

## Getting started with the EVSPIN958 brushed DC motor driver expansion board based on the STSPIN958

### Introduction

The EVSPIN958 single brushed DC motor driver expansion board is based on the STSPIN958.

It provides an affordable and easy-to-use solution for the implementation of brushed DC motor driving applications. Thanks to the parallel operation, it can be easily converted to a single half-bridge with double current capability. In addition to the internal current limiter, the integrated amplifiers allow it to be used in systems with external current control. The EVSPIN958 is compatible with the Arduino UNO R3 connector and most STM32 Nucleo boards.

Figure 1. EVSPIN958 expansion board



## 1 Safety precautions

---

**Warning:** *Some of the components mounted on the board could reach hazardous temperatures during operation.*

---

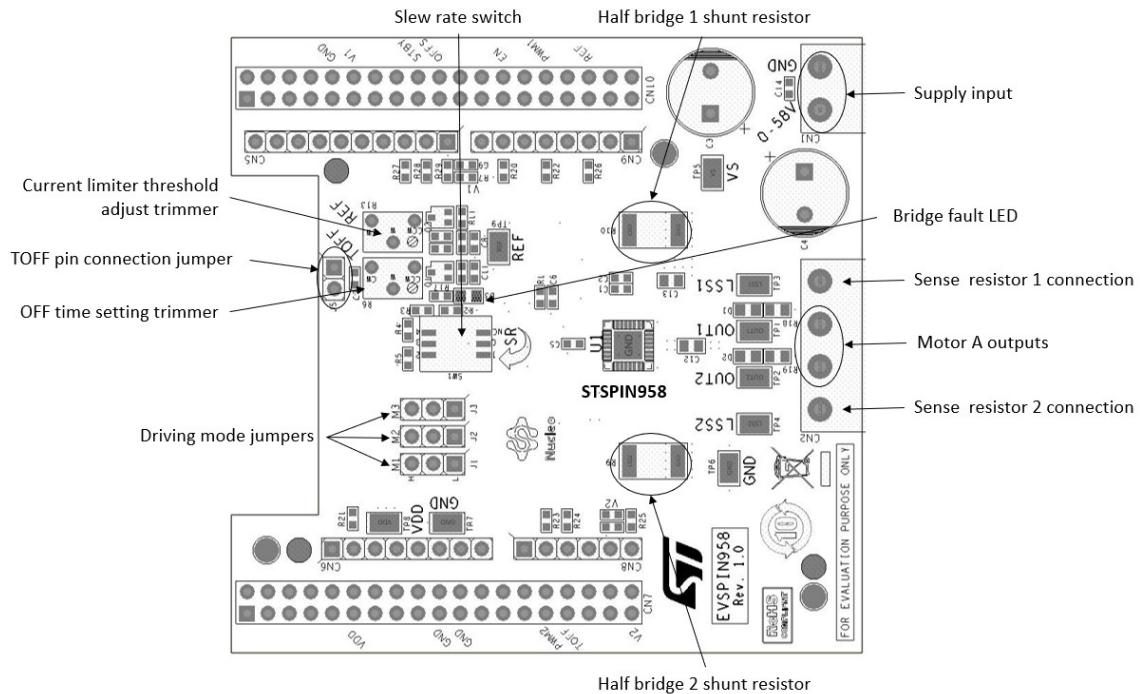
While using the board, please follow the following precautions:

- Do not touch the components or the heatsink.
- Do not cover the board.
- Do not put the board in contact with flammable materials or with materials releasing smoke when heated.
- After operation, allow the board to cool down before touching it.

## 2 Getting started

The main features of the EVSPIN958 expansion board are:

- Voltage range from 5 V to 58 V
- Phase current up to 5 A r.m.s
- Adjustable output slew rate
- Seven different driving modes
- One current limiter with adjustable OFF time
- Two integrated amplifiers with fixed gain
- Full protection set including: overcurrent, undervoltage lock out and thermal shutdown
- Compatibility with Arduino UNO R3 connector and STM32 Nucleo boards


The EVSPIN958 evaluation board is ready to be used in few steps. Follow this procedure to start your evaluation:

1. Check the setting of the jumpers based on your configuration as described in [Section 3](#)
2. Connect the board with the STM32 Nucleo board through the Arduino UNO R3
3. Supply the board through the input 2 (VS) and 1 (ground) of the connector CN1

Further support material is available on the STSPIN958 product page [www.st.com](http://www.st.com)

### 3 Hardware description and configuration

Figure 2. EVSPIN958 overview



The following tables provide the detailed pinout of the Arduino UNO R3 and ST Morpho connectors.

