
 

www.cypress.com Document No. 002-15656 Rev. *E 1 

AN215656 

PSoC 6 MCU Dual-CPU System Design 

Author: Mark Ainsworth 

Associated Part Family: All PSoC® 6 MCU devices with dual CPUs 

Associated Code Example: CE216795 

Related Application Notes: see Related Documents 
  

More code examples? We heard you. 

To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples 
web page. You can also explore the Cypress video training library here. 

AN215656 describes the dual-CPU architecture in PSoC 6 MCUs, which includes Arm® Cortex®-M4 and Cortex-M0+ 

CPUs, as well as an inter-processor communication (IPC) module. A dual-CPU architecture provides the flexibility to 

help improve system performance and efficiency, and reduce power consumption. The application note also shows 

how to build a simple dual-CPU design using the Cypress PSoC Creator™ Integrated Design Environment (IDE), 

and how to debug the design using various IDEs. 

Contents 

1 Introduction .................................................................. 2 
1.1 How to Use this Document.................................. 2 

2 General Dual-CPU Concepts....................................... 3 
3 PSoC 6 MCU Dual-CPU Architecture .......................... 4 
4 PSoC 6 MCU Dual-CPU Development ........................ 6 

4.1 Resource Assignment Considerations ................ 9 
4.2 Interrupt Assignment Considerations ................ 10 
4.3 Debug Considerations ...................................... 11 

4.3.1 Configure PSoC Creator Project ......... 12 
4.3.2 Create µVision Projects ...................... 13 
4.3.3 Debug µVision Projects ...................... 21 

4.3.4 Create IAR-EW Projects ..................... 23 
4.3.5 Debug IAR-EW Projects ..................... 27 

5 Summary ................................................................... 29 
6 Related Documents ................................................... 30 
Document History ............................................................ 31 
Worldwide Sales and Design Support ............................. 32 
Products  .......................................................................... 32 
PSoC® Solutions ............................................................. 32 
Cypress Developer Community....................................... 32 
Technical Support ........................................................... 32 
 

 

http://www.cypress.com/
http://www.cypress.com/ce216795
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/training


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 2 

1 Introduction 

PSoC 6 MCU is Cypress’ 32-bit ultra-low-power PSoC, purpose-built for the Internet of Things (IoT). It integrates low-
power flash and SRAM technology, programmable digital logic, programmable analog, high-performance analog-
digital conversion, low-power comparators, and standard communication and timing peripherals. For more 
information, see a PSoC 6 MCU device datasheet or AN210781, Getting Started with PSoC 6 MCU with Bluetooth 
Low Energy (BLE) Connectivity. 

Of particular interest in PSoC 6 MCU is the CPU subsystem. The architecture incorporates multiple bus masters – 
two CPUs, two DMA controllers, and a cryptography block (Crypto) – as Figure 1 shows: 

Figure 1. PSoC 6 MCU Typical CPU Subsystem Architecture 

PSoC 6 CPU Subsystem

System Interconnect: Multi-Layer Advanced High-performance Bus (AHB), Inter-Processor Communication (IPC)

ROM
DataWire/

DMA
CryptoCortex M0+

Peripheral Interconnect

Flash
Cortex M4,

with FPU
SRAM

DataWire/

DMA

 

Note: The contents of the block diagram in Figure 1 may vary depending on the device. Some PSoC 6 MCU parts 
have only one CPU. See the device datasheet for details. This application note does not apply to single-CPU 
PSoC 6 MCU devices. 

Generally, all memory and peripherals are shared by all of the bus masters. Shared resources are accessed through 
standard Arm multi-layer bus arbitration. Exclusive accesses are supported by an inter-processor communication 
(IPC) block, which implements semaphores and mutual exclusion (mutexes) in hardware. 

A dual-CPU architecture, along with the DMA and cryptography (Crypto) bus masters, presents unique opportunities 
for system-level design and performance optimization in a single MCU. With two CPUs you can: 

▪ Allocate tasks to CPUs so that multiple tasks may be done at the same time 

▪ Allocate resources to CPUs so that a CPU may be dedicated to managing those resources, thus improving 
efficiency 

▪ Enable and disable CPUs to minimize power draw 

▪ Send data between the CPUs using the IPC block. For more information, see code example CE216795, 
PSoC 6 MCU Dual-CPU Basics. 

For example, the Cortex-M0+ CPU (CM0+) can “own” and manage all communication channels. The Cortex-M4 CPU 
(CM4) can send and receive messages from the channels via CM0+. This frees CM4 to do other tasks while CM0+ 
manages the communication details. 

1.1 How to Use this Document 

This document assumes that you are familiar with the PSoC 6 MCU architecture, and application development for 
PSoC devices using the Cypress PSoC Creator IDE. For an introduction to PSoC 6 MCU, see a PSoC 6 MCU device 
datasheet or AN210781, Getting Started with PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity. If you are 

new to PSoC Creator, see the PSoC Creator home page. 

Note: Use PSoC Creator version 4.2 or higher for PSoC 6 MCU-based designs. 

Initial sections of this application note cover general concepts for dual-CPU MCUs and how they are implemented in 
PSoC 6 MCU. To skip to an overview of creating a PSoC Creator project for a PSoC 6 dual-CPU MCU, go to the 
PSoC 6 MCU Dual-CPU Development section. 

http://www.cypress.com/
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/an210781
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/ce216795
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/an210781
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 3 

2 General Dual-CPU Concepts 

The process of developing firmware for a dual-CPU MCU is similar to that for a single-CPU MCU, except that you 
write code for two CPUs instead of one. You should also consider any need for inter-processor communication. 

Performance: The main advantage of having two CPUs is that you essentially multiply your CPU power and 

bandwidth. With PSoC 6 MCUs, that increased bandwidth comes at a price that is frequently on par with single-CPU 
MCUs. How to use that increased bandwidth depends on the tasks that your application must perform: 

▪ Single task: A single-task application may be less of a fit for a dual-CPU MCU unless the application is large 

and complex. In PSoC 6 MCU you can execute the task on one of the CPUs and put the other CPU to sleep to 
reduce power. 

