFG find me cfg =

{
/*.fine_timer_interval =%/ FIND ME FINE TIMER, // ms
/*.default_adv =x/ 4, /7 HIGH_UNDIRECTED DISCOVERABLE
/*.button_adv_toggle =*/ 0 // pairing button make adv toggle (if 1) or always on (if 0)
/*.high_undirect_adv_interval =*/ // slots
/*.low_undirect_adv_interval =*/ // slots
/*.high_undirect_adv_duration =*/ // seconds
/*.low_undirect_adv_duration =*/ // seconds
/*.high direct_adv_interval =*/ 0, // seconds
/*.low_direct_adv_interval =*/ 0 // seconds
/*.high direct_adv_duration =*/ 0 // seconds
/*.low_direct_adv_duration =*/ ?, // seconds
/*.local_name =*/ FIND_ME_DEVICE_NAME, // [LOCAL_NAME_LEN_MAX];
/*.cod =*/ BIT16 TO 8(FIND ME DEVICE APPEARENCE), , // [COD LEN];

WWW.Cypress.com Document No. 002-20929 Rev. ** 67

http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW Getting Started with EZ-BLE WICED Modules

/* .ver =x/ "1.00", // [VERSION LEN];

/*.encr_ required =*/ 0, // (SECURITY ENABLED | SECURITY REQUEST), // data encrypted and
device sends security request on every connection

/*.disc_required =x/ 0, // if 1, disconnection after confirmation

/*.test_enable =x/ 1, // TEST MODE is enabled when 1

/*.tx_power_level =%/ 0x04, // dbm

/*.con_idle_timeout =x/ // second 0-> no timeout

/*.powersave_timeout =x/ 0, // second 0-> no tlmeout

/*.hdl =*/ {FIND_ME_MAIN_ CHAR HANDLE, Ox(// [HANDLE_NUM MAX] ;
/*.serv =*/ {FIND ME MAIN SERVICE UUID,
/*.cha =%/ {FIND ME MAIN CHAR UUID, 0x00
/*.findme locator enable =x/ 0, // if 1 Find me locator is enable
/*.findme alert level =*/ 0, // alert level of find me
/*.client_grouptype_ enable =x/ 0, // if 1 grouptype read can be used
/*.linkloss_button_enable =x/ 0, // if 1 linkloss button is enable
/*.pathloss check interval =%/ 0, // second
/*.alert interval =x/ 0, // interval of alert
/*.high _alert num =%/ 0, // number of alert for each interval
/*.mild alert num =%/ 0, // number of alert for each interval
/*.status_led enable =%/ 1, // if 1 status LED is enable
/*.status led interval =%/ 0, // second
/*.status led con blink =*x/ 0, // blink num of connection
/*.status led dir adv blink =x/ 0, // blink num of dir adv
/*.status led un adv blink =x/ 0, // blink num of undir adv
/*.led on ms =%/ 0, // led blink on duration in ms

)

/*.led off ms
/*.buz_on_ms
/*.button_power_ timeout
/*.button_client timeout
/*.button_discover timeout
/*.button filter timeout
#ifdef BLE UART LOOPBACK TRACE
/*.button uart_ timeout =*/ 15, // seconds
#endif
}i

// led blink off duration in ms
// buzzer on duration in ms

// seconds

// seconds

// seconds

// seconds

// Following structure defines UART configuration
const BLE PROFILE PUART CFG find me puart cfg =

{
/*.baudrate =%/ 115200,
#ifdef GATT DB ENABLE UART
/*.txpin =%/ GPIO PIN UART TX,
/*.rxpin =%/ GPIO PIN UART RX,
#else
/*.txpin =*/ PUARTDISABLE | GPIO_PIN_UART TX,
/*.rxpin =*/ PUARTDISABLE | GPIO_PIN_UART RX,
#endif

}i

// NVRAM save area

HOSTINFO find me hostinfo;

//pointer to the generated part of hostinfo assuming it is the beginning of the hostinfo
__ HOSTINFO *p hostinfo generated = &find me_hostinfo.generated;

UINT16 find me_connection_handle =0; // HCI handle of connection, not zero when connected

BD_ADDR find me_remote_ addr o, 0, 0, 0, 0, 0}; // Address of currently connected client

// ToDo: Add your static variables here

[Kk K kK ok ok ok ok ok K ok ok ok ok K ok K ok ok ok K ok K ok ok ok ok K ok K ok Kk ok ok k ko ok ok ok ok ok ok Kk Kk Kk Kk