Table 1. Arduino UNO R3 connector table

| Connector | Pin <sup>(1)</sup> | Signal                               | Remarks                                       |
|-----------|--------------------|--------------------------------------|-----------------------------------------------|
| CN5       | 2                  | Operational amplifiers offset enable |                                               |
|           | 3                  | Standby (active low)                 |                                               |
|           | 6                  | Operational amplifier 1 output       |                                               |
|           | 7                  | Ground                               |                                               |
| CN9       | 3                  | Voltage reference current limiter    |                                               |
|           | 5                  | PWM1 input                           |                                               |
|           | 7                  | Enable bridge                        |                                               |
| CN6       | 2                  | VDD                                  |                                               |
|           | 6                  | Ground                               |                                               |
|           | 7                  | Ground                               |                                               |
| CN8       | 2                  | PWM2 input                           |                                               |
|           | 3                  | TOFF signal                          | Digital output in<br><b>PWM trimming mode</b> |
|           | 6                  | Operational amplifier 2 output       |                                               |

1. All non-listed pins are not connected.

#### 3.1 Driving mode selection

The EVSPIN958 can drive up to 2 DC motors at the same time.

The driving mode selection is done setting J1 and J2 jumpers (connected to MODE1 and MODE2 pins of the device) on the top of the board.

J6 solder jumper on the bottom of the board must be closed/opened according to the selected driving mode.

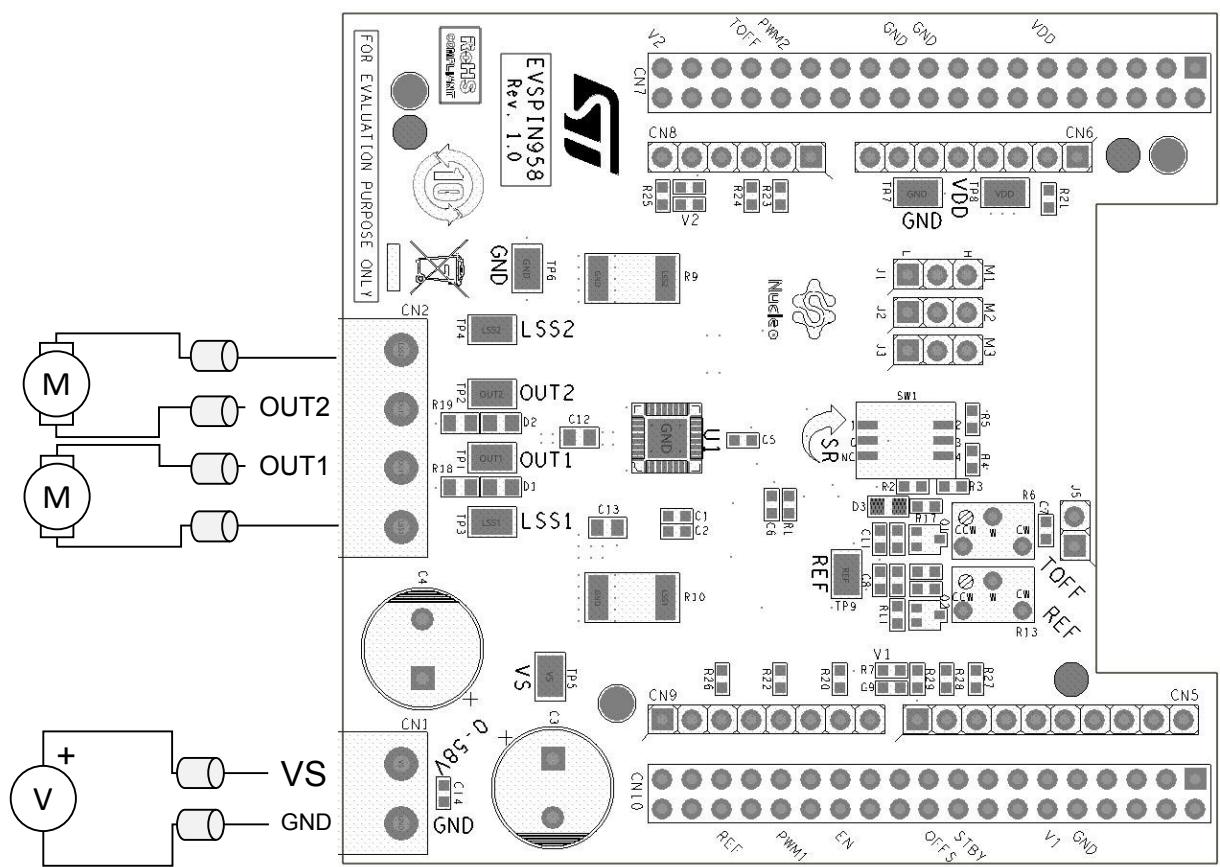

The table below briefly summarizes the possible configurations:

