ANALOG AN-1435
DEVICES APPLICATION NOTE

One Technology Way « P.O. Box 9106 - Norwood, MA 02062-9106, U.S.A. - Tel: 781.329.4700 - Fax: 781.461.3113 - www.analog.com

Implementing UART Using the ADuCM3027/ADuCM3029 Serial Ports

INTRODUCTION Key features and capabilities of the SPORT interface include

Using the synchronous serial peripheral ports (SPORTS) on the
ADuCM3027/ADuCM3029 processor, it is possible to implement
a full duplex, asynchronous port to communicate with the
universal asynchronous receiver/transmitters (UARTSs) with
minimal software overhead. This application note describes

how to implement a full UART interface for multiple standard
baud rates. e Configurable frame synchronization signals.

e A continuously running clock.

e Serial data words from 3 bits to 32 bits in lengths, either
MSB or LSB first.

e Two synchronous transmit and two synchronous receive
data signals.

e Buffers to double the total supported data stream.

SPORT OVERVIEW Refer to https://wiki.analog.com/resources/eval/sdp/sdp-b/

The SPORT interface supports a variety of serial data peripherals/sport for further information about the SPORT

communication protocols. In addition, the SPORTS provide a
glueless hardware interface to many industry-standard data
converters, codecs, and other processors, including digital
signal processors (DSPs).

interface.

SPT_CONVTA |—>»
SPT_FSA |[e—»
SPT CLKA |[e—»
SPT_DOAA |e—»

HALF SPORT_A

SPT_CONVTB |—
SPT_FSB |w—
SPT CLKB |e—
SPT_DOAB |e—»

HALF SPORT_B

15108-001

Figure 1. SPORT Signals

Rev.A |Page 10f 16

AN-1435

TABLE OF CONTENTS

INtrOAUCHION .o 1 Software FIOWChATtsc.ocuveueeeieineineineireereeieeereseiseiseieesese e 6

SPORT OVEIVIEW.....ooviveiiniiteeteerectecteeeeereesreseesssesnesaesssessessesssessensens 1 SPORT_A Block TransSmiSSioN.......c.e.eeeveveeeereueeerereeereresessereenns 6

Revision HiStOIY ..o 2 SPORT_B Block Reception..........ccccvcuieriuneuienceneisinninseieinenne 7

Asynchronous Communicationuceviirneineisncusenneinenn: 3 WaVEOIMScovieiirieriiiiii s 8
Asynchronous SPORT Transmittercococecuvcuvcurcurcnicnnee 3 Code for the SPORT_UART_Emulator .9
Asynchronous SPORT Receiver ... 3 SPORT_UART _Emulator.h c...cooeveeeieeieieeeeeeeeeeeeeeeeeeereeeans 9

Hardware and Software OVEIrVIEWoeevvveueeieveeeieeereeeeeeeereeenns 4 SPORT_UART_Emulator_TransSmit.Ccccceveveveeveveereenenne 14
Hardware OVEIVIEWc.ouivevieevieeirieeeeeeeeseeeee e sesens 4 SPORT_UART_Emulator_Receive.C.....coouvveieveeiirreriierenne 15
SOFtWAre OVEIVIEW ...c.uvuviueireieieieireieineieisee ettt senessens 4 CONCIUSION. ...ttt eaes 16

Driver Function Prototypes ... 5

REVISION HISTORY

10/2017—Rev. 0 to Rev. A

Deleted Byline..........ccccocuiiinininiciciciicisiiecsssiceessienenns 1

Changes to SPORT_UART_Emulator.h Section..........cccceuueec. 13

4/2017—Revision 0: Initial Version

Rev.A |Page20f 16

AN-1435

ASYNCHRONOUS COMMUNICATION

The difference between synchronous and asynchronous serial
communication is the presence of a clock signal and frame
synchronization signal. A synchronous serial port has a clock
signal and an optional frame sync signal. An asynchronous port
does not have clock and frame sync signals. In the absence of a
clock signal, the asynchronous ports must communicate at a
predetermined data rate (bit rate). In the absence of a frame
sync, the word framing information is embedded in the data
stream. A start bit marks the beginning of a transmission. A
stop bit marks the completion of a transmission. The word
length is predetermined between the receiver and transmitter.

