o CYPRESS

- EMBEDDED IN TOMORROW™

AN215656

PSoC 6 MCU Dual-CPU System Design

Author: Mark Ainsworth

Associated Part Family: All PSoC® 6 MCU devices with dual CPUs
Associated Code Example: CE216795

Related Application Notes: see Related Documents

More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples
web page. You can also explore the Cypress video training library here.

AN215656 describes the dual-CPU architecture in PSoC 6 MCUSs, which includes Arm® Cortex®-M4 and Cortex-MO+
CPUs, as well as an inter-processor communication (IPC) module. A dual-CPU architecture provides the flexibility to
help improve system performance and efficiency, and reduce power consumption. The application note also shows
how to build a simple dual-CPU design using the Cypress PSoC Creator™ Integrated Design Environment (IDE),
and how to debug the design using various IDEs.

Contents
1 INrodUCHON......coiiiiiii et 2 4.3.4 Create IAR-EW Projects..........ccuee.. 23
1.1 How to Use this Document.........ccccccvveeviveeennnen. 2 4.3.5 Debug IAR-EW Projects............cccceeue 27
2 General Dual-CPU CONCEPLS....ccccvvvererriiieeiiieeesiiiieenns 3 5 SUMMANY oottt 29
3 PSoC 6 MCU Dual-CPU Architecture...........c..ccceeueen. 4 6 Related DOCUMENTS.......oveiiiiiieiiiiee e 30
4 PSoC 6 MCU Dual-CPU Development................c..c.... 6 Document HiStOrY.........cooueeeiiiiieeiiiie e 31
4.1 Resource Assignment Considerations................ 9 Worldwide Sales and Design SUPPOrt...........cocvveeriiveeenne 32
4.2 Interrupt Assignment Considerations................ 10 ProdUCES.......oeieiieiieee e 32
4.3 Debug Considerationscccccoeeuvreeeeeeninnnnnns 11 PSOC® SOIULIONSevevieiicieecieecee et 32
43.1 Configure PSoC Creator Project......... 12 Cypress Developer COMMUNILY........ccvveviierenniieeeniiieeens 32
43.2 Create pVision Projects..........cccueveeee.. 13 Technical SUPPOIt......cccooiiiiiiiiiie e 32
433 Debug pVision Projectsccccceeeeennn. 21

WWW.Cypress.com Document No. 002-15656 Rev. *E 1

http://www.cypress.com/
http://www.cypress.com/ce216795
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/training

o CYPRESS

a»» EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

1.1

Introduction

PSoC 6 MCU is Cypress’ 32-bit ultra-low-power PSoC, purpose-built for the Internet of Things (IoT). It integrates low-
power flash and SRAM technology, programmable digital logic, programmable analog, high-performance analog-
digital conversion, low-power comparators, and standard communication and timing peripherals. For more
information, see a PSoC 6 MCU device datasheet or AN210781, Getting Started with PSoC 6 MCU with Bluetooth
Low Energy (BLE) Connectivity.

Of particular interest in PSoC 6 MCU is the CPU subsystem. The architecture incorporates multiple bus masters —
two CPUs, two DMA controllers, and a cryptography block (Crypto) — as Figure 1 shows:

Figure 1. PSoC 6 MCU Typical CPU Subsystem Architecture

PSoC 6 CPU Subsystem
Cortex M4, DataWire/ DataWire/
with EPU Flash SRAM ROM Cortex MO+ DMA DMA Crypto
| System Interconnect: Multi-Layer Advanced High-performance Bus (AHB), Inter-Processor Communication (IPC) |

Peripheral Interconnect

| |
T T ¥ T & ¥ T T T U

Note: The contents of the block diagram in Figure 1 may vary depending on the device. Some PSoC 6 MCU parts
have only one CPU. See the device datasheet for details. This application note does not apply to single-CPU
PSoC 6 MCU devices.

Generally, all memory and peripherals are shared by all of the bus masters. Shared resources are accessed through
standard Arm multi-layer bus arbitration. Exclusive accesses are supported by an inter-processor communication
(IPC) block, which implements semaphores and mutual exclusion (mutexes) in hardware.

A dual-CPU architecture, along with the DMA and cryptography (Crypto) bus masters, presents unique opportunities
for system-level design and performance optimization in a single MCU. With two CPUs you can:

m Allocate tasks to CPUs so that multiple tasks may be done at the same time

m Allocate resources to CPUs so that a CPU may be dedicated to managing those resources, thus improving
efficiency

® Enable and disable CPUs to minimize power draw

m Send data between the CPUs using the IPC block. For more information, see code example CE216795,
PSoC 6 MCU Dual-CPU Basics.

For example, the Cortex-M0+ CPU (CMO0+) can “own” and manage all communication channels. The Cortex-M4 CPU
(CM4) can send and receive messages from the channels via CMO0+. This frees CM4 to do other tasks while CMO+
manages the communication details.

How to Use this Document

This document assumes that you are familiar with the PSoC 6 MCU architecture, and application development for
PSoC devices using the Cypress PSoC Creator IDE. For an introduction to PSoC 6 MCU, see a PSoC 6 MCU device
datasheet or AN210781, Getting Started with PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity. If you are
new to PSoC Creator, see the PSoC Creator home page.

Note: Use PSoC Creator version 4.2 or higher for PSoC 6 MCU-based designs.

Initial sections of this application note cover general concepts for dual-CPU MCUs and how they are implemented in
PSoC 6 MCU. To skip to an overview of creating a PSoC Creator project for a PSoC 6 dual-CPU MCU, go to the
PSoC 6 MCU Dual-CPU Development section.

WWW.Cypress.com Document No. 002-15656 Rev. *E 2

http://www.cypress.com/
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/an210781
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/ce216795
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/an210781
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide

o CYPRESS

a»» EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

2 General Dual-CPU Concepts

The process of developing firmware for a dual-CPU MCU is similar to that for a single-CPU MCU, except that you
write code for two CPUs instead of one. You should also consider any need for inter-processor communication.

Performance: The main advantage of having two CPUs is that you essentially multiply your CPU power and
bandwidth. With PSoC 6 MCUs, that increased bandwidth comes at a price that is frequently on par with single-CPU
MCUs. How to use that increased bandwidth depends on the tasks that your application must perform:

m Single task: A single-task application may be less of a fit for a dual-CPU MCU unless the application is large
and complex. In PSoC 6 MCU you can execute the task on one of the CPUs and put the other CPU to sleep to
reduce power.

m Dual task: This is the most obvious fit; assign each task to a CPU. Assign the task with larger computing
requirements to the higher-performance CPU, i.e., Cortex M4 in PSoC 6 MCU.

m Multiple tasks: Again, assign each task to a CPU. In each CPU, you must include a method for executing each
task in a timely fashion.

m RTOS: A complex multitasking system may be managed by a real-time operating system (RTOS). An RTOS
basically allocates a nhumber of CPU cycles to each task, depending on the task priority or whether a task is
waiting for an event. You effectively do that yourself by assigning tasks to the CPUs. Some examples of dual-
CPU RTOS architectures are:

o Each CPU has its own RTOS and its own set of tasks. Each RTOS should include a task to manage
communications with the other CPU.

o Only one CPU (CPU 1) has an RTOS and multiple tasks. The other CPU (CPU 2) is idle until CPU 1
messages it to do a specified task. CPU 2 wakes up and does the task, then messages the result back to
CPU 1. As an example, CPU 1 can be a lower-performance CPU, and it uses CPU 2, the higher-performance
CPU, to do computation-intensive tasks when needed.

Power: In a dual-CPU system, firmware can start and stop the CPUs to fine-tune power usage. In the previous
example, to reduce power, the high-performance CPU is placed into a sleep state until needed for a computation-
intensive task.

Debug: Debugging two bodies of code at the same time may be a complex process. Usually you debug code for one
CPU, then debug code for the other CPU. In addition, a device such as an oscilloscope or a logic analyzer may be
useful for monitoring communication between the CPUs.

WWW.Cypress.com Document No. 002-15656 Rev. *E 3

http://www.cypress.com/

o CYPRESS

“g@@” EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

3 PSoC 6 MCU Dual-CPU Architecture

Figure 1 on page 2 shows the overall dual-CPU architecture in PSoC 6 MCU. (For detailed block diagrams of
PSoC 6 MCU, see AN210781 and the device datasheet.) Specific features and other details related to dual CPUs are
listed in this section. For more information, see the Arm documentation sets for Cortex-M4 and Cortex-MO0+, and the
PSoC device technical reference manual (TRM).

m CPUs: Both CPUs — Cortex M4 and Cortex MO+ — are 32-bit. CM4 runs at up to 150 MHz and has a floating-
point unit (FPU). CMO+ runs at up to 100 MHz.

CM4 is the main CPU. It is designed for a short interrupt response time, high code density, and high throughput.
The CMO+ CPU is secondary; it is used in PSoC 6 MCU to implement system calls and device-level security,
safety, and protection features. CMO+ is also recommended for functions such as BLE communications and
CapSense®. In one example, the PSoC Creator BLE Component can be configured to run on either or both
CPUs, as Figure 2 shows:

Figure 2. BLE Component Configuration for Execution on Multiple CPUs

Name: BLE_1

< General |© GATT Settings |~ GAP Settings |* L2CAP Settings |~ Link Layer Setting
[Load configuration |l Save configuration

@ Complete BLE Protocol

Maximum number of BLE connections: |1 =

GAP role

Peripheral [T] Broadcaster

[7] Central [] Observer

CPU core: [Sing]e core {Complete Companent on CMO+) -

. Single core (Complete Component on CMO+)

Over-The-Ai gicle core (Complets Component on CH4)

™1 Stack And Profils

m Performance: CMO+ typically operates at a slower clock speed than CM4. The CMO+ instruction set is more
limited than that of CM4. Therefore, it may require more cycles to implement a function on CM0+, and the cycle
time is longer. Keep this in mind when deciding to which CPU to allocate tasks.

m Security: PSoC 6 MCU has several security features; see the TRM for details. To meet security requirements,
CMO+ is used as a "secure CPU". It is considered to be a trusted entity; it executes both Cypress system code
and user code. The use of CMO+ for system and security tasks may limit its availability for user applications. For
more information on secure systems, see AN221111, Creating a Secure System.