Table 2. Driving mode settings

| J1                 | J2                 | Driving mode                        | Typical application                                                  | J6 <sup>(1)</sup> | Max. output current (each motor) | Output $R_{DS(ON)}$ | Minimum OCD threshold |
|--------------------|--------------------|-------------------------------------|----------------------------------------------------------------------|-------------------|----------------------------------|---------------------|-----------------------|
| 1-2                | 1-2                | Dual half-bridge                    | 2 x unidirectional brushed DC (Figure 3)                             | open              | 5 Arms                           | 0.2Ω                | 7 A                   |
|                    |                    |                                     | 1 x bidirectional brushed DC (Figure 4)                              | closed            |                                  | 0.4Ω                |                       |
| 1-2                | 2-3                | Single full-bridge                  | 1 x bidirectional (Figure 4)                                         | closed            | 5 Arms                           | 0.4Ω                | 7 A                   |
| 2-3                | 1-2                | Single half-bridge                  | 1 x high current unidirectional brushed DC <sup>(2)</sup> (Figure 5) | closed            | 10 Arms                          | 0.2Ω                | 14 A                  |
| 2-3 <sup>(3)</sup> | 2-3 <sup>(3)</sup> | Single full-bridge with mixed decay | 1 x bidirectional brushed DC or Half bipolar stepper (Figure 4)      | closed            | 5 Arms                           | 0.4Ω                | 7 A                   |

1. When J6 is closed, the removal of the shunt resistor 2 (R9) is recommended for higher precision of the triggering of the current limiter
2. The motor can be connected between OUT and either LSS (like in the figure) or VS, paying attention to properly connect PWM2 to GND or to VDD respectively.
3. This configuration is only available with current limiter in Fixed OFF time mode (see Section 3.2 ).

