

ROScube X BSP Quick Start Guide

ADLINK Technology Inc. Confidential.
2021-04-01

Document Generated Date : 2021-04-01
Document Released for: copyright

More information are available at [ADLINK Technology Inc. Advanced Robotic Platform Group](#)

Preface

Copyright

Copyright © 2021 ADLINK Technology, Inc. This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Disclaimer

The information in this document is subject to change without prior notice in order to improve reliability, design, and function and does not represent a commitment on the part of the manufacturer. In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

Environmental Responsibility

ADLINK is committed to fulfill its social responsibility to global environmental preservation through compliance with the European Union's Restriction of Hazardous Substances (RoHS) directive and Waste Electrical and Electronic Equipment (WEEE) directive. Environmental protection is a top priority for ADLINK. We have enforced measures to ensure that our products, manufacturing processes, components, and raw materials have as little impact on the environment as possible. When products are at their end of life, our customers are encouraged to dispose of them in accordance with the product disposal and/or recovery programs prescribed by their nation or company.

Trademarks

Product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

TABLE OF CONTENTS

1	Revisions	1
1.1	BSP MFI Image Naming Rule	1
1.1.1	Model Name	1
1.1.2	FileSystem Type	2
1.1.3	L4T Version	2
1.1.4	Kernel Version	2
1.2	Release Note	2
1.2.1	L4T-32.4.3-Kernel-v1.0.6	2
1.2.2	L4T-32.4.4-Kernel-v1.0.7	2
1.2.3	L4T-32.5.0-Kernel-v1.0.8	2
1.2.4	L4T-32.5.1-Kernel-v1.0.8	2
2	Image Recovery / Flashing	3
2.1	Prerequisite	3
2.2	Procedures	4
2.2.1	1. Connect power cable to ROScube and power on it.	4
2.2.2	2. Make sure Micro USB cable is in good quality.	5
2.2.3	3. Reset to recovery mode.	5
2.2.4	4. Now ROScube is in recovery mode now.	6
2.2.5	5. Parepare mfi image on your host computer.	6
2.2.6	6. Flash image to ROScube	7
2.3	Massive Flashing	7
3	ROScube-X BSP Quick Start	8
3.1	Default User and Password	8
3.2	Check BSP Version	8
3.3	Hardware Monitor	8
4	Driver Package Usage	11
4.1	Customize System FileSystem	11
4.1.1	Prepare Filesystem	11
4.1.2	Modify Filesystem under Chroot	12
4.2	Flash System Image to Target Machine	13
5	Boot On External Storage	14
5.1	Mounting FileSystem From SD Card	14

5.2	Mounting FileSystem From NVMe M.2 SSD	14
6	Nvidia Jetson Software Stack	16
6.1	Version Table	16
6.2	JetPack SDK Installation	16
6.3	JetPack SDK Example Usage	17
6.3.1	YOLO Object Detection	17
6.4	DeepStream SDK Installation	18
6.5	DeepStream SDK Example Usage	18
6.5.1	DeepStream Sample App	18

ADLINK Technology Inc. Confidential.
2021-04-01

CHAPTER
ONE

REVISIONS

Document version: 1.0.7

Compatible with ROScube-X BSP version:

- L4T-32.4.3-Kernel-1.0.6
- L4T-32.4.4-Kernel-1.0.7
- L4T-32.5.0-Kernel-1.0.8
- L4T-32.5.1-Kernel-1.0.8

Author	Revision
Chester Tseng	L4T-32.4.3-Kernel-1.0.6
Chester Tseng	L4T-32.4.4-Kernel-1.0.7
Chester Tseng	L4T-32.5.0-Kernel-1.0.8
Chester Tseng	L4T-32.5.1-Kernel-1.0.8

1.1 BSP MFI Image Naming Rule

ROScube-X BSP MFI file follows the naming rule.

`mfi_<model name>_<filesystem and distro type>_<L4T version>-Kernel-<kernel version>.tbz2`

For example: `mfi_rqx580_nvidia-ubuntu-rootfs-bionic_L4T-32-4-4-Kernel-1-0-7.tbz2`.

