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Solist-AI －ROHM Group's cloud/network-free AI solutions－

⚫ Solist-AI ：Solution with On-device Learning Ic for STandalone-AI
➢ On-device learning IC enables standalone AI solution

Two elements that make Solist-AI possible

AI acceleratorOn-device learning technology

⚫No pre-learning on the cloud is required

➢No network required/zero delays

➢Low security risk

⚫ Relearning and additional training can be 
completed on-site.

➢ Ability to adapt to variability and 
environmental changes

AI processing with only IC and sensor

➢ Standalone

Solist-AI MCU

MCU

AxlCORE
ODL

Solist-AI Sim Solist-AI Scope

Solist-AI MCU Utilities

Support for considering the 
introduction/implementation of Solist-AI MCU

⚫ Solist-AI Sim

➢ Check the effectiveness of AI utilization through 
simulation. Easy, simple, and repeatable.

⚫ Solist-AI Scope

➢ High-speed real-time debugger

➢ Waveform viewer

⚫ Low-cost hardware circuit

➢ 1000 times faster than software 
processing

➢Low power consumption

⚫ Flexible AI configuration via software

⚫ Can be installed on various ICs
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Neural Network and Algorithm of Solist-AI
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⚫ Neural network of Solist-AI is an FFNN（feedforward neural network）

➢ The diagram below shows a three-layer neural network with one hidden layer.

Input layer Output layer

Hidden
layer

⚫ Algorithm of Solist-AI  is a type of ELM(Extreme Learning Machine), which 
does not update the weight 𝜶, but only updates the weight 𝜷.

➢ Our algorithm has been modified to realize On-Device Learning.
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Learning and Prediction

Updating the weight 𝜷 so that the output layer data y of the AI is closer to the input layer 
data x (y = x) or the target data t (y = t) is called learning. 

In particular,  updating weight 𝜷 so that the output layer data y of AI is closer to the input 
layer data x (y = x) is training for anomaly detection, also known as unsupervised 
learning. On the other hand, updating the weight 𝜷 so that the target data t (training 
data) can be reproduced is known as  supervised learning.

What is Learning?

What is Prediction?

Calculating the output/prediction y when 
the input x is set to the AI without 
updating the weight 𝜷 is called inference.

Input layer Output layer

Hidden
layer
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Example of Anomaly Detection using Unsupervised Learning
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Learning)

Learning to reproduce the sensor input signal under normal condition.
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Updating weight 𝜷

Input signal reproducibility of AI is high ⇒ Input known by AI ⇒ Normal state

AI MCU starts 

prediction after  

unsupervised 

learning is 

completed.

𝜷 fixed

𝜷 fixed

Normal

device

Abnormal

device

Sensor

Target device of 

anomaly detection 

AI MCU

Sensor

signal

Normal

input signal

Input signal reproducibility of AI is low ⇒ Input unknown by AI ⇒ Abnormal state

Prediction

(Device

Monitoring)

Difference between x and y is small.

Difference between x and y is large.

Input

Input

Output

Output
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Normal
or

Anomaly

Unsupervised Learning by Solist-AI

⚫ Let‘s consider an example where time-series waveform data is input directly 
into Solist-AI ​​without any preprocessing. What we want to do is detect 
anomalies using unsupervised learning.
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Input to Solist-AI
(Time series waveform data)
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Unsupervised Learning by Solist-AI

⚫ A chunk is defined as a single set of data that is input into Solist-AI .
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Unsupervised Learning by Solist-AI

⚫ In unsupervised learning, the weight 𝜷 is updated so that the output layer 
data 𝒚 reproduces the input layer data 𝒙.
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Unsupervised Learning by Solist-AI

⚫ In unsupervised learning, the weight 𝜷 is updated so that the output layer 
data 𝒚 reproduces the input layer data 𝒙.
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Unsupervised Learning by Solist-AI

⚫ In unsupervised learning, the weight 𝜷 is updated so that the output layer 
data 𝒚 reproduces the input layer data 𝒙.
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Unsupervised Learning by Solist-AI

⚫ In unsupervised learning, the weight 𝜷 is updated so that the output layer 
data 𝒚 reproduces the input layer data 𝒙.
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Unsupervised Learning by Solist-AI

⚫ In unsupervised learning, the weight 𝜷 is updated so that the output layer 
data 𝒚 reproduces the input layer data 𝒙.
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Unsupervised Learning by Solist-AI

⚫ Solist-AI MCU outputs the anomaly score, which is an index showing how 
much the input data deviates from what has been learned.
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Unsupervised Learning by Solist-AI

⚫ In fact, the data shown up to this point in the slides is only a portion of the motor 
current data under normal conditions and when the bearing is damaged.

