

Colophon
Copyright © 2020-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

The documentation of the RP2350 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0

International (CC BY-ND).

build-date: 2024-08-21

build-version: 522d2d4-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be

found throughout this book. Source code included in the documentation is Copyright © 2023-2024

Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use

of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties

expressed in them.

Raspberry Pi Pico-series C/C++ SDK

Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Table of contents
Colophon . 1

Legal disclaimer notice . 1

1. About the SDK. 8

1.1. Introduction . 8

1.2. Anatomy of a SDK Application . 8

2. SDK architecture . 11

2.1. The Build System . 11

2.2. Every Library is an INTERFACE Library . 12

2.3. SDK Library Structure . 13

2.3.1. Higher-level Libraries. 13

2.3.2. Runtime Support Libraries . 13

2.3.3. Hardware Support Libraries . 14

2.3.4. Hardware Structs Library . 15

2.3.5. Hardware Registers Library . 16

2.3.6. TinyUSB Port. 17

2.3.7. FreeRTOS Ports . 17

2.3.8. Wi-Fi on Pico W . 18

2.3.9. Bluetooth on Pico W . 18

2.4. Directory Structure . 19

2.4.1. Locations of Files. 19

2.5. Conventions for Library Functions . 21

2.5.1. Function Naming Conventions. 21

2.5.2. Return Codes and Error Handling. 22

2.5.3. Use of Inline Functions . 23

2.5.4. Builder Pattern for Hardware Configuration APIs . 23

2.6. Customisation and Configuration Using Preprocessor variables . 24

2.6.1. Preprocessor Variables via Board Configuration File . 24

2.6.2. Preprocessor Variables Per Binary or Library via CMake . 25

2.7. SDK Runtime . 25

2.7.1. Standard Input/Output (stdio) Support . 25

2.7.2. Printf Support . 26

2.7.3. Runtime Initialization and Linking . 26

2.7.4. C-Library Integration . 26

2.7.5. Floating-point Support. 26

2.7.6. Hardware Divider . 27

2.8. Multi-core support. 28

2.9. Using C++. 29

2.10. Supporting both RP2040 and RP2350 . 29

2.11. Next Steps . 30

3. Using programmable I/O (PIO) . 31

3.1. What is Programmable I/O (PIO)?. 31

3.1.1. Background. 31

3.1.2. I/O Using dedicated hardware on your PC . 31

3.1.3. I/O Using dedicated hardware on your Raspberry Pi or microcontroller . 31

3.1.4. I/O Using software control of GPIOs ("bit-banging") . 32

3.1.5. Programmable I/O Hardware using FPGAs and CPLDs . 33

3.1.6. Programmable I/O Hardware using PIO . 33

3.2. Getting started with PIO . 34

3.2.1. A First PIO Application . 34

3.2.2. A Real Example: WS2812 LEDs . 38

3.2.3. PIO and DMA (A Logic Analyser) . 46

3.2.4. Further examples . 50

3.3. Using PIOASM, the PIO Assembler . 51

3.3.1. Usage . 51

3.3.2. Directives . 52

Raspberry Pi Pico-series C/C++ SDK

Table of contents 2

3.3.3. Values . 54

3.3.4. Expressions . 54

3.3.5. Comments . 54

3.3.6. Labels . 55

3.3.7. Instructions. 55

3.3.8. Pseudoinstructions . 56

3.3.9. Output pass through . 56

3.3.10. Language generators . 56

3.4. PIO Instruction Set Reference . 62

3.4.1. Encoding (version 0, RP2040) . 62

3.4.2. Encoding (version 1, RP2350) . 62

3.4.3. Summary. 63

3.4.4. JMP . 63

3.4.5. WAIT . 64

3.4.6. IN . 65

3.4.7. OUT . 66

3.4.8. PUSH . 67

3.4.9. PULL . 68

3.4.10. MOV (to RX) . 69

3.4.11. MOV (from RX). 70

3.4.12. MOV. 71

3.4.13. IRQ . 72

3.4.14. SET . 73

4. Library documentation . 75

4.1. Hardware APIs. 76

4.1.1. hardware_adc. 77

4.1.2. hardware_base. 82

4.1.3. hardware_claim . 84

4.1.4. hardware_clocks . 86

4.1.5. hardware_divider . 101

4.1.6. hardware_dcp . 110

4.1.7. hardware_dma . 110

4.1.8. hardware_exception . 132

4.1.9. hardware_flash. 135

4.1.10. hardware_gpio . 138

4.1.11. hardware_hazard3 . 169

4.1.12. hardware_i2c . 169

4.1.13. hardware_interp . 178

4.1.14. hardware_irq . 187

4.1.15. hardware_pio . 200

4.1.16. hardware_pll . 241

4.1.17. hardware_powman . 242

4.1.18. hardware_pwm . 249

4.1.19. hardware_resets . 263

4.1.20. hardware_riscv . 268

4.1.21. hardware_riscv_platform_timer . 268

4.1.22. hardware_rtc . 270

4.1.23. hardware_rcp . 273

4.1.24. hardware_spi . 273

4.1.25. hardware_sha256 . 281

4.1.26. hardware_sync. 285

4.1.27. hardware_ticks. 293

4.1.28. hardware_timer . 295

4.1.29. hardware_uart . 310

4.1.30. hardware_vreg . 320

4.1.31. hardware_watchdog . 320

4.1.32. hardware_xosc. 324

4.2. High Level APIs . 324

4.2.1. pico_aon_timer. 325

4.2.2. pico_async_context . 328

Raspberry Pi Pico-series C/C++ SDK

Table of contents 3

4.2.3. pico_bootsel_via_double_reset . 339

4.2.4. pico_flash . 339

4.2.5. pico_i2c_slave . 341

4.2.6. pico_multicore . 343

4.2.7. pico_rand . 355

4.2.8. pico_sha256 . 357

4.2.9. pico_stdlib . 361

4.2.10. pico_sync . 364

4.2.11. pico_time . 378

4.2.12. pico_unique_id . 400

4.2.13. pico_util . 401

4.3. Third-party Libraries . 405

4.3.1. tinyusb_device . 405

4.3.2. tinyusb_host . 405

4.4. Networking Libraries . 405

4.4.1. pico_btstack . 406

4.4.2. pico_lwip . 408

4.4.3. pico_cyw43_driver . 410

4.4.4. pico_cyw43_arch . 412

4.5. Runtime Infrastructure . 450

4.5.1. boot_stage2 . 451

4.5.2. pico_atomic . 451

4.5.3. pico_base . 451

4.5.4. pico_binary_info. 453

4.5.5. pico_bootrom . 453

4.5.6. pico_bit_ops . 458

4.5.7. pico_cxx_options . 459

4.5.8. pico_clib_interface. 459

4.5.9. pico_crt0 . 459

4.5.10. pico_divider . 459

4.5.11. pico_double . 467

4.5.12. pico_float . 468

4.5.13. pico_int64_ops. 468

4.5.14. pico_malloc . 468

4.5.15. pico_mem_ops. 469

4.5.16. pico_platform. 469

4.5.17. pico_printf. 477

4.5.18. pico_runtime . 477

4.5.19. pico_runtime_init . 478

4.5.20. pico_stdio . 479

4.5.21. pico_standard_binary_info . 489

4.5.22. pico_standard_link. 490

4.6. External API Headers . 490

4.6.1. boot_picobin_headers . 490

4.6.2. boot_picoboot_headers . 490

4.6.3. boot_uf2_headers . 490

4.6.4. pico_usb_reset_interface_headers . 491

5. SDK configuration . 492

5.1. Full List of SDK Configuration Defines . 493

6. CMake build configuration . 506

6.1. Full List of SDK Configuration Variables . 506

6.2. Platform and Board Configuration . 508

6.3. Compiler and Toolchain Configuration . 509

6.3.1. Variables . 509

6.4. Binary Type configuration . 510

7. CMake build functions . 512

7.1. Control of picotool post-processing (not available on RP2040) . 512

8. Board configuration. 513

8.1. The Configuration files. 513

8.2. Building applications with a custom board configuration . 515

Raspberry Pi Pico-series C/C++ SDK

Table of contents 4

8.3. Available configuration parameters . 515

9. Embedded Binary Information . 516

9.1. Basic information . 516

9.2. Pins. 516

9.3. Full Information. 517

9.4. Including Binary Information . 517

9.5. Setting Common Information from CMake . 519

Appendix A: App Notes . 521

Attaching a 7 segment LED via GPIO. 521

Wiring information . 521

List of Files . 521

Bill of Materials. 523

DHT-11, DHT-22, and AM2302 Sensors. 524

Wiring information . 524

List of Files . 525

Bill of Materials. 527

Attaching a 16x2 LCD via TTL . 527

Wiring information . 528

List of Files . 528

Bill of Materials. 531

Attaching a microphone using the ADC. 532

Wiring information . 532

List of Files . 533

Bill of Materials. 534

Attaching a BME280 temperature/humidity/pressure sensor via SPI . 535

Wiring information . 535

List of Files . 535

Bill of Materials. 540

Attaching a MPU9250 accelerometer/gyroscope via SPI . 540

Wiring information . 540

List of Files . 541

Bill of Materials. 544

Attaching a MPU6050 accelerometer/gyroscope via I2C . 544

Wiring information . 544

List of Files . 545

Bill of Materials. 547

Attaching a 16x2 LCD via I2C . 547

Wiring information . 548

List of Files . 548

Bill of Materials. 551

Attaching a BMP280 temp/pressure sensor via I2C . 552

Wiring information . 552

List of Files . 552

Bill of Materials. 557

Attaching a LIS3DH Nano Accelerometer via i2c. 557

Wiring information . 558

List of Files . 558

Bill of Materials. 561

Attaching a MCP9808 digital temperature sensor via I2C . 561

Wiring information . 561

List of Files . 562

Bill of Materials. 564

Attaching a MMA8451 3-axis digital accelerometer via I2C . 565

Wiring information . 565

List of Files . 565

Bill of Materials. 568

Attaching an MPL3115A2 altimeter via I2C . 568

Wiring information . 569

List of Files . 569

Bill of Materials. 573

Raspberry Pi Pico-series C/C++ SDK

Table of contents 5

Attaching an OLED display via I2C . 573

Wiring information . 574

List of Files . 575

Bill of Materials. 585

Attaching a PA1010D Mini GPS module via I2C. 585

Wiring information . 585

List of Files . 586

Bill of Materials. 589

Attaching a PCF8523 Real Time Clock via I2C . 589

Wiring information . 589

List of Files . 590

Bill of Materials. 593

Interfacing 1-Wire devices to the Pico . 593

Wiring information . 594

Bill of materials. 594

List of files. 595

Communicating as master and slave via SPI . 602

Wiring information . 602

Outputs . 602

List of Files . 604

Bill of Materials. 608

Appendix B: Building the SDK API documentation. 609

Appendix C: SDK release history . 611

Release 1.0.0 (20/Jan/2021) . 611

Release 1.0.1 (01/Feb/2021) . 611

Boot Stage 2 . 611

Release 1.1.0 (05/Mar/2021) . 611

Backwards incompatibility . 612

Release 1.1.1 (01/Apr/2021) . 612

Release 1.1.2 (07/Apr/2021) . 612

Release 1.2.0 (03/Jun/2021) . 612

New/improved Board headers . 612

Updated TinyUSB to 0.10.1 . 612

Added CMSIS core headers . 613

API improvements . 613

General code improvements. 615

SVD . 615

pioasm. 615

RTOS interoperability . 615

CMake build changes. 615

Boot Stage 2 . 615

Release 1.3.0 (02/Nov/2021) . 615

Updated TinyUSB to 0.12.0 . 615

New Board Support . 616

Updated SVD, hardware_regs, hardware_structs . 616

Behavioural Changes . 617

Other Notable Improvements . 617

CMake build . 619

pioasm. 619

elf2uf2 . 619

Release 1.3.1 (18/May/2022). 619

New Board Support . 619

Notable Library Changes/Improvements . 620

Build . 621

pioasm. 621

elf2uf2 . 621

Release 1.4.0 (30/Jun/2022) . 621

New Board Support . 621

Wireless Support . 621

Notable Library Changes/Improvements . 622

Raspberry Pi Pico-series C/C++ SDK

Table of contents 6

Build . 624

Release 1.5.0 (11/Feb/2023) . 624

New Board Support . 624

Library Changes/Improvements. 624

New Libraries . 627

Build . 628

Bluetooth Support for Pico W (BETA) . 628

Release 1.5.1 (14/Jun/2023) . 629

Board Support. 629

Library Changes/Improvements. 629

New Libraries . 630

Miscellaneous. 631

Build . 631

Bluetooth Support for Pico W . 631

Release 2.0.0 (08/Aug/2024) . 632

Notices . 632

Major New Features. 632

Security and Code Signing . 633

Board Support. 633

New Libraries . 634

Library Changes / Improvements . 637

pico_bt_stack . 643

FreeRTOS integration. 647

Backwards Incompatibilities. 648

Build . 648

Building Documentation . 649

Fixed Issues . 649

Appendix D: Documentation release history. 650

Raspberry Pi Pico-series C/C++ SDK

Table of contents 7

Chapter 1. About the SDK

1.1. Introduction

The SDK (Software Development Kit) provides the headers, libraries and build system necessary to write programs for

RP-series microcontroller-based devices such as Raspberry Pi Pico or Raspberry Pi Pico 2 in C, C++ or Arm assembly

language.

The SDK is designed to provide an API and programming environment that is familiar both to non-embedded C

developers and embedded C developers alike. A single program runs on the device at a time with a conventional main()

method. Standard C/C++ libraries are supported along with APIs for accessing the RP-series microcontroller’s

hardware, including DMA, IRQs, and the wide variety fixed function peripherals and PIO (Programmable IO).

Additionally, the SDK provides higher level libraries for dealing with timers, synchronization, Wi-Fi and Bluetooth

networking, USB and multicore programming. These libraries should be comprehensive enough that your application

code rarely, if at all, needs to access hardware registers directly. However, if you do need or prefer to access the raw

hardware registers, you will also find complete and fully-commented register definition headers in the SDK. There’s no

need to look up addresses in the datasheet.

The SDK can be used to build anything from simple applications, fully-fledged runtime environments such as

MicroPython, to low level software such as the RP-series microcontroller’s on-chip bootrom itself.

The design goal for entire SDK is to be simple but powerful.

Looking to get started?

This book documents the SDK APIs, explains the internals and overall design of the SDK, and explores

some deeper topics like using the PIO assembler to build new interfaces to external hardware. For a

quick start with setting up the SDK and writing SDK programs, Getting started with Raspberry Pi Pico-

series is the best place to start.

1.2. Anatomy of a SDK Application

Before going completely depth-first in our traversal of the SDK, it’s worth getting a little breadth by looking at one of the

SDK examples covered in Getting started with Raspberry Pi Pico-series, in more detail.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include "pico/stdlib.h"
 8
 9 #ifndef LED_DELAY_MS
10 #define LED_DELAY_MS 250
11 #endif
12
13 // Initialize the GPIO for the LED
14 void pico_led_init(void) {
15 // A device like Pico that uses a GPIO for the LED will define PICO_DEFAULT_LED_PIN
16 // so we can use normal GPIO functionality to turn the led on and off

Raspberry Pi Pico-series C/C++ SDK

1.1. Introduction 8

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c

17 gpio_init(PICO_DEFAULT_LED_PIN);
18 gpio_set_dir(PICO_DEFAULT_LED_PIN, GPIO_OUT);
19 }
20
21 // Turn the LED on or off
22 void pico_set_led(bool led_on) {
23 // Just set the GPIO on or off
24 gpio_put(PICO_DEFAULT_LED_PIN, led_on);
25 }
26
27 int main() {
28 pico_led_init();
29 while (true) {
30 pico_set_led(true);
31 sleep_ms(LED_DELAY_MS);
32 pico_set_led(false);
33 sleep_ms(LED_DELAY_MS);
34 }
35 }

This program consists only of a single C file, with three functions. As with almost any C programming environment, the

function called main() is special, and is the point where the language runtime first hands over control to your program. In

the SDK the main() function does not take any arguments. It’s quite common for the main() function not to return, as is

shown here.

 NOTE

The return code of main() is ignored by the SDK runtime, and the default behaviour is to hang the processor on exit.

At the top of the C file, we include a header called pico/stdlib.h. This is an umbrella header that pulls in some other

commonly used headers. In particular, the ones needed here are hardware/gpio.h, which is used for accessing the general

purpose IOs on RP-series microcontrollers (the gpio_xxx functions here), and pico/time.h which contains, among other

things, the sleep_ms function. Broadly speaking, a library whose name starts with pico provides high level APIs and

concepts, or aggregates smaller interfaces; a name beginning with hardware indicates a thinner abstraction between your

code and the RP-series microcontroller on-chip hardware.

So, using mainly the hardware_gpio and pico_time libraries, this C program will blink an LED connected to the default LED

GPIO (which exact pin varies from one RP-series microcontroller board to another) on and off, twice per second, forever

(or at least until unplugged). In the directory containing the C file (you can click the link above the source listing to go

there), there is one other file which lives alongside it.

Directory listing of pico-examples/blink_simple

blink_simple
├── blink_simple.c
└── CMakeLists.txt

0 directories, 2 files

The second file is a CMake file, which tells the SDK how to turn the C file into a binary application for an RP-series

microcontroller-based board. Later sections will detail exactly what CMake is, and why it is used, but we can look at the

contents of this file without getting mired in those details.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/CMakeLists.txt

 1 add_executable(blink_simple
 2 blink_simple.c
 3)

Raspberry Pi Pico-series C/C++ SDK

1.2. Anatomy of a SDK Application 9

https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/CMakeLists.txt

 4
 5 # pull in common dependencies
 6 target_link_libraries(blink_simple pico_stdlib)
 7
 8 # create map/bin/hex/uf2 file etc.
 9 pico_add_extra_outputs(blink_simple)
10
11 # call pico_set_program_url to set path to example on github, so users can find the source
 for an example via picotool
12 example_auto_set_url(blink_simple)

The standard CMake function add_executable in this file declares that a program called blink_simple should be built from

the C file shown earlier. This is also the "target" name in CMake, and is also used when building the program

individually. For example, in the pico-examples repository you can say make blink_simple in your build directory, and that

name comes from this line. You can have multiple executables in a single project, and the pico-examples repository is one

such project.

The target_link_libraries is pulling in the SDK functionality that our program needs. If you don’t ask for a library, it

doesn’t appear in your program binary. Just like pico/stdlib.h is an umbrella header that includes things like pico/time.h

and hardware/gpio.h, pico_stdlib is an umbrella library that makes libraries like pico_time and hardware_gpio available to

your build, so that those headers can be included in the first place, and the extra C source files are compiled and linked.

If you need less common functionality, not included with pico_stdlib, like accessing the DMA hardware, you should add

those dependencies here (e.g. listing hardware_dma before or after pico_stdlib).

We could end the CMake file here, and that would be enough to build the blink_simple program. By default, the build will

produce an ELF file (executable linkable format), containing all of your code and the SDK libraries it uses. You can load

an ELF into the RP-series microcontroller’s RAM or external flash through the Serial Wire Debug port, with a debugger

setup like gdb and openocd, or via picotool. It’s often easier to program your Raspberry Pi Pico 2 or other RP-series

microcontroller board directly over USB with BOOTSEL mode, and this requires a different type of file, called UF2, which

serves the same purpose here as an ELF file, but is constructed to survive the rigours of USB mass storage transfer

more easily. The pico_add_extra_outputs function declares that you want a UF2 file to be created, as well as some useful

extra build output like disassembly and map files.

 NOTE

The ELF file is converted to a UF2 using picotool.

The final example_auto_set_url function is used to embed a link back to the example soource code on github into the

output binary such that it can be displayed via picotool info blink_simple.elf. You’ll see this on the pico-examples

applications, but it’s not applicable to your own programs.

Finally, a brief note on the pico_stdlib library. Besides common hardware and high-level libraries like hardware_gpio and

pico_time, it also pulls in system components like pico-runtime, which is needed to set up the hardware and runtime

environment that lets you just implement`main()` and pico_standard_link which configures the linking of your executable

whilst using a simple CMakeLists.txt. These are incredibly low-level components that most users will not need to worry

about. The reason they are mentioned is to point out that they are ultimately implicit dependencies of your program

because of your dependence on pico_stdlib; if you choose not depend on pico_stdlib and then you can pick just the

exact SDK libraries you want explcitly.

Raspberry Pi Pico-series C/C++ SDK

1.2. Anatomy of a SDK Application 10

Chapter 2. SDK architecture
RP-series microcontrollers are powerful chips, and in particular were designed with a disproportionate amount of

system RAM for their point in the microcontroller design space. However it is an embedded environment, so RAM, CPU

cycles and program space are still at a premium. As a result the trade-offs between performance and other factors (e.g.

edge case error handling, runtime vs compile time configuration) are necessarily much more visible to the developer

than they might be on other, higher-level platforms.

The intention within the SDK has been for features to just work out of the box, with sensible defaults, but also to give the

developer as much control and power as possible (if they want it) to fine tune every aspect of the application they are

building and the libraries used.

The next few sections try to highlight some of the design decisions behind the SDK: the how and the why, as much as

the what.

 NOTE

Some parts of this overview are quite technical or deal with very low-level parts of the SDK and build system. You

might prefer to skim this section at first and then read it thoroughly at a later time, after writing a few SDK

applications.

2.1. The Build System

The SDK uses CMake to manage the build. CMake is widely supported by IDEs (Integrated Development Environments),

which can use a CMakeLists.txt file to discover source files and generate code autocomplete suggestions. The same

CMakeLists.txt file provides a terse specification of how your application (or your project with many distinct applications)

should be built, which CMake uses to generate a robust build system used by make, ninja or other build tools. The build

system produced is customised for the platform (e.g. Windows, or a Linux distribution) and by any configuration

variables the developer chooses.

Section 2.6 shows how CMake can set configuration defines for a particular program, or based on which RP-series

microcontroller board you are building for, to configure things like default pin mappings and features of SDK libraries.

These defines are listed in Chapter 5, and Board Configuration files are covered in more detail in Chapter 8. Additionally

Chapter 6 describes CMake variables you can use to control the functionality of the build itself.

Apart from being a widely used build system for C/C++ development, CMake is fundamental to the way the SDK is

structured, and how applications are configured and built.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/CMakeLists.txt

 1 add_executable(blink_simple
 2 blink_simple.c
 3)
 4
 5 # pull in common dependencies
 6 target_link_libraries(blink_simple pico_stdlib)
 7
 8 # create map/bin/hex/uf2 file etc.
 9 pico_add_extra_outputs(blink_simple)
10
11 # call pico_set_program_url to set path to example on github, so users can find the source
 for an example via picotool
12 example_auto_set_url(blink_simple)

Looking again at the blink_simple example, we are defining a new executable blink_simple with a single source file

Raspberry Pi Pico-series C/C++ SDK

2.1. The Build System 11

https://cmake.org
https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/CMakeLists.txt

blink_simple.c, with a single dependency pico_stdlib. We also are using a SDK provided function pico_add_extra_outputs to

ask additional files to be produced beyond the executable itself (.uf2, .hex, .bin, .map, .dis).

The SDK builds an executable which is "bare metal", i.e. it includes the entirety of the code needed to run on the device

(other than certain code contained in the bootrom within the RP-series microcontroller).

pico_stdlib is an INTERFACE library and provides all the rest of the code and configuration needed to compile and link the

blink application. You will notice if you watch a build of blink_simple (https://github.com/raspberrypi/pico-examples/

blob/master/blink_simple/blink_simple.c) that in addition to the single blink_simple.c file, the inclusion of pico_stdlib

causes dozens of other source files to be compiled to flesh out the blink_simple application such that it can be run on a

RP-series microcontroller.

2.2. Every Library is an INTERFACE Library

All libraries within the SDK are CMake INTERFACE libraries. (Note this does not include the C/C++ standard libraries

provided by the compiler). Conceptually, a CMake INTERFACE library is a collection of:

• Source files

• Include paths

• Compiler definitions (visible to code as #defines)

• Compile and link options

• Dependencies (on other INTERFACE libraries)

The INTERFACE libraries form a tree of dependencies, with each contributing source files, include paths, compiler

definitions and compile/link options to the build. These are collected based on the libraries you have listed in your

CMakeLists.txt file, and the libraries depended on by those libraries, and so on recursively. To build the application, each

source file is compiled with the combined include paths, compiler definitions and options and linked into an executable

according to the provided link options.