▪ Dual task: This is the most obvious fit; assign each task to a CPU. Assign the task with larger computing 

requirements to the higher-performance CPU, i.e., Cortex M4 in PSoC 6 MCU. 

▪ Multiple tasks: Again, assign each task to a CPU. In each CPU, you must include a method for executing each 

task in a timely fashion. 

▪ RTOS: A complex multitasking system may be managed by a real-time operating system (RTOS). An RTOS 

basically allocates a number of CPU cycles to each task, depending on the task priority or whether a task is 
waiting for an event. You effectively do that yourself by assigning tasks to the CPUs. Some examples of dual-
CPU RTOS architectures are: 

 Each CPU has its own RTOS and its own set of tasks. Each RTOS should include a task to manage 
communications with the other CPU. 

 Only one CPU (CPU 1) has an RTOS and multiple tasks. The other CPU (CPU 2) is idle until CPU 1 
messages it to do a specified task. CPU 2 wakes up and does the task, then messages the result back to 
CPU 1. As an example, CPU 1 can be a lower-performance CPU, and it uses CPU 2, the higher-performance 
CPU, to do computation-intensive tasks when needed. 

Power: In a dual-CPU system, firmware can start and stop the CPUs to fine-tune power usage. In the previous 

example, to reduce power, the high-performance CPU is placed into a sleep state until needed for a computation-
intensive task. 

Debug: Debugging two bodies of code at the same time may be a complex process. Usually you debug code for one 

CPU, then debug code for the other CPU. In addition, a device such as an oscilloscope or a logic analyzer may be 
useful for monitoring communication between the CPUs. 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 4 

3 PSoC 6 MCU Dual-CPU Architecture 

Figure 1 on page 2 shows the overall dual-CPU architecture in PSoC 6 MCU. (For detailed block diagrams of 
PSoC 6 MCU, see AN210781 and the device datasheet.) Specific features and other details related to dual CPUs are 
listed in this section. For more information, see the Arm documentation sets for Cortex-M4 and Cortex-M0+, and the 
PSoC device technical reference manual (TRM). 

▪ CPUs: Both CPUs –  Cortex M4 and Cortex M0+ – are 32-bit. CM4 runs at up to 150 MHz and has a floating-

point unit (FPU). CM0+ runs at up to 100 MHz. 

CM4 is the main CPU. It is designed for a short interrupt response time, high code density, and high throughput. 
The CM0+ CPU is secondary; it is used in PSoC 6 MCU to implement system calls and device-level security, 
safety, and protection features. CM0+ is also recommended for functions such as BLE communications and 
CapSense®. In one example, the PSoC Creator BLE Component can be configured to run on either or both 
CPUs, as Figure 2 shows: 

Figure 2. BLE Component Configuration for Execution on Multiple CPUs 

 

▪ Performance: CM0+ typically operates at a slower clock speed than CM4. The CM0+ instruction set is more 

limited than that of CM4. Therefore, it may require more cycles to implement a function on CM0+, and the cycle 
time is longer. Keep this in mind when deciding to which CPU to allocate tasks. 

▪ Security: PSoC 6 MCU has several security features; see the TRM for details. To meet security requirements, 

CM0+ is used as a "secure CPU". It is considered to be a trusted entity; it executes both Cypress system code 
and user code. The use of CM0+ for system and security tasks may limit its availability for user applications. For 
more information on secure systems, see AN221111, Creating a Secure System. 

Device system calls may be initiated by either CPU, but are always executed by CM0+. 

▪ Startup sequence: After device reset, only CM0+ executes; CM4 is held in a reset state. CM0+ first executes 

Cypress system and security code, including SROM code, FlashBoot, and Secure Image. For more information 
on these code modules, see AN221111, Creating a Secure System. 

After CM0+ executes system and security code, it executes user code. In the user code, CM0+ may release the 
CM4 reset, causing CM4 to start executing its user code. PSoC Creator auto-generates code in CM0+ main() to 
release the CM4 reset. 

▪ Inter-processor communication (IPC): IPC enables the CPUs to communicate and synchronize activities. The 

IPC hardware contains register structures for IPC channel functions and IPC interrupts. The IPC channel 
registers implement mutual exclusion (mutex) lock and release mechanisms, and messaging between the CPUs. 
The IPC interrupt registers generate interrupts to both CPUs for messaging events and lock and release events. 

http://www.cypress.com/
https://developer.arm.com/products/processors/cortex-m/cortex-m4
https://developer.arm.com/products/processors/cortex-m/cortex-m0-plus
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A114026&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A114026&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/an221111
http://www.cypress.com/an221111


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 5 

▪ Interrupts: Each CPU has its own set of interrupts. A peripheral can route its interrupt output to either or both 

CPUs. All peripheral interrupt lines are hard-wired to specific CM4 interrupt inputs. Peripheral interrupts are also 
multiplexed to CM0+’s limited set of 32 interrupt inputs. See Interrupt Assignment Considerations. 

▪ Power modes: PSoC 6 MCU has several power modes that can affect either the whole system or just a single 

CPU. CPU power modes are active, sleep, and deep sleep as defined by Arm. Device system power modes are 
LP, ULP, deep sleep, and hibernate. 

 System Low Power (LP) mode is the default operating mode of the device after reset and provides maximum 
performance. While in system LP mode the CPUs may operate in any of the Arm-defined modes. 

 System Ultra Low Power (ULP) mode is identical to LP mode with a performance tradeoff made to achieve 
lower system current. This tradeoff lowers the core operating voltage which then requires reduced operating 
clock frequency, and limited high-frequency clock sources. While in system ULP mode the CPUs may 
operate in any of the Arm defined modes. 

 In system deep sleep mode, all high-speed clock sources are off. This in turn stops both CPUs and makes 
high-speed peripherals unusable. However, low-speed clock sources and peripherals continue to operate, if 
configured and enabled by the firmware. Interrupts from these peripherals cause the device to return to 
system LP or ULP mode and one or more CPUs to wake up to active mode. Each CPU has a Wakeup 
Interrupt Controller (WIC) to wake up the CPU. 

