




## High-Precision Alloy Current Sensing Resistors

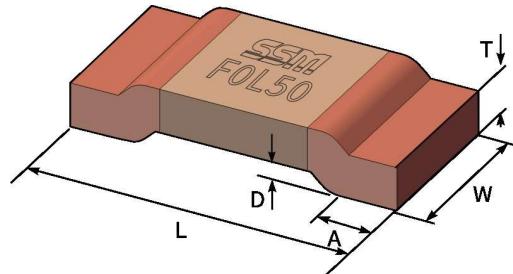
### ■ MSREM series

AEC-Q200 Compliant

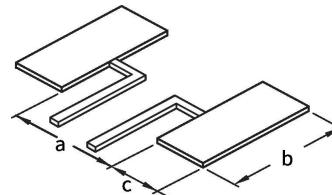
#### Features

- The MSREM series is based on precision resistive alloy and welded with vacuum electron beam welding equipment to ensure its characteristics and reliability.
- Precision machining and uniform welding provide a minimum tolerance of  $\pm 0.5\%$  without trimming.
- The TCR achieves a minimum of  $\pm 200\text{ppm}/^\circ\text{C}$  over a wide temperature range of  $-55^\circ\text{C}$  to  $+170^\circ\text{C}$ .
- The "Trimming-free" technology avoids current loss and is free of hot spots.
- The thermoelectric power is extremely low and thermal fluctuations are minimized.

#### Applications


- Automotive Electronics
- Precision Power Supply
- Instrumentation
- Medical Equipment

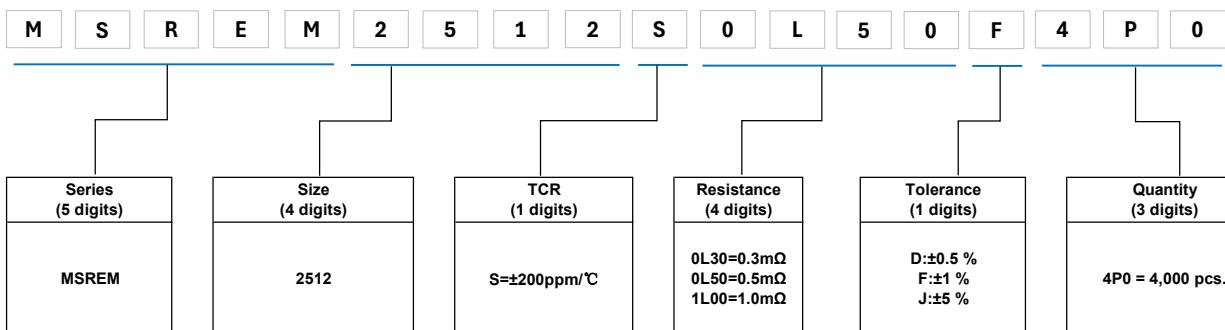
#### ◆ Electrical Specification


| Series | Size inch. (mm) | Resistance Value | Power | Max.Operating Current | Operating Temperature | TCR (20°C Ref)                     | Tolerance                                 | Thermal Resistance | PKG.       |
|--------|-----------------|------------------|-------|-----------------------|-----------------------|------------------------------------|-------------------------------------------|--------------------|------------|
| MSREM  | 2512 (6330)     | 0.3 mΩ           | 6 W   | 140 A                 | -55°C~+170°C          | $\pm 200\text{ppm}/^\circ\text{C}$ | $\pm 0.5\%$<br>$\pm 1.0\%$<br>$\pm 5.0\%$ | 4.1 °C/W           | 4,000 pcs. |
|        |                 | 0.5 mΩ           | 6 W   | 109 A                 |                       |                                    |                                           | 5.1 °C/W           |            |
|        |                 | 1.0 mΩ           | 6 W   | 77 A                  |                       |                                    |                                           | 11.1 °C/W          |            |