When building an executable with the SDK, all of the code for one executable, including the SDK libraries, is (re)compiled

for that executable from source. Building in this way allows your build configuration to specify customised settings for

those libraries (e.g. enabling/disabling assertions, setting the sizes of static buffers), on a per-application basis, at

compile time. This allows for faster and smaller binaries, in addition of course to the ability to remove support for

unwanted features from your executable entirely.

In the example CMakeLists.txt we declare a dependency on the (INTERFACE) library pico_stdlib. This INTERFACE library itself

depends on other INTERFACE libraries (pico_runtime, hardware_gpio, hardware_uart and others). pico_stdlib provides all the

basic functionality needed to get a simple application running and toggling GPIOs and printing to a UART, and the linker

will garbage collect any functions you don’t call, so this doesn’t bloat your binary. We can take a quick peek into the

directory structure of the hardware_gpio library, which our blink_simple example uses to turn the LED on and off:

hardware_gpio
├── CMakeLists.txt
├── gpio.c
└── include
 └── hardware
 └── gpio.h

Depending on the hardware_gpio INTERFACE library in your application causes gpio.c to be compiled and linked into your

executable, and adds the include directory shown here to your search path, so that a #include "hardware/gpio.h" will pull

in the correct header in your code.

INTERFACE libraries also make it easy to aggregate functionality into readily consumable chunks (such as pico_stdlib),

which don’t directly contribute any code, but depend on a handful of lower-level libraries that do. Like a metapackage,

this lets you pull in a group of libraries related to a particular goal without listing them all by name.

Raspberry Pi Pico-series C/C++ SDK

2.2. Every Library is an INTERFACE Library 12

https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c
https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c

 IMPORTANT

SDK functionality is grouped into separate INTERFACE libraries, and each INTERFACE library contributes the code and

include paths for that library. Therefore, you must declare a dependency on the INTERFACE library you need directly (or

indirectly through another INTERFACE library) for the header files to be found during compilation of your source file (or

for code completion in your IDE).

 NOTE

As all libraries within the SDK are INTERFACE libraries, we will simply refer to them as libraries or SDK libraries from

now on.

2.3. SDK Library Structure

The full API listings are given in Chapter 4; this chapter gives an overview of how SDK libraries are organised, and the

relationships between them.

There are a number of layers of libraries within the SDK. This section starts with the highest-level libraries, which can be

used in C or C++ applications, and navigates all the way down to the hardware_regs library, which is a comprehensive set

of hardware definitions suitable for use in Arm assembly as well as C and C++, before concluding with a brief note on

how the TinyUSB stack can be used from within the SDK.

2.3.1. Higher-level Libraries

These libraries (pico_xxx) provide higher-level APIs, concepts and abstractions that are common to most RP-series

microcontroller-based applications. The APIs are listed in High Level APIs. These may be libraries that have cross-

cutting concerns between multiple pieces of hardware (for example the sleep_ functions in pico_time need to concern

themselves both with the RP-series microcontrollers' timer hardware and with how processors enter and exit low power

states), or they may be pure software infrastructure required for your program to run smoothly. This includes libraries

for things like:

• Alarms, timers and time functions

• Multi-core support and synchronization primitives

• Utility functions and data structures

These libraries are generally built upon one or more underlying hardware_ libraries, and often depend on each other.

 NOTE

More libraries are added over time. Certain additional libraries that are not fully supported/stable/documented (e.g. -

Audio support (via PIO), DPI/VGA/MIPI Video support (via PIO), file system support, SDIO support via (PIO)) are

included in the Pico Extras GitHub repository.

2.3.2. Runtime Support Libraries

These libraries provide basic application features required for a basic program.

• Runtime startup and initialization functions, e.g. performing minimal hardware initialisation (e.g. default PLL and

clock configuration), and calling functions with constructor attributes before entering main()

• Low level interfacing with the C/C++ runtime library

• Hardaware/bootrom accelerated single and double-precision floating point support.

Raspberry Pi Pico-series C/C++ SDK

2.3. SDK Library Structure 13

https://github.com/raspberrypi/pico-extras

• Compact printf support, and stdio support via UART, USB, semihosting and Segger RTT

• On RP2040, language level / and % support for fast division using RP2040 hardware dividers

• Standard runtime linking setup with default linker scripts

 NOTE

There is more high-level discussion of the aggregate library pico_runtime in Section 2.7

2.3.3. Hardware Support Libraries

These are individual libraries (hardware_xxx) providing actual APIs for interacting with each piece of physical

hardware/peripheral. They are lightweight and provide only thin abstractions. The APIs are listed in Hardware APIs.

These libraries generally provide functions for configuring or interacting with the peripheral at a functional level, rather

than accessing registers directly, e.g.:

pio_sm_set_wrap(pio, sm, bottom, top);

rather than:

pio->sm[sm].execctrl =
 (pio->sm[sm].execctrl & ~(PIO_SM0_EXECCTRL_WRAP_TOP_BITS |
PIO_SM0_EXECCTRL_WRAP_BOTTOM_BITS)) |
 (bottom << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB) |
 (top << PIO_SM0_EXECCTRL_WRAP_TOP_LSB);

The hardware_ libraries are intended to have a very minimal runtime cost. They generally do not require any or much

RAM, and rarely rely on other runtime infrastructure. In general their only dependencies are the hardware_structs and

hardware_regs libraries that contain definitions of memory-mapped register layout on the RP-series microcontroller. As

such they can be used by low-level or other specialized applications that don’t want to use the rest of the SDK libraries

and runtime.

 NOTE

void pio_sm_set_wrap(PIO pio, uint sm, uint bottom, uint top) {} is actually implemented as a static inline function

in https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h

directly as shown above.

Using static inline functions is common in SDK header files because such methods are often called with

parameters that have fixed known values at compile time. In such cases, the compiler is often able to fold the code

down to a single register write (or in this case a read, AND with a constant value, OR with a constant value, and a

write) with no function call overhead. This tends to produce much smaller and faster binaries.

2.3.3.1. Hardware Claiming

The hardware layer does provide one small abstraction which is the notion of claiming a piece of hardware. This

minimal system allows registration of peripherals or parts of peripherals (e.g. DMA channels) that are in use, and the

ability to atomically claim free ones at runtime. The common use of this system - in addition to allowing for safe

runtime allocation of resources - provides a better runtime experience for catching software misconfigurations or

accidental use of the same piece hardware by multiple independent libraries that would otherwise be very painful to

debug.

Raspberry Pi Pico-series C/C++ SDK

2.3. SDK Library Structure 14

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h#L1344-L1353

There are individual claiming/unclaiming methods in the respective hardware_ libraries.

2.3.4. Hardware Structs Library

The hardware_structs library provides a set of C structures which represent the memory mapped layout of the RP-series

microcontroller registers in the system address space. This allows you to replace something like the following (which

you’d write in C with the defines from the lower-level hardware_regs)

*(volatile uint32_t *)(PIO0_BASE + PIO_SM1_SHIFTCTRL_OFFSET) |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

with something like this (where pio0 is a pointer to type pio_hw_t at address PIO0_BASE):

pio0->sm[1].shiftctrl |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

The structures and associated pointers to memory mapped register blocks hide the complexity and potential error-

prone-ness of dealing with individual memory locations, pointer casts and volatile access. As a bonus, the structs tend

to produce better code with older compilers, as they encourage the reuse of a base pointer with offset load/stores,

instead of producing a 32 bit literal for every register accessed.

The struct headers are named consistently with both the hardware_ libraries and the hardware_regs register headers. For

example, if you access the hardware_pio library’s functionality through hardware/pio.h, the hardware_structs library (a

dependee of hardware_pio) contains a header you can include as hardware/structs/pio.h if you need to access a register

directly, and this itself will pull in hardware/regs/pio.h for register field definitions. The PIO header is a bit lengthy to

include here. hardware/structs/pll.h is a shorter example to give a feel for what these headers actually contain:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2350/hardware_structs/include/hardware/structs/pll.h Lines 27 - 74

27 typedef struct {
28 _REG_(PLL_CS_OFFSET) // PLL_CS
29 // Control and Status
30 // 0x80000000 [31] LOCK (0) PLL is locked
31 // 0x40000000 [30] LOCK_N (0) PLL is not locked +
32 // 0x00000100 [8] BYPASS (0) Passes the reference clock to the output instead of
 the...
33 // 0x0000003f [5:0] REFDIV (0x01) Divides the PLL input reference clock
34 io_rw_32 cs;
35
36 _REG_(PLL_PWR_OFFSET) // PLL_PWR
37 // Controls the PLL power modes
38 // 0x00000020 [5] VCOPD (1) PLL VCO powerdown +
39 // 0x00000008 [3] POSTDIVPD (1) PLL post divider powerdown +
40 // 0x00000004 [2] DSMPD (1) PLL DSM powerdown +
41 // 0x00000001 [0] PD (1) PLL powerdown +
42 io_rw_32 pwr;
43
44 _REG_(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT
45 // Feedback divisor
46 // 0x00000fff [11:0] FBDIV_INT (0x000) see ctrl reg description for constraints
47 io_rw_32 fbdiv_int;
48
49 _REG_(PLL_PRIM_OFFSET) // PLL_PRIM
50 // Controls the PLL post dividers for the primary output
51 // 0x00070000 [18:16] POSTDIV1 (0x7) divide by 1-7
52 // 0x00007000 [14:12] POSTDIV2 (0x7) divide by 1-7
53 io_rw_32 prim;
54

Raspberry Pi Pico-series C/C++ SDK

2.3. SDK Library Structure 15

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2350/hardware_structs/include/hardware/structs/pll.h#L27-L74

55 _REG_(PLL_INTR_OFFSET) // PLL_INTR
56 // Raw Interrupts
57 // 0x00000001 [0] LOCK_N_STICKY (0)
58 io_rw_32 intr;
59
60 _REG_(PLL_INTE_OFFSET) // PLL_INTE
61 // Interrupt Enable
62 // 0x00000001 [0] LOCK_N_STICKY (0)
63 io_rw_32 inte;
64
65 _REG_(PLL_INTF_OFFSET) // PLL_INTF
66 // Interrupt Force
67 // 0x00000001 [0] LOCK_N_STICKY (0)
68 io_rw_32 intf;
69
70 _REG_(PLL_INTS_OFFSET) // PLL_INTS
71 // Interrupt status after masking & forcing
72 // 0x00000001 [0] LOCK_N_STICKY (0)
73 io_ro_32 ints;
74 } pll_hw_t;

The structure contains the layout of the hardware registers in a block, and some defines bind that layout to the base

addresses of the instances of that peripheral in the RP-series microcontroller global address map.

Additionally, you can use one of the atomic set, clear, or xor address aliases of a piece of hardware to set, clear or toggle

respectively the specified bits in a hardware register (as opposed to having the CPU perform a read/modify/write); e.g.:

hw_set_alias(pio0)->sm[1].shiftctrl = PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

Or, equivalently:

hw_set_bits(&pio0->sm[1].shiftctrl, PIO_SM1_SHIFTCTRL_AUTOPULL_BITS);

 NOTE

The hardware atomic set/clear/XOR IO aliases are used extensively in the SDK libraries, to avoid certain classes of

data race when two cores, or an IRQ and foreground code, are accessing registers concurrently.

 NOTE

On RP-series microcontrollers, the atomic register aliases are a native part of the peripheral, not a CPU function, so

the system DMA can also perform atomic set/clear/XOR operation on registers.

2.3.5. Hardware Registers Library

The hardware_regs library is a complete set of include files for all RP-series microcontroller registers, autogenerated from

the hardware itself. This is all you need if you want to peek or poke a memory-mapped register directly, however, higher-

level libraries provide more user-friendly ways of achieving what you want in C/C++.

For example, here is a snippet from hardware/regs/sio.h:

Raspberry Pi Pico-series C/C++ SDK

2.3. SDK Library Structure 16

// Description : Single-cycle IO block
// Provides core-local and inter-core hardware for the two
// processors, with single-cycle access.
// ===
#ifndef HARDWARE_REGS_SIO_DEFINED
#define HARDWARE_REGS_SIO_DEFINED
// ===
// Register : SIO_CPUID
// Description : Processor core identifier
// Value is 0 when read from processor core 0, and 1 when read
// from processor core 1.
#define SIO_CPUID_OFFSET 0x00000000
#define SIO_CPUID_BITS 0xffffffff
#define SIO_CPUID_RESET "-"
#define SIO_CPUID_MSB 31
#define SIO_CPUID_LSB 0
#define SIO_CPUID_ACCESS "RO"

#endif

These header files are fairly heavily commented (the same information as is present in the datasheet register listings, or

the SVD files). They define the offset of every register, and the layout of the fields in those registers, as well as the

access type of the field, e.g. "RO" for read-only.

 TIP

The headers in hardware_regs contain only comments and #define statements. This means they can be included from

assembly files (.S, so the C preprocessor can be used), as well as C and C++ files.

2.3.6. TinyUSB Port

In addition to the core SDK libraries, we provide a RP-series microcontroller port of TinyUSB as the standard device and

host USB support library within the SDK, and the SDK contains some build infrastructure for easily pulling this into your

application.

The tinyusb_dev or tinyusb_host libraries within the SDK can be included in your application dependencies in

CMakeLists.txt to add device or host support to your application respectively. Additionally, the tinyusb_board library is

available to provide the additional "board support" code often used by TinyUSB demos. See the README in Pico

Examples for more information and example code for setting up a fully functional application.

 IMPORTANT

RP-series microcontroller USB hardware supports both Host and Device modes, but the two can not be used

concurrently. TinyUSB can however also provide support for USB implemented via PIO, which is exposed, if available,

via tinyusb_pico_pio_usb.

2.3.7. FreeRTOS Ports

FreeRTOS ports are available for RP2040 and RP2350 (both under Arm and RISC-V) either on a single core or in dual-

core SMP mode.

The SDK does not directly depend on FreeRTOS, but does provide some libraries (particularly for networking) that are

designed to be used with FreeRTOS. The pico-examples repository contains examples that use FreeRTOS, and when

building you should set FREERTOS_KERNEL_PATH.

Raspberry Pi Pico-series C/C++ SDK

2.3. SDK Library Structure 17

https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-examples/blob/master/README.md

 NOTE

As of the time of press the latest FreeRTOS-Kernel change for SDK 2.0.0 and RP2350 have not been merged

upstream; they can be found here instead.

2.3.8. Wi-Fi on Pico W

The IP support within the Pico SDK is provided by lwIP. The lwIP raw API is always supported: the full API, including

blocking sockets, may be used under FreeRTOS.

There are a number of different library building blocks used within the IP and Wi-Fi support`: pico_lwip for lwIP,

pico_cyw43_driver for the Wi-Fi chip driver, pico_async_context for accessing the non-thread-safe API (lwIP) in a consistent

way whether polling, using multiple cores, or running FreeRTOS.

 IMPORTANT

By default libcyw43 is licensed for non-commercial use, but users of Raspberry Pi Pico W, Pico WH, or anyone else

who builds their product around RP2040 and CYW43439, benefit from a free commercial-use licence.

These libraries can be composed individually by advanced users, but in most common cases they are rolled into a few

convenience libraries that you can add to your application’s dependencies in CMakeLists.txt:

• pico_cyw43_arch_lwip_poll - For single-core, traditional polling-style access to lwIP on Pico W.

• pico_cyw43_arch_threadsafe_background - For single or multicore access to lwIP on Pico W, with lwIP callbacks

handled in a low-priority interrupt, so no polling is required.

• pico_cyw43_arch_lwip_sys_freertos - For full access to the lwIP APIs (NO_SYS=0) under FreeRTOS.

For fuller details see the pico_cyw43_arch header file. Many examples of using Wi-Fi and lwIP with the Pico SDK may be

found in the pico-examples repository.

2.3.9. Bluetooth on Pico W

The Bluetooth support within the Pico SDK is provided by BTstack. Documentation for BTstack can be found on

BlueKitchen’s website.

 IMPORTANT

In addition to the standard BTstack licensing terms, a supplemental licence which covers commercial use of

BTstack with Raspberry Pi Pico W or Raspberry Pi Pico WH is provided.

See the pico-examples repository for Bluetooth examples including the examples from BTstack.

The Bluetooth support within the SDK is composed of multiple libraries:

The pico_btstack_ble library adds the support needed for Bluetooth Low Energy (BLE), and the pico_btstack_classic library

adds the support needed for Bluetooth Classic. You can link to either library individually, or to both libraries enabling the

dual-mode support provided by BTstack.

The pico_btstack_cyw43 library is required for Bluetooth use. It adds support for the Bluetooth hardware on the Pico W,

and integrates the BTstack run loop concept with the SDK’s pico_async_context library allowing for running Bluetooth

either via polling or in the background, along with multicore and/or FreeRTOS support.

The following additional libraries are optional:

• pico_btstack_sbc_encoder - Adds Bluetooth Sub Band Coding (SBC) encoder support.

• pico_btstack_sbc_decoder - Adds Bluetooth Sub Band Coding (SBC) decoder support.

Raspberry Pi Pico-series C/C++ SDK

2.3. SDK Library Structure 18

https://github.com/raspberrypi/FreeRTOS-Kernel
https://savannah.nongnu.org/projects/lwip/
https://github.com/georgerobotics/cyw43-driver/blob/195dfcc10bb6f379e3dea45147590db2203d3c7b/LICENSE.RP
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h
https://github.com/raspberrypi/pico-examples/blob/master/README.md
https://github.com/bluekitchen/btstack/blob/master/README.md
https://bluekitchen-gmbh.com/btstack/
https://bluekitchen-gmbh.com/btstack/
https://github.com/bluekitchen/btstack/blob/master/LICENSE
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/LICENSE.RP
https://github.com/raspberrypi/pico-examples/blob/master/README.md
https://bluekitchen-gmbh.com/btstack/#examples/examples/

• pico_btstack_bnep_lwip - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using LwIP.

• pico_btstack_bnep_lwip_sys_freertos - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using

LwIP with FreeRTOS in NO_SYS=0 mode.

To use BTstack you must add pico_btstack_cyw43 and one or both of pico_btsack_ble and pico_sbtstack_classic to your

application dependencies in your CMakeLists.txt. Additionally, you need to provide a btstack_config.h file in your source

tree and add its location to your include path. For more details, see BlueKitchen’s documentation on how to configure

BTstack and the relevant Bluetooth example code in the pico-examples repository.

The CMake function pico_btstack_make_gatt_header can be used to run the BTstack compile_gatt tool to make a GATT

header file from a BTstack GATT file.

2.4. Directory Structure

We have discussed libraries such as pico_stdlib and hardware_gpio above. Imagine you wanted to add some code using

the RP-series microcontrollers DMA controller to the hello_world example in pico-examples. To do this you need to add a

dependency on another library, hardware_dma, which is not included by default by pico_stdlib (unlike, say, hardware_uart).

You would change your CMakeLists.txt to list both pico_stdlib and hardware_dma as dependencies of the hello_world target

(executable). (Note the line breaks are not required)

target_link_libraries(hello_world
 pico_stdlib
 hardware_dma
)

In your source code, you would include the DMA hardware library header as such:

#include "hardware/dma.h"

Trying to include this header without listing hardware_dma as a dependency will fail, and this is due to how SDK files are

organised into logical functional units on disk, to make it easier to add functionality in the future.

As an aside, this correspondence of hardware_dma → hardware/dma.h is the convention for all toplevel SDK library headers.

The library is called foo_bar and the associated header is foo/bar.h. Some functions may be provided inline in the

headers, others may be compiled and linked from additional .c files belonging to the library. Both of these require the

relevant hardware_ library to be listed as a dependency, either directly or through some higher-level bundle like

pico_stdlib.

 NOTE

Some libraries have additional headers which are located — for the above example — in foo/bar/other.h

You may want to actually find the files in question (although most IDEs will do this for you). The on disk files are actually

split into multiple top-level directories. This is described in the next section.

2.4.1. Locations of Files

Whilst you may be focused on building a binary to run specifically on Raspberry Pi Pico 2, which uses a RP2040, the SDK

is structured in a more general way. This is for two reasons:

1. To support other future chips in the RP2 family

Raspberry Pi Pico-series C/C++ SDK

2.4. Directory Structure 19

https://bluekitchen-gmbh.com/btstack/develop/#how_to/
https://bluekitchen-gmbh.com/btstack/develop/#how_to/
https://github.com/raspberrypi/pico-examples/blob/master/README.md

2. To support testing of your code off device (this is host mode)

The latter is useful for writing and running unit tests, but also as you develop your software, for example your debugging

code or work-in-progress software might be too big or use too much RAM to fit on the device, and much of the software

complexity may be non-hardware-specific.

The code is thus split into top-level directories as follows:

Table 1. Top-level

directories
Path Description

src/rp2040/ This contains the hardware_regs and hardware_structs libraries mentioned earlier, along

with a handful of other low-level platform libraries, all of which are specific to the

RP2040.

src/rp2350/ This contains the hardware_regs and hardware_structs libraries mentioned earlier, along

with a handful of other low-level platform libraries, all of which are specific to the

RP2350.

src/rp2_common/ This contains the remaining hardware_ library implementations for individual hardware

components, and pico_ libraries or library implementations that are intended specifically

for RP-series microcontroller hardware. Libraries are included here even if they are

RP2040 or RP2350 specific, if they are considered part of the RP-series microcontroller

API proper.

src/common/ This is common code that is not specific to any hardware. This includes utilty code,

headers providing hardware abstractions for functionality which are simulated in host

mode (see below), along with some of the pico_ library implementations which, to the

extent they use hardware, do so only through the hardware_ abstractions.

src/host/ This is a basic set of stub SDK library implementations sufficient to get simple

Raspberry Pi Pico 2 applications running on your computer (Raspberry Pi OS, Linux,

macOS or Windows using Cygwin or Windows Subsystem for Linux) for testing

purposes. This is not intended to be a fully functional platform, however it is possible to

inject additional implementations of libraries to provide more complete functionality.

There is a CMake variable PICO_PLATFORM that controls the environment you are building for:

The value of PICO_PLATFORM determine which sets of library sources are compiled to build your program. When doing a

PICO_PLATFORM=rp2040 build, you get code from common, rp2_common and rp2040; when doing a host build (PICO_PLATFROM=host),

you get code from common and host.

With the advent of RP2350, there are two additional supported PICO_PLATFORM values, rp350_arm_s for secure Arm code on

RP2350, and rp2350_riscv for RISC-V on RP2350. rp2350 can also be used as a shorthand, but is expanded based on the

value of PICO_DEFAULT_RP2350_PLATFORM.

 TIP

Individual boards support only one of either RP2040 or RP2350. To avoid having to specify PICO_PLATFORM in addition

to PICO_BOARD (see Section 2.6.1), specifying the latter can now automatically set the former.

Within each top-level directory, the libraries have the following structure (reading foo_bar as something like hardware_uart

or pico_time)

top-level_dir/
top-level_dir/foo_bar/include/foo/bar.h # header file
top-level_dir/foo_bar/CMakeLists.txt # build configuration
top-level_dir/foo_bar/bar.c # source file(s)

As a concrete example, we can list the hardware_uart directory under pico-sdk/rp2_common (you may also recall the

hardware_gpio library we looked at earlier):

Raspberry Pi Pico-series C/C++ SDK

2.4. Directory Structure 20

hardware_uart
├── CMakeLists.txt
├── include
│ └── hardware
│ └── uart.h
└── uart.c

uart.h contains function declarations and preprocessor defines for the hardware_uart library, as well as some inline

functions that are expected to be particularly amenable to constant folding by the compiler. uart.c contains the

implementations of more complex functions, such as calculating and setting up the divisors for a given UART baud rate.

 NOTE

The directory top-level_dir/foo_bar/include is added as an include directory to the INTERFACE library foo_bar, which is

what allows you to include "foo/bar.h" in your application

2.5. Conventions for Library Functions

This section covers some common patterns you will see throughout the SDK libraries, such as conventions for function

names, how errors are reported, and the approach used to efficiently configure hardware with many register fields

without having unreadable numbers of function arguments.

2.5.1. Function Naming Conventions

SDK functions follow a common naming convention for consistency and to avoid name conflicts. Some names are

quite long, but that is deliberate to be as specific as possible about functionality, and of course because the SDK API is

a C API and does not support function overloading.

2.5.1.1. Name prefix

Functions are prefixed by the library/functional area they belong to; e.g. public functions in the hardware_dma library are

prefixed with dma_. Sometime the prefix refers to a sub group of library functionality (e.g. channel_config_)

2.5.1.2. Verb

A verb typically follows the prefix specifying that action performed by the function. set_ and get_ (or is_ for booleans)

are probably the most common and should always be present; i.e. a hypothetical method would be

oven_get_temperature() and food_add_salt(), rather than oven_temperature() and food_salt().