* Function Definitions
**/

// BApplication initialization

APPLICATION_INIT()

{

bleapp_set_cfg((UINT8 *)gatt_database,

gatt_database_len,
(void *)&find me_cfg,
(void *)&find me_puart_cfg,
(void *)&find me_gpio_cfg,
find_me_create) ;

}

// Create device

void find_me_create(void)

{
extern UINT8 bleprofile adv_num;
extern UINT8 bleprofile scanrsp num;

WWW.Cypress.com Document No. 002-20929 Rev. ** 68

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

ble trace0("create()");
ble trace0O(bleprofile p cfg->ver);

bleprofile adv_num = 0
bleprofile scanrsp_num = 0x0;

// dump the database to debug uart.
legattdb_dumpDb () ;

bleprofile Init(bleprofile p_ cfg);
bleprofile GPIOInit(bleprofile gpio_p_cfg);

// Initialized ROM code which will monitor the battery
blebat_Init();

// Read NVRAM
bleprofile ReadNVRAM(VS BLE HOST LIST, sizeof(find me hostinfo), (UINT8 *)&find me hostinfo) ;

// register connection up and connection down handler.

bleprofile regAppEvtHandler (BLECM APP _EVT LINK UP, find me connection up);

bleprofile regAppEvtHandler (BLECM APP EVT LINK DOWN, find me connection down) ;
bleprofile_ regAppEvtHandler (BLECM_APP_EVT_ADV_TIMEOUT, find me_advertisement_ stopped) ;

// handler for Encryption changed.
blecm regEncryptionChangedHandler (find me encryption changed) ;

// handler for Bond result
lesmp_ regSMPResultCb ((LESMP_SINGLE_PARAM CB) find me_smp bond result);

// register to process client writes
legattdb_ regWriteHandleCb ((LEGATTDB _WRITE_CB) find me write handler);

// register interrupt handler
bleprofile regIntCb((BLEPROFILE SINGLE PARAM CB) find me_ interrupt handler) ;

// register Low Power Mode
devlpm init();
devlpm registerForLowPowerQueries(find me lpm queriable, 0);

//registers timer
find me reg timer();

// advertise first vendor specific service
if (sizeof (find me uuid main service) > 1)

{
// total length should be less than 31 bytes
BLE_ADV_FIELD adv[3];
BLE ADV_FIELD scr[l];
// flags
adv[0].len = + 1;
adv[0].val = ADV_FLAGS;
adv([0].data[0] = LE_LIMITED DISCOVERABLE | BR_EDR _NOT_ SUPPORTED;
adv[l].len = sizeof (find me uuid main_service) + 1;
adv[1].val = sizeof (find me uuid main_service) == 16 ? ADV_SERVICE_UUID128 COMP : ADV_SERVICE_UUID16_COMP;
memcpy (adv[1].data, &find me_ uuid main_service[0], sizeof(find me uuid main_service));
// Tx power level
adv[”].len = TX_POWER_LEN+1;
adv[”].val = ADV_TX POWER LEVEL;
adv[”].data[0] = bleprofile p cfg->tx power_ level;
// name
scr[0].len = strlen(bleprofile_p_cfg->local name) + 1;
scr[0].val = ADV_LOCAL_NAME_COMP;
memcpy (scr[0] .data, bleprofile p cfg->local name, scr[0].len - 1);
bleprofile_GenerateADVData (adv, 3);
bleprofile_GenerateScanRspData(scr, 1);
}

blecm_setTxPowerInADV(0) ;

// start device advertisements. By default Advertisements will contain flags, device name,
// appearance and main service UUID.
bleprofile Discoverable (HIGH_UNDIRECTED DISCOVERABLE, NULL) ;

WWW.Cypress.com Document No. 002-20929 Rev. ** 69

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

// ToDo: Do your initialization on app startup
gpio configurePinWithSingleBytePortPinNum(GPIO PIN LED, GPIO OUTPUT ENABLE, 1);
}

// Callback called by the FW when ready to sleep/deep-sleep.

// Do not allow any sleep if UART transmissions are ongoing.

// Do not allow deep sleep if BLE activity is ongoing.