1.1.1 Model Name

- `rqx580` - ROScube-X without GMSL feature.
- `rqx58g` - ROScube-X with GMSL feature.

1.1.2 FileSystem Type

- `nvidia-sample-rootfs` - Nvidia provided sample filesystem. It is based on Ubuntu 18.04
- `custom-slim-rootfs-bionic` - Custom rootfs build from Ubuntu base image 18.04.5. This file type is much smaller.
- `custom-slim-rootfs-focal` - Custom rootfs build from Ubuntu base image 20.04.1. This file type is much smaller.

1.1.3 L4T Version

The L4T version, for example 32.4.3, 32.3.4, 32.5.0 or 32.5.1

1.1.4 Kernel Version

ROScube-X kernel and device tree configuration version, which is affected by kernel and device tree from ADLINK's internal engineering development.

1.2 Release Note

1.2.1 L4T-32.4.3-Kernel-v1.0.6

- First release RQX-580, RQX-58G BSP image.

1.2.2 L4T-32.4.4-Kernel-v1.0.7

- Upgrade to L4T 32.4.4

1.2.3 L4T-32.5.0-Kernel-v1.0.8

- Upgrade to L4T 32.5.0
- Pre-install roscube-init package.

1.2.4 L4T-32.5.1-Kernel-v1.0.8

- Upgrade to L4T 32.5.1

IMAGE RECOVERY / FLASHING

2.1 Prerequisite

Before flashing image to ROScube, you should prepare the following items:

- **Host PC** with **Ubuntu 18.04 or 20.04** operating system.
- A good quality micro-usb for connecting to ROScube.

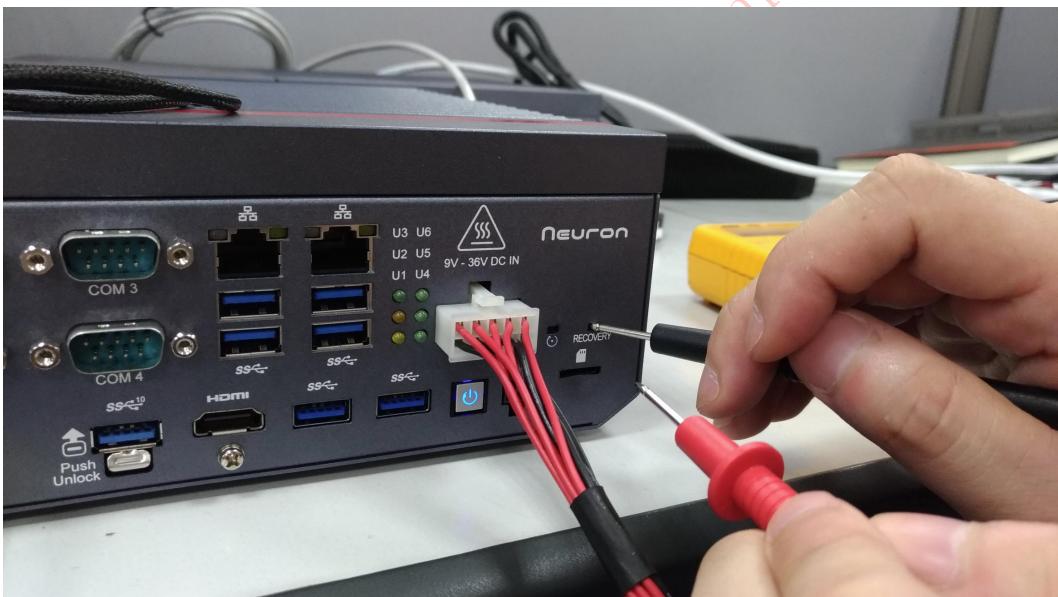
ADLINK Technology Inc. Confidential.
2021-04-01

2.2 Procedures

2.2.1 1. Connect power cable to ROScube and power on it.