Device system calls may be initiated by either CPU, but are always executed by CMO+.

m Startup sequence: After device reset, only CM0O+ executes; CM4 is held in a reset state. CMO+ first executes
Cypress system and security code, including SROM code, FlashBoot, and Secure Image. For more information
on these code modules, see AN221111, Creating a Secure System.

After CMO+ executes system and security code, it executes user code. In the user code, CMO+ may release the
CM4 reset, causing CM4 to start executing its user code. PSoC Creator auto-generates code in CMO+ main() to
release the CM4 reset.

®m Inter-processor communication (IPC): IPC enables the CPUs to communicate and synchronize activities. The
IPC hardware contains register structures for IPC channel functions and IPC interrupts. The IPC channel
registers implement mutual exclusion (mutex) lock and release mechanisms, and messaging between the CPUs.
The IPC interrupt registers generate interrupts to both CPUs for messaging events and lock and release events.

WWW.Cypress.com Document No. 002-15656 Rev. *E 4

http://www.cypress.com/
https://developer.arm.com/products/processors/cortex-m/cortex-m4
https://developer.arm.com/products/processors/cortex-m/cortex-m0-plus
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A114026&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A114026&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/an221111
http://www.cypress.com/an221111

o CYPRESS

a»» EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

®m [nterrupts: Each CPU has its own set of interrupts. A peripheral can route its interrupt output to either or both
CPUs. All peripheral interrupt lines are hard-wired to specific CM4 interrupt inputs. Peripheral interrupts are also
multiplexed to CMO+’s limited set of 32 interrupt inputs. See Interrupt Assignment Considerations.

m Power modes: PSoC 6 MCU has several power modes that can affect either the whole system or just a single
CPU. CPU power modes are active, sleep, and deep sleep as defined by Arm. Device system power modes are
LP, ULP, deep sleep, and hibernate.

o System Low Power (LP) mode is the default operating mode of the device after reset and provides maximum
performance. While in system LP mode the CPUs may operate in any of the Arm-defined modes.

o System Ultra Low Power (ULP) mode is identical to LP mode with a performance tradeoff made to achieve
lower system current. This tradeoff lowers the core operating voltage which then requires reduced operating
clock frequency, and limited high-frequency clock sources. While in system ULP mode the CPUs may
operate in any of the Arm defined modes.

o In system deep sleep mode, all high-speed clock sources are off. This in turn stops both CPUs and makes
high-speed peripherals unusable. However, low-speed clock sources and peripherals continue to operate, if
configured and enabled by the firmware. Interrupts from these peripherals cause the device to return to
system LP or ULP mode and one or more CPUs to wake up to active mode. Each CPU has a Wakeup
Interrupt Controller (WIC) to wake up the CPU.

o System hibernate mode is the lowest power mode of the device. It is intended for applications that are in a
dormant state. The device goes through a reset on wakeup from hibernate. See Startup sequence.

o In CPU active mode, the CPU executes code and all logic and memory is powered. The system must be in
LP or ULP mode.

o In CPU sleep mode, the CPU clock is turned off and the CPU halts code execution. The system must be in
LP or ULP mode.

o In CPU deep sleep mode, the CPU requests the device to go into system deep sleep mode. When the device
is ready, it enters system deep sleep mode. In PSoC 6 MCU both CPUs must enter CPU deep sleep before
the system transitions to deep sleep. If only one CPU has entered deep sleep mode the system remains in
LP or ULP mode.

For more information on PSoC 6 MCU power modes, see AN219528, PSoC 6 MCU Low Power Modes and
Power Reduction Techniques.

® Debug: PSoC 6 MCU has a Debug Access Port (DAP) that acts as the interface for device programming and
debug. An external programmer or debugger (the "host") communicates with the DAP through the device Serial
Wire Debug (SWD) or Joint Test Action Group (JTAG) interface. Through the DAP (and subject to device security
restrictions), the host can access the device memory and peripherals as well as the registers in both CPUs.

Each CPU offers several debug and trace features as follows:

o CM4 supports six hardware breakpoints and four watchpoints, 4-bit embedded trace macrocell (ETM), serial
wire viewer (SWV), and printf()-style debugging through the single wire output (SWO) pin.

o CMO+ supports four hardware breakpoints and two watchpoints, and a micro trace buffer (MTB) with 4 KB
dedicated RAM.
PSoC 6 MCU also has an Embedded Cross Trigger for synchronized debugging and tracing of both CPUs.

PSoC Creator supports debugging a single CPU (either CM4 or CM0+) at a time. For dual-CPU debugging, use
a third-party IDE; see Debug Considerations for pVision and IAR. For more information on debugging PSoC
devices with PSoC Creator, refer to the PSoC Creator Help.

WWW.Cypress.com Document No. 002-15656 Rev. *E 5

http://www.cypress.com/
http://www.cypress.com/an219528
http://www.cypress.com/an219528
https://developer.arm.com/docs/ddi0314/latest/embedded-cross-trigger

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

4 PSoC 6 MCU Dual-CPU Development

This section shows only those aspects of PSoC Creator development that are unigque to PSoC 6 MCU dual-CPU
devices. If you are not familiar with PSoC 6 MCU or PSoC Creator, see AN210781, Getting Started with
PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity, or the PSoC Creator home page. Use PSoC Creator
version 4.2 or higher for PSoC 6 MCU-based designs.

PSoC Creator project development for a PSoC 6 MCU dual-CPU device is similar to that for any other device
supported by PSoC Creator. To create a new project, select File > New > Project. A Create Project dialog is
displayed, similar to Figure 3.

Select Target Device (A), and PSoC 6 (B). On the pull-down list (C), select <Launch Device Selector...> to see a
list of PSoC 6 devices.

Figure 3. PSoC Creator Create Project Dialog

Select project t
Choose the type of project - design, library, or workspace.

Deesign project:

(@) Target kit: B
(2) Target module
) Target device: |PSoC 6 - ||Last used: CYBCE37BZI-BLD74 VI
R 14 . Last used: CYBCE37EZI-BLDT4 C
© Library project PSoC 60
(©) Warkspace Eg:gg
PSoC 63

<Launch Device Selector. .

Figure 4 shows the Device Selector dialog. To see a list of dual-CPU devices, click the CPU category (D) and select
only CortexMOp, CortexM4.

In the PSoC 6 BLE Pioneer Kit CY8CKIT-062-BLE, the PSoC 6 MCU dual-CPU device part number is
CY8C6347BZI-BLD53.

Figure 4. PSoC Creator Device Selector Dialog

Device Selector

9] View Datasheet [F] Hide/Show Columns... *S Reset to Defaults

CortedMp, Cortexi4

CIEET TTorToRoTET | 150 1o 2T i T
E—] Cortexx0p. Corextd

CY8C6347B71-BL043 | Cortexhd oC63| 116-BGA-BLE|150|1024|288| -| 78 ¥ L
CVBC6347BZI-BLOS3 | CortexMOp, Cortexh4 | PSoC 6 | PSoC 63| 116-BGA-BLE | 150 | 1024|288| -| 78| Y w/Gestures
CYBC6347BZI-BUD33 | CortexMOp, Cortexh4 | PSoC6 | PSoC 63| 116-BGA-USB|150| 1024|288 -| 77 ¥
CVBC6247BZ1-BUDA3 | CortexMOp, Cortexh4 | PSoC6 | PSoC 63| 116-BGA-USE|150| 1024|288 -| 77 ¥
CVBC6247BZ1-BUDS2 | CortexMOp, Cortexh4 | PSoC 6 | PSof 63| 116-BGA-USE | 150|1024|288| - | 77| ¥ w/Gestures

e -

20 of 34 devices found | Clear Filters \

After selecting a PSoC 6 MCU part, the rest of the project creation process is the same as for other devices. Click
through the rest of the Create Project dialogs; PSoC Creator creates the project.

WWW.Cypress.com Document No. 002-15656 Rev. *E 6

http://www.cypress.com/
http://www.cypress.com/an210781
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/psoc-6-ble-pioneer-kit

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

The initial project windows layout (Figure 5) includes a Workspace Explorer window with the following features for
dual-CPU devices:

1. Separate main.c files — main_cmOp.c and main_cm4.c — for each CPU. Sources in the folders CMOp (Core 0)
and CM4 (Core 1) are compiled into separate binaries for the respective CPUs.

2. A Shared Files folder. Source files in this folder are compiled into both binaries.

Figure 5. PSoC Creator Initial Project Layout for Dual-CPU Devices

File Edit View Project Build Debug Tools Window Help

By L 4A- . Debug .. - % B2) Microsoft Sans Serif & CRC N T
\Workspace Explorer (L project) > I X TopDesign.cysch Component Catalog (10.. ~ 1 X
@ 3 o B
B Workspace 'MyWorkspace' (1 Projects) “'Lu ﬁ Search for.
[=HP2| Project 'MyDesign01' [CYBCB37BZI-BLD74]
ﬂiﬂ‘ :opDesi;n.cy‘::h g © Cypress | OffChip | 4 I
59 Design Wide Resources (MyDesign0L.cydwr) @ || 3 Cypress Component Catalog
i<l Pins e 188 Analog
L Analog g N #8 CapSense
, g’a DMA g -, B8 Communications
4B Clocks 1 E-gg Digital
;j Interrupts % T -@ Memory interfaces
1B System g = B Ports and Pins
"] Directives 5 B8 System
EHL CMOp (Core 0) =
@ HE&dErFME:\:E g
ML) Source Files
i ¢] main_cmOp.c g
EHED CM4 (Core 1) =
i3 Header Files
B Source Files
L-|€] main_cmd.c
EHED Shared Files
L. 0] cyapicallbacks.h
a
< 1 | v |= Page 1 4k
Notice List | Output |
Ready 0 Erors 0 Warnings 0 Notes J

The initial project layout also includes a TopDesign hardware schematic, along with an associated Component
Catalog window.