2.5.1.3. Suffixes

2.5.1.3.1. Blocking/Non-Blocking Functions and Timeouts

Table 2. SDK Suffixes

for (non-)blocking

functions and

timeouts.

Suffix Param Description

(none) The method is non-blocking, i.e. it does not wait on any external

condition that could potentially take a long time.

Raspberry Pi Pico-series C/C++ SDK

2.5. Conventions for Library Functions 21

_blocking The method is blocking, and may potentially block indefinitely

until some specific condition is met.

_blocking_until absolute_time_t until The method is blocking until some specific condition is met,

however it will return early with a timeout condition (see Section

2.5.2) if the until time is reached.

_timeout_ms uint32_t timeout_ms The method is blocking until some specific condition is met,

however it will return early with a timeout condition (see Section

2.5.2) after the specified number of milliseconds

_timeout_us uint64_t timeout_us The method is blocking until some specific condition is met,

however it will return early with a timeout condition (see Section

2.5.2) after the specified number of microseconds

2.5.2. Return Codes and Error Handling

As mentioned earlier, there is a decision to be made as to whether/which functions return error codes that can be

handled by the caller, and indeed whether the caller is likely to actually do something in response in an embedded

environment. Also note that very often return codes are there to handle parameter checking, e.g. when asked to do

something with the 27th DMA channel (when there are actually only 12).

In many cases checking for obviously invalid (likely program bug) parameters in (often inline) functions is prohibitively

expensive in speed and code size terms, and therefore we need to be able to configure it on/off, which precludes return

codes being returned for these exceptional cases.

The SDK follows two strategies:

1. Methods that can legitimately fail at runtime due to runtime conditions e.g. timeouts, dynamically allocated

resource, can return a status which is either

◦ A bool indicating success or not

◦ An integer value which, if negative, is standard SDK negative integer return code from the PICO_ERROR_ family

(see pico_error_code values in pico_base) and if non-negative indicates a successful return. In the latter case

the value is either PICO_OK (0) or any other positive value if the function actually needs to return something

2. Other issue like invalid parameters, or failure to allocate resources which are deemed program bugs (e.g. two

libraries trying to use the same statically assigned piece of hardware) do not affect a return code (usually the

functions return void) and must cause some sort of exceptional event.

As of right now the exceptional event is a C assert, so these checks are always disabled in release builds by

default. Additionally most of the calls to assert are disabled by default for code/size performance (even in debug

builds); You can set PARAM_ASSERTIONS_ENABLE_ALL=1 or PARAM_ASSERTIONS_DISABLE_ALL=1 in your build to change the

default across the entire SDK, or say PARAM_ASSERTIONS_ENABLED_I2C=0/1 to explicitly specify the behaviour for the

hardware_i2c module

In the future we may support calling a custom function to throw an exception in C++ or other environments where

stack unwinding is possible.

3. Obviously sometimes the calling code whether it be user code or another higher level function, may not want the

called function to assert on bad input, in which case it is the responsibility of the caller to check the validity (there

are a good number of API functions provided that help with this) of their arguments, and the caller can then choose

to provide a more flexible runtime error experience.

4. Finally, some code may choose to "panic" directly if it detects an invalid state. A "panic" involves writing a message

to standard output and then halting (by executing a breakpoint instruction). Panicking is a good response when it

is undesirable to even attempt to continue given the current situation.

Raspberry Pi Pico-series C/C++ SDK

2.5. Conventions for Library Functions 22

2.5.3. Use of Inline Functions

SDK libraries often contain a mixture of static inline functions in header files, and non-static functions in C source files.

In particular, the hardware_ libraries are likely to contain a higher proportion of inline function definitions in their headers.

This is done for speed and code size.

The code space needed to setup parameters for a regular call to a small function in another compilation unit can be

substantially larger than the function implementation. Compilers have their own metrics to decide when to inline

function implementations at their call sites, but the use of static inline definitions gives the compiler more freedom to

do this.

This is particularly effective in the context of hardware register access because these functions often:

• Have relatively many parameters, which…

• …are immediately shifted and masked to combine with some register value, and…

• …are often constants known at compile time

So if the implementation of a hardware access function is inlined, the compiler can propagate the constant parameters

through whatever bit manipulation and arithmetic that function may do, collapsing a complex function down to "please

write this constant value to this constant address". Again, we are not forcing the compiler to do this, but the SDK

consistently tries to give it freedom to do so.

The result is that there is generally no overhead using the lower-level hardware_ functions as compared with using

preprocessor macros with the hardware_regs definitions, and they tend to be much less error-prone.

2.5.4. Builder Pattern for Hardware Configuration APIs

The SDK uses a builder pattern for the more complex configurations, which provides the following benefits:

1. Readability of code (avoid "death by parameters" where a configuration function takes a dozen integers and

booleans)

2. Tiny runtime code (thanks to the compiler)

3. Less brittle (the addition of another item to a hardware configuration will not break existing code)

Take the following hypothetical code example to (quite extensively) configure a DMA channel:

int dma_channel = 3;
dma_channel_config config = dma_get_default_channel_config(dma_channel);
channel_config_set_read_increment(&config, true);
channel_config_set_write_increment(&config, true);
channel_config_set_dreq(&config, DREQ_SPI0_RX);
channel_config_set_transfer_data_size(&config, DMA_SIZE_8);
dma_set_config(dma_channel, &config, false);

The value of dma_channel is known at compile time, so the compiler can replace dma_channel with 3 when generating code

(constant folding). The dma_ methods are static inline methods (from https://github.com/raspberrypi/pico-sdk/blob/

master/src/rp2_common/hardware_dma/include/hardware/dma.h) meaning the implementations can be folded into

your code by the compiler and, consequently, your constant parameters (like DREQ_SPI0_RX) are propagated though this

local copy of the function implementation. The resulting code is usually smaller, and certainly faster, than the register

shuffling caused by setting up a function call.

The net effect is that the compiler actually reduces all of the above to the following code:

Raspberry Pi Pico-series C/C++ SDK

2.5. Conventions for Library Functions 23

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h

Effective code produced by the C compiler for the DMA configuration

*(volatile uint32_t *)(DMA_BASE + DMA_CH3_AL1_CTRL_OFFSET) = 0x00089831;

It may seem counterintuitive that building up the configuration by passing a struct around, and committing the final

result to the IO register, would be so much more compact than a series of direct register modifications using register

field accessors. This is because the compiler is customarily forbidden from eliminating IO accesses (illustrated here

with a volatile keyword), with good reason. Consequently it’s easy to unwittingly generate code that repeatedly puts a

value into a register and pulls it back out again, changing a few bits at a time, when we only care about the final value of

the register. The configuration pattern shown here avoids this common pitfall.

 NOTE

The SDK code is designed to make builder patterns efficient in both Release and Debug builds. Additionally, even if

not all values are known constant at compile time, the compiler can still produce the most efficient code possible

based on the values that are known.

2.6. Customisation and Configuration Using Preprocessor
variables

The SDK allows use of compile time definitions to customize the behavior/capabilities of libraries, and to specify

settings (e.g. physical pins) that are unlikely to be changed at runtime This allows for much smaller more efficient code,

and avoids additional runtime overheads and the inclusion of code for configurations you might choose at runtime even

though you actually don’t (e.g. support PWM audio when you are only using I2S)!

Remember that because of the use of INTERFACE libraries, all the libraries your application(s) depend on are built from

source for each application in your build, so you can even build multiple variants of the same application with different

baked in behaviors.

Chapter 5 has more details and a comprehensive list of the available preprocessor defines, what they do, and what their

default values are.

Preprocessor variables may be specified in a number of ways, described in the following sections.

 NOTE

Whether compile time configuration or runtime configuration or both is supported/required is dependent on the

particular library itself. The general philosophy however, is to allow sensible default behaviour without the user

specifying any settings (beyond those provided by the board configuration).

2.6.1. Preprocessor Variables via Board Configuration File

Many of the common configuration settings are actually related to the particular RP-series microcontroller board being

used and include default pin settings for various SDK libraries. The board being used is specified via the PICO_BOARD

CMake variable which may be specified on the CMake command line or in the environment.

The board configuration provides a header file that specifies defaults if not otherwise specified; for example

https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h specifies

#ifndef PICO_DEFAULT_LED_PIN
#define PICO_DEFAULT_LED_PIN 25
#endif

Raspberry Pi Pico-series C/C++ SDK

2.6. Customisation and Configuration Using Preprocessor variables 24

https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h

The header my_board_name.h is included by all other SDK headers as a result of setting PICO_BOARD=my_board_name. You can

also create your own board headers.

See Section 6.2 for more full details on PICO_BOARD and related CMake variables.

2.6.2. Preprocessor Variables Per Binary or Library via CMake

We could modify the https://github.com/raspberrypi/pico-examples/blob/master/hello_world/CMakeLists.txt with

target_compile_definitions to specify an alternate set of UART pins to use.

Modified hello_world CMakeLists.txt specifying different UART pins

add_executable(hello_world
 hello_world.c
)

SPECIFY two preprocessor definitions for the target hello_world
target_compile_definitions(hello_world PRIVATE
 PICO_DEFAULT_UART_TX_PIN=16
 PICO_DEFAULT_UART_RX_PIN=17
)

Pull in our pico_stdlib which aggregates commonly used features
target_link_libraries(hello_world pico_stdlib)

create map/bin/hex/uf2 file etc.
pico_add_extra_outputs(hello_world)

The target_compile_definitions specifies preprocessor definitions that will be passed to the compiler for every source file

in the target hello_world (which as mentioned before includes all of the sources for all dependent INTERFACE libraries).

PRIVATE is required by CMake to specify the scope for the compile definitions. Note that all preprocessor definitions used

by the SDK have a PICO_ prefix.

2.7. SDK Runtime

For those coming from non-embedded programming, or from other devices, this section will give you an idea of how

various C/C++ language level concepts are handled within the SDK

2.7.1. Standard Input/Output (stdio) Support

The SDK provides infrastructure for routing stdout and stdin to various hardware interfaces, which is provided by the

pico_stdio library.

• A UART interface specified by a board configuration header. The default for Raspberry Pi Pico 2 is 115200 baud on

GPIO0 (TX) and GPIO1 (RX)

• A USB CDC ACM virtual serial port, using TinyUSB’s CDC support. The virtual serial device can be accessed

through the RP-series microcontrollers' dedicated USB hardware interface, in Device mode

• Minimal semihosting support to direct stdout to an external debug host connected via the Serial Wire Debug link on

the RP-series microcontroller

• Segger RTT

The support is used via the standard calls like printf, puts, getchar, found in the standard <stdio.h> header. By default,

stdout converts bare linefeed characters to carriage return plus linefeed, for better display in a terminal emulator. This

Raspberry Pi Pico-series C/C++ SDK

2.7. SDK Runtime 25

https://github.com/raspberrypi/pico-examples/blob/master/hello_world/CMakeLists.txt

can be disabled at runtime, at build time, or the CR-LF support can be completely removed.

stdout is broadcast to all interfaces that are enabled, and stdin is collected from all interfaces which are enabled and

support input. Since some of the interfaces, particularly USB, have heavy runtime and binary size cost, only the UART

interface is included by default. You can add/remove interfaces for a given program at build time with e.g.

pico_enable_stdio_usb(target_name, 1) # enable USB CDC stdio for TARGET target_name

2.7.2. Printf Support

The SDK runtime packages a lightweight printf library by Marco Paland, provided via the pico_printf library.

This is a small and largely feature complete implementation, however the C library version (or no printf support) can be

chosen instead via the CMake function pico_set_printf_implementation.

2.7.3. Runtime Initialization and Linking

Using the SDK you can simply write your simple C file with a main() method, and a small CMakeLists.txt and you can build

a binary that works on your RP-series microcontroller.

You can take as much control of this process as you want, but by default, the pico_runtime includes these libraries:

• pico_crt0 - the runtime entry point and default linker scripts which define memory layout

• pico_standard_link - configuration for link options and pulling in linker scripts

• pico_runtime_init - a default set of initializers to run before reaching main.

2.7.4. C-Library Integration

There are a variety of C libraries used by the compilers supported by the SDK. These currently include:

• newlib

• picolibc

• llvm-libc

These each have slightly different integration points for a bare-metal embedded applications, and the SDK runtime

takes care of these via the pico_clib_interface library.

2.7.5. Floating-point Support

The SDK provides a highly optimized single and double-precision floating point implementation. often significantly

faster than the equivalent C library versions. Both basic arithmetic, and scientific functions are provided.

On RP2040 the functions are actually implemented using support provided in the RP2040 bootrom. This means the

interface from your code to the ROM floating point library has very minimal impact on your program size, certainly using

dramatically less flash storage than including the standard floating point routines shipped with your compiler. The

physical ROM storage on the RP-series microcontroller has single-cycle access (with a dedicated arbiter on the RP-

series microcontroller busfabric), and accessing code stored here does not put pressure on the flash cache or take up

space in memory, so not only are the routines fast, the rest of your code will run faster due them being resident in ROM.

On RP2350 optimized Arm versions of the single-precision floating point functions are provided which use the

processors VFP floating point instructions. Optimized versions of the double-precision float point functions are

provided using the RP2350’s DCP (Double Coprocessor) instructions.

Raspberry Pi Pico-series C/C++ SDK

2.7. SDK Runtime 26

The SDK libraries pico_float and pico_double provide this support. This includes implementations for all the standard

functions from math.h as well as additional functions that can be found in pico/float.h and pico/double.h.

2.7.5.1. Configuration and Alternate Implementations

There are three different floating point implementations provided

Name Description

default The default; equivalent to pico

pico Use the fast/compact SDK/bootrom implementations

compiler Use the standard compiler provided soft floating point implementations

none Map all functions to a runtime assertion. You can use this when you know you don’t

want any floating point support to make sure it isn’t accidentally pulled in by some

library.

These settings can be set independently for both "float" and "double":

For "float" you can call pico_set_float_implementation(TARGET NAME) in your CMakeLists.txt to choose a specific

implementation for a particular target, or set the CMake variable PICO_DEFAULT_FLOAT_IMPL to pico_float_NAME to set the

default.

For "double" you can call pico_set_double_implementation(TARGET NAME) in your CMakeLists.txt to choose a specific

implementation for a particular target, or set the CMake variable PICO_DEFAULT_DOUBLE_IMPL to pico_double_NAME to set the

default.

 TIP

The pico floating point library adds very little to your binary size, however it must include implementations for any

used functions that are not present in V1 of the bootrom, which is present on early Raspberry Pi Pico 2 boards. If you

know that you are only using RP2040s with V2 of the bootrom, then you can specify defines

PICO_FLOAT_SUPPORT_ROM_V1=0` and PICO_DOUBLE_SUPPORT_ROM_V1=0 so the extra code will not be included. Any use

of those functions on a RP2040 with a V1 bootrom will cause a panic at runtime. See the RP2040 Datasheet for

more specific details of the bootrom functions.

2.7.5.1.1. NaN Propagation

The SDK implementation by default treats input NaNs as infinites. If you require propagation of NaN inputs to outputs

and NaN outputs for domain errors, then you can set the compile definitions PICO_FLOAT_PROPAGATE_NANS and

PICO_DOUBLE_PROPAGATE_NANS to 1, at the cost of a small runtime overhead.

2.7.6. Hardware Divider

This section applies to RP2040 only.

The SDK includes optimized 32- and 64-bit division functions accelerated by the RP2040 hardware divider, which are

seamlessly integrated with the C / and % operators. The SDK also supplies a high-level API which includes combined

quotient and remainder functions for 32- and 64-bit, also accelerated by the hardware divider.

See Figure 1 and Figure 2 for 32-bit and 64-bit integer divider comparison.

Raspberry Pi Pico-series C/C++ SDK

2.7. SDK Runtime 27

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0 50

GCC

Pico

100 150 200 250

Figure 1. 32-bit divides

by divider size using

GCC library (blue), or

the SDK library (red)

with the RP2040

hardware divider.

Figure 2. 64-bit divides

by divider size using

GCC library (blue), or

the SDK library (red)

with the RP2040

hardware divider.

2.8. Multi-core support

Multi-core support should be familiar to those used to programming with threads in other environments. The second

core is just treated as a second thread within your application; initially the second core (core1 as it is usually referred to;

the main application thread runs on core0) is halted, however you can start it executing some function in parallel from

your main application thread.

Core 1 (the second core) is started by calling multicore_launch_core1(some_function_pointer); on core 0, which wakes the

core from its low-power sleep state and provides it with its entry point — some function you have provided which

hopefully has a descriptive name like void core1_main() { }. This function, as well as others such as pushing and

popping data through the inter-core mailbox FIFOs, is listed under pico_multicore.

Care should be taken with calling C library functions from both cores simultaneously as they are generally not designed

Raspberry Pi Pico-series C/C++ SDK

2.8. Multi-core support 28

to be thread safe. You can use the mutex_ API provided by the SDK in the pico_sync library (mutex) from within your own

code.

 NOTE

That the SDK version of printf is always safe to call from both cores. malloc, calloc and free are additionally wrapped

to make it thread safe when you include the pico_multicore as a convenience for C++ programming, where some

object allocations may not be obvious.

2.9. Using C++

The SDK has a C style API, however the SDK headers may be safely included from C++ code, and the functions called

(they are declared with C linkage).

C++ files are integrated into SDK projects in the same way as C files: listing them in your CMakeLists.txt file under either

the add_executable() entry, or a separate target_sources() entry to append them to your target.

To save space, exception handling is disabled by default; this can be overridden with the CMake environment variable

PICO_CXX_ENABLE_EXCEPTIONS=1. There are a handful of other C++ related PICO_CXX vars listed in Chapter 6.

2.10. Supporting both RP2040 and RP2350

The RP2350 supports both Cortex-M33 (Arm) and Hazard3 (RISC-V) processors. As a result the SDK now supports

these processors as well as the Cortex-M0 plus processors on the RP2040.

The majority of existing source code using the SDK should compile and run unmodified, even under RISC-V, with the

obvious exception of user Arm assembly code, or code interacting with the processor internals.

See Section 6.2 for details of configuring the SDK build for your particular board and RP-series microcontroller platform.

The SDK now supports the compilers listed below, although GCC is still the only officially supported compiler as of this

SDK 2.0.0.

 TIP

If you have the correct compiler in your PATH, then compilation should just work based on your PICO_PLATFORM and

PICO_COMPILER value, however for more control you can set your PICO_TOOLCHAIN_PATH. See Section 6.3 for full details, on

configuring and finding toolchains

For Arm:

• GCC arm-none-eabi (PICO_COMPILER=pico_arm_gcc - the default for Arm)

◦ version 6 onwards for RP2040

◦ version 9 onwards for RP2350 since that is the first version that supports the Arm Cortex-M33

• LLVM Embedded Toolchain For ARM (PICO_COMPILER=pico_arm_clang)

◦ version 14 onwards

• Pigweed LLVM. This is the vanilla build of LLVM with llvm-libc used by PigWeed (PICO_COMPILER=pico_arm_clang)

◦ clang_linux-x86_64 (sha256 e12ee0db9226f5b4a4400c5eb2c0f757d7056181b651622b5453acb00105fd87)

◦ clang_win-x86_64 (sha256 8c41e8b507f4dfede80842f98a716cac209f552064088fa1b7f4c64a1e547534)

◦ clang_mac-x86_64 (sha256 1d92f52609d3c1e958fd56f5e9a68ab99b2042ddcc6e90a5eb5009cf7ac4897d)

◦ clang_mac-aarch64 (sha256 53184680db7e0043a8fba1556c7644b8f5e6c8cdffa4436a92a8e8adb0f45b8d)

Raspberry Pi Pico-series C/C++ SDK

2.9. Using C++ 29

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://pigweed.dev/
https://chrome-infra-packages.appspot.com/dl/fuchsia/third_party/clang/linux-amd64/+/git_revision:248c53429427034f45705af60d47f3b1090c4799
https://chrome-infra-packages.appspot.com/dl/fuchsia/third_party/clang/windows-amd64/+/git_revision:248c53429427034f45705af60d47f3b1090c4799
https://chrome-infra-packages.appspot.com/dl/fuchsia/third_party/clang/mac-amd64/+/git_revision:248c53429427034f45705af60d47f3b1090c4799
https://chrome-infra-packages.appspot.com/dl/fuchsia/third_party/clang/mac-arm64/+/git_revision:248c53429427034f45705af60d47f3b1090c4799

For RISC-V:

• GCC (PICO_COMPILER=pico_arm_gcc - the default for RISC-V)

Only very recent versions of GCC fully support the Hazard 3 RISC-V processors, so we recommend the compilers

listed below:

◦ CORE-V GCC top-of-tree compilers

◦ Building your own version of GCC 14 as an advanced option. For example. on current Ubuntu:

sudo apt-get install autoconf automake autotools-dev curl python3 python3-pip libmpc-
dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool
patchutils bc zlib1g-dev libexpat-dev ninja-build git cmake libglib2.0-dev libslirp-dev

sudo mkdir -p /opt/riscv/gcc14-rp2350-no-zcmp

sudo chown -R $(whoami) /opt/riscv/gcc14-rp2350-no-zcmp

git clone https://github.com/riscv/riscv-gnu-toolchain

cd riscv-gnu-toolchain

git clone https://github.com/gcc-mirror/gcc gcc-14 -b releases/gcc-14

./configure --prefix=/opt/riscv/gcc14-rp2350-no-zcmp --with
-arch=rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb --with-abi=ilp32 --with-multilib
-generator="rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb-ilp32--
;rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb-ilp32--" --with-gcc-src=`pwd`/gcc-14

make -j$(nproc)

2.11. Next Steps

This has been quite a deep dive. If you’ve somehow made it through this chapter without building any software, now

would be a perfect time to divert to the Getting started with Raspberry Pi Pico-series book, which has detailed

instructions on connecting to your RP-series microcontroller board and loading an application built with the SDK.

Chapter 3 gives some background on RP-series microcontrollers' unique Programmable I/O subsystem, and walks

through building some applications which use PIO to talk to external hardware.

Chapter 4 is a comprehensive listing of the SDK APIs. The APIs are listed according to groups of related functionality

(e.g. low-level hardware access).

Raspberry Pi Pico-series C/C++ SDK

2.11. Next Steps 30

https://www.embecosm.com/resources/tool-chain-downloads/#corev
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

Chapter 3. Using programmable I/O
(PIO)

3.1. What is Programmable I/O (PIO)?

Programmable I/O (PIO) is a new piece of hardware developed for RP-series microcontrollers. It allows you to create

new types of (or additional) hardware interfaces on your RP-series microcontroller based device. If you’ve looked at

fixed peripherals on a microcontroller, and thought "I want to add 4 more UARTs", or "I’d like to output DPI video", or

even "I need to communicate with this cursed serial device I found on AliExpress, but no machine has hardware

support", then you will have fun with this chapter.

PIO hardware is described extensively in chapter 11 of the RP2350 Datasheet. This is a companion to that text,

focussing on how, when and why to use PIO in your software. To start, we’re going to spend a while discussing why I/O

is hard, what the current options are, and what PIO does differently, before diving into some software tutorials. We will

also try to illuminate some of the more important parts of the hardware along the way, but will defer to the datasheet for

full explanations.

 TIP

You can skip to the first software tutorial if you’d prefer to dive straight in.

3.1.1. Background

Interfacing with other digital hardware components is hard. It often happens at very high frequencies (due to amounts

of data that need to be transferred), and has very exact timing requirements.

3.1.2. I/O Using dedicated hardware on your PC

Traditionally, on your desktop or laptop computer, you have one option for hardware interfacing. Your computer has

high speed USB ports, HDMI outputs, PCIe slots, SATA drive controllers etc. to take care of the tricky and time sensitive

business of sending and receiving ones and zeros, and responding with minimal latency or interruption to the graphics

card, hard drive etc. on the other end of the hardware interface.

The custom hardware components take care of specific tasks that the more general multi-tasking CPU is not designed

for. The operating system drivers perform higher level management of what the hardware components do, and

coordinate data transfers via DMA to/from memory from the controller and receive IRQs when high level tasks need

attention. These interfaces are purpose-built, and if you have them, you should use them.

3.1.3. I/O Using dedicated hardware on your Raspberry Pi or microcontroller

Not so common on PCs: your Raspberry Pi or microcontroller is likely to have dedicated hardware on chip for managing

UART, I2C, SPI, PWM, I2S, CAN bus and more over general purpose I/O pins (GPIOs). Like USB controllers (also found on

some microcontrollers, including the RP2350 on Raspberry Pi Pico 2), I2C and SPI are general purpose buses which

connect to a wide variety of external hardware, using the same piece of on-chip hardware. This includes sensors,

external flash, EEPROM and SRAM memories, GPIO expanders, and more, all of them widely and cheaply available. Even

HDMI uses I2C to communicate video timings between Source and Sink, and there is probably a microcontroller

embedded in your TV to handle this.