#### ◆ Dimensions

Resistor

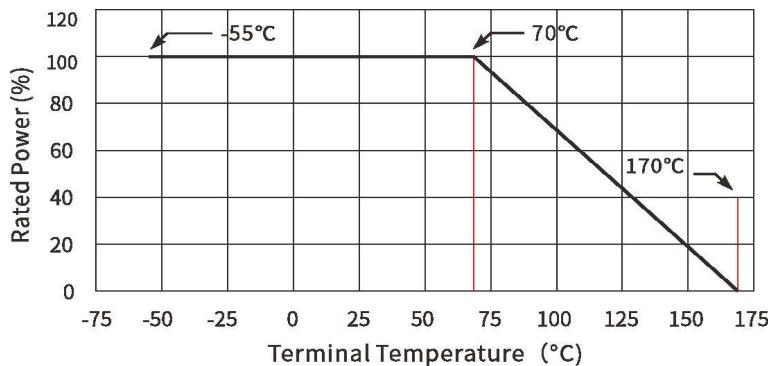



Land Pattern

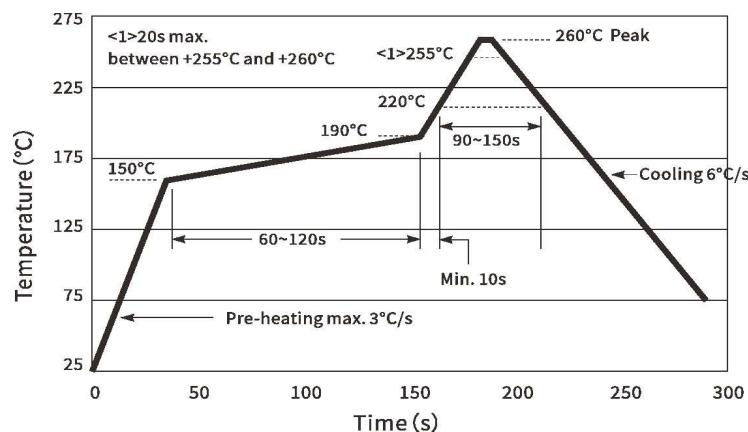


Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

| Series | Size inch. (mm) | Resistance Value | Unit:mm |         |         |          |          |         |          |          |
|--------|-----------------|------------------|---------|---------|---------|----------|----------|---------|----------|----------|
|        |                 |                  | L       | W       | A       | T        | D        | a       | b        | c        |
| MSREM  | 2512 (6330)     | 0.3 mΩ           | 6.3±0.3 | 3.0±0.3 | 1.3±0.3 | 1.0±0.2  | 0.35±0.2 | 3.9±0.2 | 3.4±0.25 | 1.8±0.25 |
|        |                 | 0.5 mΩ           | 6.3±0.3 | 3.0±0.3 | 1.3±0.3 | 0.9±0.2  | 0.35±0.2 | 3.9±0.2 | 3.4±0.25 | 1.8±0.25 |
|        |                 | 1.0 mΩ           | 6.3±0.3 | 3.0±0.3 | 1.3±0.3 | 0.4±0.15 | 0.35±0.2 | 3.9±0.2 | 3.4±0.25 | 1.8±0.25 |