Input to Solist-AI

Predicted output by Solist-AI

Anomaly score

Input to Solist-AI

Predicted output by Solist-AI

Training Prediction

Normal Anomaly level 1 Anomaly level 2 Anomaly level 3

Inner ring 
damage of 
the bearing

Current sensing
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Unsupervised Learning by Solist-AI , using the preprocessing

⚫ Next, let's consider an example of preprocessing time-series waveform data, 
such as normalization and FFT, before inputting it into Solist-AI .
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Unsupervised Learning by Solist-AI , using the preprocessing

⚫ Next, let's consider an example of preprocessing time-series waveform data, 
such as normalization and FFT, before inputting it into Solist-AI .
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Unsupervised Learning by Solist-AI , using the preprocessing

⚫ By preprocessing the motor current data, the anomaly score when bearing damage 
occurs becomes significantly greater than the anomaly score during normal.

Input to Solist-AI

Predicted output by Solist-AI

Anomaly score

Input to Solist-AI
Predicted output by Solist-AI

Normalized data

Windowed data

Normal Anomaly level 1 Anomaly level 2 Anomaly level 3

Training Prediction

Original data
(Time series waveform data)

Inner ring 
damage of 
the bearing

Current sensing

𝜷 updated 𝜷 not updated
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Unsupervised Learning by Solist-AI , using multiple types of sensors

⚫ Using two-axis acceleration sensor and current sensor data, early signs of motor 
anomaly can be detected.

Normal
or

Anomaly

𝐼𝑛𝑝𝑢𝑡

𝒙
𝑂𝑢𝑡𝑝𝑢𝑡

𝒚
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𝑥2

𝑥3

𝑥𝑛𝑖

𝜶 𝜷
𝒑

ℎ11

ℎ12

ℎ1𝑚

𝑦1

𝑦2

𝑦𝑛𝑜

Input to Solist-AI
(Time series waveform data)

Current

Acceleration X

Acceleration Y
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Unsupervised Learning by Solist-AI , using multiple types of sensors

⚫ Using two-axis acceleration sensor and current sensor data, early signs of motor 
anomaly can be detected.

Normal Anomaly level 1 Anomaly level 2 Anomaly level 3

Training Prediction

𝜷 updated 𝜷 not updated

Input to Solist-AI

Predicted output by Solist-AI

Anomaly score
(Expand the vertical axis)

Input to Solist-AI
Predicted output by Solist-AI

Anomaly score

Original data

Current

Acceleration X

Acceleration Y

Current

Acceleration X

Acceleration Y

Predicted data by Solist-AI

Inner ring 
damage of 
the bearing

se
nsing

*1 chunk of the original data is a 256×3 matrix, 
but 1 chunk input to Solist-AI ​​is reshaped 
into a 765×1 matrix. 

Detecting early signs
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Unsupervised Learning by Solist-AI , using non-time series data

⚫ For each of the OK and NG cases, multiple measurement data were overlaid on a 
single graph.

NG
(~10 plots)

OK
(~100 plots)
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Unsupervised Learning by Solist-AI , using non-time series data

⚫ Each measurement data corresponds to a chunk of data to be input to 
Solist-AI . The AI ​​model is trained only on OK data and the weight 𝜷 is 
updated so that the output layer data 𝒚 produces the target data 𝒙.
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Unsupervised Learning by Solist-AI , using non-time series data

⚫ Each measurement data corresponds to a chunk of data to be input to 
Solist-AI . The AI ​​model is trained only on OK data and the weight 𝜷 is 
updated so that the output layer data 𝒚 produces the target data 𝒙.
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Unsupervised Learning by Solist-AI , using non-time series data

⚫ Even if the data is not time series, NG data can be detected by training the 
AI ​​model on OK data.

Training Prediction

・・・・ ・・・・ ・・・・・・・・・・・・・・・・・・・・・・・・・ ・・・

OK: 120 data OK: 33 data

NG: 11 data

𝜷 updated 𝜷 not updated

NGOK data OK

Input to Solist-AI

Predicted output by Solist-AI

Anomaly score

Input to Solist-AI

Predicted output by Solist-AI

Original data
(Non-time series data)

Anomaly score
(Expand the vertical axis)
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Supervised Learning by Solist-AI

⚫ Let‘s consider an example of object identification using supervised learning.