After the project is created, implement your hardware design by dragging Components onto the schematic, and
configuring and wiring them.

WWW.Cypress.com Document No. 002-15656 Rev. *E 7

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design
When schematic design entry is complete, select Figure 6. Add Generated Source to a Project
Build > Generate Application. This creates
several system source code files and folders in Workspace Explorer (1 project) S
the existing folders as well as in the new folder L
Generated Source, as Figure 6 shows.] Workspace 'MyWaorkspace' (1 Projects) E
The generated source contains drivers for each P& Project "MyDesign01' [CYS8C6347BZI-BLD53] w
Component on the schematic, as well as the i &' TopDesign.cysch :3,
Cypress Peripheral Driver Library (PDL). The G 5
PDL is a software development kit (SDK) that < Pins E
integrates device header files, startup code, and M‘L Analog 3
peripheral drivers. The peripheral drivers abstract 0 DMA §
the hardware functions into a set of easy-to-use ':'LE' Clock =
APIs. & Clocks 2

- g% Interrupts

For more information on the PDL, select PSoC -JB% System g
Creator Help > Documentation > Peripheral B Directives %
Driver Library. Also, each Component has a () CMOp (Core 0)) z
datasheet that documents the driver API for that E+E3) ARM GCC Generic 5
Component. Right-click the Component and _@ ARM IAR Generic E
select Open Datasheet.... #15 ARM MDK Generic 7
PSoC Creator creates several other files and {7y Header Files f"_.
folders, and places them in existing folders CMOp =+ Source Files
(Core 0), CM4 (Core 1), and Shared Files. These BHT) ARM GCC Generic
files generally support configuration, startup, and .{p—_-, ARM TAR Generic
linking options for PSoC Creator as well as other &£ ARM MDK Generic

IDEs. For more information on these files, see

I(DPSSOOCC 6C):.reator Help article, Generated Files L .[Q] system psoc63_cmplus.c J

(5HD CMé4 (Core 1) <
D ARM GCC Generic
EHED ARM IAR Generic
-3 ARM MDK Generic
L‘f} Header Files
EHE Source Files
& ARM GCC Generic
&3 ARMIAR Generic
-E3) ARM MDK Generic
>E’] main_crmd.c
g system_psoch3_cmd.c Y,
- Shared Files
~|€] cy_ipc_config.c)

-h] oy ipc_configh

m

g main_cmOp.c

r

-] cyapicallbacks.h

| n] system_psoch3h)

=M Generated_Source)

EHC PSoCs

B3 pd
5 cmsis

I3 devices

A drivers

F-C middleware

{3 Pins and Interrupts

_ il 1 cycodeshareexportld)

e WA

WWW.Cypress.com Document No. 002-15656 Rev. *E 8

http://www.cypress.com/

o CYPRESS

gg@e» EMBEDDED IN TOMORROW™

PSoC 6 MCU Dual-CPU System Design

4.1

Resource Assignment Considerations

All generated Component APl and PDL driver source files are available to both CPUs, same as the files in the Shared
Files folder. If code in a CPU references any API element in a generated source file, that file is compiled into the
binary for that CPU. The same file can be compiled into both binaries — see code example CE216795, PSoC 6 MCU
Dual-CPU Basics.

If the same source file is compiled into both binaries, then a function in that file may be executed simultaneously by
both CPUs. It is also possible for a Component to be accessed by both CPUs; for example, both CPUs may send
data through the same UART. Generally, Component API and PDL driver functions are “CPU-safe”, that is, can be
executed simultaneously by both CPUs. However, you should make design decisions about assigning resources to
each CPU. There are two ways to do this:

m Dedicate a resource to one CPU. A good practice is to indicate on the project schematic the CPU that “owns”
the resource, as Figure 7 shows. Include code to use the resource only in the firmware for the desired CPU.

Figure 7. PSoC Creator Project Schematic for Dual CPUs Controlling Separate Pin Components

Code executed by the Cortex-MO+
CPU core blinks this LED.

Vdd

%

©

x
o Pin_CMOp_BIlueLED

330

Code executed by the Cortex-M4
CPU core blinks this LED.
Vdd

44

(<2}

x
] Pin_CM4_RedLED

750

m Share resources between the CPUs. Code example CE216795 shows how the PSoC 6 MCU IPC block may
be used to implement a mutex to share memory between the CPUs. Use the same technique to share a
peripheral resource such as a UART.

Flash and SRAM that are allocated in a CPU’s binary are generally separate from that for the other CPU. If custom
sections and section placement are defined in the CPUs’ linker scripts, you must ensure that the sections do not
overlap. Conversely, another way to share memory is to define for each CPU custom sections with the same
address.

Note: If you have both CPUs controlling Output Pin Components that are mapped to physical pins on the same GPIO
port, use only the following functions to change the pin outputs: GPIO_Write(), GPIO_Set(), GPIO_Clr(), and
GPIO_Inv(). For more information, see the PSoC Creator Pins Component datasheet or the PDL documentation.

Www.Cypress.com

Document No. 002-15656 Rev. *E 9

http://www.cypress.com/
http://www.cypress.com/ce216795
http://www.cypress.com/ce216795

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

4.2

Interrupt Assignment Considerations

An important consideration for dual-CPU designs Figure 8. Example Schematic Design with Two Interrupts
is assigning and handling interrupts. As noted
previously, all device interrupts are available to Myl2C
CM4, and a subset of interrupts are routed 12C
through multiplexers to CMO+. You must decide
which CPU will handle each interrupt.

Let us assign interrupts in an example design. Slave
Figure 8 shows a design with two interrupts; one MyPWM
from a PWM Component, connected to an PWM
Interrupt Component MyPWM_Int; and the other
from an 12C Component. S
undrflw (]
In the Design Wide Resources window (file type compare
.cydwr), select the Interrupts tab to see all of the
interrupts in the design, as Figure 9 shows. pwm -]
In this example, the I12C Component has an MvClock lock pwm_n =
interrupt embedded in it. That interrupt is not yiloc %>C oc

interrupt{—{_» |MyPWM_Int

shown on the schematic in Figure 8; it is shown
in the Design-Wide Resources window as
Myl2C_SCB_IRQ.

Check or uncheck the boxes in the ARM CMO0+ Enable and ARM CM4 Enable columns to assign interrupts to the
respective CPUs.

Figure 9. Assign Interrupts to the CPUs

Workspace Explorer (1 project) X Start Page | TopDesign.cysch /” MyDesign01.cydwr]
& 0

I‘i'_}--jg(Design Wide Resources (MyDesignOl.cydwr) =

ARM CMO+ | ARM CMO+
Priority (1 - 3) Vector (3 - 29)

ARM CM4
Priority (0 - 7)
7

Interrupt | ARM CMO+
Instance Name Murmber Enable

MyI2C_SCB_IRQ 41]
MyPWM_Int @ a0

Interrupt "MyPWM_Int" is currently mapped to multiple cores on the device,

Bs3unos

A [adwon

1

!E_' Directives x{ﬁ pins | W\ Analog E,'E DMA _1) Clocks “ z Interrupt_s' W System !a: Directives

Each peripheral interrupt is hard-wired to CM4, so the Interrupt Number is automatically assigned by PSoC Creator
when you build the project. Because interrupts are routed through multiplexers to CM0+, you can select an ARM
CMO+ Vector for each interrupt.

Note: A warning symbol and tooltip are displayed if an interrupt is assigned to both CPUs. This is generally not
recommended; however an interrupt can be used to wake up one or both CPUs from their sleep modes.

For more information, see application note AN217666, PSoC 6 MCU Interrupts.

WWW.Cypress.com Document No. 002-15656 Rev. *E 10

http://www.cypress.com/
http://www.cypress.com/an217666

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

4.3

Debug Considerations

As noted previously, PSoC Creator supports debugging just one CPU at a time. Before starting a debug session with
PSoC 6 MCU, select the desired debug target (Debug > Select Debug Target...), as Figure 10 shows. Select the
desired CPU and click OK / Connect. To debug the other CPU, you must exit the debugger and then re-enter it with
a connection to that CPU.

Figure 10. PSoC Creator Select CPU for Debug

ll Select Debug Target £ il

% KitProg2 (CMSIS-DAP/248353) PSoC 63 CYBCE347BZ1-BLD53 (CM4)

@ PSoC 63 CYECE347BZ1-BLD532 (CMOp) g_ls_o': E-l% %ré%xﬁh%%rtexhw
Hcon (L

¥ PSoC 63 CY8CH347B-BLD53 (CM4) Cypress 1D: (xkE2072200
Revision: PRODUCTION

Target unacquired

Show all targets

OK / Connect

Recommended: develop and debug first the portions of code where the CPUs communicate with each other. After
that, code executed by an individual CPU can be debugged separately. For example, when the shared memory
project in CE216795 was developed, the portion where CMO+ sends an initial message to CM4 was developed and
debugged before subsequent portions of code were developed.

You can debug both CPUs simultaneously by using other IDEs such as pVision or IAR. To do so, you must export
your PSoC Creator project to the other IDE. PSoC Creator documents this topic in the help articles Integrating into
3rd Party IDEs, PSoC 6 Designs. Review the instructions in the help articles; the general steps are summarized in the
following sections.

WWW.Cypress.com Document No. 002-15656 Rev. *E 11

http://www.cypress.com/
http://www.cypress.com/ce216795

o CYPRESS

- EMBEDDED IN TOMORROW™

PSoC 6 MCU Dual-CPU System Design

4.3.1

Configure PSoC Creator Project
Update the Target IDEs settings in the project Build Settings, as Figure 11 shows.

For pVision, select CMSIS Pack: > Generate. Enter appropriate identifying text for the CMSIS pack in the Vendor,
Pack, and Version fields.

Recommended: select Toolchain: > ARM MDK Generic.
For IAR, you only need to select IAR EW-ARM: > Generate. (An advanced option, Generate without copying PDL

files, is also available.) Because IAR has its own compiler (not supported by PSoC Creator), the Toolchain selection
is not relevant.