2.2.2 2. Make sure Micro USB cable is in good quality.

2.2.3 3. Reset to recovery mode.


- i) Steady pressed RECOVERY button.

- ii) Hold RECOVERY button pressed and then press RESET button. (The button next to RECOVERY button)

iii) Release RESET button first and then release RECOVERY button.

2.2.4 4. Now ROScube is in recovery mode now.

2.2.5 5. Prepare mfi image on your host computer.

- i) Download mfi image.
- ii) Install required tools.

```
$> sudo apt install python qemu-user-static
```

- iii) Check ROScube is in recovery mode now.

```
chester@ci-node-01:~/Downloads$ ^C
chester@ci-node-01:~/Downloads$ lsusb | grep NVidia
Bus 001 Device 024: ID 0955:7019 NVidia Corp.
chester@ci-node-01:~/Downloads$
```

2.2.6 6. Flash image to ROScube

Assuming image's file name is `mfi_rqx580_nvidia-ubuntu-rootfs-bionic_L4T-32-4-3-Kernel-1-0-7.tbz2`. Un-archive this file first.

```
$> tar xvf mfi_rqx580_nvidia-ubuntu-rootfs-bionic_L4T-32-4-3-Kernel-1-0-7.tbz2
```

Then, use internal tool, `nvmflash.sh` to run the flashing procedure. **Please make sure your Host PC has attached to ROScube-X.** Besure run `./nvmflash.sh` as root permission.

```
$> cd mfi_rqx_580
$> sudo ./nvmflash.sh
```

Note: You may need to input your **host PC**'s root password when flashing the image.

Note: The flashing procedure might take 8 ~ 10 minutes.

2.3 Massive Flashing

`nvmflash.sh` supports massive flashing, which means you can attach multiple ROScube and run `nvmflash.sh` to flash the image to multiple boards at the same time.

Warning: Please do not attach different models (e.g. RQX580 and RQX58G) to your host computer when using `nvmflash.sh`.

ROSCUBE-X BSP QUICK START

3.1 Default User and Password

ROScube-X BSP can login as root user within initial stage.

