

High-Precision Low-TCR Alloy Current Sensing Resistors

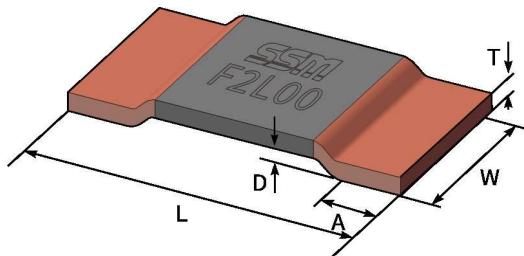
■ MSRPK series

AEC-Q200 Compliant

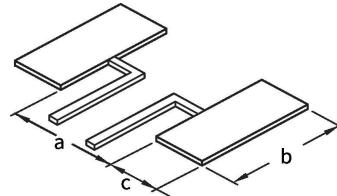
Features

- The MSRPK series is based on precision resistive alloy and welded with vacuum electron beam welding equipment to ensure its characteristics and reliability.
- Precision machining and uniform welding provide a minimum tolerance of $\pm 0.5\%$ without trimming.
- The TCR achieves a minimum of $\pm 50\text{ppm}/^\circ\text{C}$ over a wide temperature range of -55°C to $+170^\circ\text{C}$.
- The "Trimming-free" technology avoids current loss and is free of hot spots.
- The thermoelectric power is extremely low and thermal fluctuations are minimized.

Applications

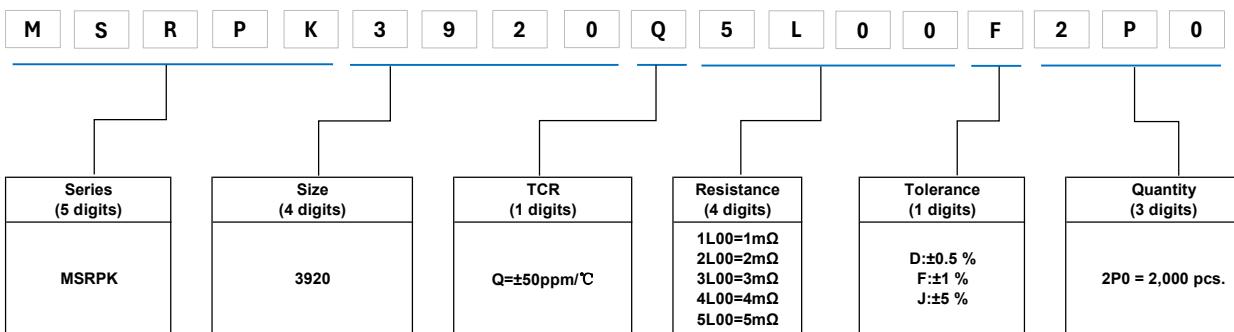

- Automotive Electronics
- Precision Power Supply
- Instrumentation
- Medical Equipment

◆ Electrical Specification


Series	Size inch. (mm)	Resistance Value	Power	Max.Operating Current	Operating Temperature	TCR (20°C Ref)	Tolerance	Thermal Resistance	PKG.
MSRPK	3920 (10052)	1 mΩ	8 W	89 A	-55°C~+170°C	$\pm 50\text{ppm}/^\circ\text{C}$	$\pm 0.5\%$ $\pm 1.0\%$ $\pm 5.0\%$	7.6 °C/W	2,000 pcs.
		2 mΩ	6 W	54 A				15.4 °C/W	
		3 mΩ	5 W	40 A				23.1 °C/W	
		4 mΩ	4 W	30 A				28.9 °C/W	
		5 mΩ	3 W	24 A				36.5 °C/W	