**Figure 3. Two unidirectional DC motors**



**Figure 4. One bidirectional DC motor**

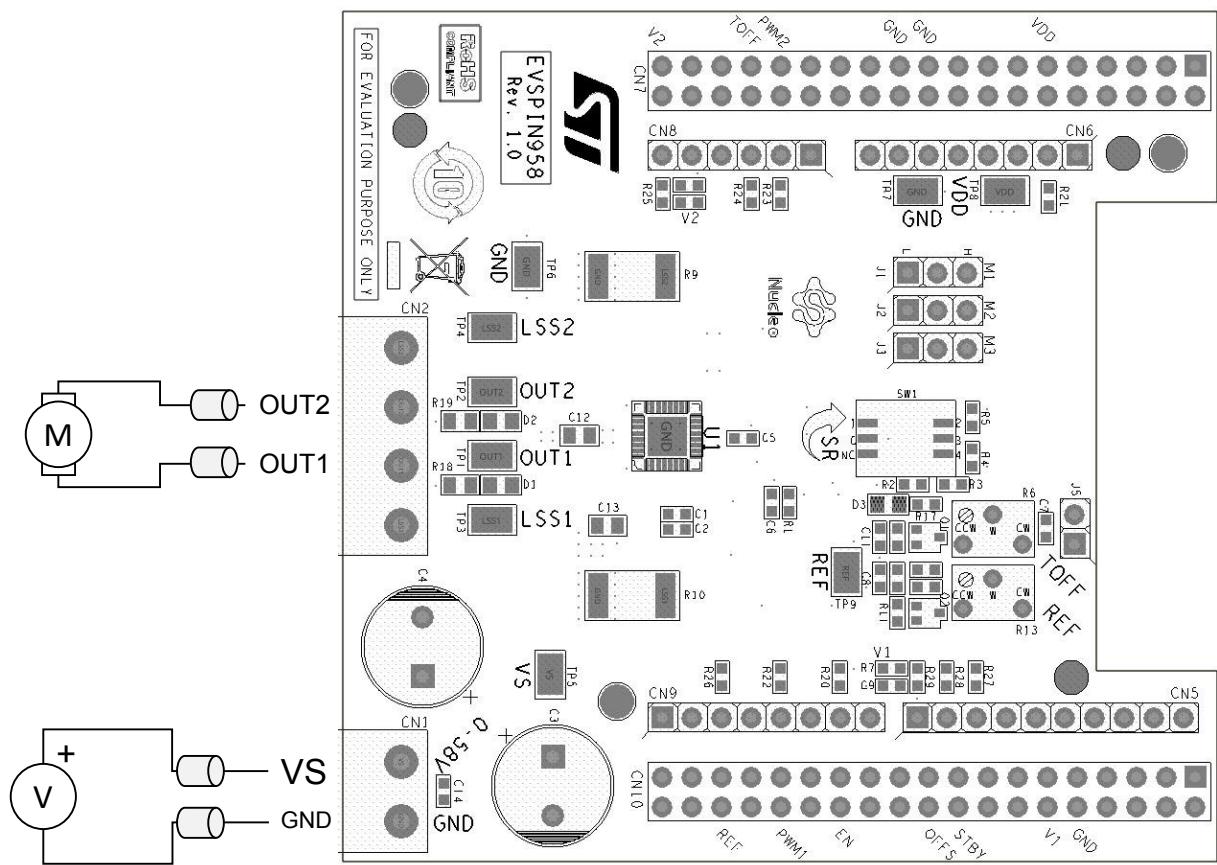
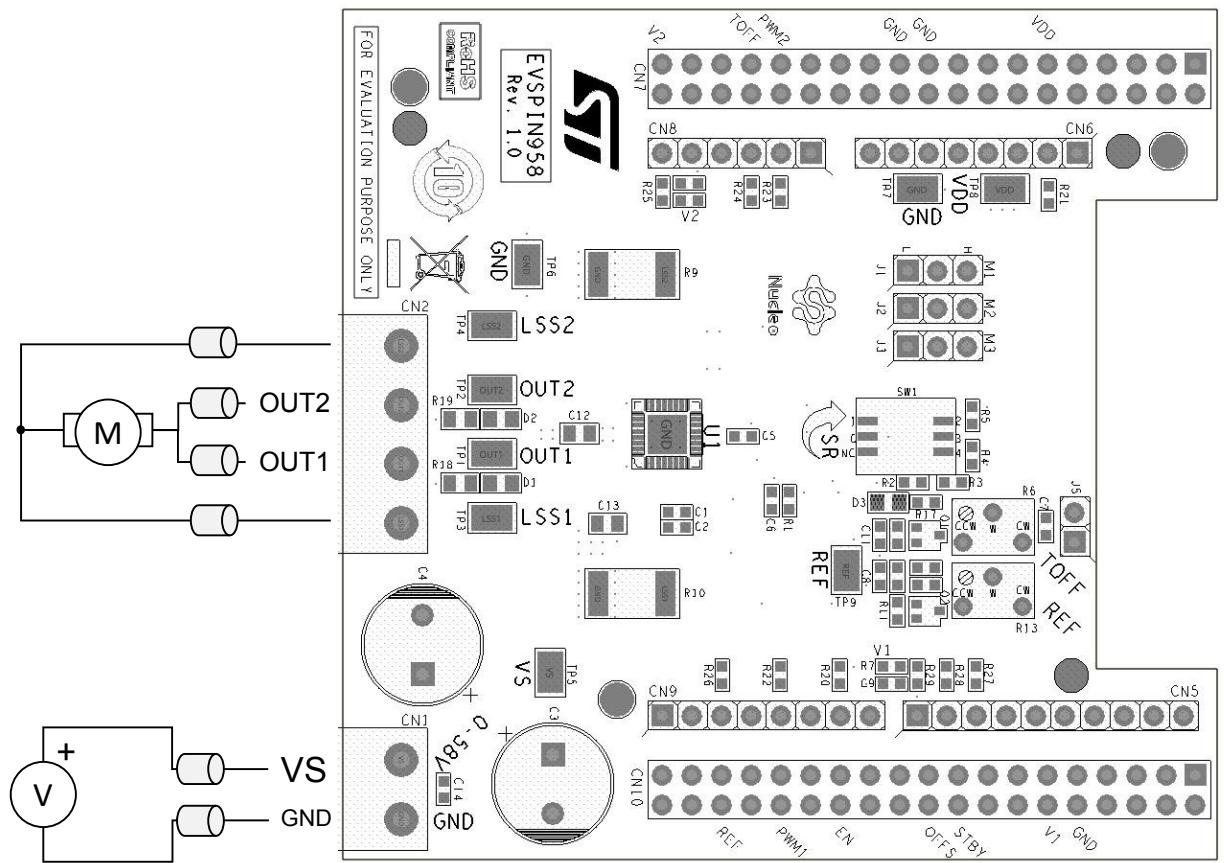
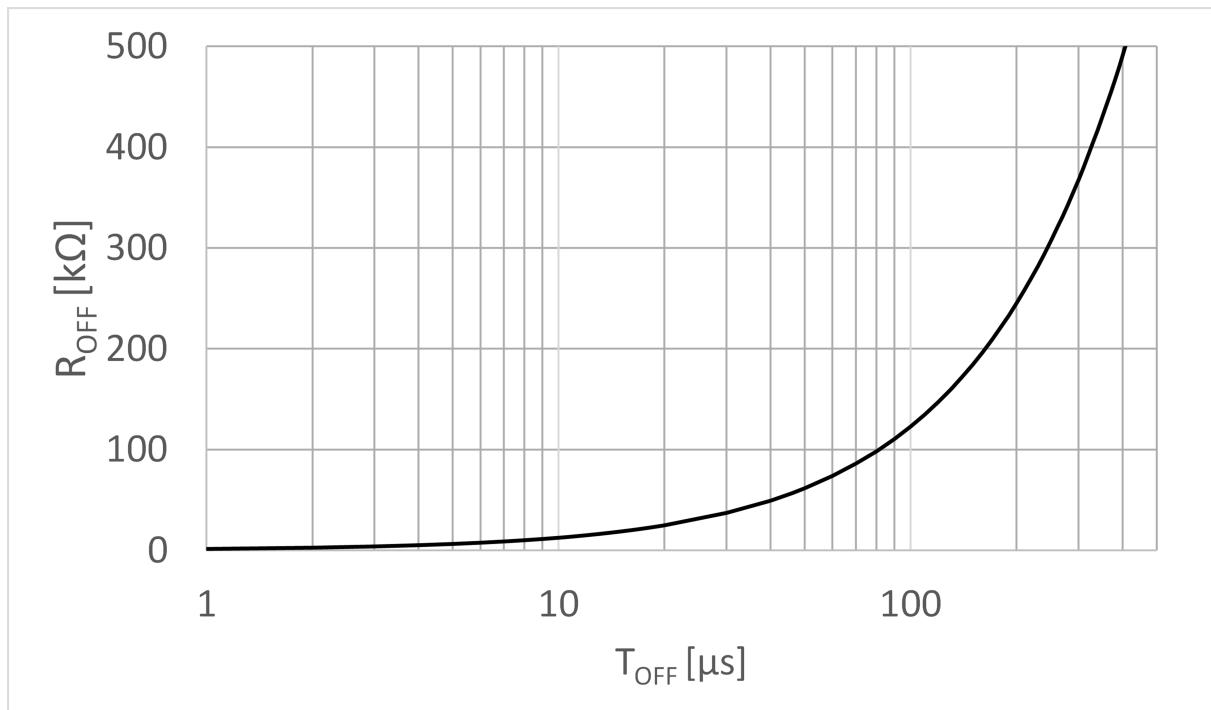




