ANALOG ADuCM3027/ADuCM3029 User Guide

DEVICES

UG-1091

One Technology Way « P.O. Box 9106 - Norwood, MA 02062-9106, U.S.A. - Tel: 781.329.4700 - Fax: 781.461.3113 - www.analog.com

How to Set Up and Use the ADuCM3027/ADuCM3029

INTRODUCTION

This user guide provides detailed information of the
ADuCM3027/ADuCM3029 microcontroller functionality and
features. Each section describes a different feature.

GENERAL DESCRIPTION

The ADuCM3027/ADuCM3029 processor is an ultra low
power, integrated, mixed signal, microcontroller system used
for processing, control, and connectivity. The MCU subsystem
is based on the ARM® Cortex™-M3 processor, a collection of
digital peripherals, cache embedded SRAM and flash memory,
and an analog subsystem, which provides clocking, reset, and
power management capabilities along with the analog-to-digital
converter (ADC).

The ADuCM3027/ADuCM3029 processor provides a collection
of power modes and features, such as dynamic and software
controlled clock gating and power gating, to support extremely
low dynamic and hibernate power management.

Full specifications on the ADuCM3027/ADuCM3029 are
available in the product data sheet and the ADuCM302x Ultra
Low Power ARM Cortex-M3 MCU with Integrated Power
Management Hardware Reference Manual.

FEATURES

System features that are common across the ADuCM3027/
ADuCM3029 devices include the following:

e Upto26 MHz ARM Cortex®-M3 processor.

e Upto 256 kB of embedded flash memory with error
correction code (ECC).

e Optional 4 kB cache for lower active power.

e 64 kB system SRAM with parity.

e Power management unit (PMU).

e Multilayer advanced microcontroller bus architecture
(AMBA) bus matrix.

e Central direct memory access (DMA) controller.

e Beeper interface.

e Serial port (SPORT), three serial peripheral interfaces
(SPIs), inter integrated circuit (I*C), and universal
asynchronous receiver/transmitter (UART) peripheral
interfaces.

e Cryptographic hardware support with advanced
encryption standard (AES) and secure hash algorithm
(SHA) -256.

e Two real-time clocks (RTCs).

e Three general-purpose timers and one watchdog timer.

e Programmable general-purpose input/output (GPIO) pins.

e Hardware cyclical redundancy check (CRC) calculator
with programmable generator polynomial.

e Power-on-reset (POR) and power supply monitor (PSM).

e 12-bit successive approximation register (SAR) ADC.

ADuCM3027/ADuCM3029 FUNCTIONAL BLOCK DIAGRAM

26MHz CORE RATE

PLL SERIAL WIRE INSTRUCTION
<:> RAM/CACHE
HF XTAL (32kB)
ARM
POWER
LF XTAL CORTEX-M3 <:> <:> FLASH MANAGEMENT
MULTI- (256kB)
LAYER
oS nvic | wic AMBA SRAMO Buck
BUS <:> (16kB)
LF OSC MPU MATRIX
REF BUFFER
SRAM1
TEMPERATURE DMA <:> <:> (16kB)
SENSOR
CRYPTO
ADC (AES 128/256,
SHA 256) SPORT || UART U | TMRO | | TMR1| | RTCO | | RTC1 | | TRNG
& ZAY O > ZaY AHB-APE Y N
\ BRIDGE y
v v U o
PROGRAMMABLE SPI SPI | TMR2 | | WDT ||BEEPER || GPIO | 2
CRC POLYNOMIAL g

Figure 1.

See the last page for an important warning and disclaimers. Rev.A | Page 10f 51

UG-1091

TABLE OF CONTENTS

INEFOAUCHION ..o sa e 1
General DeSCrIPHioncueveveeeereeeerereeereerereiserenesessesessesenesenenes 1
FEAtUIES ..cuvviiiiniiicnc s 1
ADuCM3027/ADuCM3029 Functional Block Diagram............. 1
Revision HiStOry ...t 2
Getting Started ... 3
Software InStallationccceeeveeerremnerermreneneneneneseseisenseene 4
TAR Configuration ... 5
Building Demo Projects...........cococuineiicrncisincineiiencieinenns 7
Power Optimization for the ADuCM3027/ADuCM3029
Processors ... 11
ADuCM3029/ADuCM3027 Processor Power Management 11
ADuCM3029/ADuCM3027 Processor Power Modes 11
Fast Wake Up from Hibernate Mode.........cceoeueuneurerneunernenenennes 17
Flash Memory and Instruction SRAM........ccccocvvuviuviuncinnnnce 17
Normal Wake Up ... 17
Fast Wake Up ... 17
Using the ADuCM3029/ADuCM3027 Processor Boot Kernel 20
Boot Kernel OVEIVIEWcceeevureueemermceenmermeuessensssessensnes 20
UART DOWNIOAAETcouereercrcicicrcreeeneneneeeeeseeseesensensens 23
Read Protection Key and Hashingccccccvevcivincnciniance 26
Memory Configurationcceeeeeeeneeerneusersenseessersensnes 27
Handling CRC in the IAR Workbench .28
Cache Memory in the ADuCM3027/ADuCM3029
Block DIagramcccuiuiuneiimineiiecieiiessssssssssssesenns
REVISION HISTORY
9/2017—Rev. 0 to Rev. A
Changes to FIGUIE L.......ccoviiinciiiiicisieincieesscsesesnens 1
Changes to Buck Converter Sectioncceeeeveeerereererereenne 12
Added Fast Wake Up from Hibernate Mode Section, Figure 37,
and Figure 38; Renumbered Sequentially 17
Added Table 3 and Figure 39.........cccocvuivrincinineincisiencieineianes 18
Added FIgure 40.........c.ccvieevreineeeinirnenencisensensssisesessssissssenens 19

Changes to Effects of Cache on the Speed of Execution Section,
Cache Key Register Section, and Cache Setup Register
SECHION .ottt 31

Flash Controller.........cceeenecinecinecineeneeeeceseeseeeseeenes 30
Effects of CaChec.vcueeeeueieieercrcieeee e 30
Current Consumption COmparisonc.ceeeeeeveecreeerernnens 32
Dual RTC Feature in the ADuCM3027/ADuCM3029 33
Comparison of the RTC Features.........coceeeeeeeereuneereereeeennes 33
Power Considerations........ceeeuveeuremcrrecureerneersesensesessesesseenees 33
CONCIUSION ..ot aeaes 33
Benefits of the ADuCM3027/ADuCM3029 DC-to-DC
CONVEILOT ..ttt ssaess s nsases 34
DC-t0-DC BaSiCS...cuvuiuururiinircririiccieieiiecierenieeesesssseeenenes 34
Capacitors vs. Inductor CONVerters.............ccveueveeuveuecencnn. 36
CONCIUSIONS.....vuveeiiiiieie ettt ssaees 37
UART Software FIow COntrol.........cceeveereeeeeerneeneeneeneeneeenenenne 39
UART FLOW CONEIOL....coruriiicrriereieeeieneneneiseseisenensesessesenene 39
System Descriptionocueeieecieicinecieccececeee s 40
Data Capture........ocueeeevcrecreee s 44
SPI Flow Control Methods........ccvueureeerineeriernieiniernieisseeseenes 45
SPI Read Command MOdecoeueuneuneureeeeerneineeneeseenenenennes 45
Flow Control MOdesccveueuremernemcrnecinencureserneerseesseessnsenees 47
CONCIUSIONS.....cvnvreiiiiieie ettt ssaees 49
Sleep 0N EXit....ocuieieiiiiiciicic i scesesens 50
BENELILS ovovueuerceeiiieieieireiretsei ettt 50
Enabling the Sleep on Exit Featurecocoevveunevvenerrennennes 50

System Control Register in the ADuCM3027/ADuCM302951

Added Table 14 and Table 15

Changes to FIGure 58..........cccoeucuninineneeeeneeneneseeseeseeessenenenns
Changes to System Control Registers in the ADuCM3027/
ADUCM3029 SECHON. ... 51
Added Table 24 ... 51

3/2017—Revision 0: Initial Version

Rev.A | Page 2 of 51

UG-1091

GETTING STARTED

This section introduces the tools and support packages required
to develop an application for the ADuCM3027/ADuCM3029
microcontrollers. This section describes how to download,
install, and configure the programs used to program the
ADuCM3027/ADuCM3029.

This section works as a tutorial by describing different steps in
developing an application by using the IAR workbench as an
integrated development environment (IDE). This section also
describes how to download and run sample codes provided
with the board support package (BSP) drivers.

& POST - 18R Embedded Warkbench IDE - ARM T.60.2 (= [=]=]
File Edit View Project J-Link Tools ‘Window Help
P i+ oog
DeEd S| ®| | - S mEe e |E BE L & b
‘Warkspace x main.c‘ B - x
[Dehug - = —
Files GnoBR 4 * (C) Copyright 2014-2016 - Anzloy Devices, Inc. All Rights Reserved. i
5 .
This software is proprietary and confidemtial. By using this software
you agree to the terms of the associated Analog Devices License Agreement.
%
Iroject Name: Power On Self Test for GlusMicre
Hardware: ADZS-ADuCMI025-EZBRD Ez-Eoard
%
Description: This example performs POST on the ADZS-ADuCMS029-EEZBRD EZ-Board.
%
Plegse view the readmwe. txt file for detailed informetion related to
* switch and jumper settings, LED indicators, etc.
=
* Enter POST standard test loop by pressing PB1 at startup, or by entering
* @ sequence using PB1 and PRZ to choose a specific test.
L o=y
#include "post_common.h”
- A #include "serwices/pwr/adi_pwr.h"
B timer_is... -
£% amiwmene DT 4
TPUST < (I P
* .
Messages File 0
temp_test.c
timer_isr.c
uar_testc
wakeup_testc
Linking
Total number of errors: 0 £
Total number of wamings: 0 s
o
=5 =
2 - ' g
Ready Errars 0, Warnings 0 Lnd, Coll Systern = §

Figure 2. IAR Embedded Workbench

Rev. A | Page 3 of 51

UG-1091

SOFTWARE INSTALLATION 4. Plug in the emulator board and open the device manager.
The software tools required to develop applications with the > Che.ck that the e@ulator board appears mn the W11.1dows
ADUCM3027/ADuCM3029 are available for download at device manager in the USB controllers lists (see Figure 4).
http://www.analog.com/en/design-center/evaluation-hardware- 2 Device Manager =
and-software/evaluation-boards-kits/eval-aducm3029-ezkit.html. e Tl
Table 1. Required Software Tools % i;f'-l’:f}”‘j.“‘":’j“”; o
Tool Functions g -~
IAR Embedded Used for compiling, debugging, and code T

Workbench | development S
Segger J-Link J-Link software and documentation pack ! o

Software includes USB drivers for the emulator, J-Link 3 UBaEM e

Commander, and so on ¥ U o

ADuCM3027/ Includes ADuCM3027/ADuCM3029

ADuCM3029 peripheral drivers and libraries, IAR :

BSP Drivers configuration files, and example programs pdiesbin g

Installing the Segger J-Link Driver Figure 4. Device Manager

The Segger J-Link USB driver must be installed before using a
serial wire interface, such as the interface of the IAR embedded
workbench, to download and debug code.

After following the software installation procedures, the USB
driver for the J-Link is installed and verified.

IAR Tools Installation

The IAR embedded workbench and the included IAR C/C++
compiler generates the fastest performing, most compact code
in the industry for ARM-based applications. Therefore, Analog
Devices, Inc., created the BSP drivers for the ADuCM3027/

Use the following procedure to install the J-Link USB driver:

1. Download the latest Segger J-Link software and
documentation pack.
2. Open the executable software installer on the download

directory. ADuCM3029 for the IAR workbench.
3. Follow the on-screen instructions to complete the installation.
Ensure that the Install USB Driver for J-Link option is The KickStart edition is a free starter kit and evaluation version

of IAR. This edition has limitations, both in code size (32 kB)

checked, as shown in Figure 3.
and in the service and support provided.

,m SEGGER - J-Link V5.12h sm el b | . .)
The IAR software is available for download on the IAR website.
Choose optional components .
Chooss optional components to be fetalied. Lak Download a free trial to download the software.

For a detailed procedure on installing the IAR and adding
license details if required, refer to the Installation and Licensing
Guide for IAR Embedded Workbench®, available from the AR
website.

Choose optional companents that shauld be nstalled:
[¥]Install USE Driver for 3-Link

Note that the BSP examples are for IAR Version 7.40.2. Project
TS S R i SR compatibility issues may occur when using different versions.

Create entry in start menu
[]add shortruts to deskiop

| <Bak | mea> | [cancal

15388-002

Figure 3. Segger J-Link Driver Installation Options

Rev. A | Page 4 of 51

UG-1091

ADuCM3027/ADuCM3029 Board Support Package (BSP)
The ADuCM3027/ADuCM3029 BSP provides the configuration,

support files, and components required to ease the development

of the ADuCM3027/ADuCM3029.
The contents of the BSP are as follows:

Source files for the device drivers and services for use on
the ADuCM3027/ADuCM3029 processor.

Examples for devices drivers and services.

Tool chain support. These components are installed in the
IAR embedded workspace to configure the tool chain to
recognize the ADuCM3027/ADuCM3029.

Documentation.

Note that the IAR embedded workbench must be installed
before installing the BSP.

Use the following procedure to install the BSP:

1.

W

Download the ADuCM3027/ADuCM3029 BSP installer at
http://www.analog.com/en/design-center/evaluation-
hardware-and-software/evaluation-boards-kits/eval-
aducm3029-ezkit.html#eb-relatedsoftware.

Execute the installer application.

Follow the instructions to complete the installation.

Select the IAR workbench version where the toolchain
support is to be installed (see Figure 5).

Analog Devices ADUCM202x EZ-KIT Lite® BSP for 18R - InstallShield Wizard (23]

Toolchain Selection For Support Files u ANALOG
DEVICES

AHEAD DF WHAT'S POSSIBLE™

Select one or more detected toolchains From the lisk below,

C:\Program Fil Systems\Embedded Workbench 7.4

Select Al Clear Al

I < Back “ et = II Cancel]

15388-004

Figure 5. Toolchain Selection Dialogue Box

5. Select the location for the driver and source files of the BSP
(see Figure 6). The recommended location is outside the
Program Files folder due to the access restrictions of
Windows.

Analag Devices ADUCMI02x EZ-KIT Lite® BSP for [AR - InstallShield Wizard |
Driver Files Destination Folder ANALOG
Select destination Folder For Driver Files, D DEVICES
ANEAD OF WHAT'S POSSIBLE™

Installation wizard wil install the ADLCM302:x EZ-KIT Lite® BSP for [AR v.1.0.1 driver
files in the Following Falder,

Toinstall in this folder, dick MEXT. To install to a different location, click BROWSE and
select another destination Folder.

Destination Folder

C:Yanalog Devices Browse. ..

l < Back H Mext >]I Cancel I

15388-005

Figure 6. BSP Destination Folder Selection Dialogue Box

6. Complete the installation process. The user can view the
installation folder of the BSP to check the files and
documentation for further information and guidance.

IAR CONFIGURATION

This section describes the IAR configuration procedure for proper
operation of the ADuCM3027/ADuCM3029. Only the sections
that must be modified from the default values are described.

1. Ensure that, in the general options, the Analog Devices
ADuCM3029/ADuCM3027 device option is selected as the
target.

2. Under C/C++ Compiler > Optimizations, select different
optimization options for speed, code size, balance, and so
on, depending on the application needs. Sometimes, the
compiler identifies the writes of a register as eligible to be
optimized, which may cause unexpected behavior. In such
situations, it is recommended to protect configuration
functions from being optimized by using following code:

#pragma optimize=none

3. Under C/C++ Compiler > Preprocessor, include the path
of the included directories, depending on the code to be run.

Rev. A | Page 5 of 51

Figure 8. Linker > Extra Options Configuration Tab

Rev. A | Page 6 of 51

Optons o roge v e . 5. SelectJ-Link/J-Trace as the debugger under the Driver
dropdown menu. Verify that both the Verify download
Caati : Faciony Setini
— Loy motogs| and Use flash loader(s) boxes are checked on the Debugger >
ek - i i oLt Download menu as shown in Figure 9 and Figure 10.
TIT A+ Compler
Catpad Cormmmter Fill patiem OFF :
i Swmnaddess 0 Endaddess Bl
[I —— catogon Focus senas
Debugger Checksumsie. [dbyles =] Algament 1 — o]
arel = Algarihm: lcRcaz =] [oarom 9#”"‘:_ e ! —
s Rosalindul ize S pronsiies Setp |Downiood |neges | Ewa Options [Muticore [Fhugins]
s Complement = antc Omver BlFunto
;::r::: Bitarder. im“ '] FlUie s input ki | HLink/.FTraca - main
Teslars || Fievaree tyie crdar within word :‘::’“"‘ Setup macios.
Pocrair Checksum uni siza: Rbit - s £ Usa macra fis(s)
v
Aor -
Stama L3 © xsm 1
Thad-Paty Drtvsr 8
b = [coem |l 2 O i Dace deserpicatie
B [t Ty | Overide defaul
Figure 7. Linker > Checksum Configuration Tab
A 32-bit CRC checksum stored in the signature field allows
the user code to request an integrity check of the user space. , g
s Concel 8
Therefore, it is necessary to configure the checksum as shown g
in Figure 7 and Figure 8, both configurations in the Linker Figure 9. Debugger > Setup Tab
menu. —
| Diptions for node " 1k
Catagosy: Faciosy Setiags
| Factory Setings | ol
- Rurtiss Checkireg | 1 i ins |
| Botup | Dusmlosd | knages | Evra Opfions Muhicors | Fhuging §
. : ¢ . ' b 7] Amachts naning targat |
[Qutput [List_ [#deine | Dispnostics | Checksum | Exto Optons] A
2 | b Wity ownload
(¥ Use commend bne ophans Cushom Dubd -
) [| Suppress downlond
Command ine opions: (o0 pos ling) Lk] Use Nash Ioaders)
~keap __chacksum - | Cummics clatautt b fla
f m’w E| $TOOLKIT_DiRficonty@ashioadan,
edshoe S D Eat
Angel = GLE Server
CHEIS AP LAR EOM-wordor
GO Server Bejot Mt
AR ROM-manter Mk Trace
et AGiet Tl Relars
k3 Trace Marragor |
T Selarts - PE mcre.
My mgee e
PE kra ST " | 2
el ThirdPaty Drover (=3
o L . Los =) concel | g
Third-Paety Drivee 8 8
| nows g

Figure 10. Debugger > Download Tab

UG-1091

6. Figure 11 and Figure 12 show the J-Link/J-trace Several relevant projects are available within the examples folder
configuration. Be sure to use the Halt after bootloader of the BSP, as shown in Figure 14.
target reset strategy under the Reset dropdown menu,
otherwise a kernel corruption occurs and the device locks [E2n SEMLSEAN:
down. To recover from this corruption, the kernel must be 6@ '|)« ADUCM302EZ Kit .. » examples »
reflashed.
s e e e Rl
| - — Marme - Date moc
Fectory Sefings
- .) ade 6/15/201¢
| St | omnecion | Ensakpoints|
ki - L adx363 6/155201¢
F «l 0
1. beep 6,/15/201¢
JTAGEWD speed Clock setup
o'ﬁ::nal 1900 kHe CPU Hock MHz W cre B,/15/201¢
s ——— T e L crypto 64157201t
-)\ flash 6/15/201¢
Pt 78 1. gpio 6172016
1 Hello\World 6,/15/201¢
5 |z 6/1/2015
— g | L. Power_On_Self_Test 2 4/201E
Figure 11. J-Link/J-Trace > Setup Configuration Tab L mg 6,/ 13/201¢
e s v s I e 6172016
| , _ | rtos 6/1/2016
Casgony: Factary Setings
—— Lospi 612016
| St Analyss
ik it mgﬁﬁﬂﬂ:ﬂ | Bneakpoints| L osport A,15/201¢
| Buss: Deend 2 | SypsTick £/15,/201¢
Custom Busd DITCRR: IF address -
i e L timer 6#15/201¢
e [P e K uort Rl
e i Y 1wt 6/15/201¢
:
_| Log communicaton
$PR0I_DIFSicspyeamenlog File narme:
Lok | cancel g é
Figure 12. J-Link/J-Trace > Connection Configuration Tab Figure 14. Available Projects in the BSP Folder
BUILDING DEMO PROJECTS Each example includes a comprehensive, low level, peripheral
IAR Provided Code library that can be used to interface to the peripherals of the

Several example projects are available in the examples folder, ADuCM3027/ADuCM3029. Comprehensive documentation

located in the ADuCM3027/ADuCM3029 BSP directory as for both the libraries and the examples are included.
follows: BSP Install Folder > \ADuCM302x_EZ_Kit_Lite >

examples. To open an example project, from the File menu,

choose Open > Workspace..., and navigate to the workspace file.