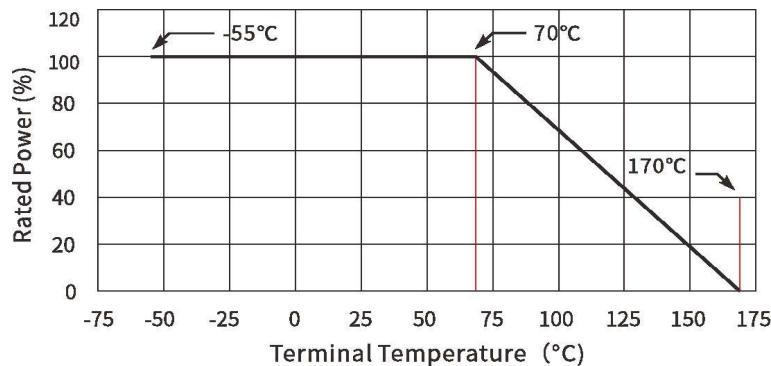
◆ Dimensions

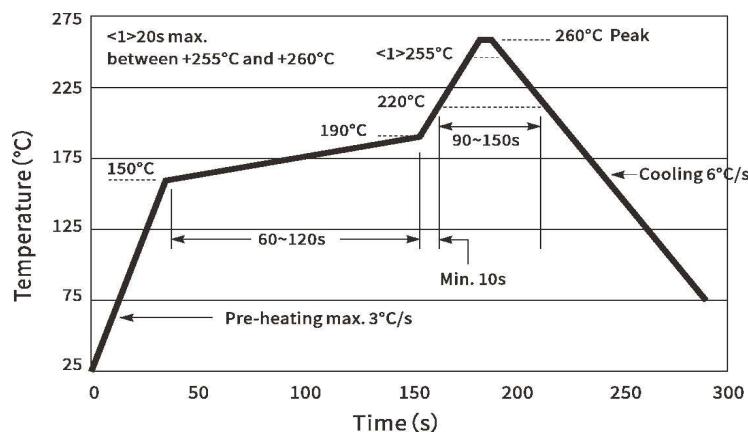
Resistor


Land Pattern

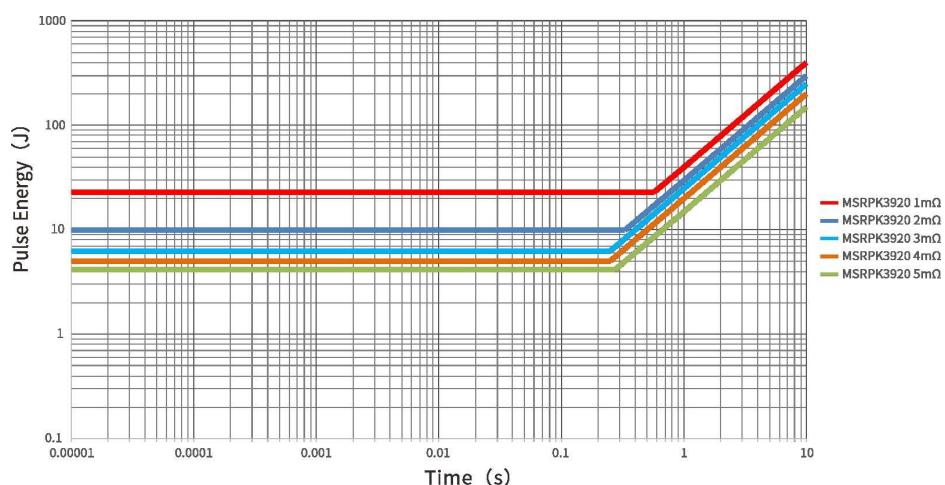
Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