Figure 5. One unidirectional DC motors – higher current



### 3.2 Current limiter mode

The behavior of the current limiter can be changed by setting the J3 jumper (connected to MODE3 of the device) as follows:


Table 3. Current limiter mode settings

| J3  | Current limiter mode | J5 and J3 | Decay time                             |
|-----|----------------------|-----------|----------------------------------------|
| 1-2 | Fixed OFF time       | Closed    | Depending on R6 resistor<br>(Figure 6) |
| 2-3 | PWM trimming         | Open      | Depending on PWM input signals         |

**In Fixed OFF time mode, the current limiter can be disabled by setting R6 to its minimum value.**

The current threshold can be set in two different ways:

- Trimming R13 resistor, leaving CN9.3 floating
- Applying a square wave with variable duty cycle to CN9.3, setting R13 to its minimum value

Figure 6.  $t_{OFF}$  versus  $R_{OFF}$ 

### 3.3

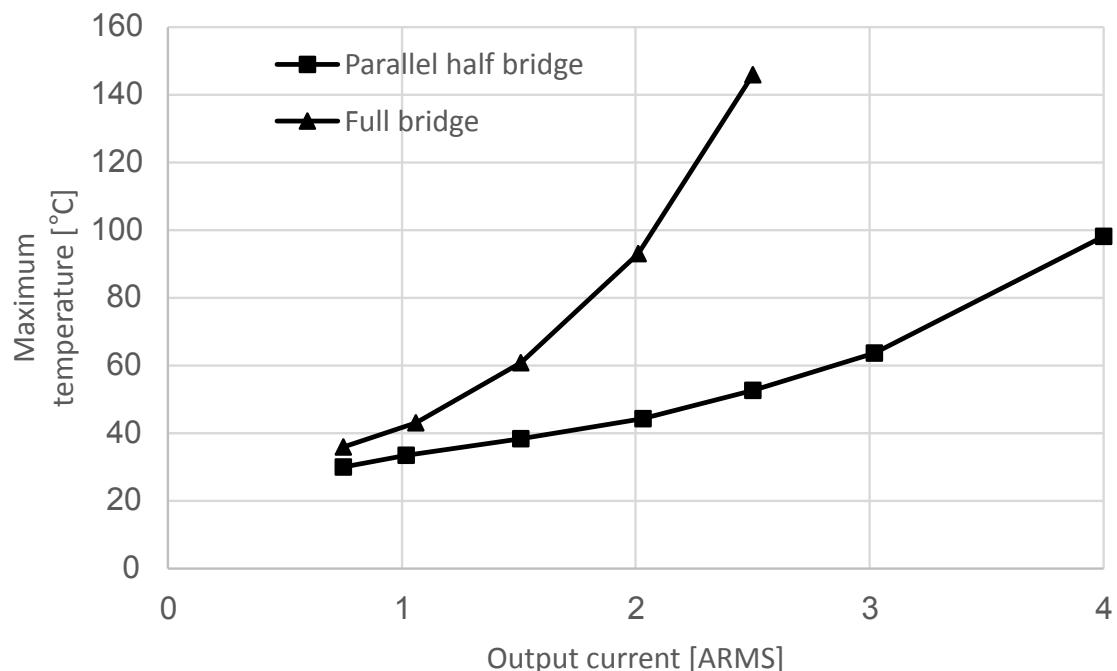
### Output slew rate

The output slew rate can be increased moving the rotative switch SW1 clockwise. With the STSPIN958 device, the slew rate value can be chosen from four different values, as shown in Table 4.

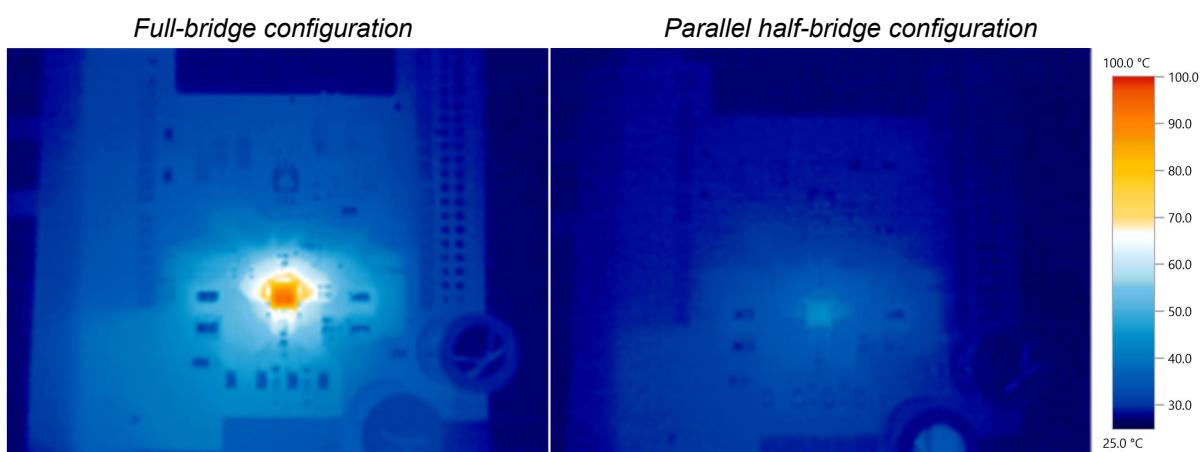
Table 4. Slew rate settings

| SW1        | $R_{SR}$ | Slew rate (typ. at $V_S = 58$ V) |
|------------|----------|----------------------------------|
| C-1 closed | 10 kΩ    | 0.3 V/ns                         |
| C-2 closed | 5.6 kΩ   | 0.6 V/ns                         |
| C-3 closed | 2.2 kΩ   | 1.2 V/ns                         |
| C-4 closed | 1 kΩ     | 2 V/ns                           |

## 4


## Thermal performance

An example of the thermal performances of the EVSPIN958 is provided in [Figure 7](#). The board is used in full-bridge and parallel half-bridge configuration in a typical application to drive an inductive load with different output currents ranging from 0.5 A to 4 A.