Figure 11. Build Settings for Target IDEs

Corfiquration: ’Debug (Active)

(Toolchain: [ARM MDK Generic

E-CE216795_DualCoreBlinky
-- Code Generation

! . Disable
- Debug AR VAR
B Customizer Makefile: Disable -

CMSIS Pack: |Generate

Peripheral Driver Library

_ r‘u’endor: Cypress
+-CMO+ ARM MDK Generic : Blinky
B~ ChI4 ARM MDK Generic

Then build your PSoC Creator project in the usual manner. A folder Export is created in your <project>.cydsn folder,
which contains relevant files for exporting to the selected IDE or IDEs.

For uVision, after the PSoC Creator project is built, find the corresponding .pack file in the folder Export\ Pack.
Double-click the file to install it as a pVision pack, as Figure 12 shows.

Note: Do not use the pVision Pack Installer Wizard File Import function to install this pack.

Figure 12. Install pVision Pack from PSoC Creator Project

e

@v W+ CE216795_Test »|CE216795_DualCoreBlinky.cydsn | » | Export » Pack v-

Organize = w Open = Share with - New folder F

Pack Unzip: Cypress Bli

i armgec 4| Cypress.Blinky.1 1.0.pack]]
.. codegentemp || Packinstall.bash Welcome to Keil Pack Unzip
. CortexM0p [Packinstall.bat Release 5/2018
. CortexM4
. Debug . .
This program installs the Software Pack:

| BExport

M linux Cypress Blinky 1.1.0

osx Generated Software Pack ‘Blinky'. Generated by PSoC Creator 4.2,
N
. Pack

Note: if you update the PSoC Creator project, consider changing the pVision pack version number (see Figure 11)
and installing the new pack.

WWW.Cypress.com Document No. 002-15656 Rev. *E

12

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

4.3.2 Create pVision Projects
For pVision, you must create two projects: one for each PSoC 6 MCU CPU: CMO0+ and CM4. Do the following:

Recommended: create a new folder (e.g. uVisionBuild) within your PSoC Creator <project>.cydsn folder to store all
pVision project files separately from the PSoC Creator files (this is different from the IAR instructions). Within that
folder, create another new folder for CM4 object files (e.g., ObjectsM4), as Figure 13 shows:

Figure 13. New Folders for pVision Projects

. CE216795 » CE216795_DualCoreBlinky.cydsn » uVisionBuild »

Organize * = Open Include in library - Share with = Mew folder
 CE216795 | | Objectsh4 |
. Backup
. CE216795_DualCoreBlinky.cydsn
) TopDesign

. uVisionBuild

Open pVision 5.25 or later, and create a new project (Project > New pVision Project...) in the uVisionBuild folder.
Recommended: name the project based on the original PSoC Creator project name and the target CPU. For
example, for the CE216795 dual-CPU blinky project, create a pVision project BlinkyMOp for the CMO+ CPU, as

Figure 14 shows:
Figure 14. Create a pVision Project for CM0+

File name: BlinkyM0Op

Save as type: [Pro»j ect Files (*.uvproj; *.uvproj)

> Browse Folders

After you click Save, a Select
Device for Target ‘Target 1°...
dialog box is displayed. The two
PSoC 6 MCU CPUs that were

Figure 15. Select CMO+ as the Project Device

Select Device for Target Ta]

Device l
defined in the previously installed
pack (Figure 12) are displayed. Sotware Packs =
Select the CMO+ CPU, as Figure Vendor: _Cypress
15 ShOWS C“Ck OK Device: CYBCRI47BZI-BLDS3_Blinky-CortexMip)
’ ' Toolsst: ARM
Search:
Description:
¥ ARM The Cyprgss PSaC 6 is a family of 32-bit devices with the following -
B ¥ Cypress dg@denst\cs: . ;
- Digital system that includes configurable Universal Digital Blocks
= ‘)Eg PSoC 63 (LIDBs) and specific function peripherals such as PWM, UART, SPI
and [2C

& ‘)[3 CYBC6347B71-BLD53 Blin | Analog subsystem that includes 12-bit SAR ADC, comparators, op
—_— ans'lps.Caitp):Spens:f. LCD driv: an:mmofed PN
- Several types of memary elements, including and fla:
€ Cv8C6347BZ-BLDS3 | |- Programming and debug system through Serial Wire Debug (SWD)
- High-performance 32-bit ARM Cortex-M4 core with a nested vectored
intermupt controller {NVIC)
- Flexible routing to all pins

| I =
0K | Cancel Help
WWW.Cypress.com Document No. 002-15656 Rev. *E

13

http://www.cypress.com/
http://www.cypress.com/ce216795

o CYPRESS

g EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

Next, a Manage Run-Time Environment dialog box is displayed. Click Select Packs, and uncheck Use latest
versions of all installed Software Packs. Select the pack from the PSoC Creator project, as Figure 16 shows:

Figure 16. Select the PSoC Creator Project Pack

Manage Run-Time Emrimnme_

Software Component Sel. Wariant Version Description

& Ml

& cmst e o

@ Compll(T Use Iatest versions of all installed Software Packs /

Dewi

‘ = Pack Selection Version Descgftion

& FileS :

‘ Gra ARM::CMSIS excluded IEI S (Cortex Microcontroller Software Interface Standard)

3

& ’ Ne:\t ARM:: CMSIS-Driver excluded IEI CMSIS Drivers for external devices

= & pDL Cypress:Blinky fixed Izl 1.1.0 Generated Software Pack 'Blinky'. Generated by P5oC Creator 4.2,

o & use Keil: ARM_Compiler ExcludedE Keil ARM Compiler extensions for ARM Compiler 5 and ARM Compil
Keil:MDK-Middleware ExcludedE Middleware for Keil MDK-Professional and MDE-Plus

4

Walidation O
1 -l

oK I Cancel | Help |

| Resalve ([Select Packs

Click OK; the Manage Run-Time Environment dialog changes as Figure 17 shows. Select the Device Startup and
PDL Drivers, and click OK. The project is created, with a Target 1, a Source Group 1, and Device startup and PDL

files, as Figure 18 shows.

Figure 17. Select Pack Startup and PDL Driver Files

Software Component ariant Version Description
=4 Device Startup, System Setup
v Startup 110 System Startup for CY8C6347BZ1-BLD53_Blinky
=4 POL
@ 110 Peripheral Drivers Library for CY8C6347BZ1-BLDS53_Blinky
more.. ‘Select Software Packs' has been used to hide some Software Components

Figure 18. Initial Project Creation

Project
=%t Project: BlinkyM0p
=5 Targetl
[Source Group 1
@ Device
€ poL

WWW.Cypress.com Document No. 002-15656 Rev. *E 14

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

Right-click Source Group 1, and select Add Existing Files to Group ‘Source Group 1'.... Navigate to your PSoC
Creator project folder and select main_cmOp.c, cy_ipc_config.c, and all other non-system .c and assembler files
needed for your project, as Figure 19 shows. You do not have to add any .h files, startup, or system .c, or assembler
files. Click Add; the files are added to the source group in the pVision project. Click Close.

Figure 19. Add PSoC Creator Project C Source Files to the Source Group

Project a (= [v 3 |
=% Project: BlinkyM0p |
47 Targetl
‘1 Source Group 1 L armgee | TopDesign
@ Device .. codegentemp . uVisionBuild
’ POL . CortexMDp | cy_ipc_config.c
. Cortexi4 i main_cmip.c
| Export | main_cmib.c
. Generated_Source || system_psocG3_cm0plus.c
Ldar || system_psoch3_cméd.c
. mdk

File name: I"main_u:mﬂp.u:" "cy_ipc_corfig.c” Add I
Files of type: IC Source file (*.c) LI Close |

Look in:l . CE216735_DualCoreBlinky cydsn j L= |'j€ v

Now that the project is created, you must set its options. Right-click Target 1, and select Options for Target
‘Target 1°.... Confirm in the Target tab that the device, CPU, IROM1, and IRAM1 are correct for your PSoC 6 MCU
device, as Figure 20 shows. Updating other fields such as Xtal (MHz) and Operating system is optional.

Figure 20. Project Target Options
1] Options for Target T S

Device Target |O|_rtput| Listingl User I C."'C-I—I—l Asm I Linkerl Debugl Util'rtiesl

(Cypress CYSC6347BZ1-BLD53_Biinky CortexMOp)

r Code Generation
al (MHz): [12.0 ARM Compiler: IUse default compiler version 5 LI

Operating system: |None ;I
System Viewer File: [™ Use Cross-Module Optimization
BE J ™ Use MicroLIB [~ Big Endian

[™ Use Custom File

— Read/Only Memory Areas — Read/Write Memory Areas
default offchip Start Size Startup default off-chip Start Size MNalnit

~ FRomi: | | c T RaM | | r
r Rom2 | | o ~ RAM2 | |

r ROM3:| | - r mea;| |
an-chip on-chip

¥ [Romt; |B<10000000 |Qe100000 IRAM1: |[b(E[H}|}|}|}|} |{b(4gﬂ.|}|})
™ IRoM2: | | mavz [[

ok | Defauts |

WWW.Cypress.com Document No. 002-15656 Rev. *E 15

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

In the User tab, verify that the correct post-build batch file from the pack is being called. Hover the cursor over the
User Command field and confirm that postbuildCortexmOp.bat is called, as Figure 21 shows. Add other pre- and

post-build batch files, and select other options, as needed.
Figure 21. Project User Options

Device I Target I COutput I Listing User |C."C+I-I Aszm I Linker I Debugl Ltilities I

Command Items User Command Stop on Exi... 5.