Raspberry Pi Pico-series C/C++ SDK

3.1. What is Programmable I/O (PIO)? 31

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

These protocols are simpler to integrate into very low-cost devices (i.e. not the host), due to their relative simplicity and

modest speed. This is important for chips with mostly analogue or high-power circuitry: the silicon fabrication

techniques used for these chips do not lend themselves to high speed or gate count, so if your switchmode power

supply controller has some serial configuration interface, it is likely to be something like I2C. The number of traces

routed on the circuit board, the number of pins required on the device package, and the PCB technology required to

maintain signal integrity are also factors in the choice of these protocols. A microcontroller needs to communicate with

these devices to be part of a larger embedded system.

This is all very well, but the area taken up by these individual serial peripherals, and the associated cost, often leaves

you with a limited menu. You may end up paying for a bunch of stuff you don’t need, and find yourself without enough of

what you really want. Of course you are out of luck if your microcontroller does not have dedicated hardware for the

type of hardware device you want to attach (although in some cases you may be able to bridge over USB, I2C or SPI at

the cost of buying external hardware).

3.1.4. I/O Using software control of GPIOs ("bit-banging")

The third option on your Raspberry Pi or microcontroller — any system with GPIOs which the processor(s) can access

easily — is to use the CPU to wiggle (and listen to) the GPIOs at dizzyingly high speeds, and hope to do so with

sufficiently correct timing that the external hardware still understands the signals.

As a bit of background it is worth thinking about types of hardware that you might want to interface, and the

approximate signalling speeds involved:

Table 3. Types of

hardware
Interface Speed Interface

1-10Hz Push buttons, indicator LEDs

300Hz HDMI CEC

10-100kHz Temperature sensors (DHT11), one-wire serial

<100kHz I2C Standard mode

22-100+kHz PCM audio

300+kHz PWM audio

400-1200kHz WS2812 LED string

10-3000kHz UART serial

12MHz USB Full Speed

1-100MHz SPI

20-300MHz DPI/VGA video

480MHz USB High Speed

10-4000MHz Ethernet LAN

12-4000MHz SD card

250-20000MHz HDMI/DVI video

"Bit-Banging" (i.e. using the processor to hammer out the protocol via the GPIOs) is very hard. The processor isn’t really

designed for this. It has other work to do… for slower protocols you might be able to use an IRQ to wake up the

processor from what it was doing fast enough (though latency here is a concern) to send the next bit(s). Indeed back in

the early days of PC sound it was not uncommon to set a hardware timer interrupt at 11kHz and write out one 8-bit PCM

sample every interrupt for some rather primitive sounding audio!

Doing that on a PC nowadays is laughed at, even though they are many order of magnitudes faster than they were back

then. As processors have become faster in terms of overwhelming number-crunching brute force, the layers of software

and hardware between the processor and the outside world have also grown in number and size. In response to the

Raspberry Pi Pico-series C/C++ SDK

3.1. What is Programmable I/O (PIO)? 32

growing distance between processors and memory, PC-class processors keep many hundreds of instructions in-flight

on a single core at once, which has drawbacks when trying to switch rapidly between hard real time tasks. However,

IRQ-based bitbanging can be an effective strategy on simpler embedded systems.

Above certain speeds — say a factor of 1000 below the processor clock speed — IRQs become impractical, in part due to

the timing uncertainty of actually entering an interrupt handler. The alternative when "bit-banging" is to sit the processor

in a carefully timed loop, often painstakingly written in assembly, trying to make sure the GPIO reading and writing

happens on the exact cycle required. This is really really hard work if indeed possible at all. Many heroic hours and likely

thousands of GitHub repositories are dedicated to the task of doing such things (a large proportion of them for LED

strings).

Additionally of course, your processor is now busy doing the "bit-banging", and cannot be used for other tasks. If your

processor is interrupted even for a few microseconds to attend to one of the hard peripherals it is also responsible for,

this can be fatal to the timing of any bit-banged protocol. The greater the ratio between protocol speed and processor

speed, the more cycles your processor will spend uselessly idling in between GPIO accesses. Whilst it is eminently

possible to drive a 115200 baud UART output using only software, this has a cost of >10,000 cycles per byte if the

processor is running at 133MHz, which may be poor investment of those cycles.

Whilst dealing with something like an LED string is possible using "bit-banging", once your hardware protocol gets faster

to the point that it is of similar order of magnitude to your system clock speed, there is really not much you can hope to

do. The main case where software GPIO access is the best choice is LEDs and push buttons.

Therefore you’re back to custom hardware for the protocols you know up front you are going to want (or more

accurately, the chip designer thinks you might need).

3.1.5. Programmable I/O Hardware using FPGAs and CPLDs

A field-programmable gate array (FPGA), or its smaller cousin, the complex programmable logic device (CPLD), is in

many ways the perfect solution for tailor-made I/O requirements, whether that entails an unusual type or unusual

mixture of interfaces. FPGAs are chips with a configurable logic fabric — effectively a sea of gates and flipflops, some

other special digital function blocks, and a routing fabric to connect them — which offer the same level of design

flexibility available to chip designers. This brings with it all the advantages of dedicated I/O hardware:

• Absolute precision of protocol timing (within limitations of your clock source)

• Capable of very high I/O throughput

• Offload simple, repetitive calculations that are part of the I/O standard (checksums)

• Present a simpler interface to host software; abstract away details of the protocol, and handle these details

internally.

The main drawback of FPGAs in embedded systems is their cost. They also present a very unfamiliar programming

model to those well-versed in embedded software: you are not programming at all, but rather designing digital

hardware. One you have your FPGA you will still need some other processing element in your system to run control

software, unless you are using an FPGA expensive enough to either fit a soft CPU core, or contain a hardened CPU core

alongside the FPGA fabric.

eFPGAs (embedded FPGAs) are available in some microcontrollers: a slice of FPGA logic fabric integrated into a more

conventional microcontroller, usually with access to some GPIOs, and accessible over the system bus. These are

attractive from a system integration point of view, but have a significant area overhead compared with the usual serial

peripherals found on a microcontroller, so either increase the cost and power dissipation, or are very limited in size. The

issue of programming complexity still remains in eFPGA-equipped systems.

3.1.6. Programmable I/O Hardware using PIO

The PIO subsystem on RP-series microcontrollers allows you to write small, simple programs for what are called PIO

state machines, of which RP2040 has eight split across two PIO instances, and RP2350 has twelve split across three

PIO instances. A state machine is responsible for setting and reading one or more GPIOs, buffering data to or from the

Raspberry Pi Pico-series C/C++ SDK

3.1. What is Programmable I/O (PIO)? 33

processor (or the RP-series microcontrollers' ultra-fast DMA subsystem), and notifying the processor, via IRQ or polling,

when data or attention is needed.

These programs operate with cycle accuracy at up to system clock speed (or the program clocks can be divided down

to run at slower speeds for less frisky protocols).

PIO state machines are much more compact than the general-purpose processors on RP2040 and RP2350. In fact, they

are similar in size (and therefore cost) to a standard SPI peripheral, such as the PL022 SPI also found on RP-series

microcontrollers, because much of their area is spent on components which are common to all serial peripherals, like

FIFOs, shift registers and clock dividers. The instruction set is small and regular, so not much silicon is spent on

decoding the instructions. There is no need to feel guilty about dedicating a state machine solely to a single I/O task,

since you have several!

In spite of this, a PIO state machine gets a lot more done in one cycle than a Cortex-M0+ when it comes to I/O: for

example, sampling a GPIO value, toggling a clock signal and pushing to a FIFO all in one cycle, every cycle. The trade-off

is that a PIO state machine is not remotely capable of running general purpose software. As we shall see though,

programming a PIO state machine is quite familiar for anyone who has written assembly code before, and the small

instruction set should be fairly quick to pick up for those who haven’t.

For simple hardware protocols - such as PWM or duplex SPI - a single PIO state machine can handle the task of

implementing the hardware interface all on its own. For more involved protocols such as SDIO or DPI video you may end

up using two or three.

 TIP

If you are ever tempted to "bit-bang" a protocol on a RP-series microcontroller, don’t! Use the PIO instead. Frankly

this is true for anything that repeatedly reads or writes from GPIOs, but certainly anything which aims to transfer

data.

3.2. Getting started with PIO

It is possible to write PIO programs both within the C++ SDK and directly from MicroPython.

Additionally the future intent is to add APIs to trivially have new UARTs, PWM channels etc created for you, using a

menu of pre-written PIO programs, but for now you’ll have to follow along with example code and do that yourself.

3.2.1. A First PIO Application

Before getting into all of the fine details of the PIO assembly language, we should take the time to look at a small but

complete application which:

1. Loads a program into a PIO’s instruction memory

2. Sets up a PIO state machine to run the program

3. Interacts with the state machine once it is running.

The main ingredients in this recipe are:

• A PIO program

• Some software, written in C, to run the whole show

• A CMake file describing how these two are combined into a program image to load onto a RP-series

microcontroller based development board

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 34

 TIP

The code listings in this section are all part of a complete application on GitHub, which you can build and run. Just

click the link above each listing to go to the source. In this section we are looking at the pio/hello_pio example in

pico-examples. You might choose to build this application and run it, to see what it does, before reading through this

section.

 NOTE

The focus here is on the main moving parts required to use a PIO program, not so much on the PIO program itself.

This is a lot to take in, so we will stay high-level in this example, and dig in deeper on the next one.

3.2.1.1. PIO Program

This is our first PIO program listing. It’s written in PIO assembly language.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio Lines 8 - 16

 8 .program hello
 9
10 ; Repeatedly get one word of data from the TX FIFO, stalling when the FIFO is
11 ; empty. Write the least significant bit to the OUT pin group.
12
13 loop:
14 pull
15 out pins, 1
16 jmp loop

The pull instruction takes one data item from the transmit FIFO buffer, and places it in the output shift register (OSR).

Data moves from the FIFO to the OSR one word (32 bits) at a time. The OSR is able to shift this data out, one or more

bits at a time, to further destinations, using an out instruction.

FIFOs?

FIFOs are data queues, implemented in hardware. Each state machine has two FIFOs, between the state

machine and the system bus, for data travelling out of (TX) and into (RX) the chip. Their name (first in,

first out) comes from the fact that data appears at the FIFO’s output in the same order as it was

presented to the FIFO’s input.

The out instruction here takes one bit from the data we just pull-ed from the FIFO, and writes that data to some pins. We

will see later how to decide which pins these are.

The jmp instruction jumps back to the loop: label, so that the program repeats indefinitely. So, to sum up the function of

this program: repeatedly take one data item from a FIFO, take one bit from this data item, and write it to a pin.

Our .pio file also contains a helper function to set up a PIO state machine for correct execution of this program:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio Lines 19 - 34

19 static inline void hello_program_init(PIO pio, uint sm, uint offset, uint pin) {
20 pio_sm_config c = hello_program_get_default_config(offset);
21
22 // Map the state machine's OUT pin group to one pin, namely the `pin`
23 // parameter to this function.
24 sm_config_set_out_pins(&c, pin, 1);
25 // Set this pin's GPIO function (connect PIO to the pad)
26 pio_gpio_init(pio, pin);

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 35

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio#L8-L16
https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio#L19-L34

27 // Set the pin direction to output at the PIO
28 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
29
30 // Load our configuration, and jump to the start of the program
31 pio_sm_init(pio, sm, offset, &c);
32 // Set the state machine running
33 pio_sm_set_enabled(pio, sm, true);
34 }

Here the main thing to set up is the GPIO we intend to output our data to. There are three things to consider here:

1. The state machine needs to be told which GPIO or GPIOs to output to. There are four different pin groups which

are used by different instructions in different situations; here we are using the out pin group, because we are just

using an out instruction.

2. The GPIO also needs to be told that PIO is in control of it (GPIO function select)

3. If we are using the pin for output only, we need to make sure that PIO is driving the output enable line high. PIO can

drive this line up and down programmatically using e.g. an out pindirs instruction, but here we are setting it up

before starting the program.

3.2.1.2. C Program

PIO won’t do anything until it’s been configured properly, so we need some software to do that. The PIO file we just

looked at — hello.pio — is converted automatically (we will see later how) into a header containing our assembled PIO

program binary, any helper functions we included in the file, and some useful information about the program. We

include this as hello.pio.h.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8
 9 #include "pico/stdlib.h"
10 #include "hardware/pio.h"
11 // Our assembled program:
12 #include "hello.pio.h"
13
14 // This example uses the default led pin
15 // You can change this by defining HELLO_PIO_LED_PIN to use a different gpio
16 #define HELLO_PIO_LED_PIN PICO_DEFAULT_LED_PIN
17
18 int main() {
19 #ifndef HELLO_PIO_LED_PIN
20 #warning pio/hello_pio example requires a board with a regular LED
21 #else
22 PIO pio;
23 uint sm;
24 uint offset;
25
26 setup_default_uart();
27
28 // This will find a free pio and state machine for our program and load it for us
29 // We use pio_claim_free_sm_and_add_program_for_gpio_range so we can address gpios >= 32 if
 needed and supported by the hardware
30 bool success = pio_claim_free_sm_and_add_program_for_gpio_range(&hello_program, &pio, &

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 36

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.c

 sm, &offset, HELLO_PIO_LED_PIN, 1, true);
31 hard_assert(success);
32
33 // Configure it to run our program, and start it, using the
34 // helper function we included in our .pio file.
35 printf("Using gpio %d\n", HELLO_PIO_LED_PIN);
36 hello_program_init(pio, sm, offset, HELLO_PIO_LED_PIN);
37
38 // The state machine is now running. Any value we push to its TX FIFO will
39 // appear on the LED pin.
40 // press a key to exit
41 while (getchar_timeout_us(0) == PICO_ERROR_TIMEOUT) {
42 // Blink
43 pio_sm_put_blocking(pio, sm, 1);
44 sleep_ms(500);
45 // Blonk
46 pio_sm_put_blocking(pio, sm, 0);
47 sleep_ms(500);
48 }
49
50 // This will free resources and unload our program
51 pio_remove_program_and_unclaim_sm(&hello_program, pio, sm, offset);
52 #endif
53 }

You might recall that RP2040 has two PIO blocks, each of them with four state machines (the {chipname_rp2350 has

three PIO blocks each with four state machines). Each PIO block has a 32-slot instruction memory which is visible to the

four state machines in the block. We need to load our program into this instruction memory before any of our state

machines can run the program. The function pio_add_program() finds free space for our program in a given PIO’s

instruction memory, and loads it.

32 Instructions?

This may not sound like a lot, but the PIO instruction set can be very dense once you fully explore its

features. A perfectly serviceable UART transmit program can be implemented in four instructions, as

shown in the pio/uart_tx example in pico-examples. There are also a couple of ways for a state machine

to execute instructions from other sources — like directly from the FIFOs — which you can read all about

in the RP2350 Datasheet.

Once the program is loaded, we find a free state machine and tell it to run our program. There is nothing stopping us

from ordering multiple state machines to run the same program. Likewise, we could instruct each state machine to run

a different program, provided they all fit into the instruction memory at once.

We’re configuring this state machine to output its data to the LED on your Raspberry Pi Pico 2 board. If you have already

built and run the program, you probably noticed this already!

At this point, the state machine is running autonomously. The state machine will immediately stall, because it is waiting

for data in the TX FIFO, and we haven’t provided any. The processor can push data directly into the state machine’s TX

FIFO using the pio_sm_put_blocking() function. (_blocking because this function stalls the processor when the TX FIFO is

full.) Writing a 1 will turn the LED on, and writing a 0 will turn the LED off.

3.2.1.3. CMake File

We have two lovely text files sat on our computer, with names ending with .pio and .c, but they aren’t doing us much

good there. A CMake file describes how these are built into a binary suitable for loading onto your Raspberry Pi Pico 2 or

other RP-series microcontroller based board.

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 37

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/CMakeLists.txt

 1 add_executable(hello_pio)
 2
 3 pico_generate_pio_header(hello_pio ${CMAKE_CURRENT_LIST_DIR}/hello.pio)
 4
 5 target_sources(hello_pio PRIVATE hello.c)
 6
 7 target_link_libraries(hello_pio PRIVATE
 8 pico_stdlib
 9 hardware_pio
10)
11
12 # Pass cmake -DHELLO_PIO_LED_PIN=x, where x is the pin you want to use
13 if(HELLO_PIO_LED_PIN)
14 target_compile_definitions(hello_pio PRIVATE
15 HELLO_PIO_LED_PIN=${HELLO_PIO_LED_PIN}
16)
17 endif()
18
19 pico_add_extra_outputs(hello_pio)
20
21 # add url via pico_set_program_url
22 example_auto_set_url(hello_pio)

• add_executable(): Declare that we are building a program called hello_pio

• pico_generate_pio_header(): Declare that we have a PIO program, hello.pio, which we want to be built into a C header

for use with our program

• target_sources(): List the source code files for our hello_pio program. In this case, just one C file.

• target_link_libraries(): Make sure that our program is built with the PIO hardware API, so we can call functions like

pio_add_program() in our C file.

• pico_add_extra_outputs(): By default we just get an .elf file as the build output of our app. Here we declare we also

want extra build formats, like a .uf2 file which can be dragged and dropped directly onto a Raspberry Pi Pico 2

attached over USB.

Assuming you already have pico-examples and the SDK installed on your machine, you can run

$ mkdir build
$ cd build
$ cmake ..
$ make hello_pio

To build this program.

3.2.2. A Real Example: WS2812 LEDs

The WS2812 LED (sometimes sold as NeoPixel) is an addressable RGB LED. In other words, it’s an LED where the red,

green and blue components of the light can be individually controlled, and it can be connected in such a way that many

WS2812 LEDs can be controlled individually, with only a single control input. Each LED has a pair of power supply

terminals, a serial data input, and a serial data output.

When serial data is presented at the LED’s input, it takes the first three bytes for itself (red, green, blue) and the

remainder is passed along to its serial data output. Often these LEDs are connected in a single long chain, each LED

connected to a common power supply, and each LED’s data output connected through to the next LED’s input. A long

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 38

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/CMakeLists.txt

burst of serial data to the first in the chain (the one with its data input unconnected) will deposit three bytes of RGB data

in each LED, so their colour and brightness can be individually programmed.

Symbol

Output

1 0 0 1 Latch
Figure 3. WS2812 line

format. Wide positive

pulse for 1, narrow

positive pulse for 0,

very long negative

pulse for latch enable
Unfortunately the LEDs receive and retransmit serial data in quite an unusual format. Each bit is transferred as a

positive pulse, and the width of the pulse determines whether it is a 1 or a 0 bit. There is a family of WS2812-like LEDs

available, which often have slightly different timings, and demand precision. It is possible to bit-bang this protocol, or to

write canned bit patterns into some generic serial peripheral like SPI or I2S to get firmer guarantees on the timing, but

there is still some software complexity and cost associated with generating the bit patterns.

Ideally we would like to have all of our CPU cycles available to generate colour patterns to put on the lights, or to handle

any other responsibilities the processor may have in the embedded system the LEDs are connected to.

 TIP

Once more, this section is going to discuss a real, complete program, that you can build and run on your Raspberry

Pi Pico 2. Follow the links above the program listings if you’d prefer to build the program yourself and run it, before

going through it in detail. This section explores the pio/ws2812 example in pico-examples.

3.2.2.1. PIO Program

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 8 - 31

 8 .program ws2812
 9 .side_set 1
10
11 ; The following constants are selected for broad compatibility with WS2812,
12 ; WS2812B, and SK6812 LEDs. Other constants may support higher bandwidths for
13 ; specific LEDs, such as (7,10,8) for WS2812B LEDs.
14
15 .define public T1 3
16 .define public T2 3
17 .define public T3 4
18
19 .lang_opt python sideset_init = pico.PIO.OUT_HIGH
20 .lang_opt python out_init = pico.PIO.OUT_HIGH
21 .lang_opt python out_shiftdir = 1
22
23 .wrap_target
24 bitloop:
25 out x, 1 side 0 [T3 - 1] ; Side-set still takes place when instruction stalls
26 jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
27 do_one:
28 jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse
29 do_zero:
30 nop side 0 [T2 - 1] ; Or drive low, for a short pulse
31 .wrap

The previous example was a bit of a whistle-stop tour of the anatomy of a PIO-based application. This time we will

dissect the code line-by-line. The first line tells the assembler that we are defining a program named ws2812:

.program ws2812

We can have multiple programs in one .pio file (and you will see this if you click the GitHub link above the main program

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 39

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L8-L31

listing), and each of these will have its own .program directive with a different name. The assembler will go through each

program in turn, and all the assembled programs will appear in the output file.

Each PIO instruction is 16 bits in size. Generally, 5 of those bits in each instruction are used for the “delay” which is

usually 0 to 31 cycles (after the instruction completes and before moving to the next instruction). If you have read the

PIO chapter of the RP2350 Datasheet, you may have already know that these 5 bits can be used for a different purpose:

.side_set 1

This directive .side_set 1 says we’re stealing one of those delay bits to use for "side-set". The state machine will use this

bit to drive the values of some pins, once per instruction, in addition to what the instructions are themselves doing. This

is very useful for high frequency use cases (e.g. pixel clocks for DPI panels), but also for shrinking program size, to fit

into the shared instruction memory.

Note that stealing one bit has left our delay range from 0-15 (4 bits), but that is quite natural because you rarely want to

mix side-set with lower frequency stuff. Because we didn’t say .side_set 1 opt, which would mean the side-set is

optional (at the cost of another bit to say whether the instruction does a side-set), we have to specify a side-set value for

every instruction in the program. This is the side N you will see on each instruction in the listing.

.define public T1 2

.define public T2 5

.define public T3 3

.define lets you declare constants. The public keyword means that the assembler will also write out the value of the

define in the output file for use by other software: in the context of the SDK, this is a #define. We are going to use T1, T2

and T3 in calculating the delay cycles on each instruction.

.lang_opt python

This is used to specify some PIO hardware defaults as used by the MicroPython PIO library. We don’t need to worry

about them in the context of SDK applications.

.wrap_target

We’ll ignore this for now, and come back to it later, when we meet its friend .wrap.

bitloop:

This is a label. A label tells the assembler that this point in your code is interesting to you, and you want to refer to it

later by name. Labels are mainly used with jmp instructions.

 out x, 1 side 0 [T3 - 1] ; Side-set still takes place when instruction stalls

Finally we reach a line with a PIO instruction. There is a lot to see here.

• This is an out instruction. out takes some bits from the output shift register (OSR), and writes them somewhere

else. In this case, the OSR will contain pixel data destined for our LEDs.

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 40

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

• [T3 - 1] is the number of delay cycles (T3 minus 1). T3 is a constant we defined earlier.

• x (one of two scratch registers; the other imaginatively called y) is the destination of the write data. State machines

use their scratch registers to hold and compare temporary data.

• side 0: Drive low (0) the pin configured for side-set.

• Everything after the ; character is a comment. Comments are ignored by the assembler: they are just notes for

humans to read.

Output Shift Register

The OSR is a staging area for data entering the state machine through the TX FIFO. Data is pulled from

the TX FIFO into the OSR one 32-bit chunk at a time. When an out instruction is executed, the OSR can

break this data into smaller pieces by shifting to the left or right, and sending the bits that drop off the

end to one of a handful of different destinations, such as the pins.

The amount of data to be shifted is encoded by the out instruction, and the direction of the shift (left or

right) is configured ahead of time. For full details and diagrams, see the RP2350 Datasheet.

So, the state machine will do the following operations when it executes this instruction:

1. Set 0 on the side-set pin (this happens even if the instruction stalls because no data is available in the OSR)

2. Shift one bit out of the OSR into the x register. The value of the x register will be either 0 or 1.

3. Wait T3 - 1 cycles after the instruction (I.e. the whole thing takes T3 cycles since the instruction itself took a cycle).

Note that when we say cycle, we mean state machine execution cycles: a state machine can be made to execute at

a slower rate than the system clock, by configuring its clock divider.

Let’s look at the next instruction in the program.

 jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse

1. side 1 on the side-set pin (this is the leading edge of our pulse)

2. If x == 0 then go to the instruction labelled do_zero, otherwise continue on sequentially to the next instruction

3. We delay T1 - 1 after the instruction (whether the branch is taken or not)

Let’s look at what our output pin has done so far in the program.

Figure 4. The state

machine drives the

line low for time T1 as

it shifts out one data

bit from the OSR, and

then high for time T2

whilst branching on

the value of the bit.