𝐼𝑛𝑝𝑢𝑡
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Predicted output by Solist-AI
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Object type C
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Supervised Learning by Solist-AI

⚫ Here we assume that there are four object types.
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Supervised Learning by Solist-AI

⚫ It is more convenient to predicted output by Solist-AI as numbers,
so we will output them as a matrix like 𝑐 𝑑 𝑒 𝑓 𝑇, where 𝑐, 𝑑, 𝑒, and 𝑓 are type 
identification indices, and ideally, 𝑐 is 1 if it is object C and 0 if it is not.
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Supervised Learning by Solist-AI

⚫ There is a lot of sensing data for each object type, and even sensing data 
for the same object type has variation. We are considering developing an AI model that 
can identify objects even with such variation.

Object type C Object type D Object type E Object type F

Measurement
No. 1

No. 2

No. 51

・・・

・・・

・・・

・・・
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Supervised Learning by Solist-AI

⚫ Measurement data from No.1 to No.51 for one object type are plotted 
together on one graph.

Object type C

Object type D

Object type E

Object type F
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Supervised Learning by Solist-AI

⚫ Each measurement data corresponds to a chunk of data to be input to 
Solist-AI . In unsupervised learning, the weight 𝜷 is updated so that the 
output layer data 𝒚 produces the target data 𝒕.
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Supervised Learning by Solist-AI

⚫ By utilizing supervised learning, we are able to predict object type even in 
the presence of measurement variability and individual differences across 
the same object type.
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Supervised Learning by Solist-AI

⚫ By utilizing supervised learning, it is possible to realize object identification, 
condition prediction, and deterioration prediction and so on.

Input to Solist-AI

Predicted output by Solist-AI

Target data

Training Prediction

Object type C D E F C D E F

Object sensing

・・・・ ・・・・ ・・・・ ・・・・ ・・・・

40 data x 4 types = 160 data

11 data
x 4 types
= 44 data

𝜷 updated 𝜷 not updated
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Supervised Learning by Solist-AI

⚫ By utilizing supervised learning, it is possible to realize object identification, 
condition prediction, and deterioration prediction and so on.

Input to Solist-AI

Predicted output by Solist-AI

Target data

Prediction

C D E F

・・・・

11 data
x 4 types
= 44 data

𝜷 not updated

In the target data within the pink frame, only the object type 
C identification index is 1, so the actual object type is C.

In the predicted output by Solist-AI within the pink frame, 
only the object type C identification index is close to 1, 
indicating that the object is likely to be type C.
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Contents

⚫ Neural Network and Algorithm of Solist-AI

⚫ Unsupervised Learning by Solist-AI

⚫ Supervised Learning by Solist-AI

⚫ Hardware Accelerator for AI Processing, AxlCORE-ODL
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Structure of Solist-AI

AxlCORE-ODL (hardware accelerator for AI processing) is added to a peripheral of MCU.

• Solist-AI MCU with AxlCORE-ODL enables completely independent AI processing.

• If user knows how to use AxlCORE-ODL, it is equivalent to developing ordinary MCU software.

AxlCORE-ODL

• The original architecture enables autonomous 3-phase 
neural network processing and high-speed data pre-
processing such as FFT with extremely compact circuit.

• There is almost no load on the software due to AI processing.

• AI processing can be performed 1000 times faster and with 
ultra-low power consumption compared to software.

Non-AI processing can be executed at the same time

CPU FLASH

etc.RAM

Learning

Prediction

Start of AI prediction with AxlCORE-ODL

Non-AI processing with MCU

• Calculation

• Serial I/F control

：

End AI prediction with AxlCORE-ODL

Judgment processing of AI prediction results

MCU

AI 
accelerator 

AxlCORE-ODL

General-purpose MCU

Solist-AI  MCU

＋
AxlCORE-ODL
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# of AI Models and its Processing Time in ML63Q2500 Group
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Maximum # of input data

# of AI models that can be implemented AI processing time per AI model[ms] (reference value)

Learning

Prediction

• Multiple AI models can be implemented on AI microcontrollers.

• Each AI model handles different data.

• # of AI models that can be used at the same time is determined 
by the maximum # of input data per AI model

• In the software, it is necessary to use AI library that matches # of 
AI models implemented in the AI microcontroller.

• Use of AxlCORE-ODL makes it possible to execute AI processing at 
high speed without a load on MCU

Maximum # of input data

ℎ11

ℎ12

ℎ1𝑚
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