- username: **root**
- password: **adlinkros**

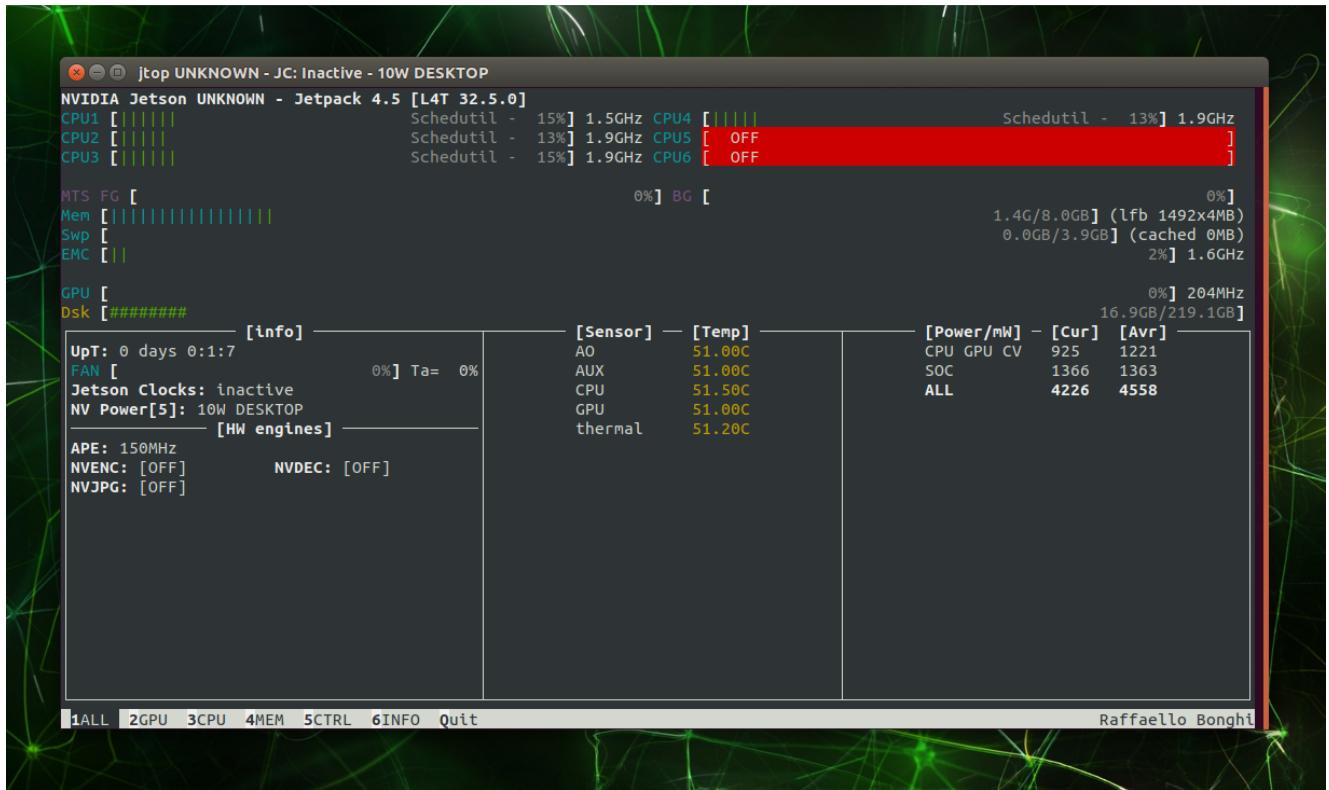
3.2 Check BSP Version

You can use the following command to check BSP and L4T version.

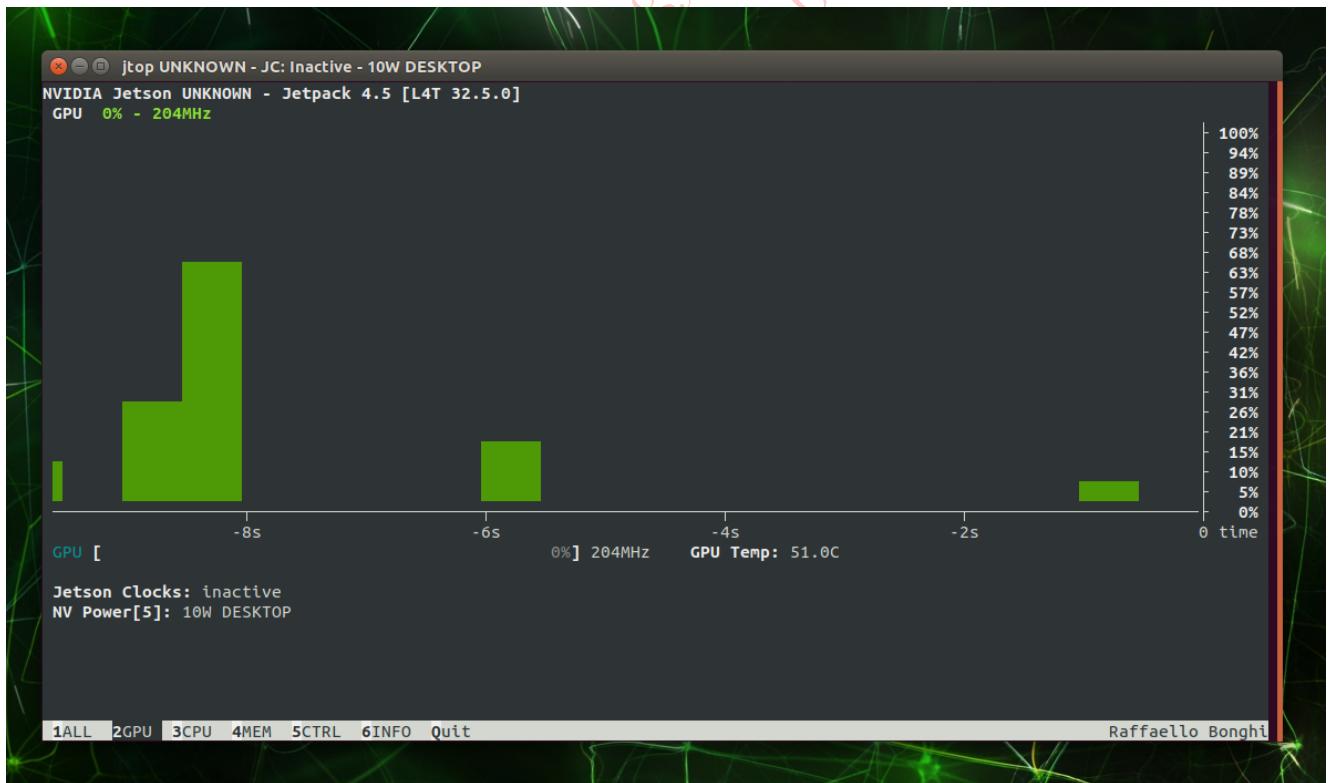
To check L4T version, please use the following command.

```
$> cat /etc/nv_tegra_release
```