ﬂ&"whﬁswﬁwwp .Yy enED

Open . File_. CIRL+0
Close Workspace..

Hesder/Source File CTRL+SHIFT +H

Racent Files K
Recent Workspaces E:
Esat

15388-012

Figure 13. Opening the IAR Workspace

Rev. A | Page 7 of 51

UG-1091

Changing Projects
To change projects, right click on a different project in the

workspace and click Set as Active from the menu that appears

(see Figure 15).
% crc_example - IAR Embedded Workbench IDE_

File Edit View PFroject Tools Window Help

Do d@ & BR| o v ©
‘Workspace x
’gpio_toggle—Debug -
Files S o
B Eorc _example *
[@)orc_example
@ (F gpio_toggle - Deb Options..
Make
Compile
Rebuild All
Clean
C-5TAT Static Analysis 4
Stop Build
Add 4
Remove
Rename...
Wersion Control System 4
Open Containing Folder...
File Properties...
Set as Active

Figure 15. Changing Projects
Building the Application

To build or compile the application code, the user can either

click Project > Make (or press F7) as shown in Figure 16, or
click the make button, shown in Figure 17.

ﬁ crc_example - IAR Embedded Workbench IDE

File Edit View [Project] Tools Window Help
DE @S AddFies.
il Add Group...
gpio_toggle - Deb Import File List..
Files Add Project Connection...

B [cre_example
[cre_examp
Elapic toad

Edit Configurations...
Remove

Create New Project...
Add Existing Project.

ETE gan Cptions.. ALT+F7
. Yersion Control System 4
Messages
Building conf Make F7
Updating bui Compile CTRL+F7
main.c 0
Linking Rebuild All
Clean
Totalnumbe Batch build..]
Total numbe
o N E— C-STAT Static Analysis 4
& FindinFiles Build Stop Build CTRL+Break
Make the active p Download and Debug CTRL+D

Figure 16. Building an Application Using Project > Make

15388-014

15388-015

BE A T Tl RPN R

S AV Y

15388-016

Figure 17. Building an Application Using the IAR Make Toolbar Button

To rebuild the full application code, click Project > Rebuild AllL

This action cleans, recompiles, and links all the project files.

ﬁ crc_example - IAR Embedded Workbench IDE

File Edit Wiew [PrOjE‘Ct] Tools Window Help
DG E AddFiles.
e Add Group...
gpio_toggle - Deb Import File List..
Files Add Project Connection..

B [Ofcre_example
(cre_exam

BT op 0 (oo

Edit Configurations...
Remaove

Create New Project..
Add Existing Project...

Svariewlleete COptions.. ALT+F7
Wersion Control System 4
Messages
Building conf Make F7
Updating bui Compile CTRL+F7
main.e Rebuild Al

Figure 18. Building an Application Using Rebuild All

In all cases, it is possible to compile code without errors, as
shown in Figure 19.

ﬁ crc_example - IAR Embedded Workbench IDE]

File Edit ¥Yiew Project Tools Window Helg
D@ S| BR[|

Warkspace »x
[gpio_tuggle- Dehlug V]
Files FSH

=R crc _example
H& @ cre_example - Debug

L El--

IOverview cro_example | gpio_toggle

x

Messages

Building configuration: gpio_toggle - Debug
Updating build tree..

main.c

Linking

Total nurnber of errars: 1
Total number of warmings: 0

4 | 1T}

=)
2 Findin Files Build

Ready

Figure 19. Recompiling Projects

Rev. A | Page 8 of 51

15388-017

15388-018

UG-1091

Downloading the Application Code

To download the code, click Project > Download > Download

active application.

2§ crc_example - 1AR Embedded Werkbench IDE -

ir-u'e Edit View [Project] Tools Wingow Help

|Dli.ﬂ il Files. EE A UE e
ool Add Group.

IR
|lgposoggle-Dabe peen File List

||| Files Add Project Connection..
& B ore_memple
|- 6 ere_eanenpy
=l opio_tog: Rermove

Edit Configurations..

Create New Project.
Audd Existng Project..

Ophans. ALT+F7

||[verviow er_ed

Wersion Control System

e

Make F7

Rebuild All

Clean
Batch build. ré

C-STAT Static Analysis

"
I

W +Hreak

Diowmioad and Debug CTRL4D ECOr O Warnings O

thout Downloading r

Ind software suppen
Download » Download ac

we application

SFR 5D %

Erase memory
Open Device Description File

Figure 20. Downloading the Application

After power cycling the device, the code runs on the
ADuCM3027/ADuCM3029.

Debugging the Application Code

Use the following procedure to download and debug a project:

1. Click debug. Debugging of the code is executed at the

beginning of the main function. The following debugging
features are available: single step, step over, and breakpo

Figure 21. IAR Debug Toolbar Button

fywEEeapd - 9@2’

15388-019

int.

15388-02C

Running an Example Project

The ADuCM3027/ADuCM3029 BSP has many sample projects
to test and evaluate the microcontroller. In this user guide, the
ADuCM3029 EZ-Kit evaluation board and IAR workbench are
used to run a sample project from the BSP package.

The LED_polled_button example project is used in this section.
This example uses the GPIO service to configure the push buttons
(the GPIO is configured as an input) and the LEDs (the GPIO is
configured as an output) on the ADuCM3029/ADuCM3027
EZ-Kit board.

To execute the LED_polled_button project,
1. Navigate to Project > Add Existing Project....

ﬁ crc_example - IAR Embedded Workbench IDE ‘

File Edit VYiew |Project| Tools Window Help
D Add Files..

Warkspace Add Group...
gpio_taggle - Delby

Import File List...

Files Add Project Connection...
=] crc_example
[cre_examp

[@]gpio_toge Remove

Edit Configurations...

Create New Project..
Add Existing Project..

15388-023

Figure 24. Add Existing Project... Menu Option

2. In the file selection dialogue box, go to the BSP folder, then
go to the examples folder. In the examples folder, go to gpio\
LED_button_polled\ADuCM3029\iar. Click the LED_
button_polled.ewp file and then click the Open button

2. Begin debugging by either clicking the go icon in the
toolbar as shown in Figure 22, or by navigating to Debug >
Go (or by or pressing F5) as shown in Figure 24. The code
then executes on the ADuCM3027/ADuCM3029.

r

ﬁ crc_example - IAR Embedded Woaorkbench IDE

File Edit View Project Debug Disassembly
DT S |

S~ |z¢;/£3:tr

15388-021

W0
Figure 22. IAR Go Toolbar Button
ﬁ crc_example - IAR Embedded Workbench IDE]
File Edit View Project |Debug| Disassembly J-link Tools Window &

NeEHd S| Go F5

Figure 23. Debug > Go

(see Figure 25).
| 22 Add Existing Project to Current Workspace == |
i
() [« apuchnzs v iar » | 42][Search ior A
Organize v Newfolder E=E- O @
Narme . Date modified oo Size

Debug 6/28/2016 2:04 P File falder
settings 6/28/2016 3:42 PM File folder
_ LED_button_polled.ewp 6/28/2016 2:21 PM EWP File S3KE

| File name: LED_buttar_palled.ewp v |PrajectFiles (*.ewp) -
EE

Figure 25. Project Selection Dialogue Box

15388-024

3. Build the project by clicking the Project dropdown menu

and navigating to Make. There are no error or warning

messages on the build console.

Rev.A | Page 9 of 51

UG-1091

To debug the application, click the Project dropdown menu

and navigate to Download and Debug or press Ctrl + D
(see Figure 26). After downloading the application, the IDE
switches to debug mode and displays other windows, such

as the Disassembly window, the debug toolbar, and the
debug logger. Click Debug > Go to run the application.

5& crc_example - IAR Embedded Workbench IDE

n—g =y
‘Workspace
gpio_toggle - Debu
Files
[Ecrcﬁexample

(P cre_examp
&]gpio_toge

Owerview Crc_gx

*

Messages
Building confi
Updating buil

Carfiguration

4
=

2 Findin Files Build

Cownload the app
=

File Edit ¥iew |Project| Toaols

Add Files...
Add Group..
Impaort File List...

Add Project Connection..,

Edit Configurations...
Remove

Create New Project..
Add BExisting Project.

Options...
Wersion Control System

i ake

Compile

Rebuild All

Clean

Batch build...

C-STAT Static Analysis
Stop Build

Download and Debug

Figure 26. Download and Debug

Window Help

ALT+F7

F7
CTRL+FF

F8

CTRL +Break
CTRL+D

15388-025

Rev.A | Page 10 of 51

UG-1091

POWER OPTIMIZATION FOR THE ADuCM3027/ADuCM3029 PROCESSORS

Choosing a low power MCU is a difficult task because it
involves reviewing data sheets to analyze electrical specifications. It
is often difficult to relate these specifications to applicable,
system level use cases.

Evaluating various power modes while considering peripheral
operations emulating real use case scenarios is an essential step
in choosing the right MCU for a power sensitive application.
Key aspects to evaluate when choosing an MCU for low power
applications include the following:

e Availability of low power modes and the impact of these
modes on the ability to retain the contents of SRAM.

e Power consumption with the RTC running while the rest
of the system is in low power mode.

e Wake-up times from low power mode(s).

e Supply voltage range from an application standpoint. The
designer can adjust and select the system supply voltage,
depending on the component requirements.

e Power consumption in active mode.

e Core activity—example algorithm processing.

e Peripheral activity—DMA operations.

e Simultaneous core and peripheral activity.

e Flexibility in choosing core and peripheral clock frequencies
that meet system requirements while keeping the power
consumption low.

e Hardware DMA blocks that enable the CPU to be in low
power mode during peripheral activity.

The ADuCM3027/ADuCM3029 processors are an Ultra low
power, integrated, mixed signal, MCU system for processing,
control, and connectivity. The MCU system is based on an
ARM? Cortex®-M3 processor, offering up to 33 MIPS of peak
performance at 26 MHz, combined with a collection of digital
peripherals, embedded SRAM and flash memories, and an
analog subsystem that provides clocking, reset, and power
management capability in addition to an ADC subsystem.

The ADuCM3027/ADuCM3029 processors are two of the few
low power MCUs on the market that offer a cache controller.
Programs that repeatedly access the same data or instructions
make effective use of cache memory, thereby reducing the
overall power consumption.

Table 2. Power Mode System Block States

The power consumption of an MCU largely depends on two
factors: the operating voltage and the frequency at which the
system operates. The ADuCM3027/ADuCM3029 processors
incorporate several power modes that are useful in building
battery-powered or self powered (energy harvesting) applications.

This section discusses the power modes of the ADuCM3027/
ADuCM3029 processors in detail and provides example power
measurements for several scenarios, with the intent of helping
developers choose the power modes that best fit low power
application requirements.

ADuCM3029/ADuCM3027 PROCESSOR POWER
MANAGEMENT

The ADuCM3029/ADuCM3027 processors incorporate a
highly customizable power management and clocking system
that offers application developers the flexibility to balance
power and performance. The power management blocks consist
of integrated regulators, a clock gating scheme, and switches
applicable to numerous application scenarios.

The power management system features include the following:

e Anintegrated 1.2 V LDO and an optional capacitive buck
regulator.

e Integrated power switches for low standby current in
hibernate mode.

e Power gating to reduce leakage in sleep modes.

e A power supply monitor with a selectable voltage range.

ADuCM3029/ADuCM3027 PROCESSOR POWER
MODES

The power management system provides the following low
power modes:

e Active mode with customized clock gating features.

e Flexi™ mode with smart peripherals.

e Hibernate mode with optional SRAM retention capability.
e Shutdown mode without SRAM retention.

Each mode provides a low power benefit with potential
functionality trade-offs. Table 2 summarizes the status of the
system blocks in each low power mode.

Functional Block | ARM Cortex-M3 Core | Buck |PERIPHERAL-DMA |HF-XTAL |HFOSC |LFXTAL |PLL LFOSC |RTCO |RTC1 |[ADC |SRAM |FLASH
Active Mode On User' |User User' User' |User User' [On User' |User' |User' [On On
Flexi Mode Off User' |User' User! User' |User! User' [On User' |User' |User' [On On
Hibernate Mode | Off Off Off Off Ooff User Ooff On User' |User' |Off On? Off
Shutdown Mode | Off off Off off off User off Off User' | Off off | Off Off

"In the user application code, this functional block can be configured to be on or off.
2The retainable SRAM size is configurable.

Rev.A |Page 11 of 51

UG-1091

Active Mode

In active mode (also called full on mode), the ARM Cortex-M3
is active and executes instructions from flash memory and/or
SRAM. All peripherals can be enabled or disabled at the discretion
of the user, and active mode power can be enhanced by
optimized clock management.

Several power saving options are available in active mode:

e Using the buck converter.
e Enabling the cache.

e Dynamic clock scaling.

e Clock gating.

Buck Converter

The optional integrated buck converter feature saves power in
active mode. The buck converter powers the linear regulator,
which powers the digital core domain. The buck converter
enters bypass mode after the battery voltage (VBAT) falls below
~2.3 V. After entering bypass mode, the buck converter output
follows the input. Figure 27 shows the external circuitry
recommended for buck converter enabled designs.

VBAT VDCDC_CAP1P
BUCK VDCDC_CAPIN T

(ENABLED)

VDCDC_OUT

-1
—¢ ' 0.47yF ;g

VDCDC_CAP2P

VDCDC_CAP2N

0.1pF

B

0.1pF

LDO VLDO_OuT

L

0.47uF g

Figure 27. External Circuitry for Buck Converter Enabled Designs

15388-101

For designs in which the optional buck converter is not used,
the VDCDC_CAP1P, VDCDC_CAPIN, VDCDC_OUT,
VDCDC_CAP2P, and VDCDC_CAP2N pins must be left
unconnected.

The buck converter is solely for processor usage. An external
load cannot be connected to the buck converter output.

Enable the buck converter by setting the CTLL.HPBUCKEN bit
per the following code:
*pREG_PMGO_CTL1 |= (1<<BITP_PMG_CTL1_HPBUCKEN);

Figure 28 compares the power consumption of the ADuCM3027/
ADuCM3029 processors when computing prime numbers with
the following conditions:

e VBAT=3.0V

e HCLK=PCLK =26 MHz
e Cache memory disabled

The buck converter impacts current consumption positively at
higher VBAT values. Specifically, there is roughly a 50%
decrease in the active current when VBAT >3 V.

3.0
|

BUCK OFF

2.0

15 BUCK ON

IBAT (mA)

1.0

0.5

0

1.7 19 21 23 25 27 29 31 33 35 37
VBAT (V)

15388-102

Figure 28. Impact of the Buck Converter on Active Mode Power Consumption
Enabling Cache Memory
Cache memory reduces the average time to access data from
flash memory. For scenarios where the CPU is required to run
an algorithm, or when the same data must be accessed repeatedly,
cacheable memory can reduce the power consumption because
execution is from the internal instruction SRAM. When the
cache controller is enabled, 4 kB of instruction SRAM is
reserved as cache memory.

Cache memory is disabled at startup by default. Use the
following procedure to enable the cache memory:

1. Read the cache enable status bit (Bit 0 in the
FLCCO_CACHE_STAT register) to ensure that cache
memory is disabled. Poll this bit until it clears.

2. Write the user key to the FLCCO_CACHE_KEY register.
For example, write

*pPREG_FLCCO_CACHE_KEY = OxF123F456;

3. Set the instruction cache enable bit (ICEN in the
FLCCO_CACHE_KEY register) as follows:

*pREG_FLCCO_CACHE_SETUP |= (1 <<
BITP_FLCC_CACHE_SETUP_ICEN);

Rev. A | Page 12 of 51

UG-1091

Figure 29 compares the power consumption of the ADuCM3027/
ADuCM3029 processors when computing prime numbers with
the following conditions:

e VBAT=30V
e HCLK=PCLK =26 MHz
e Buck converter disabled

3.0

CACHE OFF
25 i i

CACHE ON

2.0

15

IBAT (mA)

1.0

0.5

0

17 19 21 23 25 27 29 31 33 35 37
VBAT (V)

15388-103

Figure 29. Impact of Cache Memory on Active Mode Power Consumption

Enabling the cache memory reduces the average active current
consumption by ~18%.

