ANALOG
DEVICES

ADuCM4050 Reference Manual

UG-1161

One Technology Way « P.O. Box 9106 - Norwood, MA 02062-9106, U.S.A. - Tel: 781.329.4700 « Fax: 781.461.3113 - www.analog.com

How to Reproduce the EEMBC CoreMark and ULPMark Core Profile Score for the
ADuCM4050

INTRODUCTION

This reference manual describes how to reproduce the
Embedded Microprocessor Benchmark Consortium (EEMBC®)
CoreMark® and ULPMark™-Core Profile (CP) score for the
ADuCMA4050 microcontroller.

This reference manual describes the steps necessary to install
the software and to set up the hardware for measuring the
CoreMark and ULPMark-CP score.

This reference manual helps the user reproduce the EEMBC
CoreMark and ULPMark-CP score on the EV-COG-AD4050LZ or
the EV-COG-AD4050WZ board.

This reference manual provides details of the performance and the
energy consumed by the ADuCM4050 microcontroller in the
different power modes used on the benchmark, confirming the
data sheet power specifications.

ABOUT THE ADuCM4050

The ADuCM4050 processor is an ultralow power, integrated,
mixed-signal, microcontroller system used for processing,
control, and connectivity. The microcontroller unit (MCU)
subsystem is based on the ARM* Cortex™-M4F processor, a
collection of digital peripherals, cache embedded SRAM and
flash memory, and an analog subsystem that provides clocking,
reset, and power management capabilities along with the
analog-to-digital converter (ADC).

The ADuCM4050 processor provides a collection of power
modes and features, such as dynamic and software controlled
clock gating and power gating, to support extremely low
dynamic and hibernate power management.

Full specifications on the ADuCM4050 are available in the product
data sheet. Consult the data sheet in conjunction with this
reference manual when working with the EV-COG-AD4050LZ
and the EV-COG-AD4050WZ.

[E EEMEC EnergyBench Monitor 20.0420beta =
Analysis Mode ULPMark. v| » Hardware version: E4.0 b
Setring collection mode... 0K
‘cemis v | Setring voltage (may take ~30s)... OK
Berlceliol (EOKI1R Pausing for 5 seconds so DUT can boot. .. 0K
——————— Collecting trace #&...
Windows Size 200 7| Sropping trace... 0K
* wl 4.962 ul {cycles = 10, thresh = &)
/| Enable Capture Fils * w2 4.980 ul {cycles = 11, thresh = &)
Closing capture file: 17_02_2017_13_00_43.txt
[Start | computing median score of last & runs
ULPMark {vlj): Z0l.585
| Submit Score: | UI.uPl.‘[ark fvZi: z00.207 .
Finished ULMMark collection. -
60 9
50 <
540
=
g
5
b
WED -
=
&
<
£
G20
10 o
o
r T T T T T T 1
o z 4 & 8 10 12
Time (5}

16075-001

Figure 1. EEMBC ULPMark-CP Score

Rev.0|Page 1 of 15

UG-1161

ADuCM4030

TABLE OF CONTENTS

Introduction 1 CoreMark Results 9
About the ADUCMA4050cuveiuiiieiieieieieeneesesessessesssensnes 1 Results at 26 MHz 10
Revision HiStOry ...t 2 Results at 52 MHz 11
About EEMBC ... 3 ULPMark-CP 12
CoreMark........cocveueiciccuvcuncnninnnn. 3 The ENergyMONItorcccocviuvieniereeneeceemceceeesceseeseneeseeaenaeenes 12
ULPMark 3 Installing the EnergyMonitor Software Drivers 12
IAR Setup 4 Building the ULPMark-CP Application Code.........ccoouuueueec.
IAR Tools Installation 4 Building the ULPMark-CP Application........c.cccccecuveuruuneee
IAR Project Configuration 4 Downloading the ULPMark-CP Code.........ccccoecveurueunnnce
CoreMarK.......coocuciuriuncnaeee 7 Running the ULPMark-CP Benchmark.........cccccovuvincinnancs 13
Loading the CoreMark Project..........ccccoeuvcuvcisincincincencicinenn. Running the ULPMark-CP 13
Running the CoreMark Application Running the ULPMark-Crystalless Profile............cccc...... 14
Building the CoreMark Application 8 Results Analysis...... 14
Downloading the CoreMark Code 8
Running the CoreMark Project........cccccvcuvivincicievenncinninnees 8
REVISION HISTORY

6/2018—Revision 0: Initial Version

Rev.0|Page 2 of 15

ADuCM4030

UG-1161

ABOUT EEMBC

EEMBC is a nonprofit industry association that detected the
need for a joint, democratic effort involving the leading suppliers
in the embedded industry to make new benchmarks a reality.

EEMBC members represent more than 40 of the world’s leading
semiconductor, intellectual property, compiler, real-time operating
system, and system companies. Furthermore, EEMBC is licensed
by more than 80 companies and more than 100 universities
worldwide. Through the combined efforts of its members,
EEMBC benchmarks have become an industry standard for
evaluating the capabilities of embedded processors and systems
according to objective, clearly defined, application-based criteria.