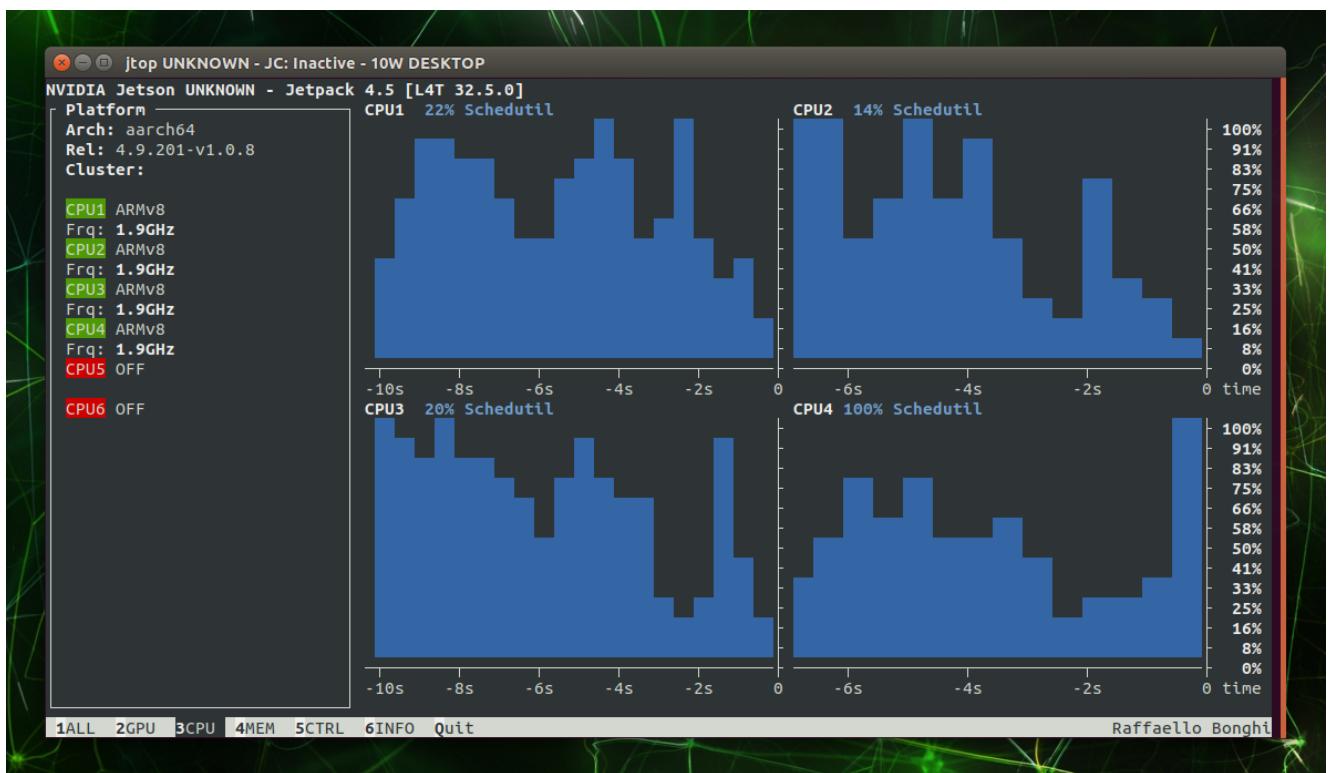
To check kernel version, please use the following command.


```
$> uname -a
```