=--Before Campile C/C++ File
[~ Run#l 2] Not Specified [
[~ Run#2 =] Mot Specified [
=)--Before Build/Rebuild
[~ Run#l 2] Not Specified [
[~ Run#2 =] Mot Specified [
=)--After Build/Rebuild
[¢ Run#1 |SKARM\PACK\Cypress\Blinky\1.1.0\Device\CY8C6347BZI-BLD53_Blinky\ Othd\postbuildCortexM0p.bat "2)."
[~ Run#2 =] Mot Specified ||

[~ Run ‘After-Build' Conditionally

¥ Beep When Complete [~ Start Debugging

Confirm in the C/C++ tab that the C99 mode option is checked, as Figure 22 shows. (PDL is developed based on
C99.) Add the PSoC Creator <project>.cydsn folder to the Include Paths; this provides a link to the .h files in the

PSoC Creator project. Update other options and fields as needed.
Figure 22. Project C/C++ Options

\ | Options for Target T2

Device | Target I Output I Listing | User C/Ce= I:‘\srn I Linker I Debug I Litilities |

— Preprocessor Symbals

Define: I
Undefine: I

— Language / Code Generation

[~ Executs-only Code [~ Strict ANSIC Wamings: Iﬂll Wamings 'I

Optimization: ILeveIﬂ{-OD} vl [~ Enum Container abways int [T Thumb Made
[Optimize for Time [~ Plain Charig Signed [~ No Auto Includes

[~ Split Load and Store Multiple [~ Read-Only Position Independent ¥ C99 Mode
¥ Cne ELF Section per Function [~ Read-Writs Position Independent ¥ GMNU extensions

(lﬂg:tﬂ: I..\..\CEZ‘IG.'?BS_DuaICDreEIinky.cydsn El)

Misc I
Controls
Compiler |-=99 —gnu ¢ —cpu Cortes-M0+ -D__EVAL i -g -00 —apcs=interwork —split_sections -|
control |../../CE216795_DualCoreBlinky cydsn
string

WWW.Cypress.com Document No. 002-15656 Rev. *E 16

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

Confirm in the Linker tab that the R/O Base and R/W Base fields are correct for your PSoC 6 MCU device, as Figure
23 shows. Select the appropriate Scatter File from your PSoC Creator project folder.

Figure 23. Project Linker Options

Device | Target | Output | Listing | User I CJ'CH' Asm Linker | Debug | |tilties |

[Use Memory Layout from Target Dialog ¥/0 Base: I
[~ Make RW Sections Position Independert R/O Base: I[k‘]DDDDDDD
Make RO Sections Position Ind. dert
[~ Make ions Position Indepen e IW

[~ Dont Search Standard Libraries
[Report might fai’' Conditions as Emors

disable Wamings: I

Seatter
File

Misc
controls

Linker |-cpu Cortex-M0+ =0
control |-strict —scatter . \cy8cho?_cmiplus scat”
string

ok | Defauts |

Connect the CY8CKIT-062-BLE USB port to your computer. Press the kit button SW3 to put KitProg2 into CMSIS-
DAP mode; see the kit guide for details. This allows debugging without using any external probes.

In the Debug tab, select Use CMSIS-DAP Debugger, as Figure 24 shows. Click Settings, select KitProg2 CMSIS-
DAP, and confirm that all other settings are at the defaults shown. Click OK and go back to the Options dialog.

Figure 24. Project Debug Options

De\ricel Target I OLrtputI Listing I User I CJ'CHI Asm I Linker Debug | Litilities I

" Use Simulator with restrictions Settings | (6‘ Use: ICMSIS-DAP Debugger | Settings D

CMSIS-DAP Cortex-M- =)

Debug ITIEIce I Flash Downloadl Pack I

—CMSIS-DAP - JTAG/SW Adapter — —SW Device
[LI) IDCODE | Device Name |
Seral No: [DBZTOETT0T2178 SWDIO | 3 xEBAD2477 ARM CoreSight SW-DP
Firmware Version: |1 10

7 Sw) Pat: lm & Automatic Detection ID CODE: I

" Manual Configuration Device Name: I
Max[lock:lWMHz vl

Add | Deletel Updatel AP ID:(D1

— Debug
Connect & Reset Options Cache Options Download Options

Comnect: [Nomal v | Reset:[VECTRESET (De v| | | I Cache Code I” Verify Code Dowrload
¥ Reset after Connect W Cache Memory I” Dowrload to Fash

[~ Log Debug Accesses | Stop after Reset

WWW.Cypress.com Document No. 002-15656 Rev. *E 17

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

In the Utilities tab, confirm that Use Debug Driver is checked, and then uncheck Update Target before Debugging.
Click Settings, and uncheck all Download Function boxes, as Figure 25 shows. Click Do not Erase. Click OK and
go back to the Options dialog. A warning “Nothing to do ... “ is displayed; click OK. The application will be loaded by
the CM4 project. Click OK to save and close the options settings.

Figure 25. Project Utilities Options

Davice I Targetl Output I Listing I User I C."'C-I—i-l Asm | Linker | Debug Utities |

Configure Flash Menu Command

' |Jse Target Driverfor Flash Programming

— Use Debug Driver — Settings [~ Update Target before Debugging

" CMSIS-DAP Cortex-M Ta |

Debugl Trace Fash Download | Pack I

¥ Use Debug Driver

cDt:wrﬂoad Function RAM far Algorithm
Lopn ¢ EmseFulChip [Progam
i;;i (" Erase Sectors | Verfy Start: |(D3000000 Size: |[00001000

* DonotErase [~ Resstand Run

— Programming Algorithm

Description | Device Size | Device Type | Address Range
CYBCEee7 ™ On-chip Fash 10000000H - 100FFFFFH

Repeat the previous steps and create a second project for CM4.

Recommended: name the project based on the original PSoC Creator project name and the target CPU. For
example, for the CE216795 dual-CPU blinky project, create pVision project BlinkyM4p; see Figure 14. Configure the
project in the same manner as the CMO+ project, with the following differences:

® The CM4 project must be in the same folder as the CMO+ project; in this case, uVisionBuild. See Figure 14.
m Select the CM4 CPU from the previously installed pack; see Figure 15.

= Navigate to your PSoC Creator project folder and select main_cmé4.c, cy_ipc_config.c, and all other non-system
.c and assembler files needed for your project, as Figure 19 shows. You do not have to add any .h files, startup,
system .c, or assembler files.

® |n the Options dialog, Output tab, click Select Folder for Objects..., and select the ObjectsM4 folder that you
created; see Figure 13.

® |nthe Options dialog, C/C++ tab, add - -fpu=fpv4-sp to Misc Controls; see Figure 22.

WWW.Cypress.com Document No. 002-15656 Rev. *E 18

http://www.cypress.com/
http://www.cypress.com/ce216795

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

m In the Options dialog, Linker tab, select the “cm4_dual” scatter file, as Figure 26 shows. The CM4 project will
contain code for both CPUs. Add - -fpu=fpv4-sp to Misc Controls.

Figure 26. Linker Options for CM4 Project
(L] Options for Target =)

Device | Target I Output I Listing | User | C."CHI Asm Linker | Debug | Ltilities I

[~ Use Memory Layout from Target Dialog ¥/0 Base: I
I~ Make RW Sections Position Independent R/O Base: I{HDDDDDDG
I~ Make RO Sections Posttion Independent i W

™ Dont Search Standard Libraries
¥ Report might fail Conditions as Emors

disable Wamings: I

Scag?r [\cyBcho_cmd dual scat
e

Misc —fpu=fpvd-sp
controls

Linker |-cpu Cortex-M4fp *.0
control |-strict ~scatter . MoyBobod_cmd_dual scat”
string

® |n the Options dialog, Debug tab, Target Driver Setup, select VECTRESET for the Reset option; see Figure 24.

m |n the Options dialog, Utilities tab, confirm that Update Target before Debugging is checked, as Figure 27
shows. Set the RAM for Algorithm values as indicated. Checking Reset and Run is optional but convenient.

Figure 27. Utilities Options for CM4 Project

ommormaroar 5

Device I Target I Outputl Listingl User I C..-"CHI Asm I Linkerl Debug tilties |

Corfigure Flash Menu Command

' se Target Driver for Flash Programming V¥ Use Debug Driver

— Use Debug Driver — Settings [V Update Target before Debugging
[CMSIS-DAP Cortex-M T: L)

Debug I Trace Flash Download | Pack I

— Download Function — RAM for Algorithm
LaAD " Erase Ful Chip ¥ Program
g © EreseSectos 7 Verfy Start: [(x08002400 Size: [(x0008000
¢ Donot Erase [Reset and Run

ing Algorithm

Description | Device Size | Device Type | Address Range
CYBCET M On-chip Flash 10000000H - 100FFFFFH

Start: I

Add I Remove |

Cancel I

WWW.Cypress.com Document No. 002-15656 Rev. *E 19

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

Finally, create a pVision workspace (Project > New Multi-Project Workspace...), named for example Blinky, in the
uVisionBuild folder. Add the two created projects to that workspace. The created workspace and projects, and the
corresponding files, should be similar to Figure 28.

Figure 28. Resultant pVision Project Window and Project Files

Project 1 B EEF—- |
=G Workspace

=% Project: BlinkyM0p /(:-? @ | | « CE216795_DualCoreBlinky.cydsn » uVisionBuild » - Search uVisi.

=45 Targetl

Organize « Include in library = Share with - Mew felder B o« [.@.
- Source Group 1
| cy_ipc_config.c 4 CENG7O5 DualCoreBlinky.cydsn i) Listings || BlinkyM4.uvopte
] main_em0p.c i anmgcc | Objects @] BlinkyM4.uvprojx
Device . codegentemp | ObjectsMé
w4 PDL | CortexMip s
- [Project BinkyMa | b Cortexhit] Blinky.uvmpw
Ed Targetl ! Export [1 || Blinky.uvmpw.uvguimkea
[=-F Source Group1 . Generated_Source || BlinkyMOp.uvguicmkes
a q,r_?pc_conflg.c i 1ar || BlinkyMOp.uvoptx
Djev:::m_cm-’l.c . mdk . || BlinkyM0p.uvprajx
. TopDesign B BlinkyM4.build_log.htrm

w4 PDL | uVisionBuild

|| BlinkyM4.uvguicmkea

J Listings
13 items

Build the projects in sequence; build the CMO+ project first. Note that pVision has a batch build feature to automate
the process. After building is successfully completed, right-click the BlinkyM4 project and set it as the active project.
Then test your build options by (1) erasing flash (Flash > Erase), and (2) downloading the project (Flash >
Download) and confirming correct operation. If you did not select Reset and Run (see Figure 27), you must press the
kit reset button (RST / SW1) to start operation.