EEMBC has benchmark suites targeting cloud and big data,
mobiles devices (for phones and tablets), networking, ultralow
power microcontrollers, the Internet of Things (IoT), digital
media, automotive, and other application areas. EEMBC also
has benchmarks for general-purpose performance analysis
including CoreMark, MultiBench (multicore), and FPMark
(floating point).

This reference manual focuses on the CoreMark and ultralow
power microcontrollers benchmarks, targeted to measure the
power processing and the MCU energy efficiency ,respectively,
because these aspects are key features of the ADuCM4050
processor.

CoreMark

To select an MCU for a specific application, the user must know
if the MCU has enough processing power to meet the application
requirements. Several benchmarking options are available.
Dhrystone is the most widely used benchmarking option;
however, this option has a few problems, such as requiring
library calls to be within a timed portion and susceptibility

to the ability of a compiler to optimize work. To address these
problems and to provide a simple, open source benchmark,
EEMBC created the CoreMark.

CoreMark is a benchmark that measures the performance of
central processing units (CPUs) used in embedded systems.
CoreMark was developed in 2009 at EEMBC and is intended as

an industry standard, replacing the antiquated Dhrystone
benchmark. Written in C, the code contains implementations of
the following algorithms:

e List processing (find and sort)

e Matrix manipulation (common matrix operations)

e State machine (determines if an input stream contains
valid numbers)

e Cyclic redundancy check (CRC)

ULPMark

Whether the target is edge nodes for the IoT or any other type
of battery-powered application, the implications of ultralow
power (ULP) varies. The lowest active current is required when
the power source is severely limited (for example, energy
harvesting). The lowest sleep current is required when the system
spends most of its time in standby or sleep mode, waking up
infrequently (periodically or asynchronously) to process a task.
ULP also implies great energy efficiency, whereby the most
work is performed in a limited time. Overall, the application
requires a combination of trade-offs on all the previously
mentioned criteria. To ensure ULP operation over periods of
months, years, and decades, application developers face a
number of optimization challenges. There are an increasing
number of microcontrollers claiming ULP capabilities; however,
developers cannot rely on data sheet parameters alone. The
EEMBC ULPMark standardizes data sheet parameters and
provides a methodology to reliably and equitably measure MCU
energy efficiency.

The foundations of ULPMark are as follows:

e Comparability, making it easy to compare devices.

e Transparency, making all measurements and setup
processes transparent.

e Reproducibility, making it easy for any user to reproduce
the benchmark scores.

Rev.0 | Page 3 of 15

UG-1161

ADuCM4030

IAR SETUP

IARTOOLS INSTALLATION
The IAR Embedded Workbench® and the included IAR C/C++

Compiler™ generates the fastest performing, most compact code
in the industry for ARM-based applications. Therefore, Analog

Devices, Inc., provides the device family package (DFP) for the
ADuCM4050.

Support for the ADuCM4050 is provided in the DFP.

The IAR KickStart Kit™ is a free starter kit and evaluation
version of IAR™. This edition has limitations both in code size
(32 kB) and in the service and support provided.

Download the AR Embedded Workbench from the IAR website.
IAR PROJECT CONFIGURATION

This section describes the IAR configuration for proper

operation. Only the sections that must be modified from the
default values are mentioned.

Use the following procedure to configure the IAR:

1. Right click the name of the project and click Options..., as
shown in Figure 2.

% ULPBench_Phasel - IAR Embedded Workbench IDE |
File Edit View Project Tools Window Help
DS S| BR[|

orkspace * | coreProfile,
Debug - Y]
Files g B ha
[=fE]ULPBench_Phs
-2 C3 Benchmark Options..
1 CoreProfile
Make
Compile
Rebuild All
Clean
C-STAT Static Analysis b
ystem.c Stop Build M
FRCITES g
TesEvents. Add Y %

Figure 2. Project Options

2. Under General Options, ensure that AnalogDevices
ADuCM4050 is selected as the target, depending on the
microcontroller used.

Options for node "ADUCMA0S0_Coremar. I e

Catagony:
CETTTTE -
Seatic Analyes

kit Checking

CIC e Compler

Assermbier

Oudand Corrverter Processor vanant
Curstom Buld
Buld Actions

Target _Omulhbmry(:onﬁgwminn Library Options | MISRA-C:2004 | MEST * | *

Cone -

Urker @ Opice AnalogDevces ADUCMADSD [
Debugges :
Sendstce -
L]

cann Endian mada Floasing point satings
LSO FRU | WFPv singhe peecision -
0B Server

Lt ROM-monior
Tt/ T aGlet
k| FTrme
LET

Macraigor
PE o
not
ST-LING

Thad ety D " |mmCance}

16075-003

Figure 3. General Options—Target Configuration

3. Under C/C++ Compiler, ensure that the optimization for

high speed is chosen (see Figure 4). Also, check the No size
constraints option. Some functions, such as pltInitialize,
are protected to ensure that these functions are not
optimized. The following code protects a function and
prevents the compiler from modifying the function code:

#pragma optimize=none

s v oo o I
Categony: Factany Semngs
Mult-hliy Comyplaton : .

