

Technical Article
MS-2543

.

 www.analog.com
 Page 1 of 3 ©2011 Analog Devices, Inc. All rights reserved.

ADSP-CM403 HAE—Harmonic
Analysis in Solar Applications
by Martin Murnane
Solar PV Systems, Analog Devices
martin.murnane@analog.com

INTRODUCTION

A solar PV inverter converts power from a solar panel and
deploys this power to the utility grid efficiently. Solar PV
inverters of older days were simply modules that dumped
power onto the utility grid. However, new designs require
solar PV inverters to contribute to the stability of the grid.

This article will review how new ADI technology in the form
of a HAE (Harmonic Analysis Engine) improves smart grid
integration and monitor power quality on the grid, thus
contributing greatly to the stability of the grid.

SMART GRID

What is a smart grid? IMS Research defines a smart grid as
“a utility supply infrastructure with the inherent ability to
match and manage generation and consumption efficiently,
while obtaining maximum benefits from the available
resources.” For the new generation of solar PV inverters to
attach onto a smart grid, more and more intelligence is
required in the inverter to achieve this. This in itself is a
concern mainly due to the imbalances that may be created as
a result of too many grid connections when demand is not
there to meet that being supplied on to the grid. Based on
this, as mentioned earlier, solar PV inverters will need more
intelligence, and the focus of this intelligence needs to be on
grid integration, where systems will need to aid in the ability
to stabilize the grid as opposed to serving as a simple power
supplier to the grid.

Figure 1. ADSP-CM403 HAE Block Diagram, Analog Devices

This requires better measurement, control, and analysis of
the quality of the power injected onto the grid. Of course,

this leads to new directives and higher technical
requirements, which in turn directly translates into new
technology.

ADSP-CM403XY HAE PERIPHERAL BLOCK

The HAE block is essentially a digital PLL simplified as
shown below. The HAE receives V and I data continuously
and after several cycles will lock onto the fundamental of the
input waveform. The input range of the HAE block is 45 Hz
to 66 Hz. Up to 40 harmonics can be analyzed, 12 at a time.
For each harmonic the PLL will attempt to lock onto the
required signal.

Figure 2. HAE Simplified Digital PLL

The harmonic engine hardware block works in conjunction
with the harmonic analyzer to co-process results. As the
harmonic engine produces results in their final formats, they
are stored in the results memory. The HAE engine computes
harmonic information in a no-attenuation pass band of 2.8
kHz (corresponding to a -3 dB bandwidth of 3.3 kHz) for
line frequencies between 45 Hz and 66 Hz.

Figure 3. Frequency Pass-Band of the HAE

Neutral current can also be analyzed simultaneously with
the sum of the phase currents. At the start of a new sampling
period, the harmonic engine cycles through predefined
locations in data RAM, which contain the analyzer
processing results. The contents are then further processed,
if needed.

Voltage and current data can be received from the sinc block
or the ADC (both stored in SRAM) and input into the HAE

HARMONIC ANALYZER
(SIGNAL PROCESSING ARCHITECHTURE)

V (VOLTAGE)

HPF
FREQUENCY
DETECTOR

V_RMS

REACT_PWR

I_RMS

ACT_PWRI (CURRENT)

IDX_01

IDX_12

HPF

...
..

DISCRETE
HARMONIC

COMPONENTS
EXTRACTION

DISCRETE
HARMONIC

COMPONENTS
EXTRACTION

× 12 + 1

PHASE
DETECTOR

CONTROL AND
LOOP FILTER

DCO
(OSCILLATOR)

V (k × dt) FREQUENCY

0

−10

−20

−30

−40

−50

−60

−70

2k 4k 6k 8k 10k 12k 14k

(CIC + IIR4) COMPOSITE FREQUENCY RESPONSE
FOR 2k (RED) vs. 3k (BLUE) COEFFICIENT

http://www.analog.com/

MS-2543 Technical Article

 Page 2 of 3

block at an 8 kHz rate. An interrupt can be generated at this
8 kHz rate to advise the solar PV inverter to input available
data. When the data is analyzed and those calculations below
are computed, the HAE block will generate another interrupt
to advise the solar PV system that the harmonic analysis
data is ready for display. The ADSP-CM403 can also direct
the HAE to DMA all results to SRAM where the system code
can then display the results. This results in little code
overhead for the entire HAE system.

ADSP-CM403XY HAE RESULTS

The HAE results in Figure 4 show clearly which harmonics
are present in the system when looking at the voltage rms
data. The fundamental at 50 Hz is clearly present, however
the lower harmonics at 250 Hz and 350 Hz (i.e. harmonics 5
and 7) have some presence in this example result set.

Figure 4. V rms Sample Results from the HAE for Harmonics 1–12

The specific equations used in these calculations are shown
below, for both fundamental and harmonic calculations.

