ANALOG AN-1443
DEVICES APPLICATION NOTE

One Technology Way « P.O. Box 9106 « Norwood, MA 02062-9106, U.S.A. « Tel: 781.329.4700 « Fax: 781.461.3113 - www.analog.com

Interfacing an SD Card Through the ADuCM3027/ADuCM3029 SPI Bus

INTRODUCTION This application note discusses how to use the serial peripheral
interface (SPI) of the ADuCM3027/ADuCM3029 processor to

Secure digital (SD) cards are the most common flash-based storage
interface with SD cards.

devices used in portable devices and embedded systems. An SD

card is an ideal solution for storage requirements due to its small This application note details general information about SD
size, low power, simplicity, and low cost. The compatibility of the cards such as pinouts, communication standards, and design
SD card with most devices makes it easier to access and retrieve considerations, and it also discusses SPI basics, such as signals
data from the card using any computer for further processing and waveforms, and the features of the ADuCM3027/
according to the application. ADuCM3029 SPI interface.

REQUIRED BOARDS

@
oo
[e1 o]
00
(o1}
00
]
000
(<]
o

SDHC Card
;. ega
4c8

15344-001

Figure 1. Required Boards: EVAL-ADuCM3029 EZ-KIT Evaluation Board (Left), Arduino-Compatible SD Card Shield (Top Right), SD Card (Bottom Right)

Rev.0 | Page 1 of 8

AN-1443

TABLE OF CONTENTS

T tTOMUCHION ettt eeee e see e eseeeeneeeees 1 File Allocation Table (FAT) File System.........ccccccevcuveureureenennee 5
Required Boardscocveueeureeeeeererneencinenneeneenensenenseescsseseesesensenne 1 SD Card Implementationcccecereueeeeeerererserseesesseseesenersenne 6
Revision HiStOIY ..ottt 2 ADuCM3027/ADuUCM3029 SPI ...t 6
SD Cardsccocecuvevcvrunenne Hardware Implementation

Capacity and Type.............. Software Implementation............cccuecuvcureurcrecencenceneerenreneeenennes
Interfaces and Modes Sample Code for SD Card Microcontroller Interfacing........... 8
SD Card SPI Protocol REfEIENCES....ouvviiiriiriiriii e 8

REVISION HISTORY
7/2017—Revision 0: Initial Version

Rev.0 | Page 2 of 8

AN-1443

SD CARDS

The SD card is a memory card that was introduced in 1999 by
the SD Association (SDA) to extend the capabilities of the
multimedia card (MMC) for use in portable devices. Since then,
the SD card has been widely accepted and it has become the
industry standard that most portable devices now use an SD
card to store files such as pictures, music files, and so on.

SD cards are composed of a pin interface, memory core, internal
registers, and an internal controller, as shown in Figure 2. The
memory core is the storage for data and comes in different sizes,
from 1 MB to 2 TB. The internal registers store the SD card
status. The pin interface is the connection between the card and
the master device, normally a microcontroller, which uses the
card.

The card interface controller manages the core memory of the
SD card. This controller usually handles the writing, reading,
and erasing of data in the flash, error handling, and flash wear
levering. Therefore, the main microcontroller that implements
the SD card sends commands and data to the card interface
controller through a sequence of data packets and does not care
about the management of the memory core.

9))

Vop

DAT2 CMD Vss1 CLK VSS2 DATO
CD/DAT3 INTERFACE DRIVER DAT1

OCR[31:0] ||

conea]

[] CARD
RCA[15:0] || INTERFACE
CONTROLLER

DSR[15:0] |-
CSD[127:0] || RESET |
SCR[63:0] |
SSR[511:0] |
CSR[31:0] |~a—s-]

POWER ON DETECTION

'

| MEMORY CORE INTERFACE RESET |-e—

!

MEMORY CORE

15344-002

Figure 2. SD Card Internals
CAPACITY AND TYPE

SD cards are available in different types, sizes and capacities.
The types of the SD cards can depend on memory capacity and
the SD standards they are complying to.

Table 1 describes different types of SD cards and their capacities.