Ganer ol Optiors. -

Satic Andyss Ciscard Unused Public
Euntime Cheding Langunge | | Language 2 | Code | Optrsabons | Ouspt [List | Proproces <+ | +
Asgrmiser Lewel Enabiled ranstormatons:

Cutpu Convweter [| Cesmnman subisprissen elmmation— »

Custom Bukd Low | Loop unrolling

m_ldmms Madium | Function infining

Linkss | Code moson =

Detupge % High) 4| Typobased ahas anabysis

Sanvdshor = Spead = | Stanic clustenng

Arvgel BFl Mo $ite constreints | Instruction scheduling

cant tarizab e

M3 D

OO Server

108 ROM-soror

Tt ITAG

JLink[) Trace

T Seluis

Mairamgn

PE ey

22}

ST - 3
Third-Pasty Driver = it oo 4

g

Figure 4. C/C++ Compiler—Optimizations Configuration

Rev. 0| Page 4 of 15

ADuCM4030

UG-1161

Figure 5 shows the included directories path and the
defined symbols settings necessary for a proper
compilation of the ULPMark-CP project.

Factory Setings

| Multifili Compilaton

Digcard Unused Publics
'qugoa[c«odo]Om'mzeﬂonr. |0uw|]ur.l _' Freprocessor :Duqno: Ak
Ignore standerd include deechones

Addonal inglude directones. (one per ling)

$PROU_DIRS, \Flatiom = _]
STOOLKIT_DIRS$\ \ \Embeddad Workbench 7 5lamiCMSiSUnclude =
$PROJ_DIRSY)\ \benchmarks\CoreProfile

$PROJ_DIRSL A A NTES

$PROU_DIRSL |\ {bonchemarks -

Freinclude file:

can
M5 D —]

0B Serve Deefined syrnbots. {ore per ling)
LA RO __ADUCMAED_ D Praprocassor output 1o fle
Lot [T AGjE _ADUCMaSE0_ Prn

Hinkf}Trace Ger
Tt Stelluris
Macrager
PE mitre
oL

ST-LING

| ThPerty Detver =] [concel |

Figure 5. C/C++ Compiler—Preprocessor ULPMark-CP Configuration

16075-005

The full list of necessary paths for the ULPMark-CP
project is as follows:

$PROJ_DIRS\. .\Platform

$TOOLKIT_DIRS$\. .\. .\Embedded Workbench
7 .5\arm\CMSIS\Include

$PROJ_DIRS\. .\..\. \benchmarks\CoreProfil
e

$PROJ_DIR$\. .\..\..\TES
$PROJ_DIRS\. .\..\..\benchmarks
$PROJ_DIR$\. .\inc

$PROJ_DIRS$\. .\inc\config
$PROJ_DIRS$\. .\inc\drivers
$PROJ_DIRS$\. .\inc\rtos_map
$PROJ_DIRS$\. .\inc\sys

Figure 6 shows the included directories path and the
defined symbol settings necessary for a proper compilation
of the CoreMark project.

e e o i i

Cetegory:) Factory Sefings
[Genena optiors] | Mt Compdaton
Sakic Anabysis Dizcard Unused Publics
Furting Ghwoing [Languag 2 | Code | Optimizasons | Oupu [List | Preprocessor | Diagaon + | *
CfCa+ Compler
Assanbier lgnare standsrd include deoconos
Otk Cormstes Addibonal meude directones: {one per line)
Gustam 0t $FRIDJ_DEMine =]
e $PROJ_DIRSnc\Coreark 3
L $PROJ_DFSindisys B
[p— SPROJ_DFSunciconh
st L $FROJ_DESunciios_map =
Aol Freinclude file:
cADT
CMSTS D&P —]
00 Stever Defined symbols. {one per ine)
e — _ADUCKA0S0_ . [¥lPreprocessor cutputta fils
1ot WAt Frirsinay commients
k[Trace o Generate Ming deeches
Tl Selaris
Mar e
PE micra
RDY
o
ST-LINE 8
|__Third-Pasty Driver hal Cancel E
2
g

Figure 6. C/C++ Compiler—Preprocessor CoreMark Configuration

The full list of necessary paths for the CoreMark project
as follows:

$PROJ_DIR$\inc

$PROJ_DIRS\inc\CoreMark
$PROJ_DIR$\inc\sys
$PROJ_DIR$\inc\config
$PROJ_DIRS\inc\rtos_map
$TOOLKIT_DIR$\inc\AnalogDevices
$TOOLKIT_DIR$\CMSIS\Include

is

To avoid undesired warnings, add the following diagnostics to
the Suppress following diagnostics option: Pa050 and Pa082.

4. A 32-bit cyclic redundancy check (CRC) checksum stored

in the Signature field enables user code to request an
integrity check of user space. The user can configure the
checksum as shown in Figure 7 and Figure 8 (both
configurations can be found in the Linker menu).