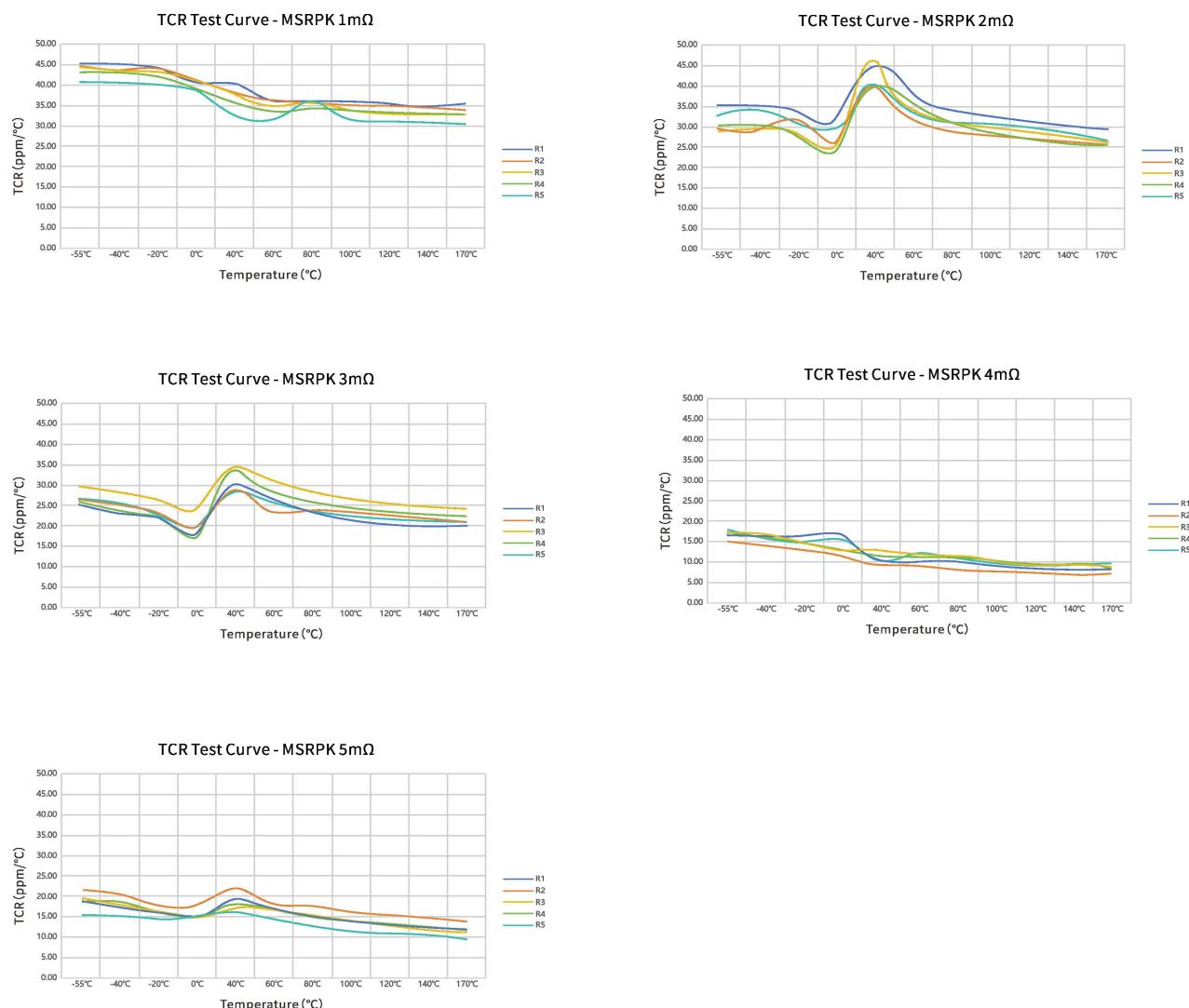
Series	Size inch. (mm)	Resistance Value	Unit:mm							
			L	W	A	T	D	a	b	c
MSRPK	3920 (10052)	1 mΩ	10.0 \pm 0.3	5.2 \pm 0.3	2.0 \pm 0.3	1.3 \pm 0.2	0.5 \pm 0.2	5.6 \pm 0.1	6.2 \pm 0.2	2.7 \pm 0.2
		2 mΩ	10.0 \pm 0.3	5.2 \pm 0.3	2.0 \pm 0.3	0.6 \pm 0.2	0.5 \pm 0.2	5.6 \pm 0.1	6.2 \pm 0.2	2.7 \pm 0.2
		3 mΩ	10.0 \pm 0.3	5.2 \pm 0.3	2.0 \pm 0.3	0.4 \pm 0.2	0.5 \pm 0.2	5.6 \pm 0.1	6.2 \pm 0.2	2.7 \pm 0.2
		4 mΩ	10.0 \pm 0.3	5.2 \pm 0.3	2.0 \pm 0.3	0.33 \pm 0.15	0.5 \pm 0.2	5.6 \pm 0.1	6.2 \pm 0.2	2.7 \pm 0.2
		5 mΩ	10.0 \pm 0.3	5.2 \pm 0.3	2.0 \pm 0.3	0.25 \pm 0.15	0.5 \pm 0.2	5.6 \pm 0.1	6.2 \pm 0.2	2.7 \pm 0.2