 System hibernate mode is the lowest power mode of the device. It is intended for applications that are in a 
dormant state. The device goes through a reset on wakeup from hibernate. See Startup sequence. 

 In CPU active mode, the CPU executes code and all logic and memory is powered. The system must be in 
LP or ULP mode. 

 In CPU sleep mode, the CPU clock is turned off and the CPU halts code execution. The system must be in 
LP or ULP mode. 

 In CPU deep sleep mode, the CPU requests the device to go into system deep sleep mode. When the device 
is ready, it enters system deep sleep mode. In PSoC 6 MCU both CPUs must enter CPU deep sleep before 
the system transitions to deep sleep. If only one CPU has entered deep sleep mode the system remains in 
LP or ULP mode. 

For more information on PSoC 6 MCU power modes, see AN219528, PSoC 6 MCU Low Power Modes and 
Power Reduction Techniques. 

▪ Debug: PSoC 6 MCU has a Debug Access Port (DAP) that acts as the interface for device programming and 

debug. An external programmer or debugger (the "host") communicates with the DAP through the device Serial 
Wire Debug (SWD) or Joint Test Action Group (JTAG) interface. Through the DAP (and subject to device security 
restrictions), the host can access the device memory and peripherals as well as the registers in both CPUs. 

Each CPU offers several debug and trace features as follows: 

 CM4 supports six hardware breakpoints and four watchpoints, 4-bit embedded trace macrocell (ETM), serial 
wire viewer (SWV), and printf()-style debugging through the single wire output (SWO) pin. 

 CM0+ supports four hardware breakpoints and two watchpoints, and a micro trace buffer (MTB) with 4 KB 
dedicated RAM. 

PSoC 6 MCU also has an Embedded Cross Trigger for synchronized debugging and tracing of both CPUs. 

PSoC Creator supports debugging a single CPU (either CM4 or CM0+) at a time. For dual-CPU debugging, use 
a third-party IDE; see Debug Considerations for µVision and IAR. For more information on debugging PSoC 
devices with PSoC Creator, refer to the PSoC Creator Help. 

http://www.cypress.com/
http://www.cypress.com/an219528
http://www.cypress.com/an219528
https://developer.arm.com/docs/ddi0314/latest/embedded-cross-trigger


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 6 

4 PSoC 6 MCU Dual-CPU Development 

This section shows only those aspects of PSoC Creator development that are unique to PSoC 6 MCU dual-CPU 
devices. If you are not familiar with PSoC 6 MCU or PSoC Creator, see AN210781, Getting Started with 
PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity, or the PSoC Creator home page. Use PSoC Creator 
version 4.2 or higher for PSoC 6 MCU-based designs. 

PSoC Creator project development for a PSoC 6 MCU dual-CPU device is similar to that for any other device 
supported by PSoC Creator. To create a new project, select File > New > Project. A Create Project dialog is 

displayed, similar to Figure 3. 

Select Target Device (A), and PSoC 6 (B). On the pull-down list (C), select <Launch Device Selector...> to see a 

list of PSoC 6 devices. 

Figure 3. PSoC Creator Create Project Dialog 

A

C

B

 

Figure 4 shows the Device Selector dialog. To see a list of dual-CPU devices, click the CPU category (D) and select 
only CortexM0p, CortexM4. 

In the PSoC 6 BLE Pioneer Kit CY8CKIT-062-BLE, the PSoC 6 MCU dual-CPU device part number is 
CY8C6347BZI-BLD53. 

Figure 4. PSoC Creator Device Selector Dialog 

D

 

After selecting a PSoC 6 MCU part, the rest of the project creation process is the same as for other devices. Click 
through the rest of the Create Project dialogs; PSoC Creator creates the project. 

http://www.cypress.com/
http://www.cypress.com/an210781
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/psoc-6-ble-pioneer-kit


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 7 

The initial project windows layout (Figure 5) includes a Workspace Explorer window with the following features for 

dual-CPU devices: 

1. Separate main.c files – main_cm0p.c and main_cm4.c – for each CPU. Sources in the folders CM0p (Core 0) 
and CM4 (Core 1) are compiled into separate binaries for the respective CPUs. 

2. A Shared Files folder. Source files in this folder are compiled into both binaries. 

Figure 5. PSoC Creator Initial Project Layout for Dual-CPU Devices 

1

2

1

 

The initial project layout also includes a TopDesign hardware schematic, along with an associated Component 
Catalog window. 

After the project is created, implement your hardware design by dragging Components onto the schematic, and 
configuring and wiring them. 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 8 

When schematic design entry is complete, select 
Build > Generate Application. This creates 

several system source code files and folders in 
the existing folders as well as in the new folder 
Generated Source, as Figure 6 shows. 

The generated source contains drivers for each 
Component on the schematic, as well as the 
Cypress Peripheral Driver Library (PDL). The 
PDL is a software development kit (SDK) that 
integrates device header files, startup code, and 
peripheral drivers. The peripheral drivers abstract 
the hardware functions into a set of easy-to-use 
APIs. 

For more information on the PDL, select PSoC 
Creator Help > Documentation > Peripheral 
Driver Library. Also, each Component has a 

datasheet that documents the driver API for that 
Component. Right-click the Component and 
select Open Datasheet.... 

PSoC Creator creates several other files and 
folders, and places them in existing folders CM0p 
(Core 0), CM4 (Core 1), and Shared Files. These 
files generally support configuration, startup, and 
linking options for PSoC Creator as well as other 
IDEs. For more information on these files, see 
PSoC Creator Help article, Generated Files 
(PSoC 6). 

Figure 6. Add Generated Source to a Project 

 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 9 

4.1 Resource Assignment Considerations 

All generated Component API and PDL driver source files are available to both CPUs, same as the files in the Shared 
Files folder. If code in a CPU references any API element in a generated source file, that file is compiled into the 
binary for that CPU. The same file can be compiled into both binaries – see code example CE216795, PSoC 6 MCU 
Dual-CPU Basics. 