e 0uies | | | [ncvncas]Gupa] s | dssine | Dmopasic] Gk [Opions 12

Assombler 7| Fill unused code memory
Outpak Converter Fill patiam: OnFF

BldA Stant address) End address i
N | Generate checksum

Checksum size: |4 bytes v] Alignmant 4

Algodithm [

i

1A% ROM-mevitor Complement |As

et TAGIet Bit cedder [MSB first v Use as input
Tk Trace < d

S Reverse byte order within word)
Macragor Checksum unit size: |3t x|
PE micro

ROU

STUIN
Third-Party Devver

i - [ok | cancel |

Figure 7. Linker Menu—Checksum Tab
oo v S

Category | Foctory Setings |
iGeneral Ciptions -
Static Analysis

Output [List | #cene | Diegnostes | Checksum | Exva Optians
I+ Compler

Assambler 1¥|Use command line options
Custom buld Cammundhattpﬁons {one per ling)
Build Actiors —keep __checksum

s i [ok [concer |

Figure 8. Linker Menu—Extra Options Tab

Rev. 0| Page 5 of 15

16075-007

16075-008

UG-1161 ADuCM4030

5. The debugger used is CMSIS DAP (see Figure 9). Verify 6.
that both Verify download and Use flash loader(s) are
checked on the Debugger > Download menu, as shown in oo R p—
Figure 10. -

Figure 11 and Figure 12 show the CMSIS DAP configuration.
Use the Hardware target reset.

- .
Options for node "ADUCMA030_CoreMark” (| Category P S
- General Options
Static Analysis
o Runtime Checking
gty CJC++ Compiler Setup | Interfacs | Breakpoints
General Options Assemblst Reset
Static Analysis Qubput Converter
Runtime Checking Custom Buid b
Cc++ Compiler Setup | Download | Images | Extra Options | Mulicore | Pluging | Build &ctions " — R
fssembler i Duration ms elay after ms
Output Converter Diiver B Debugger
Custam Build CMSIS DAF - ain Simulator Ernulator
Build Actions aDl " Always prompt for probe
ke Setup macias selection
. |21 Use macro file(s) GDE Server Serial no:
Sirltor | | et/ ITAGiet
CADL Flinki)-Trace
gg‘:lss Dbap | | m I Stellaris [Log communication
erver
PE micro i
et/ ITAGHE Device desciption fle el [$PROJ_DIR$\cspycomm.og
J-Link(-Trace 7] Dveride defaul Third-Party Driver
TI Stellaris u s e
FE micro |$TEIEILK\T_DIF\$\EEINFIE\dehuggav\AnalngDevl:as\ADuEM‘ TLRDS
ST-LIMK
Third-Party Driver g
TLSP-FET 2
TIADS 2
2
2 . X .
$ Figure 11. CMSIS DAP—Setup Configuration
3
5
g . —
Options for node "ADUCMA050_CareMark”]
Figure 9. Debugger—Setup Configuration —
e o o .
General Options
Static Analysis
Catagany: Faciony Sefings Runtime Checking
[Premrpe— = i+ Compler -D Intertace | Breakpaints
— Assembler Prohe config Probe configuration file
- - . Qutput Converter 5
Rurkims Chcking [Setup | Download [images | Exva Optens | Muicore | Pluging|) P |Qvemde defaul
CIE 4+ Cormgiler e
Auseler ity dowritoad E“‘L‘ZA‘“M;
inker
Outpue Comatar) [(e
P Suppress download Debugger
Ensld Actiorns | se flash loadens) Sirnulator Interface Explicit probe configuration
urker] Overnide default board fle CADT JTAG Mulitarget debug system
E_ | STOOUKT DIEoorg AashioaderinelogDevcs i pr— Taiget number (14P or Mukidop I0:[0 |
Bl 1 Edit I-etiITAGjet Target with mulpls CFUs
Aok FLinkj3-Trace CPU number on target
s T stelaris Inteiface speed
p— PE micro T
[P— ST-LINK e detec
- Third-Farty Driver
3k Trace TI MSP-FET
I Stetarts TIHDS
Macraiger o
s
ROL ° 8
ST g =
i Pasty e = ok [concat ; . ’ .
LT Porky ! L L £ Figure 12. CMSIS DAP—Connection Configuration
2
K

Figure 10. Debugger—Download Configuration

Rev. 0| Page 6 of 15

ADuCM4030

UG-1161

CoreMark

LOADING THE CoreMark PROJECT

The project with the CoreMark source files and core_portme.*
files are tuned to the Analog Devices platform. The following
steps describe how to add the CoreMark project on IAR.

1. Open the IAR workbench.

2. Open the project in IAR.

3. Under Project, click Add Existing Project..., as shown in
Figure 13.

ﬁ I4R Embedded Werkbench IDE
File Edit View |Project| Tools Window Help

Add Files...

Add Group...

Imnport File List...

Add Project Connection...

Edit Configurations...
Remove

Create New Project...
Add Existing Project...

Options... ALT+F7

16075-013

Figure 13. Adding an Existing Project

4. Browse through the project obtained and open the .ewp
extension file. The files available in the workspace are
shown in Figure 14.

Workspace v Q1 x
Debug v|
Files & .

=f 1ADUCMA050_CoreMark [» [|

|- & DFP sources

adi_dma.c

adi_pwr.c

adi_uart.c

[l starup_ADuCk4050 5

systerm_ADuCM4050 ¢

CoreMark sources

core_list_join.c

Core_tnain.c

core_matrix.c

core_state.c

core_util.c

& 8 Platiorrn sources
core_panme.c

— B Readme.td

B Output

““ii“i“

16075014

Figure 14. Project Files

The DFP sources folder includes the DFP files for configuring
the device properly. The CoreMark sources folder includes the
source files given by the EEMBC. The Platform sources folder
contains the core_portme.c file given by the EEMBC but tuned
to configure properly the tested device (in this case, the
ADuCM4050 processor).