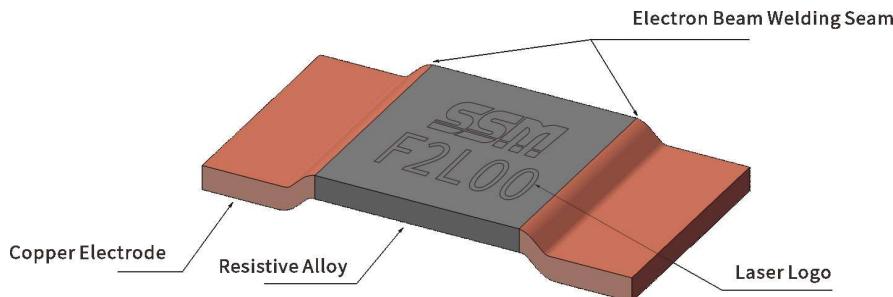

◆ Part Number information


◆ Performance

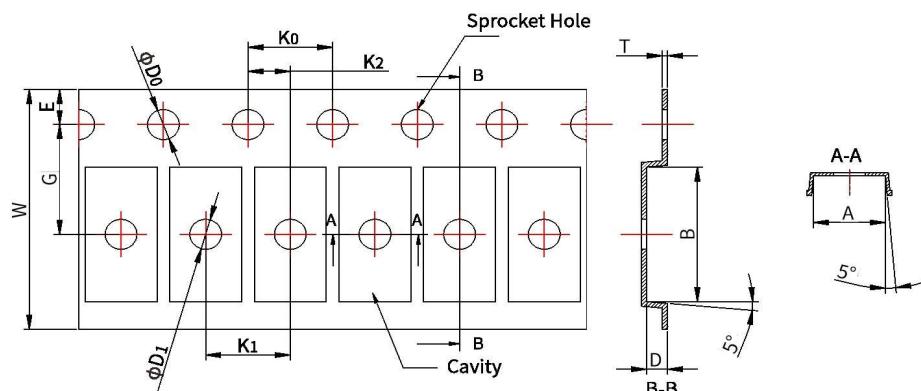
Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	ΔR≤±0.5%	ΔR≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature <20s~+155°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	ΔR≤±0.1%	ΔR≤±0.5%
Bias Humidity	+85°C, 85%RH, powered no less than 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	ΔR≤±0.2%	ΔR≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	ΔR≤±0.5%	ΔR≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No visible damage	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	ΔR≤±0.01%	ΔR≤±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	ΔR≤±0.01%	ΔR≤±0.2%
Resistance to Solder Heat	+260°C tin bath for 10s	AEC-Q200 TEST 15 MIL-STD-202 Method 210	ΔR≤±0.2%	ΔR≤±0.5%
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum coverage	
TCR	-55°C and +170°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Within the nominal TCR	
Substrate Bending	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	ΔR≤±0.1%	ΔR≤±0.5%
Short Time Overload	5x rated voltage, 5s	IEC 60115-1 4.13	ΔR≤±0.1%	ΔR≤±0.5%
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	ΔR≤±0.1%	ΔR≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	ΔR≤±0.1%	ΔR≤±0.5%