If the same source file is compiled into both binaries, then a function in that file may be executed simultaneously by 
both CPUs. It is also possible for a Component to be accessed by both CPUs; for example, both CPUs may send 
data through the same UART. Generally, Component API and PDL driver functions are “CPU-safe”, that is, can be 
executed simultaneously by both CPUs. However, you should make design decisions about assigning resources to 
each CPU. There are two ways to do this: 

▪ Dedicate a resource to one CPU. A good practice is to indicate on the project schematic the CPU that “owns” 

the resource, as Figure 7 shows. Include code to use the resource only in the firmware for the desired CPU. 

Figure 7. PSoC Creator Project Schematic for Dual CPUs Controlling Separate Pin Components 

 

▪ Share resources between the CPUs. Code example CE216795 shows how the PSoC 6 MCU IPC block may 

be used to implement a mutex to share memory between the CPUs. Use the same technique to share a 
peripheral resource such as a UART. 

Flash and SRAM that are allocated in a CPU’s binary are generally separate from that for the other CPU. If custom 
sections and section placement are defined in the CPUs’ linker scripts, you must ensure that the sections do not 
overlap. Conversely, another way to share memory is to define for each CPU custom sections with the same 
address. 

Note: If you have both CPUs controlling Output Pin Components that are mapped to physical pins on the same GPIO 
port, use only the following functions to change the pin outputs: GPIO_Write(), GPIO_Set(), GPIO_Clr(), and 

GPIO_Inv(). For more information, see the PSoC Creator Pins Component datasheet or the PDL documentation. 

http://www.cypress.com/
http://www.cypress.com/ce216795
http://www.cypress.com/ce216795


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 10 

4.2 Interrupt Assignment Considerations 

An important consideration for dual-CPU designs 
is assigning and handling interrupts. As noted 
previously, all device interrupts are available to 
CM4, and a subset of interrupts are routed 
through multiplexers to CM0+. You must decide 
which CPU will handle each interrupt. 

Let us assign interrupts in an example design. 
Figure 8 shows a design with two interrupts; one 
from a PWM Component, connected to an 
Interrupt Component MyPWM_Int; and the other 
from an I2C Component. 

In the Design Wide Resources window (file type 
.cydwr), select the Interrupts tab to see all of the 

interrupts in the design, as Figure 9 shows. 

In this example, the I2C Component has an 
interrupt embedded in it. That interrupt is not 
shown on the schematic in Figure 8; it is shown 
in the Design-Wide Resources window as 
MyI2C_SCB_IRQ. 

Figure 8. Example Schematic Design with Two Interrupts 

 

Check or uncheck the boxes in the ARM CM0+ Enable and ARM CM4 Enable columns to assign interrupts to the 

respective CPUs. 

Figure 9. Assign Interrupts to the CPUs 

 

Each peripheral interrupt is hard-wired to CM4, so the Interrupt Number is automatically assigned by PSoC Creator 
when you build the project. Because interrupts are routed through multiplexers to CM0+, you can select an ARM 
CM0+ Vector for each interrupt. 

Note: A warning symbol and tooltip are displayed if an interrupt is assigned to both CPUs. This is generally not 
recommended; however an interrupt can be used to wake up one or both CPUs from their sleep modes. 

For more information, see application note AN217666, PSoC 6 MCU Interrupts. 

http://www.cypress.com/
http://www.cypress.com/an217666


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 11 

4.3 Debug Considerations 

As noted previously, PSoC Creator supports debugging just one CPU at a time. Before starting a debug session with 
PSoC 6 MCU, select the desired debug target (Debug > Select Debug Target...), as Figure 10 shows. Select the 
desired CPU and click OK / Connect. To debug the other CPU, you must exit the debugger and then re-enter it with 

a connection to that CPU. 

Figure 10. PSoC Creator Select CPU for Debug 

 

Recommended: develop and debug first the portions of code where the CPUs communicate with each other. After 

that, code executed by an individual CPU can be debugged separately. For example, when the shared memory 
project in CE216795 was developed, the portion where CM0+ sends an initial message to CM4 was developed and 
debugged before subsequent portions of code were developed. 

You can debug both CPUs simultaneously by using other IDEs such as µVision or IAR. To do so, you must export 
your PSoC Creator project to the other IDE. PSoC Creator documents this topic in the help articles Integrating into 
3rd Party IDEs, PSoC 6 Designs. Review the instructions in the help articles; the general steps are summarized in the 
following sections. 

http://www.cypress.com/
http://www.cypress.com/ce216795


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 12 

4.3.1  Configure PSoC Creator Project  

Update the Target IDEs settings in the project Build Settings, as Figure 11 shows. 

For µVision, select CMSIS Pack: > Generate. Enter appropriate identifying text for the CMSIS pack in the Vendor, 
Pack, and Version fields.  

Recommended: select Toolchain: > ARM MDK Generic. 

For IAR, you only need to select IAR EW-ARM: > Generate. (An advanced option, Generate without copying PDL 
files, is also available.) Because IAR has its own compiler (not supported by PSoC Creator), the Toolchain selection 

is not relevant. 

Figure 11. Build Settings for Target IDEs 

 

Then build your PSoC Creator project in the usual manner. A folder Export is created in your <project>.cydsn folder, 
which contains relevant files for exporting to the selected IDE or IDEs. 

For µVision, after the PSoC Creator project is built, find the corresponding .pack file in the folder Export \ Pack. 
Double-click the file to install it as a µVision pack, as Figure 12 shows.  

Note: Do not use the µVision Pack Installer Wizard File Import function to install this pack. 

Figure 12. Install µVision Pack from PSoC Creator Project 

 

Note: if you update the PSoC Creator project, consider changing the µVision pack version number (see Figure 11) 
and installing the new pack.  