Dynamic Clock Scaling

Dynamic clock/frequency scaling is a proven method to reduce
power consumption. The ADuCM3027/ADuCM3029 processors
have a flexible clock architecture that allows dynamic modification
of the CPU and peripheral clock frequencies. A combination of
clock dividers and a phase-locked loop (PLL) provides flexibility in
deriving an optimum system clock frequency that guarantees
system performance while keeping the power consumption low,
as compared to a fixed clock scheme. Programmable clock dividers
are available to generate the clocks in the system, and the
divisors can be configured on-the-fly.

Figure 30 plots the power consumption of the ADuCM3027
ADuCM3029 processors when computing prime numbers with
the following conditions:

e VBAT=30V
e HCLK = PCLK (the source of the root clock is HFOSC)

e Buck converter disabled
e Cache disabled

3.0

2.5 ~

o
/

//

//

0.5 7

IBAT (mA)

0

0 5 10 15 20 25
HCLK (MHz)

15388-104

Figure 30. Impact of Core Clock Frequency on Active Mode Power
Consumption
As can be expected, power dissipation decreases as core clock
frequency decreases.

Clock Gating

The system is heavily clock gated and uses automatic clock
gating techniques. Most peripherals are automatically clock
gated when the peripheral is disabled, such that the clock is
running only when the peripheral is enabled. The exceptions
are I’C, GPIO, and the general-purpose timer (GPTMR). These
blocks must be manually clock gated using the CLKCONS5 register.
Gate the peripheral clock completely by setting the
CLKCONS5.PERCLKOFF bit.

Any access to the clock gated peripherals overrides the clock
gate settings in the CLKCON register.

For application scenarios where the core is processing data and
no peripheral activity is desired, the peripheral clock (PCLK)
can be turned off to save power. Figure 31 shows the power
consumption of the ADuCM3027/ADuCM3029 processors
when computing prime numbers with the following conditions:

e VBAT=30V
e Buck converter disabled

e Cache memory disabled
e HCLK=PCLK =26 MHz

Rev.A | Page 13 of 51

UG-1091

3.0

PCLK ON
25 - "
| |

PCLK OFF

20

15

IBAT (mA)

1.0

0.5

0

17 19 21 23 25 27 29 31 33 35 37
VBAT (V)

Figure 31. Impact of Peripheral Clock Gating on Active Mode Power Consumption

15388-105

As shown in Figure 31, a ~0.2 mA reduction in the active
current is observed when the peripheral clock is gated.

In active mode, the four techniques described in this section
can be combined to achieve maximum power savings.

Flexi Mode

Flexi mode is a flexible sleep mode useful in scenarios where
the core must wait for a peripheral data transfer to complete
before it can start processing. In Flexi mode, the core is clock
gated and the remainder of the system is active. Flexi mode can
be used to substantially reduce active power when a very low
speed activity is expected to complete (for example, reading a
certain number of bytes from a sensor) before the processor
must be woken up to process the data.

Consider a scenario where the CPU configures an SPI DMA
and must wait for the DMA to complete. Figure 32 shows the
power consumption of the ADuCM3027/ADuCM3029
processors transferring data over the SPI using DMA accesses
with the following conditions:

e VBAT=30V

e Buck converter disabled
e Cache disabled

. PCLK = 6.5 MHz

. SPI_DIV =49

[I
T T
1.0 ACTIVE MODE

0.8

0.6

IBAT (mA)

FLEXI MODE

0.4

0.2

0

17 19 21 23 25 27 29 31 33 35 37
VBAT (V)

15388-106

Figure 32. Impact of Flexi Mode on Power Consumption

As shown in Figure 32, there is nearly a 66% savings in power
when Flexi mode is used while the DMA is ongoing, rather than
keeping the core in active mode.

There are a number of wake-up sources that can be used to exit
Flexi mode (for example, DMA interrupts, external interrupts,
timer interrupts, and so on), and it typically takes only one CPU
clock cycle to exit.

The buck converter can also be enabled in Flexi mode to save
additional power. Figure 33 shows the power consumption of
the ADuCM3027/ADuCM3029 processor across VBAT in Flexi
mode with the buck converter on while transferring data over
the SPI using DMA accesses with the following conditions:

e VBAT=30V

e Cache memory disabled
e PCLK=6.5MHz

e SPI_ DIV =49

0.5 I I
BUCK OFF
AN
0.4
N
~ 03
<
E \\ BUCK ON
=
=
= 02
0.1

0
17 19 21 23 25 27 29 31 33 35 37

VBAT (V)

15388-107

Figure 33. Impact of the Buck Converter on Flexi Mode Power Consumption

As seen in Figure 33, a similar power improvement pattern to the
impact of the buck converter in active mode is shown in Figure 28.
Specifically, when VBAT > 3 V, a 50% improvement in power is
observed.

Rev.A | Page 14 of 51

UG-1091

Hibernate Mode

In hibernate mode, the ARM Cortex-M3 core and all digital
peripherals are off with configurable SRAM retention, port pin
retention, a limited number of wake-up interrupts, and,
optionally, an active RTC. All GPIO pin states are retained in
hibernate mode. The ADuCM3027/ADuCM3029 processors
also incorporate the SensorStrobe™ mechanism in the RTC
block, which enables ultra low power sensor data measurement.

Before entering hibernate mode, most of the enabled peripherals
must be programmed to undergo a specific sequence to properly
enter or exit hibernate mode, and several system memory map
registers (MMRs) and peripheral registers are retained while in
hibernate mode. For more details, refer to the relevant peripheral
information in the ADuCM302x Ultra Low Power ARM Cortex-
M3 MCU with Integrated Power Management Hardware
Reference.

Configurable Retainable SRAM

The ADuCM3027/ADuCM3029 processors support SRAM
block sizes of 8 kB (default), 16 kB, 24 kB, and 32 kB to be
retained while in hibernate mode. The more SRAM that must
be retained, the higher the power consumption is while in
hibernate mode, as shown in Figure 34.

1.1 |
32{2
| 24
1.0 \- - ésk
0.9 \\ . ! N\ A 46
! 7
< /
f 0.8 \&\— /
< —
2]
0.7
0.6
0.5 2
17 19 21 23 25 27 29 31 33 35 37 3
VBAT (V) 8
Figure 34. Current on the VBAT Supply Pin (Isa7) for Various Retained SRAM
Values

The SRAM retention size can be configured by setting the
appropriate bits in the SRAMRET register. For example, to
enable 32 kB of SRAM to be retained while in hibernate mode,
use the following code in the SRAMRET register:
*pREG_PMG_PWRKEY = Ox4859;

*pREG_PMG_SRAMRET |=

((1 << BITP_PMG_SRAMRET_SRAM_RET1_EN)|

(1 << BITP_PMG_SRAMRET_SRAM_RET2_EN));

If parity is enabled, initialization of nonretained SRAM regions
may be required upon waking from hibernate mode.

Wake-Up Sources

The following events are capable of waking the devices up from
hibernate mode:

e External Interrupt O to External Interrupt 3
e RTCOand RTC1 interrupt

e Battery voltage range interrupt

e UART Rx pin activity

Of the two real-time clocks, RT'C1 is the recommended wake-
up source from hibernate mode because, in an application where
both hibernate mode and shutdown mode must be used, only
RTCO can be used for exiting shutdown mode.

The wake-up time from hibernate mode from any of these

events is ~14 ps when executing from flash, and ~10 ps when
executing from SRAM.

RTC Clock Sources

The ADuCM3027/ADuCM3029 processors offer two clock
choices for the RTC1 block:

e Alow power internal RC oscillator (LFOSC)
e Anexternal crystal oscillator (LFXTAL)

Choosing to implement either LFOSC or LFEXTAL is a trade-off
between accuracy and power consumption. LEXTAL is more
accurate (depending on the crystal manufacturer) compared to the
LFOSC, but LFOSC dissipates less power, as shown in Figure 35.

12
~
1.0 LFXTAL
—
0.8 LFOSC—~ —
<
=1
= 06
<
aQ
0.4
0.2
0 g
17 19 21 23 25 27 29 31 33 35 37
VBAT (V) 3
Figure 35. Hibernate Current with RTC1 as the Wake-Up Source (LFOSC vs.
LFXTAL)
SensorStrobe

The SensorStrobe mechanism allows the ADuCM3027/
ADuCM3029 processor to be used as a programmable clock
generator in all power modes, including hibernate mode. In

this way, the external sensors can have their timing domains
mastered by the ADuCM3027/ADuCM3029 processors because
the SensorStrobe output is a programmable divider from
FLEX_RTC, which can operate up to a resolution of 30.7 ps.
The sensors and microcontroller are synchronous, which
removes the need for additional resampling of data to time align
the microcontroller and the sensors.

Rev.A | Page 15 of 51

UG-1091

Shutdown Mode

Shutdown mode is the deepest sleep mode, in which digital and
analog circuits are powered down. The state of the digital core
and the SRAM memory content is not retained; however, the
state of the pads is preserved, as is the wake-up interrupt
configuration.

The configuration of the pads is preserved and locked after
waking up from shutdown mode. The user must unlock the
state of the pads by writing 0x58FA to the PGM_TST_CLR_
LATCH_GPIOS register, preferably inside the ISR routine:

*pREG_PMGO_TST_CLR_LATCH_GPI0S = OX58FA;

Additionally, the user must configure the appropriate wake-up
source, choosing from the following options:

e External Interrupt 0 to External Interrupt 2
e External reset

e Battery falling below 1.6 V

e RTCO timer

The RTCO block can (optionally) be enabled in this mode,
which allows the processor to be periodically woken up by the
RTCO interrupt.

The clock source for RTCO must be the LEXTAL because the
LFOSC is disabled in shutdown mode.

Because the RTCO block must be powered to serve as a wake-up
source, it adds to the power dissipation while in shutdown
mode, as shown in Figure 36.

When the device wakes up from shutdown mode, the POR
sequence is followed, and code execution starts from the

beginning.
400
350 —
SHUTDOWN + RTC ~_|—"
300
/
/
250 — |
<
(=
= 200
<
o
150
100
SHUTDOWN
50
0

17 19 21 23 25 27 29 31 33 35 37
VBAT (V)

Figure 36. Shutdown Mode Current (External Sources vs. RTCO)

15388-110

Rev.A | Page 16 of 51

UG-1091

FAST WAKE UP FROM HIBERNATE MODE

FLASH MEMORY AND INSTRUCTION SRAM

Flash memory is the long-term storage medium for any micro-
controller. Because the flash memory is nonvolatile, it is used
for storage of constant data and program code of the
microcontroller. Due to the nature of flash memories, memory
access is slow compared to SRAM, cache, and other registers.
The latency takes effect during the execution of a looping code
that performs real-time calculations.

The ADuCM3027/ADuCM3029 microcontroller has the
capacity to execute instructions in SRAM. Instruction SRAM
(iSRAM) is a portion of the ADuCM3027/ADuCM3029
microcontroller dedicated to be a temporary program code and
instruction storage. It is used when the program must execute a
looping code faster and does not want the flash latency to affect the
execution. The iSRAM is small (up to 32 kB) compared to the
flash memory (128 kB and 256 kB on the ADuCM3027 and
ADuCM3029, respectively); therefore, only important code and
instructions must use the iSRAM.

NORMAL WAKE UP

The Cortex-M3 core and all the digital peripherals (except some
user-selectable SRAM blocks) are turned off during hibernate.
The real-time clocks (RTCs) can be configured by the user
program to turn off during hibernate. (RTC0 and/or RTC1 may
be on, depending on the user configuration.) Registers of the
digital peripherals are also turned off, which ensures the low
current consumption of the microcontroller during hibernate
mode, though some registers are retained to allow the device to
wake up in the same status it was in when it went to sleep.

An interrupt from one of the allowed wake-up sources boots
the microcontroller from hibernate to active mode to service
the interrupt. Refer to Hardware Reference Manual document
for further information about the possible interrupt wake-up
sources. During the transition from hibernate to active mode,
the microcontroller reinitializes the digital peripherals that are
off during hibernate before it executes the first instruction on
the interrupt service routine (ISR).

The flash memory, where the program code is located, is also
off during hibernate mode. Upon microcontroller wake up, the
core turns on the flash memory. The flash memory initialization is
slow, and it takes about 5.7 us to complete before it can take
commands from the controller.

Figure 37 shows the delay time from triggering an external
wake-up signal to microcontroller response by lighting up a
light emitting diode. The red trace is the signal from the push
button that triggers an external interrupt signal to wake up the
microcontroller. The blue trace is the GPIO toggling indicating
that the microcontroller is awake; that is, the first instruction
executed is a GPIO_TGL. The entire wake-up process takes
about 10 ps to complete.

CH1 1.00v CH2 1.00v TIMEBASE -8.00us TRIGGER C1DC
O0mV OFFSET O0mV OFFSET 2.0ps/DIV STOP 0.00V
50.0kS 2.5GSPS EDGE NEGATIVE

15388-801

Figure 37. Normal Wake Up from Hibernate Mode Response
FAST WAKE UP

One way to wake up from hibernate faster is to move the
required functions and instructions to iSRAM. The microcontroller
code starts earlier, because the code must not wait for the
completion of the flash memory initialization.

Figure 38 shows the delay time from triggering an external
wake-up signal to microcontroller response with fast wake-up
procedure. The red trace is the signal from the push button, and
the blue trace is the GPIO toggled as first instruction after
waking up.

The wake-up time is reduced to 5 ys; this supposes a 50%
improvement with respect to normal wake up.

I
g
CH1 1.00v CH2 1.00v TIMEBASE -8.00ps TRIGGER C1DC 2
OmV OFFSET OmV OFFSET 2.0us/D STOP 0.00V g
8
2

Ops/DIV
50.0kS 2.5GSPS EDGE NEGATIVE

Figure 38. Fast Wake Up from Hibernate Mode Response

Rev.A | Page 17 of 51

UG-1091

Table 3. Wake-Up Times with Different Peripherals

ADuCM3029 Peripheral Activity

Normal Wake-Up Time (ps)

Fast Wake-Up Time (ps)

Pin Toggle (Lighting an LED)
I2C Clock (First Edge, 400 kHz)
SPI Clock (First Edge, 400 kHz)

9.9
12.5
12.7

4.7
7.3
7.5

Table 3 shows a comparison of the wake-up times to different
peripherals. The wake-up time is measured from the falling edge of
the external wake-up signal to the first rising edge of the serial
clocks (as for I°C and SPI) or the rising edge of the pin connected
to the light emitting diode.

The steps to perform fast wake up from hibernate mode are as
follows:

1. Initialize the iSRAM.

2. Modify the linker script to add the section for the
functions and to remap the addresses.

3. Relocate the interrupt vector table (VTOR) from flash to
SRAM.

4. Place the required functions and interrupt handlers in
iSRAM.

Initialization of the iSRAM.
To use the iSRAM, take the following steps:

1. Enable the iSRAM bank by asserting the
PMGO_TST_SRAM_CTL.INSTREN bit field.

2. Retain the half of the iSRAM by asserting the
PMGO_TST_SRAM_CTL.BNK2EN bit.

Modification of the Linker Script

Modify the linker script to help the linker place the code in the
correct place in the memory map. Remap the addresses and add
the required sections for the location of the program code and
interrupt handlers to iSRAM.

If using the IAR embedded workbench, apply the following
changes to the linker script:

1. Remap of SRAM addresses. Search for the following line in
the linker script:

define symbol USER_SRAM_MODE = O;

Change the value of the USER_SRAM_MODE to 0 or 1.
2. Add section for iSRAM. Search the linker script for the
following lines:

// 1SRAM section for placing code in SRAM
place in SRAM_CODE {section ISRAM_REGION };
initialize by copy {section ISRAM_REGION };
Modify the lines to include the .textrw section. IAR linker
places the instructions for SRAM in the section .textrw.
// 1SRAM section for placing code in SRAM

place in SRAM_CODE {section ISRAM_REGION,
section .textrw};

initialize by copy {section ISRAM_REGION,
section .textrw};

Interrupt Vector Table Relocation

The interrupt vector table (IVT) lists the different interrupt
sources for the ADuCM3027/ADuCM3029 microcontroller.
The following events are capable of waking the MCU up from
hibernate mode:

e External Interrupt O to External Interrupt 3
e RTCOand RTC1 interrupt

e Battery voltage range interrupt

e UART receiver (Rx) pin activity

For fast wake up, move the IVT from flash to SRAM. In this
way, the microcontroller does not have to wait for the flash
initialization to check the location of the interrupt handler of
the wake-up source.

Copy the IVT to SRAM and update the SCB register to VTOR
of the address of interrupt vector in SRAM. If using the board
support package of ADuCM3027/ADuCM3029, declare
RELOCATE_IVT by adding it to the C/C++ Compiler/
Preprocessor tab (see Figure 39) to activate the relocation code
built-in in the board support package.

Options for node "FastStartUp3029" P
Categony Factory Settings
General Options - Multi-file Compilation
Static F\na‘:ﬁsh Discard Unused Publics
Runtime Checking
C/C44+ Compiler Language 2 | Code | Optimizations | Output | List | Preprocessor |« [+
Assembler
Qutput Converter lgmore standard include directaries
Custam Buid Addtional include diectories: (one per ling)
Build Actions $PRO_DIRS Al
Linker $PROJ_DIR$ cpubing
Debugger $PROJ_DIR$wcpulCMSIS
Simulator $PROJ_DIR$\cpubincheonfig
Angel
CMS3IS DAP Preinclude file:
DB Server EI
TAR ROM-monitor)
et TTAGIEt Defined symbols: (one per ling)
ik Tracs Preprocessor oultput to file
I Stellaris SREM_WAFEUP Preserve comments
Macraigor dl Generate Hline directives
PE ricra:
RDI
ST-LIMK
Third-Party Driver
TIMSP-FET - §
oK Cancel 2
a8
g

Figure 39. IAR C/C++Compiler Options—RELOCATE_IVT Directive in the
Defined Symbols Textbox

Rev.A | Page 18 of 51

UG-1091

Placement of Program Code to SRAM

The procedure of placing the program code to SRAM is

dependent on the compiler used.