ASYNCHRONOUS SPORT TRANSMITTER

The transmit side of the serial port must be configured for
internal clock generation with a clock rate equal to the desired
bit rate of the UART. This configuration is performed by setting
the CLKDIV bit in the clock divider register (SPORT_DIV_A)
for the SPORT_A block.

CLKDIV Bit in the SPORT_DIV_A Register =
PCLK B
2 x Baud Rate

where PCLK is the peripheral clock signal.

The SPORT_A clock is only used to synchronize the serial port
to the desired bit rate. The actual clock signal (SPORT_ACLK)
does not connect to anything. Configure the frame sync signal
(SPORT_AFS) to be internally generated and leave the signal
floating. The SPORT_A block must always transmit LSB first to
emulate UART transmission. Program the number of bits to be
transmitted by the SPORT_A block in the SLEN field of the
SPORT_CTL_A register. Program the total number of words to
be transferred in the SPORT_NUMTRAN_A register, with each
word size determined by the SLEN field.

In the case of a SPORT transmission where the SPORT_A block
transmits to a UART device, the UART always receives the first
transfer as 0x00, which can be discarded, followed by a correct
sequence of data transmitted by the SPORT_A block. This
sequence occurs because, at the start of transfer (after configu-
ration), the UART Rx line is idle high (Logic 1) and the SPORT
data line is idle low (Logic 0). The UART interprets this Logic 0
as a start bit and receives an entire frame of Logic 0 at the
beginning of the transmission.

ASYNCHRONOUS SPORT RECEIVER

The serial port must determine where a new transmission
begins without the presence of an internal frame synchronization
signal. The transmit pin of the UART device connects to the
data line pin (SPORT_BDO) and the frame synchronization pin
(SPORT_BES) on the SPORT_B block of the ADuCM3029/
ADuCM3027. The SPORT_B block is configured for internal
clock generation and an active low external frame sync signal.

Because the SPORT cannot guarantee any phase synchronization
with the incoming bit stream, it is necessary to oversample the
incoming asynchronous data stream. The receive clock on the
SPORT must be set to three times the desired baud rate. For
example, if the ADuCM3029/ADuCM3027 SPORT communicates
with the UART device at 9600 bps, the receive clock on the SPORT
must be set to 28,800 bps. Perform this setting by calculating
the appropriate divisor and programming the CLKDIV bit in
the clock divider register (SPORT_DIV_B) for the SPORT_B
block.

CLKDIV Bit in the SPORT_DIV_B Register =
PCLK

2 x 3% Baud Rate -

The active low frame synchronization signal (SPORT_BFS) is
polled on the active edge of the internally generated clock
(SPORT_BCLK). When the SPORT_BFS signal is asserted due
to the low level start bits of the UART packet, the SPORT_B
block starts receiving the word transmitted from the UART
device and does not check the SPORT_BFS line until all N bits
of the packet are received (N is programmed by the SLEN field
in the SPORT_CTL_B register). The SPORT uses the oversampled
start bit as a frame synchronization to begin the reception of the
incoming asynchronous data stream.

Rev.A |Page 3 0of 16

AN-1435

HARDWARE AND SOFTWARE OVERVIEW

HARDWARE OVERVIEW

Figure 2 shows the connection between the ADuCM3029/
ADuCM3027 SPORTs and the transmit (Tx) and receive (Rx)
pins of a basic UART port on another device.