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 13 

4.3.2  Create  µVision Projects  

For µVision, you must create two projects: one for each PSoC 6 MCU CPU: CM0+ and CM4. Do the following: 

Recommended: create a new folder (e.g. uVisionBuild) within your PSoC Creator <project>.cydsn folder to store all 

µVision project files separately from the PSoC Creator files (this is different from the IAR instructions). Within that 
folder, create another new folder for CM4 object files (e.g., ObjectsM4), as Figure 13 shows: 

Figure 13. New Folders for µVision Projects 

 

Open µVision 5.25 or later, and create a new project (Project > New µVision Project...) in the uVisionBuild folder. 
Recommended: name the project based on the original PSoC Creator project name and the target CPU. For 
example, for the CE216795 dual-CPU blinky project, create a µVision project BlinkyM0p for the CM0+ CPU, as 
Figure 14 shows: 

Figure 14. Create a µVision Project for CM0+ 

 

After you click Save, a Select 
Device for Target ‘Target 1’... 

dialog box is displayed. The two 
PSoC 6 MCU CPUs that were 
defined in the previously installed 
pack (Figure 12) are displayed. 
Select the CM0+ CPU, as Figure 
15 shows. Click OK. 

Figure 15. Select CM0+ as the Project Device 

 

http://www.cypress.com/
http://www.cypress.com/ce216795


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 14 

Next, a Manage Run-Time Environment dialog box is displayed. Click Select Packs, and uncheck Use latest 
versions of all installed Software Packs. Select the pack from the PSoC Creator project, as Figure 16 shows: 

Figure 16. Select the PSoC Creator Project Pack 

 

Click OK; the Manage Run-Time Environment dialog changes as Figure 17 shows. Select the Device Startup and 
PDL Drivers, and click OK. The project is created, with a Target 1, a Source Group 1, and Device startup and PDL 

files, as Figure 18 shows. 

Figure 17. Select Pack Startup and PDL Driver Files 

 

Figure 18. Initial Project Creation 

 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 15 

Right-click Source Group 1, and select Add Existing Files to Group ‘Source Group 1’.... Navigate to your PSoC 
Creator project folder and select main_cm0p.c, cy_ipc_config.c, and all other non-system .c and assembler files 
needed for your project, as Figure 19 shows. You do not have to add any .h files, startup, or system .c, or assembler 
files. Click Add; the files are added to the source group in the µVision project. Click Close. 

Figure 19. Add PSoC Creator Project C Source Files to the Source Group 

 

Now that the project is created, you must set its options. Right-click Target 1, and select Options for Target 
‘Target 1’.... Confirm in the Target tab that the device, CPU, IROM1, and IRAM1 are correct for your PSoC 6 MCU 

device, as Figure 20 shows. Updating other fields such as Xtal (MHz) and Operating system is optional. 

Figure 20. Project Target Options 

 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 16 

In the User tab, verify that the correct post-build batch file from the pack is being called. Hover the cursor over the 
User Command field and confirm that postbuildCortexm0p.bat is called, as Figure 21 shows. Add other pre- and 

post-build batch files, and select other options, as needed. 

Figure 21. Project User Options 

 

Confirm in the C/C++ tab that the C99 mode option is checked, as Figure 22 shows. (PDL is developed based on 
C99.) Add the PSoC Creator <project>.cydsn folder to the Include Paths; this provides a link to the .h files in the 

PSoC Creator project. Update other options and fields as needed. 

Figure 22. Project C/C++ Options 

 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 17 

Confirm in the Linker tab that the R/O Base and R/W Base fields are correct for your PSoC 6 MCU device, as Figure 
23 shows. Select the appropriate Scatter File from your PSoC Creator project folder. 

Figure 23. Project Linker Options 

 

Connect the CY8CKIT-062-BLE USB port to your computer. Press the kit button SW3 to put KitProg2 into CMSIS-
DAP mode; see the kit guide for details. This allows debugging without using any external probes. 

In the Debug tab, select Use CMSIS-DAP Debugger, as Figure 24 shows. Click Settings, select KitProg2 CMSIS-
DAP, and confirm that all other settings are at the defaults shown. Click OK and go back to the Options dialog. 

Figure 24. Project Debug Options 

 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 18 

In the Utilities tab, confirm that Use Debug Driver is checked, and then uncheck Update Target before Debugging. 
Click Settings, and uncheck all Download Function boxes, as Figure 25 shows. Click Do not Erase. Click OK and 
go back to the Options dialog. A warning “Nothing to do ... “ is displayed; click OK. The application will be loaded by 
the CM4 project. Click OK to save and close the options settings. 

Figure 25. Project Utilities Options 

 

Repeat the previous steps and create a second project for CM4.  

Recommended: name the project based on the original PSoC Creator project name and the target CPU. For 
example, for the CE216795 dual-CPU blinky project, create µVision project BlinkyM4p; see Figure 14. Configure the 
project in the same manner as the CM0+ project, with the following differences: 

▪ The CM4 project must be in the same folder as the CM0+ project; in this case, uVisionBuild. See Figure 14. 

▪ Select the CM4 CPU from the previously installed pack; see Figure 15. 

▪ Navigate to your PSoC Creator project folder and select main_cm4.c, cy_ipc_config.c, and all other non-system 
.c and assembler files needed for your project, as Figure 19 shows. You do not have to add any .h files, startup, 
system .c, or assembler files. 

▪ In the Options dialog, Output tab, click Select Folder for Objects..., and select the ObjectsM4 folder that you 

created; see Figure 13. 

▪ In the Options dialog, C/C++ tab, add --fpu=fpv4-sp to Misc Controls; see Figure 22. 

http://www.cypress.com/
http://www.cypress.com/ce216795


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 19 

▪ In the Options dialog, Linker tab, select the “cm4_dual” scatter file, as Figure 26 shows. The CM4 project will 

contain code for both CPUs. Add --fpu=fpv4-sp to Misc Controls. 

Figure 26. Linker Options for CM4 Project 

 

▪ In the Options dialog, Debug tab, Target Driver Setup, select VECTRESET for the Reset option; see Figure 24. 

▪ In the Options dialog, Utilities tab, confirm that Update Target before Debugging is checked, as Figure 27 
shows. Set the RAM for Algorithm values as indicated. Checking Reset and Run is optional but convenient.  

Figure 27. Utilities Options for CM4 Project 

 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 20 

Finally, create a µVision workspace (Project > New Multi-Project Workspace...), named for example Blinky, in the 
uVisionBuild folder. Add the two created projects to that workspace. The created workspace and projects, and the 
corresponding files, should be similar to Figure 28. 