For most compilers, use the following line before the function

definition to tell the location of the defined function:
#pragma location="<linker_section>"

For IAR Embedded Workbench, use the __ramfunc keyword
before the function (see Figure 40).

=] _ rapfunc woid Ext_Int0_Handler (woid) {
_ disable irg():

AF write to spil tx registers

*{iwolatile uint3Z_t *) BEG_SPIZ_CTL) = spi_con buff:
#i (yolatile uint3z_t *) REG_SPIZ_T¥j = Ox4a:
*{(yolatile wint3z_t *) REG_SPIZ_TX] = Oxaa:
+{ (volatile wint3Z t *) REG_GPIOO_OUT) = (L << 13):
+{ (volatile wint3Z t *) REG_XINTO CLR) |= L:

SCE-»3CR o= ~(lu << 1)

15388-804

Figure 40. Sample for Appending __ramfunc Directive to a Function

Note that the iSRAM only retains half of its memory from
0x1000_0000 to 0x1000_3fff during hibernate. The memory
outside this range is not retained; therefore, do not put the
codes outside the retained region.

Rev.A | Page 19 of 51

UG-1091

USING THE ADuCM3029/ADuCM3027 PROCESSOR BOOT KERNEL

OX407FF | DEVICE INFORMATION
INFORMATION SPACE
(2KB) BOOT KERNEL

0x40000
OX3FFFF

USER SPACE

(UP TO 256kB) USER APPLICATION CODE
0x0000 g

Figure 41. Flash Information Memory Space

The ADuCM3029/ADuCM3027 processors feature integrated
flash memory that contains the user application code (user
space) and a dedicated 2 kB bank of memory, information space
arranged as shown in Figure 41.

Some devices feature 128 kB of user space. Refer to the
ADuCM3027/ADuCM3029 data sheet for details.

As shown in Figure 41, the information space block is further
broken down into the boot kernel, residing in the upper 2 kB of
flash memory, and the device information. The boot kernel is
responsible for implementing a secure environment, where user
application code can optionally be read and/or write protected,
and executes the application from flash memory upon reset.
The boot kernel also provides a mechanism to upgrade the
firmware through a UART downloader.

This section describes the information space region of the on-
chip flash memory, as well as both the boot process and how to
use the UART downloader to perform field upgrades to the
processor firmware.

BOOT KERNEL OVERVIEW

The boot kernel switches to the user application after
performing certain checks (including the CRC integrity of the
user application), or the boot kernel enters UART downloader
mode to upgrade the user application in flash memory, depending
on the SYS_BMODEOQ boot mode pin state at reset.

The boot kernel supports in field updates to the user application
through the UART port. For security reasons, the boot kernel
itself does not provide the flash programming feature; however,
it allows the firmware update code, which has flash driver code
for updating the user flash, to be downloaded to the device over
the UART port. This code is referred to as a second stage loader
(SSL) and is run from SRAM. The SSL must be authenticated
before it can be provided run access. The security scheme
implemented is discussed in the following sections, describing
the critical part of the kernel to provide the secure environment
in which the user code can be read and/or write protected,
allowing intellectual property security.

The serial download capability allows developers to reprogram
the device while it is soldered directly onto the target system,
avoiding the need for an external device programmer and
removing the need to swap the device out of the system. The
serial download feature also enables system upgrades to be
performed in the field, provided the hardware infrastructure
involving the SYS_ BMODEQO pin and the UART port are
implemented on the target board.

Configuring Security Options

The boot kernel provides the flexibility to configure the security
options of the device by allowing the user to program certain
keys and parameters in predefined locations in Page 0 of the
user flash memory. The kernel provides the user code security
and integrity, which depends on the number of user-defined
parameters in the first page of the user flash memory. Table 4
summarizes the list of keys and parameters, as well as their
locations in the user flash memory.

Table 4. List of Keys and Parameters

Address Range | Size Description

0x0000_0180 to 128 bits Read protection key hash

0x0000_018F (16 bytes)
0x0000_0190 to 32 bits CRC of read protection key hash
0x0000_0193 (4 bytes)

0x0000_0194 to 32 bits Length of user boot loader or
0x0000_0197 (4 bytes) entire user code (used for CRC
verification before boot)
0x0000_0198 to 32-bit In-circuit write protection if set
0x0000_019B word to NOWR

0x0000_019C to 32-bit CPU write protection of
0x0000_019F word individual flash blocks

Read Protection Key Hash

Program the 128-bit read protection key hash at

Address 0x00000180 in the first page of the user flash memory.
The value of this hash depends on the kind of security desired
in the system because this security defines the read accessibility
to the device. The key hash defines the state of the serial wire
debugger (SWD), as well as the access permission of the SSL
downloaded for upgrades via the UART:

e The reset state of the flash memory of all logic high memory
cells (along with a valid key hash CRC) indicates that the
user does not desire read protection. In this case, the SWD
interface is automatically enabled during booting.

e Any nonreset value results in the SWD being locked;
therefore, there is no SWD access to the device.

e Thekey hash is the 128-bit, truncated secure hash algorithm
(SHA-256) of the user key (which is 128 bits in length), which
can be sent along with the SSL during the UART download
phase. If the user key is valid and the hash of the received
key matches the key hash stored, the SSL runs with all
permissions. If the user key fails the key hash check, the
SSL only has write permission to the user flash.

Rev. A | Page 20 of 51

UG-1091

Key Hash CRC

The key hash has a 32-bit CRC checksum stored at

Address 0x00000190. The key hash is valid only if the associated
4-byte checksum is valid. The key hash has a separate key hash
to protect it against flash tempering attacks. For all practical
purposes, the user must ensure that a valid CRC for the key
hash is stored along with the key hash itself.

In-Circuit Write Protect Key

The 32-bit in-circuit write protect key at Address 0x00000198 of
the user flash memory prevents in-circuit programming of the
device. To disable in-circuit reprogramming, program the
hexadecimal value of the NoWr ASCII string (without the
terminating null character) to this address. In this case, SWD
access to the device is locked, and the only way to update the
device code is via the UART downloader.

Use in-circuit write protection along with read protection
(providing both read and write protection). In-circuit write
protection alone does not have any significance.

Write Protection

Pages can be locked to prevent code from accidentally erasing
and reprogramming critical flash memory blocks (such as the
user code boot loader). There is a hardware register in the flash
controller that disables the programming of pages grouped into
blocks. This register is not automatically loaded via the hardware;
rather, it is written to via the kernel. The kernel reads the write
protection word from the user flash address, Address 0x0000019C,
and writes it to the write protection register in the flash controller.
The user can write the appropriate word to this location, depending
on the pages that are intended to be protected against accidental
writes. The pages are protected in groups of four, with each bit
in the 32-bit word corresponding to four continuous flash
pages. Refer to the ADuCM302x Ultra Low Power ARM Cortex-
M3 MCU with Integrated Power Management Hardware
Reference Manual for details.

User Code Length

There is a 32-bit value stored at a flash memory address,
Address 0x00000194, that defines the CRC protected user code
length. The value programmed in this field defines the page
number of the user flash memory up to which the CRC
protection is desired by the user. The value of N means that
CRC protection is desired from Page 0 to Page N of the flash
memory, protecting a total of N + 1 pages.

Valid values for the field in Address 0x00000194 are 0 to 127 for
the 256 kB ADuCM3029 processor, and 0 to 63 for the 128 kB
ADuCM3027 processor. Any value outside this range is treated
as invalid and results in a CRC check failure.

User Code CRC

The user code CRC is stored at the end of Page N. The 32-bit
CRC (MSB first) with a polynomial of 0x4C11DB?7 is expected
by the kernel. If the page number is N, the CRC is expected to
reside at flash memory address (N x 0x800) + 0x7FC. For example,
if N =5, a total of six pages are CRC protected, and the CRC is
stored at Address 0x2FFC. There is an option to disable the
CRC check by programming OxFFFFFFFF to the expected CRC
location. After the kernel sees this value in the CRC location, it
skips the CRC check.

Boot Code Flow

This section describes how the kernel operates, based on the
user programmable parameters described previously. Figure 42
shows a flowchart of the boot code.

After reset, the boot kernel inspects all the parameters stored in
Page 0 of the user flash memory. The user has not requested the
read protection if the user read protection key hash is not program-
med (meaning that it is set to all FFs) and the key hash CRC is
valid. As such, the SWD is enabled; however, flash access may
be protected, depending on the state of the user code CRC.

If the CRC is valid, access to user flash memory is unrestricted.

If the user disables the CRC by programming OxFFFFFFFF to
the CRC location, access to the user flash memory is also
unrestricted.

If the CRC is invalid, the user flash memory is protected with
no read or write access allowed. Only the flash mass erase
command is allowed. In this case, user code execution is not
allowed.

Take care to program a valid CRC (or OxFFFFFFFF) in the
defined CRC location; otherwise, the user flash memory is read
protected by the kernel. In this case, flash-based applications
fail to load unless the user flash memory is mass erased.

If the user read protection key hash is programmed with a
nonreset value, meaning that the read protection is enabled, or
if the key hash CRC is invalid, the SWD is disabled by the
kernel and SWD access to the device is not possible. Perform
this programming only after product development is complete
and SWD access is not intended in the field. However, when
read protection is enabled, the SWD is opened up only if CRC
protection is enabled and the CRC is corrupted, which allows
device recovery when the CRC is accidentally corrupted. In this
case, the SWD is opened up, but the user flash memory is protected
with no read, write, or page erase accessibility (to maintain the
user code confidentiality while allowing device recovery). However,
mass erase is still possible, which results in the user flash
memory being open again (with read and write access).

Rev. A | Page 21 of 51

UG-1091

The user flash memory (user space) is completely blank when
shipped; therefore, none of the security keys and parameters are
programmed. Therefore, most of the parameters, such as the
key hash CRC and the user code length, have invalid values,
meaning the parameters are all set to 0xFE. In this case, the
kernel performs a check of the user flash memory to identify if
it is blank or completely unprogrammed. If the user flash is
blank, the kernel skips all the checks and opens up the SWD. In
addition to opening up the SWD, which allows users to connect
to the device through SWD for their development, the boot
kernel also enters the UART downloader mode and awaits
reception of the SSL.

ADI
BOOT LOADER

ENTRY

POINT VTOR
TO INFO AREA AND
REMAP FLASH

KEY HASH
ALL ONES AND
HASH CRC
VALID?

YES

ENABLE

SWD

BOOT PIN
ASSERTED?

After the device is programmed via the SWD, the user flash
memory is no longer blank, and the kernel relies on the state of
the SYS_BMODEQD pin to decide if the user code must be
executed (after performing all the previously explained checks),
or if the boot kernel must enter the UART downloader mode.

If the SYS_BMODEQO pin is asserted (low), the kernel enters the
UART downloader and waits for the SSL to be downloaded.

If the SYS_BMODEO pin is deasserted (high), the kernel jumps

to the user reset vector in the user flash memory after
performing all the security checks.

The only case where the kernel enters the UART download
mode without sampling the SYS_BMODEQO pin is when the user
flash memory is blank.

READ PROTECTION
NOT ENABLED

ENTER UART
DOWNLOADER

BLANK DUT, TYPICAL

SKIP
CRC CHECK

CRC LENGTH
VALID?

LOAD FLASH
WRITE PROTECT

i

POINT VTOR
TO USER AREA

EXECUTE
USER CODE

DEVELOPMENT/

USER FLASH YES MANUFACTURE
ENTIRELY
BLANK?

ENABLE SERIAL WIRE
TO PERMIT CUSTOMER
TO RECOVER BAD CRC y

Figure 42. Boot Kernel Flowchart

Rev. A | Page 22 of 51

USER BAD CRC
BOOT BLOCK™_NO ORLEN WI'«’IINI'-ECIFI’QIEOU‘II:II—ECT NO _ [READ PROTECT ENABLE
CHECKSUM e Er s USER FLASH SWD
NO SWD ACCESS
IF ICWP IS
———{ vEs ENABLED YES[
ENTER UART L
BOOT USER CODE DOWNI CADER ENABLE
SWD

WAIT FOR
SWD CONNECTION

15388-602

UG-1091

SSL code that is downloaded over the UART must be mapped to
the SRAM. In UART downloader mode, the SSL is loaded to the

SRAM and has flash programming capabilities. The kernel

authenticates the SSL and allows execution only if authentication is
successful. This code is responsible for downloading and upgrading

the actual firmware (for example, the user application) in the
user flash memory. The kernel does not support direct updates
to the user flash memory; therefore, the SSL is required to

perform such actions.

The kernel follows a specific protocol to download the SSL to
the processor, which must be adhered to by the transmitting
host. If the SSL follows the same packet protocol as the kernel,
the host interface is simplified (for example, communication
with the kernel and the SSL is uniform). The details of the

protocol are discussed in the following sections.

UART
DOWNLOADER

WAIT FOR
AUTOBAUD CHARACTER

CONFIGURE UART

GET COMMAND

ERROR
DETECTED?
(UART BREAK
OR FRAMING)

NO
PROCESS RX
COMMAND

WAIT FOR START
(UART RE-AUTOBAUD)

' OR“\

INFO

EMPTY

COMMAND?

DOWNLOAD
COMMAND?

UART DOWNLOADER

The ADuCM3027/ADuCM3029 processors enter UART
downloader mode if the SYS_BMODEQ pin (GPIO17) is pulled
low. If this condition is detected by the device at power-on or
hard reset, the device enters serial download mode. In this mode,
an on-chip loader routine in the kernel is initiated, which config-
ures the UART port of the device and, via a specific serial
download protocol, communicates with a host to manage the
firmware upgrade process. Figure 43 shows the UART
downloader flow.

YES

n'?

SEND
PART NUMBER,
SERIAL NUMBER,

KEY_HASH,
USER CODE STATUS

SEND NAK
(INVALID
COMMAND)

DOWNLOAD
CODE TO SRAM

RUN

VALID

COMMAND?

PERMISSION

SEND NAK
(INVALID
COMMAND)

IS ICWP

ENABLED? SEND NAK

?

EXECUTE CODE
IN SRAM
UNRESTRICTED

GET

READ PROTECT COMMAND

USER FLASH

EXECUTE CODE
IN SRAM

15388-603

Figure 43. UART Downloader Flowchart

Rev. A | Page 23 of 51

UG-1091

Protocol

After the serial downloader is triggered by asserting the
SYS_BMODEQD pin, the kernel waits for the host to send a
carriage return character (ASCII 0x0D, as shown in Figure 44)
to initiate the UART autobaud process.

The kernel makes use of the UART autobaud feature to detect
the baud rate of the host and to subsequently configure the
UART port to transmit or receive, at thebaud rate of the host,
with eight data bits and no parity. Due to the 6.5 MHz reset
peripheral clock (PCLK), the UART can be configured by the
kernel to support baud rates up to 230,400 bps. Baud rates greater
then this value contain more errors and may result in an unreliable
data transfer. However, after loading the SSL, higher baud rates
are possible if the SSL increases the PCLK (up to 26 MHz) and
performs a second autobaud detection via the UART.

After receiving the autobaud character, the kernel calculates the
required clock divisor values and configures the UART, at which
point the kernel sends the device information as part of a 57-byte
ID data packet, as shown in Table 5, to acknowledge that the
autobaud detection process is successful.

Packet Structure

In addition to indicating to the host that the processor is now
ready to communicate, the autobaud acknowledgement also
contains information about the device, the state of the user flash

CR =‘\r’ = Ox0D

I
—| START| DO D1 D2 D3

|<7 8-BIT MEASUREMENT TIME 4"

D4

memory, and security restrictions. After the autobaud
acknowledgement, the data transfer itself can begin, as
governed by the communications data transport packet format
shown in Table 6.

Packet Start ID Field, IDO and ID1

The first transfer field is the two-byte packet start ID field (IDO
and ID1), comprised of two start characters (0x07 for ID0 and
0xOE for ID1). These bytes are constant and are used by the
loader to detect the beginning of a valid data packet.

Number of Data Bytes Field

The next transfer field is the total number of data bytes field,
which includes the 1-byte command (CMD), the 4-byte address
(value), and the remaining payload (data). The minimum
number of data bytes is five, which corresponds to a command
and address only. The maximum number of data bytes is 255,
supporting a command, an address, and up to 250 bytes of data.

Command Function Field (CMD), Data Byte 1

The command function field describes the function of the data
packet. Three commands are supported by the kernel,
represented in ASCII format:

e W (0x57)—write command
e R (0x52)—run command
e I (0x45)—information command

D5 D6 D7
| |

STOP

15388-604

Figure 44. Autobaud Character

Table 5. Autobaud Response

Bytes Contents

1to 15 Product identifier: ADuCM302xand six spaces, where x =7 or 9

16t0 18 Hardware and firmware version numbers

19 User code blank; x means the code to execute, and a dash (-) means the user code is blank

20 User code checksum; P means that the checksum passed, and F means that the checksum failed

21 Write protection enabled; W means that write protection is disabled, and a dash (-) means that the write protection is enabled
22 Read protection enabled; R means that read protection is disabled, and a dash (-) means that read protection is enabled
23 Space

24 to 55 128-bit serial number, as a 32-digit uppercase hexadecimal number (for example, 0123456789ABCDEF0123456789ABCDEF)
56 Line feed

57 Carriage return

Table 6. UART Packet Structure

IDO ID1 Number of Data Bytes

CMD

Value Data Checksum

0x07 OxOE 5to 255

W, R, orl

h,u,m,]I XX CS

Rev. A | Page 24 of 51

UG-1091

Write Command

The write command packet shown in Table 7 includes the
number of data bytes (5 + n, where n is the payload size in bytes),
the write command (W), the 32-bit start address to write to, and
the n data bytes in the payload.

When a write command packet is received by the kernel, the
payload bytes are placed sequentially in the SRAM as they arrive,
beginning at the start address. The kernel sends a no acknowledge
command if the checksum is incorrect or if the received address
is out of range. If the host receives a no acknowledge from the
loader, abort and restart the download process.

Table 7. Write Command Packet

Run Command

After the host transmits all the data packets to the kernel, it can
send a final packet instructing the kernel to start executing
code. This final packet is achieved by sending the run command
packet, which is comprised of the run command (R) and the
32-bit address to begin running from, as shown in Table 8.

When the kernel receives a run command packet, it jumps to
the address supplied in the packet only after the permission
checks pass.