The pin has been low for time T3, and high for time T1. If the x register is 1 (remember this contains our 1 bit of pixel

data) then we will fall through to the instruction labelled do_one:

do_one:
 jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

On this side of the branch we do the following:

1. side 1 on the side-set pin (continue the pulse)

2. jmp unconditionally back to bitloop (the label we defined earlier, at the top of the program); the state machine is

done with this data bit, and will get another from its OSR

3. Delay for T2 - 1 cycles after the instruction

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 41

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

The waveform at our output pin now looks like this:

Figure 5. On a one

data bit, the line is

driven low for time T3,

high for time T1, then

high for an additional

time T2

This accounts for the case where we shifted a 1 data bit into the x register. For a 0 bit, we will have jumped over the last

instruction we looked at, to the instruction labelled do_zero:

do_zero:
 nop side 0 [T2 - 1] ; Or drive low, for a short pulse

1. side 0 on the side-set pin (the trailing edge of our pulse)

2. nop means no operation. We don’t have anything else we particularly want to do, so waste a cycle

3. The instruction takes T2 cycles in total

For the x == 0 case, we get this on our output pin:

Figure 6. On a zero

data bit, the line is

driven low for time T3,

high for time T1, then

low again for time T1

The final line of our program is this:

.wrap

This matches with the .wrap_target directive at the top of the program. Wrapping is a hardware feature of the state

machine which behaves like a wormhole: you go in through the .wrap statement and appear at the .wrap_target zero

cycles later, unless the .wrap is preceded immediately by a jmp whose condition is true. This is important for getting

precise timing with programs that must run quickly, and often also saves you a slot in the instruction memory.

 TIP

Often an explicit .wrap_target/.wrap pair is not necessary, because the default configuration produced by pioasm has

an implicit wrap from the end of the program back to the beginning, if you didn’t specify one.

NOPs

NOP, or no operation, means precisely that: do nothing! You may notice there is no nop instruction

defined in the instruction set reference: nop is really a synonym for mov y, y in PIO assembly.

Why did we insert a nop in this example when we could have jmp-ed? Good question! It’s a dramatic

device we contrived so we could discuss nop and .wrap. Writing documentation is hard. In general,

though, nop is useful when you need to perform a side-set and have nothing else to do, or you need a

very slightly longer delay than is available on a single instruction.

It is hopefully becoming clear why our timings T1, T2, T3 are numbered this way, because what the LED string sees

really is one of these two cases:

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 42

Figure 7. The line is

initially low in the idle

(latch) state, and the

LED is waiting for the

first rising edge. It

sees our pulse timings

in the order T1-T2-T3,

until the very last T3,

where it sees a much

longer negative period

once the state

machine runs out of

data.

This should look familiar if you refer back to Figure 3.

After thoroughly dissecting our program, and hopefully being satisfied that it will repeatedly send one well-formed data

bit to a string of WS2812 LEDs, we’re left with a question: where is the data coming from? This is more thoroughly

explained in the RP2350 Datasheet, but the data that we are shifting out from the OSR came from the state machine’s

TX FIFO. The TX FIFO is a data buffer between the state machine and the rest of RP-series microcontroller, filled either

via direct poking from the CPU, or by the system DMA, which is much faster.

The out instruction shifts data out from the OSR, and zeroes are shifted in from the other end to fill the vacuum.

Because the OSR is 32 bits wide, you will start getting zeroes once you have shifted out a total of 32 bits. There is a pull

instruction which explicitly takes data from the TX FIFO and put it in the OSR (stalling the state machine if the FIFO is

empty).

However, in the majority of cases it is simpler to configure autopull, a mode where the state machine automatically

refills the OSR from the TX FIFO (an automatic pull) when a configured number of bits have been shifted out. Autopull

happens in the background, in parallel with whatever else the state machine may be up to (in other words it has a cost

of zero cycles). We’ll see how this is configured in the next section.

3.2.2.2. State Machine Configuration

When we run pioasm on the .pio file we have been looking at, and ask it to spit out SDK code (which is the default), it will

create some static variables describing the program, and a method ws2812_default_program_config which configures a

PIO state machine based on user parameters, and the directives in the actual PIO program (namely the .side_set and

.wrap in this case).

Of course how you configure the PIO SM when using the program is very much related to the program you have written.

Rather than try to store a data representation off all that information, and parse it at runtime, for the use cases where

you’d like to encapsulate setup or other API functions with your PIO program, you can embed code within the .pio file.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 36 - 52

36 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
 bool rgbw) {
37
38 pio_gpio_init(pio, pin);
39 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
40
41 pio_sm_config c = ws2812_program_get_default_config(offset);
42 sm_config_set_sideset_pins(&c, pin);
43 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
44 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
45
46 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
47 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
48 sm_config_set_clkdiv(&c, div);
49
50 pio_sm_init(pio, sm, offset, &c);
51 pio_sm_set_enabled(pio, sm, true);
52 }

In this case we are passing through code for the SDK, as requested by this line you will see if you click the link on the

above listing to see the context:

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 43

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L36-L52

% c-sdk {

We have here a function ws2812_program_init which is provided to help the user to instantiate an instance of the LED

driver program, based on a handful of parameters:

pio

Which of the PIO instances we are dealing with

sm

Which state machine on that PIO we want to configure to run the WS2812 program

offset

Where the PIO program was loaded in PIO’s 5-bit program address space

pin

which GPIO pin our WS2812 LED chain is connected to

freq

The frequency (or rather baud rate) we want to output data at.

rgbw

True if we are using 4-colour LEDs (red, green, blue, white) rather than the usual 3.

Such that:

• pio_gpio_init(pio, pin); Configure a GPIO for use by PIO. (Set the GPIO function select.)

• pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true); Sets the PIO pin direction of 1 pin starting at pin number pin

to out

• pio_sm_config c = ws2812_program_default_config(offset); Get the default configuration using the generated function

for this program (this includes things like the .wrap and .side_set configurations from the program). We’ll modify

this configuration before loading it into the state machine.

• sm_config_set_sideset_pins(&c, pin); Sets the side-set to write to pins starting at pin pin (we say starting at because

if you had .side_set 3, then it would be outputting values on numbers pin, pin+1, pin+2)

• sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24); False for shift_to_right (i.e. we want to shift out MSB

first). True for autopull. 32 or 24 for the number of bits for the autopull threshold, i.e. the point at which the state

machine triggers a refill of the OSR, depending on whether the LEDs are RGB or RGBW.

• int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3; This is the total number of execution cycles to output a

single bit. Here we see the benefit of .define public; we can use the T1 - T3 values in our code.

• float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit); sm_config_clkdiv(&c, div); Slow the state machine’s

execution down, based on the system clock speed and the number of execution cycles required per WS2812 data

bit, so that we achieve the correct bit rate.

• pio_sm_init(pio, sm, offset, &c); Load our configuration into the state machine, and go to the start address (offset)

• pio_sm_set_enabled(pio, sm, true); And make it go now!

At this point the program will be stuck on the first out waiting for data. This is because we have autopull enabled, the

OSR is initially empty, and there is no data to be pulled. The state machine refuses to continue until the first piece of

data arrives in the FIFO.

As an aside, this last point sheds some light on the slightly cryptic comment at the start of the PIO program:

 out x, 1 side 0 [T3 - 1] ; Side-set still takes place when instruction stalls

This comment is giving us an important piece of context. We stall on this instruction initially, before the first data is

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 44

added, and also every time we finish sending the last piece of data at the end of a long serial burst. When a state

machine stalls, it does not continue to the next instruction, rather it will reattempt the current instruction on the next

divided clock cycle. However, side-set still takes place. This works in our favour here, because we consequently always

return the line to the idle (low) state when we stall.

3.2.2.3. C Program

The companion to the .pio file we’ve looked at is a .c file which drives some interesting colour patterns out onto a string

of LEDs. We’ll just look at the parts that are directly relevant to PIO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 38 - 40

38 static inline void put_pixel(uint32_t pixel_grb) {
39 pio_sm_put_blocking(pio0, 0, pixel_grb << 8u);
40 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 42 - 47

42 static inline uint32_t urgb_u32(uint8_t r, uint8_t g, uint8_t b) {
43 return
44 ((uint32_t) (r) << 8) |
45 ((uint32_t) (g) << 16) |
46 (uint32_t) (b);
47 }

Here we are writing 32-bit values into the FIFO, one at a time, directly from the CPU. pio_sm_put_blocking is a helper

method that waits until there is room in the FIFO before pushing your data.

You’ll notice the << 8 in put_pixel(): remember we are shifting out starting with the MSB, so we want the 24-bit colour

values at the top. This works fine for WGBR too, just that the W is always 0.

This program has a handful of colour patterns, which call our put_pixel helper above to output a sequence of pixel

values:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 71 - 76

71 void pattern_random(uint len, uint t) {
72 if (t % 8)
73 return;
74 for (uint i = 0; i < len; ++i)
75 put_pixel(rand());
76 }

The main function loads the program onto a PIO, configures a state machine for 800 kbaud WS2812 transmission, and

then starts cycling through the colour patterns randomly.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 105 - 129

105 int main() {
106 //set_sys_clock_48();
107 stdio_init_all();
108 printf("WS2812 Smoke Test, using pin %d", WS2812_PIN);
109
110 // todo get free sm
111 PIO pio = pio0;
112 int sm = 0;

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 45

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L38-L40
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L42-L47
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L71-L76
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L105-L129

113 uint offset = pio_add_program(pio, &ws2812_program);
114
115 ws2812_program_init(pio, sm, offset, WS2812_PIN, 800000, IS_RGBW);
116
117 int t = 0;
118 while (1) {
119 int pat = rand() % count_of(pattern_table);
120 int dir = (rand() >> 30) & 1 ? 1 : -1;
121 puts(pattern_table[pat].name);
122 puts(dir == 1 ? "(forward)" : "(backward)");
123 for (int i = 0; i < 1000; ++i) {
124 pattern_table[pat].pat(NUM_PIXELS, t);
125 sleep_ms(10);
126 t += dir;
127 }
128 }
129 }

3.2.3. PIO and DMA (A Logic Analyser)

So far we have looked at writing data to PIO directly from the processor. This often leads to the processor spinning its

wheels waiting for room in a FIFO to make a data transfer, which is not a good investment of its time. It also limits the

total data throughput you can achieve.

RP-series microcontrollers are equipped with a powerful direct memory access unit (DMA), which can transfer data for

you in the background. Suitably programmed, the DMA can make quite long sequences of transfers without supervision.

Up to one word per system clock can be transferred to or from a PIO state machine, which is, to be quite technically

precise, more bandwidth than you can shake a stick at. The bandwidth is shared across all state machines, but you can

use the full amount on one state machine.

Let’s take a look at the logic_analyser example, which uses PIO to sample some of the RP-series microcontroller’s own

pins, and capture a logic trace of what is going on there, at full system speed.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 40 - 63

40 void logic_analyser_init(PIO pio, uint sm, uint pin_base, uint pin_count, float div) {
41 // Load a program to capture n pins. This is just a single `in pins, n`
42 // instruction with a wrap.
43 uint16_t capture_prog_instr = pio_encode_in(pio_pins, pin_count);
44 struct pio_program capture_prog = {
45 .instructions = &capture_prog_instr,
46 .length = 1,
47 .origin = -1
48 };
49 uint offset = pio_add_program(pio, &capture_prog);
50
51 // Configure state machine to loop over this `in` instruction forever,
52 // with autopush enabled.
53 pio_sm_config c = pio_get_default_sm_config();
54 sm_config_set_in_pins(&c, pin_base);
55 sm_config_set_wrap(&c, offset, offset);
56 sm_config_set_clkdiv(&c, div);
57 // Note that we may push at a < 32 bit threshold if pin_count does not
58 // divide 32. We are using shift-to-right, so the sample data ends up
59 // left-justified in the FIFO in this case, with some zeroes at the LSBs.
60 sm_config_set_in_shift(&c, true, true, bits_packed_per_word(pin_count));
61 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
62 pio_sm_init(pio, sm, offset, &c);
63 }

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 46

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L40-L63

Our program consists only of a single in pins, <pin_count> instruction, with program wrapping and autopull enabled.

Because the amount of data to be shifted is only known at runtime, and because the program is so short, we are

generating the program dynamically here (using the pio_encode_ functions) instead of pushing it through pioasm. The

program is wrapped in a data structure stating how big the program is, and where it must be loaded — in this case origin

= -1 meaning "don’t care".

Input Shift Register

The input shift register (ISR) is the mirror image of the OSR. Generally data flows through a state

machine in one of two directions: System → TX FIFO → OSR → Pins, or Pins → ISR → RX FIFO →
System. An in instruction shifts data into the ISR.

If you don’t need the ISR’s shifting ability — for example, if your program is output-only — you can use the

ISR as a third scratch register. It’s 32 bits in size, the same as X, Y and the OSR. The full details are in the

RP2350 Datasheet.

We load the program into the chosen PIO, and then configure the input pin mapping on the chosen state machine so

that its in pins instruction will see the pins we care about. For an in instruction we only need to worry about configuring

the base pin, i.e. the pin which is the least significant bit of the in instruction’s sample. The number of pins to be

sampled is determined by the bit count parameter of the in pins instruction — it will sample n pins starting at the base

we specified, and shift them into the ISR.

Pin Groups (Mapping)

We mentioned earlier that there are four pin groups to configure, to connect a state machine’s internal

data buses to the GPIOs it manipulates. A state machine accesses all pins within a group at once, and

pin groups can overlap. So far we have seen the out, side-set and in pin groups. The fourth is set.

The out group is the pins affected by shifting out data from the OSR, using out pins or out pindirs, up to

32 bits at a time. The set group is used with set pins and set pindirs instructions, up to 5 bits at a time,

with data that is encoded directly in the instruction. It’s useful for toggling control signals. The side-set

group is similar to the set group, but runs simultaneously with another instruction. Note: mov pin uses

the in or out group, depending on direction.

Configuring the clock divider optionally slows down the state machine’s execution: a clock divisor of n means 1

instruction will be executed per n system clock cycles. The default system clock frequency for SDK is 125MHz.

sm_config_set_in_shift sets the shift direction to rightward, enables autopush, and sets the autopush threshold to 32.

The state machine keeps an eye on the total amount of data shifted into the ISR, and on the in which reaches or

breaches a total shift count of 32 (or whatever number you have configured), the ISR contents, along with the new data

from the in. goes straight to the RX FIFO. The ISR is cleared to zero in the same operation.

sm_config_set_fifo_join is used to manipulate the FIFOs so that the DMA can get more throughput. If we want to sample

every pin on every clock cycle, that’s a lot of bandwidth! We’ve finished describing how the state machine should be

configured, so we use pio_sm_init to load the configuration into the state machine, and get the state machine into a

clean initial state.

FIFO Joining

Each state machine is equipped with a FIFO going in each direction: the TX FIFO buffers data on its way

out of the system, and the RX FIFO does the same for data coming in. Each FIFO has four data slots,

each holding 32 bits of data. Generally you want FIFOs to be as deep as possible, so there is more slack

time between the timing-critical operation of a peripheral, and data transfers from system agents which

may be quite busy or have high access latency. However this comes with significant hardware cost.

If you are only using one of the two FIFOs — TX or RX — a state machine can pool its resources to

provide a single FIFO with double the depth. The RP2350 Datasheet goes into much more detail,

including how this mechanism actually works under the hood.

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 47

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Our state machine is ready to sample some pins. Let’s take a look at how we hook up the DMA to our state machine,

and tell the state machine to start sampling once it sees some trigger condition.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 65 - 87

65 void logic_analyser_arm(PIO pio, uint sm, uint dma_chan, uint32_t *capture_buf, size_t
 capture_size_words,
66 uint trigger_pin, bool trigger_level) {
67 pio_sm_set_enabled(pio, sm, false);
68 // Need to clear _input shift counter_, as well as FIFO, because there may be
69 // partial ISR contents left over from a previous run. sm_restart does this.
70 pio_sm_clear_fifos(pio, sm);
71 pio_sm_restart(pio, sm);
72
73 dma_channel_config c = dma_channel_get_default_config(dma_chan);
74 channel_config_set_read_increment(&c, false);
75 channel_config_set_write_increment(&c, true);
76 channel_config_set_dreq(&c, pio_get_dreq(pio, sm, false));
77
78 dma_channel_configure(dma_chan, &c,
79 capture_buf, // Destination pointer
80 &pio->rxf[sm], // Source pointer
81 capture_size_words, // Number of transfers
82 true // Start immediately
83);
84
85 pio_sm_exec(pio, sm, pio_encode_wait_gpio(trigger_level, trigger_pin));
86 pio_sm_set_enabled(pio, sm, true);
87 }

We want the DMA to read from the RX FIFO on our PIO state machine, so every DMA read is from the same address.

The write address, on the other hand, should increment after every DMA transfer so that the DMA gradually fills up our

capture buffer as data comes in. We need to specify a data request signal (DREQ) so that the DMA transfers data at the

proper rate.

Data request signals

The DMA can transfer data incredibly fast, and almost invariably this will be much faster than your PIO

program actually needs. The DMA paces itself based on a data request handshake with the state

machine, so there’s no worry about it overflowing or underflowing a FIFO, as long as you have selected

the correct DREQ signal. The state machine coordinates with the DMA to tell it when it has room

available in its TX FIFO, or data available in its RX FIFO.

We need to provide the DMA channel with an initial read address, an initial write address, and the total number of

reads/writes to be performed (not the total number of bytes). We start the DMA channel immediately — from this point

on, the DMA is poised, waiting for the state machine to produce data. As soon as data appears in the RX FIFO, the DMA

will pounce and whisk the data away to our capture buffer in system memory.

As things stand right now, the state machine will immediately go into a 1-cycle loop of in instructions once enabled.

Since the system memory available for capture is quite limited, it would be better for the state machine to wait for some

trigger before it starts sampling. Specifically, we are using a wait pin instruction to stall the state machine until a certain

pin goes high or low, and again we are using one of the pio_encode_ functions to encode this instruction on-the-fly.

pio_sm_exec tells the state machine to immediately execute some instruction you give it. This instruction never gets

written to the instruction memory, and if the instruction stalls (as it will in this case — a wait instruction’s job is to stall)

then the state machine will latch the instruction until it completes. With the state machine stalled on the wait instruction,

we can enable it without being immediately flooded by data.

At this point everything is armed and waiting for the trigger signal from the chosen GPIO. This will lead to the following

sequence of events:

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 48

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L65-L87

1. The wait instruction will clear

2. On the very next cycle, state machine will start to execute in instructions from the program memory

3. As soon as data appears in the RX FIFO, the DMA will start to transfer it.

4. Once the requested amount of data has been transferred by the DMA, it’ll automatically stop

State Machine EXEC Functionality

So far our state machines have executed instructions from the instruction memory, but there are other

options. One is the SMx_INSTR register (used by pio_sm_exec()): the state machine will immediately execute

whatever you write here, momentarily interrupting the current program it’s running if necessary. This is

useful for poking around inside the state machine from the system side, for initial setup.

The other two options, which use the same underlying hardware, are out exec (shift out an instruction

from the data being streamed through the OSR, and execute it) and mov exec (execute an instruction

stashed in e.g. a scratch register). Besides making people’s eyes bulge, these are really useful if you

want the state machine to perform some data-defined operation at a certain point in an output stream.

The example code provides this cute function for displaying the captured logic trace as ASCII art in a terminal:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 89 - 108

 89 void print_capture_buf(const uint32_t *buf, uint pin_base, uint pin_count, uint32_t
 n_samples) {
 90 // Display the capture buffer in text form, like this:
 91 // 00: __--__--__--__--__--__--
 92 // 01: ____----____----____----
 93 printf("Capture:\n");
 94 // Each FIFO record may be only partially filled with bits, depending on
 95 // whether pin_count is a factor of 32.
 96 uint record_size_bits = bits_packed_per_word(pin_count);
 97 for (uint pin = 0; pin < pin_count; ++pin) {
 98 printf("%02d: ", pin + pin_base);
 99 for (uint32_t sample = 0; sample < n_samples; ++sample) {
100 uint bit_index = pin + sample * pin_count;
101 uint word_index = bit_index / record_size_bits;
102 // Data is left-justified in each FIFO entry, hence the (32 - record_size_bits)
 offset
103 uint word_mask = 1u << (bit_index % record_size_bits + 32 - record_size_bits);
104 printf(buf[word_index] & word_mask ? "-" : "_");
105 }
106 printf("\n");
107 }
108 }

We have everything we need now for a RP-series microcontroller to capture a logic trace of its own pins, whilst running

some other program. Here we’re setting up a PWM slice to output at around 15MHz on two GPIOs, and attaching our

brand spanking new logic analyser to those same two GPIOs.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 110 - 159

110 int main() {
111 stdio_init_all();
112 printf("PIO logic analyser example\n");
113
114 // We're going to capture into a u32 buffer, for best DMA efficiency. Need
115 // to be careful of rounding in case the number of pins being sampled
116 // isn't a power of 2.
117 uint total_sample_bits = CAPTURE_N_SAMPLES * CAPTURE_PIN_COUNT;

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 49

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L89-L108
https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L110-L159

118 total_sample_bits += bits_packed_per_word(CAPTURE_PIN_COUNT) - 1;
119 uint buf_size_words = total_sample_bits / bits_packed_per_word(CAPTURE_PIN_COUNT);
120 uint32_t *capture_buf = malloc(buf_size_words * sizeof(uint32_t));
121 hard_assert(capture_buf);
122
123 // Grant high bus priority to the DMA, so it can shove the processors out
124 // of the way. This should only be needed if you are pushing things up to
125 // >16bits/clk here, i.e. if you need to saturate the bus completely.
126 bus_ctrl_hw->priority = BUSCTRL_BUS_PRIORITY_DMA_W_BITS |
 BUSCTRL_BUS_PRIORITY_DMA_R_BITS;
127
128 PIO pio = pio0;
129 uint sm = 0;
130 uint dma_chan = 0;
131
132 logic_analyser_init(pio, sm, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, 1.f);
133
134 printf("Arming trigger\n");
135 logic_analyser_arm(pio, sm, dma_chan, capture_buf, buf_size_words, CAPTURE_PIN_BASE,
 true);
136
137 printf("Starting PWM example\n");
138 // PWM example: ---
139 gpio_set_function(CAPTURE_PIN_BASE, GPIO_FUNC_PWM);
140 gpio_set_function(CAPTURE_PIN_BASE + 1, GPIO_FUNC_PWM);
141 // Topmost value of 3: count from 0 to 3 and then wrap, so period is 4 cycles
142 pwm_hw->slice[0].top = 3;
143 // Divide frequency by two to slow things down a little
144 pwm_hw->slice[0].div = 4 << PWM_CH0_DIV_INT_LSB;
145 // Set channel A to be high for 1 cycle each period (duty cycle 1/4) and
146 // channel B for 3 cycles (duty cycle 3/4)
147 pwm_hw->slice[0].cc =
148 (1 << PWM_CH0_CC_A_LSB) |
149 (3 << PWM_CH0_CC_B_LSB);
150 // Enable this PWM slice
151 pwm_hw->slice[0].csr = PWM_CH0_CSR_EN_BITS;
152 // --
153
154 // The logic analyser should have started capturing as soon as it saw the
155 // first transition. Wait until the last sample comes in from the DMA.
156 dma_channel_wait_for_finish_blocking(dma_chan);
157
158 print_capture_buf(capture_buf, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, CAPTURE_N_SAMPLES);
159 }

The output of the program looks like this:

Starting PWM example
Capture:
16: ----____________----____________----____________----____________----_______
17: ------------____------------____------------____------------____-----------

3.2.4. Further examples

Hopefully what you have seen so far has given some idea of how PIO applications can be built with the SDK. The

RP2350 Datasheet contains many more documented examples, which highlight particular hardware features of PIO, or

show how particular hardware interfaces can be implemented.

Raspberry Pi Pico-series C/C++ SDK

3.2. Getting started with PIO 50

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

You can also browse the pio/ directory in the Pico Examples repository.

3.3. Using PIOASM, the PIO Assembler

Up until now, we have glossed over the details of how the assembly program in our .pio file is translated into a binary

program, ready to be loaded into our PIO state machine. Programs that handle this task — translating assembly code

into binary — are generally referred to as assemblers, and PIO is no exception in this regard. The SDK includes an

assembler for PIO, called pioasm. The SDK handles the details of building this tool for you behind the scenes, and then

using it to build your PIO programs, for you to #include from your C or C++ program. pioasm can also be used directly, and

has a few features not used by the C++ SDK, such as generating programs suitable for use with the MicroPython PIO

library.