*Set-up conditions:*

- *Planar orientation of the board and natural convection only*
- *T<sub>ambient</sub> = 25 °C*
- *PWM frequency = 20 KHz*
- *VS = 30 V*
- *Output slew rate setting = 2 V/ns*

[Figure 7. EVSPIN958 - thermal performances](#)



[Figure 8. Thermal images \(I<sub>OUT</sub> = 2<sub>ARMS</sub>\)](#)



## 5 Bills of material


Table 5. EVSPIN958 bill of material

| Item | Qty. | Ref.     | Description                                            | Part/Value         | Manufact.        | Order code                 |
|------|------|----------|--------------------------------------------------------|--------------------|------------------|----------------------------|
| 1    | 1    | CN1      | Connector 5.08 mm Close Vertical                       | MORSV-508-2P_screw | Wurth Elektronik | 691312510002 or equivalent |
| 2    | 1    | CN2      | Connector 5.08 mm close vertical                       | MORSV-508-4P_screw | Wurth Elektronik | 691312510004 or equivalent |
| 3    | 1    | CN5      | Connector through-hole-pitch 2.54                      | CON-1x10           | Samtec           | SSQ-110-04-F-S             |
| 4    | 2    | CN6,CN9  | Connector through-hole-pitch 2.54                      | CON-1x8            | Samtec           | SSQ-108-04-F-S             |
| 5    | 2    | CN7,CN10 | Connector through-hole-pitch 2.54                      | N.M.               | Samtec           | ESQ-119-24-G-D             |
| 6    | 1    | CN8      | Connector through-hole-pitch 2.54                      | CON-1x6            | Samtec           | SSQ-106-04-F-S             |
| 7    | 2    | C1,C8    | SMT ceramic capacitor                                  | 100 n 15 V         |                  |                            |
| 8    | 1    | C2       | SMT ceramic capacitor                                  | 1 u 15 V           |                  |                            |
| 9    | 2    | C3,C4    | Through-hole aluminum elect. capacitor                 | 220 u 100 V        | Panasonic        | EEUFS2A221B                |
| 10   | 1    | C5       | SMT ceramic capacitor                                  | 220 n 15 V         |                  |                            |
| 11   | 2    | C6,C7    | SMT ceramic capacitor                                  | 1 n 15 V           |                  |                            |
| 12   | 2    | C9,C10   | SMT ceramic capacitor                                  | 100 p 15 V         |                  |                            |
| 13   | 1    | C11      | SMT ceramic capacitor                                  | 10 n 15 V          |                  |                            |
| 14   | 2    | C12,C13  | SMT ceramic capacitor                                  | 470 n 100 V        |                  |                            |
| 15   | 1    | C14      | SMT ceramic capacitor                                  | 100 n 100 V        |                  |                            |
| 16   | 2    | D1,D2    | Yellow LED                                             | Yellow             |                  |                            |
| 17   | 1    | D3       | Red LED                                                | Red                |                  |                            |
| 18   | 1    | SW1      | Rotative switch x4                                     | ROT-SWITCH         | Nidec            | CS-4-14-NTB or equivalent  |
| 19   | 3    | J1,J2,J3 | Header connector 1x3 pins                              | Closed 1-2         |                  |                            |
| 21   | 1    | J5       | Header connector 1x2 pins                              | Closed             |                  |                            |
| 22   | 1    | J6       | Solder jumper                                          | Open               |                  |                            |
| 23   | 2    | Q1,Q2    | P MOSFET                                               | MOSFET P           | NXP              | NX3008PBKW                 |
| 24   | 1    | R1       | SMT resistor                                           | 22 k 1/10 W        |                  |                            |
| 25   | 2    | R2,R20   | SMT resistor                                           | 1 k 1/10 W         |                  |                            |
| 26   | 1    | R3       | SMT resistor                                           | 2.2 k 1/10 W       |                  |                            |
| 27   | 1    | R4       | SMT resistor                                           | 5.6 k 1/10 W       |                  |                            |
| 28   | 2    | R5,R15   | SMT resistor                                           | 10 k 1/10 W        |                  |                            |
| 29   | 1    | R6       | 1/4" square trimpot trimming potentiometer, top adjust | 500 k              | Bourns           | 3266W-1-504 LF             |
| 30   | 2    | R7,R8    | SMT resistor                                           | 4.7 k 1/10 W       |                  |                            |
| 31   | 2    | R9,R10   | SMT resistor                                           | 0.05 1% 3 W        | Bourns           | CRA2512-FZ-R050ELF         |
| 32   | 1    | R11      | SMT resistor                                           | 47 k 1/10 W        |                  |                            |
| 33   | 2    | R12,R17  | SMT resistor                                           | 330 R 1/10 W       |                  |                            |
| 34   | 1    | R13      | 1/4" square trimpot trimming potentiometer, top adjust | 1 k                | Bourns           | 3266W-1-102 LF             |
| 35   | 1    | R14      | SMT resistor                                           | 3.3 k 1/10 W       |                  |                            |