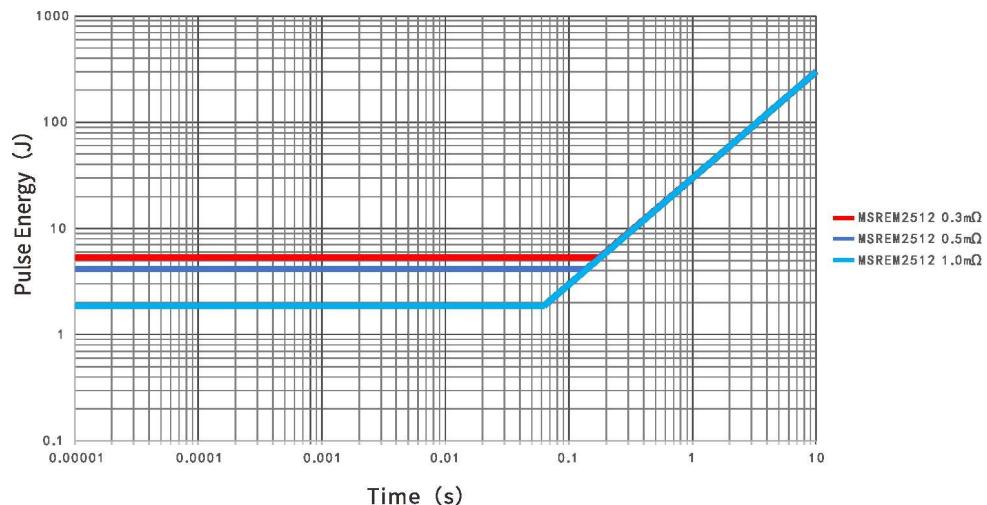

#### ◆ Part Number information



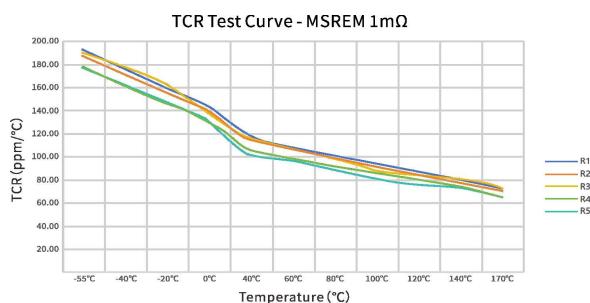
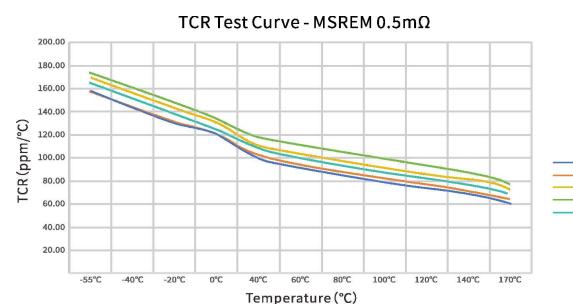
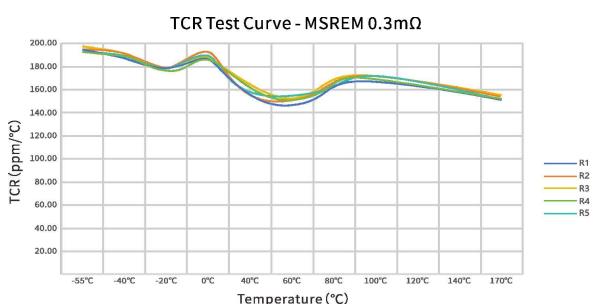

◆ Performance

| Test                      | Test Method                                                                                                                     | Standards                                  | Typical                                    | Max.     |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|----------|
| High Temperature Storage  | 1000h@+170°C, unpowered                                                                                                         | AEC-Q200 TEST 3<br>MIL-STD-202 Method 108  | ΔR≤±0.5%                                   | ΔR≤±1.0% |
| Thermal Shock             | -55°C, 15min~ambient temperature <20s~+155°C, 15min, 1000 cycles                                                                | AEC-Q200 TEST 16<br>MIL-STD-202 Method 107 | ΔR≤±0.1%                                   | ΔR≤±0.5% |
| Bias Humidity             | +85°C, 85%RH, powered no less than 10% rated power for 1000h                                                                    | AEC-Q200 TEST 7<br>MIL-STD-202 Method 103  | ΔR≤±0.2%                                   | ΔR≤±0.5% |
| Load Life                 | 2000h @ +70°C, rated power, 90min on, 30min off<br>+70°C refers to terminal temperature                                         | AEC-Q200 TEST 8<br>MIL-STD-202 Method 108  | ΔR≤±0.5%                                   | ΔR≤±1.0% |
| Resistance to Solvent     | Immerse in solvent for 3 min and wipe 10 times.<br>Three cycles of three solvents.<br>Dry at ambient temperature after cleaning | AEC-Q200 TEST 12<br>MIL-STD-202 Method 215 | Clear marking.<br>No visible damage        |          |
| Mechanical Shock          | Half Sine Wave, peak acceleration 100g's, pulse duration 6ms,<br>3 times in each of six directions, on three different axes     | AEC-Q200 TEST 13<br>MIL-STD-202 Method 213 | ΔR≤±0.01%                                  | ΔR≤±0.2% |
| Vibration                 | 10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z                                                               | AEC-Q200 TEST 14<br>MIL-STD-202 Method 204 | ΔR≤±0.01%                                  | ΔR≤±0.2% |
| Resistance to Solder Heat | +260°C tin bath for 10s                                                                                                         | AEC-Q200 TEST 15<br>MIL-STD-202 Method 210 | ΔR≤±0.2%                                   | ΔR≤±0.5% |
| Solderability             | +245°C tin bath for 3s                                                                                                          | AEC-Q200 TEST 18<br>IEC 60115-1 4.17       | No visible damage.<br>95% minimum coverage |          |
| TCR                       | -55°C and +170°C, +20°C Ref.                                                                                                    | AEC-Q200 TEST 19<br>IEC 60115-1 4.8        | Within the nominal TCR                     |          |
| Substrate Bending         | 2mm. Duration: 60s.                                                                                                             | AEC-Q200 TEST 21<br>AEC-Q200-005           | ΔR≤±0.1%                                   | ΔR≤±0.5% |
| Short Time Overload       | 5x rated voltage, 5s                                                                                                            | IEC 60115-1 4.13                           | ΔR≤±0.1%                                   | ΔR≤±0.5% |
| Low Temperature Storage   | -55°C for 96h, unpowered                                                                                                        | IEC 60068-2-1                              | ΔR≤±0.1%                                   | ΔR≤±0.5% |
| Moisture Resistance       | Apply T=24 h/cycle, zero power, method 7a and 7b are not required                                                               | MIL-STD-202 Method 106                     | ΔR≤±0.1%                                   | ΔR≤±0.5% |