EEMBC does not restrict changing the core_portme.* files to
suit the Analog Devices platform. The differences between the
core_portme.c file and the file given by the EEMBC are as
follows:

e Code for UART printing.

e Code for calculating the ticks of execution using the
oscillator and crystal.

e Code to configure the microcontroller properly.

e Header files to support these codes.

e Device configuration. Note that the high power buck is
enabled to reduce the power consumption; this is useful
during power measurement when CoreMark is running
(see the Power Measurements section).

The core_portme.h file has three definitions:

e The UART_PRINT definition prints the result through the
UART. If this definition is commented, the results are
printed only on the terminal input and output.

e The crystal definition decides whether to measure the ticks
using an external crystal oscillator or the internal resistor
capacitor oscillator. If this definition is commented, the
internal oscillator is used; otherwise, the crystal oscillator
is used.

e The phase-locked loop (PLL) definition enables the PLL.
The processor runs at 52 MHz. By default, this definition is
commented and the processor runs at 26 MHz.

Rev.0|Page 7 of 15

UG-1161

ADuCM4030

RUNNING THE CoreMark APPLICATION

Building the CoreMark Application

To build or compile the application code, take one of the

following steps:

e Click Project and select Rebuild All (as shown in
Figure 15).

e Right click the project name and click Rebuild All, as

shown in Figure 16. The user is then prompted to save the

Downloading the CoreMark Code

To load the code onto the EV-COG-AD4050LZ or the EV-COG-
AD4050WZ board, take one of the following steps:

e Under Project, click Download and select Download
active application, as show in Figure 17.

e Click Download and Debug, as shown in Figure 18.

& ADUCMA050_CoreMark - TAR Embedded Waorkbench IDE - ARM 7.601 e |

File Edit View J-Link Tools Window Help
Add Files...

workspace in the .eww extension. The project must build A

without any errors.

ﬁ ADuCMA050_CoreMark - IAR Embedded Workbench IDE - ARM 7
File Edit View |Project| J-Link Tools Window Help

Add Files...

Add Group...

Import File List...
Add Project Connection...
Edit Configurations...

Remove

Create Mew Project...
Add Existing Project...

Optigns... ALT+F7
Version Control System 3
Make F7
Compile CTRL+F7 8
Rebuild Al g

Figure 15. Start to Build the Project

& ADUCMA050_CoreMark - IAR Embedded Workbench IDE - ARM 7
File Edit View Project J-Link Tools Window Help

NedT & |

WESpace ol cobe_porkme
[Debug ,l BN
Files fno g :2
BT JADUCMA4050_Caoratinc | || HE
FE C1BSP sources Options...
| adi_dma.c
| adi_pwr.c Make
| adi_uar.c Compile
| fish startup_AD Rebuild Al
| systermn_AL
&1 01 Corebdark sou Clean

Figure 16. Building the Project

Impeort File List..
Add Project Connection...
Edit Configurations...

Remaove

Create New Project...
Add Existing Project...

Options... ALT+F7

Version Centrol System

Make 2]
Compile CTRL+F7
Rebuild Al

Clean

Batch build.. F8

C-STAT Static Analysis
Stop Build CTRL+INTERRUMPIR

Download and Debug CTRL+D
Debug without Dewnlozding
Attach to Running Target

3

3

- SuEP®D | &
| core_partme.h core_main.c | core_matrix.c | cars_list_join
* Function: main

Mzin entry routine for the benchmark.

This function is responsible for the

1 - Initialize input seeds from a sow
2 - Initialize memory block for use.
3 - Run and time the benchmark.

4 - Report results, testing the valid:

Arguments:

1 - first seed : Any value

2 - second seed : Must be identical tc
3 - third seed : Any value, should be
4 - Iterations : Special, if set to .

4

1t MAIN HAS HOARGD
TATN_FETURN_TVEE main(void) {
int arges0;
char *argu[1];
else
IAIN FETURN TYPE main(int arge, char *argw[])
endit
ee_ul6 i,3=0,mm_algorithms=0;
ee_sl6 known_id=-1,total_errors=0;
ee_ulf seederc=0:
COFE_TICKS total time:
core_results results[MULTITHREAD]:

Make & Restart Debugger CTRLR | ey WETHOD==MER STACK)
Restart Debugger CTRL+MAYUSCULAS+R =e_uf stack_memblock[TOTAL DATA SIZEF
Download 3 Download active application CTRL+B L
nees
Figure 17. Downloading the Code
2§ ADUCMA4050_CoreMark - LAR Embedded Workbench IDE - ARM 7.70.2 |
File Eait View Project Simulator Tools Window Help
DFELD - CET
= S “oug
Figure 18. Download and Debug Button
Running the CoreMark Project
To run the code, click Go, as shown in Figure 19.
g ADUCMA050_CareMark - AR 1DE - ARM 770.2
File Edit View Project Debug Disassembly Simwlator Tools Window Help
- ASE- IR Y) - Y Ry o A Y
= 2 L8200 XK
Workspace =
Detwg -
Figure 19. Running the Project
Q
3
0
g

Rev.0 | Page 8 of 15

16075-017

16075-018

16075-019

ADuCM4030

UG-1161

CoreMark RESULTS

The requirement is that the CoreMark code must run for at
least 10 seconds. The provided code has 10,000 iterations set up,
resulting in approximately 2 minutes to complete the execution.