UINT32 find me_lpm queriable(LowPowerModePollType type, UINT32 context)

{
UINT32 result = 0; // assume sleep disabled
// check sleep type query
switch (type)
{
case LOW POWER MODE_ POLL TYPE SLEEP:
// return 0 to prevent standard sleep, otherwise max microsecond count to allow
// (other processes may wake earlier than your specified max)
result = OxFFFFFFFE; // max
break;
case LOW POWER MODE POLL TYPE POWER OFF:
// return 0 to prevent deep sleep, non-zero to allow
result = 1; // allow
break;
}
// should not reach this point since only two types of sleep exist
return result;
}

// Connection up callback function is called on every connection establishment
void find me_connection_up(void)

{
find me_connection_handle = (UINT16)emconinfo getConnHandle() ;
UINT8 *bda = (UINT8 *)emconninfo_getPeerPubAddr () ;
// Save address of the connected device and print it out.
memcpy (find me_ remote addr, bda, sizeof(find me remote_ addr)) ;
ble_trace3("connection up: %08x%04x h=%d",
(find me remote addr[5] << 24) + (find me remote addr[4] << 16) +
(find me remote addr[3] << &8) + find me remote addr[”],
(find me remote addr[l] << &) + find me remote addr[0],
find_me_connection_handle) ;
// Prepare generated code for connection - write persistent values from _ HOSTINFO to GATT DB
__on _connection up();
// ToDo: Write custom persistent values into GATT database using functions
// changed <service name> <char name>() generated by smart disigner
// If device supports a single connection, stop advertising
bleprofile Discoverable(NO_DISCOVERABLE, NULL) ;
// If security is required for every connection following function will start bonding or
// will setup encryption. No indications or notifications should be sent until
// encryption is not done.
if (bleprofile p cfg->encr_required & SECURITY_ REQUEST)
{
if (emconninfo_deviceBonded())
{
ble_trace0("device bonded");
}
else
{
ble_tracel("device not bonded");
lesmp_sendSecurityRequest() ;
}
}
}

// Connection down callback
void find_me_connection_down (void)

{

ble_tracel("connection down:handle:%d", find me_connection_handle) ;

find me_ connection_handle = 0;

WWW.Cypress.com Document No. 002-20929 Rev. ** 70

http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

// If disconnection was caused by the peer, start low advertisements
bleprofile Discoverable (LOW UNDIRECTED DISCOVERABLE, NULL) ;
//bleprofile PrepareHidOff () ;

ble_trace2("ADV start: %08x%04x",
(find _me_remote_addr[5] << 24) + (find me_ remote_addr[4] <<16) +
(find me_remote_addr[3] << &) + find me remote_ addr[”],
(find me_remote_addr[l] << &) + find me_ remote_addr[0]);
}

// Callback function indicates to the application that advertising has stopped.
// restart advertisement if needed
void find _me_advertisement_ stopped(void)

{
ble trace0("ADV stop!!!!");
// If disconnection was caused by the peer, start low advertisements
bleprofile Discoverable (LOW UNDIRECTED DISCOVERABLE, NULL) ;

}

// Process SMP bonding result. If pairing is successful with the central device,

// save its BDADDR in the NVRAM and initialize associated data
void find me smp bond result (LESMP_PARING RESULT result)
{

ble tracel("smp bond result %02x", result);

if (result == LESMP PAIRING RESULT BONDED)
{

// saving bd addr in nvram

UINT8 *bda;

UINT8 writtenbyte;

bda = (UINT8 *)emconninfo_getPeerPubAddr () ;

// initialize persistent values in the hostinfo to add bonded peer
find me_add bond(bda) ;

// ToDo: initialize persistent variables in HOSTINFO
//now write hostinfo into NVRAM
writtenbyte = bleprofile WriteNVRAM(VS BLE HOST LIST, sizeof(find me hostinfo), (UINT8 *)&find me hostinfo);

ble tracel ("NVRAM write:%04x", writtenbyte);

}

// Notification from the stack that encryption has been set.
void find me encryption changed(HCI_EVT HDR *evt)

{
UINT8 *bda = emconninfo getPeerPubAddr () ;
ble trace2("encryption changed %08x%04x",
(bda[5] << 24) + (bda[4] << 16) +
(bda[2] << 8) + bdal?],
(bda[l] << 8) + bdal[0]);
// ToDo: do your on-encryption-change actions here.
// Slow down the pace of master polls to save power. Following request asks
// host to setup polling every 100- 500 msec, w1th link supervision timeout 5 seconds.
bleprofile SendConnParamUpdateReq (5! 0,
}