SPORT A SCK_A N
ADUCM3027/ FS_A Rx
ADUCM3029 SDO A
UART
SPORT B SCK_B
ADUCM3027/ FSB | e .
ADuCM3029 SDO B <J §

Figure 2. ADuCM3029/ADuCM3027 Microcontroller Unit (MCU) to UART
Interface

SOFTWARE OVERVIEW

The software required to manage the asynchronous data
moving in and out of the SPORT is minimal. The C functions
for the SPORT transmission and reception are described in the
Code for the SPORT_UART_Emulator section. The code is
tested for multiple baud rates and multiple number of transfers
between the UART host and the ADuCM3029/ADuCM3027
SPORT; for both transfer directions.

Asynchronous SPORT Transmitter (SPORT_A Block)

On the transmit side, the N bit data to be transmitted must be
formatted into a UART transmission packet. A start bit and stop
bit must be added to the word for correct reception by the
UART device.

An example of the data format is as follows:

e For an 8-N-1 transmission format (8-bit data + 0 parity bit
+ 1 stop bit), data = 0xAA (b#1010 1010).

e Modified data = b# 1 10101010 0 1 (1 stop-bit + 8-bit data
+ 1 start bit + 1 stop bit).

A stop bit must be appended at the beginning of the transmission
because the SPORT_ADO line retains the value of the LSB (if
the LSB is transmitted first) when a complete word is sent. The
UART Rx line must be set to idle high to avoid glitches in the
generated signal between consecutive bytes, leading to corrupt data.

Asynchronous SPORT Receiver (SPORT_B Block)

The receive side is more complex than the transmit side because
the SPORT_B block receives oversampled data. For an 8-N-1
transfer format, because the data is oversampled by a factor of 3,
the serial port must be programmed to receive 27 bits, thereby
discarding the three sampled start bits, which are accounted for
in the frame synchronization (SPORT_BEFS). The 27 bits received
represent the packet transmitted by the UART device, 8 bits of
data, and 1 stop bit (oversampled by a factor of 3).

Then, the actual data is extracted from the oversampled data by
bit manipulation operations. The middle bit, which is the correct
value, is extracted from the 3-bit sequence in the received data
for every transmitted bit from the UART device. The extracted
bits are assembled to form a byte of data.

. DATA BYTE = 8 BITS
DATAUig$MAT- START BIT STOP BIT
LsB| 1 2 3 4 5 6 | MSB
000 XXX XXX XXX XXX 111
EQUIVALENT BIT PATTERN y vy yy Y 9
FOR SPORTO 3 ZEROES BYTE REPRESENTED BY 24 BITS 30NES | 2

Figure 3. Expected Data Formats for UART Frame and SPORT Receive Frame

Rev. A |Page 4 of 16

AN-1435

DRIVER FUNCTION PROTOTYPES

The following functions work with 8-bit asynchronous data, but
can easily be changed to support other data widths. The C
functions for the use case are detailed in the Code for the
SPORT_UART_Emulator section.

The SPORT_UART_Tx_Initialise function configures and sets
up the SPORT_A block on the ADuCM3029/ADuCM3027
processor for UART transmission emulation. The SPORT_A
internal clock is derived from the PCLK, which is configured to
6.5 MHz (default). The desired baud rate is set for the transmission,
along with configuration using the SPORT_CTL_A register. An
interrupt to signal that the transmit data buffer is empty is
configured using the SPORT_IEN_A register. The number of
words to be transferred is programmed using the SPORT _
NUMTRAN_A register, before enabling the SPORT_A block.

The SPORT_UART_Rx_Initialise function configures and sets
up the SPORT_B block on the ADuCM3029/ADuCM3027
processor for UART reception emulation. The SPORT_B block
is configured to oversample the incoming data stream by a factor
of 3. The frame synchronization is configured for an external, low,
active state. An interrupt to signal that the receive data buffer is
full is configured using the SPORT_IEN_B register. Also, the
SLEN field of the SPORT_CTL_B register is configured to the
following before enabling the SPORT_B block:

3 x (Word Size + Number of Stop Bits) — 1

The SPORT_UART_Tx_Transfer function creates the UART
transmission data format by modifying the data in location
pointed to by the buffer. The modified data is then output on
the SPORT_A_TX register for transmission. The function uses
bit masking and shifting operations.