Figure 28. Resultant µVision Project Window and Project Files 

 

Build the projects in sequence; build the CM0+ project first. Note that µVision has a batch build feature to automate 
the process. After building is successfully completed, right-click the BlinkyM4 project and set it as the active project. 
Then test your build options by (1) erasing flash (Flash > Erase), and (2) downloading the project (Flash > 
Download) and confirming correct operation. If you did not select Reset and Run (see Figure 27), you must press the 

kit reset button (RST / SW1) to start operation. 

Note: If you change any code in the CM0+ project, you must rebuild both projects. Note that µVision has a batch 
build feature to automate the process. 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 21 

4.3.3  Debug µVision Projects  

Start debugging with the CM4 project – downloading the CM4 project installs code for both CPUs. Set the CM4 
project as the active project, download it if needed, and click Debug > Start/Stop Debug Session to start debugging. 

The µVision window appears similar to Figure 29: 

Figure 29. CM4 Debug Window 

 

If you are running the CE216795 dual-CPU blinky project, set a breakpoint at line 63, Cy_Syslib_Delay(). Then 
repeatedly click Debug > Run, and the red LED toggles on each stop at the breakpoint. 

http://www.cypress.com/
http://www.cypress.com/ce216795


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 22 

Now open a second instance of µVision and load the same workspace. Both instances share the kit connection and 
the PSoC 6 MCU debug access port (DAP). Make the CM0+ project active, and start a debug session. Set a 
breakpoint at line 63, Cy_Syslib_Delay(). Then repeatedly click Debug > Run, and the blue LED toggles on each 

stop at the breakpoint. 

Note: Executing the Cy_SysEnableCM4() function call at line 55 causes CM4 to start running again. Go to the CM4 
window, click Debug > Stop, then Debug > Run. CM4 runs to the breakpoint again. 

It helps to place the instance windows side by side on your desktop. The windows appear similar to Figure 30. Click 
in the appropriate window to perform a debug operation on the desired CPU. Note that breakpoints can be set 
separately for each CPU. You can read and update the same memory addresses from either window. 

Figure 30. µVision Dual-CPU Debugging 

 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 23 

4.3.4  Create  IAR-EW Projects  

For IAR Embedded Workbench (IAR-EW), you must create two projects: one for each PSoC 6 MCU CPU: CM0+ and 
CM4. Do the following: 

Note: The IAR-EW project files should be created in your PSoC Creator <project>.cydsn folder. Do not create a 
separate folder within your PSoC Creator <project>.cydsn folder (this is different from the µVision instructions). 
Recommended: add a tag such as “IAR_” to each project and workspace file name, to distinguish the IAR-EW files 

from the PSoC Creator files in the same folder. 

Open IAR Embedded Workbench for ARM 8.22 or later, and create a new project (Project > Create New Project...). 
In the Create New Project dialog (Figure 31), confirm that the Tool chain is Arm, select the Empty project template, 
then click OK. 

Figure 31. IAR Embedded Workbench Create New Project Dialog 

 

Recommended: in the Save As dialog (Figure 32), name the project based on the original PSoC Creator project 

name and the target CPU. For example, for the CE216795 dual-CPU blinky project, create a µVision project 
IAR_BlinkyM0p for the CM0+ CPU. 

Figure 32. Create an IAR Embedded Workbench Project for CM0+ 

 

http://www.cypress.com/
http://www.cypress.com/ce216795


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 24 

Select Tools > Options and make sure that Enable project connections is checked. Click OK. Then select 
Project > Add Project Connection.... In the next dialog, select Connect using IAR Project Connection, and click 
OK. Then select the ...CortexM0p.ipcf file, as Figure 33 shows. Click OK, and several folders and files are added to 

the project in the Workspace window. 

Figure 33. Select IAR Project Connection File from PSoC Creator Project Export Folder 

 

Now that the project is created, you must set its options. Right-click the project, and select Options.... Confirm in the 
Options dialog, Build Actions section that postbuildCortexM0p.bat is called, as Figure 34 shows. 

Figure 34. Select PSoC Creator Post-Build Batch File 

 

In the Debugger section, Setup tab, select the CMSIS DAP driver. In the Download tab, check Suppress 
download. In the CMSIS DAP section, Setup tab, set Reset to Disabled (no reset). The application will be loaded 
by the CM4 project. In the Interface tab, select SWD. Click OK. 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 25 

Repeat the previous steps and create a second project for CM4. Recommended: name the project based on the 

original PSoC Creator project name and the target CPU. For example, for the CE216795 dual-CPU blinky project, 
create IAR-EW project IAR_BlinkyM4; see Figure 32. Configure the project similar to the CM0+ project, with the 
following differences: 

▪ The CM4 project must be in the same folder as the CM0+ project; in this case, your PSoC Creator 
<project>.cydsn folder. See Figure 32. 

▪ Select the ...CortexM4.ipcf file; see Figure 33. 

▪ In the Options dialog, General Options section, Output tab, change the output directories for object and list 

files, as Figure 35 shows. Do not change the executables/libraries output folder. 

Figure 35. Unique Output Folders for CM4 Project 

 

▪ In the Build Actions section, confirm that postbuildCortexM4.bat is called, see Figure 34. 

▪ In the Debugger section, Setup tab, select the CMSIS DAP driver. In the CMSIS DAP section, Setup tab, 
confirm that Reset is set to System (default). In the Interface tab, select SWD. Click OK. 

http://www.cypress.com/
http://www.cypress.com/ce216795


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 26 

Select File > Save All. All files for both projects are saved, and a workspace file is automatically generated. In the 
Save Workspace As dialog, create an IAR-EW workspace, named for example IAR_Blinky, in your PSoC Creator 
<project>.cydsn folder. The created workspace and projects, and the corresponding files, should be similar to Figure 
36. The files and folders generated by IAR-EW are highlighted. 

Figure 36. Resultant IAR Embedded Workbench Project Window and Project Files 

 

Connect the CY8CKIT-062-BLE USB port to your computer. Press kit button SW3 to put KitProg2 into CMSIS-DAP 
mode; see the kit guide for details. This allows debugging without using any external debug probes. 