If you have built the pico-examples repository at any point, you will likely already have a pioasm binary in your build

directory, located under build/tools/pioasm/pioasm, which was bootstrapped for you before building any applications that

depend on it. If we want a standalone copy of pioasm, perhaps just to explore the available command-line options, we

can obtain it as follows (assuming the SDK is extracted at $PICO_SDK_PATH):

$ mkdir pioasm_build
$ cd pioasm_build
$ cmake $PICO_SDK_PATH/tools/pioasm
$ make

And then invoke as:

$./pioasm

3.3.1. Usage

A description of the command line arguments can be obtained by running:

$ pioasm -?

giving:

usage: pioasm <options> <input> (<output>)

Assemble file of PIO program(s) for use in applications.
<input> the input filename
<output> the output filename (or filename prefix if the output
 format produces multiple outputs).
 if not specified, a single output will be written to stdout

options:
-o <output_format> select output_format (default 'c-sdk'); available options are:
 c-sdk
 C header suitable for use with the Raspberry Pi Pico SDK
 python
 Python file suitable for use with MicroPython
 hex
 Raw hex output (only valid for single program inputs)

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 51

https://github.com/raspberrypi/pico-examples

-v <version> specify the default PIO version (0 or 1)
-p <output_param> add a parameter to be passed to the outputter
-?, --help print this help and exit

 NOTE

Within the SDK you do not need to invoke pioasm directly, as the CMake function pico_generate_pio_header(TARGET

PIO_FILE) takes care of invoking pioasm and adding the generated header to the include path of the target TARGET

for you.

3.3.2. Directives

The following directives control the assembly of PIO programs:

Table 4. alphabetical

list of pioasm

directives

.define (PUBLIC) <symbol> <value> Define an integer symbol named <symbol> with the value <value> (see Section

3.3.3). If this .define appears before the first program in the input file, then this

define is global to all programs, otherwise it is local to the program in which it

occurs. If PUBLIC is specified the symbol will be emitted into the assembled

output for use by user code. For the SDK this takes the form of:

#define <program_name>_<symbol> value for program symbols or #define <symbol>

value for global symbols

.clock_div <divider> If this directive is present, <divider> is the state machine clock divider for the

program. Note, that divider is a floating point value, but may not currently use

arithmetic expressions or defined values. This directive affects the default

state machine configuration for a program. This directive is only valid within a

program before the first instruction

.fifo <fifo_config> If this directive is present, it is used to specify the FIFO configuration for the

program. It affects the default state machine configuration for a program, but

also restricts what instructions may be used (for example PUSH makes no

sense if there is no IN FIFO configrued).

The following values are supported:

txrx: 4 FIFO entries for each of TX and RX; this is the default. tx - All 8 FIFO

entries for TX.

rx - All 8 FIFO entries for RX.

txput - 4 FIFO entries for TX, and 4 FIFO entries for mov rxfifo[index], isr aka

put. This value is not supported on PIO version 0.

txget - 4 FIFO entries for TX, and 4 FIFO entries for mov osr, rxfifo[index] aka

get. This value is not supported on PIO version 0.

putget - 4 FIFO entries for mov rxfifo[index], isr aka put, and 4 FIFO entries for

mov osr, rxfifo[index] aka get. This value is not supported on PIO version 0.

This directive is only valid within a program before the first instruction

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 52

.mov_status rxfifo < <n>

.mov_status txfifo < <n>

.mov_status irq <(next|prev)> set <n>

This directive configures the source for the mov , STATUS . One of the three

syntaxes can be used to set the status based on the RXFIFO level being below

a value N, the TXFIFO level being below a value N, or an IRQ flag N being set

on this PIO instance (or the next higer numbered, or lowered numbered PIO

instance if next or prev or specified). Note, that the IRQ option requires PIO

version 1.

This directive affects the default state machine configuration for a program.

This directive is only valid within a program before the first instruction

.in <count> (left|right) (auto)

(<threshold>)

If this directive is present, <count> indicates the number of IN bits to be used.

'left' or 'right' if specified, control the ISR shift direction; 'auto', if present,

enables "auto-push"; <threshold>, if present, specifies the "auto-push"

threshold. This directive affects the default state machine configuration for a

program. This directive is only valid within a program before the first

instruction

When assembling for PIO version 0, count must be 32.

.program <name> Start a new program with the name <name>. Note that that name is used in

code so should be alphanumeric/underscore not starting with a digit. The

program lasts until another .program directive or the end of the source file. PIO

instructions are only allowed within a program

.origin <offset> Optional directive to specify the PIO instruction memory offset at which the

program must load. Most commonly this is used for programs that must load

at offset 0, because they use data based JMPs with the (absolute) jmp target

being stored in only a few bits. This directive is invalid outside a program

.out <count> (left|right) (auto)

(<threshold>)

If this directive is present, <count> indicates the number of OUT bits to be

used. 'left' or 'right' if specified control the OSR shift direction; 'auto', if present,

enables "auto-pull"; <threshold>, if present, specifies the "auto-pull" threshold.

This directive affects the default state machine configuration for a program.

This directive is only valid within a program before the first instruction

.pio_version <version> This directive sets the target PIO hardware version. The version for RP2350 is

1 or RP2350, and is also the default version number. For backwards

compatibility with RP2040, 0 or RP2040 may be used.

If this directive appears before the first program in the input file, then this

define is the default for all programs, otherwise it specifies the version for the

program in which it occurs. If specified for a program, it must occur before the

first instruction.

.set <count> If this directive is present, <count> indicates the number of SET bits to be

used. This directive affects the default state machine configuration for a

program. This directive is only valid within a program before the first

instruction

.side_set <count> (opt) (pindirs) If this directive is present, <count> indicates the number of side-set bits to be

used. Additionally opt may be specified to indicate that a side <value> is

optional for instructions (note this requires stealing an extra bit — in addition

to the <count> bits — from those available for the instruction delay). Finally,

pindirs may be specified to indicate that the side set values should be applied

to the PINDIRs and not the PINs. This directive is only valid within a program

before the first instruction

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 53

.wrap_target Place prior to an instruction, this directive specifies the instruction where

execution continues due to program wrapping. This directive is invalid outside

of a program, may only be used once within a program, and if not specified

defaults to the start of the program

.wrap Placed after an instruction, this directive specifies the instruction after which,

in normal control flow (i.e. jmp with false condition, or no jmp), the program

wraps (to .wrap_target instruction). This directive is invalid outside of a

program, may only be used once within a program, and if not specified

defaults to after the last program instruction.

.lang_opt <lang> <name> <option> Specifies an option for the program related to a particular language generator.

(See Section 3.3.10). This directive is invalid outside of a program

.word <value> Stores a raw 16-bit value as an instruction in the program. This directive is

invalid outside of a program.

3.3.3. Values

The following types of values can be used to define integer numbers or branch targets

Table 5. Values in

pioasm, i.e. <value>
integer An integer value e.g. 3 or -7

hex A hexadecimal value e.g. 0xf

binary A binary value e.g. 0b1001

symbol A value defined by a .define (see [pioasm_define])

<label> The instruction offset of the label within the program. This makes most sense when used with

a JMP instruction (see Section 3.4.4)

(<expression>) An expression to be evaluated; see expressions. Note that the parentheses are necessary.

3.3.4. Expressions

Expressions may be freely used within pioasm values.

Table 6. Expressions

in pioasm i.e.

<expression>

<expression> + <expression> The sum of two expressions

<expression> - <expression> The difference of two expressions

<expression> * <expression> The multiplication of two expressions

<expression> / <expression> The integer division of two expressions

- <expression> The negation of another expression

<expression> << <expression> One expression shifted left by another expression

<expression> >> <expression> One expression shifted right by another expression

:: <expression> The bit reverse of another expression

<value> Any value (see Section 3.3.3)

3.3.5. Comments

Line comments are supported with // or ;

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 54

C-style block comments are supported via /* and */

3.3.6. Labels

Labels are of the form:

<symbol>:

or

PUBLIC <symbol>:

at the start of a line.

 TIP

A label is really just an automatic .define with a value set to the current program instruction offset. A PUBLIC label is

exposed to the user code in the same way as a PUBLIC .define.

3.3.7. Instructions

All pioasm instructions follow a common pattern:

<instruction> (side <side_set_value>) ([<delay_value>])

where:

<instruction> Is an assembly instruction detailed in the following sections. (See Section 3.4)

<side_set_value> Is a value (see Section 3.3.3) to apply to the side_set pins at the start of the instruction. Note that

the rules for a side-set value via side <side_set_value> are dependent on the .side_set (see

[pioasm_side_set]) directive for the program. If no .side_set is specified then the side

<side_set_value> is invalid, if an optional number of sideset pins is specified then side

<side_set_value> may be present, and if a non-optional number of sideset pins is specified, then

side <side_set_value> is required. The <side_set_value> must fit within the number of side-set bits

specified in the .side_set directive.

<delay_value> Specifies the number of cycles to delay after the instruction completes. The delay_value is

specified as a value (see Section 3.3.3), and in general is between 0 and 31 inclusive (a 5-bit

value), however the number of bits is reduced when sideset is enabled via the .side_set (see

[pioasm_side_set]) directive. If the <delay_value> is not present, then the instruction has no delay

 NOTE

pioasm instruction names, keywords and directives are case insensitive; lower case is used in the Assembly Syntax

sections below as this is the style used in the SDK.

 NOTE

Commas appear in some Assembly Syntax sections below, but are entirely optional, e.g. out pins, 3 may be written

out pins 3, and jmp x-- label may be written as jmp x--, label. The Assembly Syntax sections below uses the first

style in each case as this is the style used in the SDK.

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 55

3.3.8. Pseudoinstructions

Currently pioasm provides one pseudoinstruction, as a convenience:

nop Assembles to mov y, y. "No operation", has no particular side effect, but a useful vehicle for a side-set

operation or an extra delay.

3.3.9. Output pass through

Text in the PIO file may be passed, unmodified, to the output based on the language generator being used.

For example the following (comment and function) would be included in the generated header when the default c-sdk

language generator is used.

% c-sdk {

// an inline function (since this is going in a header file)
static inline int some_c_code() {
 return 0;
}
%}

The general format is

% target {
pass through contents
%}

with targets being recognized by a particular language generator (see Section 3.3.10; note that target is usually the

language generator name e.g. c-sdk, but could potentially be some_language.some_group if the language generator supports

different classes of pass through with different output locations.

This facility allows you to encapsulate both the PIO program and the associated setup required in the same source file.

See Section 3.3.10 for a more complete example.

3.3.10. Language generators

The following example shows a multi program source file (with multiple programs) which we will use to highlight c-sdk

and python output features

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio

 1 ;
 2 ; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 ;
 4 ; SPDX-License-Identifier: BSD-3-Clause
 5 ;
 6 .pio_version 0 // only requires PIO version 0
 7
 8 .program ws2812
 9 .side_set 1
10
11 ; The following constants are selected for broad compatibility with WS2812,
12 ; WS2812B, and SK6812 LEDs. Other constants may support higher bandwidths for

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 56

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio

13 ; specific LEDs, such as (7,10,8) for WS2812B LEDs.
14
15 .define public T1 3
16 .define public T2 3
17 .define public T3 4
18
19 .lang_opt python sideset_init = pico.PIO.OUT_HIGH
20 .lang_opt python out_init = pico.PIO.OUT_HIGH
21 .lang_opt python out_shiftdir = 1
22
23 .wrap_target
24 bitloop:
25 out x, 1 side 0 [T3 - 1] ; Side-set still takes place when instruction stalls
26 jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
27 do_one:
28 jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse
29 do_zero:
30 nop side 0 [T2 - 1] ; Or drive low, for a short pulse
31 .wrap
32
33 % c-sdk {
34 #include "hardware/clocks.h"
35
36 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
 bool rgbw) {
37
38 pio_gpio_init(pio, pin);
39 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
40
41 pio_sm_config c = ws2812_program_get_default_config(offset);
42 sm_config_set_sideset_pins(&c, pin);
43 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
44 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
45
46 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
47 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
48 sm_config_set_clkdiv(&c, div);
49
50 pio_sm_init(pio, sm, offset, &c);
51 pio_sm_set_enabled(pio, sm, true);
52 }
53 %}
54
55 .program ws2812_parallel
56
57 .define public T1 3
58 .define public T2 3
59 .define public T3 4
60
61 .wrap_target
62 out x, 32
63 mov pins, !null [T1-1]
64 mov pins, x [T2-1]
65 mov pins, null [T3-2]
66 .wrap
67
68 % c-sdk {
69 #include "hardware/clocks.h"
70
71 static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint pin_base,
 uint pin_count, float freq) {
72 for(uint i=pin_base; i<pin_base+pin_count; i++) {
73 pio_gpio_init(pio, i);
74 }

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 57

75 pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
76
77 pio_sm_config c = ws2812_parallel_program_get_default_config(offset);
78 sm_config_set_out_shift(&c, true, true, 32);
79 sm_config_set_out_pins(&c, pin_base, pin_count);
80 sm_config_set_set_pins(&c, pin_base, pin_count);
81 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
82
83 int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;
84 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
85 sm_config_set_clkdiv(&c, div);
86
87 pio_sm_init(pio, sm, offset, &c);
88 pio_sm_set_enabled(pio, sm, true);
89 }
90 %}

3.3.10.1. c-sdk

The c-sdk language generator produces a single header file with all the programs in the PIO source file:

The pass through sections (% c-sdk {) are embedded in the output, and the PUBLIC defines are available via #define

 TIP

pioasm creates a function for each program (e.g. ws2812_program_get_default_config()) returning a pio_sm_config based

on the .side_set, .wrap and .wrap_target settings of the program, which you can then use as a basis for configuration

the PIO state machine.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.pio.h

 1 // -- //
 2 // This file is autogenerated by pioasm; do not edit! //
 3 // -- //
 4
 5 #pragma once
 6
 7 #include "hardware/pio.h"
 8
 9 // ------ //
 10 // ws2812 //
 11 // ------ //
 12
 13 #define ws2812_wrap_target 0
 14 #define ws2812_wrap 3
 15 #define ws2812_pio_version 0
 16
 17 #define ws2812_T1 2
 18 #define ws2812_T2 5
 19 #define ws2812_T3 3
 20
 21 static const uint16_t ws2812_program_instructions[] = {
 22 // .wrap_target
 23 0x6221, // 0: out x, 1 side 0 [2]
 24 0x1123, // 1: jmp !x, 3 side 1 [1]
 25 0x1400, // 2: jmp 0 side 1 [4]
 26 0xa442, // 3: nop side 0 [4]
 27 // .wrap
 28 };
 29

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 58

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.pio.h

 30 static const struct pio_program ws2812_program = {
 31 .instructions = ws2812_program_instructions,
 32 .length = 4,
 33 .origin = -1,
 34 .pio_version = 0,
 35 .used_gpio_ranges = 0x0
 36 #endif
 37 };
 38
 39 static inline pio_sm_config ws2812_program_get_default_config(uint offset) {
 40 pio_sm_config c = pio_get_default_sm_config();
 41 sm_config_set_wrap(&c, offset + ws2812_wrap_target, offset + ws2812_wrap);
 42 sm_config_set_sideset(&c, 1, false, false);
 43 return c;
 44 }
 45
 46 #include "hardware/clocks.h"
 47 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
 bool rgbw) {
 48 pio_gpio_init(pio, pin);
 49 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
 50 pio_sm_config c = ws2812_program_get_default_config(offset);
 51 sm_config_set_sideset_pins(&c, pin);
 52 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
 53 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
 54 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
 55 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
 56 sm_config_set_clkdiv(&c, div);
 57 pio_sm_init(pio, sm, offset, &c);
 58 pio_sm_set_enabled(pio, sm, true);
 59 }
 60
 61
 62 // --------------- //
 63 // ws2812_parallel //
 64 // --------------- //
 65
 66 #define ws2812_parallel_wrap_target 0
 67 #define ws2812_parallel_wrap 3
 68 #define ws2812_parallel_pio_version 0
 69
 70 #define ws2812_parallel_T1 2
 71 #define ws2812_parallel_T2 5
 72 #define ws2812_parallel_T3 3
 73
 74 static const uint16_t ws2812_parallel_program_instructions[] = {
 75 // .wrap_target
 76 0x6020, // 0: out x, 32
 77 0xa10b, // 1: mov pins, !null [1]
 78 0xa401, // 2: mov pins, x [4]
 79 0xa103, // 3: mov pins, null [1]
 80 // .wrap
 81 };
 82
 83 static const struct pio_program ws2812_parallel_program = {
 84 .instructions = ws2812_parallel_program_instructions,
 85 .length = 4,
 86 .origin = -1,
 87 .pio_version = 0,
 88 .used_gpio_ranges = 0x0
 89 #endif
 90 };
 91
 92 static inline pio_sm_config ws2812_parallel_program_get_default_config(uint offset) {

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 59

 93 pio_sm_config c = pio_get_default_sm_config();
 94 sm_config_set_wrap(&c, offset + ws2812_parallel_wrap_target, offset +
 ws2812_parallel_wrap);
 95 return c;
 96 }
 97
 98 #include "hardware/clocks.h"
 99 static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint
 pin_base, uint pin_count, float freq) {
100 for(uint i=pin_base; i<pin_base+pin_count; i++) {
101 pio_gpio_init(pio, i);
102 }
103 pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
104 pio_sm_config c = ws2812_parallel_program_get_default_config(offset);
105 sm_config_set_out_shift(&c, true, true, 32);
106 sm_config_set_out_pins(&c, pin_base, pin_count);
107 sm_config_set_set_pins(&c, pin_base, pin_count);
108 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
109 int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;
110 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
111 sm_config_set_clkdiv(&c, div);
112 pio_sm_init(pio, sm, offset, &c);
113 pio_sm_set_enabled(pio, sm, true);
114 }

3.3.10.2. python

The python language generator produces a single python file with all the programs in the PIO source file:

The pass through sections (% python {) would be embedded in the output, and the PUBLIC defines are available as python

variables.

Also note the use of .lang_opt python to pass initializers for the @pico.asm_pio decorator

 TIP

The python language output is provided as a utility. MicroPython supports programming with the PIO natively, so you

may only want to use pioasm when sharing PIO code between the SDK and MicroPython. No effort is currently made

to preserve label names, symbols or comments, as it is assumed you are either using the PIO file as a source or

python; not both. The python language output can of course be used to bootstrap your MicroPython PIO

development based on an existing PIO file.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.py

 1 # -- #
 2 # This file is autogenerated by pioasm; do not edit! #
 3 # -- #
 4
 5 import rp2
 6 from machine import Pin
 7 # ------ #
 8 # ws2812 #
 9 # ------ #
10
11 ws2812_T1 = 3
12 ws2812_T2 = 3
13 ws2812_T3 = 4
14
15 @rp2.asm_pio(sideset_init=pico.PIO.OUT_HIGH, out_init=pico.PIO.OUT_HIGH, out_shiftdir=1)
16 def ws2812():

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 60

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.py

17 wrap_target()
18 label("0")
19 out(x, 1) .side(0) [3] # 0
20 jmp(not_x, "3") .side(1) [2] # 1
21 jmp("0") .side(1) [2] # 2
22 label("3")
23 nop() .side(0) [2] # 3
24 wrap()
25
26
27
28 # --------------- #
29 # ws2812_parallel #
30 # --------------- #
31
32 ws2812_parallel_T1 = 3
33 ws2812_parallel_T2 = 3
34 ws2812_parallel_T3 = 4
35
36 @rp2.asm_pio()
37 def ws2812_parallel():
38 wrap_target()
39 out(x, 32) # 0
40 mov(pins, invert(null)) [2] # 1
41 mov(pins, x) [2] # 2
42 mov(pins, null) [2] # 3
43 wrap()

3.3.10.3. hex

The hex generator only supports a single input program, as it just dumps the raw instructions (one per line) as a 4-

character hexadecimal number.

Given:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio

 1 ;
 2 ; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 ;
 4 ; SPDX-License-Identifier: BSD-3-Clause
 5 ;
 6 .pio_version 0 // only requires PIO version 0
 7
 8 .program squarewave
 9 set pindirs, 1 ; Set pin to output
10 again:
11 set pins, 1 [1] ; Drive pin high and then delay for one cycle
12 set pins, 0 ; Drive pin low
13 jmp again ; Set PC to label `again`

The hex output produces:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave.hex

1 e081
2 e101
3 e000

Raspberry Pi Pico-series C/C++ SDK

3.3. Using PIOASM, the PIO Assembler 61

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio
https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave.hex

4 0001

3.4. PIO Instruction Set Reference

 NOTE

This section refers in places to concepts and pieces of hardware discussed in the RP2350 Datasheet. You are

encouraged to read the PIO chapter of the datasheet to get the full context for what these instructions do.

The following sections document instruction behaviour on both PIO version 0 (RP2040) and PIO version 1 (RP2350).

When no version restrictions are mentioned, this means the behaviour applies to both versions. PIO version 1 is strictly

additive over version 0, so some features may be indicated as version-1-only, but none are version-0-only.

For documentation specific to a particular PIO version, see the device datasheet for a device equipped with that version.

3.4.1. Encoding (version 0, RP2040)

PIO instructions are 16 bits long, and have the following encoding:

Table 7. PIO

instruction encoding
Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP 0 0 0 Delay/side-set Condition Address

WAIT 0 0 1 Delay/side-set Pol Source Index

IN 0 1 0 Delay/side-set Source Bit count

OUT 0 1 1 Delay/side-set Destination Bit count

PUS

H

1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0

PULL 1 0 0 Delay/side-set 1 IfE Blk 0 0 0 0 0

MOV 1 0 1 Delay/side-set Destination Op Source

IRQ 1 1 0 Delay/side-set 0 Clr Wait Index

SET 1 1 1 Delay/side-set Destination Data

3.4.2. Encoding (version 1, RP2350)

PIO instructions are 16 bits long, and have the following encoding:

Table 8. PIO

instruction encoding
Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP 0 0 0 Delay/side-set Condition Address

WAIT 0 0 1 Delay/side-set Pol Source Index

IN 0 1 0 Delay/side-set Source Bit count

OUT 0 1 1 Delay/side-set Destination Bit count

PUSH 1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0

MOV 1 0 0 Delay/side-set 0 0 0 1 IdxI 0 Index

PULL 1 0 0 Delay/side-set 1 IfE Blk 0 0 0 0 0

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 62

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV 1 0 0 Delay/side-set 1 0 0 1 IdxI 0 Index

MOV 1 0 1 Delay/side-set Destination Op Source

IRQ 1 1 0 Delay/side-set 0 Clr Wait IdxMode Index

SET 1 1 1 Delay/side-set Destination Data

3.4.3. Summary

All PIO instructions execute in one clock cycle.

The Delay/side-set field is present in all instructions. Its exact use is configured for each state machine by

PINCTRL_SIDESET_COUNT:

• Up to 5 MSBs encode a side-set operation, which optionally asserts a constant value onto some GPIOs,

concurrently with main instruction execution logic

• Remaining LSBs (up to 5) encode the number of idle cycles inserted between this instruction and the next

3.4.4. JMP

3.4.4.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP 0 0 0 Delay/side-set Condition Address

3.4.4.2. Operation

Set program counter to Address if Condition is true, otherwise no operation.

Delay cycles on a JMP always take effect, whether Condition is true or false, and they take place after Condition is

evaluated and the program counter is updated.

• Condition:

◦ 000: (no condition): Always

◦ 001: !X: scratch X zero

◦ 010: X--: scratch X non-zero, prior to decrement

◦ 011: !Y: scratch Y zero

◦ 100: Y--: scratch Y non-zero, prior to decrement

◦ 101: X!=Y: scratch X not equal scratch Y

◦ 110: PIN: branch on input pin

◦ 111: !OSRE: output shift register not empty

• Address: Instruction address to jump to. In the instruction encoding this is an absolute address within the PIO

instruction memory.

JMP PIN branches on the GPIO selected by EXECCTRL_JMP_PIN, a configuration field which selects one out of the maximum

of 32 GPIO inputs visible to a state machine, independently of the state machine’s other input mapping. The branch is

taken if the GPIO is high.

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 63

!OSRE compares the bits shifted out since the last PULL with the shift count threshold configured by SHIFTCTRL_PULL_THRESH.

This is the same threshold used by autopull.

JMP X-- and JMP Y-- always decrement scratch register X or Y, respectively. The decrement is not conditional on the

current value of the scratch register. The branch is conditioned on the initial value of the register, i.e. before the

decrement took place: if the register is initially nonzero, the branch is taken.