Note: If you change any code in the CMO+ project, you must rebuild both projects. Note that pVision has a batch
build feature to automate the process.

WWW.Cypress.com Document No. 002-15656 Rev. *E 20

http://www.cypress.com/

A
7

-

CYPRESS

EMBEDDED IN TOMORROW™

PSoC 6 MCU Dual-CPU System Design

4.3.3

Debug pVision Projects

Start debugging with the CM4 project — downloading the CM4 project installs code for both CPUs. Set the CM4
project as the active project, download it if needed, and click Debug > Start/Stop Debug Session to start debugging.

The pVision window appears similar to Figure 29:
Figure 29. CM4 Debug Window

SVCS Window Help

Fae|[@) e oo e|[E)

File Edit Wiew Project Flash Debug Peripherals Tools

N Eda@| + 2@ PER]
® Bl eee s > oEEEES-

Project o Disassembly

e i | @
Z-@- - E-| e

» B

oA WorkSpace
=% Project: BlinkyM0p
53 Targetl
=55 Source Group 1
|1 ey_ipc_config.c
ij main_cmip.c
€ Device
& roL
=% Project: BlinkyM4
B4 Targetl
=55 Source Group 1
| ey_ipc_config.c
ij main_cmd.c
€ Device
@ poL

2l

63:
Ox10081434
Ox10081438
Ox1008143C
Ox1008143E
Ox10081440

feea AN AAN

L |

|_'] main_cmd.c

F24030ES
F7FFFDDC
ETEL
0000
1450

anno

MOVW
BL.W

Cy_SysLib Delay (997/*msec*/):

r0, #0x3ES

Cy_SysLib Delay (Ox10080FF4)
0x10081414

0x0000

0x1430

faeaAng

8 cy_syslib_mdk.s 8 oy_syslib.c

35
13
37
38
39
40
41
42
43
44
45
46
47
48

]

E Project = Registers
Call 5tack + Locals

MName

W main

Disclaimer: CYPRESS MAFES NCO WARRANTY OF ANY KIND, EXPRESS CR IMFLIED, W
REGARD TC THIS MATERIAL, INCLUDING, BUT NCT LIMITED TC, THE IMPFLIED

WARRANTIES OF MERCHANTABILITY AND FITWESS FCOR & PRRTICULAR FURFCSE.

Cypress reserves the right to make changes without further notice to the
materials described herein. Cypress does not assume any liability arisimg
of the application or use of any product or circuit described herein. Cyp
does not authorize its products for use as critical components in life-=
systems where a malfunction or failure may reasonably be expected to res
significant injury to the user. The inclusion of Cypress' product in a 1:
support systems application implies that the manufacturer assumes all ri:
such use and in doing so indemnifies Cypress against all charges. Use ma:
limited by and subject to the applicable Cypress software license agreems

#include "project.h”
int main (void)
B{

_ enable irg(); /#* Enable global interrupts. */

/* Place your initialization/startup code here (e.g. MyInst_Start(}) *,
/* Pins in PSoC Creator schematic are auto-initialized. No need to cal]
a GPIO init function. */

for(::)

{
/* Place your application code here. */
Cy GPIO Inv(Pin CM4 RedLED 0 PORT, Pin CM4 RedLED 0 NUM): /* toggle
Cy SysLib Delay(927/*msec*/);

f*

[] END OF FILE =/

<

i |

Location/Value

(0x00000000

(1 Call Stack + Locals | @ Trace Exceptions | 5 Event Counters

Memaory 1

CMSIS-DAP Debugger

If you are running the CE216795 dual-CPU blinky project, set a breakpoint at line 63, Cy_Syslib _Delay(). Then
repeatedly click Debug > Run, and the red LED toggles on each stop at the breakpoint.

Www.Ccypress.com

Document No. 002-15656 Rev. *E 21

http://www.cypress.com/
http://www.cypress.com/ce216795

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

Now open a second instance of pVision and load the same workspace. Both instances share the kit connection and
the PSoC 6 MCU debug access port (DAP). Make the CMO+ project active, and start a debug session. Set a
breakpoint at line 63, Cy_Syslib_Delay(). Then repeatedly click Debug > Run, and the blue LED toggles on each
stop at the breakpoint.

Note: Executing the Cy_SysEnableCM4() function call at line 55 causes CM4 to start running again. Go to the CM4
window, click Debug > Stop, then Debug > Run. CM4 runs to the breakpoint again.

It helps to place the instance windows side by side on your desktop. The windows appear similar to Figure 30. Click
in the appropriate window to perform a debug operation on the desired CPU. Note that breakpoints can be set
separately for each CPU. You can read and update the same memory addresses from either window.

Figure 30. pVision Dual-CPU Debugging

10 CAlsersmies Deskop CELET39.CETS DvaCorbinky orionbuidBoiMboprop- oo | = = & TR CUnerimienDekiopce : e |
e tde View PP Debug.PspherToasSYCS Wadow. e [ric e vew i s DxbuPeiphenis ook, S1cS.- windem: et
Sda| al - |r | == Fas@Jecca@ll "sda| a | | == e nle Ae@E e o el[@)
Flro ween ¢ DESERS-ON3- Frolwere o | DEIEEI-OD23
olec 0@ Dument) o & Dssssembly = |

o Project
- 3@ wonspace
5% Project BiinkyMOp

3@ wodspace

5% Project BlinkyM
oject BlinkyMip elay (0X10080FF4)

@& P0L

= %5 Project BlinkyMd

« » 68
Wrojet | E ¢

‘ > P
D Projec | B regote «
Call Stack « Logals » I con stad - Locals « @
Name Location/Value Type Name Location/Value Type

@ main 000000000 i) @ main 0100000000 ntf)
acon Stack - Locats [T F-] =] Giconstact - Loeats [T

Debug: sisve Made CASIS-DAP Debugoer
| S —
w on T e % S T D 2aPM

WWW.Cypress.com Document No. 002-15656 Rev. *E 22

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

4.3.4 Create IAR-EW Projects

For IAR Embedded Workbench (IAR-EW), you must create two projects: one for each PSoC 6 MCU CPU: CM0+ and
CM4. Do the following:

Note: The IAR-EW project files should be created in your PSoC Creator <project>.cydsn folder. Do not create a
separate folder within your PSoC Creator <project>.cydsn folder (this is different from the pVision instructions).
Recommended: add a tag such as “IAR_" to each project and workspace file name, to distinguish the IAR-EW files
from the PSoC Creator files in the same folder.

Open IAR Embedded Workbench for ARM 8.22 or later, and create a new project (Project > Create New Project...).
In the Create New Project dialog (Figure 31), confirm that the Tool chain is Arm, select the Empty project template,
then click OK.

Figure 31. IAR Embedded Workbench Create New Project Dialog

Tool chain: [Arm

Project templates:

21 Esternally built executable
/% CMSISPack example
/% Empty CH5ISPack project

Dezcription:

Creates an emply project,

0K] [Cancel]

Recommended: in the Save As dialog (Figure 32), name the project based on the original PSoC Creator project
name and the target CPU. For example, for the CE216795 dual-CPU blinky project, create a pVision project
IAR_BIlinkyMOp for the CMO+ CPU.

Figure 32. Create an IAR Embedded Workbench Project for CMO+
© . TN T

File name: 14 p

Save as type: [Pruject Files (*.ewp]

* Browse Folders

WWW.Cypress.com Document No. 002-15656 Rev. *E 23

http://www.cypress.com/
http://www.cypress.com/ce216795

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

Select Tools > Options and make sure that Enable project connections is checked. Click OK. Then select
Project > Add Project Connection.... In the next dialog, select Connect using IAR Project Connection, and click
OK. Then select the ...CortexMOp.ipcf file, as Figure 33 shows. Click OK, and several folders and files are added to
the project in the Workspace window.

Figure 33. Select IAR Project Connection File from PSoC Creator Project Export Folder
K] Coiom5 DulCorlin.cyisn » Bpott » - | 5

Organize « Mew folder

| BLE ANs
| CE220167_BLE_UI ! e
. CE220331 BLE ULRTOS ||| CE216795_DualCoreBlinkyCortexM0p.ipcf |

{ PSoC4 | | CE216795_DualCareBlinkyCortexhM.ipcf
| Test_P6

1) BLE_OTA_UpgradableStackExamp| |
1) CE220167_BLE_Ulzip
. Bootloader Wehinar
, CE216795
. Backup
, CE216795_DualCoreBlinky.cydsn

| armgcc -

) linux

File name: CE216795_DualCoreBlinkyCortexM0p.ipcf - ’L‘\R Project Connection File (% v]

[open |v] [canca |

Now that the project is created, you must set its options. Right-click the project, and select Options.... Confirm in the
Options dialog, Build Actions section that postbuildCortexMOp.bat is called, as Figure 34 shows.

Figure 34. Select PSoC Creator Post-Build Batch File
[Options for node ‘IAR_Bin =

Category:

General Options
Static Analysis

Runtime Chedking
C/C++ Compiler Build Actions Configuration
Assembler
Pre-build command line:

Qutput Converter
Custom Build E]

Post-build command line:
Linker "$PROJ_DIRS\.\Export{postbuildCortexMip bat) STARGET_PATH [.. |

Debugger
Simulator
CADI
CMSIS DAP
GDE Server
I-et/TTAGet
Jink/1-Trace
TI Stellaris
Mu-Link
PE micro
STALINK
Third-Party Driver
TI MSP-FET
TIXDS

[(] 8][Cancel]

In the Debugger section, Setup tab, select the CMSIS DAP driver. In the Download tab, check Suppress
download. In the CMSIS DAP section, Setup tab, set Reset to Disabled (no reset). The application will be loaded
by the CM4 project. In the Interface tab, select SWD. Click OK.