Information Command

The host can send the information command packet shown in
Table 9 at any time; this packet is comprised of the command
(I) and a 32-bit address. Though the value field is required for
the packet to be properly received by the kernel, the content of
the value field is irrelevant.

When the kernel receives the information command packet, it
responds with the 57-byte ID packet (see Table 10).

IDO ID1 Number of Data Bytes CMD Value Data Checksum
0x07 OxOE 5+n W (0x57) Start address n bytes cs

Table 8. Run Command Packet

IDO ID1 Number of Data Bytes CMD Value Checksum
0x07 0x0E 5 R (0x52) Start address CS

Table 9. Information Command Packet

IDO ID1 Number of Data Bytes CMD Value Checksum
0x07 OxOE 5 1 (0x52) OXXXXXXXXX cs

Rev. A | Page 25 of 51

UG-1091

Value Field (Data Byte 2 to Data Byte 5)

The value field contains a 32-bit address that includes h, u, m,
and locations. The MSB is in the h location (Data Byte 2) and
the LSB is in the 1 location (Data Byte 5). As described
previously,

e Inawrite command packet, the value field indicates the
start address in memory to which the data payload is
written.

e Inarun command packet, the value field indicates the
address in SRAM where the SSL code begins.

e Inan information command packet, the value field has no
meaning.

Data Field (Data Byte 6 Data Byte 255)

User code is downloaded one byte at a time, and the data field
can contain a maximum of 250 bytes. The data is normally
stripped out of the Intel° HEX extended 16-byte record format,
reassembled by the host, and then sent in packet form using a
series of write command packets to the ADuCM3027/
ADuCM3029 processors.

Checksum Field (CS)

The data packet checksum is written to the checksum field. This
twos complement checksum is calculated from the summation
of the hexadecimal values that span the number of bytes field to
the end of the data field. Thus, the 8-bit LSB of the sum of all
the bytes in the packet from the number of data bytes field, up
to and including the checksum field, is 0.

Acknowledge of Command

The loader routine issues a no acknowledge command (0x07) as
a negative response, or an acknowledge (0x06) as a positive
response to each data packet received.

The loader transmits a no acknowledge if it meets any of
following conditions:

e The loader receives an incorrect checksum.

e A UART framing or break error occurs (this error may not
reach the host if the UART link is invalid).

e The SRAM code verification fails.

If any one of these conditions is met, it is required to reset the
target and restart the firmware upgrade process. If none of these
conditions are met, an acknowledge command is transmitted.

READ PROTECTION KEY AND HASHING

The read protection key can be used to allow access to the device
during failure analysis. If the device is read protected and failure
analysis of the current flash memory content is necessary, enable
the SWD interface by sending the key corresponding to the
hash stored in the user flash memory. It is recommended that
the key be unique to the device and be based on the unique
identifier of the device (for example, serial number stored in

the information space).

A hash is stored in the user flash memory after the interrupt
vectors. This is the hash of a secret customer key. It is strongly
recommended that this key be unique to the device for security
reasons, and that the unlock key is valid for that one specific
device. To maintain a unique key per device, there must be a
device identifier to associate which key belongs to a particular
device. For simple key management, it is advised to make the
key a hash of a master secret and the device identifier. For
example,

Read Protection Key = Hash (Master Secret || Unique
Device Identifier);

Key Hash = Hash (Read Protection Key)

When the kernel is in UART loader mode, it can accept the read
protection key. Then, the boot loader performs a hash of the
read protection key and compares it to the stored key hash.
Upon a successful match, the bootloader permits the downloaded
SSL code in the SRAM to be executed with all the permissions
enabled. If the key hash check fails, then the kernel checks the
ICWP key in the user flash memory. If ICWP is turned off by
the user by programming any value to Address 0x00000198
other than the hexadecimal equivalent of the NoWr ASCII
string, then the SSL is allowed to run after protecting the flash
against read and write accesses. In this case, the SSL must first
issue a mass erase of the user flash memory before attempting
to perform any access to the user flash memory space. If ICWP
is also enabled by the user, then the SSL is not granted permission
to run unless the key hash authentication passes.

The 128-bit read protection key is passed as a part of the SRAM
code. This key must be stored in big endian format in the
SRAM as a data payload starting at Address 0x20000180, and
must be oriented is a specific fashion in the memory for the
kernel to parse it correctly. Specifically, if the read protection
key is represented as ABCDEFGHIJKLMNOP, where each letter
represents one byte (with A being the first byte and P being the
last byte), the required arrangement of the bytes in memory is
shown in Table 10.

Table 10. Read Protection in SRAM

Address Byte 0 Byte 1 Byte 2 Byte 3
0x20000180 | D C B A
0x20000184 | H G F E
0x20000188 | L K J I
0x2000018C | P o N M

For example, if the read protection key is 0x00010203040506070-
8090A0BOCODOEOE, then Table 11 shows how the memory must
be written.

Table 11. Example Read Protection Key in SRAM

Address Byte 0 Byte 1 Byte 2 Byte 3
0x20000180 | 0x03 0x02 0x01 0x00
0x20000184 | 0x07 0x06 0x05 0x04
0x20000188 | 0x0B 0x0A 0x09 0x08
0x2000018C | OxOF OxOE 0x0D 0x0C

Rev. A | Page 26 of 51

UG-1091

The kernel computes the SHA-256 hash of this key, truncates it
to a 128-bit hash, and then compares it to the hash stored in
Page 0 of the user flash memory at Address 0x00000180. The
user must store the 128-bit truncated hash of the key to the
flash memory using a similar pattern. The SHA-256 hash for the
example key shown in Table 11 is 0xBE45CB2605BF36BEBDE68-
4841A28F0FD43C69850A3DCE5FEDBA69928EE3A8991,
which means the 128-bit truncated hash that must be stored
properly to the user flash memory space is 0x43C69850A3DCE-
5FEDBA69928EE3A8991, arranged as shown in Table 12.

Table 12. Example Read Protection Key Hash in Flash Memory

The CRC32 of the key hash is calculated with a polynomial of
0x04C11DB?7 and a seed value of OxFFFFFFFF, and it is stored
in LSB format in the flash memory space at Address 0x00000190.

MEMORY CONFIGURATION

Table 13 summarizes the different keys and parameters stored
in Page 0 of the user flash memory, the associated addresses,
and the values programmed to Page 0 when creating a project
with the default startup file.

Address Byte 0 Byte 1 Byte 2 Byte 3
0x00000180 | 0x50 0x98 0xCé6 0x00
0x00000184 | OxFE OxE5 0xDC 0xA3
0x00000188 | 0x28 0x99 0xA6 0xDB
0x0000018C | 0x91 0x89 0x3A OxEE
Table 13. Page 0 Memory Configuration
Address Range Size
Content Start Address |End Address |(Bytes) Section Name Default Content
Vector Table 0x0000_0000 [0x0000_017F |384 .intvec Vector table
Read Protection Key Hash | 0x0000_0180 |0x0000_018F (16 ReadProtection KeyHash OxFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
CRC of Read Protection 0x0000_0190 |0x0000_0193 |4 CRC_ReadProtection 0xA79C3203
Key KeyHash
Number of Pages the CRC |0x0000_0194 |0x0000_0197 |4 NumCRCPages 0
Computes
Checksum 0x0000_07FC | 0x0000_07FF (4 Checksum Checksum of 0 to 0x7FB (if enabled
in tools by the user)
Page 0 User Memory 0x0000_01A0 |0x0000_07FC |1628 Page0_region User application

Rev. A | Page 27 of 51

UG-1091

HANDLING CRCIN THE IAR WORKBENCH

Calculate the CRC from part of the application image to be
loaded into the first several pages of the flash memory. Store the
page number of the last page involved in the CRC calculation at
Address 0x194 as a 32-bit integer. For example, if only Page 0 is
involved in the CRC calculation, store the value of 0x00 at
Address 0x194. If the CRC is calculated for the first three pages,
the value must be 0x02.

When the CRC is calculated, the last four bytes of the last page
included in the CRC calculation are excluded. These four bytes
are used for storing the CRC value itself. For example, if the last
page is Page 0, the CRC is calculated from Address 0x000 up to
and including Address 0x7FB. The tool stores the calculated
CRC value at Address 0x7FC as a 32-bit integer.

The standard CRC calculation is CRC32 with a polynomial of
0x04C11DB?7, stored in MSB first format, with an initial value
of OxFFFFFFFE The unit size is 32 bits, which means the tool
must read 32 bits at one time from the image when calculating
the CRC.

Checksum Tab

There is a Checksum tab under the Linker category in the IJAR
tools, which can be used to generate the CRC of the user
application code. To store the correct CRC, the following
settings must be used (see Figure 45):

e Check the Fill unused code memory box.

e Set the End address: field to 0x7FB (this value changes
depending on the page number).

e Check the Generate checksum box.

e Select the 4 bytes option from the Checksum size: pull-
down menu

e Set the Alignment: field to 4 (which indicates 4 bytes).

e Select the CRC32 option from the Algorithm: pull-down
menu.

e Set the Initial value field to OxFFFFFFFF and ensure that
the Use as input box is not checked.

e Select the 32-bit option from the Checksum unit size:
pull-down menu.

Options for node “Test_Project” @i
Categony Factony Seftings
General Options -
T4+ Compler
fszembler Output | List | #defing | Disgnostics | Checksum | Extra Options
Cutput Converter _ _
Buld Actions Fill pattem 0FF

C— Swsdomss 0 End et
Siruakor I | Generate checksum
#ngel Checksum size i dbyles = | Algnment: | 4
CHEIS DAP =
00 Server | Ageitm CRC32 <] [pz
148 ROM-monkor A
T Thisol value
k{3 Trace Complement |Agis = | | 0FFFFFFFF
Macrasgor)

PE micro Beverse byte ardes within word

RO Checksum uni size

ST

ThedParty Driver x
sDSt00fz00cDl T x| Cancel

15388-609

Figure 45. Checksum Settings

CrossCore Serial Flash Programmer

The CrossCore® Serial Flash Programmer (CCSFP) is a PC-
based host utility, provided by Analog Devices, that can be used
to upgrade the user code over the UART port. CCSFP provides
a graphical user interface (GUI) to provide the following
options for the UART upgrade:

e Target processor

e UART PC port number

e Baudrate

e SSL hexadecimal file to be used for the upgrade
e User application hexadecimal file to be upgraded
e Key to authenticate the SSL

Figure 46 shows the GUI for the CCSFP. The user must provide
the SSL in the Second stage kernel field, which is first downloaded
into the SRAM of the processor and then is executed before the
user application in the File to download field is sent to flash,
based on the authentication. The 128-bit key for the authentication
can be entered in the Key field.

Rev. A | Page 28 of 51

UG-1091

2 CrossCore Serial Flash Programmer | = ! = | }2 ?-
Target Sernal Port Baudrate
|ADUCM302x | |cOMID(USB SeialPot) ~| [115200 |
Action Key
[Program | [01234567850123456769012345678912
Second stage kemel

ID:‘-.WI}FH(‘\.GILleMir:ro Boot Work\WSD Versions\cesfp-glue-2015100% nstal Browse |

File to download
|D:\WDFIK\GIueMiuo Boot Work\Kemel Test Codes\Flash LED Blink\Debug Browse. . |

Status

Sending second stage kemel A
Read Intel HEX application image with 508 bytes.]
Received autobaud response: ‘

Product 1D: ADUCM302x
Revision: 200
Senal number: DEADDEADD1234567334BCDEFDEADDEAD ‘

I

User code present.
Uszer code checksum passed.
Wiite protection disabled.
Read protechon disabled,
Sent B03/602 bytes.
Download completed.
Kepsent. ; -

Start | ance |

Figure 46. CrossCore Serial Flash Programmer GUI

The Status window shows the state of the UART download
process, device related information, and the status of the
commands as returned by the kernel. As shown in Figure 46,
the Status window shows the device information sent by the
kernel, showing the product ID, serial number, and user code
status. After the SSL is downloaded, as indicated by the Download
completed message displayed in the Status window, the SSL is
then authenticated by the kernel and the actual user application
is sent.

15388-610

Figure 47 shows the SSL executing on the device, receiving the
user application, and writing it to the user flash memory space.

7 CrossCare Serial Flash Programmer (=S =R~
Target Serial Port Baudrate
[EZ i ~| [coMi0(USBSeialPot) v| [115200]
Action Key
|Program ~| [0123456783012345678901 2345676912
Second stage kemel

I[l \WORKNGIueMicro Boot Work \WSD Versions\cesfp-glue-2015100%\nstal Browse

File to download
|D:\WDFIK\GiueMiclo Boot Work\Kemnel Test Codes\Flash LED Blink\Debug Browse...

Status

Uszer code present. s
User code checksum passed.
‘Wiite protection disabled.
Fead protection dizabled.
Sent 608/603 bytes.
Download completed.
Key sent.
Run command accepted.
Programming flash image.
Read Intel HEX flash image with 2608 bytes.
Autobaud succeeded.
Flashed 2608/2608 bytes., 3
Flazh completed. -

Stat | wcel |

15388-611

Figure 47. User Application Code Being Written by the SSL to User Flash
Memory via the CCSFP

Rev. A | Page 29 of 51

UG-1091

CACHE MEMORY IN THE ADuCM3027/ADuCM3029

The memory in the ADuCM3027/ADuCM3029 has up to 256 kB
of embedded flash memory within the ECC, a 32 kB data static
random access memory (SRAM) with parity, and 32 kB user
configurable instruction and data SRAM with parity. Four
kilobytes of SRAM can be used as cache memory to reduce active
power consumption by reducing access to the flash memory.

The cache in the ADuCM3027/ADuCM3029 consists of a lower
power cache controller for the instruction code (ICODE) and data
code (DCODE) accesses, a 4 kB instruction cache with 2-way
associativity, and a line size of 256 bits. The instruction cache has
a least recently used replacement policy. The cache writes to flash,
and the core can issue writes to the flash only through the advanced
peripheral bus (APB) interface of the flash controller. If the code is
placed in the flash, enabling the cache helps the speed of execution.
For more information, see the Effects of Cache on the Speed of
Execution section. For details on current consumption, see the
Current Consumption Comparison section.

This section highlights the use of an on-board cache controller to
use a portion of the SRAM as instruction and data cache for
user code that otherwise executes from the flash memory.

BLOCK DIAGRAM

FLASH

A

\

- »| CACHE

SRAM

MICROPROCESSOR

15388-701

Figure 48. Block Diagram

The ADuCM3027/ADuCM3029 cache architecture consists of a
digital cache controller, a cache memory implemented as part of
the system SRAM, a digital flash controller, and a flash memory.
The cache architecture decreases the average latency of instruction
and data accesses by utilizing the faster SRAM memory, and
decreases the frequency of accesses to the relatively higher power
flash memory.

When code is executed from the flash memory with the cache
enabled, frequently used instructions are automatically cached
in a dedicated region of the SRAM. In most applications, no further
user effort is required, though locking and control features are
provided.

FLASH CONTROLLER

The flash controller is coupled with a cache controller module,
which provides two advanced microcontroller bus architecture
high performance bus (AMBA AHB) ports; one port for reading
data (DCODE), the other for reading instructions (ICODE). The
flash controller supports simultaneous ICODE and DCODE read
accesses. DCODE has priority on contention.

The flash controller implements a prefetch mechanism to optimize
ICODE read performance. This mechanism provides optimal
performance when reading consecutive addresses on the ICODE
interface. Simultaneous reads are possible if the ICODE read
returns buffered data from prefetch.

READ PATH
AHB ICODE cUSTOM
CACHE INTERFACE
AHB DCODE__ | CONTROLLER

FLASH
CONTROLLER

APB

WRITE PATH /

Figure 49. Flash and Cache Controllers

EFFECTS OF CACHE
Effects of Cache on the Speed of Execution

15388-702

The flash memory and the SRAM memory have distinct power
and performance profiles.

The cache architecture copies a portion of user code into the SRAM
during execution where instruction and data read latency is lower.
For every instruction or data read that is satisfied by the cache
memory, the overall system performance is improved.

When using the cache along with the flash, the increase in speed
depends on the type of code. Generally observing real code, for
aloop code that fits into the cache completely, the speed of access is
15% to 20% faster than using only flash. For a linear code that
cannot fit into the cache, the speed of access can increase by 10%
to 15%.

Using the cache generally increases the speed of execution;
however, the extent of increase depends on the type of code used.
If the code has loops that fit completely into the cache, the
speed of execution increases significantly, because the majority
of instruction accesses is served from the faster SRAM memory.
If the code is generally linear and/or jumps between segments too
large to fit into the cache, the speed of execution is not significantly
improved, because the majority of instruction accesses is served
from the slower flash memory.

Rev. A | Page 30 of 51

UG-1091

Each cache miss results in a cache line fill consisting of four 64-bit
reads from the flash memory.

The details of the FLCCO_CACHE_SETUP register are shown
this section.

2. To enable to the ICACHE, set the ICEN bit in the
FLCCO_CACHE_SETUP register. Clear this bit to disable
the ICACHE.

*pREG_FLCCO_CACHE_SETUP |= (1 <<

Follow these instructions to enable or disable the cache: BITP_FLCC_CACHE_SETUP_ICEN);

1. The instruction cache (ICACHE) is disabled by default. To
enable the ICACHE or toggle, the 0xF123F456 key must to
be written into the FLCCO_CACHE_KEY register.
*pREG_FLCCO_CACHE_KEY = OxF123F456;
Cache Key Register
Address: 0x40018060, Reset: 0x00000000, Name: FLCCO_CACHE_KEY

15 14 13 12,11 10 9 8 , 7 6 5 N 2
I0I0I0I0I0I0I0I0I0I0I0I0I0I0I0I0I
]

[15:0] VALUE[15:0] (W)
Cache Key Register

31 30 29 28,27 26 25 24,23 22 21 20,19 18 17 16
Lo [ololofoToToTofoloToTofo o o o 1
|

[31:16] VALUE[31:16] (W)
Cache Key Register

Table 14. Bit Descriptions for FLCCO_CACHE_KEY

Bits Bit Name | Description Reset | Access

[31:0] | VALUE Cache Key Register. Enter 0xF123_F456 to set the UserKey. Returns 0x0 if read. The key is cleared 0x0 w
automatically after writing to FLCC_SETUP register.