3.4.4.3. Assembler Syntax

jmp (<cond>) <target>

where:

<cond> Is an optional condition listed above (e.g. !x for scratch X zero). If a condition code is not specified,

the branch is always taken

<target> Is a program label or value (see Section 3.3.3) representing instruction offset within the program (the

first instruction being offset 0). Note that because the PIO JMP instruction uses absolute addresses

in the PIO instruction memory, JMPs need to be adjusted based on the program load offset at

runtime. This is handled for you when loading a program with the SDK, but care should be taken when

encoding JMP instructions for use by OUT EXEC

3.4.5. WAIT

3.4.5.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WAIT 0 0 1 Delay/side-set Pol Source Index

3.4.5.2. Operation

Stall until some condition is met.

Like all stalling instructions, delay cycles begin after the instruction completes. That is, if any delay cycles are present,

they do not begin counting until after the wait condition is met.

• Polarity:

◦ 1: wait for a 1.

◦ 0: wait for a 0.

• Source: what to wait on. Values are:

◦ 00: GPIO: System GPIO input selected by Index. This is an absolute GPIO index, and is not affected by the state

machine’s input IO mapping.

◦ 01: PIN: Input pin selected by Index. This state machine’s input IO mapping is applied first, and then Index

selects which of the mapped bits to wait on. In other words, the pin is selected by adding Index to the

PINCTRL_IN_BASE configuration, modulo 32.

◦ 10: IRQ: PIO IRQ flag selected by Index

◦ 11: (_version 1 and above_) JMPPIN: wait on the pin indexed by the PINCTRL_JMP_PIN configuration, plus an Index

in the range 0-3, all modulo 32. Other values of Index are reserved.

• Index: which pin or bit to check.

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 64

WAIT x IRQ behaves slightly differently from other WAIT sources:

• If Polarity is 1, the selected IRQ flag is cleared by the state machine upon the wait condition being met.

• The flag index is decoded in the same way as the IRQ index field, decoding down from the two MSBs (aligning with

the IRQ instruction IdxMode field):

◦ 00: the three LSBs are used directly to index the IRQ flags in this PIO block.

◦ 01 (_version 1 and above_) (PREV), the instruction references an IRQ from the next-lower-numbered PIO in the

system, wrapping to the highest-numbered PIO if this is PIO0.

◦ 10 (REL), the state machine ID (0…3) is added to the IRQ index, by way of modulo-4 addition on the two LSBs.

For example, state machine 2 with a flag value of '0x11' will wait on flag 3, and a flag value of '0x13' will wait

on flag 1. This allows multiple state machines running the same program to synchronise with each other.

◦ 11 (_version 1 and above_) (NEXT), the instruction references an IRQ from the next-higher-numbered PIO in the

system, wrapping to PIO0 if this is the highest-numbered PIO.

 CAUTION

WAIT 1 IRQ x should not be used with IRQ flags presented to the interrupt controller, to avoid a race condition with a

system interrupt handler

3.4.5.3. Assembler Syntax

wait <polarity> gpio <gpio_num>

wait <polarity> pin <pin_num>

wait <polarity> irq <irq_num> (rel)

where:

<polarity> Is a value (see Section 3.3.3) specifying the polarity (either 0 or 1)

<pin_num> Is a value (see Section 3.3.3) specifying the input pin number (as mapped by the SM input pin

mapping)

<gpio_num> Is a value (see Section 3.3.3) specifying the actual GPIO pin number

<irq_num> (rel) Is a value (see Section 3.3.3) specifying The irq number to wait on (0-7). If rel is present, then the

actual irq number used is calculating by replacing the low two bits of the irq number (irq_num10)

with the low two bits of the sum (irq_num10 + sm_num10) where sm_num10 is the state machine

number

3.4.6. IN

3.4.6.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN 0 1 0 Delay/side-set Source Bit count

3.4.6.2. Operation

Shift Bit count bits from Source into the Input Shift Register (ISR). Shift direction is configured for each state machine by

SHIFTCTRL_IN_SHIFTDIR. Additionally, increase the input shift count by Bit count, saturating at 32.

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 65

• Source:

◦ 000: PINS

◦ 001: X (scratch register X)

◦ 010: Y (scratch register Y)

◦ 011: NULL (all zeroes)

◦ 100: Reserved

◦ 101: Reserved

◦ 110: ISR

◦ 111: OSR

• Bit count: How many bits to shift into the ISR. 1…32 bits, 32 is encoded as 00000.

If automatic push is enabled, IN will also push the ISR contents to the RX FIFO if the push threshold is reached

(SHIFTCTRL_PUSH_THRESH). IN still executes in one cycle, whether an automatic push takes place or not. The state machine

will stall if the RX FIFO is full when an automatic push occurs. An automatic push clears the ISR contents to all-zeroes,

and clears the input shift count.

IN always uses the least significant Bit count bits of the source data. For example, if PINCTRL_IN_BASE is set to 5, the

instruction IN PINS, 3 will take the values of pins 5, 6 and 7, and shift these into the ISR. First the ISR is shifted to the left

or right to make room for the new input data, then the input data is copied into the gap this leaves. The bit order of the

input data is not dependent on the shift direction.

NULL can be used for shifting the ISR’s contents. For example, UARTs receive the LSB first, so must shift to the right.

After 8 IN PINS, 1 instructions, the input serial data will occupy bits 31…24 of the ISR. An IN NULL, 24 instruction will shift

in 24 zero bits, aligning the input data at ISR bits 7…0. Alternatively, the processor or DMA could perform a byte read

from FIFO address + 3, which would take bits 31…24 of the FIFO contents.

3.4.6.3. Assembler Syntax

in <source>, <bit_count>

where:

<source> Is one of the sources specified above.

<bit_count> Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)

3.4.7. OUT

3.4.7.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUT 0 1 1 Delay/side-set Destination Bit count

3.4.7.2. Operation

Shift Bit count bits out of the Output Shift Register (OSR), and write those bits to Destination. Additionally, increase the

output shift count by Bit count, saturating at 32.

• Destination:

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 66

◦ 000: PINS

◦ 001: X (scratch register X)

◦ 010: Y (scratch register Y)

◦ 011: NULL (discard data)

◦ 100: PINDIRS

◦ 101: PC

◦ 110: ISR (also sets ISR shift counter to Bit count)

◦ 111: EXEC (Execute OSR shift data as instruction)

• Bit count: how many bits to shift out of the OSR. 1…32 bits, 32 is encoded as 00000.

A 32-bit value is written to Destination: the lower Bit count bits come from the OSR, and the remainder are zeroes. This

value is the least significant Bit count bits of the OSR if SHIFTCTRL_OUT_SHIFTDIR is to the right, otherwise it is the most

significant bits.

PINS and PINDIRS use the OUT pin mapping.

If automatic pull is enabled, the OSR is automatically refilled from the TX FIFO if the pull threshold, SHIFTCTRL_PULL_THRESH,

is reached. The output shift count is simultaneously cleared to 0. In this case, the OUT will stall if the TX FIFO is empty,

but otherwise still executes in one cycle.

OUT EXEC allows instructions to be included inline in the FIFO datastream. The OUT itself executes on one cycle, and the

instruction from the OSR is executed on the next cycle. There are no restrictions on the types of instructions which can

be executed by this mechanism. Delay cycles on the initial OUT are ignored, but the executee may insert delay cycles as

normal.

OUT PC behaves as an unconditional jump to an address shifted out from the OSR.

3.4.7.3. Assembler Syntax

out <destination>, <bit_count>

where:

<destination> Is one of the destinations specified above.

<bit_count> Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)

3.4.8. PUSH

3.4.8.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUSH 1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0

3.4.8.2. Operation

Push the contents of the ISR into the RX FIFO, as a single 32-bit word. Clear ISR to all-zeroes.

• IfFull: If 1, do nothing unless the total input shift count has reached its threshold, SHIFTCTRL_PUSH_THRESH (the same

as for autopush).

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 67

• Block: If 1, stall execution if RX FIFO is full.

PUSH IFFULL helps to make programs more compact, like autopush. It is useful in cases where the IN would stall at an

inappropriate time if autopush were enabled, e.g. if the state machine is asserting some external control signal at this

point.

The PIO assembler sets the Block bit by default. If the Block bit is not set, the PUSH does not stall on a full RX FIFO, instead

continuing immediately to the next instruction. The FIFO state and contents are unchanged when this happens. The ISR

is still cleared to all-zeroes, and the FDEBUG_RXSTALL flag is set (the same as a blocking PUSH or autopush to a full RX FIFO)

to indicate data was lost.

3.4.8.3. Assembler Syntax

push (iffull)

push (iffull) block

push (iffull) noblock

where:

iffull Is equivalent to IfFull == 1 above. i.e. the default if this is not specified is IfFull == 0

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified

noblock Is equivalent to Block == 0 above.

3.4.9. PULL

3.4.9.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PULL 1 0 0 Delay/side-set 1 IfE Blk 0 0 0 0 0

3.4.9.2. Operation

Load a 32-bit word from the TX FIFO into the OSR.

• IfEmpty: If 1, do nothing unless the total output shift count has reached its threshold, SHIFTCTRL_PULL_THRESH (the

same as for autopull).

• Block: If 1, stall if TX FIFO is empty. If 0, pulling from an empty FIFO copies scratch X to OSR.

Some peripherals (UART, SPI…) should halt when no data is available, and pick it up as it comes in; others (I2S) should

clock continuously, and it is better to output placeholder or repeated data than to stop clocking. This can be achieved

with the Block parameter.

A nonblocking PULL on an empty FIFO has the same effect as MOV OSR, X. The program can either preload scratch register

X with a suitable default, or execute a MOV X, OSR after each PULL NOBLOCK, so that the last valid FIFO word will be recycled

until new data is available.

PULL IFEMPTY is useful if an OUT with autopull would stall in an inappropriate location when the TX FIFO is empty. For

example, a UART transmitter should not stall immediately after asserting the start bit. IfEmpty permits some of the same

program simplifications as autopull, but the stall occurs at a controlled point in the program.

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 68

 NOTE

When autopull is enabled, any PULL instruction is a no-op when the OSR is full, so that the PULL instruction behaves as

a barrier. OUT NULL, 32 can be used to explicitly discard the OSR contents. See the RP2350 Datasheet for more detail

on autopull.

3.4.9.3. Assembler Syntax

pull (ifempty)

pull (ifempty) block

pull (ifempty) noblock

where:

ifempty Is equivalent to IfEmpty == 1 above. i.e. the default if this is not specified is IfEmpty == 0

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified

noblock Is equivalent to Block == 0 above.

3.4.10. MOV (to RX)

3.4.10.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV 1 0 0 Delay/side-set 0 0 0 1 IdxI Index

(_version 1 and above_)

3.4.10.2. Operation

Write the ISR to a selected RX FIFO entry. The state machine can write the RX FIFO entries in any order, indexed either

by the Y register, or an immediate Index in the instruction. Requires the SHIFTCTRL_FJOIN_RX_PUT configuration field to be

set, otherwise its operation is undefined. The FIFO configuration can be specified for the program via the .fifo directive

(see pioasm_fifo).

If IdxI (index by immediate) is set, the RX FIFO’s registers are indexed by the two least-significant bits of the Index

operand. Otherwise, they are indexed by the two least-significant bits of the Y register. When IdxI is clear, all nonzero

values of Index are reserved encodings, and their operation is undefined.

When only SHIFTCTRL_FJOIN_RX_PUT is set (in SM0_SHIFTCTRL through SM3_SHIFTCTRL), the system can also read the RX FIFO

registers with random access via RXF0_PUTGET0 through RXF0_PUTGET3 (where RXFx indicates which state machine’s FIFO is

being accessed). In this state, the FIFO register storage is repurposed as status registers, which the state machine can

update at any time and the system can read at any time. For example, a quadrature decoder program could maintain the

current step count in a status register at all times, rather than pushing to the RX FIFO and potentially blocking.

When both SHIFTCTRL_FJOIN_RX_PUT and SHIFTCTRL_FJOIN_RX_GET are set, the system can no longer access the RX FIFO

storage registers, but the state machine can now put/get the registers in arbitrary order, allowing them to be used as

additional scratch storage.

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 69

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

 NOTE

The RX FIFO storage registers have only a single read port and write port, and access through each port is assigned

to only one of (system, state machine) at any time.

3.4.10.3. Assembler Syntax

mov rxfifo[y], isr

mov rxfifo[<index>], isr

where:

y Is the literal token "y", indicating the RX FIFO entry is indexed by the Y register

<index> Is a value (see Section 3.3.3) specifying the RX FIFO entry to write (valid range 0-3)

3.4.11. MOV (from RX)

3.4.11.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV 1 0 0 Delay/side-set 1 0 0 1 IdxI Index

(_version 1 and above_)

3.4.11.2. Operation

Read the selected RX FIFO entry into the OSR. The PIO state machine can read the FIFO entries in any order, indexed

either by the Y register, or an immediate Index in the instruction. Requires the SHIFTCTRL_FJOIN_RX_GET configuration field

to be set, otherwise its operation is undefined.

If IdxI (index by immediate) is set, the RX FIFO’s registers are indexed by the two least-significant bits of the Index

operand. Otherwise, they are indexed by the two least-significant bits of the Y register. When IdxI is clear, all nonzero

values of Index are reserved encodings, and their operation is undefined.

When only SHIFTCTRL_FJOIN_RX_GET is set, the system can also write the RX FIFO registers with random access via

RXF0_PUTGET0 through RXF0_PUTGET3 (where RXFx indicates which state machine’s FIFO is being accessed). In this state, the

RX FIFO register storage is repurposed as additional configuration registers, which the system can update at any time

and the state machine can read at any time. For example, a UART TX program might use these registers to configure

the number of data bits, or the presence of an additional stop bit.

When both SHIFTCTRL_FJOIN_RX_PUT and SHIFTCTRL_FJOIN_RX_GET are set, the system can no longer access the RX FIFO

storage registers, but the state machine can now put/get the registers in arbitrary order, allowing them to be used as

additional scratch storage.

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 70

 NOTE

The RX FIFO storage registers have only a single read port and write port, and access through each port is assigned

to only one of (system, state machine) at any time.

3.4.11.3. Assembler Syntax

mov osr, rxfifo[y]

mov osr, rxfifo[<index>]

where:

y Is the literal token "y", indicating the RX FIFO entry is indexed by the Y register

<index> Is a value (see Section 3.3.3) specifying the RX FIFO entry to read (valid range 0-3)

3.4.12. MOV

3.4.12.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV 1 0 1 Delay/side-set Destination Op Source

3.4.12.2. Operation

Copy data from Source to Destination.

• Destination:

◦ 000: PINS (Uses same pin mapping as OUT)

◦ 001: X (Scratch register X)

◦ 010: Y (Scratch register Y)

◦ 011: (_version 1 and above_) PINDIRS (Uses same pin mapping as OUT)

◦ 100: EXEC (Execute data as instruction)

◦ 101: PC

◦ 110: ISR (Input shift counter is reset to 0 by this operation, i.e. empty)

◦ 111: OSR (Output shift counter is reset to 0 by this operation, i.e. full)

• Operation:

◦ 00: None

◦ 01: Invert (bitwise complement)

◦ 10: Bit-reverse

◦ 11: Reserved

• Source:

◦ 000: PINS (Uses same pin mapping as IN)

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 71

◦ 001: X

◦ 010: Y

◦ 011: NULL

◦ 100: Reserved

◦ 101: STATUS

◦ 110: ISR

◦ 111: OSR

MOV PC causes an unconditional jump. MOV EXEC has the same behaviour as OUT EXEC (Section 3.4.7), and allows register

contents to be executed as an instruction. The MOV itself executes in 1 cycle, and the instruction in Source on the next

cycle. Delay cycles on MOV EXEC are ignored, but the executee may insert delay cycles as normal.

The STATUS source has a value of all-ones or all-zeroes, depending on some state machine status such as FIFO

full/empty, configured by EXECCTRL_STATUS_SEL.

MOV can manipulate the transferred data in limited ways, specified by the Operation argument. Invert sets each bit in

Destination to the logical NOT of the corresponding bit in Source, i.e. 1 bits become 0 bits, and vice versa. Bit reverse sets

each bit n in Destination to bit 31 - n in Source, assuming the bits are numbered 0 to 31.

MOV dst, PINS reads pins using the IN pin mapping, and writes the full 32-bit value to the destination without masking.

The LSB of the read value is the pin indicated by PINCTRL_IN_BASE, and each successive bit comes from a higher-

numbered pin, wrapping after 31.

3.4.12.3. Assembler Syntax

mov <destination>, (op) <source>

where:

<destination> Is one of the destinations specified above.

<op> If present, is:

! or ~ for NOT (Note: this is always a bitwise NOT)

:: for bit reverse

<source> Is one of the sources specified above.

3.4.13. IRQ

3.4.13.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQ 1 1 0 Delay/side-set 0 Clr Wait IdxMode Index

3.4.13.2. Operation

Set or clear the IRQ flag selected by Index argument. * Clear: if 1, clear the flag selected by Index, instead of raising it. If

Clear is set, the Wait bit has no effect. * Wait: if 1, halt until the raised flag is lowered again, e.g. if a system interrupt

handler has acknowledged the flag. * Index: specifies an IRQ index from 0-7. This IRQ flag will be set/cleared depending

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 72

on the Clear bit. * IdxMode: modify the behaviour if the Index field, either modifying the index, or indexing IRQ flags from

a different PIO block: 00: the three LSBs are used directly to index the IRQ flags in this PIO block. 01 (_version 1 and

above_) (PREV): the instruction references an IRQ flag from the next-lower-numbered PIO in the system, wrapping to the

highest-numbered PIO if this is PIO0. 10 (REL): the state machine ID (0…3) is added to the IRQ flag index, by way of

modulo-4 addition on the two LSBs. For example, state machine 2 with a flag value of '0x11' will wait on flag 3, and a

flag value of '0x13' will wait on flag 1. This allows multiple state machines running the same program to synchronise

with each other. 11 (_version 1 and above_) (NEXT): the instruction references an IRQ flag from the next-higher-numbered

PIO in the system, wrapping to PIO0 if this is the highest-numbered PIO.

On PIO version 0, IRQ flags 4-7 are visible only to the state machines; IRQ flags 0-3 can be routed out to system level

interrupts, on either of the PIO’s two external interrupt request lines, configured by IRQ0_INTE and IRQ1_INTE. PIO version 1

lifts this limitation and allows all eight flags to assert system interrupts.

The modulo addition mode allows relative addressing of 'IRQ' and 'WAIT' instructions, for synchronising state machines

which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

The modulo addition mode (REL) allows relative addressing of 'IRQ' and 'WAIT' instructions, for synchronising state

machines which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

The NEXT/PREV modes (_version 1 and above_) can be used to synchronise between state machines in different PIO

blocks. If these state machines' clocks are divided, their clock dividers must be the same, and must have been

synchronised by writing CTRL.NEXTPREV_CLKDIV_RESTART in addition to the relevant NEXT_PIO_MASK/PREV_PIO_MASK bits.

Note that the cross-PIO connection is severed between PIOs with different accessibility to Non-secure code, as per

ACCESSCTRL.

If Wait is set, Delay cycles do not begin until after the wait period elapses.

3.4.13.3. Assembler Syntax

irq <irq_num> (rel)

irq set <irq_num> (rel)

irq nowait <irq_num> (rel)

irq wait <irq_num> (rel)

irq clear <irq_num> (rel)

where:

<irq_num> (rel) Is a value (see Section 3.3.3) specifying The irq number to wait on (0-7). If rel is present, then the

actual irq number used is calculating by replacing the low two bits of the irq number (irq_num10)

with the low two bits of the sum (irq_num10 + sm_num10) where sm_num10 is the state machine

number

irq Means set the IRQ without waiting

irq set Also means set the IRQ without waiting

irq nowait Again, means set the IRQ without waiting

irq wait Means set the IRQ and wait for it to be cleared before proceeding

irq clear Means clear the IRQ

3.4.14. SET

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 73

3.4.14.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET 1 1 1 Delay/side-set Destination Data

3.4.14.2. Operation

Write immediate value Data to Destination.

• Destination:

◦ 000: PINS

◦ 001: X (scratch register X) 5 LSBs are set to Data, all others cleared to 0.

◦ 010: Y (scratch register Y) 5 LSBs are set to Data, all others cleared to 0.

◦ 011: Reserved

◦ 100: PINDIRS

◦ 101: Reserved

◦ 110: Reserved

◦ 111: Reserved

• Data: 5-bit immediate value to drive to pins or register.

This can be used to assert control signals such as a clock or chip select, or to initialise loop counters. As Data is 5 bits in

size, scratch registers can be SET to values from 0-31, which is sufficient for a 32-iteration loop.

The mapping of SET and OUT onto pins is configured independently. They may be mapped to distinct locations, for

example if one pin is to be used as a clock signal, and another for data. They may also be overlapping ranges of pins: a

UART transmitter might use SET to assert start and stop bits, and OUT instructions to shift out FIFO data to the same pins.

3.4.14.3. Assembler Syntax

set <destination>, <value>

where:

<destination> Is one of the destinations specified above.

<value> The value (see Section 3.3.3) to set (valid range 0-31)

Raspberry Pi Pico-series C/C++ SDK

3.4. PIO Instruction Set Reference 74

Chapter 4. Library documentation
Full library API documentation can also be found online at https://www.raspberrypi.com/documentation/pico-sdk/

Figure 8. The

Raspberry Pi

documentation site.

 NOTE

You can also build the API documentation locally, see Appendix B.

Raspberry Pi Pico-series C/C++ SDK

Chapter 4. Library documentation 75

https://www.raspberrypi.com/documentation/pico-sdk/

4.1. Hardware APIs

This group of libraries provides a thin and efficient C API / abstractions to access the RP-series microcontroller

hardware without having to read and write hardware registers directly.

hardware_adc Analog to Digital Converter (ADC) API.

hardware_base Low-level types and (atomic) accessors for memory-mapped hardware registers.

hardware_claim Lightweight hardware resource management API.

hardware_clocks Clock Management API.

hardware_divider RP2040 Low Low-level hardware-divider API. Non-RP2040 platforms provide software

versions of all the functions.

hardware_dcp Assembly macros for the Double Coprocessor.

hardware_dma DMA Controller API.

 channel_config DMA channel configuration .

hardware_exception Methods for setting processor exception handlers.

hardware_flash Low level flash programming and erase API.

hardware_gpio General Purpose Input/Output (GPIO) API.

hardware_hazard3 Accessors for Hazard3-specific RISC-V CSRs, and intrinsics for Hazard3 custom instructions.

hardware_i2c I2C Controller API.

hardware_interp Hardware Interpolator API.

 interp_config Interpolator configuration .

hardware_irq Hardware interrupt handling API.

hardware_pio Programmable I/O (PIO) API.

 sm_config PIO state machine configuration .

 pio_instructions PIO instruction encoding .

hardware_pll Phase Locked Loop control APIs.

hardware_powman Power Management API.

hardware_pwm Hardware Pulse Width Modulation (PWM) API.

hardware_resets Hardware Reset API.

hardware_riscv Accessors for standard RISC-V hardware (mainly CSRs)

hardware_riscv_platfo

rm_timer

Accessors for standard RISC-V platform timer (mtime/mtimecmp), available on Raspberry Pi

microcontrollers with RISC-V processors.

hardware_rtc Hardware Real Time Clock API.

hardware_rcp Inline functions and assembly macros for the Redundancy Coprocessor.

hardware_spi Hardware SPI API.

hardware_sha256 Hardware SHA-256 Accelerator API.

hardware_sync Low level hardware spin locks, barrier and processor event APIs.

hardware_ticks Hardware Tick API.

hardware_timer Low-level hardware timer API.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 76

hardware_uart Hardware UART API.

hardware_vreg Voltage Regulation API.

hardware_watchdog Hardware Watchdog Timer API.

hardware_xosc Crystal Oscillator (XOSC) API.

4.1.1. hardware_adc

Analog to Digital Converter (ADC) API.

4.1.1.1. Detailed Description

RP-series microcontrollers have an internal analogue-digital converter (ADC) with the following features:

• SAR ADC

• 500 kS/s (Using an independent 48MHz clock)

• 12 bit (RP2040 8.7 ENOB, RP2350 9.2 ENOB)

• RP2040 5 input mux:

◦ 4 inputs that are available on package pins shared with GPIO[29:26]

◦ 1 input is dedicated to the internal temperature sensor

◦ 4 element receive sample FIFO

• RP2350 5 or 9 input mux:

◦ 4 inputs available on QFN-60 package pins shared with GPIO[29:26]

◦ 8 inputs available on QFN-80 package pins shared with GPIO[47:40]

◦ 8 element receive sample FIFO

• One input dedicated to the internal temperature sensor (see Section 12.4.6)

• Interrupt generation

• DMA interface

Although there is only one ADC you can specify the input to it using the adc_select_input() function. In round robin mode

(adc_set_round_robin()), the ADC will use that input and move to the next one after a read.