WWW.Cypress.com Document No. 002-15656 Rev. *E 24

http://www.cypress.com/

AR,

w CYPRESS

- EMBEDDED IN TOMORROW™

PSoC 6 MCU Dual-CPU System Design

Repeat the previous steps and create a second project for CM4. Recommended: name the project based on the
original PSoC Creator project name and the target CPU. For example, for the CE216795 dual-CPU blinky project,
create IAR-EW project IAR_BlinkyM4; see Figure 32. Configure the project similar to the CMO+ project, with the

following differences:

m The CM4 project must be in the same folder as the CMO+ project; in this case, your PSoC Creator
<project>.cydsn folder. See Figure 32.

m Select the ...CortexM4.ipcf file; see Figure 33.

® |n the Options dialog, General Options section, Output tab, change the output directories for object and list
files, as Figure 35 shows. Do not change the executables/libraries output folder.

Figure 35. Unique Output Folders for CM4 Project

Category:

General Options

Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDE Server
I-jet{TTAGjet
J-Linkf1-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Library Options 2| MISRAC:2004

MISRAL:1958

Target | Output | Library Corfiguration I Library Options 1

Output file

@ Executable

() Library

Output directories
Executables/librares:
Debug'\Exe

Ohbject files:
DebugM4MOhj
List files:
Debug M4 List

] [Cancel

® |nthe Build Actions section, confirm that postbuildCortexM4.bat is called, see Figure 34.

m In the Debugger section, Setup tab, select the CMSIS DAP driver. In the CMSIS DAP section, Setup tab,
confirm that Reset is set to System (default). In the Interface tab, select SWD. Click OK.

Www.Ccypress.com

Document No. 002-15656 Rev. *E

25

http://www.cypress.com/
http://www.cypress.com/ce216795

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

Select File > Save All. All files for both projects are saved, and a workspace file is automatically generated. In the
Save Workspace As dialog, create an IAR-EW workspace, named for example IAR_BIlinky, in your PSoC Creator
<project>.cydsn folder. The created workspace and projects, and the corresponding files, should be similar to Figure
36. The files and folders generated by IAR-EW are highlighted.

Figure 36. Resultant IAR Embedded Workbench Project Window and Project Files
‘Workspace v ax —‘

|4R_BlinkyM4 - Debug b/

» CE216795 » CE216795 DualCoreBlinky.cydsn »

Files & .
B I IAR_Blinky Organize = = Open Share with » New folder #- 0 @
= @ IAR_BlinkyM0p - Debug v
| -® i CE216795_DusiCoreBlinky . GEMIEI i armgee || CE216785_DualCoreBlinky.cyfit ©]1AR_Blinky.eww
| [CE216795_DualCoreBlinkyTorexhDp.ipcf Backup codegentemp] CE216795_DualCoreBlinky.cyprj |_|IAR BlinkyMOp.dep
| @ i Output . CEZI605\ Dl R kycide | CortedMOp || CE216795_DualCoreBlinky.rpt |_|IAR BlinkyM0p.ewd
l—E—‘}_E e ey ! C;511617597:5‘1[:::‘(U'ESHH'EE‘MEW’Y‘Y““ Cortexhi4 B [EZIETQS_D.uaI[urEEImky_Ummg‘html ‘_‘IAR_BIfnkyMUp.Ewp
|— O CE216795_DualCareBlinkyCortextdd.ipct - Debug | cy_ble_configh || IAR_BlinkyMOp.ewt
& Output CEA1EME k=t _ Debughd | cy_ipc_config.c __|1AR_Blinkyh4 dep
CE216795_DualCoreBlinky.cydsn Eort B AR BlinkyMi.end
CE216795_DualCoreSharedMemory.cydsn |g‘ Generated_Source | qyBebT_cmOplus.icf | 1AR_BlinkyWM.ewp
B oatloadey o B] cyBesoT_cmOplus.Id __|IAR Blinkyhd ewt
CE-ILO_Trim mdk 2] cyBebd_cmbplus.scat | main_cm0p.c
Clocks.cydsn settings | cyBebnd_cmd_dual.ick | main_cmé.c
Code SRAM | TopDesign) cyBeiaT_cmd_dualld | system_psoct3.h
Backup |BUILD.log] cyBebo?_cmd_dual.scat | system_psoc63_cm0plus.c
Code_SRAM.cydsn || CE216795_DualCoreBlinky.cycdx | cyapicallbacks.h | system_psoc63_cmé.c
Counting-Timing AN | CE216795_DualCoreBlinky.cydwr || |IAR Blinky.custom_argvars

CSP_Btldr_CY8C5266FNI-LP205.cydsn adi
13 items selected

Date modified: 5/21/2018 10:38 AM

Connect the CY8CKIT-062-BLE USB port to your computer. Press kit button SW3 to put KitProg2 into CMSIS-DAP
mode; see the kit guide for details. This allows debugging without using any external debug probes.

Build the projects in sequence; build the CMO+ project first. Note that IAR-EW has a batch build feature to automate
the process. After building is successfully completed, right-click the BlinkyM4 project and set it as the active project.
Then confirm that your build options are correct, by (1) erasing flash (Project > Download > Erase memory), and
(2) downloading the project (Project > Download > Download active application) and confirming correct operation.
After downloading, press the kit reset button (RST / SW1) to start operation.

Note: When erasing flash, you typically only need to erase PSoC 6 MCU application flash (0x1000 0000 —
0x100F FFFF), as Figure 37 shows:

Figure 37. IAR Embedded Workbench Erase Memory Dialog for PSoC 6 MCU

Flash loader Range

o~
rogram Files (x86)\[AR Systems\Embedded Warkbench 8.0%arm\config\flashloader \Cypress\FlashCYBCEx. .. 0x10000000 - Ox 100 L
rogram Files (x86)\IAR Systems\Embedded Workbench 8.0%rm\configiflashloader\Cypress\FlashCY8Csx.., 0x14000000 - 0x 14007FFF |

rogram Files (x868)\AR Systems\Embedded Waorkbench 8.0%armiconfig\flashloader \Cypress\FlashCY8CEx. .. Ox16000800 - Ox 16000 —
rogram Files (x86)\[AR Systems\Embedded Waorkbench 8.0%armiconfig\flashloader \Cypress\FlashCY8CEx. .. 0x16001a00 - 0x 1600 1bff

rogram Files (x86)\AR Systems\Embedded Waorkbench 8.0%armconfig\flashloader \Cypress\FlashCY8CEx. .. 0x16005a00 - Ox 160065fF ™
[l | 3

l Erase all][Erase][Cancel]

Note: If you change any code in the CMO+ project, you must rebuild both projects. Note that IAR-EW has a batch
build feature to automate the process.

WWW.Cypress.com Document No. 002-15656 Rev. *E 26

http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

4.3.5

Debug IAR-EW Projects

Reopen the options for the CM4 project, and go to the Debugger section, Multicore folder. PSoC 6 MCU has
different cores, i.e., CMO+ and CM4, which is referred to as "asymmetric multicore". Therefore, fill in the fields in the
Asymmetric multicore section as Figure 38 shows. Checking Enable multicore master mode makes the CM4 the
master for download and debugging purposes. Do not change the Port.

Figure 38. Set Up Multicore Debugging

Cateqgory: Factary Settings

General Options

Static Analysis

Runtime Checking
CJC++ Compiler | Setup | Download | Images | Exdra Options | Mutiicore | Plugins |
Assembler
Output Converter
Custom Build Mumber of cores:

Build Actions
Linker (" Asymmetric multicore

Enable multicore master mode

Simulator
CADI Port: 53461

CMSIS DAP Siave workspace: #5_DualCoreBlinky cydsn'\ IIEGRE .
GDE Server
Iet/TTAGjet Slave project: I1AR_BlinkeyMp
J-Link/J-Trace
TI Stellaris
Mu-Link [] Attach slave to running target
PE micro

ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Symmetric mutticors

Slave corfiguration: Debug

Ok]l Cancel l

Select File > Save All to save the project options changes. Then start debugging by selecting either Project >
Download and Debug or Project > Debug without Downloading. A second (slave) instance of IAR Embedded
Workbench is automatically opened for the CMO+ project. Both instances share the kit connection and the
PSoC 6 MCU debug access port (DAP).

In the slave instance, set a breakpoint at line 63, Cy_Syslib_Delay(). Then repeatedly click Debug > Go, and the
blue LED toggles on each stop at the breakpoint.

Click anywhere in the CM4 instance window and repeat the process. The red LED toggles on each stop at the
breakpoint.

WWW.Cypress.com Document No. 002-15656 Rev. *E 27

http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

It helps to place the instance windows side by side on your desktop. The windows appear similar to Figure 39. Click
in the appropriate window to perform a debug operation on the desired CPU. Note that breakpoints can be set
separately for each CPU. You can read and update the same memory addresses from either window.

Figure 39. IAR Embedded Workbench Dual-CPU Debugging

) 147 Biy -1 = I etk - Siove - 4R Embedded Workbench IDE - Arm 8222 T=E] =
Fie Edt view Projet Debug Dissmembly CMSEDAP Tosk Window Meip P fdt View Projec Debug Dissmembly (MSSDAP Tools Window Help
DD EM@ & %KD DC = $Q>8=< Q> R@®w G o i oc DOES & 40 DC =< Q>%=<0 AOE G Sisisim o M
worspace = B X | maimcmtc x womspace R T ————— -
\5_Binkybdd - Debug | | maing) e fu
- + roreign), United st - ¢ foseion) nitad States cOpVIiGat lars 45d Iniernationel ety provisions. -
+ Cypress hereby * Cypress herevy guan nsee 3 personal, nea-ex nen-transterable
v v
softwars 1n suppo
Cyprass integracea
v v
E216795_DusiCor... £216795_DusiCor...
ulput ulput
rer assumes all risk of
erges. Us= may be
sincinae “project.nt
% int main(veid) % int maiaveid)
i 1
_enable_tra0) manta_tza0:
pdeted if CN¢ memory layout is chang
jo Blaze your £y SyeEo ot (- RTEN 4 AEFLADOR) L
* Pias in PSoC O %
a4 GPIO init fw /% Place your initialization/startup cods here (e.g. MyInst Start()} +/
foriis) for (sl
i (=
7+ Place your application cods hare. 7 47 Place
cy_aw 1n_CH_RedLED 0_PORT, Fin_CHi_RedlED_0_WTM): /* & Cy_6FI0_Tnv (Fin_CHOp_SLueLED O_FORT, Fin_CHOp_BluelED_ 0 WM): /* toggle the pin
L] L]
1 1
1 1
P /o) =0 oF FILE 4/
| o + Dverem 1AR_BlkybiOn | WP Birkgd 3 i
Debug Log Debug Log -ox
Log Lag B
Mon by 21, 2018163518 MuiCore: Synchionous core execution DISABLED Mon May 21. 2018 163906 Breskpont it Code @ main_cmOp 63 9. type: deteul (suts)
Mon My 21, 2011638 55: Breakpoimt hit Codle @ main_cmd 639, type: default (auta) Mon May 21. 2018 15:39.07- Breakpoint it Code @ main_cmbp 3.9, type: default (2utc)
Mon May 21, 2018 16 33 58 Breakpoint hit Code (@ main_cmd c63 9 ype: default (auio) Mon My 21, 2018163918 Lowl evelReset{software, delay 200)
Mon My 21. 2016 16.39 00 Ereskpomthit Coda @ mam_cmd 639, ype. deleult o) Mon May 1. 201816918 Targetreset
Mon biay 21, 201816:39.01: Breakpoint hit Code @ main_cmd <639, ype: defaul (auto) Mon May 21, 2018 16:3921 Code @ main_cmip, 639,
Won May 21, 2018163915 LowdevelResel{softwars. deiay 200) Mon May 21. 2018 16:39.25 LowLevelReset{soltwnre, deley 201) B
Mon Mey 21, 2018 163915 Target reset Mon Mary 21, 2018 1639 25 Target reset -
1n5t Col1