Table 1. SD Card Types and Capacity

Common SD Card Type Capacity

SD Standard Capacity (SDSC) 1 MBto2GB
SD High Capacity (SDHC) 2GBto32GB
SD eXtended Capacity (SDXC) | =32 GB

SD cards are also available in different form factors and sizes,
such as the standard size, mini size, and the micro size, as
shown in Figure 3.

y

32.0mm

21.5mm

T

20.0mm

T

15344-003

|+—15.0mm —|
Figure 3. SD Card Sizes

INTERFACES AND MODES

SD cards have a pin interface that have different pinout
configurations depending on what communication mode and
card form factor is used. Typically, the interface is composed of
power lines (supply and ground), a clock line, data lines, and
command lines. On the newer high speed cards, a low voltage
differential interface is implemented to cater to high speed and
high bandwidth transfers.

Communication with SD cards is normally done in SD bus
mode, which is an interface defined by the SDA. In this mode,
the interface has a separate command and data line and clock
line. Transfers have a proprietary format; however, it is difficult
to implement this format on embedded systems with no native
SD interface.

Rev.0 | Page 3 of 8

AN-1443

SD CARD SPI PROTOCOL

The SD protocol used in SPI bus mode is somewhat different
from the protocol used in SD bus mode. Communication with
the SD card in SPI bus mode is a simple command response
protocol that is initiated by the master device (microcontroller)
by sending a command frame. When the SD card receives the
command frame, the card responds by sending a response
frame or an error frame depending on the command that was
sent by the host microcontroller.

To support the embedded systems and microcontrollers that have
no native SD interface, the SDA also defines in its specifications
that SD cards must support SPI bus mode. In this mode, the SD
card operates over the well known SPI widely used by micro-
controllers. However, SPI bus mode supports only a subset of
the full SD card standard protocols.

Figure 4 shows a pinout for the standard SD card pinout and a
micro SD card pinout.

12345678

The SD card command frame is composed of a 6-byte structure
that is sent to the SD card. The command frame always starts
with Bits 01 followed by a 6-bit command number.

The initial byte packet is followed by a 4-byte argument that is in
big endian format. The last byte is composed of the 7-bit cyclic
redundancy check (CRC) and a 1 stop bit address (see Figure 5).

Figure 4. Standard SD Card and Micro SD Card Pinouts

15344-004

2BITS 68BITS
|01| COMMAND |

32 BITS 7BITS 1BIT
ARGUMENT | CRC |1 |

The pinout for the standard SD card is described in Table 2.

Table 2. Standard SD Card Functions

Figure 5. Command Frame Format

Pin No. Name SD Mode SPI Mode
1 CS/DAT3 Data Line 3 Chip select The SD card responds to each command frame with a response
5 CMD/DI Command line MOSI frame that differs according to the command frame sent. In SPI
3 VSS1 Ground Ground bus mode, only three response types can be used: R1, R3, and R7
4 VDD Supply voltage Supply voltage (see Figure 6).
5 CLK Clock Clock (SCK) R1 RESPONSE
6 VSS2 Ground Ground 1BIT 1BIT 1BIT 1BIT 1BIT 1BIT 1BIT 1BIT
7 DATO Data Line 0 MISO PARAM [aDDRESs| ERASE ggg ILLEGAL | ERASE | INIDLE
8 DAT1 Data Line 1 Unused or IRQ O | erROR | ERROR | SEQ | cpoce | cMD | STATE | STATE
9 DAT2 Data Line 2 Unused
The pinout for the micro SD card is described in Table 3. R3/R7 RESPONSES

8BITS 32 BITS

Table 3. Micro SD Card Functions

15344-005

R1 RESPONSE OPERATION CONDITION REGISTER

Pin No. Name SD Mode SPI Mode
1 DAT2 Data Line 2 Unused Figure 6. Response Frame Format
2 DAT3/CS Data Line 3 Chi lect
atatine . P selec Next, the SD card sends the R1 response token after every
3 CMD Command line MOSI . .
command, with the exception of the SEND_STATUS command.
4 VDD Supply voltage Supply voltage
This command is one byte long, and the most significant bit
5 CLK Clock Clock (SCK) . . e
(MSB) is always set to 0. The other bits are error indications; an
6 VS5 Ground Ground error is indicated by a 1. The meaning of the error flags are
7 DATO Data Line 0 MISO et st yatk 8 &
8 DAT1 Data Line 1 Unused or IRQ W

Idle state: the card is in the idle state and running the
initializing process.