3.3 Hardware Monitor


Since generic x86 computer with Nvidia GPU PCIe card under linux has a tool **nvidia-smi** to check GPU status, but ROscube-X and ROScube-Pico are ARM based CPU, there's no **nvidia-smi** tool available. You could use a third party tool: **jetson-stats** to monitor Jetson's CPU, GPU and memory status.

```
$> sudo apt install python-pip python-dev build-essential  
$> sudo pip install --upgrade pip  
$> sudo pip install jetson-stats  
  
# Then reboot system to apply jetson-stats systemcv service.  
  
$> sudo jtop
```


- Overall Hardware Monitor Screenshot

- GPU RealTime Monitor Screenshot

- CPU RealTime Monitor Screenshot

Note: Before using jetson-stats, you should install nvidia-jetpack first.

DRIVER PACKAGE USAGE

Driver Package is a package contains several assets that runs on host computer, which allows you to do:

1. Customize system file system.
2. Flash system image to target machine.
3. System image back up.
4. Create a custom mfi image.

User can modify their rootfs on their host computer before flashing the image to target machine.

You could use tar tool to unarchive driver_package.

```
$> tar xvf RQX-580-Driver-Package-L4T-32-4-4-Kernel-1-0-8.tar.gz
```

4.1 Customize System FileSystem

4.1.1 Prepare Filesystem

Driver package allows user to customize their filesystem. Driver package provides a script (`create_image.sh`) to create a board specific image base on several rootfs selection, here's what we support.

1. `nvidia_sample_rootfs` - Nvidia provided sample file system.

Please download the correct L4T version from <https://developer.nvidia.com/embedded/linux-tegra-archive>. For example, if you are using ADLINK provided driver package 32.4.4, you should download https://developer.nvidia.com/embedded/L4T/r32_Release_v4.4/r32_Release_v4.4-GMC3/T186/Tegra_Linux_Sample-Root-Filesystem_R32.4.4_aarch64.tbz2

2. `custom_slim_rootfs_bionic` - Ubuntu provided arm64 18.04.05 minimun image.

Please download ubuntu 18.04.5 base image from Ubuntu's website. <https://cdimage.ubuntu.com/ubuntu-base/releases/18.04.5/release/>. The binary link is at: <https://cdimage.ubuntu.com/ubuntu-base/releases/18.04.5/release/ubuntu-base-18.04.5-base-arm64.tar.gz>

3. `custom_slim_rootfs_focal` - Ubuntu provided arm64 20.04.01 minimun image. (Experimental, not fully tested yet)

Please download ubuntu 20.04.1 base image from Ubuntu's website. <https://cdimage.ubuntu.com/ubuntu-base/releases/20.04.1/release/>. The binary link is at: <https://cdimage.ubuntu.com/ubuntu-base/releases/20.04.1/release/ubuntu-base-20.04.1-base-arm64.tar.gz>

Note: Before customizing the rootfs, all these rootfs binaries should be downloaded from their official website. ADLINK doesn't provide them.

After you download rootfs binary successfully, put the binary under the driver package folder. Then, run `./create_image.sh`.

```
$> cd <driver_package_path>
$> sudo ./create_image.sh nvidia_sample_rootfs
```

4.1.2 Modify Filesystem under Chroot

Users can chroot into filesystem, and install packages or put files to filesystem. That allows user to put their software and configurations into rootfs.