B

You can stop debugging in either window; debugging is ended for both CPUs. Press the kit reset button (RST / SW1)
to restart kit operation.

WWW.Cypress.com Document No. 002-15656 Rev. *E 28

http://www.cypress.com/

o CYPRESS

a»» EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

5 Summary

This application note has shown how to use and optimize your firmware and hardware designs for the dual-CPU
feature in PSoC 6 MCUs.

Another way to optimize your PSoC 6 MCU design is based on the fact that the PSoC family devices are designed to
be flexible, and enable you to build custom functions in programmable analog and digital blocks. For example,
PSoC 6 MCU has the following peripherals that can act as “co-processors”:

® DMA Controllers. Note that the most common CPU assembler instructions output by C compilers are MOV, LDR,
and STR, which implies that the CPU spends a lot of cycles just moving bytes around. Let the DMA controllers
do that instead.

Note: The PSoC 6 MCU DMA controllers have an extensive set of features that enable you to construct complex
data transfer and control systems that are independent of the CPUs. Software support of these features is
provided by both a PSoC Creator DMA Component and an API in the PDL. For more information, see the DMA
Component datasheet and the PDL documentation.

m Crypto Block. This block offers hardware acceleration for symmetric and asymmetric cryptographic methods
(AES, 3DES, RSA, and ECC) and hash functions (SHA-512, SHA-256). It also has a true random number
generator (TRNG) function. Software support for these features is provided by an API in the PDL; see the PDL
documentation.

m Universal Digital Blocks (UDBs). There are as many as 12 UDBs, and each UDB has an 8-bit datapath that can
add, subtract, and do bitwise operations, shifts, and cyclic redundancy check (CRC). Datapaths can be chained
for word-wide calculations. Consider offloading CPU calculations to the datapaths.

m UDBs also have programmable logic devices (PLDs) which can be used to build state machines; see for
example the Lookup Table (LUT) Component datasheet. LUTs can be an effective hardware-based alternative to
programming state machines in the CPU, for example by using C switch / case statements.

In addition, two GPIO ports include Smart 10, which can be used to perform Boolean operations directly on
signals going to, and coming from, GPIO pins.

m Other smart peripherals include serial communication blocks (SCB), counter/timer/PWM blocks (TCPWM),
Bluetooth Low Energy (BLE), 12S/PDM audio, programmable analog, CapSense®, and energy profiler. Use these
peripherals to further offload processing from the CPUs.

PSoC Creator offers many Components, and extensive APIs in the PDL, for support of the peripherals’ functions.
This allows you to develop an effective multiprocessing system in a single chip, offloading a lot of functionality from
the CPUs. This in turn can not only reduce code size, but by reducing the number of tasks that the CPUs must
perform, presents an opportunity to reduce CPU speed and power consumption.

For example, you can implement a digital system to control multiplexed ADC inputs, and interface with DMA to save
the data in SRAM, to create an advanced analog data collection system with zero usage of the CPUs.

Cypress offers extensive application note and code example support for PSoC peripherals, as well as detailed data in
the device datasheets, PDL documentation, and technical reference manuals (TRMs). For more information, see
Related Documents.

WWW.Cypress.com Document No. 002-15656 Rev. *E 29

http://www.cypress.com/
http://www.cypress.com/documentation/code-examples/psoc-6-mcu-code-examples

o CYPRESS

a»» EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

6 Related Documents

For a comprehensive list of PSoC 6 MCU resources, see KBA223067 in the Cypress community.

Application Notes

AN210781 — Getting Started with PSoC 6 MCU Describes PSoC 6 MCU with BLE Connectivity devices and how to build
with Bluetooth Low Energy (BLE) Connectivity your first PSoC Creator project

Describes what is required to create a secure system, including the boot

AN221111 - Creating a Secure System L :
process from reset to application execution

A guide in developing projects that use interrupts. Includes advanced

AN217666 — PSoC 6 MCU Interrupts interrupt concepts such as interrupt latency, code optimization, and debug
techniques.

AN219528 — PSoC 6 MCU Low Power Modes Describes how to use the PSoC 6 MCU power modes to optimize power

and Power Reduction Technigues consumption.

Code Examples

Demonstrates the two CPU cores in PSoC 6 MCU doing separate
CE216795 — PSoC 6 MCU Dual-CPU Basics independent tasks, and communicating with each other using shared
memory and the inter-processor communication (IPC) block.

PSoC Creator Component Datasheets

Interrupt Supports generating CPU interrupts from hardware signals

Device Documentation

PSoC 6 MCU: PSoC 63 with BLE Datasheet PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual

Development Kit Documentation

CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit

About the Author
Name: Mark Ainsworth
Title: Sr. Principal Applications Engineer

Background: Mark Ainsworth has a BS in Computer Engineering from Syracuse University and an MSEE
from the University of Washington, as well as many years of experience designing and
building embedded systems.

WWW.Cypress.com Document No. 002-15656 Rev. *E 30

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14644
http://www.cypress.com/AN210781
http://www.cypress.com/an215656
http://www.cypress.com/an219434
http://www.cypress.com/an219528
http://www.cypress.com/ce216795
http://www.cypress.com/go/comp_SysInt_PDL
http://www.cypress.com/ds218787
http://www.cypress.com/trm218176
http://www.cypress.com/CY8CKIT-062-BLE

A
7

CYPRESS

EMBEDDED IN TOMORROW™

PSoC 6 MCU Dual-CPU System Design

Document History
Document Title: AN215656 - PSoC 6 MCU Dual-CPU System Design
Document Number: 002-15656

Revision ECN Orig. of Submission Description of Change
Change Date

b 5634375 | MKEA 02/16/2017 New application note

*A 5653730 | MKEA 03/08/2017 Updated template

*B 5777874 | MKEA 06/09/2017 Updated text and screen shots for release versions of PSoC Creator 4.1 and PDL
3.0.0
Other miscellaneous edits

*C 5861685 MKEA 08/23/2017 Minor edits
Ported to new application note document template
Confidential tag removed

*D 6065641 | MKEA 03/07/2018 Added a new Figure 2
Updated Figure 4 and associated kit device part number
Updated Figures 6 and 9 for PSoC Creator 4.2 beta 2
Emphasized using CMO0+ as a support CPU for tasks such as BLE and CapSense
Added references to AN221111, Creating a Secure System; AN217666, PSoC 6
Interrupts; AN219528, PSoC 6 Low Power Modes; and CE216795, PSoC 6 Dual-CPU
Updated power modes description
Miscellaneous minor edits
Ported to new application note template
Changed the document title to PSoC 6 MCU Dual-CPU System Design

*E 6201597 | MKEA 06/11/2018 Expanded section 4.3 to include dual-CPU debugging with pVision and IAR
Embedded Workbench IDEs
Updated power mode descriptions in section 3
Miscellaneous minor edits
Ported to *Y application note template

WWW.Cypress.com Document No. 002-15656 Rev. *E 31

http://www.cypress.com/

o CYPRESS

“g@@” EMBEDDED IN TOMORROW™ PSoC 6 MCU Dual-CPU System Design

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products PSoC® Solutions
Arm® Cortex® Microcontrollers ~ cypress.com/arm PSoC 1 | PSoC 3| PSoC 4 | PSoC 5LP | PSoC 6 MCU
Automotive cypress.com/automotive :
P Cypress Developer Community
Clocks & Buffers cypress.com/clocks]]) o
Community | Projects | Videos | Blogs | Training |
Interface cypress.com/interface Components
Internet of Things cypress.com/iot .
Technical Support
Memory cypress.com/memory
) cypress.com/support
Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

A

Cypress Semiconductor

v i CY P R E S s 198 Champion Court

‘ San Jose, CA 95134-1709
> EMBEDDED IN TOMORROW™

© Cypress Semiconductor Corporation, 2017-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite
security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or
errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress
reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of
any product or circuit described in this document. Any information provided in this document, including any sample design information or programming
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

WWW.Cypress.com Document No. 002-15656 Rev. *E 32

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	1.1 How to Use this Document

	2 General Dual-CPU Concepts
	3 PSoC 6 MCU Dual-CPU Architecture
	4 PSoC 6 MCU Dual-CPU Development
	4.1 Resource Assignment Considerations
	4.2 Interrupt Assignment Considerations
	4.3 Debug Considerations
	4.3.1 Configure PSoC Creator Project
	4.3.2 Create µVision Projects
	4.3.3 Debug µVision Projects
	4.3.4 Create IAR-EW Projects
	4.3.5 Debug IAR-EW Projects

	5 Summary
	6 Related Documents
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