// Process write request or command from peer device
int find me write_handler (LEGATTDB_ENTRY_ HDR *p)
{
UINT8 writtenbyte;
UINT16 handle = legattdb_getHandle (p) ;
int len legattdb_getAttrValueLen(p) ;
UINT8 *attrPtr = legattdb_getAttrValue(p) ;
BOOL changed;

ble_tracel ("write handler: handle %04x", handle);
changed = _ write_ handler (handle, len, attrPtr);

// Save update to NVRAM if it has been changed.
if (changed)
{
writtenbyte = bleprofile WriteNVRAM(VS BLE HOST LIST, sizeof(find me hostinfo), (UINT8 *)&find me hostinfo);

WWW.Cypress.com Document No. 002-20929 Rev. ** 71

http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

ble tracel ("NVRAM write:%04x", writtenbyte);

}
return 0;
}
// Three Interrupt inputs (Buttons) can be handled here.
// I1If the following value == 1, Button is pressed. Different than initial value.
// I1If the following value == 0, Button is depressed. Same as initial value.
// Buttonl : value&0x01
// Button2 : (value&0x02)>>1
// Button3 : (value&0x04)>>2
void find me_interrupt handler (UINT8 value)
{
// ToDo: handle the interrupts here.
}
// Process indication confirmation. if client service indication, each indication

// should be acknowledged before the next one can be sent.
void find me indication cfm(void)

{

}

/) === generated code

// It will be called at the write handler and should return TRUE if any persistent value is changed
BOOL on write immediate alert alert level(int len, UINT8 *attrPtr)

{
// check the first byte of the value written to this characteristic
switch (attrPtr[0])
{
case 0x00:
// alert level = 0x00 (none), turn LED off
bleprofile KillLEDTimer () ;
bleprofile LEDOff () ;
break~
case
// alert level = 0x01 (mild), blink LED at 1 Hz cycle for 120 seconds
bleprofile LEDBlink (500, 500, 120);
break;
case 0x02:
// alert level = 0x02 (high), turn LED on
bleprofile KillLEDTimer();
bleprofile LEDOn() ;
break;
}
// return FALSE since no persistent value is changed
return FALSE;
}

WWW.Cypress.com Document No. 002-20929 Rev. ** 72

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Appendix F. Makefile Customization

The WICED SMART SDK build system uses a hierarchical Makefile structure when building each project. The root
Makefile is found in the main SDK installation folder as \WICED-Smart-SDK\Makefile, and each project contains its
own specific makefile.mk file along with the source files in its dedicated directory. To customize the build process for
a specific project, always edit the project’'s own makefile.mk content instead of modifying the top-level file.

The most common changes that you may need to make are as follows:
1. Adding new .c source files to be compiled and linked:

Splitting the source code into multiple files can greatly improve organization and maintainability as the project
grows. To add more files to the build process beyond the initial set that is created from the WICED Bluetooth
Designer tool, use the APP_SRC keyword:

APP SRC = find me.c

APP SRC += find me db.c

APP SRC += extrafilel.c

APP SRC += extrafile2.c

APP SRC += subfolder/subfilel.c
APP_SRC += subfolder/subfile2.c

You can include as many extra files as you need. Note that the very first file should use the direct assignment
operator (“="), while all subsequent files should use the append operator (“+=").

2. Adding extrainclude folders into the search path:

Some projects require the use of additional libraries that assume particular 'include’ folders are in the compiler’s
include search path. To avoid having to rewrite source files with explicit include paths throughout, use the INCS
keyword along with the $(DIR) variable to denote the project’s root folder:

INCS += $(DIR)/libraryl/include
INCS += $(DIR)/library2/include
INCS += S$(DIR)/some/other/include

You can add as many extra include search folders as you need. Note that all additional folders should use the
append operator (“+=") since the SDK'’s top-level Makefile assigns some folders already. Using the direct
assignment operator (“=") will wipe out these default folders and break the compile process.