Mount host environment to filesystem.

```
$> sudo apt update qemu-user-static
$> cd <driver package>
$> cd rootfs
$> sudo cp /usr/bin/qemu-aarch64-static usr/bin/
$> sudo mount --bind /dev/ dev/
$> sudo mount --bind /sys/ sys/
$> sudo mount --bind /proc/ proc/
# Copy host environment dns settings.
$> sudo cp /etc/resolv.conf etc/resolv.conf.host
$> sudo mv etc/resolv.conf etc/resolv.conf.saved
$> sudo mv etc/resolv.conf.host etc/resolv.conf
```

Now you can chroot into filesystem and modify filesystem.

```
$> sudo LC_ALL=C LANG=C.UTF-8 chroot . /bin/bash
$(chroot)> apt update
$(chroot)> apt install wget vim
# or you can install jetpack sdk
$(chroot)> apt install nvidia-l4t-jetson-multimedia-api=32.4.4-20201016123640
$(chroot)> apt install nvidia-jetpack
```

Once you finish modification, you can exit chroot environment by pressing `ctrl+D`. Then, remove cache files, e.g. `apt cache` to save storage space.

```
$(chroot)> exit
```

(continues on next page)

(continued from previous page)

```
$> sudo umount ./proc
$> sudo umount ./sys
$> sudo umount ./dev
$> sudo rm usr/bin/qemu-aarch64-static

# Restore dns setting.
$> sudo rm etc/resolv.conf
$> sudo mv etc/resolv.conf.saved etc/resolv.conf

# Remove caches and logging files.
$> sudo rm -rf var/lib/apt/lists/*
$> sudo rm -rf dev/*
$> sudo rm -rf var/log/*
$> sudo rm -rf var/tmp/*
$> sudo rm -rf var/cache/apt/archives/*.deb
$> sudo rm -rf tmp/*
```

4.2 Flash System Image to Target Machine

Once you prepared rootfs in step: [customize rootfs](#). You can use *flash.sh* tool to flash image to target machine. **Remember to put machine into recovery mode before flashing.**

```
# Put machine into recovery mode first.
$> sudo ./flash.sh <target name> mmcblk0p1
```

Model	Target Name
RQX-580	rqx_580
RQX-58G	rqx_58g
NPN-1 (Pico Nano)	rqp_nano
NPN-2 (Pico AGX NX)	rqp_nx

BOOT ON EXTERNAL STORAGE

ROScube can boot (strictly mount) filesystem from external storage. Available types are:

1. SD card
2. NVMe M.2 SSD

ADLINK provides a tool to boot on external storage.

<https://github.com/Adlink-ROS/rootOnStorage>

5.1 Mounting FileSystem From SD Card

When inserting a sd card to RQX-580 or RQX-58G, the storage will be appeared as a `/dev/mmcblk1` storage.

Note: ROScube's internal storage (eMMC) is appeared as `/dev/mmcblk0`.

The first step is: **format SD card to EXT4 filesystem.**

```
$> cd rootOnStorage/sdmmc  
$> sudo ./copy-rootfs-sdmmc.sh  
$> sudo ./setup-service.sh  
# Then, reboot system.
```

5.2 Mounting FileSystem From NVMe M.2 SSD

When mounting a NVMe M.2 SSD to RQX-580 or RQX-58G, the storage will be appeared as a `/dev/nvme0n1` storage.