The results are printed out on the terminal input and output. To

By default, the UART_PRINT definition in the core_portme.h
file is commented. To print the results through UART,

view the terminal input and output, click View and then select L
Terminal I/O. Note that users must be in debug mode for this 2.

option to be active.

ﬁ ADuCMA050_CoreMark - IAR Embedded Workbench IDE - ARM 7.

File Edit Project Debug Disassembly J-Link Tools

Messages
Workspace
Source Browser

C-5TAT

Breakpoints
Disassembly
Mermory
Symbeolic Memaory
Register
Watch
Locals
Statics

Auto

Live Watch
Quick Watch
Macros

Call Stack
Stack
Symbeols
Terminal /'O

»

2%

core_portme. |corejortme.h o

71 [## Function: mai

72 Main ent
73 This fur
74

75 1 - Imit
76 2 - Init
77 3 - Run
78 4 — Repc
79

&0 Arqument
gl 1 - firs
az 2 - secc
a3 3 - thiz
g4 4 - Ttez
85

8§56 - £/

&7

88] #if MAIN_HAS NO2
89 -] MAIN_RETUEN_TYPE
90 int arge
a1 char *ar
9z #else

Figure 20. View Terminal Input and Output

16075-020

Rev.0|Page 9 of 15

uncomment the UART_PRINT definition.

Uncomment the UART_PRINT definition.

The following steps describe how to print the results through
UART:

Connect the UART port of the EV-COG-AD4050LZ or the
EV-COG-AD4050WZ to the PC using a USB cable.

16075-021

Figure 21. USB to UART Connection

From the Control Panel, click Device Manager.
Check the COM port number to which the UART is

connected.

Open a terminal that can connect to the UART port

(PuTTY is used here).

Set the Connection type to Serial and input the
corresponding COM port number. The other settings are

shown in Figure 22.

Baud rate: 9600 -
Data: |8 bit -
Parity: !.none =
Stop: 1 bit -

Figure 22. Additional UART Configuration

16075-022

UG-1161

ADuCM4030

Rebuild the project, following the instructions in the Running
the CoreMark Project section. The results are printed through
UART (see Figure 24).

The CoreMark number shows the raw horsepower, and the
CoreMark/MHz number shows the efficiency of the core. To
calculate the CoreMark/MHz number, the CoreMark number
must be divided by the clock speed used when the benchmark is
performed.

CoreMark (MHz) = CoreMark Score/Clock Frequency
Results at 26 MHz
In this project, the ADuCM4050 processors run at 26 MHz.
CoreMark (MHz) = 91.59/26 MHz
The CoreMark/MHz score is 3.52.

This score is almost equal to the CoreMark/MHz score of the
ARM Cortex-M4F processor, whose score is 3.40.

To report the score, CoreMark recommends the following
format:

CoreMark 1.0 : 91.591873 / 1AR EWARM
7.60.1.11216 --no_size_constraints --
cpu=Cortex-M4 -D __ ADUCM4050__ --
no_code_motion -Ohs -e --fpu=VFPv4_sp --
endian=little / FLASH

Power Measurements at 26 MHz

The following steps describe how to monitor the current
consumption of the ADuCM4050 processor when the device
executes the CoreMark code:

1. Ensure that UART_PRINT define in the core_portme.h
file is commented so that the UART pins are not floating.

2. Load the code onto the microcontroller.

Connect the positive terminal of the source to the JP5

connector.

Connect the GND of the source to the GND of the board.

Remove all the jumpers.

Press the Reset button.

Monitor the current consumption on the meter. The

current consumption must be approximately 1645 pA

when the processor executes the code at 26 MHz.

8. For dynamic current consumption, repeat the procedure
with a different frequency. Change the CLKDIV definition
variable to 4 so that the frequency is divided by 4, yielding
a value of 26 MHz/4 = 6.5 MHz.

9. Monitor the current consumption on the meter. The
current consumption must be approximately 564 pA.

NG

To obtain the dynamic current consumption value, calculate the
slope of the line formed by the two points (frequency and
current).

The slope is calculated as follows:
Slope = ((1645 — 564)/(26 — 6.5)) = 55.44 pA/MHz
The dynamic current consumption is 55.44 uA/MHz.

Termingl VO

Output

mance run parameters for coremerk.
Size : B66

5 --cpu=Cortex-Hd4 -D __ADU

rules.

eadme.txt for run and reporting
16 raints

FM 7.60.1.11216 --no_size_

Ingut

CH4050__ --no_code_motion -Ohs

-8 -

epu=Cortex-H4 - _ ADUCMADSO_

-fpu=VFPv4_sp --endian=little

no_gode_motion -Ohs -e --fpu=VFPv4_sp --endian=little ~ FLASH

Cal codes | [nput Mode.