3. Applying pre-built optional patches that are part of the WICED SDK:

Since the WICED SMART Bluetooth LE stack is part of the chipset ROM inside the module, updates and fixes to
low-level functionality require the use of precompiled patches, which are loaded and applied during the boot
process. These patches must be included especially during the compile process so that they are part of the final
firmware binary image. To specify patches for this purpose, use the APP_PATCHES_AND_LIBS keyword:

APP PATCHES AND LIBS += config nvram fixes.a
APP PATCHES AND LIBS += disable sw timer as wake source.a
APP PATCHES AND LIBS += bt clock based periodic timer.a

Patches are optional and may be added in any order. You can find a description of all available patches that ship
with the SDK in the following location:

\WICED-Smart-SDK\Wiced-Smart\tier2\brcm\libraries\lib\readme

WWW.Cypress.com Document No. 002-20929 Rev. ** 73

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Appendix G. Regulatory Information

FCC:

FCC NOTICE:

Cypress EZ-BLE Modules, including integrated antennas, comply with Part 15 of the FCC Rules. When stated in the
module datasheet, the modules meet the requirements for modular transmitter approval as detailed in FCC public
Notice DA00-1407.transmitter Operation is subject to the following two conditions: (1) This device may not cause
harmful interference, and (2) This device must accept any interference received, including interference that may
cause undesired operation.

CAUTION

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly
approved by Cypress Semiconductor may void the user's authority to operate the equipment.

Any certified modules provided by Cypress have been tested and found to comply with the limits for a Class B digital
device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against
harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency
energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment does cause harmful interference to radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the interference by one or more of the following
measures:

Reorient or relocate the receiving antenna.
Increase the separation between the equipment and receiver.
Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

Consult the dealer or an experienced radio/TV technician for help

LABELING REQUIREMENTS

The Original Equipment Manufacturer (OEM) must ensure that FCC labeling requirements are met. This includes a
clearly visible label on the outside of the OEM enclosure specifying the appropriate Cypress Semiconductor FCC
identifier for this product as well as the FCC Notice above. The FCC identifier for each module is listed in the module
datasheet, and is of the form “FCC ID: WAPxxxx”, where “xxxx” denotes the module-specific FCC identifier.

In any case, the end product using a certified Cypress module must be labeled on the exterior with "Contains FCC ID:
WAPxxxx", where “xxxx” is the module-specific FCC identifier.

ANTENNA WARNING

Please refer to the module datasheet for details on the specific antenna used for the module design. Each Cypress
certified module may have a different Antenna design. When integrated in the OEMs product, these antennas require
installation preventing end-users from replacing them with non-approved antennas. Any antenna not listed in the
module datasheet must be tested to comply with FCC Section 15.203 for unique antenna connectors and Section
15.247 for emissions.

WWW.Cypress.com Document No. 002-20929 Rev. ** 74

http://www.cypress.com/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

RF EXPOSURE

To comply with FCC RF Exposure requirements, the Original Equipment Manufacturer (OEM) must ensure to install
the approved antenna in the previous.

The preceding statement must be included as a CAUTION statement in manuals, for products operating with the
approved antennas listed in the module datasheet, to alert users on FCC RF Exposure compliance. Any noatification
to the end user of installation or removal instructions about the integrated radio module is not allowed.

The radiated output power of Cypress certified modules with antenna mounted is far below the FCC radio frequency
exposure limits. Nevertheless, use Cypress modules in such a manner that minimizes the potential for human contact
during normal operation.

End users may not be provided with the module installation instructions. OEM integrators and end users must be
provided with transmitter operating conditions for satisfying RF exposure compliance.

Innovation, Science and Economic Development (ISED) Canada Certification

When indicated in the module datasheet, Cypress EZ-BLE modules are licensed to meet the regulatory requirements
of Innovation, Science and Economic Development (ISED) Canada. Refer to the module datasheet for details on the
specific IC identifier. The IC identifier will be of the form:

License: IC: 7922A-xxxx, where “xxxx” is the ID for a specific module.

Manufacturers of mobile, fixed or portable devices incorporating this module are advised to clarify any regulatory
guestions and ensure compliance for SAR and/or RF exposure limits. Users can obtain Canadian information on RF
exposure and compliance from www.ic.gc.ca.

Cypress EZ-BLE modules have been designed to operate with the antennas listed in the module datasheet.
Antennas not included in the module datasheet or having a gain greater than what is specified in the module
datasheet are strictly prohibited for use with this device. The required antenna impedance is 50 ohms. The antenna
used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

ISED NOTICE

Cypress EZ-BLE modules, including the built-in antenna complies with Canada RSS-GEN Rules. Cypress EZ-BLE

| modules meet the requirements for modular transmitter approval as detailed in RSS-GEN. Operation is subject to the

¢ .®) following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any
interference received, including interference that may cause undesired operation.