15344-006

e Erase reset: an erase sequence was cleared before executing
because an out-of-erase sequence command was received.

e Illegal command: an illegal command code was detected.

e Communication CRC error: the CRC of the last command
failed.

e Erase sequence error: an error occurred in the sequence of
erase commands.

e Address error: a misaligned address that did not match the
block length was used in the command.

Rev.0|Page 4 of 8

AN-1443

e Parameter error: the argument of the command (for
example, address or block length) was outside of the
allowed range for this card.

The SPI mode of the SD card uses only a subset of the commands
used in SD mode. See Table 4 for the detailed list of commands
for SPI mode. The command set is limited to initializing the
card, retrieving some important details, and then reading or
writing data blocks to the memory card.

Table 4. SPI Mode Command Set

Command Description

CMDO Reset card

CMD8 Request for current operational conditions

CMD55 Leading command for application specific
commands (ACMDs)

ACMDA41 Start card initiation process

CMD58 Request for operation conditions register
(OCR)

CMD16 Change block length

CMD17 Read a block of data

CMD24 Write a block of data

CMD32 Set the start block to be deleted

CMD33 Set the end block to be deleted

CMD38 Start block erase set by CMD32 and CMD33

FILE ALLOCATION TABLE (FAT) FILE SYSTEM

Common available SD cards are formatted by default as FAT file
systems. The FAT file system is a legacy file system that is
widely supported by nearly all PCs, mobile devices, and
embedded systems. A driver to support this file system can be
small, robust, and lightweight, which can be easily implemented
in a microcontroller or in an embedded system. Any saved files
on the FAT formatted memory card are viewable and modifiable
on virtually all PCs due to the support available for this basic
file system.

The SD card specification defines the FAT file system type that
can be used in different SD card by capacity (see the References
section for additional information).

Rev.0|Page 5 of 8

AN-1443

SD CARD IMPLEMENTATION

ADuCM3027/ADuCM3029 SPI

The ADuCM3027/ADuCM3029 microcontroller has three SPI
interfaces (SPIO0, SP11, and SPTH) that can be used to commu-
nicate with various SPI-compatible devices, such as high speed
sensors and memory devices. Each SPI port has four hardware
chip select signals that control the four SPI-compatible devices.
The SPI bus peripherals also include programmable baud rates,
clock phase, and clock polarity, different mechanisms of hard-
ware flow control, and it can act as an SPI master or slave.

The three SPIs are identical from an SPI programming and
model perspective, except for the internal bus interface where
the SPIs are connected. The SPIH peripheral is connected to the
high performance advanced peripheral bus (APB) that is
clocked at the same rate as the processor clock. SPI0 and SPI1
are connected to the main APB. Many of the peripherals of the
ADuCM3027/ADuCM3029 microcontroller use the APB;
therefore, the latency is more uncertain due to a greater number
of modules requiring arbitration.

Therefore, in higher data rates, the SPIH is more efficient and
can move data with lower latency.

HARDWARE IMPLEMENTATION

The hardware used to demonstrate interfacing between the SD
card and the ADuCM3027/ADuCM3029 processor is as
follows:

1. The EVAL-ADuCM3029 EZ-KIT® board
2. Arduino®-compatible data logging shield
3. 4 GB SanDisk® SD card

EVAL-ADuCM3029 EZ-KIT Board

The EVAL-ADuCM3029 EZ-KIT board is an evaluation system
for the ADuCM3027/ADuCM3029 processor (see Figure 7).
The board contains a wide array of on-board components that
can evaluate the ADuCM3027/ADuCM3029 microcontroller.
The EVAL-ADuCM3029 EZ-KIT also contains an EI3 interface
and an Arduino interface. These interfaces provide connectivity
with various daughter boards and shields to expand the
functionality of the EVAL-ADuCM3029 EZ-KIT board.

15344-007

Figure 7. EVAL-ADuCM3029 EZ-KIT Board

Arduino-Compatible Data Logging Shield

The data logging shield used is a commonly used shield in most
Arduino logging projects (see Figure 8). The SPI of the logging
shield connects with the SPIH port of the ADuCM3027/
ADuCM3029 microcontroller.

s T
»e 13 12

B -
=R - JEEL S0A BCT
S Lfleckoce

Figure 8. Data Logging Shield

Most of the data logging shields include a complementary
metal-oxide semiconductor (CMOS) buffer (for example, the
CD4050) that acts as a 3.3 V to 5 V voltage translator and
protects the SD card from damage. Usually the data in, serial
clock, and chip select lines of the SD card are buffered because
these are input pins of the card. However, when interfacing an
SD card with the ADuCM3027/ADuCM3029 microcontroller,
this voltage translator is optional because the output of the
microcontroller has the same voltage level as the SD cards.

The SPIH interface and general-purpose input/output (GPIO)
Port 1 share the pins of the ADuCM3027/ADuCM3029
microcontroller. The SPIH, SCLK, MOSI, and MISO signal
lines also use the microcontroller pins (Pin P1_02, Pin P1_03,
and Pin P1_04); therefore, these pins must remain unused.

Rev. 0| Page 6 of 8

15344-008

AN-1443

For this application note, this application uses GPIO Pin P2_01
as chip select for the SD card, and the SPIH dedicated chip
selects are not used (see Figure 9).

R3
1kQ D1 s3v
3.3V
[P21 ¢ X1
D2 _ FPS009-3004
1N4148 cs n
[P1o03 DI 2
3
4
[P10z SCLK 1
6
{PLo4 DO 7
8 COM+_TERM
9 WRITE_PROT
RL
100kQ
33V0
R2
100kQ o
MV v ‘;
GND g

Figure 9. Data Logging Shield Schematic
SOFTWARE IMPLEMENTATION

To test this application, use the following software tools:

e IAR Embedded Workbench 7.60. See the EVAL-
ADuCM3029 EZ-KIT page for to download this software.

e ADuCM302x Software for IAR, available for download
from the EVAL-ADuCM3029 EZ-Kit page.

e The FatFs library R0.12a by ChaN, available from the
FatFs - Generic FAT Filesystem Module website.

The application uses the FatFs library that handles the file system
calls and enables to reading and modifying files in the FAT-
formatted SD card. To use this file system library, a hardware
abstraction layer must be implemented that handles the low
level hardware dependent functions calls.

SPI Interface Initialization
To initialize the ADuCM3027/ADuCM3029 SPIH peripheral,
take the following steps:

1. Configure the SPTH peripheral.

2. Configure the GPIO Pin P2_01 as the chip select.

3. Configure the pin multiplexing for the shared pins of
GPIO1 and SPIH.

Configuring the SPIH Peripheral

The SPIH peripheral configuration consists of calls to set the
SPIH peripheral into a ready state for communication with the
SD card. To configure the SPIH peripheral, take the following
steps:

1. Open the SPIH peripheral.

2. Set the bit rate. Note that the SPTH bit rate changes depend
on what the interaction of the microcontroller and the SD
card is:

e When the microcontroller is initializing the SD card
for communication, the bit rate must be between
100 kHz to 400 kHz.

e After configuration of SD card in SPI mode, the bit
rate can be as high as 20 MHz depending on the
design of the hardware and capacity of the
microcontroller.

3. Set for continuous mode operation. In continuous mode,
the SPI peripheral can perform multiple byte transmit and
receive without cancelling or interrupting the transfer.

The following is a sample of the code used to configure the
SPIH of the ADuCM3027/ADuCM3029 microcontroller:
static uint8_t SPIMem[ADI_SPI_MEMORY_SIZE];
static ADI_SPI_HANDLE spih_Dev;

// Open the SPI
adi_spi_Open(SPI_DEV_NUM, SPIMem,

ADI_SPI_MEMORY_SIZE,
&spih_Dev);

// Set the bit rate
adi_spi_SetBitrate(spih_Dev, 100000);

// Set the continuous mode
adi_spi_SetContinousMode(spih_Dev, true);
Configuring the Chip Select

The chip select uses a GPIO pin (Pin P2_01) instead of using
the SPI dedicated chip selects. Using the customized GPIO pin
gives the user full control of the chip select signal. Some of the
transactions between the SD card and the microcontroller need
special handling of the chip select signal so that the software
controls the chip select appropriately.