| Item | Qty. | Ref.                                      | Description  | Part/Value           | Manufact. | Order code |
|------|------|-------------------------------------------|--------------|----------------------|-----------|------------|
| 36   | 1    | R16                                       | SMT resistor | 39 k 1/10 W          |           |            |
| 37   | 2    | R18,R19                                   | SMT resistor | 10 k ½ W             |           |            |
| 38   | 9    | R21,R22,R23<br>R24,R25,R26<br>R27,R28,R29 | SMT resistor | 0 R 1/10 W           |           |            |
| 39   | 9    | TP1,TP2,TP3<br>TP4,TP5,TP6<br>TP7,TP8,TP9 | Test point   | TP-SMD-<br>S1751-46R | Harwin    | S1751-46R  |
| 40   | 1    | U1                                        | STSPIN958    | STSPIN958            |           |            |

## 6 Schematic diagrams

**Figure 9. EVSPIN958 schematic diagram**



## Revision history

**Table 6. Document revision history**

| Date        | Version | Changes          |
|-------------|---------|------------------|
| 14-Sep-2022 | 1       | Initial release. |

## Contents

|                         |                                               |           |
|-------------------------|-----------------------------------------------|-----------|
| <b>1</b>                | <b>Safety precautions</b>                     | <b>2</b>  |
| <b>2</b>                | <b>Getting started</b>                        | <b>3</b>  |
| <b>3</b>                | <b>Hardware description and configuration</b> | <b>4</b>  |
| <b>3.1</b>              | Driving mode selection                        | 4         |
| <b>3.2</b>              | Current limiter mode                          | 8         |
| <b>3.3</b>              | Output slew rate                              | 9         |
| <b>4</b>                | <b>Thermal performance</b>                    | <b>10</b> |
| <b>5</b>                | <b>Bills of material</b>                      | <b>11</b> |
| <b>6</b>                | <b>Schematic diagrams</b>                     | <b>13</b> |
| <b>Revision history</b> |                                               | <b>14</b> |
| <b>List of tables</b>   |                                               | <b>16</b> |
| <b>List of figures</b>  |                                               | <b>17</b> |

## List of tables

|                 |                                          |    |
|-----------------|------------------------------------------|----|
| <b>Table 1.</b> | Arduino UNO R3 connector table . . . . . | 4  |
| <b>Table 2.</b> | Driving mode settings . . . . .          | 5  |
| <b>Table 3.</b> | Current limiter mode settings . . . . .  | 8  |
| <b>Table 4.</b> | Slew rate settings . . . . .             | 9  |
| <b>Table 5.</b> | EVSPIN958 bill of material . . . . .     | 11 |
| <b>Table 6.</b> | Document revision history . . . . .      | 14 |

## List of figures

|                  |                                               |    |
|------------------|-----------------------------------------------|----|
| <b>Figure 1.</b> | EVSPIN958 expansion board                     | 1  |
| <b>Figure 2.</b> | EVSPIN958 overview                            | 4  |
| <b>Figure 3.</b> | Two unidirectional DC motors                  | 6  |
| <b>Figure 4.</b> | One bidirectional DC motor                    | 7  |
| <b>Figure 5.</b> | One unidirectional DC motors – higher current | 8  |
| <b>Figure 6.</b> | $t_{OFF}$ versus $R_{OFF}$                    | 9  |
| <b>Figure 7.</b> | EVSPIN958 - thermal performances              | 10 |
| <b>Figure 8.</b> | Thermal images ( $I_{OUT} = 2_{ARMS}$ )       | 10 |
| <b>Figure 9.</b> | EVSPIN958 schematic diagram                   | 13 |

**IMPORTANT NOTICE – READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to [www.st.com/trademarks](http://www.st.com/trademarks). All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved