
Planar Transformers

PRODUCT LINE BROCHURE

Standex |Smart.

Partner, Solve, Deliver® "Solving your complex problems is why we exist."

CONTENTS

- 03 About Standex
- 04 Who We Are / Where We Play
- 06 Our Capabilities
- 08 Our Approach & Process
- 10 Planar Magnetics
- 12 Customer Configurations
- 16 10W-1kW Transformers & Inductors
- 24 1kW-10kW Transformers & Inductors
- 36 10kW-250kW Transformers & Inductors
- 43 PQ Planar Inductors

ABOUT STANDEX

Customer Focused Engineering Solutions. "Innovating for more than 50 years."

The Standex Electronics business, a division of Standex International Corporation (NYSE:SXI), has been providing solutions through high-performing products since the 1950's. Through growth, acquisition, strategically partnering with customers, and applying the latest engineering designs to the needs of our ever-changing world, Standex Electronics technology has been providing quality results to the end-user. The approach is achieved by partnering with customers to design and deliver individual solutions and products that truly address customers' needs.

Standex Electronics is headquartered in Cincinnati, Ohio, USA, Standex Electronics has nine manufacturing facilities in six countries, located in the United States, Germany, China, Mexico, the United Kingdom, and Japan.

That's **Standex |Smart.**
standxelectronics.com

WHO WE ARE / WHERE WE PLAY

Powerfully transforming. "When failure is not an option, designers of critical electronic components rely on Standex and their decades of experience."

We offer engineered product solutions for a broad spectrum of product applications in all major markets, including but not limited to:

- Aerospace & Military
- Alternative Energy
- Automotive (EV) & Transportation
- Electric Power & Utilities
- Medical
- Smart Grid & Metering
- Industrial & Power Distribution
- Test & Measurement
- Security & Safety
- Household & Appliances

Standex Electronics is a worldwide market leader in the design, development and manufacture of custom magnetics and power conversion components and assemblies. Our work, growth, and dedication to providing reliable high-quality products through our engineering and manufacturing expertise go beyond products we ship.

Seit über 50 Jahren ist Standex Electronics also ein innovatives Unternehmen mit neusten Produkten, unterschiedlichsten Kundenprojekten und dem Ausbau unserer globalen Präsenz am Markt vertreten und kann dadurch ein stetiges Wachstum verzeichnen.

1960 National Transistor
1969 Paul Smith Company

1971 Comtelco
1973 Underwood Electric
1974 Van Products

1960

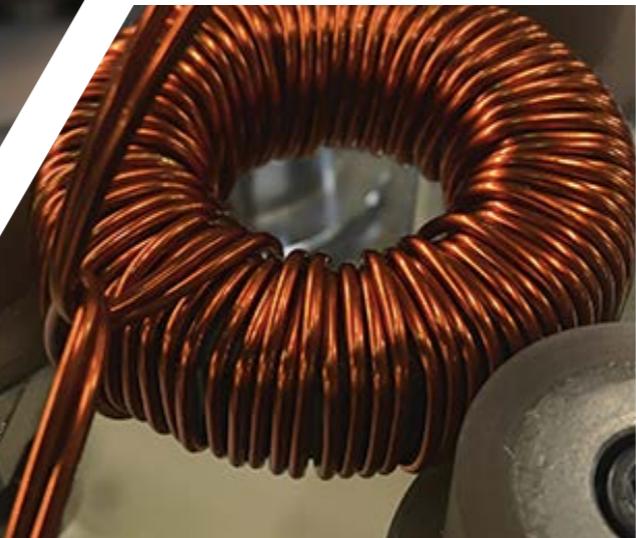
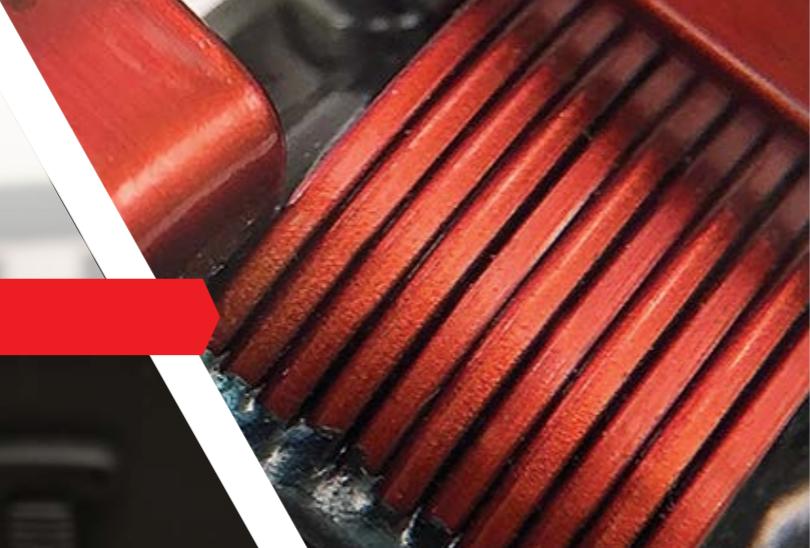
1970

1998 ATR Coil /
Classic Coil Winding

1990

2001 ATC-Frost Magnetics
2002 Cin-Tran
2003 Magnetico /Trans America
2004 Lepco
2008 BG Laboratories

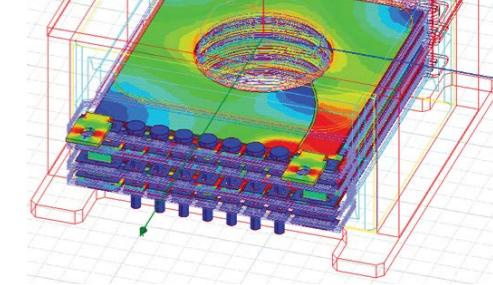
2000

2012 Meder Electronic
2014 Planar Quality Corp.
2015 Northlake Engineering, Inc.
2017 OKI Sensor Device Corp.

2010

OUR CAPABILITIES



INTERNATIONAL TRADING
REGULATIONS
ITAR

**IATF
16949**

**ISO9001
CERTIFIED**

REGISTERED
AS9100

MANUFACTURING

- 52 to 5awg Magnetic Wire Winding
- Foil, Flat, & Square Wire Winding
- Automatic CNC Winding
- Bobbin, Layer, & Self-Supporting Winding
- Toroidal Hook & Shuttle Winding
- Thermoplastic & Thermoset Overmolding
- Impregnation, Casting, & Potting
- Void-Free Vacuum Potting
- NASA Certified Soldering
- Wire Prep & Harness Assembly
- Injection Molding
- Metal & Plastic Fabrication
- Lean Manufacturing Principles
- Complete, In-House Machine Shop
- Poka-Yoke "Mistake Proofing"

ENGINEERING

- 3-D CAD Modeling
- 3-D Printing
- Mechanical Design & Packaging
- Rapid Prototyping
- Magnetic Simulation Software
- Mechanical, Thermal & FEA Analysis
- Plastic Mold Flow Simulation
- APQP Project Management

QUALITY & COMPLIANCE

- AS9100 & IATF16949 Certifications
- ITAR Compliance
- Regulatory Agency Approvals
- PPAP & First Article Inspection
- SPC Data Collection

TESTING & LAB CAPABILITIES

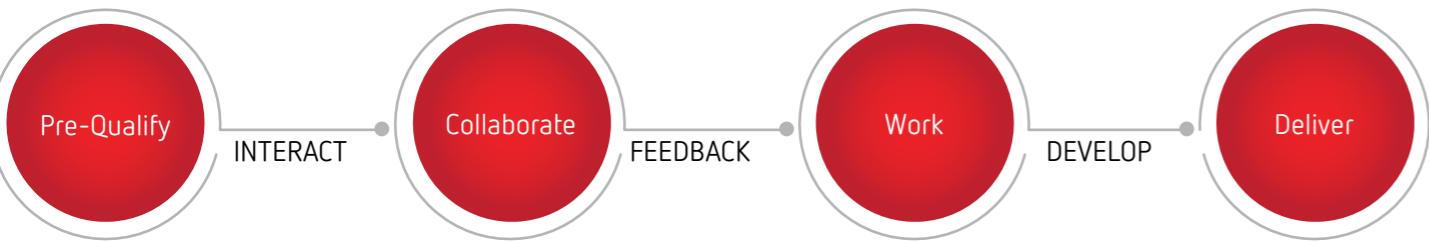
- Automated Transformer Testing
- Medical Safety Testing
- High Voltage/Partial Discharge Testing
- Full Load & Temperature Rise Testing
- 2-D/3-D Microfocus X-ray Inspection
- Digital Microscopic Inspection
- MIL-STD-202 In-House Qualification Testing
- Mechanical, Shock & Vibration
- Burn-In & Life Testing
- Thermal Shock & Temperature Cycling
- Humidity, Salt Fog, & Solderability
- Moisture Resistance & Seal Testing

That's **Standex | Strong.**
standexelectronics.com

Our Approach

PARTNER // TEAMWORK

Dig deep into the customer's project and develop relationship through our thought leadership, expertise, team, and global footprint.


SOLVE // UNDERSTAND

Capabilities, lab, size, shape, power management, ranges, frequency, and more around how our capabilities can provide efficient, productive, designs & products.

DELIVER // QUALITY

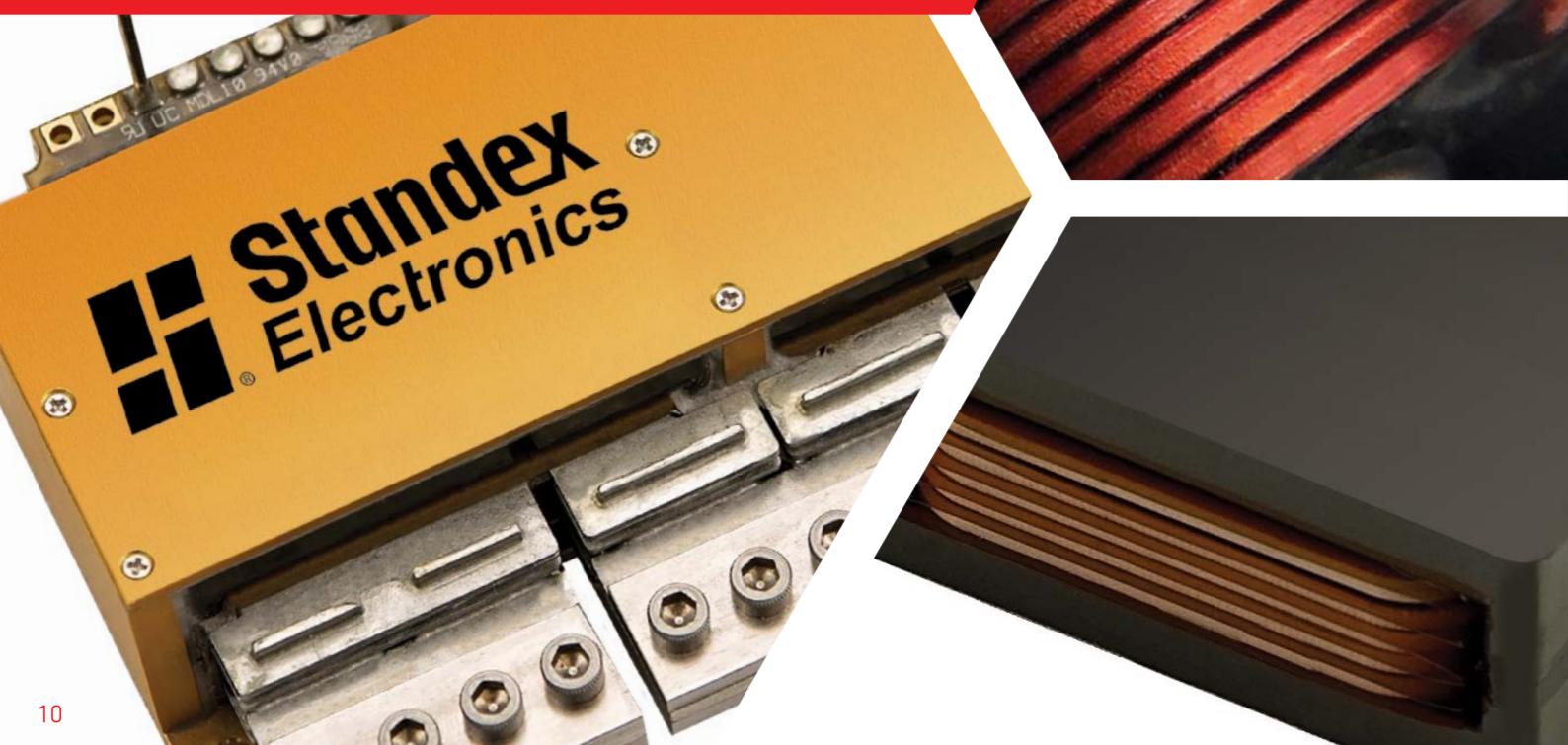
Help customers win through our diverse products, dynamic capabilities, reliable high-quality magnetics solutions, and customer driven innovation and service.

Our Process

- Understand Application
- Define Design Targets
- Define Topology
- Why Planar?
- Efficiency & Power Requirements
- Operating Frequency
- Thermal & Cooling Conditions
- Isolation Considerations
- Cost Targets Vs. Efficiency
- Open Engineering Team Dialogue
- Footprint Negotiations
- Optimize Efficiency
- Electrical & Thermal Modeling
- Preliminary Design Approval
- Identify Custom Components
- Specify Terminations
- Thermal Management Design
- Generate Print & Quotation
- Final Design Approval
- Generate BOM
- Order Material
- Queue Samples
- Sample Build
- EL Test & Report
- Application Testing
- Feedback
- Iterations If Necessary
- Production Order
- APQP
- FAI
- DFMEA & PFMEA
- Line Audit
- PPAP
- Delivery
- Sustaining Engineering

Complex problems deserve custom solutions - As your "application engineer experts", we deliver custom design, development, and manufacture of reliable high-quality planar magnetics that are used across all major markets.

Planar Inductor Request Form


Planar Transformer Request Form

standexelectronics.com/planar-inductor-request-form/

standexelectronics.com/planar-transformer-request-form/

"Planar magnetics offer improved power density and performance compared to equivalent wire wound designs."

PLANAR MAGNETICS

ADVANTAGES OF WORKING WITH STANDEX ELECTRONICS

Global Design and Manufacturing

- Experienced with creating custom solutions for partners across the globe
- Capable of leveraging global supply chains on behalf of our partners
- Global manufacturing locations provides options regarding cost vs timing

Ready and Willing to Grow with Our Partners

- Part of a \$1B publicly traded corporation with access to capital markets
- Able to make investments to grow our capacity along with our partners
- Forward focused supplier that you can depend on in the long run

Deep Technical Expertise

- Over 100 years of custom magnetics design experience
- Capable of proving design calculations, simulations and prototype samples
- Portfolio of technical solutions developed through years of custom designs
 - US Patent 7,129,809 for surface mount header
 - US Patent 7,460,002 for custom terminal design
 - Optimized footprints & thermal management
 - Custom encapsulation/potting methods to meet isolation requirements

Broad Product Portfolio and Capabilities

- Experienced manufacturer of both planar and traditional magnetic designs
- Wide power range of 25W to 250kW and frequency range of 20kHz-1MHz+
- One-stop shop able to fully test components to meet rigorous certifications

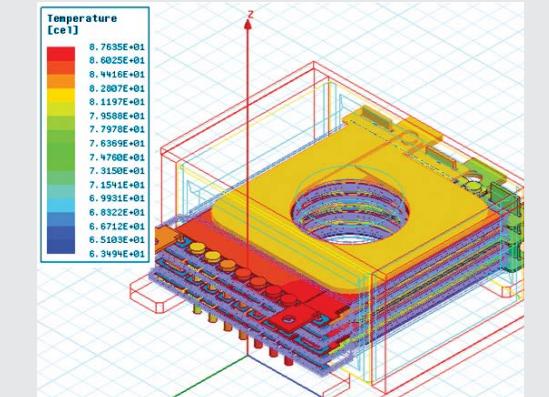
ADVANTAGES OF STANDEX ELECTRONICS' DESIGN APPROACH

Minimized Footprint

- Planar better utilizes core space, enabling more compact magnetic designs
- Standex uses ER Cores, which allows most compact designs in the industry
- Flexible termination designs allow fit into existing space with minimal redesign

Optimized Performance

- High power density enables 99%+ efficiency with significantly lower material
- Optimized core cross section and low turn count minimizes losses
- Compact design better allows heat transfer out of components


High Reliability

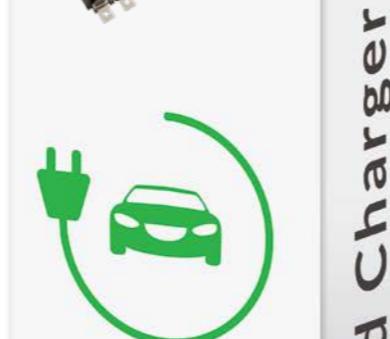
- Elimination of hand winding reduces part to part variation
- Use of PC boards and encapsulation methods allow high isolation
- ER core geometry reduces EMI that may interfere with sensitive equipment of custom designs

Partner in Innovation

- Experience in fully custom designs for customers large and small
- Plastic molding expertise, enabling unique isolation and value-add solutions
- Capable of providing full thermal management designs, as needed

We offer engineered planar magnetics solutions for a broad spectrum of product applications in all major markets. Battery charging, electric vehicles, solar inverters, aviation, healthcare, and industrial markets are just some of the areas where planar technology is gaining ground.

APPLICATIONS


- Automotive, Electric & Hybrid Vehicles
- Renewable Energy - Wind & PV Systems
- Aerospace & Military (high reliability & repeatability)
- Welding, Lasers & Test Equipment
- DC-DC Converters
- AC-DC Resonant Designs
- Appliance
- Battery Charging (12V, 24V, 48V, 1-10 KW)
- Switch Mode Power Supplies
- Distributed Isolated Power
- Feedback Control
- High Current POL Converters
- High Power LED Lighting & Industrial Power
- Isolated Inverters
- Isolated (unregulated) Bus Conv. (Vout 9-12V)
- Server – Data Centers (400VDC)
- Telecom ("Sweet Spot" 36-72 Vin 40-250W)

"Planar technology is making headway in some of the most demanding applications and emerging markets."

FAST CHARGER

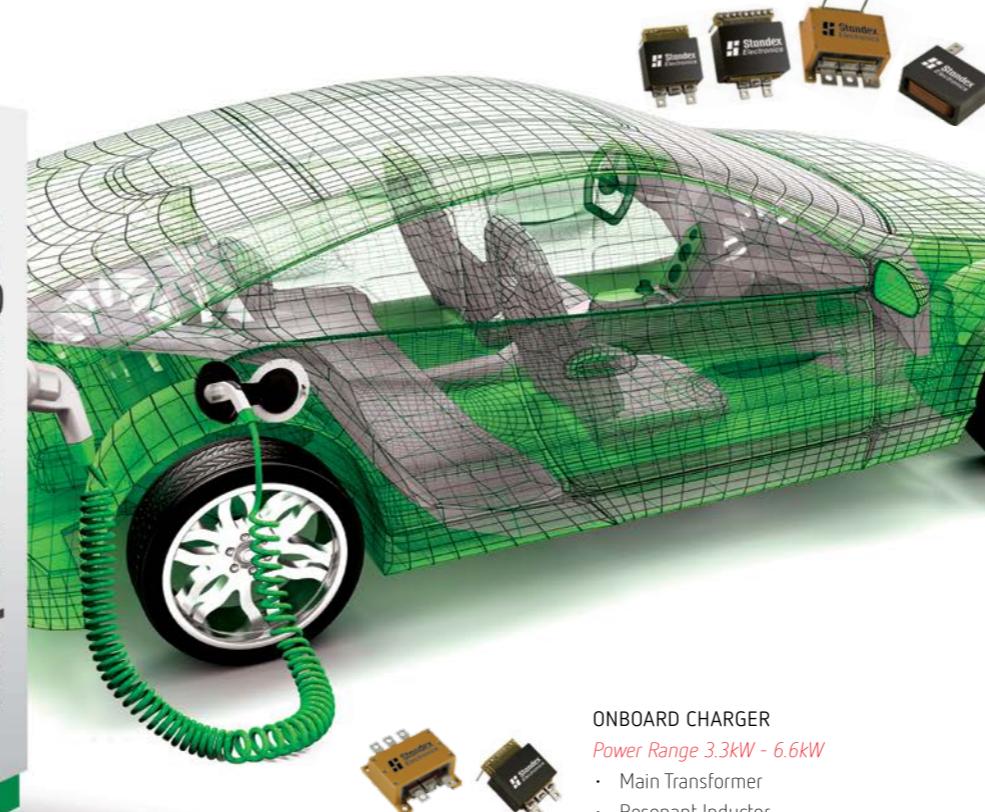
Power Range 15kW - 100kW

- Main Transformer
- Resonant Inductor

Rapid Charger

BATTERY MANAGEMENT SYSTEM

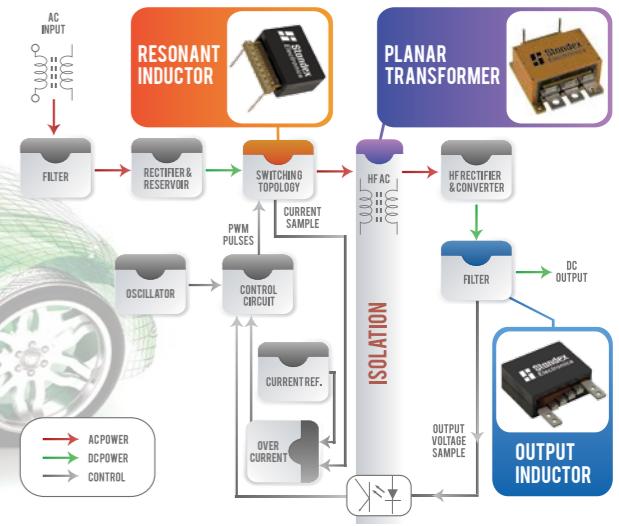
Power Range 25W


- Transformer

DC/DC CONVERTER

Power Range 1kW - 7kW

- Main Transformer
- Output Choke
- Resonant Inductor



ONBOARD CHARGER

Power Range 3.3kW - 6.6kW

- Main Transformer
- Resonant Inductor

SWITCH-MODE POWER SUPPLY
// PLANAR MAGNETICS APPLICATIONS //

"Planar transformers and inductors are the ideal solution for efficient SMPS applications."

CUSTOMER CONFIGURATIONS

Complex problems deserve custom solutions - "Inductors available for design in all packages."

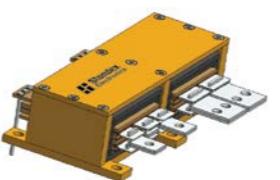
TYPICAL PACKAGE RATINGS – APPLICATION DEPENDENT

Size "Semi- Standard Package"	Optimum Power Range (W)	Page #	Max Current Rating (A)	Optimum Frequency Range (kHz)	Forward							Resonant LLC	Typ. Dimensions ⁽⁴⁾ L W H (mm)	Isolation Pri-Sec, Pri-Core (VDC)			
					Forward	Flyback	Full Bridge	Full Bridge (ZVS)	Half Bridge	Half Bridge (ZVS)	Push-Pull						
025 ⁽¹⁾	10 - 50 ⁽²⁾	14	20 ⁽³⁾	300 - 500	✓	✓								17	16	7	500 - 2k
035 ⁽¹⁾	20 - 150 ⁽²⁾	15	30 ⁽³⁾	200 - 400	✓	✓			✓					23	20	8	500 - 2k
055 ⁽¹⁾	50 - 200 ⁽²⁾	16	50	175 - 300	✓	✓			✓					25	22	10	500 - 2k
075 ⁽¹⁾	100 - 500 ⁽²⁾	17	50 ⁽³⁾	150 - 300		✓	✓	✓	✓	✓				29 - 35	27	11	5k, 500 - 2k
110 ⁽¹⁾	150 - 700 ⁽²⁾	18	60 ⁽³⁾	100 - 250		✓	✓	✓	✓	✓				34 - 40	29	13	5k, 500 - 2k
135 ⁽¹⁾	300 - 1.2k	19	100	100 - 250		✓	✓	✓	✓	✓				39 - 45	32	13 - 16	5k, 500 - 2k
220 ⁽¹⁾	1k - 3k	22	250	60 - 200		✓	✓	✓	✓	✓	✓			46 - 51	41	18 - 21	5k, 500 - 2k
350 ⁽¹⁾	2k - 6k	25	300	40 - 150		✓	✓	✓	✓	✓	✓			54 - 59	51	22 - 26	5k, 500 - 2k
560 ⁽¹⁾	3k - 10k	28	400	40 - 125		✓	✓	✓	✓	✓	✓			66 - 72	64	26 - 31	5k, 500 - 2k
900 ⁽¹⁾	10k - 20k	34	500	40 - 125		✓	✓	✓	✓	✓	✓			119	111	44	5k
2100 ⁽¹⁾	10k - 100k	37	600	20 - 125		✓	✓	✓	✓	✓	✓			195	109	45	5k
4000 ⁽¹⁾	100k - 250k	38	1000	20 - 125		✓	✓	✓	✓	✓	✓			307	164	63	5k

(1) Size Is Preceded By "p" For Transformer Or "i" For Inductor

(2) Patented (U.S. PAT. 7,129,809) Header Design With Superior Thermal Management, Coplanarity, And Repeatable Height

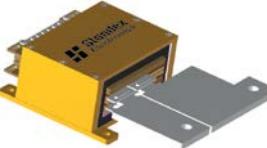
(3) Current Rating Is 30% Higher For Through-Hole Applications


(4) Length (L) May Vary Depending On Terminals/ Height (H) Depending On Input / Output Requirements

Standex offers **hundreds of multi-layer PCB's and lead frames that can be custom configured** for your custom power requirements.

CUSTOMER CONFIGURATIONS

- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input/output voltages
- Optimized turns ratio
- Thermal solutions heat sinks, etc.
- Multiple terminal/termination options
- Inductors available for design in all packages
- Value-added assemblies


Dual heatsink package with transformer and DC output inductor

Custom control transformer with multiple outputs

Custom heavy style busbar terminals for high current connection and thermal management

Custom Configurations / Standard Sizes

CUSTOM CONFIGURATIONS
Inductors, >30kW, Thermal Solutions, and Custom Terminations

HIGH POWER 10kW-250kW
SIZE 900, 2100, 4000

MID POWER 1kW-10kW
SIZE 220, 350, 560

LOW POWER 10W-1kW
SIZE 035, 055, 075, 110, 135

DC output inductor with narrow footprint and custom heatsink

Custom 6kW transformer with custom primary and secondary connections to accommodate customer packaging

Standex |Strong.

LOW POWER // 10W-1kW

"High Frequency Efficiency"

Size 025-135 is ideally suited for low power applications with an optimal power range of 10W-1kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

Optimum Power Range: 10W - 1kW

Current Rating Max.: 5-100A (+30% for THT)

Optimum Frequency Range: 300 - 500kHz

Mounting Options:

Surface Mount (SMD), Through-Hole (THT)

Topologies:

Forward, Flyback, Full Bridge, Full Bridge (ZVS), Half Bridge, Half Bridge (ZVS), Push-Pull

Typical Dimensions:

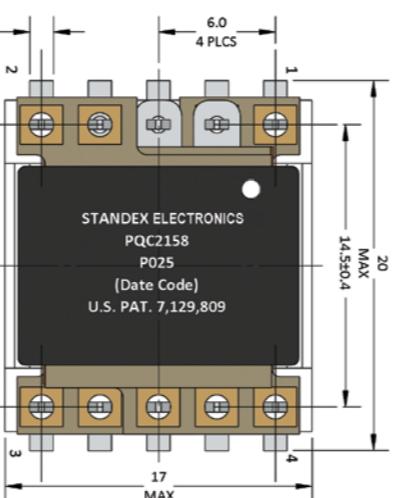
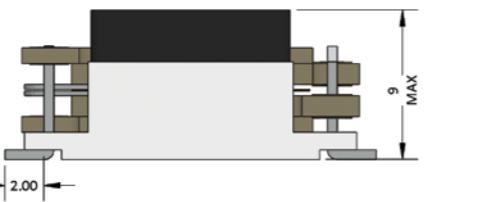
L	W	H
17-45mm	16-32mm	6-20mm

*Length (L) May Vary Depending On Terminals
Height (H) Depending On Input & Output Requirements*

APPLICATIONS

- Renewable Energy - Photovoltaic Systems
- Aerospace & Military (high reliability & repeatability)
- Test Equipment
- Switch Mode Power Supplies
- Distributed Isolated Power
- Telecommunications
- Battery Management Systems
- Automotive, Electric & Hybrid Vehicles

CUSTOMER CONFIGURATIONS



- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input / output voltages
- Optimized turns ratio
- Thermal solutions heat sinks, etc.
- Multiple terminal/termination options
- Custom footprints for isolation requirements

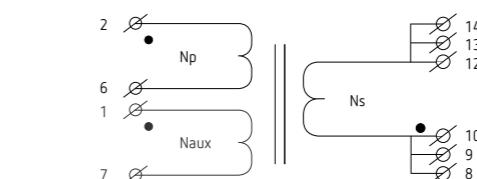
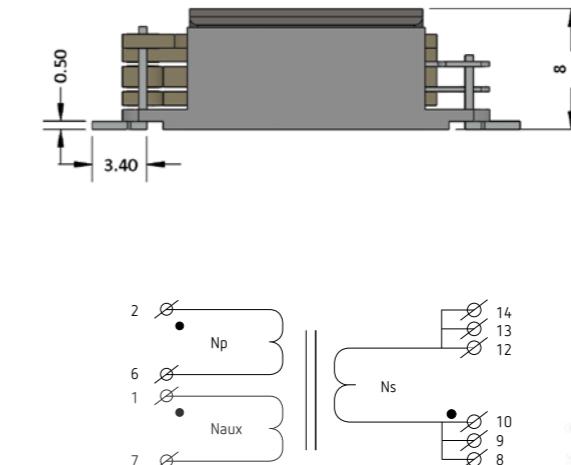
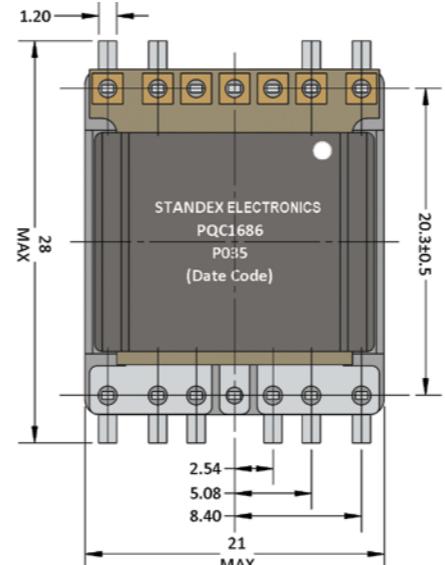
That's **Standex |Strong.**
standexelectronics.com

SOLUTIONS | Planar Transformers & Inductors

**SIZE 025
10W-50W**

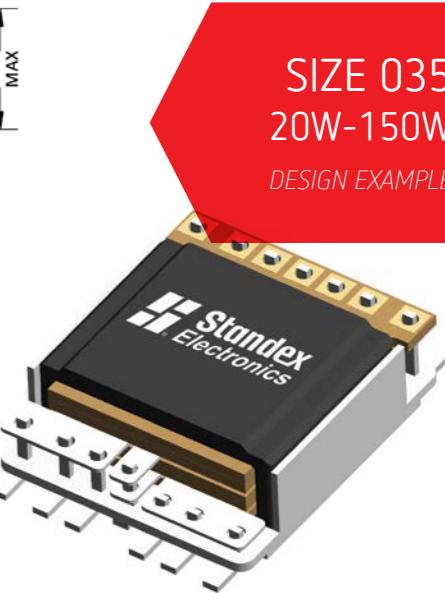
DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC2158 (U.S. PAT. 7,129,809)




ELECTRICAL SPECIFICATIONS		Forward w/Active Reset	Temp. Rise, Max.	+15°C
Topology				
Input Voltage	15-42VDC		Minimum Isolation Voltage	
Output Voltage/Current After Rectification	15VDC/2ADC		Primary To Secondary And Core	200VDC
Turns Ratio - Np/Ns	6T/12T		Secondary To Core	200VDC
Switching Frequency	300kHz		Primary Inductance, Np, Min.	43µH
Duty Cycle At Low Input Voltage Max.	53.0%		Primary Resistance, Rdc, Np, Max.	9mOhm
Efficiency At Vin=28Vdc/30W Output Calc.	98.2% (0.53W losses)		Secondary Resistance, Rdc, Ns, Max.	65mOhm
Operating Ambient Range (Full Load)	-20°C to +85°C		Leakage Inductance 1-2/3-4 Shorted, Typ.	0.2µH
*When bonded to substrate and soldered using all available terminals.			Weight Range (Approximate)	12-50grams

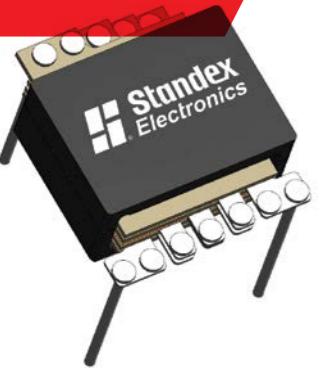
NOTES:
 1) PATENTED HEADER AND SURFACE MOUNT TERMINATIONS PROVIDE REPEATABLE CO-PLANARITY FOR MANUFACTURING
 2) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE

SOLUTIONS | Planar Transformers & Inductors


**SIZE 035
20W-150W**

DESIGN EXAMPLE

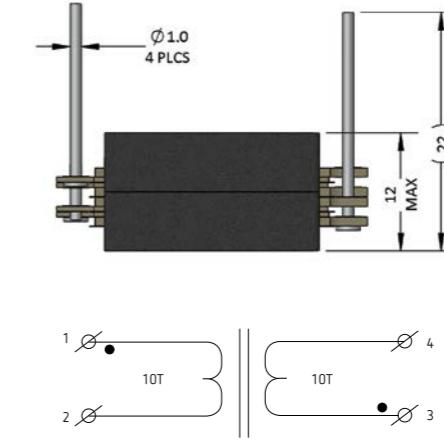
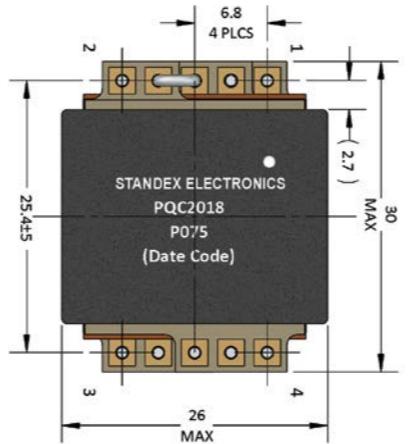
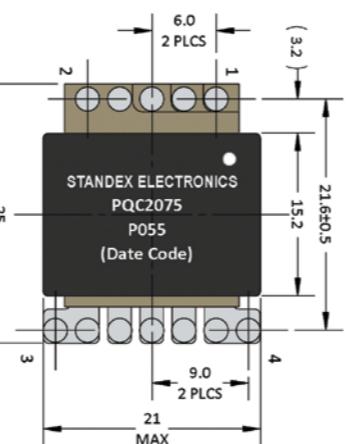
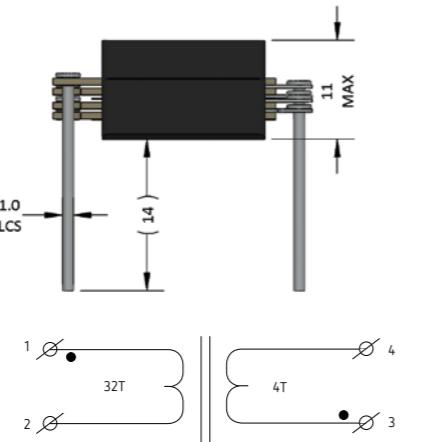
TRANSFORMER DESIGN | EXAMPLE - PQC1686


ELECTRICAL SPECIFICATIONS		Forward w/active rest	Minimum Efficiency At Nominal Input	97.50%
Topology			Temp. Rise Hot Spot Ambient	+45°C
Input Voltage	36-72VDC		Minimum Isolation Voltage	
Output Voltage/Current After Rectification	50W		Primary And Aux To Secondary	1500VDC
Rated Current From Ns1 Output	15A		Primary And Aux To Core	1500VDC
Rated Current From Naux Output	0.5A		Primary To Aux	200VDC
Switching Frequency	300kHz		Secondary To Core	200VDC
Turns Ratio - Np/Ns / Naux	12T/2T/8T		Leakage Inductance Typ.	0.75µH
Duty Cycle At Low Input Voltage Max.	61%		Weight Range (Approximate)	12-50grams
Operating Ambient Range (Full Load)	-40°C to +85°C			
Minimum Inductance	248µH			

NOTES:	
1) PATENTED HEADER AND SURFACE MOUNT TERMINATIONS PROVIDE REPEATABLE CO-PLANARITY FOR MANUFACTURING	
2) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE	

SIZE 055
50W-200W

DESIGN EXAMPLE





TRANSFORMER DESIGN | EXAMPLE - PQC2075

ELECTRICAL SPECIFICATIONS

Topology	Continuous Flyback
Input Voltage (100 VDC Nominal)	93-105VDC
Output Voltage/Current After Rectification	36W (12V/3A)
*Surge Output Power	60W (12V/5A)
* 5 Sec., Once An Hour Or Less Frequency	
Turns Ratio - Np/Ns	8 : 1
Switching Frequency	150kHz
Duty Cycle, Max. At Low Input Voltage	53.0%
Efficiency At Vin=100VDC/36W Output Calc.	97.2% (1W losses)
Operating Ambient Range (Full Load)	-11°C to +70°C

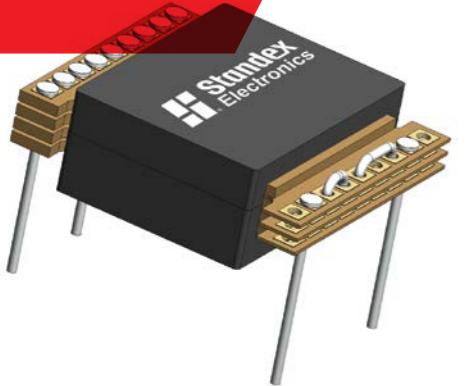
Temp. Rise, Natural Cooling 36W, Max.	+35°C
Minimum Isolation Voltage	
Primary To Secondary And Core	1000VDC
Secondary To Core	500VDC
Primary Inductance, Np, Typ.	200 μ H \pm 5%
Primary Resistance, Rdc, Np, Max.	470mOhm
Secondary Resistance, Rdc, Ns, Max.	5mOhm
Leakage Inductance 1-2/3-4 Shorted, Typ.	5 μ H
(Secondary Shorted With Low Impedance Jumper)	
Weight Range (Approximate)	12-50grams

NOTES:
 1) CUSTOM THROUGH HOLE FLYBACK DESIGN
 2) PATENTED SURFACE MOUNT HEADER AVAILABLE
 3) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE

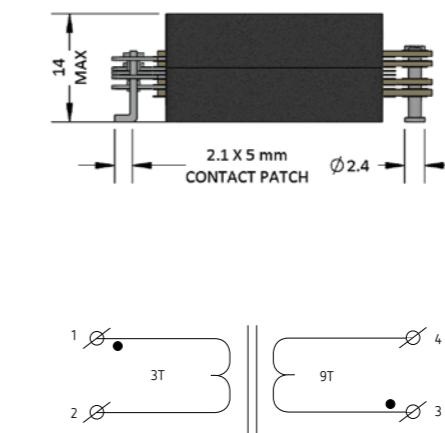
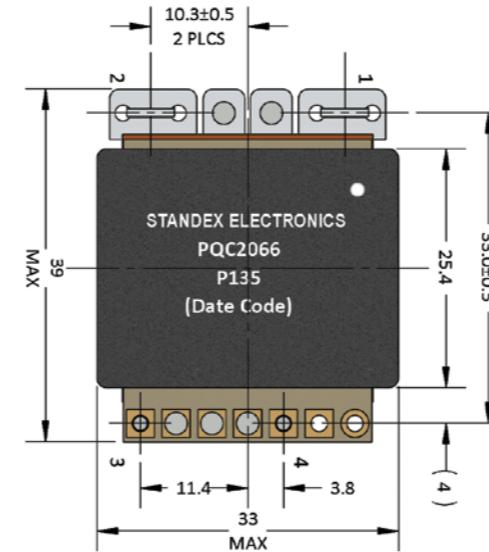
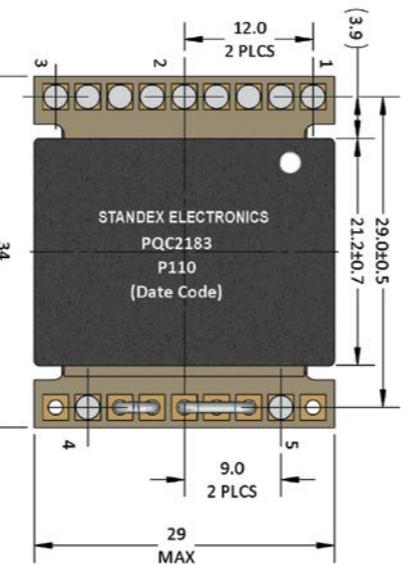
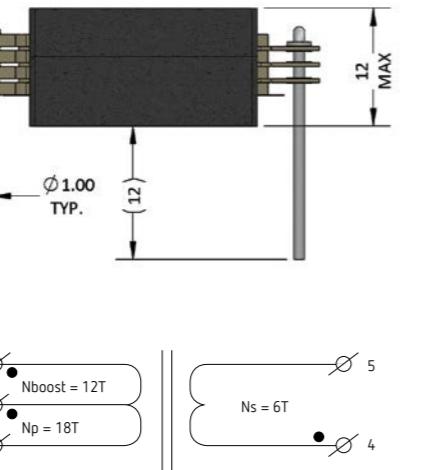

TRANSFORMER DESIGN | EXAMPLE - PQC2018

ELECTRICAL SPECIFICATIONS

Topology	Forward
Input Voltage	47-100VDC
Output Voltage/Current After Rectification	100W/(20VDC/5A)
Turns Ratio - Np/Ns	10T/10T
Switching Frequency	150kHz
Duty Cycle at Vin=47V, 1V Output Diode Drop	45.0%
Duty Cycle at Vin=100V, 1V Output Diode Drop	21.0%
Efficiency At Full Power Calculated	98.2% (1.8W losses)
Ambient Temp, Max.	+70°C


Temp. Rise, Hotspot External Heatsink, Max.	+40.5°C
Minimum Isolation Voltage	
Primary To Core	500VDC
Secondary To Primary And Core	1500VDC
Primary Inductance, Np, Min.	250 μ H
Primary Resistance, Np, Max.	25mOhm
Secondary Resistance, Ns, Max.	30mOhm
Leakage Inductance 1-2/3-4 Shorted, Typ.	0.4 μ H
Weight Range	20-70grams

NOTES:
 1) CUSTOM THROUGH HOLE FORWARD DESIGN
 2) PATENTED SURFACE MOUNT HEADER AVAILABLE
 3) THROUGH-HOLE OR SURFACE MOUNT AVAILABLE





SIZE 110
150W-700W

DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC2183

ELECTRICAL SPECIFICATIONS	
Topology	Boost Forward
Input Voltage	120-150VDC
Output Voltage/Current After Rectification Nboost	200-300VDC / 500-250mA
Output Voltage/Current After Rectification Ns1	0-30VDC / 4A
Turns Ratio - Np / Nboost / Ns	18T / 12T / 6T
Switching Frequency	250kHz
Duty Cycle, Max. At Low Input Voltage	60.0%
Efficiency At Full Power Calculated	98.3% (2.5W losses)
Ambient Temp, Max.	-55°C to +85°C
Mounted On Heatsink With Max. Temp.	+65°C

TRANSFORMER DESIGN | EXAMPLE - PQC2066

ELECTRICAL SPECIFICATIONS	
Topology	Full Bridge ZVS
Input Voltage	42-56VDC
Output Voltage/Current After Rectification	120VDC / 3.5A (420W)
Turns Ratio - Np / Nboost / Ns	3T / 9T
Switching Frequency	200kHz
Duty Cycle, Max. At Low Input Voltage	97.0%
Efficiency At Full Power Calculated	98.95% (4.4W losses)
External Ambient Temp, Max.	+35°C

ELECTRICAL SPECIFICATIONS	
Topology	Full Bridge ZVS
Input Voltage	2121VDC
Output Voltage/Current After Rectification	500VDC
Turns Ratio - Np / Nboost / Ns	27μH
Switching Frequency	1.8mOhm
Duty Cycle, Max. At Low Input Voltage	16mOhm
Efficiency At Full Power Calculated	50nH
External Ambient Temp, Max.	50-150grams

SIZE 135
300W-1.2kW

DESIGN EXAMPLE

Standex | Smart.

MID POWER // 1kW-10kW

"Meets Critical Power Demands For EV Fast Charging"

Size 220, 350, and 560 are ideally suited for mid power applications with an optimal power range of 1kW-10kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

Optimum Power Range: 1kW - 10kW

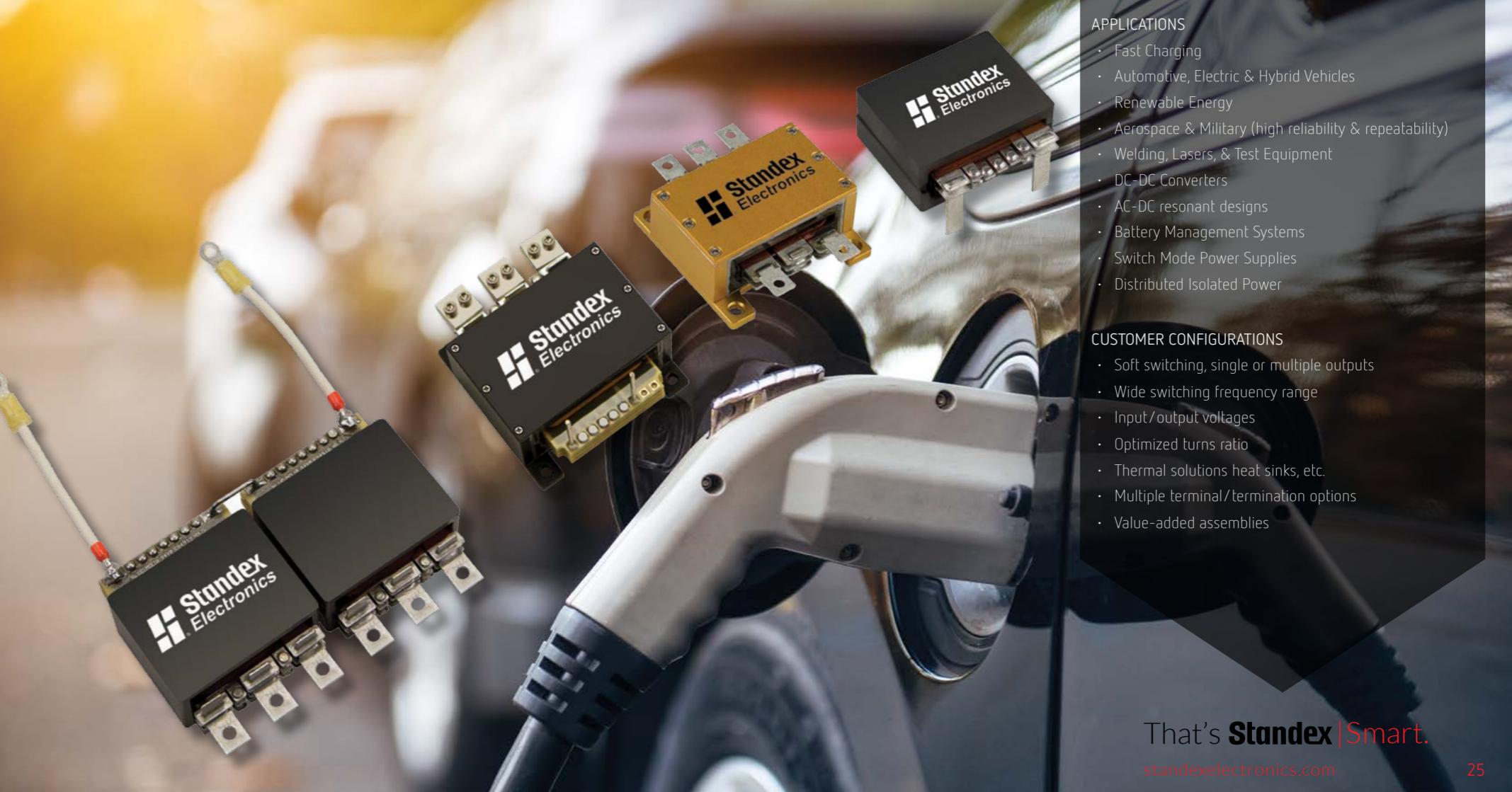
Current Rating Max.: 45-72A (+30% for THT)

Optimum Frequency Range: 40 - 250kHz

Mounting Options:

Through-Hole (THT)

Topologies:


Full Bridge, Full Bridge (ZVS), Half Bridge,

Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:

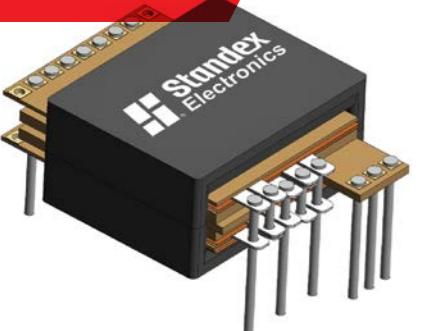
L	W	H
45-72mm	41-64mm	18-31mm

Length (L) May Vary Depending On Terminals
Height (H) Depending On Input & Output Requirements

APPLICATIONS

- Fast Charging
- Automotive, Electric & Hybrid Vehicles
- Renewable Energy
- Aerospace & Military (high reliability & repeatability)
- Welding, Lasers, & Test Equipment
- DC-DC Converters
- AC-DC resonant designs
- Battery Management Systems
- Switch Mode Power Supplies
- Distributed Isolated Power

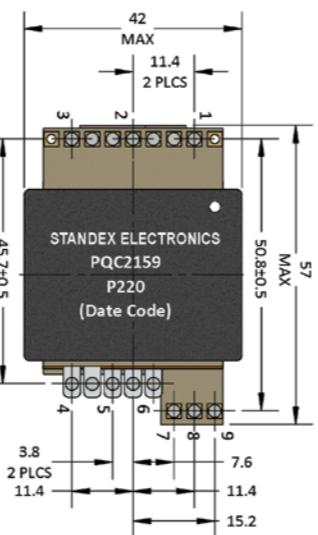
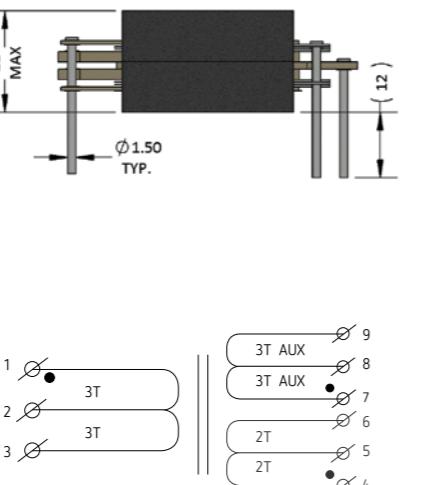
CUSTOMER CONFIGURATIONS


- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input/output voltages
- Optimized turns ratio
- Thermal solutions heat sinks, etc.
- Multiple terminal/termination options
- Value-added assemblies

That's **Standex** | Smart.

standexelectronics.com

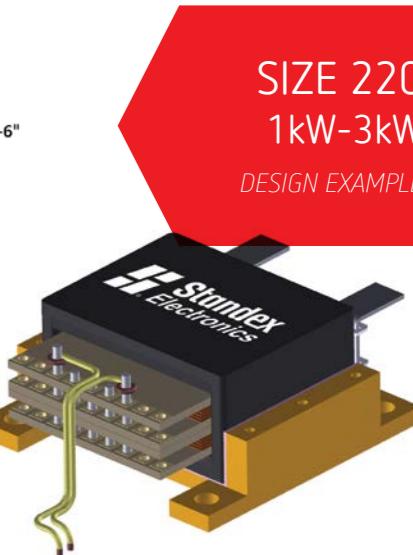
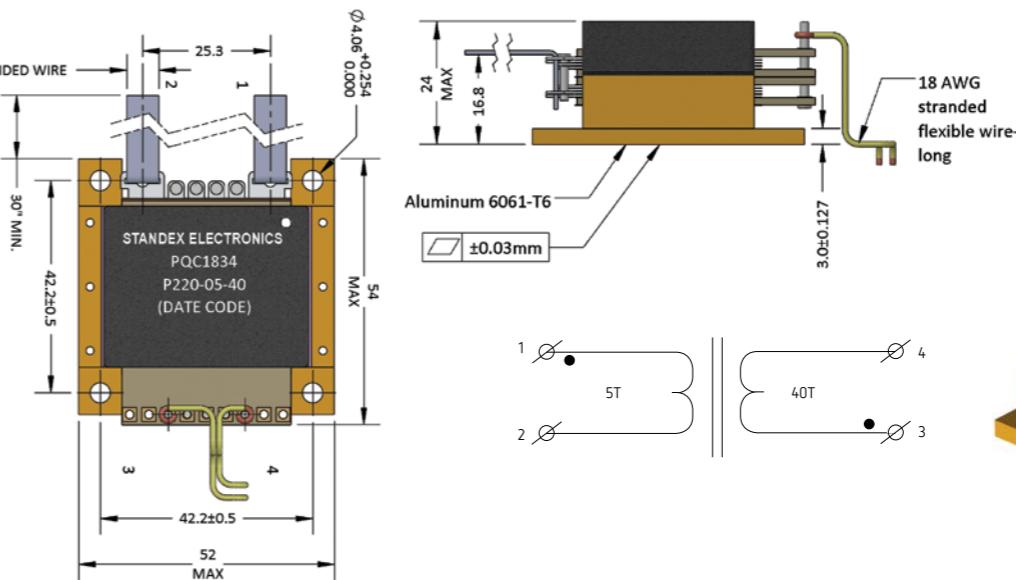
SIZE 220
1kW-3kW



DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC2159

ELECTRICAL SPECIFICATIONS

Topology	Push Pull
Input Voltage	23-125VDC
Temp. Rise Hot Spot External Heatsink, Max.	+30°C
Minimum Isolation Voltage	
Primary To Core, Secondary Ns1 And Naux1	1500VAC
Secondary Ns1 To Core	500VDC
Naux1 To Core	1500VAC
Turns Ratio - Np1 / Np2 / Ns1 / Ns2 / Naux1 / Naux2	3T/3T/2T/2T/3T/3T
Switching Frequency	70kHz
Duty Cycle, Max. Vin=23VDC	88.0%
Efficiency At Full Power (Calc.)	99% (3.2W losses)
Mounted On Heatsink With Max. Temp.	+90°C

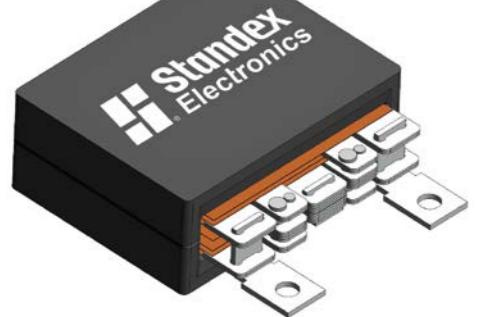


SIZE 220
1kW-3kW

DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC1834

ELECTRICAL SPECIFICATIONS

Topology	Full Bridge ZVS
Input Voltage	350-450VDC
Output Voltage/Current After Rectification	800W (320VDC/2.5ADC)
Turns Ratio - Np/Ns	5T/40T
Switching Frequency	100kHz
Duty Cycle, Max. 2.5A Operation	88%
Efficiency At Full Output 2.5A Operation (Calc.)	99.25% (6W losses)
External Heatsink Temperature Max.	+90°C
Temp. Rise Hot Spot External Heatsink, Max.	+20°C (2.5A operation)
Transformer Clamped To Heatsink	

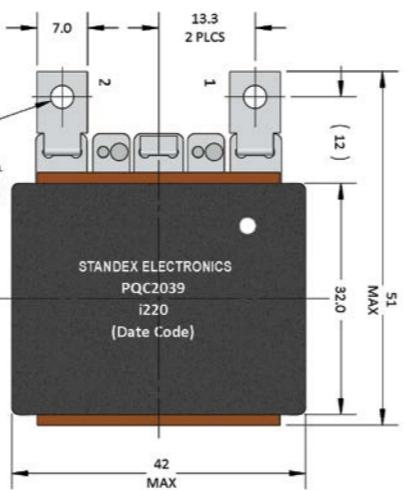
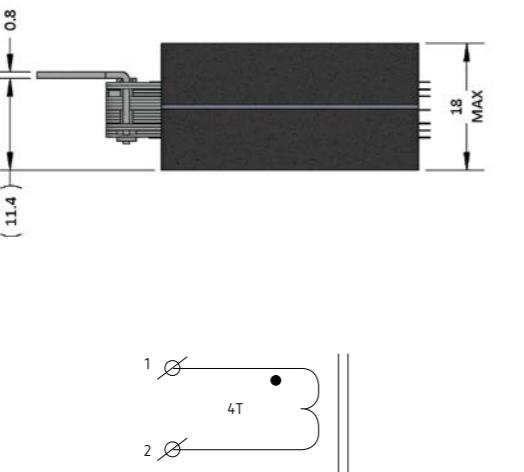

SIZE 220
1kW-3kW

DESIGN EXAMPLE

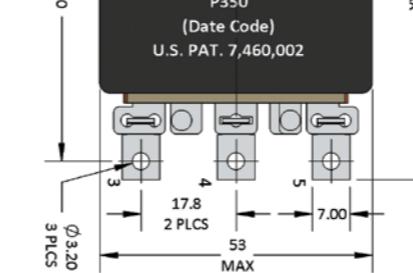
NOTES:
1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
2) PATENTED TERMINALS AVAILABLE FOR SHIELDING ON HIGH CURRENT WINDING
1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
2) PATENTED TERMINALS AVAILABLE FOR SHIELDING ON HIGH CURRENT WINDING

SIZE 220
1kW-3kW

DESIGN EXAMPLE



INDUCTOR DESIGN | EXAMPLE - PQC2039

ELECTRICAL SPECIFICATIONS


Inductance At Rated Current	2.4 μ H \pm 3%	Temp. Rise Hot Spot External Heatsink, Max.	+40°C
Rated Current	100A	Heatsink Temperature Max.	+65°C
Ripple Frequency	150kHz	Resistance Max.	1mOhm
Minimum Isolation Voltage (Winding To Core)	2000VDC	Total Losses	10W

NOTES:

- 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
- 2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING

SIZE 350
2kW-6kW

DESIGN EXAMPLE

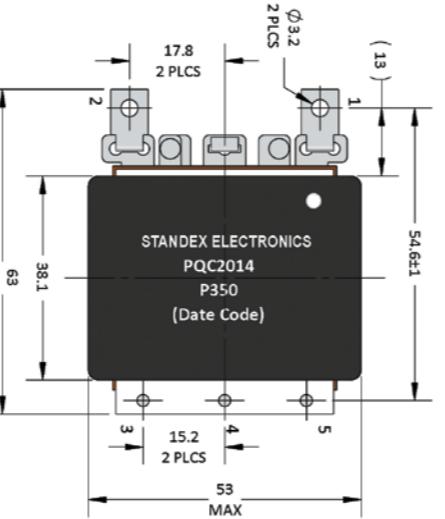
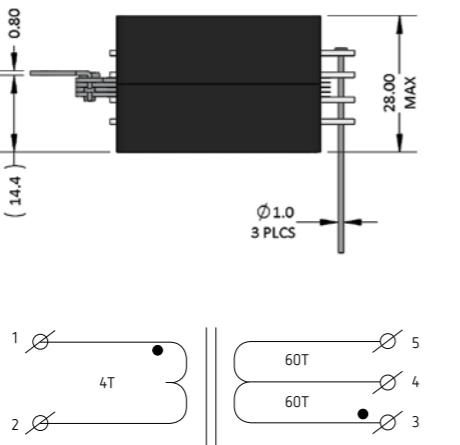
TRANSFORMER DESIGN | EXAMPLE - PQC1954 (U.S. PAT. 7,460,002)

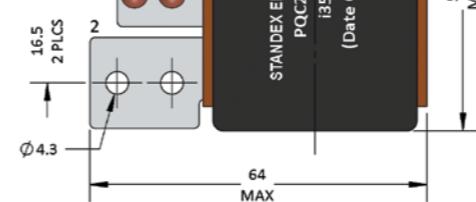
ELECTRICAL SPECIFICATIONS

Topology	Full Bridge ZVS	Temp. Rise Hot Spot Baseplate, Max.	+21°C
Input Voltage	350-750VDC	Minimum Isolation Voltage	
Output Voltage/Current After Rectification	2.5kV typ. 3kW surge	Primary To Secondary And Core	2500VAC for 1min
Output Voltage/Current After Rectification	28.4VDC/83A, 100A surge	Secondary To Core	500VDC
Turns Ratio - Np/Ns	16/2+2T	Primary Inductance, Np, Min.	1792 μ H
Switching Frequency	100kHz	Primary Resistance, Rdc, Np, Max.	22mOhm
Duty Cycle At Low Input	80.0%	Secondary Resistance, Rdc, Ns, Max.	1mOhm (0.5+0.5mOhm)
Efficiency At Full Power (Calculated)	99.1% (21W losses)	Leakage Inductance 1-2/3-4-5 Shorted, Typ.	1.5 μ H
Baseplate/Heatsink Temperature Max.	+85°C	Weight Range	150-400grams
Mounted On Heatsink With Max. Temp.	+90°C		

NOTES:
1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING

SIZE 350
2kW-6kW

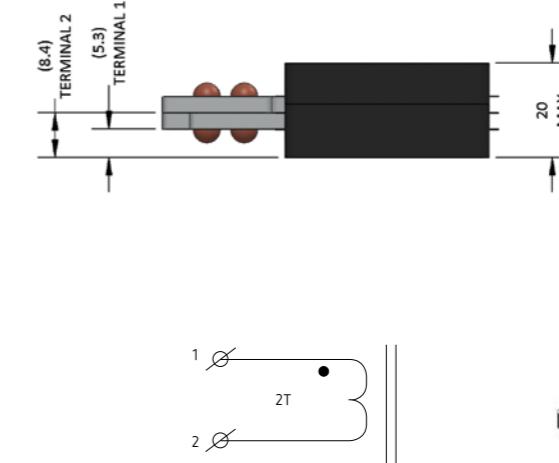


DESIGN EXAMPLE


TRANSFORMER DESIGN | EXAMPLE - PQC2014

ELECTRICAL SPECIFICATIONS

Topology	Full Bridge ZVS
Input Voltage	110-150VDC
Output Voltage/Current After Rectification	3100VDC/0.5A (1.55kW max)
Turns Ratio Np / Ns1 + Ns2	4T/60T + 60T
Switching Frequency	100kHz
Duty Cycle At 150VDC	95%
Efficiency At Full Power (Calculated)	99.3% (11W losses)
Ambient Temperature Max.	+20°C
Airflow Temperature, Speed (Recommended)	50CFM

SIZE 350
2kW-6kW


DESIGN EXAMPLE

INDUCTOR DESIGN | EXAMPLE - PQC2136

ELECTRICAL SPECIFICATIONS

Inductance At Rated Current	0.5μH ±3%	Temp. Rise Hot Spot Baseplate (Heatsink Cooling), Max.	+40°C
Rated Current (Ave. ±12.5A Ripple)	250A	Heatsink Temperature Max.	+65°C
Ripple Frequency	200kHz	Resistance Max.	0.2mΩhm
Minimum Isolation Voltage (Winding To Core)	500VDC	Total Losses	18.4W

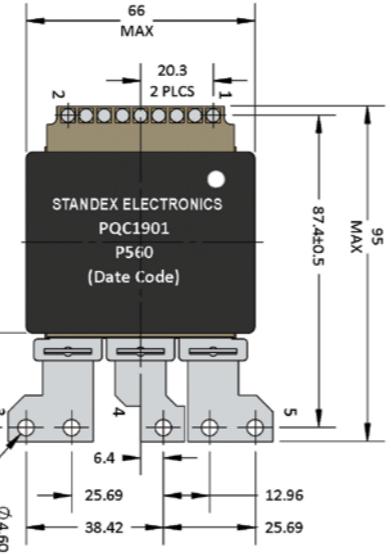
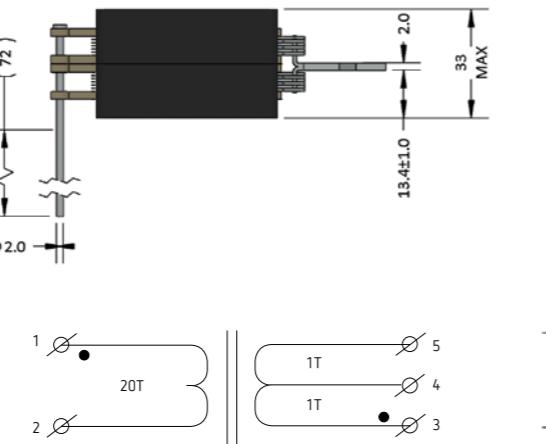
SIZE 350
2kW-6kW

DESIGN EXAMPLE

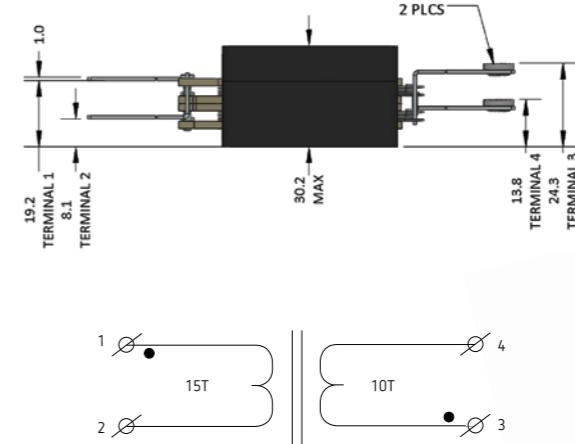
NOTES:	1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
NOTES:	2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING

SIZE 560
3kW-10kW

DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC1901 (U.S. PAT. 7,460,002)

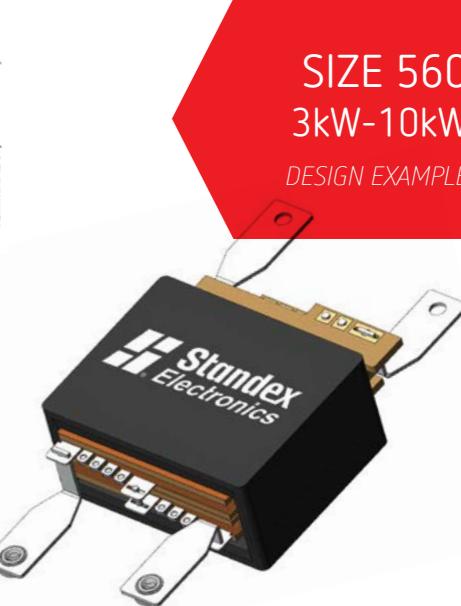

ELECTRICAL SPECIFICATIONS

Topology	Half Bridge ZVS
Input Voltage	800VDC
Output Voltage/Current After Rectification	6144W Max. (24VDC/256A)
Turns Ratio - Np/Ns	20T/1T + 1T
Switching Frequency	50kHz
Duty Cycle, Max.	100%
Efficiency At Full Power (Calculated)	99.24% (47W Losses)
Ambient Temp. Max. (Transfer clamped to heatsink)	+85°C

*Heatsink Provided By Customer

SIZE 560
3kW-10kW

DESIGN EXAMPLE

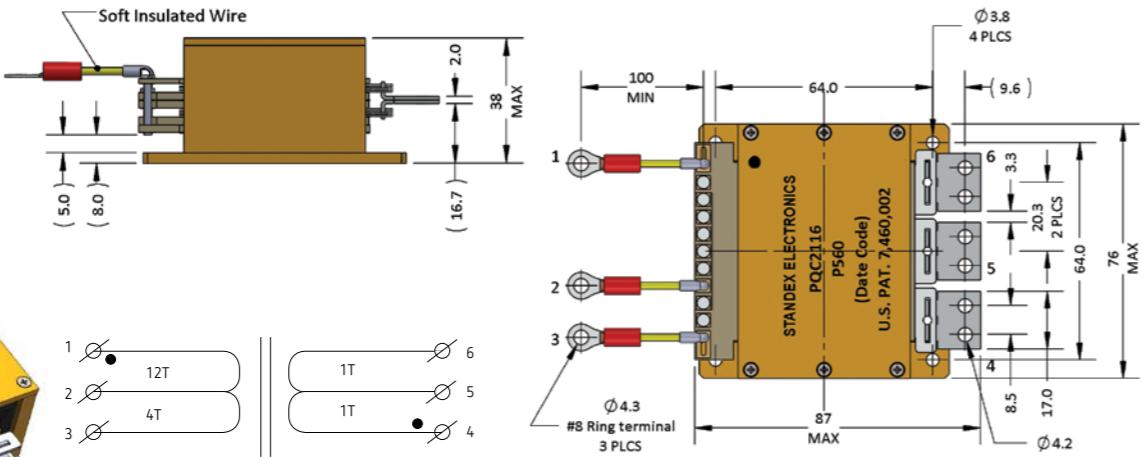
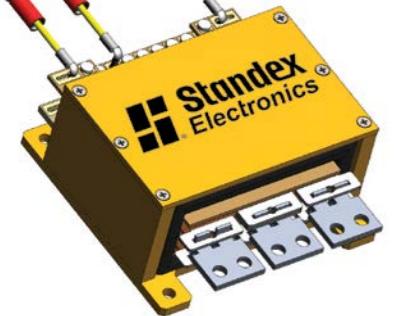


TRANSFORMER DESIGN | EXAMPLE - PQC2123

ELECTRICAL SPECIFICATIONS

Topology	Full Bridge ZVT
Input Voltage	760-840VDC
Output Voltage/Current After Rectification	12kW max. (500VDC/24ADC)
Output Voltage/Current After Rectification	28.4VDC/83A, 100A Surge
Turns Ratio - Np/Ns	15T/10T
Switching Frequency	100kHz
Duty Cycle At Low Input Voltage Max.	99.0%
Efficiency At Full Power (Calculated)	99.3% (87.4W Losses)
External Heatsink Temperature Max.	+45°C

*Heatsink Provided By Customer

Temp. Rise Hot Spot External Heatsink*, Max.	+69.9°C
Minimum Isolation Voltage	
Primary To Secondary And Core	5700VAC for 1sec
Secondary To Core	2850VAC for 1sec
Primary Inductance, Np, Min.	600µH
Primary Resistance, Rdc, Np, Max.	20mΩ
Secondary Resistance, Rdc, Ns, Max.	18mΩ
Leakage Inductance 1-2/3-4 Shorted, Typ.	1.8µH
Weight Range	300-800grams

NOTES:	1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
	2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
	3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED
NOTES:	1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
	2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
	3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

SIZE 560
3kW-10kW

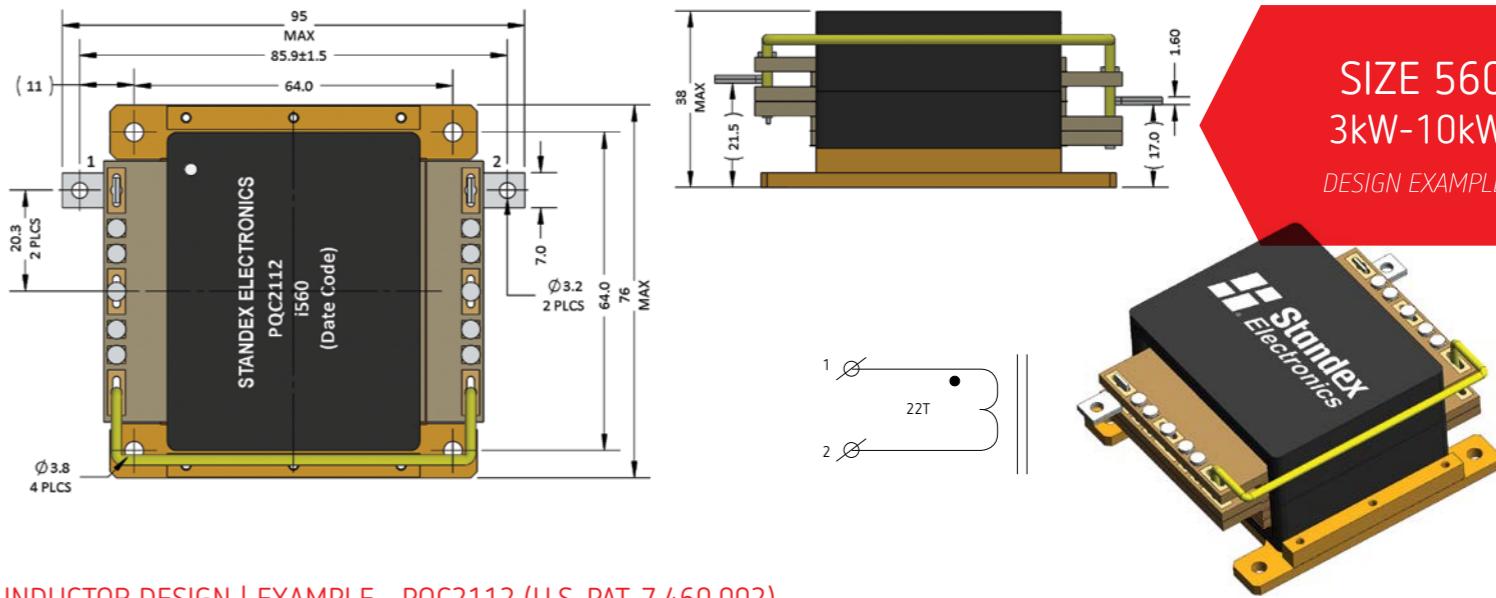
DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC2116

ELECTRICAL SPECIFICATIONS

Topology	Full Bridge ZVS
Input Voltage Np1 = 12 Turns (1-2)	350-630VDC
Input Voltage Np2 = 16 Turns (1-3)	500-820VDC
Output Voltage/Current After Rectification	28VDC/250A (7kW)
Turns Ratio - Np1/Np2/Ns1/Ns2	12T/16T/1T/1T
Switching Frequency	100kHz
Duty Cycle, At Vin=350VDC Max.	99%
Efficiency At Full Power (Calculated)	99.2% (55W losses)
External Heatsink Temperature Max.	+65°C

*Transformer Clamped To Heatsink


Temp. Rise Hot Spot External Heatsink*, Max.	+44°C
Minimum Isolation Voltage	
Primary To Secondary And Core	2700VAC
Secondary To Core	500VDC
Primary Inductance, Np1 (1-2)/Np2 (1-3), Min.	1440/2560μH
Primary Resistance, Rdc, Np1 (1-2)/Np2 (1-3), Max.	14/18mOhm
Secondary Resistance, Rdc, Ns1 + Ns2, Max.	0.3mOhm
Leakage Inductance 1-2/Sec. Shorted, Typ.	900nH
Leakage Inductance 1-3/Sec. Shorted, Typ.	1800nH
Weight Range	300-800grams

NOTES:

- 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
- 2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
- 3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

SIZE 560
3kW-10kW

DESIGN EXAMPLE

INDUCTOR DESIGN | EXAMPLE - PQC2112 (U.S. PAT. 7,460,002)

ELECTRICAL SPECIFICATIONS

Inductance At Rated Current	100μH ±10%	Temp. Rise Hot Spot Baseplate, Max.	+46°C
Rated Current (Ave. ±12.5A Ripple)	32ADC +3App	Heatsink Temperature Max.	+55°C
Ripple Frequency	100kHz	Resistance Max.	22mOhm
Minimum Isolation Voltage (Winding To Core)	2500VDC	Total Losses At Max. Current	28.7W

NOTES:

- 1) FOR OPTIMAL PERFORMANCE A THERMALLY CONDUCTIVE SUBSTRATE BETWEEN FERRITE AND HEATSINK SHOULD BE UTILIZED
- 2) PATENTED TERMINALS AVAILABLE FOR SPLITTING HIGH CURRENT WINDING
- 3) CUSTOM TERMINALS CAN BE DESIGNED AND OPTIMIZED

Standex | Strong.

HIGH POWER // 10kW-250kW

"Renewable Energy"

Size 900, 2100, and 4000 are ideally suited for high power applications with an optimal power range of 10kW-250kW. This size offers volumetric efficiency with low AC losses in a low profile, ultra compact package, as well as excellent repeatability and thermal management characteristics.

TYPICAL PACKAGE RATINGS - APPLICATION DEPENDENT

Optimum Power Range: 10kW - 250kW

Current Rating Max.: 500A (+30% for THT)

Optimum Frequency Range: 40 - 125kHz

Mounting Options:

Through-Hole (THT)

Topologies:

Full Bridge, Full Bridge (ZVS), Half Bridge,

Half Bridge (ZVS), Push-Pull, Resonant

Typical Dimensions:

L	W	H
120-145mm	94-111mm	38-45mm

Length (L) May Vary Depending On Terminals
Height (H) Depending On Input & Output Requirements

APPLICATIONS

- Fast Charging
- Electric & Hybrid Transportation
- Renewable Energy - Wind & Photovoltaic Systems
- Aerospace & Military (high/repeat reliability)
- Welding, Lasers, & Test Equipment
- DC-DC Converters
- AC-DC resonant designs
- Switch Mode Power Supplies
- Distributed Isolated Power
- Grid Energy Storage

CUSTOMER CONFIGURATIONS

- Soft switching, single or multiple outputs
- Wide switching frequency range
- Input/output voltages
- Optimized turns ratio
- Thermal solutions heat sinks, etc.
- Multiple terminal/termination options
- Value-added assemblies

That's **Standex | Strong.**

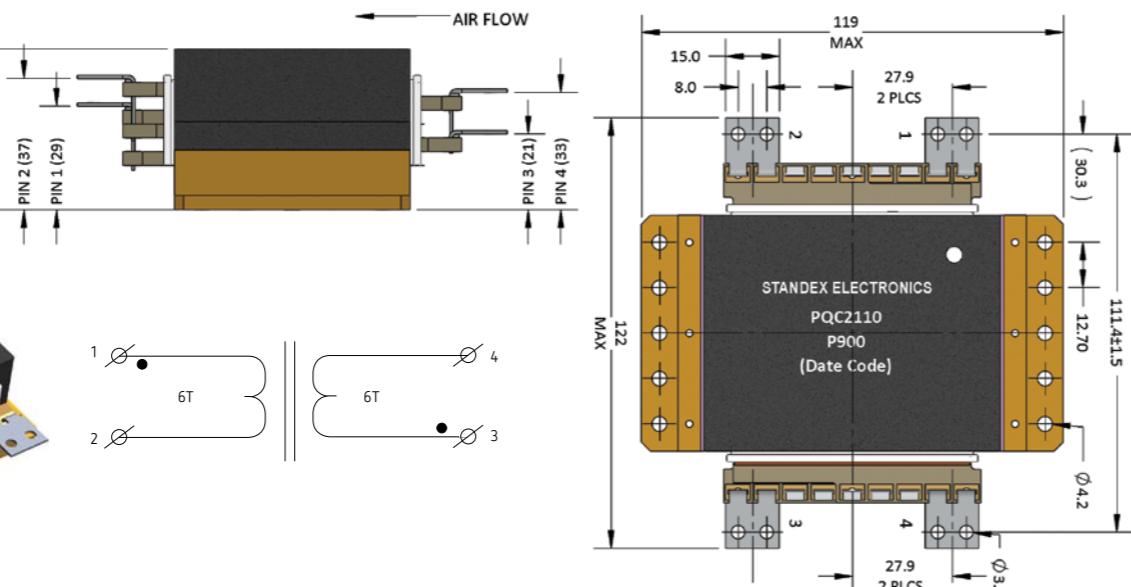
standexelectronics.com

SIZE 900
10kW-20kW

DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC2110

ELECTRICAL SPECIFICATIONS


Topology	LLC Resonant
Input Voltage	350-450VDC
Output Voltage / Current After Rectification	24kW ave. (400VDC / 60ADC)
Turns Ratio - Np/Ns	6T to 6T
Switching Frequency	100kHz
Duty Cycle At 410VDC Input, Max.	98%
Max. Efficiency 24kW Output & Vin=410VDC	99.59% (99W losses calc.)
Ambient Temperature Max.	+65°C
External Heatsink Temperature Max.	+60°C
Temp. Rise Hot Spot Baseplate*, Max.	+59°C

Airflow Of Cooling Fan (Required)

Minimum Isolation Voltage	4000VAC	1) CUSTOM TOOLED CORE UNIQUE TO STANDEX PRODUCT OFFERING
Primary To Secondary And Core	4000VAC	2) LARGE CROSS-SECTIONAL AREA REDUCES MAGNETIC FLUX DENSITY
Secondary To Core	540uH	3) MULTI LAYER PCB'S REDUCE AC LOSSES
Primary Inductance, N_p , Min.	1.5mOhm	
Primary Resistance, R_{dc, N_p} , Max.	3mOhm	
Secondary Resistance, R_{dc, N_s} , Max.	220uH	
Leakage Inductance 1-2/3-4 Shorted, Typ.	800-1600nHrms	
Weight Range		

TES:

CUSTOM TOOLED CORE UNIQUE TO STANDEX
PRODUCT OFFERING
LARGE CROSS-SECTIONAL AREA REDUCES
MAGNETIC FLUX DENSITY
MULTI-LAYER PCB'S REDUCE AC LOSSES

TRANSFORMER DESIGN | EXAMPLE - PQC2029

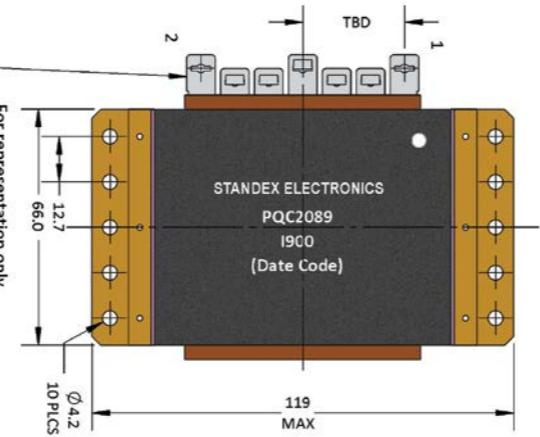
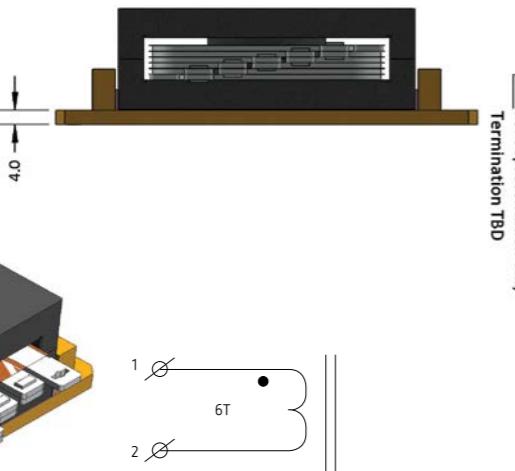
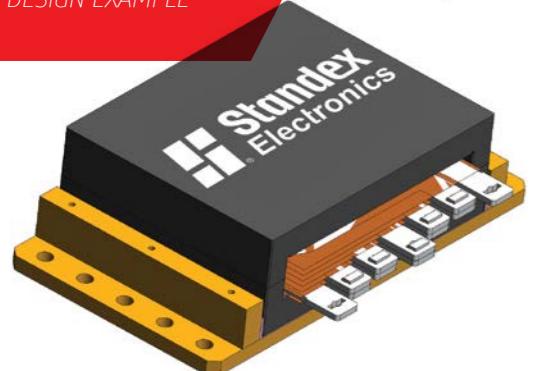
ELECTRICAL SPECIFICATIONS

Topology	LLC Resonant
Input Voltage	400VDC
Output Voltage/Current After Rectification	10kW max. (400VDC / 25ADC)
Secondary Current Nom. Rms Half Sec. Current	19A RMS sinusoidal
Turns Ratio - $N_p / N_{s1} + N_{s2}$	8T / 8T + 8T
Switching Frequency	100kHz fixed
Duty Cycle Max	100% (50% + 50%)
Efficiency At Full Power (Calculated)	99.5% (50W losses)
External Heatsink Temperature Max.	+80°C
Temp. Rise Hot Spot External Heatsink*, Max.	+25°C

Minimum Isolation Voltage

1.	2500VAC for 1min	1) CUSTOM TOOLED CORE UNIQUE TO STANDEX PRODUCT OFFERING
2.	2500VAC for 1min	2) LARGE CROSS-SECTIONAL AREA REDUCES MAGNETIC FLUX DENSITY
3.	2500VAC for 1min	3) MULTI LAYER PCB's REDUCE AC LOSSES
4.	1000 μ H	
5.	5mOhm	
Max.	10mOhm	
4-5 Shorted, Typ.	0.7 μ H	
	800-1600uHrms	

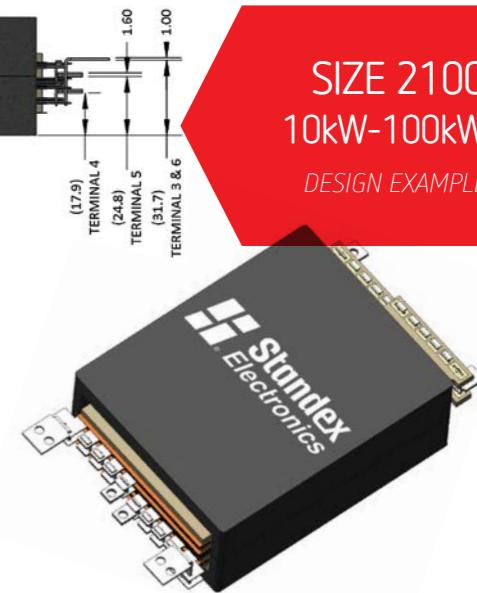
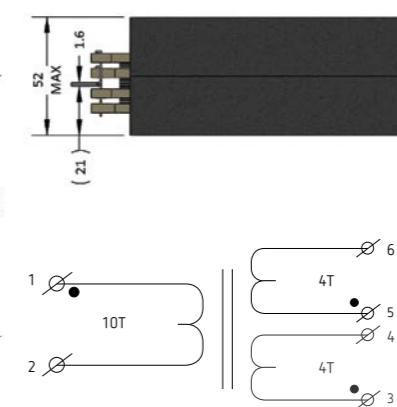
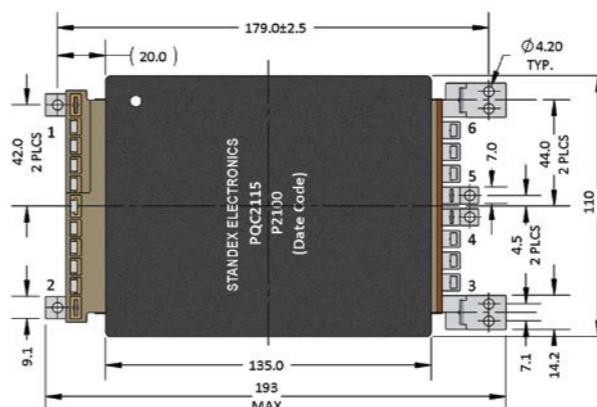
SIZE 900
10kW-20kW




DESIGN EXAMPLE

SOLUTIONS | Planar Transformers & Inductors

SIZE 900
10kW-20kW

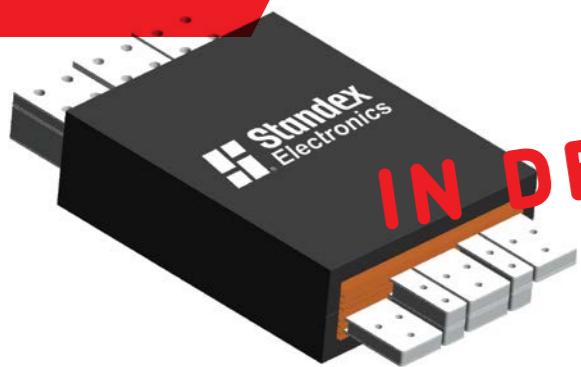
DESIGN EXAMPLE




INDUCTOR DESIGN | EXAMPLE - PQC2089

Inductance At Rated Current	12 μ H	Temp. Rise Hot Spot Baseplate, Typ.	+19°C	NOTES: 1) CUSTOM TOOLED CORE UNIQUE TO STANDEX PRODUCT OFFERING 2) LARGE CROSS-SECTIONAL AREA REDUCES MAGNETIC FLUX DENSITY
Rated Current	120ADC	Heatsink/Baseplate Temperature Max.	+70°C	
Ripple Frequency	100kHz	Resistance Max.	2mOhm	
Minimum Isolation Voltage (Winding To Core/Heatsink)	500VDC	Total Losses At Max. Current (Estimated Calc.)	25W	

SOLUTIONS | Planar Transformers & Inductors

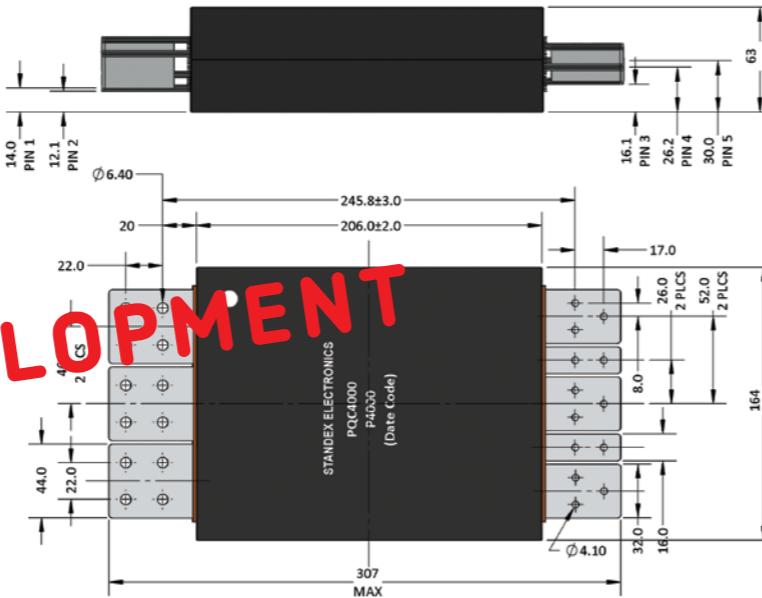
SIZE 2100
10kW-100kW


DESIGN EXAMPLE

TRANSFORMER DESIGN | EXAMPLE - PQC2115

ELECTRICAL SPECIFICATIONS	Topology	LLC ZVS Converter	NOTES: 1) INDUSTRY BEST FORM FACTOR TO POWER RATIO 2) INHERENT ISOLATION DUE TO PCB WINDINGS 3) UNIQUE TERMINATION OPTIONS AVAILABLE FOR CUSTOMIZATION 4) MULTI LAYER PCB'S REDUCE AC LOSSES
	Input Voltage	730-880VDC	
	Output Voltage/ Current After Rectification	60kW max (400VDC/75A)	
	Secondary Current Nom. Rms Half Sec. Current	19A RMS sinusoidal	
	Turns Ratio - Np/Ns1/Ns2	10T/4T/4T	
	Switching Frequency	80kHz (60-104kHz range)	
	Duty Cycle At Vin=800V Vout=400V, Max.	99% after rectification	
	Efficiency At Full Power (Calculated)	99.5% (150W losses)	
	External Heatsink Temperature Max.	+65°C	
	Ambient Temperature	+45°C	
Temp. Rise Hot Spot Ambient Max. (Transformer Clamped To Heatsink)		+45°C	
Minimum Isolation Voltage		1750VAC	
Primary To Secondary		2000VAC	
Primary And Secondary To Core		39 μ H ±5%	
Primary Inductance, Np, Min.		3mOhm	
Primary Resistance, Rdc, Np, Max.		2mOhm	
Secondary Resistance, Rdc, Ns1 or Ns2, Max.		0.5 μ H	
Leakage Inductance 1-2/Secondary Shorted, Typ.		0.3°C/W	
Thermal Impedance - Hotspot External Heatsink		2000grams	
Weight (Approximate)			

SIZE 4000
100kW-250kW
DESIGN EXAMPLE

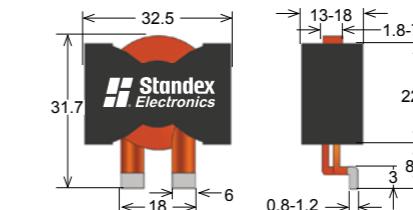

TRANSFORMER DESIGN | EXAMPLE

ELECTRICAL SPECIFICATIONS	
Topology	Full Bridge ZVS
Input Voltage	450-800VDC
Output Voltage/Current After Rectification	250kW max. (400VDC/625A)
Turns Ratio - $N_p/N_{s1}/N_{s2}$	27/27/27
Switching Frequency	50kHz
Duty Cycle At Low Input Voltage Max.	89.1%
Efficiency At Full Power (Calculated)	99.6% (855W losses)
*External Heatsink Temperature Max.	+40°C
Ambient Temperature Max.	+40°C

Temp. Rise Hot Spot Ambient External Heatsink*, Max.	+85.4°C
Minimum Isolation Voltage	
Primary To Secondary	2000VAC
Primary And Secondary To Core	2000VAC
Primary Inductance, N_p , Min.	TBD
Primary Resistance, N_p , Max.	0.17mOhm
Secondary Resistance, $N_{s1} + N_{s2}$, Max.	0.4mOhm
Leakage Inductance 1-2/3-4-5 Shorted, Typ.	16nH
Weight (Approximate)	2000grams

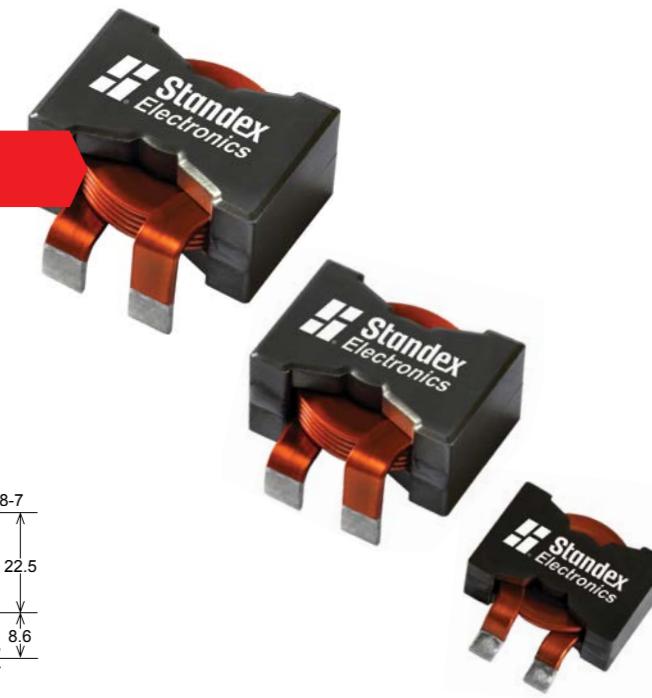
NOTES:

- 1) INDUSTRY BEST FORM FACTOR TO POWER RATIO
- 2) INHERENT ISOLATION DUE TO PCB WINDINGS
- 3) UNIQUE TERMINATION OPTIONS AVAILABLE FOR CUSTOMIZATION


PQ SERIES INDUCTORS // 0.9-6.0 μ H, 80A Max

"Fixed Power Inductors"

Size PQ32 fixed power inductors w/ ferrite core are used in switching power supplies, DC/DC converters, FPGA and low/high profile current, high current POL converters, feedback control, overload sensing, load drop and shut down detection.


PQ32 (SMD/THT)

Inductance at Rated Current: 0.9 - 6.0 μ H
 Rated Current Typ.: 45 - 60 A
 Height Max.: 11 - 18 mm
 Mounting Options: 31.7 x 32.5 mm

CUSTOMER CONFIGURATIONS

1. Core style and size
2. Typical height in mm
3. Min. inductance in " μ H", "R" = decimal point
4. Typical Amp rating
5. Terminal style - "G" = SMT, "T" = Through hole tabs
6. Optional packaging "R" = Tape & Reel

Standex Electronics
Worldwide Headquarters
4538 Camberwell Road
Cincinnati, OH 45209 USA

Standex Americas (OH)
+1.866.STANDEX (+1.866.782.6339)
info@standexelectronics.com

Meder Americas (MA)
+1.800.870.5385
salesusa@standexmeder.com

Northlake Americas (WI)
+1.262.857.9600
sales@northlake-eng.com

Standex-Meder Europe (Germany)
+49.7731.8399.0
info@standexmeder.com

Standex-Meder Asia (Shanghai)
+86.21.37606000
salesasia@standexmeder.com

Standex Electronics Japan (Kofu)
+81.3.6864.0670
sej-sales@standex.co.jp