Cache Setup Register
Address: 0x04001805C, Reset: 0x00000000, Name: FLCCO_CACHE_SETUP

Cache User key is required to enable a write to this location. Key will be cleared after a write to this register.
15 14 13 12,11 10 9 8 7 6 5 4 3 2 1 0
dofofoJoJofofoJoJofofoJofofo]o]o]

[15:1] RESERVED

[0] ICEN (R/W)
I-Cache Enable

31 30 29 28,27 26 25 24,23 22 21 20,19 18 17 16

[ofofofoJoJofofofofoJoJofofofofo]

L J
|

[31:16] RESERVED

Table 15. Bit Descriptions for FLCC0O_CACHE_SETUP

Bits BitName | Description et Access

[31:1]1 | RESERVED | Reserved. 0x0 R

0 ICEN I-Cache Enable. If this bit set, then I-Cache is enabled for AHB accesses. If 0, then |-Cache is 0x0 R/W
disabled, and all AHB accesses will be via Flash memory.

Rev. A | Page 31 of 51

UG-1091

Effects of Cache on Current

When it comes to current consumption, SRAM accesses consume
less current than flash accesses. Therefore, when the cache is
enabled during the execution of code from the flash memory, the
current consumption is generally between that of code executing
directly from the flash or directly from the SRAM, unless the code
is such that every cache access is a miss. In this case, the current
is higher than executing from flash alone: cache line fills result in
approximately 2x more flash reads than occur if executing
directly from the flash. This read rate is 4x more, if not for the
prefetch buffer in the flash also performing a read, which must
miss too, if the cache misses.

Currentsgam < Currentcacue

When using the cache, the current consumption is proportional to
the cache miss rate. This result is because of a scalar current
reduction for each cache hit, because the data or code access is
served from the lower current SRAM, rather than the higher
current flash memory. Therefore, code consisting of many small
loops is more greatly affected than linear code or code
consisting of segments too large to fit into the cache memory.

The cache usage can also be inferred from the current
consumption. If the current consumption using cache and flash

cache hit rate must be high. If the current consumption using cache
and flash is nearer to the current consumption when using only
the flash, the cache hit rate must be low.

CURRENT CONSUMPTION COMPARISON

For aloop code (prime number code in this example), it is seen that
the current consumption using the flash and cache (980 pA) is
very close to the current consumption in the SRAM (950 pA).
This result is because the code consists of many loops each small
enough to fit into the cache. Therefore, the accesses to the flash
are relatively rare and the code mostly executes from the relatively
low power cache. Accesses are minimal, therefore a minimal
increase in the current consumption in flash and cache compared
to the current consumption using the SRAM is seen.

For a linear code (ULPBench code in this example) it is seen that
the current consumption using the flash and cache deviates away
from the current consumption seen using only the SRAM. This
result is because the ULPBench code is mostly linear and does
not fit well into the cache, and therefore there is still a similar
number of accesses into the flash memory as there are when
executing directly from the flash. The cache misses are too high;
therefore, the current consumption deviates away to a greater
extent.

is nearer to the current consumption when using the SRAM, the

Table 16. Current Consumption Comparison

Type of Code SRAM (pA) Flash (pA) Flash and Cache (pA) Cache Misses (~12 sec of Execution)
Loop code (prime number) 950 1280 980 24
Linear code (ULPBench) 911 1493 1083 ~800000

Rev. A | Page 32 of 51

UG-1091

DUAL RTC FEATURE IN THE ADuCM3027/ADuCM3029

In many applications, an RTC is used to time stamp sensor data.
The RTC must run even when the MCU is in a deep sleep mode. A
low power RTC is crucial to achieving a long battery life.

Notable features of ADuCM3027/ADuCM3029 RTCs include
the following:

e A dual RTC (RTCO and RTC1). Both RTCs can be used as
wake-up timers.
e SensorStrobe and input capture features.

This section provides guidelines for choosing between RTCO
and RTCl1, depending on the power modes and functionality
required.

COMPARISON OF THE RTC FEATURES

The ADuCM3027/ADuCM3029 has two RTCs, RTCO0 and
RTCI1 (also named FLEX_RTC). Table 17 shows differences
between RTCO and RTC1.

POWER CONSIDERATIONS

Table 18 shows current consumption when using RTC0 and
RTCI1 in different use cases. Four scenarios are considered as
follows:

e Scenario 1. The device switches between the active and
hibernate power modes, and the application requires high
time accuracy. Either RTCO or RTC1 can be used in this
scenario, but using RTC1 is recommended from a power
point of view because RTCI uses less power.

Table 17. Summary of the Differences Between RTCO0 and RTC1

Scenario 2. The device switches between the active and
hibernate power modes, and the application does not
require high time accuracy. Either RTCO or RTCI can be
used in this scenario, but using RTC1 is recommended
from a power point of view because RTC1 uses less power.

e Scenario 3. The device switches between the active and
shutdown power modes. Only RTCO can be used in this
scenario.

e Scenario 4. The device switches between the active, shutdown,
and hibernate power modes. Only RT'CO can be used, in
this scenario because RTCI is not active in shutdown mode.

A basic program comprised of an RTC alert to wake up the
ADuCM3027/ADuCM3029 microcontroller from low power
mode and to toggle an LED was used for measuring current in
the sleep power mode (hibernate or shutdown mode,
depending on the scenario).

CONCLUSION

Use RTCO in applications that use shutdown mode and require
an RTC.

RTCl is a feature rich RTC that enables ultra low power
consumption in applications that only use the hibernate mode,
in addition to active or Flexi modes. Typical applications for
which RTC1 is suited are applications where the ADuCM3027/
ADuCM3029 microcontroller sends output pulses to external
sensors via a general-purpose input/output. Note that the
SensorStrobe mechanism is only available in RTCI.

Feature RTCO

RTC1

RTCO counts time at 1 Hz in units of
seconds only

The wake-up time is specified in units
of seconds

1 alarm only, which uses an absolute,
nonrepeating alarm time

Powered off VBAT domain and is
always on; RTCO can function in all
power modes

Not supported

Resolution of the Time
Base (Prescaling)

Wake-Up Timer
Number of Alarms

Power Domain

SensorStrobe and Input
Capture Features

Source Clock Low frequency crystal (LFXTAL)

RTC1 can prescale the clock by any power of 2 from 1 to 15,
counting time in units of any of these 15 possible prescale settings
The wake-up time can be specified in units of any power of 2
multiple of 30.7 ps up to 1 second

2 alarms: one absolute alarm time and one periodic alarm, repeating
every 60 prescaled time units

Powered off 1.2V (VREG) domain; RTC1 can function in all power
modes, except shutdown mode

Supports four input capture channels and one SensorStrobe
channel; refer to AN-1427 for further information on these features
Depending on the low frequency multiplexer (LFMUX) configuration,
the RTC is clocked by LFXTAL or the low frequency oscillator (LFOSC)

Table 18. Comparison of Current Consumption in Different Use Case Scenarios

Scenario Number Use Case’ Recommended RTC Sleep Mode Current (nA)
1 Active to hibernate RTC1 (LFXTAL) 830
2 Active to hibernate RTC1 (LFOSCQ) 750
3 Active to shutdown RTCO (LFXTAL) 330
4 Active to hibernate RTCO (LFXTAL) 830

" The device switches between the modes listed in this column.

Rev. A | Page 33 of 51

UG-1091

BENEFITS OF THE ADuCM3027/ADuCM3029 DC-TO-DC CONVERTER

This section discusses the advantages and disadvantages of
charge pump converters vs. inductor converters, the latter of
which are frequently used. This section demonstrates why this
architecture is used on the ADuCM3027/ADuCM3029
microcontroller, accounting for advantages in many aspects
such as price, area, simplicity, and ease of use.

Direct current-to-direct current (dc-to-dc) converters are key
blocks in designs where it is required to manage different
voltage domains, such as in the ADuCM3027/ADuCM3029
microcontrollers.

Methods of dc-to-dc conversion are briefly explained in this
section to provide users with context. A charge pump converter
is chosen for use in the ADuCM3027/ADuCM3029 because of
its advantages when compared to other configurations.

The purpose of this section is to help users understand why the
capacitive dc-to-dc converter is a better alternative to inductive
conversion solutions in the ultra low power applications for
which the ADuCM3027/ADuCM3029 is intended.

This section provides details and examples to prove the qualities
and benefits of this charge pump converter solution. Figure 50
shows the buck enabled design present in the ADuCM3027/
ADuCM3029 microcontrollers. The ADuCM3027/ADuCM3029
uses a charge pump converter, which is not used in the majority
of microcontrollers with similar characteristics available on the
market; these other microcontrollers tend to use traditional
inductor converter architectures.

VDCDC_CAP1P

VBAT

L
% BUCK

(ENABLED)

L
vbepe_capin O-1HF T

VDCDC_OUT

0.47uF

VDCDC_CAP2P

HH <HH

vbeDpe_capen O-1HF

VLDO_OUT
LDO 1

0.47uF ;;

Figure 50. ADuCM3027/ADuCM3029 Buck Enabled Design

15388-201

DC-TO-DC BASICS

The ADuCM3027/ADuCM3029 processors are intended for
ultra low power applications. Power efficiency is one of the key
considerations in such applications; therefore, using a dc-to-dc
converter is crucial in designs where power must be used as
efficiently as possible.

There are different ways to perform dc-to-dc voltage conversions;
such conversions involve stepping up or stepping down the dc
voltage used to power the device.

DC-to-DC Conversion Methods

The most extensively used methods for regulating the different
power domains of a system are switching conversion and linear
regulation. Select the method that best meets the requirements
of the design or application.

Linear Regulators

Linear regulators consist of a network of resistive dividers that
dissipate excess voltage. Linear regulators are widely used due to
the ease of use and implementation, as well as the low cost.

In ultra low power applications, linear regulators are less efficient
when compared to switching converters. In a linear regulator,
the output current is approximately the same as the input current,
and its operating principle is to dissipate any leftover voltage.
Switching converters perform the same action more efficiently.

The ADP165/ADP166 devices are very low quiescent current,
low dropout (LDO), linear regulators. The ground current
represents the difference between input and output currents.
Figure 51 represents the ADP165/ADP166 ground current vs.
the load current (Iroan), showing the small difference in
currents in a linear regulator.

100

=
o

[

GROUND CURRENT (pA)

0.1
0.001 0.01 0.1 1 10 100 1000
ILoap (MA)

Figure 51. ADP165/ADP166 Ground Current vs. Load Current (l.oap)

15388-202

Rev. A | Page 34 of 51

UG-1091

To analyze the power efficiency of the solution, consider a
typical application based on linear regulators. For an input
voltage of 3V, an output voltage of 1 V, and an output current of
1 pA, the input current is approximately 1 pA. This scenario
results in 33% efficiency (see Equation 3).

Energy Output

Efficiency = Lnergy Tupwt 100% (1)
Energy Input
1 xV, Xt

Efficiency = ZOUT 7 TOUT 77 o 100% 2)

Iy x Vi xt

. .. I1x1xt
Linear Regulator Efficiency = ———
Ix3x¢t

x100% =33% (3)
Using a switching converter instead of a linear regulator, the
input current is 1/3 pA, leading to 100 % efficiency in an ideal
performance, as shown in Equation 4.

Xt

Efficiency = ——
ff 4 1/3x3xt

x 100% = 100% (4)
In general, switching converters are more efficient than linear
regulators. Moreover, losses in efficiency produce an increase in
temperature that is much higher in linear regulators because
their dissipation must be larger to achieve the same conversion.
Additionally, linear regulators require more investment in
management to reduce temperature.

Traditionally, Analog Devices used linear regulators in designs
that precede the ADuCM3027/ADuCM3029 microcontrollers
because of their simplicity and low cost. Currently; it is
common to locate linear regulators at the output of charge
pump converters to stabilize their rippled output.

Switching Converters

Switching converters use switches and components with low
losses, such as inductors or capacitors, to regulate voltage.
Typically, these components are charged and discharged by
switching transistors. This section discusses two types of
switching converters: charge pump converters and inductor
converters.

Inductor converters are among the most commonly used
converters in microcontroller designs to achieve ultra low
power with high efficiency. This efficiency and the wide gain
range make this architecture desirable.

The charge pump, or switched capacitor converter, is an
alternative to inductive converters. The charge pump process is
carried out by connecting and disconnecting switches to charge
and discharge capacitors. This process is achieved without
inductors, which saves space and costs.

The ADP2503/ADP2504 are high efficiency inductor converters
that can operate at input voltages greater than, less than, or equal to
the regulated output voltage. The ADM660/ADMB8660 are charge
pump voltage converters that can achieve efficiency greater
than 90% with low output currents (up to 50 mA). Figure 52 and
Figure 53 show the efficiency for a given input voltage and output
currents for the ADP2503/ADP2504 devices and
ADM660/ADMB8660 devices, respectively.

As observed in these two graphs, charge pump converters are
less efficient than inductor converters due to the output shape
for output load currents. In contrast, charge pump converters
are an appropriate solution to low load current applications.
100

— V=55V |
o | = Yn=42) =y
INZ S e N
a0 [VN =23V / /a’ = N ¢
PRy
70 Vi
4
g pARV4
> 60 //
5
& 50
3
L 40
TN 7
w /] /
30 A
/| L/
20 A
10 pd
T
0
0.001 0.01 0.1 1 8
lout (A) g
Figure 52. ADP2503/ADP2504 Efficiency vs. Output Current (lour)
120 I
v|+ :\+e.5v Ve = 45,5V
100 \
\ V+ = +4.5V
S 80 AN ~—
g \ S~ T
g 60 o \V+:+3A5V—
3] \H = +2.5V \
w V+ = +1.5V
[T
Y0 N
20
0

0 20 40 60 80 100
LOAD CURRENT (mA)

Figure 53. ADM660/ADM8660 Efficiency vs. Load Current

The ADuCM3027/ADuCM3029 microcontrollers have a linear
regulator at the charge pump converter output to adjust and
stabilize the supply of the digital core and memories. Furthermore,
the devices have the ability to bypass the charge pump converter
to only use the linear regulator to reduce and adjust the voltage.
This feature allows the user to decide between using a traditional
solution or to improve efficiency and increase power savings using
the charge pump block at the expense of two extra 0.1 pF
capacitors.

15388-204

Rev. A | Page 35 of 51

UG-1091

In general, inductor converters do not require a linear regulator
at their output; this is inconvenient in charge pump converter
designs. However, some microcontrollers available on the
market that use an inductor converter solution include a linear
regulator in the inductor converter. Despite this disadvantage,
charge pump converters offer a breadth of advantages to be
considered (as follows):

o Area
e Thickness
° Price

e Design simplicity
e Easeofuse
e Electromagnetic interference (EMI)

The following section discusses each advantage of charge pump
converters when compared to inductor converters.

CAPACITORS vs. INDUCTOR CONVERTERS
Area

Charge pump converters do not require inductors to accomplish
dc-to-dc voltage conversion, whereas inductor converters
require inductors, capacitors, and other components, such as
resistors, to fulfill this task. This fact allows the design of
smaller printed circuit boards (PCBs), saving area and cost.

This section compares the components required for using the
ADuCM3027/ADuCM3029 charge pump converter against
inductor converters used in other similar solutions available
on the ultra low power microcontroller market. The components
required in these architectures are included in their respective
data sheets.

The two bill of materials shown in Table 19 and Table 20
demonstrate that charge pump converter covers less area than
the inductive converters. The dimensions of capacitors
(length x width x thickness) are 0.6 mm x 0.3 mm x 0.3 mm;
the dimensions for inductors are 1 mm x 0.5 mm X 0.55 mm.
Both capacitors and inductors are in 0603 packages.

Table 19. Area of Charge Pump Converter Components in
the ADuCM3027/ADuCM3029

Component Value (pF) | Quantity Area (mm?)
Capacitor 0.1 2 0.36
Capacitor 0.47 1 0.18
Total 0.52

Table 20. Area of Inductor Converters Components

Component Value Quantity Area (mm?)
Capacitor 1 uF 2 0.36
Inductor 2.2 uH 2 1

Total 1.36

As expected, the area in a charge pump converter is smaller
because this type of converter employs fewer and smaller
components than inductive solutions. Inductor converters use
more than the double the area of charge pump converters.

In inductor converters solutions, the thickness is determined by
the inductors, because inductors are thicker than capacitors—
0.55 mm vs. 0.3 mm.

Inductors are higher than capacitors along the three dimensions;
therefore, inductors determine and increase the area of the design.

Regarding this approach, it is possible to look through
microscopes to see this evident difference in dimensions.
Figure 54 and Figure 55 compare the dimensions of a 2.2 uH
inductor and a 0.1 pF capacitor.

15388-205

Figure 54. Length Comparison of a 0.1 uF Capacitor (Bottom) vs.a 2.2 uH
Inductor (Top)

15388-206

Figure 55. Width Comparison of a 0.1 uF Capacitor (Right) vs.a 2.2 uH
Inductor (Left)

Rev. A | Page 36 of 51

UG-1091

Price

Issues to consider when working with inductor converters
include the large number of components and the cost of these
components. The capacitance of capacitors is larger and the
price of inductors is much greater than the price of capacitors.

Table 21 and Table 22 show the price of the ADuCM3027/
ADuCM3029 solution and an inductor based solution,

respectively.

Table 21. Price of Charge Pump Converter Components for

the ADuCM3027/ADuCM3029

Component Value (uF) | Quantity Price ($)
Capacitor 0.1 2 0.1046
Capacitor 0.47 1 0.459
Total 0.5636

Table 22. Price of Inductor Converters Components

Component Value Quantity Price ($)
Capacitor 1 uF 2 1.068
Inductor 2.2 uH 2 0.538
Total 1.606

When considering both lists of materials, note that the
difference in the price of each component is around $1. This
amount, though seemingly small, produces a notable impact
when multiplying the cost across many products; the difference
in price is incremented because, in inductor designs, more
components are present and the engaged area is wider. Allowing
smaller PCB designs contributes to a reduction in cost.

Note that prices are based on the cheapest and smallest

components available; this lack of inductor quality may lead to
increased power dissipation and a degradation in efficiency.
Therefore, the use of cheap inductors prevents the designer
from taking advantage of inductor-based performance. In
contrast, avoiding this constraint implies another increase in
price for inductor converters.

There are clear advantages in area and price when comparing
charge pump converters and conventional inductor-based

solutions.

Efficiency

As with the opportunity to reduce area, there also exists an
opportunity to improve integration employing embedded
components. This is a suitable scenario for charge pump
converters to enhance efficiency, rather than inductors.