◆ Derating Curve

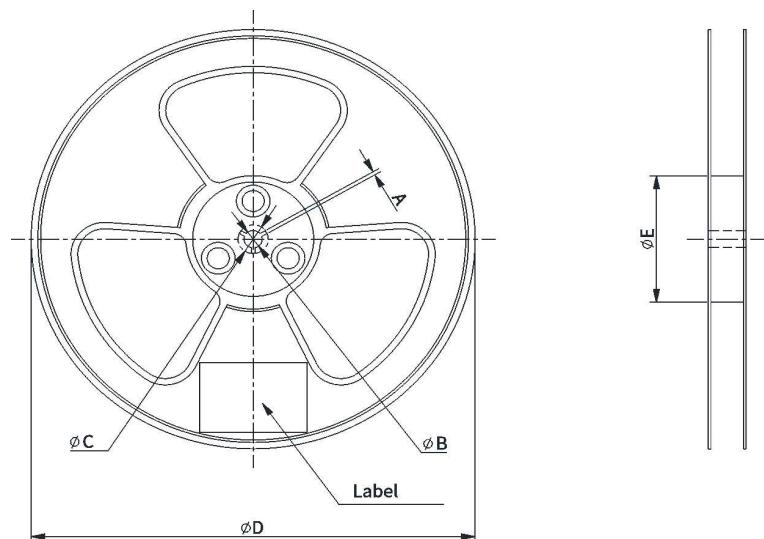

◆ Reflow Soldering Profile


◆ Maximum Pulse Energy Curve

◆ Temperature Coefficient of Resistance Test Curve

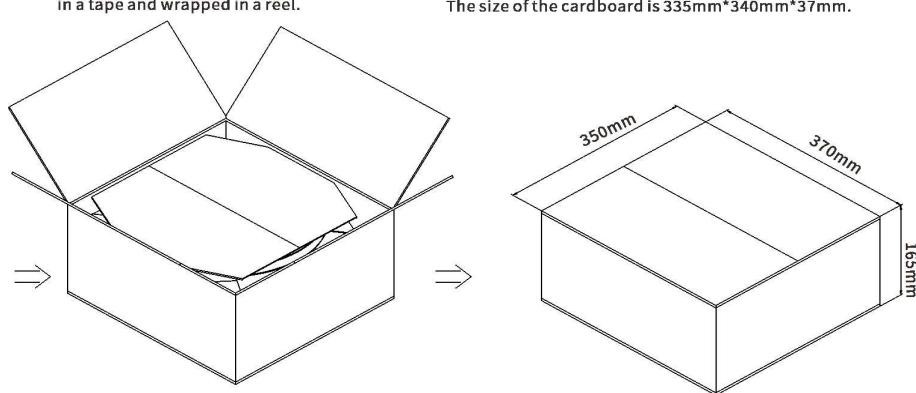
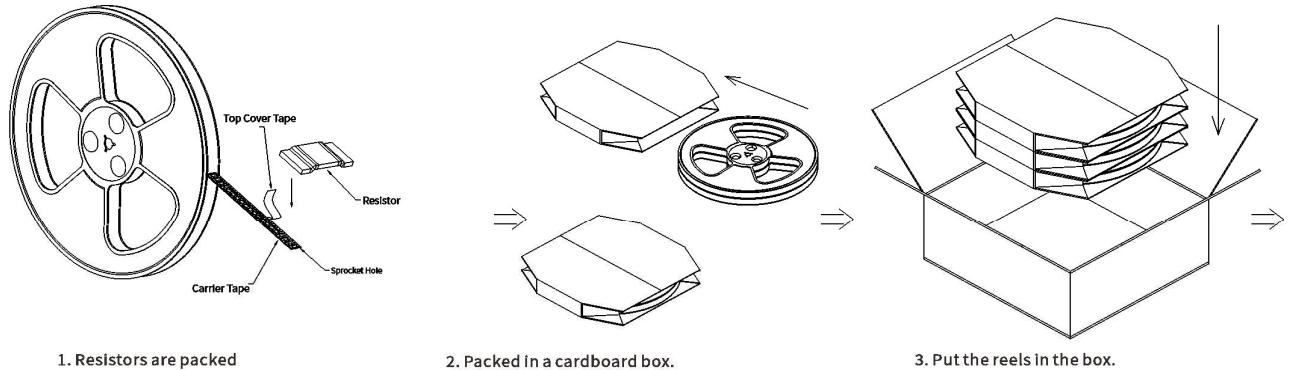


◆ Construction & Marking


SSM : Brand
F : Tolerance
2L00 : Resistance

◆ Tape Specification

Series	Size inch. (mm)	Resistance Value	Unit:mm											
			A	B	φD0	φD1	K0	K1	K2	E	G	W	D	T
MSRPK	3920 (10052)	1 mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	2.1±0.1	0.3±0.05
		2 mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.5±0.1	0.3±0.05
		3 mΩ	5.5±0.2	10.5±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.5±0.1	0.3±0.05
		4 mΩ	5.65±0.2	10.41±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.14±0.1	0.4±0.05
		5 mΩ	5.65±0.2	10.41±0.2	1.5±0.1	1.5±0.1	4.00±0.1	8.00±0.1	2.00±0.1	1.75±0.1	7.50±0.1	16.00±0.3	1.14±0.1	0.4±0.05



◆ Reel Specification

Series	Size inch. (mm)	Unit:mm				
		A	φB	φC	φD	φE
MSRPK	3920 (10052)	1.5 Min.	13.0+0.5/-0.2	20.2 Min.	330±2	100±2

◆ Packaging

Size 3920(10052): 2000 pcs/reel, 6 reel/box
Size 5930(15078): 2000 pcs/reel, 3 reel/box

◆ Storage Instructions

- (1) Resistors should be stored at a temperature of 5 to 35°C, with a humidity of <60% RH. The humidity should be kept as low as possible.
- (2) Resistors should be protected from direct sunlight.
- (3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)
- (4) Do not move the resistor from the packaging unless use it.
- (5) Under the above storage conditions, the resistor can be stored for at least 1 year.

◆ Usage Suggestions

- (1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.
- (2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.
- (3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.
- (4) The long-term operating power of resistors should be ≤ rated power to avoid resistance drift caused by long-term overload.
- (5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.
- (6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.
- (7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.