The SPORT_UART_Rx_Transfer function receives the over-
sampled data from the SPORT_B_RX register. A bit manipulation
operation extracts the middle bits of every 3-bit sequence of the
SPORT_B_RX data (3 bits received for every 1 bit transmitted
by the UART device). The extracted bits are assembled into

a byte sized data. The function returns the assembled byte,
representing the actual received data. The following code
example shows how to extract the data from the 27-bit SPORT
registers into 8-bit UART data:

/* Receive data into the RX buffer */

temp = *pREG_SPORTO_RX_B;

/* Extract the 8 bits from the 27 bits
received */

value = 0;

value += ((temp >> 23) & (1 << 0));
value += ((temp >> 19) & (1 << 1));
value += ((temp >> 15) & (1 << 2));
value += ((temp >> 11) & (1 << 3));
value += ((temp >> 7) & (1 << 4));
value += ((temp >> 3) & (1 << 5));
value += ((temp >> 1) & (1 << 6));
value += ((temp >> 5) & (1 << 7));
/* Return the assembled byte */
return value;

Rev.A |Page 50f 16

AN-1435

SOFTWARE FLOWCHARTS

SPORT_A BLOCK TRANSMISSION When enabled, check the SPORT_STAT register if there is
The SPORT_A block emulates the UART Tx port. To use the pending data to be transmitted. If there is data to be transmitted,
SPORT A bIo ck to emulate the UART Tx port th' e SPORT create the UART data packet from the pending data, then write

block must be initialized for transmission and must be enabled. the data packet to the SPORT transmit register.

CONFIGURE SPORT_A BLOCK
FOR TRANSMISSION

!

ENABLE SPORT_A BLOCK

!

WAIT FOR Tx
EMPTY IRQ

READ SPORT_A STAT
REGISTER

!

IS SPORTA_DATA REQ
ASSERTED?

CREATE DATA TRANSMIT PACKET

l

WRITE PACKET TO
SPORT_A_Tx REGISTER

!

INCREMENT TRANSFER
COUNTER i

!

NO

i > SPORT_A_NUMTRAN?

DISABLE SPORT_A BLOCK

15108-004

Figure 4. SPORT_A Block Transmission Flowchart

Rev.A |Page 60of 16

AN-1435

SPORT_B BLOCK RECEPTION When the SPORT is enabled, check the SPORT_STAT register

The SPORT_B block emulates the UART Rx port. To use the for pending data in the SPORT_B data register. If there is a data,
SPORT_B as the UART Rx port, the SPORT_B block must first retrieve the data and extract the 8-bit UART data.
be initialized for reception and must be enabled.

CONFIGURE SPORT_B BLOCK
FOR TRANSMISSION

!

ENABLE SPORT_B BLOCK

'

WAIT FOR Rx
FULL IRQ

READ SPORT_B STAT
REGISTER

'

IS SPORTB_DATA REQ
ASSERTED?

RECEIVE 27-BIT DATA FROM
SPORTB_Rx INTO TEMP VARIABLE

!

ASSEMBLE THE EXTRACTED BITS INTO ABYTE
AND STORE IT IN THEALLOTTED DATA BUFFER

!

EXTRACT THE ACTUAL 8-BIT DATA
FROM 27 BITS RECEIVED

15108-005

Figure 5. SPORT_B Block Reception Flowchart

Rev.A |Page 7 of 16

AN-1435

WAVEFORMS

Figure 6 shows the waveforms for transmission from the
SPORT_A block and reception on the UART device at 9600 bps,
for a single frame of 8-bit data (0x96), and additional formatting
bits required for UART transmission emulation.

ARPA AL RARAS RARSA BARAR LaNSA RRARE Reata angARSARS
B}]
[SPTA_CLK]
[- P 1
g SPTA_FS .
i ' i]
.) J
1 ™ 1 “_
1 1 1
T T
5 1 1
N 1 1
B : : g
¥ ! | SPTA_DO ! 2
A L.l]

Figure 6. SPORT_A Block Transmission and UART Device Reception for a
Single Frame

Figure 7 shows the waveforms for transmission from the UART
device and reception on the SPORT_B block at 9600 bps, for a
single frame of 8-bit data (0x96) (with a start bit and a stop bit),
sampled at 3 times the transmission baud rate for proper
emulation of UART reception.

B: SPTB_CLK ! 1
N o " pe—]
: i 1
[|]
[1]
)
e = o gl
By SPTB_FS i]
: =5
r- 1]
|]
: J |]
| —H .
I 1| SPTB_DO I 5
1 1 @
1 1 =1

Figure 7. UART Device Transmission and SPORT_B Block Reception for a
Single Frame

The red traces in the figures indicate a single frame of transfer.

Rev.A |Page 80f 16

AN-1435

CODE FOR THE SPORT_UART_EMULATOR

The code shown in this section provides an example for the e Transmission from the UART and reception by the
following use cases: SPORT_B block.
e Transmission from the SPORT_A block and reception by The data format used for a single frame of transfer is 8-N-1 (1
the UART. start bit, 8 bits of data, 0 parity bits, and 1 stop bit). These cases

are tested at PCLK = 26 MHz and multiple baud rates.

SPORT_UART_EMULATOR.H
/* SPORT Based UART Emulator Application */
/* SPORT_A emulates Transmission Side while SPORT_B emulates Reception Side */
/* Two Use Cases
(a) Transmission from SPORT_A and Reception by UART
(b) Transmission from UART and Reception by SPORT B */

/* Tested with PCLK = 26 MHz and Baud Rates - 9600bps, 19200bps, 38400bps, 57600bps, 115200bps,
230400bps */

/* Define the word_size and baud_rate for UART before proceeding */

#include "'system.h"
#include "startup.h"
#include "stdint.h"

/* Definitions used for supporting both use cases */

#define SLEN_TX (word_size + stopbits + paritybit + 1)
#define SLEN_RX (3 * (word_size + stopbits + paritybit) - 1)
#define FSDIV_TX (word_size + stopbits + paritybit + 2)
#define SYS_PCLK 26000000

#define TRAN_SIZE 3

#define baud_rate 9600

#define word_size 8

#define stopbits 1

/* Global Variables used for both use cases */

uint32_t temp;

uint8_t flag = 0;
uint8_t tbhuf[TRAN_SIZE];
uint8_t rbuf[TRAN_SIZE];

int i=0; /* Transfer Loop Counter */
uintlé_t res;

/* Definitions for Functions used for both use cases */
void Change_CLKDIV(int pVal, int hval);

void SPORT_UART_Tx_Initialise();

void SPORT_UART_Rx_Initialise();

void SPORT_UART_Tx_Transfer(uint8_t *buf);

uint8_t SPORT_UART_Rx_Transfer();
Rev.A |Page90of 16

AN-1435

/* Description: Function to change the PCLKDIV and HCLKDIV
Input Parameters: int pval - Value of PCLK Divisor
int hval - Value of HCLK Divisor
Return: void
*/
void Change_CLKDIV(int pVal, int hval)
{
uint32_t uiTemp;
// Change PCLKDIVCNT
uiTemp = *pREG_CLKGO_CLK_CTL1;
uiTemp &= ~(BITM_CLKG_CLK_CTL1_PCLKDIVCNT);
uiTemp |= (pval << BITP_CLKG_CLK_CTL1_PCLKDIVCNT);
*pREG_CLKGO_CLK_CTL1 = uiTemp;

// Change HCLKDIVCNT

uiTemp = *pREG_CLKGO_CLK_CTL1;

uiTemp &= ~(BITM_CLKG_CLK_CTL1_HCLKDIVCNT);

uiTemp |= (hval << BITP_CLKG_CLK_CTL1_HCLKDIVCNT);
*pREG_CLKGO_CLK_CTL1 = uiTemp;

/* Description: Function to initialize and configure the SPORT_A for UART Transmission Emulation
Input Parameters: void
Return: void
*/
void SPORT_UART_Tx_Initialise()
{
float value;
value = ((SYS_PCLK / (2 * baud_rate)) - 1);

/* Configure the GPIO pins as alternate functions for SPORT_A_Tx */
*pREG_GP102_CFG |= (1 << BITP_GPIO_CFG_PINOO) | (1 << BITP_GPIO_CFG_PIN0O2);
*pREG_GPI101_CFG |= (1<< BITP_GPIO_CFG_PIN15);

*pREG_GPI100_CFG |= (1<< BITP_GPIO_CFG_PIN12);

*pREG_GP100_PE |= (1 << 12);

/* Disable the SPORT_A_Tx before the configuration*/
*pREG_SPORTO_CTL_A &= ~(1 << BITP_SPORT_CTL_A_SPEN);

/* Configure CLk Divider */
*pREG_SPORTO_DIV_A |= ((uintl6_t) value << BITP_SPORT_DIV_A_CLKDIV) |

((FSDIV_TX) << BITP_SPORT DIV_A_FSDIV);

/* Configure the Data interrupts and the Transfer Complete interrupts */
*pREG_SPORTO_IEN_A |= (1<< BITP_SPORT_IEN_A TF) | (d<< BITP_SPORT_IEN_A DATA);

Rev.A |Page 10 of 16

AN-1435

}

/* Program Number of Transfers */
*pREG_SPORTO_NUMTRAN_A = TRAN_SIZE;

/* Write the CTL register */

*pREG_SPORTO_CTL_A | = ((SLEN_TX) << BITP_SPORT CTL_A_SLEN)

| (1 << BITP_SPORT_CTL_A_ICLK)

| (1 << BITP_SPORT_CTL_A_IFS)

| (1<< BITP_SPORT_CTL_A_FSR)

| (1 << BITP_SPORT_CTL_A_SPTRAN)
| (1 << BITP_SPORT CTL_A_LSBF);

/* Enable SPORT_A */

*pREG_SPORTO_CTL_A |= (1<< BITP_SPORT_CTL_A_SPEN):

/* Description: Function to initialize and configure the SPORT_B for UART Reception Emulation
Input Parmaeters: void

Return: void
*/
void SPORT_UART_Rx_Initialise()

{

float value;

value = ((SYS_PCLK /(2 * 3 * baud_rate)) - 1);

/* Configure the GPIO pins as alternate functions for SPORT_B_Rx */

*pREG_GP100_CFG |= (2 << BITP_GPI0_CFG_PINOO)

| (2 << BITP_GPI10_CFG_PINO1)
| (2 << BITP_GPI10_CFG_PINO2)
| (2 << BITP_GP10_CFG_PINO3);

/* Configure CIlk Divider */

*pREG_SPORTO_DIV_B |= ((uintl6_t) value << BITP_SPORT_DIV_B_CLKDIV);

/* Use external FS */

/* Configure Data interrupts and Transfer Complete Interrupt */
*pPREG_SPORTO_IEN_B = (1<< BITP_SPORT_IEN_B_TF) | (1<< BITP_SPORT_IEN_B_DATA);

/* Program Number of Transfers */
*pREG_SPORTO_NUMTRAN_B = 2;

/* Write to CTL register */

*pREG_SPORTO_CTL_B | = ((SLEN_RX) << BITP_SPORT_CTL_B_SLEN)

| (1 << BITP_SPORT_CTL_B_ICLK)
| (1 << BITP_SPORT_CTL_B_FSR)
| (1 << BITP_SPORT CTL_B_LFS);

/* Enable SPORT_B to receive data */

Rev.A|Page 11 of 16

AN-1435

*pREG_SPORTO_CTL_B |= (1<< BITP_SPORT CTL_B_SPEN);
¥

/* Decription: Function to transmit data from SPORT_A_TX register to UART Device after
formatting

Input Parameters: uint8_t *buf - Value of the data to be transmitted
Return : void

*/

void SPORT_UART_Tx_Transfer(uint8_t *buf)

{

uintlé_t res;

/* Place a start and a stop bit */
uintl6é_t tx_mask, tx_startbits, tx_stopbits;

/* Create Masks for transmitting the word
Example: if word_size = 8

tx mask = b"11111111

tx _startbits = b"01111111100

tx_stopbits = b*10000000001

*/

tx_mask = (1 << word_size) - 1;
tx_startbits = tx_mask << 2;
tx_stopbits = ((0x0C) << (word_size + paritybit)) | 1;

/* Remove all the bits that won"t be transmitted */
(*buf) &= tx_mask;

res = (*buf) << 2; /* Make space for the start bit and previous stop bit */
res &= tx_startbits; /* Add the start bit */
res |= tx_stopbits; /* Add the stop bits */

/* Put this value into the SPORTA_TX register */
*pREG_SPORTO_TX_A = res;

/* Description: Function to receive data into SPORT_B_RX register from UART Device,
extract the sampled bits and return the assembled data for storage.

Input Parameters: void

Return: uint8_t value - Assembled Received Data for storage
*/
uint8_t SPORT_UART_Rx_Transfer()
{

/* Oversample by 3 and extract the middle bit of every transmittted bit */
uint32_t value;

/* Get the received middle stop bit */

Rev.A|Page 120f 16

AN-1435

uint8_t rxd_stop;

/* Receive data

temp = *pREG_SPORTO_RX_B;

into Rx Buffer */

/* Extract the 8 bits from the 27 bits received */

value = 0;

switch (word_size)

{

case 8: value += ((temp >> 23) & (1 << 0)); // bit 0O
value += ((temp >> 19) & (1 << 1)); // bit 1
value += ((temp >> 15) & (1 << 2)); // bit 2
value += ((temp >> 11) & (1 << 3)); // bit 3
value += ((temp >> 7) & (1 << 4)); // bit 4
value += ((temp >> 3) & (1 << 5)); // bit 5
value += ((temp << 1) & (1 << 6)); // bit 6
value += ((temp << 5) & (1 << 7)); // bit 7
break;

case 7: value += ((temp >> 20) & (1 << 0));
value += ((temp >> 16) & (1 << 1));
value += ((temp >> 12) & (1 << 2));
value += ((temp >> 8) & (1 << 3));
value += ((temp >> 4) & (1 << 4));
value += ((temp >> 0) & (1 << 5));
value += ((temp << 4) & (1 << 6));
break;

case 6: value += ((temp >> 17) & (1 << 0));
value += ((temp >> 13) & (1 << 1));
value += ((temp >> 9) & (1 << 2));
value += ((temp >> 5) & (1 << 3));
value += ((temp >> 1) & (1 << 4));
value += ((temp << 3) & (1 << 5));
break;

case 5: value += ((temp >> 14) & (1 << 0));
value += ((temp >> 10) & (1 << 1));
value += ((temp >> 6) & (1 << 2));
value += ((temp >> 2) & (1 << 3));
value += ((temp << 2) & (1 << 4));
break;

}

return value;

/* Interrupt Handler Routine for SPORT_A_TX */
void SPORTOA_Int_Handler(Q)

{

Rev.A|Page 13 of 16

AN-1435

if ((i < (TRAN_SIZE)) && (*pREG_SPORTO_STAT A & BITM_SPORT_STAT_A DATA))

{
SPORT_UART_Tx_Transfer(&tbuf[i++]);

T
if(i >= TRAN_SIZE)
{
*pREG_SPORTO_CTL_A &= ~(1<< BITP_SPORT_CTL_A_SPEN);
3
3

/* Interrupt Handler Routine for SPORT_B_RX */
void SPORTOB_Int_Handler()
{
iT((i < TRAN_SIZE) && (*pREG_SPORTO_STAT B & BITM_SPORT_STAT_B_DATA))

{
rbuf[i++] = SPORT_UART_Rx_Transfer();

}
if((i >= TRAN_SIZE) && ((*pREG_SPORTO_STAT B & BITM_SPORT_STAT_B_TFI)))

{
*pREG_SPORTO_CTL_B &= ~(1<< BITP_SPORT_CTL_B_SPEN);
NVIC_DisablelRQ(SPORT_B_EVT_IRQN);
}
}
SPORT_UART_EMULATOR_TRANSMIT.C
#include '""SPORT_UART_Emulator.h"

/* Main Function for Use Case (@) Transmission from SPORT_A and Reception by UART */
int mainQ)
{

/* Change PCLK to 26 MHz */

Change_CLKDIV(1, 1);

/* Enable the NVIC IRQ ID for SPORT A handler */
NVIC_EnablelRQ(SPORT_A_EVT_IRQn);

/* Create Data pattern for transmit buffer */
for (int i=0; 1 < TRAN_SIZE; i++)
{
tbhuf[i] = O0x13 + (0x19 << (i % 5)) + (Ox6D << (i % 3));
}

/* Configure the SPORT_A for use case */
SPORT_UART_Tx_Initialise();

while(1) {}

Rev.A | Page 14 of 16

AN-1435

SPORT_UART_EMULATOR_RECEIVE.C
#include "SPORT_UART_Emulator.h"

/* Main Function for Use Case (b) Transmission from UART and Reception by SPORT_B */
int mainQ

{
/* Change PCLK to 26 MHz */

Change_CLKDIV(1, 1);

/* Enable the NVIC IRQ ID for SPORTB_Rx handler */
NVIC_EnablelRQ(SPORT_B_EVT_IRQN);

/* Configure the SPORT_B for use case */
SPORT_UART_Rx_Initialise();

while(l) {}
}

Rev.A | Page 15 of 16

AN-1435

CONCLUSION

This application note describes how to use the SPORT
communication protocol on the ADuCM3029/ADuCM3027
processor to emulate a full duplex UART communication, which

can be then used to interface with any standard UART device.

©2017 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
AN15108-0-10/17(A)

ANALOG
DEVICES

The use case presented in this application note is tested in core
and direct memory access (DMA) modes for all standard baud
rates. Reliable results are observed for baud rates up to 115,200 bps
on the SPORT transmission cycle and up to 57,600 bps on the
SPORT reception cycle. Data sizes ranging from 5 bits to 8 bits for
transfers in both directions are tested for proper operation.

www.analog.com

Rev.A | Page 16 of 16

	INTRODUCTION
	SPORT OVERVIEW
	TABLE OF CONTENTS
	REVISION HISTORY

	ASYNCHRONOUS COMMUNICATION
	ASYNCHRONOUS SPORT TRANSMITTER
	ASYNCHRONOUS SPORT RECEIVER

	HARDWARE AND SOFTWARE OVERVIEW
	HARDWARE OVERVIEW
	SOFTWARE OVERVIEW
	Asynchronous SPORT Transmitter (SPORT_A Block)
	Asynchronous SPORT Receiver (SPORT_B Block)

	DRIVER FUNCTION PROTOTYPES
	SOFTWARE FLOWCHARTS
	SPORT_A BLOCK TRANSMISSION
	SPORT_B BLOCK RECEPTION

	WAVEFORMS
	CODE FOR THE SPORT_UART_EMULATOR
	SPORT_UART_EMULATOR.H
	SPORT_UART_EMULATOR_TRANSMIT.C
	SPORT_UART_EMULATOR_RECEIVE.C

	CONCLUSION