Build the projects in sequence; build the CM0+ project first. Note that IAR-EW has a batch build feature to automate 
the process. After building is successfully completed, right-click the BlinkyM4 project and set it as the active project. 
Then confirm that your build options are correct, by (1) erasing flash (Project > Download > Erase memory), and 
(2) downloading the project (Project > Download > Download active application) and confirming correct operation. 

After downloading, press the kit reset button (RST / SW1) to start operation. 

Note: When erasing flash, you typically only need to erase PSoC 6 MCU application flash (0x1000 0000 – 
0x100F FFFF), as Figure 37 shows: 

Figure 37. IAR Embedded Workbench Erase Memory Dialog for PSoC 6 MCU 

 

Note: If you change any code in the CM0+ project, you must rebuild both projects. Note that IAR-EW has a batch 
build feature to automate the process. 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 27 

4.3.5  Debug IAR-EW Projects  

Reopen the options for the CM4 project, and go to the Debugger section, Multicore folder. PSoC 6 MCU has 

different cores, i.e., CM0+ and CM4, which is referred to as "asymmetric multicore". Therefore, fill in the fields in the 
Asymmetric multicore section as Figure 38 shows. Checking Enable multicore master mode makes the CM4 the 
master for download and debugging purposes. Do not change the Port. 

Figure 38. Set Up Multicore Debugging 

 

Select File > Save All to save the project options changes. Then start debugging by selecting either Project > 
Download and Debug or Project > Debug without Downloading. A second (slave) instance of IAR Embedded 

Workbench is automatically opened for the CM0+ project. Both instances share the kit connection and the 
PSoC 6 MCU debug access port (DAP). 

In the slave instance, set a breakpoint at line 63, Cy_Syslib_Delay(). Then repeatedly click Debug > Go, and the 

blue LED toggles on each stop at the breakpoint. 

Click anywhere in the CM4 instance window and repeat the process. The red LED toggles on each stop at the 
breakpoint. 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 28 

It helps to place the instance windows side by side on your desktop. The windows appear similar to Figure 39. Click 
in the appropriate window to perform a debug operation on the desired CPU. Note that breakpoints can be set 
separately for each CPU. You can read and update the same memory addresses from either window. 

Figure 39. IAR Embedded Workbench Dual-CPU Debugging 

 

You can stop debugging in either window; debugging is ended for both CPUs. Press the kit reset button (RST / SW1) 
to restart kit operation. 

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 29 

5 Summary 

This application note has shown how to use and optimize your firmware and hardware designs for the dual-CPU 
feature in PSoC 6 MCUs. 

Another way to optimize your PSoC 6 MCU design is based on the fact that the PSoC family devices are designed to 
be flexible, and enable you to build custom functions in programmable analog and digital blocks. For example, 
PSoC 6 MCU has the following peripherals that can act as “co-processors”: 

▪ DMA Controllers. Note that the most common CPU assembler instructions output by C compilers are MOV, LDR, 

and STR, which implies that the CPU spends a lot of cycles just moving bytes around. Let the DMA controllers 

do that instead. 

Note: The PSoC 6 MCU DMA controllers have an extensive set of features that enable you to construct complex 
data transfer and control systems that are independent of the CPUs. Software support of these features is 
provided by both a PSoC Creator DMA Component and an API in the PDL. For more information, see the DMA 
Component datasheet and the PDL documentation. 

▪ Crypto Block. This block offers hardware acceleration for symmetric and asymmetric cryptographic methods 

(AES, 3DES, RSA, and ECC) and hash functions (SHA-512, SHA-256). It also has a true random number 

generator (TRNG) function. Software support for these features is provided by an API in the PDL; see the PDL 

documentation. 

▪ Universal Digital Blocks (UDBs). There are as many as 12 UDBs, and each UDB has an 8-bit datapath that can 

add, subtract, and do bitwise operations, shifts, and cyclic redundancy check (CRC). Datapaths can be chained 

for word-wide calculations. Consider offloading CPU calculations to the datapaths. 

▪ UDBs also have programmable logic devices (PLDs) which can be used to build state machines; see for 

example the Lookup Table (LUT) Component datasheet. LUTs can be an effective hardware-based alternative to 

programming state machines in the CPU, for example by using C switch / case statements. 

In addition, two GPIO ports include Smart IO, which can be used to perform Boolean operations directly on 
signals going to, and coming from, GPIO pins. 

▪ Other smart peripherals include serial communication blocks (SCB), counter/timer/PWM blocks (TCPWM), 

Bluetooth Low Energy (BLE), I2S/PDM audio, programmable analog, CapSense®, and energy profiler. Use these 

peripherals to further offload processing from the CPUs. 

PSoC Creator offers many Components, and extensive APIs in the PDL, for support of the peripherals’ functions. 
This allows you to develop an effective multiprocessing system in a single chip, offloading a lot of functionality from 
the CPUs. This in turn can not only reduce code size, but by reducing the number of tasks that the CPUs must 
perform, presents an opportunity to reduce CPU speed and power consumption. 

For example, you can implement a digital system to control multiplexed ADC inputs, and interface with DMA to save 
the data in SRAM, to create an advanced analog data collection system with zero usage of the CPUs. 

Cypress offers extensive application note and code example support for PSoC peripherals, as well as detailed data in 
the device datasheets, PDL documentation, and technical reference manuals (TRMs). For more information, see 
Related Documents. 

http://www.cypress.com/
http://www.cypress.com/documentation/code-examples/psoc-6-mcu-code-examples


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 30 

6 Related Documents 

For a comprehensive list of PSoC 6 MCU resources, see KBA223067 in the Cypress community.  

Application Notes 

AN210781 – Getting Started with PSoC 6 MCU 
with Bluetooth Low Energy (BLE) Connectivity 

Describes PSoC 6 MCU with BLE Connectivity devices and how to build 
your first PSoC Creator project 

AN221111 – Creating a Secure System 
Describes what is required to create a secure system, including the boot 
process from reset to application execution 

AN217666 – PSoC 6 MCU Interrupts 
A guide in developing projects that use interrupts. Includes advanced 
interrupt concepts such as interrupt latency, code optimization, and debug 
techniques. 