It is thought that charge pump converters are less efficient than
inductor converters, which can be true when input voltages and

loads change.

In charge pump converters, load changes are not a problem in
ultra low power applications where low loads are managed.
Optimal efficiency is achieved with low load currents. Charge
pump converters perform proper efficiencies with low loads,

which is easily achieved by applying integration in an ultra low
power application. The lower the required load, the better
integration and efficiency are in charge pump converters.

By setting the appropriate configuration, charge pump
converters are able to change their gain according to the
input/output voltage ratio (Vin/Vour). This process improves
efficiency to achieve the same performance available with
inductor converters.

Inductor based solutions use pulse-width modulation (PWM)
to adjust the duty cycle to achieve suitable gain. Through this
regulation, high efficiency is obtained, which decreases when
the load lowers. Noise effects also appear during PWM, which
results in increased cost for more expensive inductors.

If integration is required in inductor converter designs,
embedded inductors require high frequency switching to work.
High frequency switching results in power dissipation and
efficiency losses, which is an undesirable outcome.

Electromagnetic Interference (EMI)

In charge pump converters, electromagnetic emissions are not
relevant. Such radiation is not a cause for concern, unlike
inductor magnetic radiation.

EMI becomes inconvenient when using inductors, even more so
if they are switched inductors with behavior similar to an emitting
antenna. Unpredictable interferences can occur in other parts of
the design or the board. Furthermore, it becomes a sensitive
problem if radio frequency tasks are being performed.

Inductor converters replace PWM with pulse frequency
modulation (PFM) when low loads are required to improve
efficiency. If PWM is performed, switching noise and output
voltage ripple are easily improved by a simple filter at the output
voltage of the converter. However, the PEM method has a variable
frequency band and may produce the resonance frequency of
the filter. In addition, this wide frequency spectrum also results
in high EML

CONCLUSIONS

Inductor converters are not suitable solutions in many senses
when considering ultra low power applications. Inductor
converters lose efficiency as load decreases, their area is larger,
which can lead to expensive components and greater costs,
inductor radiation poses a problem, EMI is more likely to occur
at low loads, and so on.

Table 23 summarizes the advantages and disadvantages of three
types of dc-to-dc converters. Evaluate the specific type of
converter that best suits the application in question.

In conclusion, charge pump converters are the best solution in
ultra low power applications. While other solutions worsen with
low loads, charge pump converters are even better than in other
situations.

Rev. A | Page 37 of 51

UG-1091

Table 23. Comparison of Different Types of DC-to-DC Converters

Type of Converter Advantages Disadvantages
LDO Simple Less efficient than charge pumps and inductives
Low cost
No inductor
No EMI
Charge Pump Simple Less efficient than inductive at high loads
Low cost EMI (less than inductive)
No inductor
Cheaper than inductive
Low loads
Small area
More efficient than LDO
Low EMI
Inductive Most efficient (not in low loads) EMI
Area
Cost

Poor efficiency at low loads
Complex design

Rev. A | Page 38 of 51

UG-1091

UART SOFTWARE FLOW CONTROL

Pl

Tx
DEVICE A Rx -t
GROUND

Tx
- Rx DEVICE B
GROUND

15388-301

Figure 56. Software Flow Control Block Diagram

Flow control is the process of managing the rate of data
transmission between two nodes to prevent a fast transmitter
from overwhelming a slow receiver. Flow control provides a
mechanism for the receiver to control the transmission speed, so
that the receiving node is not overwhelmed with data from the
transmitting node.

UART flow control is a method for slow and fast devices to
communicate with each other over the UART without the risk of
losing data. Consider the case where two units are communicating
over the UART. A transmitter, T, is sending a long stream of
bytes to a receiver, Rx. Rx is a slower device than Tx and at
some point Rx cannot keep up with the speed of the data being
transmitted. Therefore, Rx must either process some of the data
or empty buffers before it can continue to receive data. Rx must
instruct Tx to stop transmitting until Rx is ready to accept data.
This method of waiting to transmit is known as flow control.

Flow control requires extra signaling to inform the transmitter
to stop (pause) or start (resume) the transmission. The traditional
hardware flow control in UART requires two extra signals: request
to send (RTS) and clear to send (CTS). The logic level on these
signals defines whether the transmitter continues to send data
or must stop sending data. With software flow control, special
characters are sent over the normal data lines to start or stop the
transmission, thus using fewer signals.

This section describes the UART software flow control
mechanism using the ADuCM3027/ADuCM3029.

UART FLOW CONTROL
Hardware Flow Control

The hardware flow control mechanism uses out of band
signaling to control the flow of data. In addition to the data
signals, two extra signals—RTS and CTS—are required. These
flow control signals are cross coupled between the two devices,
with RTS on one device being connected to CTS on the remote
device, and vice versa.

Each device uses the RTS to signal if it is ready to accept new
data, and reads the CTS signal to check if it is allowed to send
data to the other device. As long as a device is ready to accept
more data, the RTS signal is kept asserted. The device deasserts
the RTS signal when its receive buffer is full.

The other device is required to respect the flow control signal
and pause the transmission until the RTS signal is asserted again.

Tx >< Tx
Rx Rx

DEVICEA CTS >< CTS DEVICE B
RTS Q= »() RTS
GROUND GROUND

15388-302

Figure 57. Hardware Flow Control

The flow control is bidirectional, meaning that both devices can
request a halt in transmission. If one of the devices never requests a
stop in transmission (for example, if the device is fast enough to
always receive data), the CTS signal on the other device can be
tied to the asserted logic level. Thus, the RTS pin on the fast
device can become free to perform other functions.

Software Flow Control Using the XON and XOFF Signals

Software flow control does not require extra out of band signals.
Only three signals are required: Rx, Tx, and ground. Software
flow control is achieved by using special control flow characters.
The control flow characters are sent over the normal Tx and Rx
lines. These characters are typically ASCII codes, specifically
XON (0x11) and XOFF (0x13), for resuming and halting the
transfer, respectively.

If Device A sends XOFF to Device B, Device B halts transmission
to Device A until Device B receives an XON character from
Device A. If the data contains the XON and/or XOFF character,
insert an escape character before the XON and/or XOFF character.
The escape character used in this case is \ with ASCII Value 92
(0x5C). When this escape character is encountered, the character
following it is considered to be a data character, not a flow
control signal. If the data itself contains an escape character,
ensure that another escape character precedes the present
escape character that is present in the data.

Rev. A | Page 39 of 51

UG-1091

Sequence Diagram

Consider data communication between two devices—the
ADuCM3027/ADuCM3029 MCU and a peer—where the MCU
is transmitting and the peer is receiving. If the peer is slower
than the MCU, the data transmission overwhelms the peer.

At this stage, the peer sends an XOFF character to pause the
transmission until the peer is able to process the data again. The
MCU waits to receive a XON character from the peer. When the
peer is ready to receive the data, it sends an XON character,
instructing the MCU to resume transmission. In this way, using
software flow control ensures that no data is lost. Figure 58
shows the sequence diagram of this described communication.

ADuCM3027/
ADUCM3029 PEER
DATA
COLLECT DATA
TRANSMITTING DATA .
DATA
COLLECT DATA
DATA —
=
|
|
|
|
! OVERWHELMED
! BY DATA
|
|
i
! SEND XOFF
XOFF
|
PAUSE 1
TRANSMISSION !
|
|
L |
i
[READY TO
WAIT FOR 1 ACCEPT DATA
XON !
|
|
SEND XON
[XON
=
RESUME
TRANSMISSION
DATA _
|
i
TRANSMITTING | COLLECT DATA
DATA !
I ™
' g
! g
:

Figure 58. Software Flow Control Sequence Diagram

SYSTEM DESCRIPTION

Demonstration of UART software flow control using the
ADuCM3027/ADuCM3029 is performed using the EZ-Kit
evaluation kit. A PC with a terminal program running (such as
HyperTerminal) is connected to the EZ-Kit UART port.

_Ki UART | - PC RUNNING
EzKit TERMINAL PROGRAM

15388-304

Figure 59. Connection Diagram

Handling Flow Control Signals from a Peer Device

The ADuCM3027/ADuCM3029 BSP contains drivers for all
the peripherals, including UART. The software flow control
mechanism is implemented in addition to the available UART
driver functions.

The adi_uart_Write_fc function sends the XOFF and XON
characters, and the UART interrupt service routine processes
the XON and XOFF signals received from the PC.

adi_uart_Write_fc Function

When a write is issued using the adi_uart_Write_fc function,
the global RECV_XON flag is checked to be aware whether the
peer is ready to accept data. If the RECV_XON flag is false, it
means that an XOFF signal is received, the peer cannot accept
data, and, therefore, a failure is returned. If the RECV_XON flag is
true, the peer is ready to accept data. The data is transmitted
and a success is returned.

Rev. A | Page 40 of 51

UG-1091

Example Code for Flow Control
The following code is used to transmit data using flow control:
ADI_UART_RESULT adi_uart Write_fc(
ADI_UART_HANDLE const hDevice, void *const pBuffer, uint32_t nBufSize)
{
/* Return code */
ADI_UART_RESULT eResult;
/> 1T there is no XOFF received, safe to transmit data */
iT(RECV_XON == true)
eResult = adi_uart_Write (hDevice, pBuffer, nBufSize);
/> I XOFF is received, return fail */
else
eResult = ADI_UART_FAILED;
return eResult;

Rev. A | Page 41 of 51

UG-1091

Figure 60 shows the design of adi_uart_Write_fc function. Data Processing Code Example
When a write is issued, the RECV_XON flag is checked and, if
the flag is true, the write is processed. If the flag is not true, it
returns a failure. The RECV_XON == TRUE block in Figure 60
indicates the checking of the RECV_XON flag. {

The following code processes the data that is received.

switch (readval)

/* If an escape is received */
case FCESCAPE:
/* ITf escape already received,
consider it as data */
if(bEscFlag == true)
bEscFlag = false;

else
RECV_XON == TRUE bESCF I ag = true ;
break;
/* 1T an XON is received */
case XON:
] /* If escape received before,

consider it as data */
if(bEscFlag == true)
TRANSMIT RETURN
DATA FAILURE bEscFlag = false;
/* Valid control signal,
update send flag */

else
RECV_XON = true;
. break;
g /* 1T an XOFF is received */
) case XOFF:

Figure 60. Flowchart of the adi_uart_Write_fc Function

Processing Control Signals from the Peer Through an /* IT escape received before,

Interrupt Service Routine (ISR) consider it as data */

if(bEscFlag == true)

The data received through the UART is monitored to check if it
bEscFlag = false;

is a control signal or data. If the data received is an escape

character, an escape flag (bEscFlag) is asserted so that the data /* Valid control signal,
following it is to be considered data and not as a control signal. update send flag */
If an XOFF or XON signal is received, it is checked to confirm if else

the escape flag is set. If the escape flag is not set, a global flag RECV XON = false:
(RECV_XON) is updated. break'_

When receiving an XOFF signal without the escape flag set, the defau It;

RECV_XON flag is deasserted, meaning that it received an

XOFF signal and data transmission must not happen. In the

same way, the RECV_XON flag is asserted when receiving an }
XON signal without the escape flag set.

break;

Rev. A | Page 42 of 51

UG-1091

Figure 61 shows the design of the algorithm that handles and
processes the flow control signals from the peer. The data
received is first checked for an escape character; if it is an escape
character, the data following it is considered to be data and not

READ
REQUEST

+:

Readval =
read_data_from_uart_rx()

a control signal. The received data is then checked for XON and
XOFF control signals and the global RECV_XON flag is updated

accordingly. The gray blocks in Figure 61 indicate the updating
of the RECV_XON flag.

readVal ==
ESC_CHAR

bEscFlag = TRUE

readVal ==
XOFF

bEscFlag
== TRUE

RETURN
readVal

readVal ==
XON

bEscFlag
== TRUE

RETURN
Readval

RETURN
readVal

RECV_XON
=FALSE

RETURN

RECV_XON
=TRUE

15388-306

Figure 61. Flowchart of the Control Signals in the ISR Being Processed

Rev. A | Page 43 of 51

UG-1091

DATA CAPTURE

In the setup for data capture, the MCU is connected to a PC and
is communicating with a terminal program running on the PC.
A UART sniffer, such as the serial port monitor, monitors the
data communication occurring at a Baud rate of 9600. The data
capture is performed using the sniffer, as discussed in this section.

Handling Flow Control Characters in the ADuCM3027/
ADuCM3029

Figure 62 shows an example of handling the flow control signals
from the peer.

Time Direct... Data Data (chars)
00:575 | UP 41 A
00:000 DOV

01:019 UP 42 B
00:000 DOV

01:934 UP 42 C

00:000 DOV DATA SENT

CONTINUOQUSLY

01:934 UP 4 D BY MCU
00:000 DOVYM
01:918 UP 45
00:000 DOV
01:935 UP 46
00:000 DOV
00:514 DOVN
00:000 UP 13 .
01:30:829 DOWMN

00:000 UP 1 .

00:028 UP 47
00:000 DO TRANSMISSION
00:336 UP 41 A SON 1 RECENED.
00:000 DOWHN
01:757 DOWR
00:000 UP S5c W —— = E3CARE
00:178 LUP £ B
00:000 DOWH
00:550 DOWHN
00:000 LP 13
01:369 LP 2 C
00:000 DOWHN
01:303 DOWH
00:001 UP Sc N — » RESANEL
00:632 LUP 4 D
00:000 DOWH
00:087 DOWHN

XOFF RECEIVED
|

/ NO TRANSMISSION
BY MCU UNTIL
ANXON IS RECEIVED
XON RECEIVED

F
G

XOFF RECEIVED
BUT TRANSMISSION
IS NOT STOPPED

XON RECEIVED

oo:000 WP 11 : —® BUT TRANSMISSION
01:848 LP 45 £ IS UNALTERED é
00:000 DOV 8

Figure 62. Data Capture Using a Sniffer Program

Controlling the Received Data Flow

A simple procedure is implemented when controlling the
received data flow to send the control signals from the
ADuCM3027/ADuCM3029 MCU. In this case, the MCU is
slower compared to the peer. The mechanism to send the control
signals from the MCU is application specific and the user can
write their own algorithm for sending the control signals.

As shown in Figure 63, an XOFF signal is sent after every five
transmissions sent from the MCU. An XON signal is sent after a
short interval of time. This implementation is an example and is
described only for demonstration purposes. The user can develop
their own mechanism to handle the data and to send XON and
XOFF signals.

Time Direct... Data Data (chars)

17008 UP 41 A)

00000 DOWM

01726 UP 42 B

00:000 DOWM DATA SENT
i U e Bvmcu S
00:000 DOWM

01711 UP 44 D

00:000 DOV X%:ERSE\%RY

DATA
TRANSMISSION

00000 DOWH NO DATA CAN BE
01728 UP 47
00:000 DOWHN CONTINUES

01727 UP 45 ¥ 5 TRANSMITS
00:000 DONWR /
01712 UP E- 1
17:148 UP 11
00000 DOwR \
LR WL SNV PR o
00000 DR
G
00000 DOvER
0L711 Up 42 H
01712 UP 49 1
omong Dowm
0L711 WP da |
J

no:ono DoYM
Figure 63. ADuCM3027/ADuCM3029 Transmitting Control Signals

15388-308

Rev. A | Page 44 of 51

UG-1091

SP1 FLOW CONTROL METHODS

cs

scK
SPI
SLAVE
MOSI
MISO/RDY 8

Figure 64. SPI Signals

cs
SCK
SPI

MASTER

MOSI

MISO/RDY [

ADuCM3027/
ADuCM3029

SERIAL FLASH
W25Q32

15388-402

Figure 65. Application Block Diagram

The SPI is an industry-standard, synchronous serial link that
allows full duplex operation to other SPI-compatible devices.

The ADuCM3027/ADuCM3029 SPI has enhanced modes of
operation that provide the user the flexibility of half duplex
operation and flow control options. The SPI data transfers use
DMA transactions, allowing the ADuCM3027/ADuCM3029
core to be in sleep mode. Along with multibyte transfers in half
duplex mode, this reduction in power consumption offers
power savings that are essential for battery-powered designs,
such as in wireless sensor networks.

Some notable features of the ADuCM3027/ADuCM3029 SPI
are as follows:

e Continuous transfer mode.

e Read command mode for half duplex operation.

e Flow control.

e CS software override.

e Support for 3-pin SPI master or slave mode.

e LSB first transfer option.

e Interrupt mode. An interrupt is available after 1, 2, 3, 4, 5,
6, 7, or 8 bytes.

This section provides an understanding of the read command
mode and flow control methods. These methods help lower the
system power consumption when used with SPI slaves such as
sensors, serial flash devices, ADCs, and RF transceivers.

SPI READ COMMAND MODE

Standard SPI masters communicate with slaves using the serial
clock (SCK), master out, slave in (MOSI), master in, slave out
(MISO), and chip select (CS) lines. The SCK, MOSI, and MISO
signals can be shared by slaves, whereas each slave has a unique
CS line. During an SPI transfer, data is simultaneously transmitted
and received. The serial clock line synchronizes shifting and
sampling of the information on the two serial data lines.

SPI transfers are typically full duplex. The transfers are controlled
by the master. To receive data from the slave, the master must

provide the clock, which is typically initiated when the data
must be sent on the MOSI line.

Most SPI slaves mandate a protocol that must be used by the

mater for successful communication. The protocol can be as

simple as a command, followed by an address (optional), and
data (optional).

For example, a write command is unidirectional and typically
involves the master transmitting the command, address (optional),
and the data to be written to the address in the slave.

A read command requires the master to transmit the command
and address (optional), and then reads the data associated with
the address from the slave. If the data is multibyte, then the soft-
ware on the master must write dummy data on the MOSI, which
keeps the clock alive, to successfully read all the data bytes.

However, some SPI slaves require that, after the transmission of
the read command byte on the MOSI, the data be read on
MISO in a single CS transaction. An example of this
requirement is shown in Figure 66.

The ADuCM3027/ADuCM3029 provides the read command
mode to support such half duplex operations. The read
command mode helps reduce the burden on the software and
thereby the core execution cycles. In this mode, the user must
specify the number of bytes to be transmitted and the number
of bytes to be received in a transaction. It is also possible to
specify if the data on the MISO must be ignored when the
transmission on MOSI is in progress.