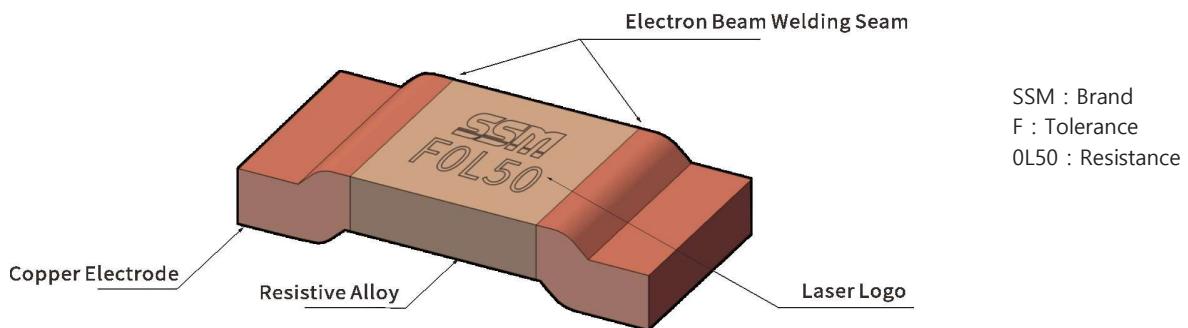
◆ Derating Curve



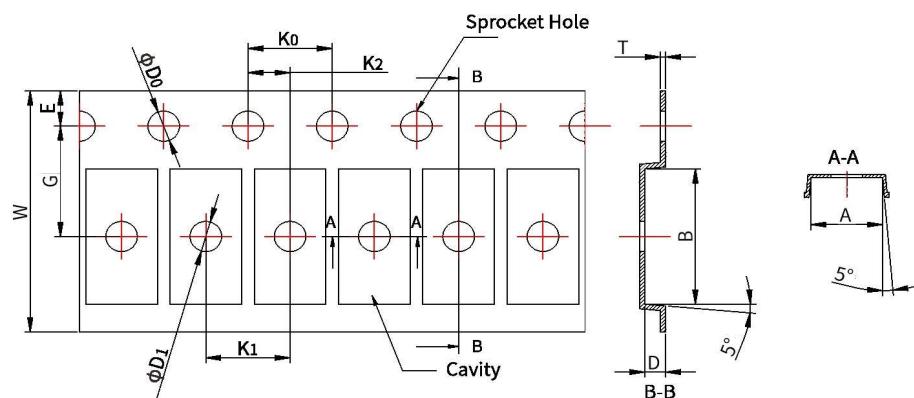

◆ Reflow Soldering Profile


Resistor Surface Temperature :  
Pre-Heat: +150°C+190°C, 60~120sec.  
Reflow: Above +220°C, 90~150sec.  
Applicable Solder Composition: Sn-Ag-Cu