AN219528 – PSoC 6 MCU Low Power Modes 
and Power Reduction Techniques 

Describes how to use the PSoC 6 MCU power modes to optimize power 
consumption. 

Code Examples 

CE216795 – PSoC 6 MCU Dual-CPU Basics 
Demonstrates the two CPU cores in PSoC 6 MCU doing separate 
independent tasks, and communicating with each other using shared 
memory and the inter-processor communication (IPC) block. 

PSoC Creator Component Datasheets 

Interrupt Supports generating CPU interrupts from hardware signals 

Device Documentation 

PSoC 6 MCU: PSoC 63 with BLE Datasheet PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual 

Development Kit Documentation 

CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit 

 

About the Author 
Name: Mark Ainsworth 

Title: Sr. Principal Applications Engineer 

Background: Mark Ainsworth has a BS in Computer Engineering from Syracuse University and an MSEE 
from the University of Washington, as well as many years of experience designing and 
building embedded systems. 

 

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14644
http://www.cypress.com/AN210781
http://www.cypress.com/an215656
http://www.cypress.com/an219434
http://www.cypress.com/an219528
http://www.cypress.com/ce216795
http://www.cypress.com/go/comp_SysInt_PDL
http://www.cypress.com/ds218787
http://www.cypress.com/trm218176
http://www.cypress.com/CY8CKIT-062-BLE


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 31 

Document History 

Document Title: AN215656 - PSoC 6 MCU Dual-CPU System Design 

Document Number: 002-15656 

Revision ECN Orig. of 
Change 

Submission 
Date 

Description of Change 

** 5634375 MKEA 02/16/2017 New application note 

*A 5653730 MKEA 03/08/2017 Updated template 

*B 5777874 MKEA 06/09/2017 Updated text and screen shots for release versions of PSoC Creator 4.1 and PDL 
3.0.0  

Other miscellaneous edits 

*C 5861685 MKEA 08/23/2017 Minor edits  

Ported to new application note document template  

Confidential tag removed 

*D 6065641 MKEA 03/07/2018 Added a new Figure 2 

Updated Figure 4 and associated kit device part number 

Updated Figures 6 and 9 for PSoC Creator 4.2 beta 2 

Emphasized using CM0+ as a support CPU for tasks such as BLE and CapSense 

Added references to AN221111, Creating a Secure System; AN217666, PSoC 6 
Interrupts; AN219528, PSoC 6 Low Power Modes; and CE216795, PSoC 6 Dual-CPU 

Updated power modes description 

Miscellaneous minor edits 

Ported to new application note template 

Changed the document title to PSoC 6 MCU Dual-CPU System Design 

*E 6201597 MKEA 06/11/2018 Expanded section 4.3 to include dual-CPU debugging with µVision and IAR 
Embedded Workbench IDEs 

Updated power mode descriptions in section 3 

Miscellaneous minor edits 

Ported to *Y application note template 

 

  

http://www.cypress.com/


  PSoC 6 MCU Dual-CPU System Design 

www.cypress.com Document No. 002-15656 Rev. *E 32 

Worldwide Sales and Design Support 

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find 
the office closest to you, visit us at Cypress Locations. 

Products 

Arm® Cortex® Microcontrollers cypress.com/arm 

Automotive cypress.com/automotive 

Clocks & Buffers cypress.com/clocks 

Interface cypress.com/interface 

Internet of Things cypress.com/iot 

Memory  cypress.com/memory 

Microcontrollers cypress.com/mcu 

PSoC cypress.com/psoc 

Power Management ICs cypress.com/pmic 

Touch Sensing cypress.com/touch 

USB Controllers cypress.com/usb 

Wireless Connectivity cypress.com/wireless 

PSoC® Solutions 

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  

Cypress Developer Community 

Community | Projects | Videos | Blogs | Training | 
Components 

Technical Support 

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners. 

 

 Cypress Semiconductor 
 198 Champion Court 

 San Jose, CA 95134-1709 

© Cypress Semiconductor Corporation, 2017-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including 
Spansion LLC (“Cypress”).  This document, including any software or firmware included or referenced in this document (“Software”), is owned by 
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide.  Cypress reserves all rights under such 
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other 
intellectual property rights.  If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with 
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to 
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for 
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end 
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of 
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for 
use with Cypress hardware products.  Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. 

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD 
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  No computing device can be absolutely secure.  Therefore, despite 
security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, 
such as unauthorized access to or use of a Cypress product.  In addition, the products described in these materials may contain design defects or 
errors known as errata which may cause the product to deviate from published specifications.  To the extent permitted by applicable law, Cypress 
reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of 
any product or circuit described in this document.  Any information provided in this document, including any sample design information or programming 
code, is provided only for reference purposes.  It is the responsibility of the user of this document to properly design, program, and test the functionality 
and safety of any application made of this information and any resulting product.  Cypress products are not designed, intended, or authorized for use as 
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or 
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances 
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”).  A 
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or 
system, or to affect its safety or effectiveness.  Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, 
damage, or other liability arising from or related to all Unintended Uses of Cypress products.  You shall indemnify and hold Cypress harmless from and 
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of 
Cypress products. 

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are 
trademarks or registered trademarks of Cypress in the United States and other countries.  For a more complete list of Cypress trademarks, visit 
cypress.com.  Other names and brands may be claimed as property of their respective owners. 

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	1.1 How to Use this Document

	2 General Dual-CPU Concepts
	3 PSoC 6 MCU Dual-CPU Architecture
	4 PSoC 6 MCU Dual-CPU Development
	4.1 Resource Assignment Considerations
	4.2 Interrupt Assignment Considerations
	4.3 Debug Considerations
	4.3.1 Configure PSoC Creator Project
	4.3.2 Create µVision Projects
	4.3.3 Debug µVision Projects
	4.3.4 Create IAR-EW Projects
	4.3.5 Debug IAR-EW Projects


	5 Summary
	6 Related Documents
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