To configure the chip select pin, set the SPIH chip select option

to none, then configure the GPIO Pin P2_01 as an output by

using the following:

adi_spi_SetChipSelect (spih_Dev,
ADI_SP1_CS_NONE);

adi_gpio_OutputEnable (SPI_CS_PORT,
SP1_CS_PIN,

true);
adi_gpio_SetHigh(SPI_CS_PORT, SPI_CS_PIN);

Rev.0 | Page 7 of 8

AN-1443

Configuring the Microcontroller Pin Multiplexers

The GPIOx_CFG register is the configuration register that
holds the settings of the pin multiplexers of the ADuCM3027/
ADuCM3029 microcontroller. SPIH uses the Pin P1_02,

Pin P1_03, and Pin P1_04 as connection pins to the SD card.

To configure the pins for SPIH usage, set the proper bit options
in the REG_GPIO1_CFG register. For more information on this
register, see the ADuCM302x Ultra Low Power ARM Cortex-M3
MCU with Integrated Power Management Hardware Reference
manual.

The following code is a sample for setting the port configuration
register for SPIH use:

#define SP10_SCLK_PORTP1_MUX

(uint32_t) (uint32_t) 1<<4))

#define SP10_MISO_PORTP1_MUX

(uint32_t) ((uint32_t) 1<<8))

#define SP10_MOSI_PORTP1_MUX

(uint32_t) ((uint32_t) 1<<6))

*((volatile uint32_t *) REG_GPIO1_CFG) =
SP10_SCLK_PORTP1_MUX |

SP10_MISO_PORTP1_MUX |

SP10_MOSI_PORTP1_MUX;

Sending and Receiving Data

After configuring the SPI peripheral for SD card communications,
the interface is now ready for sending and receiving data packets
and SD card initiation. The adi_spi_ReadWrite function sends
and receives data from the SD card. This function requires a
structure instruction that holds the data and the SPI device

pointer. The following is a sample of the code described in this
section:

ADI_SPI_TRANSCEIVER spi_xcv_buff;
spi_xcv_buff._pTransmitter = txbuff;
spi_xcv_buff._pReceiver = rxbuff;
spi_xcv_buff._TransmitterBytes = txsize;
spi_xcv_buff_ReceiverBytes = rxsize;
spi_xcv_buff_nTxIncrement = 1;
spi_xcv_buff_nRxIncrement = 1;

adi_spi_ReadWrite(spih_Dev, &spi_xcv_buff);

©2017 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
AN15344-0-7/17(0)

ANALOG
DEVICES

The ADI_SPI_TRANSCEIVER is a structure instruction that
holds the buffers used in the transaction. The buffers for trans-
mission, reception, data sizes, and increments must be defined.

Transmission and reception buffers are uint8_t arrays with sizes
that are in accordance with the data that is transmitted or received.
For transmission, the data size is approximately 6 bytes to 8 bytes,
and the reception data size is from 1 byte to 512 bytes.

Note that the adi_spi_ReadWrite function is a blocking function,
and the microcontroller waits until the transaction is successful
to execute the next instruction.

SAMPLE CODE FOR SD CARD MICROCONTROLLER
INTERFACING

This application note has an accompanied sample code for SD
card to ADuCM3027/ADuCM3029 interfacing. To view the
sample code, decompress and import the project to the IAR
Embedded Workbench 7.6, available for download from the
EVAL-ADuCM3029 EZ-KIT product page.

REFERENCES

ADuCM302x Ultra Low Power ARM Cortex-M3 MCU with
Integrated Power Management Hardware Reference. Analog
Devices, Inc. 2016.

SD Specifications Part 1, Physical Layer Simplified Specifications,
Version 5.00. SD Card Association. 2014.

www.analog.com

Rev.0|Page 8 of 8

	INTRODUCTION
	REQUIRED BOARDS
	TABLE OF CONTENTS
	REVISION HISTORY

	SD CARDS
	CAPACITY AND TYPE
	INTERFACES AND MODES
	SD CARD SPI PROTOCOL
	FILE ALLOCATION TABLE (FAT) FILE SYSTEM

	SD CARD IMPLEMENTATION
	ADuCM3027/ADuCM3029 SPI
	HARDWARE IMPLEMENTATION
	EVAL-ADuCM3029 EZ-KIT Board
	Arduino-Compatible Data Logging Shield

	SOFTWARE IMPLEMENTATION
	SPI Interface Initialization
	Configuring the SPIH Peripheral
	Configuring the Chip Select
	Configuring the Microcontroller Pin Multiplexers
	Sending and Receiving Data

	SAMPLE CODE FOR SD CARD MICROCONTROLLER INTERFACING
	REFERENCES