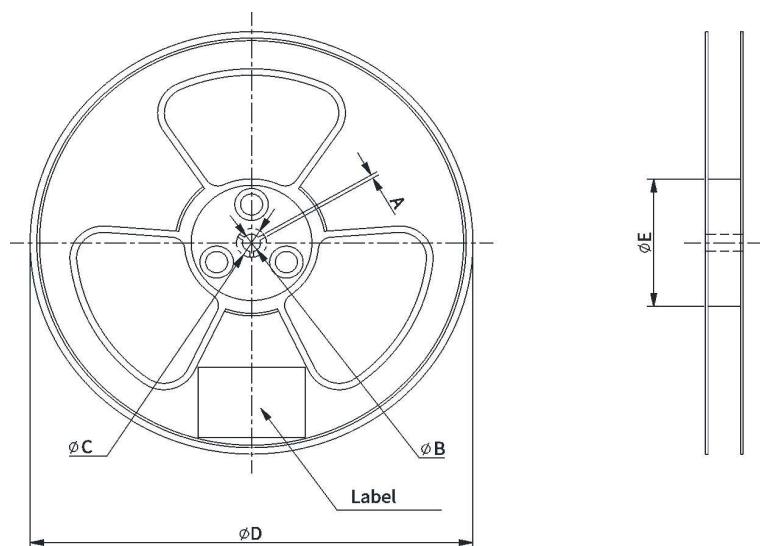

◆ Maximum Pulse Energy Curve




◆ Temperature Coefficient of Resistance Test Curve



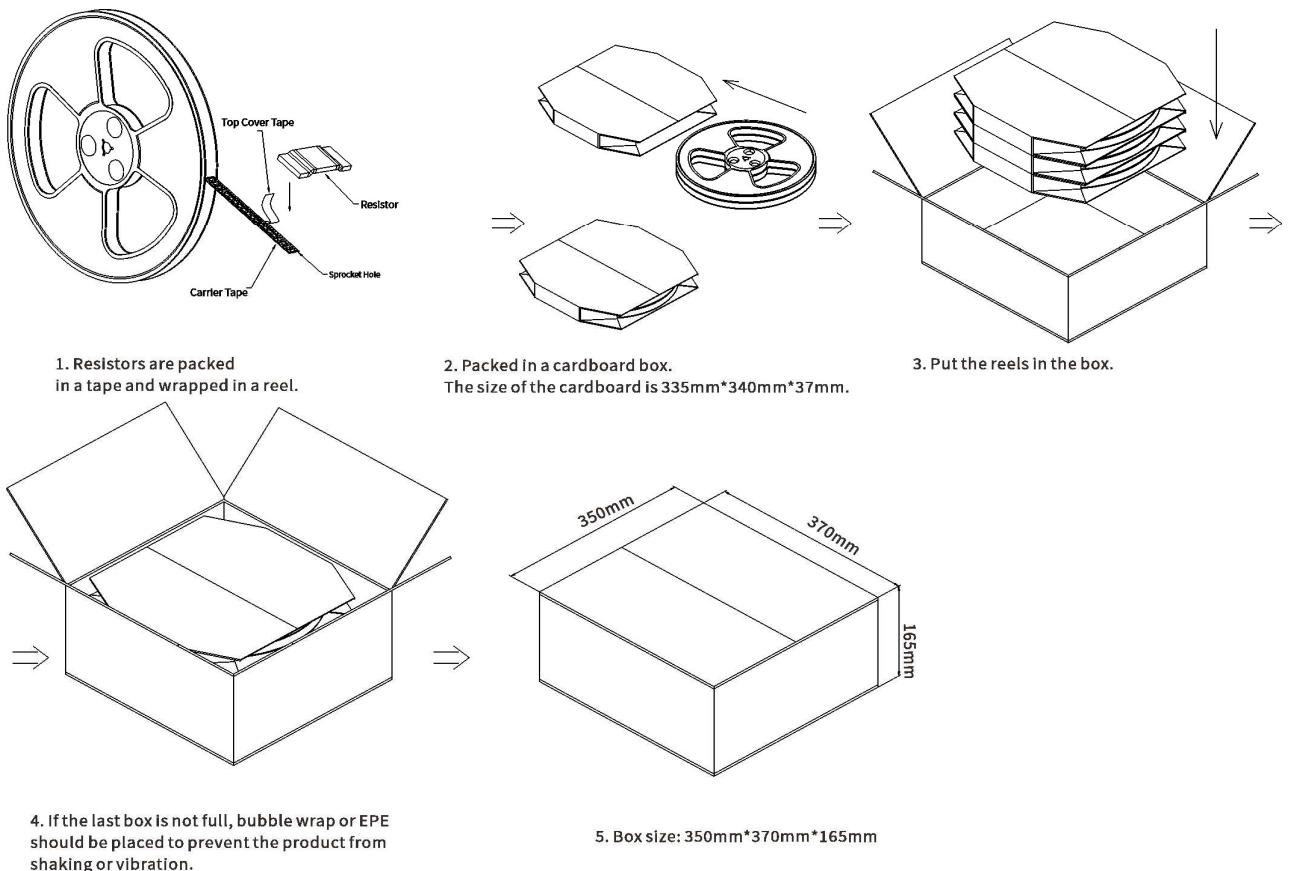
## ◆ Construction & Marking




## ◆ Tape Specification



| Series | Size inch<br>(mm) | Resistance Value | Unit:mm  |          |         |         |          |          |          |          |           |           |          |           |
|--------|-------------------|------------------|----------|----------|---------|---------|----------|----------|----------|----------|-----------|-----------|----------|-----------|
|        |                   |                  | A        | B        | φD0     | φD1     | K0       | K1       | K2       | E        | G         | W         | D        | T         |
| MSREM  | 2512<br>(6330)    | 0.3 mΩ           | 3.30±0.2 | 6.60±0.2 | 1.5±0.1 | 1.5±0.1 | 4.00±0.1 | 4.00±0.1 | 2.00±0.1 | 1.75±0.1 | 5.50±0.05 | 12.00±0.2 | 1.50±0.1 | 0.25±0.05 |
|        |                   | 0.5 mΩ           | 3.30±0.2 | 6.60±0.2 | 1.5±0.1 | 1.5±0.1 | 4.00±0.1 | 4.00±0.1 | 2.00±0.1 | 1.75±0.1 | 5.50±0.05 | 12.00±0.2 | 1.50±0.1 | 0.25±0.05 |
|        |                   | 1 mΩ             | 3.30±0.2 | 6.60±0.2 | 1.5±0.1 | 1.5±0.1 | 4.00±0.1 | 4.00±0.1 | 2.00±0.1 | 1.75±0.1 | 5.50±0.05 | 12.00±0.2 | 0.90±0.1 | 0.23±0.05 |


## ◆ Reel Specification



| Series       | Size inch.<br>(mm)     | Unit:mm  |               |           |       |       |
|--------------|------------------------|----------|---------------|-----------|-------|-------|
|              |                        | A        | φB            | φC        | φD    | φE    |
| <b>MSREM</b> | <b>2512<br/>(6330)</b> | 1.5 Min. | 13.0+0.5/-0.2 | 20.2 Min. | 330±2 | 100±2 |

## ◆ Packaging

Size 2512(6330): 4000 pcs/reel, 6 reel/box



## ◆ Storage Instructions

- (1) Resistors should be stored at a temperature of 5 to 35°C, with a humidity of <60% RH. The humidity should be kept as low as possible.
- (2) Resistors should be protected from direct sunlight.
- (3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H<sub>2</sub>S, etc.)
- (4) Do not move the resistor from the packaging unless use it.
- (5) Under the above storage conditions, the resistor can be stored for at least 1 year.

## ◆ Usage Suggestions

- (1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.
- (2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.
- (3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.
- (4) The long-term operating power of resistors should be ≤ rated power to avoid resistance drift caused by long-term overload.
- (5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.
- (6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.
- (7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor welding caused by oxidation of the resistor.