RESOURCES

Share this article on

Table 1. HAE Mathematical Calculations

http://www.facebook.com/sharer.php?s=100&p%5btitle%5d=ADSP-CM403%20HAE%E2%80%94Harmonic%20Analysis%20in%20Solar%20Applications%20&p%5bsummary%5d=&p%5burl%5d=http://www.analog.com/MS-2543
http://twitter.com/?status=ADSP-CM403%20HAE%E2%80%94Harmonic%20Analysis%20in%20Solar%20Applications%20http://www.analog.com/MS-2543

Technical Article MS-2543

 Page 3 of 3

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com
Trademarks and registered trademarks are the property of
their respective owners. TA11824-0-9/13

www.analog.com
©2011 Analog Devices, Inc. All rights reserved.

PROGRAMMING EXAMPLE
INT HAE_CONFIG(VOID)

{ INT I;

 HAE_INPUT_DATA(VOUTPUT, SINC_VEXT_DATA);

 HAE_INPUT_DATA(IOUTPUT, SINC_IMEAS_DATA);

 RESULT = ADI_HAE_OPEN(DEVNUM, DEVMEMORY, MEMORY_SIZE, &DEV);

 RESULT = ADI_HAE_REGISTERCALLBACK(DEV, HAECALLBACK, 0);

 RESULT = ADI_HAE_SELECTLINEFREQ(DEV, ADI_HAE_LINE_FREQ_50);

 RESULT = ADI_HAE_CONFIGRESULTS(DEV, ADI_HAE_RESULT_MODE_IMMEDIATE, ADI_HAE_SETTLE_TIME_512, ADI_HAE_UPDATE_RATE_128000);

 RESULT = ADI_HAE_SETVOLTAGELEVEL (DEV, 1.0);

 RESULT = ADI_HAE_ENABLEINPUTPROCESSING(DEV, FALSE, FALSE); /* FILTER ENABLED */

 /* ENABLE ALL HARMONICS (IN ORDER) */

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_1, 1);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_2, 2);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_3, 3);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_4, 4);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_5, 5);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_6, 6);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_7, 7);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_8, 8);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_9, 9);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_10, 10);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_11, 11);

 RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_12, 12);

 RESULT = ADI_HAE_SUBMITTXBUFFER(DEV, &TXBUFFER1[0], SIZEOF(TXBUFFER1));

 RESULT = ADI_HAE_SUBMITTXBUFFER(DEV, &TXBUFFER2[0], SIZEOF(TXBUFFER2));

 RESULT = ADI_HAE_ENABLEINTERRUPT(DEV, ADI_HAE_INT_RX, TRUE);

 RESULT = ADI_HAE_ENABLEINTERRUPT(DEV, ADI_HAE_INT_TX, TRUE);

 RESULT = ADI_HAE_CONFIGSAMPLEDIVIDER(DEV, 100000000);

 RESULT = ADI_HAE_RUN(DEV, TRUE);

// RESULT = ADI_HAE_CLOSE(DEV);

}

/* EVENTS */

VOID HAECALLBACK(VOID* PHANDLE, UINT32_T EVENT, VOID* PARG) /* ISR ROUTINE TO LOAD / UNLOAD DATA FROM HAE

{

 UINT32_T N;

 ADI_HAE_EVENT EEVENT = (ADI_HAE_EVENT)EVENT; /* RESULTS RECEIVED FROM HAE 128MS */

 IF (EEVENT == ADI_HAE_EVENT_RESULTS_READY)

 { /* GET RESULTS */

 PRESULTS = (ADI_HAE_RESULT_STRUCT*)PARG; /* POINTER TO TXBUFFER1 OR TXBUFFER2 */

 /* DO SOMETHING WITH THE RESULTS */

 FOR (N=0; N<NUM_CHANNELS; N++)

 {

 IRMS[N] = PRESULTS[N].IRMS;

 VRMS[N] = PRESULTS[N].VRMS;

 ACTIVEPWR[N] = PRESULTS[N].ACTIVEPWR;

 }

 } /* TRANSMIT INPUT SAMPLES TO HAE – 8KHZ */

 IF (EEVENT == ADI_HAE_EVENT_INPUT_SAMPLE)

 { /* FIND LATETS SAMPLES FROM SINC BUFFER . */

 ADI_HAE_INPUTSAMPLE(DEV, (SINC_IMEAS_DATA[PWM_SINC_LOOP]), (SINC_VEXT_DATA[PWM_SINC_LOOP]));

 INDEX++;

 IF (INDEX >= NUM_SAMPLES) INDEX = 0;

 }

 COUNT++;

}

http://www.analog.com/

	INTRODUCTION
	SMART GRID