Butler size: 0

16075-023

Figure 23. Terminal Results at 26 MHz

P COM18 - PuTTY

== X

4_sp --endian=little

16075-024

Figure 24. Results on UART at 26 MHz

Rev.0 | Page 10 of 15

ADuCM4030

UG-1161

Results at 52 MHz

Enabling the PLL, the ADuCM4050 processors runs at 52 MHz.
To enable the device, uncomment PLL_52MHz define in the
core_portme.h file. Then, follow the steps explained in the
CoreMark Results section to run the CoreMark score.

CoreMark/MHz = 183.87/52 MHz
The CoreMark/MHz score is 3.54.
Power Measurements at 52 MHz

The following steps describe how to monitor the current
consumption of the ADuCM4050 processor when the device
executes the CoreMark code:

1. Ensure that UART_PRINT definition in the core_portme.h
file is commented so that the UART pins are not floating.
2. Load the code onto the microcontroller.
3. Connect the positive terminal of the source to the
JP5 connector.

4. Connect the ground of the source to the ground of the
board.

5. Remove all the jumpers.

6. Press the Reset button.

7. Monitor the current consumption on the meter. The
current consumption must be approximately 3094 pA
when the processor executes the code at 52 MHz.

8. For dynamic current consumption, repeat the procedure
with a different frequency. Comment the PLL_52MHz
definition and uncomment the PLL_26MHz definition for
a frequency of 26 MHz.

9. Monitor the current consumption on the meter. The
current consumption must be approximately 1663 pA.

To obtain the dynamic current consumption value, calculate the
slope of the line formed by the two points (frequency and
current).

The slope is calculated as follows:

Slope = ((3094 — 1663)/(52 - 26)) = 55.04 uA/MHz

Tereninad 110

ada_metian

no_size_constraints

M4 -D

eMark 1.0 : 183.869399 ~ [AR EWARM 7.60.1.11216 epu=Co

pul

ADUCH4050,

-Ohs & --fpusVFPwi_sp --andisnslittla

no_code_motion -0Ohs -e --fpusVEPv4_sp --endian=little .~ FLASH

Cul codes | [nput Mode..
Bufler size: 0

16075-025

Figure 25. Terminal Results at 52 MHz

P COM18 - PuTTY

an=little

16075-026

Figure 26. Results on UART at 52 MHz

Rev.0 | Page 11 of 15

UG-1161

ADuCM4030

ULPMark-CP

THE EnergyMonitor

The EEMBC ULPMark EnergyMonitor™ software is an accurate
tool for measuring energy. The EEMBC EnergyMonitor hardware
(shown in Figure 27) is required to measure ULPMark-CP
scores. This hardware can be purchased from the EEMBC website.

Figure 27 shows the EEMBC EnergyMonitor hardware, and the
VCC and GND pins used to power the EV-COG-AD4050LZ or
the EV-COG-AD4050WZ board.

16075-027

Figure 27. EEMBC EnergyMonitor Hardware

Installing the EnergyMonitor Software Drivers

The first time the EnergyMonitor hardware is connected to a
PC, a USB driver message appears because the hardware is an
unrecognized USB device.

When the USB driver message appears, click Next, and then
click Manually locate USB drivers.

If the driver message does not appear, go to the Device
Manager and locate the EEMBC Application UART1 and
EEMBC Energy Tool V1 devices to install the driver on each of
them.

Install the USB drivers, which are located at /bin/USB_CDC/
monitor_driver.inf and /bin/USB_CDC/monitor_driver.cat.
A security warning will then appear indicating that the
publisher cannot be verified. Click Install this driver software
anyway.

By default, 64-bit versions of Windows® Vista and later versions
of Windows load a kernel mode driver only if the kernel can
verify the driver signature. If using one of these versions of
Windows, and the drivers cannot be installed, use the appropriate
mechanisms to temporarily disable load time enforcement of a
valid driver signature (the appropriate mechanism depends on
the Windows version).

BUILDING THE ULPMark-CP APPLICATION CODE
Building the ULPMark-CP Application

To build or compile the application code, click Project, and
click Rebuild All.

£ ULPBench_Phasel - IAR Embedded Workbench IDE
Eile Edit _'-jlew_groject Tools Window Help

D o Add Files...

Workspace .

|Release | Make F7
Files Compile CTRL+F7

B OUEGETEM Repyild All
- CaBenchmark ®
| B CorePro Clean g
| FaBIcde Batch build.. B | g

Figure 28. Build or Compile the Project

16075-029

Figure 29. Board Setup for Downloading the Code
Downloading the ULPMark-CP Code

To download the code, click Project > Download > Download

active application.

55 e phse I Embdond workberch D T
File Edit View Tools Window Help

Do | Add Files.. } = epdh YRS L
me
[Relanse =
i Downiload Download active application
& [FULPBench,
|- L3 Benchenar SFR Setup Eownloac file.
= k) CorePn rase memory
I +a % = : Open Device Description File +pe §
| Ha B mes_ir Save List of Registers.. | £
| & B pemut §

Figure 30. Downloading the Application

After power cycling the device, the code runs on the
ADuCM4050 device.