Les modules Cypress EZ-BLE, y compris I'antenne intégrée, sont conformes aux Régles RSS-GEN de Canada. Les
modules Cypress EZ-BLE répondent aux exigences d'approbation de I'émetteur modulaire, tel que décrit dans RSS-
GEN. L'opération est soumise aux deux conditions suivantes: (1) Cet appareil ne doit pas causer d'interférences
nuisibles, et (2) Cet appareil doit accepter toute interférence recue, y compris les interférences susceptibles de
provoquer un fonctionnement indésirable.

ISED INTERFERENCE STATEMENT FOR CANADA

Cypress EZ-BLE modules comply with Innovation, Science and Economic Development (ISED) Canada license-

exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause

€20 interference, and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.

Les modules Cypress EZ-BLE sont conformes aux normes RSS, exemptées de licences et exemptées de licence de
I'lnnovation, des Sciences et du Développement (ISED). Le fonctionnement est soumis aux deux conditions
suivantes: (1) cet appareil ne doit pas provoquer d'interférence, et (2) cet appareil doit accepter toute interférence, y
compris les interférences susceptibles de provoquer un fonctionnement indésirable de I'appareil.

WWW.Cypress.com Document No. 002-20929 Rev. ** 75

http://www.cypress.com/
http://www.ic.gc.ca/

o CYPRESS

~a»” EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

G1

ISED RADIATION EXPOSURE STATEMENT FOR CANADA

Cypress EZ-BLE modules comply with ISED radiation exposure limits set forth for an uncontrolled environment.
Please refer to the module datasheet for any details on integration requirements for radiation exposure.

Les modules Cypress EZ-BLE sont conformes aux limites d'exposition au rayonnement ISED prévues pour un
environnement incontrélé. Veuillez vous référer a la fiche technique du module pour tout détail sur les exigences
d'intégration pour l'exposition au rayonnement.

LABELING REQUIREMENTS

The Original Equipment Manufacturer (OEM) must ensure that IC labeling requirements are met. This includes a
clearly visible label on the outside of the OEM enclosure specifying the appropriate Cypress Semiconductor IC
identifier for this product as well as the IC Notice above. The IC identifier is 7922A-xxxx, where “xxxx” is the specific
IC ID for a given module. In any case, the end product must be labeled in its exterior with "Contains IC: 7922A-xxxx",
where “xxxx” is the module specific ID as indicated in the module datasheet.

Le fabricant d'équipement d'origine (OEM) doit s'assurer que les exigences d'étiquetage IC sont respectées. Cela
comprend une étiquette clairement visible a l'extérieur de I'enceinte OEM spécifiant l'identifiant Cypress
Semiconductor approprié pour ce produit ainsi que l'avis IC ci-dessus. L'identifiant IC est 7922A-xxxx, ou "Xxxx" est
I''D CI spécifique pour un module donné. En tout cas, le produit final doit étre étiqgueté dans son extérieur avec
"Contient IC: 7922A-xxxx", ol "xxxx" est I'D spécifique du module comme indiqué dans la fiche technique du module.

EUROPEAN DECLARATION OF CONFORMITY

Hereby, Cypress Semiconductor declares that the EZ-BLE Bluetooth modules, when indicated on the module
datasheet, comply with the essential requirements and other relevant provisions of Directive 2014. As a result of the
conformity assessment procedure described in Annex Il of the Directive 2014, the end-customer equipment should
be labeled as follows:

When indicated in the module datasheet, the module used in the specified reference design can be used in the
following countries: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Poland, Portugal, Slovakia, Slovenia, Spain,
Sweden, The Netherlands, the United Kingdom, Switzerland, and Norway.

MIC JAPAN

When indicated, Cypress EZ-BLE modules are certified as a module with a specific type certification number detailed
in the module datasheet. End products that integrate modules that are certified for Japan do not need additional MIC
Japan certification for the end product.

End product can display the certification label of the embedded module as display in the specific module datasheet.

Module Regulatory Reports and Certificates

Table 13 details the knowledge base articles that contain the test reports and certificates for each EZ-BLE module.
These knowledge base article can be found by visiting www.cypress.com and searching for the KBA number below,
or by clicking on the hyperlinks in the below table.