Using the read command mode allows the user to transmit a
single byte and receive a set of data bytes from the slave, which
is useful when the slave is a sensor or ADC providing a set of
measured and processed data.

An application scenario is described in the System Description
section, wherein the ADuCM3027/ADuCM3029 is the SPI
master and a serial flash, W25Q32, is the SPI slave, as shown in
Figure 65. Read command mode is helpful when pages of data
must be read from the flash memory.

Rev. A | Page 45 of 51

UG-1091

INSTRUCTION 8-BIT ADDRESS —————»
mosi 0o 0o o of1\o/1 1YIXeXsXeX3X2X1 X0

——— DATAOUT ———»

MISO

7 6 5 4 3 2 1 0

15388-403

Figure 66. Read Command Mode

System Description

To showcase the read command mode, the following setup is used:

e Firmware—power-on self test application from the
ADuCM3027/ADuCM3029 BSP for IAR.
e Hardware—ADuCM3027/ADuCM3029 EZ-Kit board.

An oscilloscope is connected to the SPI lines to capture the
signals. The oscilloscope plots, Figure 67 to Figure 71, show the
SPI transfer between the ADuCM3027/ADuCM3029 as the SPI
master, and a serial flash W25Q32 as the SPI slave.

It is up to the user application to decide the transactions in
which to use the read command mode.

Without Read Command Mode

In the reference application, the erase process of a 4 kB sector of
the flash memory does not use read command mode. The absence
of this mode can be observed from the transfer of the erase
command and the address in individual chip select frames in
Figure 67 and Figure 68.

2.00V CH22.00Vv Q7 M2.00ms CH4 "L oV
200V CH42.00vVv QN W~ v 16us

15388-404

Figure 67. Sector Erase

Figure 68 shows a single CS frame capture in the entire erase
sequence. The CS line is toggled for the transfer of every
command byte.

: Ml
B PR F VUV UL

2.00V CH22.00v M40.0us CH4L OV g
2.00V CH4 2.00V - v 16ps 8

Figure 68. Sector Erase—Single CS Frame Capture
With Read Command Mode

Figure 69 shows one page read from the external flash. The size
of one page of the flash is 256 bytes. This read sequence uses the
read command mode and the entire read of the page happens in
one CS transaction.

B»f MosI |

B wmiso

[4 4 i
SN U U P FTUE ST P P ,]

2.00V CH22.00V M4.00ms CH4 "\ 0V
2.00V CH42.00vV - v 16us

15388-406

Figure 69. Page Read Sequence

Figure 70 shows the start of the page read sequence where the
ADuCM3027/ADuCM3029 transfers the command and address
bytes. This transfer is followed by the page data from the serial
flash memory.

Rev. A | Page 46 of 51

UG-1091

2.00V
2.00Vv CH42.00v QN H~ v 16us

CH4™L OV

15388-407

Figure 70. Page Read Start Sequence (Command and Address Bytes)

Figure 71 shows a single-byte read, which is part of the page
read sequence.

F Cs]
E MOsI
Br
E MISO
r - == = (=)
B:_' ‘| 4
[ol pd ed | ?] bed
SCK
2,00V CH22.00V M10.0ps CHALov ¢
2.00V CH42.00V - v 16ps 8

Figure 71. Page Read—Single Data Byte
FLOW CONTROL MODES

Flow control is necessary to synchronize the data flow between
a master and slave. The ADuCM3027 provides flow control as a
differentiating feature in the SPI. Along with read command
mode, flow control can be used to receive multiple data bytes.

With flow control, the data transfer between the SPI master and
slave is controlled based on the application requirements in
terms of periodic data or demand-based data read.

The SPI master in the ADuCM3027/ADuCM3029 supports the
following modes of flow control.

e Pin-based flow control, controlled by the SPI slave.
e Timer-based flow control, controlled by the SPI master.

The flow control modes are described in the following sections
in more detail. The mode field in the SPI flow control register
(SPI_FLOW_CTL) configures the flow control mode to any one
of the three modes.

Note that flow control mechanisms can be used only when the
ADuCM3027/ADuCM3029 is configured as an SPI master.

Pin-Based Flow Control
Using a Separate RDY Pin

Some SPI slaves have a dedicated RDY pin that is connected to
the SPI_RDY pin of the SPI master, which in this case is the
ADuCM3027/ADuCM3029. The SPI_RDY pin is a dedicated
pin (as an alternate functionality to a GPIO) for every SPI instance.

For example, the CAT64LC40 serial flash uses a dedicated
RDY pin to signal the availability of data to the SPI master.

The RDY pin of the ADuCM3027/ADuCM3029 can be wired
to an interrupt pin of the SPI slave in case the slave does not
support a dedicated RDY pin. The slave uses the RDY pin to
indicate that the acquisition and data processing is complete.
The master does not provide SPI clock until it sees an active
level on this pin.

The user can configure the number of bytes to be read when the
RDY pin is asserted. Perform this is configuration by setting the
RDBURSTSZ field in the SPI flow control register (SPI_FLOW_
CTL). After receiving this burst of bytes on MISO, the SPI master
continues to wait for the next RDY pin assertion to receive the
next set of bytes. This process is repeated until all bytes as set in
the SPI count register (SPI_CNT) are received.

Note that using read command mode, a maximum of 16 bytes
can be transmitted. This transmission is configured using the
TXBYTES field of the SPI read control register (SPI_RD_CTL).
The number of bytes received in one burst when using flow
control is set in the RDBURSTSZ field of the SPI flow control
register (SPI_FLOW_CTL) however, the total number of bytes
to be received does not have an imposed maximum limit.

Using the MISO Pin

Some SPI slaves do not have a dedicated RDY pin but have a
provision to reuse the MISO pin to inform the SPI master that
the data is ready to be sent on MISO.

The ADuCM3027/ADuCM3029 SPI master waits for an active
level transition on the MISO line and, when this is detected,
reads RDBURSTSZ + 1 number of bytes and then goes back to a
wait state until another active level is detected on MISO.

The polarity of the MISO/RDY pin can be configured using the
POL field of the SPI flow control register (SPI_FLOW_CTL).

Rev. A | Page 47 of 51

UG-1091

| Ox9F | 0x00 | 0x00

| 0x00 | 0x05

SPI_WAIT_TMR

SPI_WAIT_TMR

. SCK CYCLES . SCK CYCLES
SCK |- L

MOSI } \ I \

s

| OxFF | OXEF | 0x40

| 0x16 | OxFF

MISO J _I

| A I

15388-409

Figure 72. Software Flow Control with Timer

Timer-Based Flow Control

For slaves that do not have a dedicated pin to inform the availability
of data to the master, the microcontroller uses a 16-bit timer to
introduce wait states while reading data. When the timer triggers,
the master reads a burst of bytes (RDBURSTSZ + 1) and then
restarts the timer. The timer is clocked at the SPI clock rate (SCK)
and the number of SCK cycles to wait before the timer is
triggered can be set using the SPI_WAIT_TMR register. An
example of this operation is shown in Figure 72.

When this scheme is used to stall and drive SCK for flow
control, take care to ensure that the last SCK edge is a sampling
edge. After the stall period is over, an SCK driving edge then
causes the next data transfer.

System Description

This section uses the hardware flow control mode to
demonstrate how the flow control feature can contribute to
power savings in a system.

The system used to demonstrate this process consists of the
ADuCM3027/ADuCM3029 MCU and a sensor (such as an
accelerometer) connected over the SPI.

To design a power efficient system, it is essential to put the core
in sleep mode whenever there is no processing required. In such
a system, after a sensor reading is available, the core is woken
up to receive and process the data from the sensor.

The flow control and read command modes in the ADuCM3027/
ADuCM3029 enhances the efficiency of this process by offloading
the MCU further. The system is put into Flexi mode, which
keeps the core asleep and the SPI peripheral and the DMA active.

The sensor measures the data and uses the RDY pin to strobe

the SPI peripheral of the data availability. There is a dedicated
SPI_RDY pin (alternate functionality of a GPIO) for every SPI
instance in the ADuCM3027/ADuCM3029 MCU.

Without waking up the MCU, the SPI then reads the data set
using the read command mode. The sensor must be capable of
multibyte data transfer to use this scheme effectively. In case of
an accelerometer sensor, the x-, y-, and z-axis readings are sent
as six bytes over the SPL

DMA can be used to transfer the data into an allocated memory
space without CPU intervention.

The application can collect the data instantaneously after every
measurement, or can collect buffered data from the slave after a
configured number of bytes are collected by the sensor.

After the user defined set of bytes are collected, the SPI
peripheral or the DMA can wake up the MCU to process the
sensor data.

Rev. A | Page 48 of 51

UG-1091

Figure 73 shows the application flow diagram for an SPI data
read from an accelerometer every time an activity is detected. In
sensors such as the ADXL345, the data ready interrupt can be
used to read the x-, y-, and z-axis readings in one SPI transaction.
In other sensors, a FIFO configuration can be performed to
store a number of samples in the sensor until the master reads
the FIFO.

CONCLUSIONS

The different features of the ADuCM3027/ADuCM3029 SPI,
such as read command mode and flow control, make the devices
ideal for use in battery-powered systems where the SPI peripheral
offloads the MCU and can be independently used for data
collection.

This device suitability a significant advantage in wireless sensor
networks where the battery life of the sensor is critical in system
design. This also serves as a building block for designing smart
sensors with on-board data acquisition, as well as sensor data
analytics.

ADuCM3029

| | SENSOR

POWER UP
DEVICE INITIALIZATION

POWER UP

DEVICE INITIALIZATION

CONFIGURE SPI WITH FLOW
CONTROL AND IN READ
COMMAND MODE

SETUP SENSOR
(CONFIGURE FIFO MODE,
SAMPLES, MEASUREMENT
MODE AND RANGE)
CONFIGURE INT2 TO
GENERATE DATA READY/
WATERMARK INTERRUPT

SPI

ENTER FLEXI MODE

SENSOR SETUP

__ SIGNAL ON SPI_RDY

_ ACTIVITY DETECTED

MEASURE DATA

SPI READ AND DMA
TRANSFER

ACTIVITY DETECTED

MEASURE DATA

__ SIGNAL ON SPI_RDY

SPI READ AND DMA
TRANSFER

1
1
1
| LX)
1
1
1

D

DMA DONE IRQ
WAKE UP MCU

ENTER ACTIVE MODE

Figure 73. Application Flowchart

Rev. A | Page 49 of 51

15388-410

UG-1091

SLEEP ON EXIT

The ARM® Cortex™-M processors are ideal for low power
applications due to their balance between energy and efficiency.
These processors have a feature known as sleep on exit that
allows saving clock cycles and energy.

The MCU subsystem of the ADuCM3027/ADuCM3029
processor is based on the ARM® Cortex™-M3 processor. The
sleep on exit feature saves power when the microcontroller is
sleeping and in interrupt handlers.

When sleep on exit is enabled, the processor enters directly to
sleep when the ISR is finished. Interrupts are nested in case

there is more than one interrupt. After the execution of these
interrupts, the processor returns automatically to sleep mode.

BENEFITS

The sleep on exit feature presents some benefits in interrupt
driven applications, where the system is sleeping and it only
wakes up to run interrupts.

When sleep on exit is disabled, the workflow when an interrupt
arrives involves more time spent executing instructions.

The steps to perform the interrupt with sleep on exit feature
disabled are as follows:

1. Wake up the processor.

2. Push all the necessary information and the current state on
the stack.

3. Pun the interrupt code.

4. Pop the information on the stack to restore the registers.

5. Return to sleep mode.

There are many instructions to run an interrupt. Therefore, on
interrupt driven applications, the time spent on context switching

is not optimal because the core pushes instructions in the stack
and, subsequently, the core pops them again.

The process is simplified by enabling the sleep on exit feature.
The processor immediately goes to sleep after finishing the
interrupt. The device does not return to the normal thread and
keeps the interrupt configuration, which avoids including push
and pop tasks into the stack, saving the energy and clock cycles
necessary to execute unnecessary instructions.

Figure 74 shows the flowchart when using the sleep on exit
feature. The procedure for using this feature is as follows:

1. The program starts.

2. Sleep mode is invoked by a wait for interrupt (WFI) or a
wait for events (WFE) instruction.

3. The system enters sleep mode.
The device is woken up by an interrupt or an event.

5. The system returns automatically to sleep mode when the
interrupt is finished if the SLEEPONEXIT bit is set.

WFI/WFE

@

WAKE UP TO
EXECUTE THE INTERRUPT

NO

13588-002

NEXT INSTRUCTION

Figure 74. Sleep on Exit Flowchart

ENABLING THE SLEEP ON EXIT FEATURE

The ARM" Cortex™M nested vector interrupt controller
(NVIC) has a system control register with a bit field called
SLEEPONEXIT. To enable the sleep on exit feature, it is only
necessary to set the SLEEPONEXIT bit.

The address of the system control register is 0XEOOOED10.
The System Control Register in the ADuCM3027/ADuCM3029
section shows this register and its bit fields in the ADuCM3027/
ADuCM3029 microcontroller.

Rev. A | Page 50 of 51

UG-1091

SYSTEM CONTROL REGISTER IN THE ADuCM3027/ADuCM3029

Address: 0xEO00ED10, Reset: 0x0000, Name: INTCONO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I°I0I°I0I0I0I0I°I0I0I0I0I° OI0I0I

[15:3] RESERVED —l T | [0] RESERVED

[2] SLEEPDEEP (R/W) [1] SLEEPONEXIT (R/W)
deep sleep flag for HIBERNATE mode Sleeps the core on exit from an ISR

Table 24. Bit Descriptions for INTCONO

Bits Bit Name Description Reset | Access
[15:3] | RESERVED Reserved. 0x0 R
2 SLEEPDEEP Deep sleep flag for HIBERNATE mode. 0x0 R/W

0: Sleep Deep is not enabled.
1: Sleep Deep is enabled.
1 SLEEPONEXIT | Sleeps the core on exit from an ISR. 0x0 R/W
0: Sleep On Exit is not enabled.
1: Sleep On Exit is enabled.
0 RESERVED Reserved. 0x0 R

ESD Caution
\ ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
‘h circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board"), you are agreeing to be bound by the terms and conditions
set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you
have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc.
("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal,
temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided
for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional
limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (i) permit any Third Party to access the Evaluation Board. As used herein, the term
“Third Party” includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including
ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may
not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to
promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any
occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board.
Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice
to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO
WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED
TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF
THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE
AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable
United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of
Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby
submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2017 Analog Devices, Inc. All rights reserved. Trademarks and ANALOG
registered trademarks are the property of their respective owners.

UG15962-0-9/17(A) DEVICES

Rev. A | Page 51 of 51

www.analog.com

	Introduction
	General Description
	Features
	ADuCM3027/ADuCM3029 Functional Block Diagram
	Table of Contents
	Revision History
	Getting Started
	Software Installation
	Installing the Segger J-Link Driver
	IAR Tools Installation
	ADuCM3027/ADuCM3029 Board Support Package (BSP)

	IAR Configuration
	Building Demo Projects
	IAR Provided Code
	Changing Projects
	Building the Application
	Downloading the Application Code
	Debugging the Application Code
	Running an Example Project

	Power Optimization for the ADuCM3027/ADuCM3029 Processors
	ADuCM3029/ADuCM3027 Processor Power Management
	ADuCM3029/ADuCM3027 Processor Power Modes
	Active Mode
	Buck Converter
	Dynamic Clock Scaling
	Clock Gating

	Flexi Mode
	Hibernate Mode
	Configurable Retainable SRAM
	Wake-Up Sources
	RTC Clock Sources
	SensorStrobe

	Shutdown Mode

	Fast Wake Up from Hibernate Mode
	Flash Memory and Instruction SRAM
	Normal Wake Up
	Fast Wake Up
	Initialization of the iSRAM.
	Modification of the Linker Script
	Interrupt Vector Table Relocation
	Placement of Program Code to SRAM

	Using the ADuCM3029/ADuCM3027 Processor Boot Kernel
	Boot Kernel Overview
	Configuring Security Options
	Read Protection Key Hash
	Key Hash CRC
	In-Circuit Write Protect Key
	Write Protection
	User Code Length
	User Code CRC

	Boot Code Flow

	UART Downloader
	Protocol
	Packet Structure
	Packet Start ID Field, ID0 and ID1
	Number of Data Bytes Field
	Command Function Field (CMD), Data Byte 1
	Write Command
	Run Command
	Information Command
	Value Field (Data Byte 2 to Data Byte 5)
	Data Field (Data Byte 6 Data Byte 255)
	Checksum Field (CS)
	Acknowledge of Command

	Read Protection Key and Hashing
	Memory Configuration
	Handling CRC in the IAR Workbench
	Checksum Tab
	CrossCore Serial Flash Programmer

	Cache Memory in the ADuCM3027/ADuCM3029
	Block Diagram
	Flash Controller
	Effects of Cache
	Effects of Cache on the Speed of Execution
	Cache Key Register
	Cache Setup Register

	Effects of Cache on Current

	Current Consumption Comparison

	Dual RTC Feature in the ADuCM3027/ADuCM3029
	Comparison of the RTC Features
	Power Considerations
	Conclusion

	Benefits of the ADuCM3027/ADuCM3029 DC-to-DC Converter
	DC-to-DC Basics
	DC-to-DC Conversion Methods
	Linear Regulators
	Switching Converters

	Capacitors vs. Inductor Converters
	Area
	Price
	Efficiency
	Electromagnetic Interference (EMI)

	Conclusions

	UART Software Flow Control
	UART Flow Control
	Hardware Flow Control
	Software Flow Control Using the XON and XOFF Signals
	Sequence Diagram

	System Description
	Handling Flow Control Signals from a Peer Device
	adi_uart_Write_fc Function
	Example Code for Flow Control
	Processing Control Signals from the Peer Through an Interrupt Service Routine (ISR)
	Data Processing Code Example

	Data Capture
	Handling Flow Control Characters in the ADuCM3027/ ADuCM3029
	Controlling the Received Data Flow

	SPI Flow Control Methods
	SPI Read Command Mode
	System Description
	Without Read Command Mode
	With Read Command Mode

	Flow Control Modes
	Pin-Based Flow Control
	Using a Separate RDY Pin
	Using the MISO Pin

	Timer-Based Flow Control
	System Description

	Conclusions

	Sleep on Exit
	Benefits
	Enabling the Sleep on Exit Feature
	System Control Register in the ADuCM3027/ADuCM3029