The first step is: **format NVMe M.2 SSD to EXT4 filesystem.**

```
$> cd rootOnStorage/nvme  
$> sudo ./copy-rootfs-nvme.sh
```

(continues on next page)

(continued from previous page)

```
$> sudo ./setup-service.sh  
# Then, reboot system.
```

ADLINK Technology Inc. Confidential.
2021-04-01

NVIDIA JETSON SOFTWARE STACK

6.1 Version Table

L4T	Linux Kernel	Jetpack SDK	CUDA	Ten-sorRT	CUDNN	Vision-Work	OpenCV	VPI	Deep-Stream SDK
32.4.3	4.9.190	4.4.0	10.2	7.1.3	8.0	1.6	4.1.1	1.0.3	5.0
32.4.4	4.9.190	4.4.1	10.2	7.1.3	8.0	1.6	4.1.1	1.0.3	5.0
32.5.0	4.9.210	4.5.0	10.2	7.1.3	8.0	1.6	4.1.1	1.1.0	5.0
32.5.1	4.9.210	4.5.1	10.2	7.1.3	8.0	1.6	4.1.1	1.0.3	5.1

6.2 JetPack SDK Installation

Since Nvidia L4T 32.4.x support L4T OTA, that users can download Nvidia JetPack from Nvidia's official APT repository. For ROScube-X users, you can use `apt` to install Nvidia JetPack components, e.g. `tensorrt`, `cuda`.

Before installing JetPack SDK, you should install `nvidia-l4t-jetson-multimedia-api` in a proper version coresponding to L4T version (e.g. 32.4.3 or 32.4.4).

```
$> sudo apt update
$> sudo apt install nvidia-l4t-jetson-multimedia-api=32.4.4-20201016123640
```

To install the whole JetPack SDK

```
$> sudo apt update
$> sudo apt install nvidia-jetpack
```

To install particular JetPack SDK component, e.g. `nvidia-tensorrt`.

```
$> sudo apt update
$> sudo apt install nvidia-tensorrt
```

Warning: It's not suggested to install `nvidia-jetpack` directly, because `nvidia-jetpack` is a meta package which will install ALL JetPack SDK components. All JetPack SDK components occupy 8GB.

6.3 JetPack SDK Example Usage

6.3.1 YOLO Object Detection

1. Set up your environment

```
$> export CUDA_HOME=/usr/local/cuda
$> export PATH=$CUDA_HOME/bin:$PATH
$> export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
```

2. Check nvcc is workable

```
$> nvcc --version
...
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
...
```

3. Retrieve darknet repository from github

```
$> sudo apt update
$> sudo apt install git
$> git clone https://github.com/AlexeyAB/darknet.git
```

4. Build darknet with CUDNN and OpenCV support

Modify darknet's Makefile with the following..

- GPU=1
- CUDNN=1
- OPENCV=1

```
$> sudo apt update
$> sudo apt install make build-essential
$> cd darknet
$> # Edit Makefile GPU=1, CUDNN=1, OPENCV=1
$> make
```

5. Download the pre-trained weights

```
$> wget https://pjreddie.com/media/files/yolov3-tiny.weights
```

Warning: ADLINK doesn't own the pre-train data. This pre-trained data is a contribution from original author in community.

6. Run object detector from example image.

```
$> ./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg
```

6.4 DeepStream SDK Installation

Download the DeepStream 5.0 for Jetson

<https://developer.nvidia.com/deepstream-getting-started>

```
$> sudo apt install ./deepstream_sdk_5.0_arm64.deb
```

Note: Please refer [jetson software version table](#) to download proper DeepStream SDK version.

6.5 DeepStream SDK Example Usage

After finished DeepStream SDK installation, there will be some DeepStream examples and tools available under `/opt/nvidia/deepstream/deepsteeam-<version>`

6.5.1 DeepStream Sample App

```
$> deepstream-app -c /opt/nvidia/deepstream/deepstream-5.0/samples/configs/deepstream-app/
  ↪<config file>
```

Where <config file> could be replaced with the following table:

Model	Config File
RQX-580	source12_1080p_dec_infer-resnet_tracker_tiled_display_fp16_tx2.txt
RQX-58G	source12_1080p_dec_infer-resnet_tracker_tiled_display_fp16_tx2.txt
NPN-1 (Pico Nano)	source8_1080p_dec_infer-resnet_tracker_tiled_display_fp16_nano.txt
NPN-2 (Pico AGX NX)	source12_1080p_dec_infer-resnet_tracker_tiled_display_fp16_tx2.txt