Table 13. Regulatory Test Report and Certificate KBA Reference

EZ-BLE Module
Part Number

CYBLE-013025-00
CYBLE-013030-00

Knowledge Base Article Containing Regulatory Reports and Certificates

KBA219623

WWW.Cypress.com Document No. 002-20929 Rev. ** 76

http://www.cypress.com/
http://www.cypress.com/
http://www.cypress.com/knowledge-base-article/rf-regulatory-certifications-cyble-013025-00-and-cyble-013030-00-ez-ble

A
s

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with EZ-BLE WICED Modules

Document History

Document Title: AN220929 — Getting Started with EZ-BLE WICED Modules

Document Number: 002-20929

Description of Change

Revision ECN Orig. of Submission Date
Change
*k 5879338 DSO 10/27/2017 New application note

Www.Ccypress.com

Document No. 002-20929 Rev. **

77

http://www.cypress.com/

o CYPRESS

g~ EMBEDDED IN TOMORROW™ Getting Started with EZ-BLE WICED Modules

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products PSoC® Solutions
ARM® Cortex® Microcontrollers cypress.com/arm PSoC 1 | PSoC 3| PSoC 4 | PSoC 5LP | PSoC 6
Automotive cypress.com/automotive Cyp ress Develo per Commun ity
Clocks & Buffers cypress.com/clocks

. Forums | WICED IOT Forums | Projects | Videos | Blogs |
Interface cypress.com/interface .

Training | Components

Internet of Things cypress.com/iot .
Memory cypress.com/memory Technical Support
Microcontrollers cypress.com/mcu cypress.com/support
PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

= | i Cypress Semiconductor
'v‘ 198 Champion Court
San Jose, CA 95134-1709

- EMBEDDED IN TOMORROW™

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

WWW.Cypress.com Document No. 002-20929 Rev. ** 78

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	More Information
	EZ-BLE WICED Module Datasheet
	EZ-BLE WICED Evaluation Boards
	Silicon Device Datasheet
	Cypress WICED Bluetooth Community
	Application Notes
	Technical Support

	EZ-BLE WICED Module Overview
	EZ-BLE WICED Module Family Features
	EZ-BLE WICED Module Low Power Modes
	EZ-BLE WICED Module Device Security
	EZ-BLE WICED Marketing Part Number Overview

	Development Tools
	WICED SMART SDK and IDE
	WICED SMART IDE Overview
	Project Explorer
	Code Editor
	Eliminating False Code Analysis Errors
	Improving Search Results
	Taking Advantage of Code Completion

	Make Target List
	Console
	Debug Trace Output

	CySmart PC Application
	CySmart Mobile App

	Development Kits and Evaluation Boards
	EZ-BLE WICED Module Evaluation Boards

	EZ-BLE WICED Module Development Setup (WICED SMART SDK)
	My First EZ-BLE WICED Module Design
	About the Design
	Prerequisites
	Part 1: Configure the Design
	Part 2: Write the Firmware
	System Initialization
	BLE Stack Event Handlers
	BLE Service-Specific Event Handler
	Low-Power Implementation
	Managing Low-Power Operation in the Application
	Eliminating Leakage Current

	Part 3: Program the Device
	Host UART Interface Selection and Preparation
	Boot Modes and Effective Operational States
	Compiling and Downloading into the Module
	Performing a Recovery Procedure

	Part 4: Test Your Design
	Design Source

	Module Placement and Enclosure Considerations
	Antenna Ground Clearance
	Module Placement in a Host System
	Enclosure Effects on Antenna Performance
	Antenna Near-Field and Far-Field
	Effect of Nonmetallic Enclosure
	Effect of Metallic Objects
	Recommendations for Placement over a Large Metal Plane

	Guidelines for Enclosures and Ground Plane

	Manufacturing with EZ-BLE WICED Modules
	SMT Manufacturing Pick-and-Place
	Manufacturing Solder Reflow

	Summary
	Related Application Notes
	Cypress Terms of Art
	EZ-BLE WICED Module Product Details
	EZ-BLE WICED Part Number Details
	CYBLE-0130XX-00
	Pinout and Functionality
	Host Recommended PCB Layout

	EZ-BLE WICED Evaluation Board Details
	CYBLE-013025-EVAL

	Example Project main.c
	Makefile Customization
	Regulatory Information
	Module Regulatory Reports and Certificates

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