Rev.0 | Page 12 of 15

ADuCM4030 UG-1161

RUNNING THE ULPMark-CP BENCHMARK The score obtained for typical devices at 52 MHz is around
Running the ULPMark-CP 189 EEMarks™-CP. This value may vary depending on process

. and temperature conditions. Figure 31 shows an example of a
This section provides step by step information on how to set up

f typical device.
the EV-COG-ADA4050LZ or the EV-COG-AD4050WZ board for score fora fypicat device

measuring the ULPMark-CP score. 8 s e o S —
o =
1. Remove the USB cable. D Pt comiz g}
2. Remove all the jumpers (J7, J8,]9, and so on) except THI, ““’:::w " — -
TH2, TH4 and TH5. These mostly connect the external st
components of the board (LEDs, switches, sensors, battery, e
and so on). “3
3. Place the VBAT and GND cable of EMON to the TH3 test 2
point, as shown in Figure 32. ged
B
The connection as shown in Figure 32 is now established. %’“
Proceed to measure the score by starting the EnergyMonitor N
software and clicking Start. The EnergyMonitor hardware 3
powers the EV-COG-AD4050LZ or the EV-COG-AD4050WZ e ——
board and measures the energy consumption of the core profile. ’ ‘ ' wito ' ! ! g
At the end of the run, the software calculates the EEMBC Figure 31. ULPMark-CP Score

ULPMark-CP score and displays the score on screen. The
software also displays the average energy consumed for
previous cycles in the history window.

16075-032

Figure 32. Board Setup for Measuring the Score

Rev.0 | Page 13 of 15

UG-1161

ADuCM4030

Running the ULPMark-Crystalless Profile

If an application does not require an accuracy as high as the one
provided by a crystal, a low frequency oscillator can be used as
the source clock of the real-time clock to reduce the energy
consumption. Both the low frequency oscillator and crystal
frequencies are 32 kHz.

The distributed code includes a define directive (Line 51 of the
Platform.c file) to allow testing of the ULPMark-Crystalless
Profile. Uncomment the define USE_LFOSC line to use the low
frequency oscillator as the real-time clock:

#define USE_LFOSC

The score obtained for typical devices at 52 MHz is around
189 EEMarks-CP. This value may vary depending on process
and temperature conditions. Figure 33 shows an example of a
score for a typical device.

B £MC EnergyBench Moritor 20 0420bets T]
Anahysis Mode P, ar -
Davice Port comMe
Windkowr Sice 200

] skl Cagture Pl

16075-035

Figure 33. ULP Crystalless Profile Score

RESULTS ANALYSIS

The ULPMark-CP uses a formula that takes the reciprocal of
the energy values (median of 5 times the average energy per
second for 10 ULPMark-CP cycles).

Energy (u]) = 1000/EEMarkCP

The consumed energy is obtained as the sum of the energy
consumed while the device is executing the workload (in active
mode) and while the device is in hibernate.

Energy = Active Energy + Sleep Energy

According to the ADuCM4050 data sheet, the typical value for
an active current at 52 MHz with cache disabled (similar to the
ULPMark-CP behavior) is 3.21 mA, and for a hibernate current,
783 nA with low frequency crystal and real-time clock enabled.
The active time duration is 217 ys.

Energy = Voltage x Current x Time

Active Energy =3V x 3210 uA x 0.217 ms = 2.09 yJ

Sleep Energy =3V x 0.783 HA x 999.783 ms = 2.34]

According to the data sheet numbers and the execution time,
the energy for the active current is 2.04 pJ, and the energy
consumed during the sleep time is 2.34 yJ.

The score according to those values approaches the ones
measured with the EEMBC EnergyMonitor software. The
difference is due to the energy lost on the wake-up process.

Energy (u]) = 2.09 + 2.34 = 4.43 pJ = (1000/201) = 4.97 pJ

Rev.0 | Page 14 of 15

ADuCM4030 UG-1161

NOTES

ESD Caution
\ ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
‘h circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board"), you are agreeing to be bound by the terms and conditions
set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you
have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc.
("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal,
temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided
for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional
limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term
“Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including
ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may
not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to
promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any
occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board.
Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice
to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO
WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED
TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF
THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE
AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable
United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of
Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby
submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2018 Analog Devices, Inc. All rights reserved. Trademarks and ANALOG
registered trademarks are the property of their respective owners.

UG16075-0-6/18(0) DEVICES

www.analog.com

Rev.0 | Page 15 of 15

	INTRODUCTION
	ABOUT THE ADuCM4050
	TABLE OF CONTENTS
	REVISION HISTORY
	ABOUT EEMBC
	CoreMark
	ULPMark

	IAR SETUP
	IAR TOOLS INSTALLATION
	IAR PROJECT CONFIGURATION

	CoreMark
	LOADING THE CoreMark PROJECT
	RUNNING THE CoreMark APPLICATION
	Building the CoreMark Application
	Downloading the CoreMark Code
	Running the CoreMark Project

	CoreMark RESULTS
	Results at 26 MHz
	Power Measurements at 26 MHz

	Results at 52 MHz
	Power Measurements at 52 MHz

	ULPMark-CP
	THE EnergyMonitor
	Installing the EnergyMonitor Software Drivers

	BUILDING THE ULPMark-CP APPLICATION CODE
	Building the ULPMark-CP Application
	Downloading the ULPMark-CP Code

	RUNNING THE ULPMark-CP BENCHMARK
	Running the ULPMark-CP
	Running the ULPMark-Crystalless Profile

	RESULTS ANALYSIS

	NOTES