RP2040, RP2350 QFN-60: User ADC inputs are on 0-3 (GPIO 26-29), the temperature sensor is on input 4. RP2350 QFN-

80 : User ADC inputs are on 0-7 (GPIO 40-47), the temperature sensor is on input 8.

Temperature sensor values can be approximated in centigrade as:

T = 27 - (ADC_Voltage - 0.706)/0.001721

4.1.1.1.1. Example

 1 #include <stdio.h>
 2 #include "pico/stdlib.h"
 3 #include "hardware/gpio.h"
 4 #include "hardware/adc.h"
 5
 6 int main() {
 7 stdio_init_all();
 8 printf("ADC Example, measuring GPIO26\n");

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 77

 9
10 adc_init();
11
12 // Make sure GPIO is high-impedance, no pullups etc
13 adc_gpio_init(26);
14 // Select ADC input 0 (GPIO26)
15 adc_select_input(0);
16
17 while (1) {
18 // 12-bit conversion, assume max value == ADC_VREF == 3.3 V
19 const float conversion_factor = 3.3f / (1 << 12);
20 uint16_t result = adc_read();
21 printf("Raw value: 0x%03x, voltage: %f V\n", result, result * conversion_factor);
22 sleep_ms(500);
23 }
24 }

4.1.1.2. Functions

void adc_init (void)

Initialise the ADC HW.

static void adc_gpio_init (uint gpio)

Initialise the gpio for use as an ADC pin.

static void adc_select_input (uint input)

ADC input select.

static uint adc_get_selected_input (void)

Get the currently selected ADC input channel.

static void adc_set_round_robin (uint input_mask)

Round Robin sampling selector.

static void adc_set_temp_sensor_enabled (bool enable)

Enable the onboard temperature sensor.

static uint16_t adc_read (void)

Perform a single conversion.

static void adc_run (bool run)

Enable or disable free-running sampling mode.

static void adc_set_clkdiv (float clkdiv)

Set the ADC Clock divisor.

static void adc_fifo_setup (bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift)

Setup the ADC FIFO.

static bool adc_fifo_is_empty (void)

Check FIFO empty state.

static uint8_t adc_fifo_get_level (void)

Get number of entries in the ADC FIFO.

static uint16_t adc_fifo_get (void)

Get ADC result from FIFO.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 78

static uint16_t adc_fifo_get_blocking (void)

Wait for the ADC FIFO to have data.

static void adc_fifo_drain (void)

Drain the ADC FIFO.

static void adc_irq_set_enabled (bool enabled)

Enable/Disable ADC interrupts.

4.1.1.3. Function Documentation

4.1.1.3.1. adc_fifo_drain

static void adc_fifo_drain (void) [inline], [static]

Drain the ADC FIFO.

Will wait for any conversion to complete then drain the FIFO, discarding any results.

4.1.1.3.2. adc_fifo_get

static uint16_t adc_fifo_get (void) [inline], [static]

Get ADC result from FIFO.

Pops the latest result from the ADC FIFO.

4.1.1.3.3. adc_fifo_get_blocking

static uint16_t adc_fifo_get_blocking (void) [inline], [static]

Wait for the ADC FIFO to have data.

Blocks until data is present in the FIFO

4.1.1.3.4. adc_fifo_get_level

static uint8_t adc_fifo_get_level (void) [inline], [static]

Get number of entries in the ADC FIFO.

On RP2040 the FIFO is 4 samples long. On RP2350 the FIFO is 8 samples long.

This function will return how many samples are currently present.

4.1.1.3.5. adc_fifo_is_empty

static bool adc_fifo_is_empty (void) [inline], [static]

Check FIFO empty state.

Returns

Returns true if the FIFO is empty

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 79

4.1.1.3.6. adc_fifo_setup

static void adc_fifo_setup (bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift) [inline],

[static]

Setup the ADC FIFO.

On RP2040 the FIFO is 4 samples long.

On RP2350 the FIFO is 8 samples long.

If a conversion is completed and the FIFO is full, the result is dropped.

Parameters

en Enables write each conversion result to the FIFO

dreq_en Enable DMA requests when FIFO contains data

dreq_thresh Threshold for DMA requests/FIFO IRQ if enabled.

err_in_fifo If enabled, bit 15 of the FIFO contains error flag for each sample

byte_shift Shift FIFO contents to be one byte in size (for byte DMA) - enables DMA to byte buffers.

4.1.1.3.7. adc_get_selected_input

static uint adc_get_selected_input (void) [inline], [static]

Get the currently selected ADC input channel.

Returns

The currently selected input channel.

On RP02040 0…3 are GPIOs 26…29 respectively. Input 4 is the onboard temperature sensor.

On RP2350A 0…3 are GPIOs 26…29 respectively. Input 4 is the onboard temperature sensor. On RP2350B 0…7 are GPIOs

40…47 respectively. Input 8 is the onboard temperature sensor.

4.1.1.3.8. adc_gpio_init

static void adc_gpio_init (uint gpio) [inline], [static]

Initialise the gpio for use as an ADC pin.

Prepare a GPIO for use with ADC by disabling all digital functions.

Parameters

gpio The GPIO number to use. Allowable GPIO numbers are 26 to 29 inclusive on RP2040 or RP2350A, 40-48

inclusive on RP2350B

4.1.1.3.9. adc_init

void adc_init (void)

Initialise the ADC HW.

4.1.1.3.10. adc_irq_set_enabled

static void adc_irq_set_enabled (bool enabled) [inline], [static]

Enable/Disable ADC interrupts.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 80

Parameters

enabled Set to true to enable the ADC interrupts, false to disable

4.1.1.3.11. adc_read

static uint16_t adc_read (void) [inline], [static]

Perform a single conversion.

Performs an ADC conversion, waits for the result, and then returns it.

Returns

Result of the conversion.

4.1.1.3.12. adc_run

static void adc_run (bool run) [inline], [static]

Enable or disable free-running sampling mode.

Parameters

run false to disable, true to enable free running conversion mode.

4.1.1.3.13. adc_select_input

static void adc_select_input (uint input) [inline], [static]

ADC input select.

Select an ADC input On RP02040 0…3 are GPIOs 26…29 respectively. Input 4 is the onboard temperature sensor. On

RP2350A 0…3 are GPIOs 26…29 respectively. Input 4 is the onboard temperature sensor. On RP2350B 0…7 are GPIOs

40…47 respectively. Input 8 is the onboard temperature sensor.

Parameters

input Input to select.

4.1.1.3.14. adc_set_clkdiv

static void adc_set_clkdiv (float clkdiv) [inline], [static]

Set the ADC Clock divisor.

Period of samples will be (1 + div) cycles on average. Note it takes 96 cycles to perform a conversion, so any period less

than that will be clamped to 96.

Parameters

clkdiv If non-zero, conversion will be started at intervals rather than back to back.

4.1.1.3.15. adc_set_round_robin

static void adc_set_round_robin (uint input_mask) [inline], [static]

Round Robin sampling selector.

This function sets which inputs are to be run through in round robin mode. RP2040, RP2350 QFN-60: Value between 0

and 0x1f (bit 0 to bit 4 for GPIO 26 to 29 and temperature sensor input respectively) RP2350 QFN-80: Value between 0

and 0xff (bit 0 to bit 7 for GPIO 40 to 47 and temperature sensor input respectively)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 81

Parameters

input_mask A bit pattern indicating which of the 5/8 inputs are to be sampled. Write a value of 0 to disable

round robin sampling.

4.1.1.3.16. adc_set_temp_sensor_enabled

static void adc_set_temp_sensor_enabled (bool enable) [inline], [static]

Enable the onboard temperature sensor.

Parameters

enable Set true to power on the onboard temperature sensor, false to power off.

4.1.2. hardware_base

Low-level types and (atomic) accessors for memory-mapped hardware registers.

4.1.2.1. Detailed Description

hardware_base defines the low level types and access functions for memory mapped hardware registers. It is included by

default by all other hardware libraries.

The following register access typedefs codify the access type (read/write) and the bus size (8/16/32) of the hardware

register. The register type names are formed by concatenating one from each of the 3 parts A, B, C

A B C Meaning

io_ A Memory mapped IO

register

 ro_ read-only access

 rw_ read-write access

 wo_ write-only access (can’t

actually be enforced via C

API)

 8 8-bit wide access

 16 16-bit wide access

 32 32-bit wide access

When dealing with these types, you will always use a pointer, i.e. io_rw_32 *some_reg is a pointer to a read/write 32 bit

register that you can write with *some_reg = value, or read with value = *some_reg.

RP-series hardware is also aliased to provide atomic setting, clear or flipping of a subset of the bits within a hardware

register so that concurrent access by two cores is always consistent with one atomic operation being performed first,

followed by the second.

See hw_set_bits(), hw_clear_bits() and hw_xor_bits() provide for atomic access via a pointer to a 32 bit register

Additionally given a pointer to a structure representing a piece of hardware (e.g. dma_hw_t *dma_hw for the DMA controller),

you can get an alias to the entire structure such that writing any member (register) within the structure is equivalent to

an atomic operation via hw_set_alias(), hw_clear_alias() or hw_xor_alias()…

For example hw_set_alias(dma_hw)->inte1 = 0x80; will set bit 7 of the INTE1 register of the DMA controller, leaving the

other bits unchanged.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 82

4.1.2.2. Functions

static __force_inline void hw_set_bits (io_rw_32 *addr, uint32_t mask)

Atomically set the specified bits to 1 in a HW register.

static __force_inline void hw_clear_bits (io_rw_32 *addr, uint32_t mask)

Atomically clear the specified bits to 0 in a HW register.

static __force_inline void hw_xor_bits (io_rw_32 *addr, uint32_t mask)

Atomically flip the specified bits in a HW register.

static __force_inline void hw_write_masked (io_rw_32 *addr, uint32_t values, uint32_t write_mask)

Set new values for a sub-set of the bits in a HW register.

4.1.2.3. Function Documentation

4.1.2.3.1. hw_clear_bits

static __force_inline void hw_clear_bits (io_rw_32 * addr, uint32_t mask) [static]

Atomically clear the specified bits to 0 in a HW register.

Parameters

addr Address of writable register

mask Bit-mask specifying bits to clear

4.1.2.3.2. hw_set_bits

static __force_inline void hw_set_bits (io_rw_32 * addr, uint32_t mask) [static]

Atomically set the specified bits to 1 in a HW register.

Parameters

addr Address of writable register

mask Bit-mask specifying bits to set

4.1.2.3.3. hw_write_masked

static __force_inline void hw_write_masked (io_rw_32 * addr, uint32_t values, uint32_t write_mask) [static]

Set new values for a sub-set of the bits in a HW register.

Sets destination bits to values specified in values, if and only if corresponding bit in write_mask is set

Note: this method allows safe concurrent modification of different bits of a register, but multiple concurrent access to

the same bits is still unsafe.

Parameters

addr Address of writable register

values Bits values

write_mask Mask of bits to change

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 83

4.1.2.3.4. hw_xor_bits

static __force_inline void hw_xor_bits (io_rw_32 * addr, uint32_t mask) [static]

Atomically flip the specified bits in a HW register.

Parameters

addr Address of writable register

mask Bit-mask specifying bits to invert

4.1.3. hardware_claim

Lightweight hardware resource management API.

4.1.3.1. Detailed Description

hardware_claim provides a simple API for management of hardware resources at runtime.

This API is usually called by other hardware specific claiming APIs and provides simple multi-core safe methods to

manipulate compact bit-sets representing hardware resources.

This API allows any other library to cooperatively participate in a scheme by which both compile time and runtime

allocation of resources can co-exist, and conflicts can be avoided or detected (depending on the use case) without the

libraries having any other knowledge of each other.

Facilities are providing for:

1. Claiming resources (and asserting if they are already claimed)

2. Freeing (unclaiming) resources

3. Finding unused resources

4.1.3.2. Functions

void hw_claim_or_assert (uint8_t *bits, uint bit_index, const char *message)

Atomically claim a resource, panicking if it is already in use.

int hw_claim_unused_from_range (uint8_t *bits, bool required, uint bit_lsb, uint bit_msb, const char *message)

Atomically claim one resource out of a range of resources, optionally asserting if none are free.

bool hw_is_claimed (const uint8_t *bits, uint bit_index)

Determine if a resource is claimed at the time of the call.

void hw_claim_clear (uint8_t *bits, uint bit_index)

Atomically unclaim a resource.

uint32_t hw_claim_lock (void)

Acquire the runtime mutual exclusion lock provided by the hardware_claim library.

void hw_claim_unlock (uint32_t token)

Release the runtime mutual exclusion lock provided by the hardware_claim library.

4.1.3.3. Function Documentation

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 84

4.1.3.3.1. hw_claim_clear

void hw_claim_clear (uint8_t * bits, uint bit_index)

Atomically unclaim a resource.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters

bits pointer to an array of bits (8 bits per byte)

bit_index resource to unclaim (bit index into array of bits)

4.1.3.3.2. hw_claim_lock

uint32_t hw_claim_lock (void)

Acquire the runtime mutual exclusion lock provided by the hardware_claim library.

This method is called automatically by the other hw_claim_ methods, however it is provided as a convenience to code

that might want to protect other hardware initialization code from concurrent use.

 NOTE

hw_claim_lock() uses a spin lock internally, so disables interrupts on the calling core, and will deadlock if the calling

core already owns the lock.

Returns

a token to pass to hw_claim_unlock()

4.1.3.3.3. hw_claim_or_assert

void hw_claim_or_assert (uint8_t * bits, uint bit_index, const char * message)

Atomically claim a resource, panicking if it is already in use.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters

bits pointer to an array of bits (8 bits per byte)

bit_index resource to claim (bit index into array of bits)

message string to display if the bit cannot be claimed; note this may have a single printf format "%d" for the

bit

4.1.3.3.4. hw_claim_unlock

void hw_claim_unlock (uint32_t token)

Release the runtime mutual exclusion lock provided by the hardware_claim library.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 85

 NOTE

This method MUST be called from the same core that call hw_claim_lock()

Parameters

token the token returned by the corresponding call to hw_claim_lock()

4.1.3.3.5. hw_claim_unused_from_range

int hw_claim_unused_from_range (uint8_t * bits, bool required, uint bit_lsb, uint bit_msb, const char * message)

Atomically claim one resource out of a range of resources, optionally asserting if none are free.

Parameters

bits pointer to an array of bits (8 bits per byte)

required true if this method should panic if the resource is not free

bit_lsb the lower bound (inclusive) of the resource range to claim from

bit_msb the upper bound (inclusive) of the resource range to claim from

message string to display if the bit cannot be claimed

Returns

the bit index representing the claimed or -1 if none are available in the range, and required = false

4.1.3.3.6. hw_is_claimed

bool hw_is_claimed (const uint8_t * bits, uint bit_index) [inline]

Determine if a resource is claimed at the time of the call.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters

bits pointer to an array of bits (8 bits per byte)

bit_index resource to check (bit index into array of bits)

Returns

true if the resource is claimed

4.1.4. hardware_clocks

Clock Management API.

4.1.4.1. Detailed Description

This API provides a high level interface to the clock functions.

The clocks block provides independent clocks to on-chip and external components. It takes inputs from a variety of

clock sources allowing the user to trade off performance against cost, board area and power consumption. From these

sources it uses multiple clock generators to provide the required clocks. This architecture allows the user flexibility to

start and stop clocks independently and to vary some clock frequencies whilst maintaining others at their optimum

frequencies

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 86

Please refer to the appropriate datasheet for more details on the RP-series clocks.

The clock source depends on which clock you are attempting to configure. The first table below shows main clock

sources. If you are not setting the Reference clock or the System clock, or you are specifying that one of those two will

be using an auxiliary clock source, then you will need to use one of the entries from the subsequent tables.

• On RP2040 the clock sources are:

Main Clock Sources

Source Reference Clock System Clock

ROSC CLOCKS_CLK_REF_CTRL_SRC_VALUE

_ROSC_CLKSRC_PH

Auxiliary CLOCKS_CLK_REF_CTRL_SRC_VALUE

_CLKSRC_CLK_REF_AUX

CLOCKS_CLK_SYS_CTRL_SRC_VALUE

_CLKSRC_CLK_SYS_AUX

XOSC CLOCKS_CLK_REF_CTRL_SRC_VALUE

_XOSC_CLKSRC

Reference CLOCKS_CLK_SYS_CTRL_SRC_VALUE

_CLK_REF

Auxiliary Clock Sources

The auxiliary clock sources available for use in the configure function depend on which clock is being configured. The

following table describes the available values that can be used. Note that for clk_gpout[x], x can be 0-3.

Aux Source clk_gpout[x] clk_ref clk_sys

System PLL CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLKSRC

_PLL_SYS

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_SYS

GPIO in 0 CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLKSRC

_GPIN0

CLOCKS_CLK_REF_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN0

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN0

GPIO in 1 CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLKSRC

_GPIN1

CLOCKS_CLK_REF_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN1

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN1

USB PLL CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLKSRC

_PLL_USB

CLOCKS_CLK_REF_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_USB

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_USB

ROSC CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_ROSC_C

LKSRC

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_ROSC_CLKS

RC

XOSC CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_XOSC_C

LKSRC

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_XOSC_CLKS

RC

System clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_SY

S

USB Clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_US

B

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 87

Aux Source clk_gpout[x] clk_ref clk_sys

ADC clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_AD

C

RTC Clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_RT

C

Ref clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_RE

F

Aux Source clk_peri clk_usb clk_adc

System PLL CLOCKS_CLK_PERI_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_SYS

CLOCKS_CLK_USB_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_SYS

CLOCKS_CLK_ADC_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_SYS

GPIO in 0 CLOCKS_CLK_PERI_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN0

CLOCKS_CLK_USB_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN0

CLOCKS_CLK_ADC_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN0

GPIO in 1 CLOCKS_CLK_PERI_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN1

CLOCKS_CLK_USB_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN1

CLOCKS_CLK_ADC_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN1

USB PLL CLOCKS_CLK_PERI_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_USB

CLOCKS_CLK_USB_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_USB

CLOCKS_CLK_ADC_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_USB

ROSC CLOCKS_CLK_PERI_CTRL_A

UXSRC_VALUE_ROSC_CLKS

RC_PH

CLOCKS_CLK_USB_CTRL_A

UXSRC_VALUE_ROSC_CLKS

RC_PH

CLOCKS_CLK_ADC_CTRL_A

UXSRC_VALUE_ROSC_CLKS

RC_PH

XOSC CLOCKS_CLK_PERI_CTRL_A

UXSRC_VALUE_XOSC_CLKS

RC

CLOCKS_CLK_USB_CTRL_A

UXSRC_VALUE_XOSC_CLKS

RC

CLOCKS_CLK_ADC_CTRL_A

UXSRC_VALUE_XOSC_CLKS

RC

System clock CLOCKS_CLK_PERI_CTRL_A

UXSRC_VALUE_CLK_SYS

Aux Source clk_rtc

System PLL CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_

SYS

GPIO in 0 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN

0

GPIO in 1 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN

1

USB PLL CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_

USB

ROSC CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_ROSC_CLKSR

C_PH

XOSC CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_XOSC_CLKSR

C

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 88

On RP2350 the clock sources are:

• Main Clock Sources

Source Reference Clock System Clock

ROSC CLOCKS_CLK_REF_CTRL_SRC_VALUE

_ROSC_CLKSRC_PH

Auxiliary CLOCKS_CLK_REF_CTRL_SRC_VALUE

_CLKSRC_CLK_REF_AUX

CLOCKS_CLK_SYS_CTRL_SRC_VALUE

_CLKSRC_CLK_SYS_AUX

XOSC CLOCKS_CLK_REF_CTRL_SRC_VALUE

_XOSC_CLKSRC

LPOSC CLOCKS_CLK_REF_CTRL_SRC_VALUE

_LPOSC_CLKSRC

Reference CLOCKS_CLK_SYS_CTRL_SRC_VALUE

_CLK_REF

Auxiliary Clock Sources

The auxiliary clock sources available for use in the configure function depend on which clock is being configured. The

following table describes the available values that can be used. Note that for clk_gpout[x], x can be 0-3.

Aux Source clk_gpout[x] clk_ref clk_sys

System PLL CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLKSRC

_PLL_SYS

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_SYS

GPIO in 0 CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLKSRC

_GPIN0

CLOCKS_CLK_REF_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN0

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN0

GPIO in 1 CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLKSRC

_GPIN1

CLOCKS_CLK_REF_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN1

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_CLKSRC_GP

IN1

USB PLL CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLKSRC

_PLL_USB

CLOCKS_CLK_REF_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_USB

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_CLKSRC_PL

L_USB

ROSC CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_ROSC_C

LKSRC

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_ROSC_CLKS

RC

XOSC CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_XOSC_C

LKSRC

CLOCKS_CLK_SYS_CTRL_A

UXSRC_VALUE_XOSC_CLKS

RC

LPOSC CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_LPOSC_

CLKSRC

CLOCKS_CLK_REF_CTRL_A

UXSRC_VALUE_LPOSC_CLK

SRC

System clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_SY

S

USB Clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_US

B

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 89

Aux Source clk_gpout[x] clk_ref clk_sys

ADC clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_AD

C

REF clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_RE

F

PERI clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_PE

RI

HSTX clock CLOCKS_CLK_GPOUTx_CTR

L_AUXSRC_VALUE_CLK_PE

RI

Aux Source clk_peri clk_hstx clk_usb clk_adc

System PLL CLOCKS_CLK_PERI_C

TRL_AUXSRC_VALUE_

CLKSRC_PLL_SYS

CLOCKS_CLK_HSTX_

CTRL_AUXSRC_VALU

E_CLKSRC_PLL_SYS

CLOCKS_CLK_USB_C

TRL_AUXSRC_VALUE_

CLKSRC_PLL_SYS

CLOCKS_CLK_ADC_C

TRL_AUXSRC_VALUE_

CLKSRC_PLL_SYS

GPIO in 0 CLOCKS_CLK_PERI_C

TRL_AUXSRC_VALUE_

CLKSRC_GPIN0

CLOCKS_CLK_USB_C

TRL_AUXSRC_VALUE_

CLKSRC_GPIN0

CLOCKS_CLK_ADC_C

TRL_AUXSRC_VALUE_

CLKSRC_GPIN0

GPIO in 1 CLOCKS_CLK_PERI_C

TRL_AUXSRC_VALUE_

CLKSRC_GPIN1

CLOCKS_CLK_USB_C

TRL_AUXSRC_VALUE_

CLKSRC_GPIN1

CLOCKS_CLK_ADC_C

TRL_AUXSRC_VALUE_

CLKSRC_GPIN1

USB PLL CLOCKS_CLK_PERI_C

TRL_AUXSRC_VALUE_

CLKSRC_PLL_USB

CLOCKS_CLK_HSTX_

CTRL_AUXSRC_VALU

E_CLKSRC_PLL_USB

CLOCKS_CLK_USB_C

TRL_AUXSRC_VALUE_

CLKSRC_PLL_USB

CLOCKS_CLK_ADC_C

TRL_AUXSRC_VALUE_

CLKSRC_PLL_USB

ROSC CLOCKS_CLK_PERI_C

TRL_AUXSRC_VALUE_

ROSC_CLKSRC_PH

CLOCKS_CLK_USB_C

TRL_AUXSRC_VALUE_

ROSC_CLKSRC_PH

CLOCKS_CLK_ADC_C

TRL_AUXSRC_VALUE_

ROSC_CLKSRC_PH

XOSC CLOCKS_CLK_PERI_C

TRL_AUXSRC_VALUE_

XOSC_CLKSRC

CLOCKS_CLK_USB_C

TRL_AUXSRC_VALUE_

XOSC_CLKSRC

CLOCKS_CLK_ADC_C

TRL_AUXSRC_VALUE_

XOSC_CLKSRC

System clock CLOCKS_CLK_PERI_C

TRL_AUXSRC_VALUE_

CLK_SYS

CLOCKS_CLK_HSTX_

CTRL_AUXSRC_VALU

E_CLK_SYS

4.1.4.1.1. Example

 1 #include <stdio.h>
 2 #include "pico/stdlib.h"
 3 #include "hardware/pll.h"
 4 #include "hardware/clocks.h"
 5 #include "hardware/structs/pll.h"
 6 #include "hardware/structs/clocks.h"
 7
 8 void measure_freqs(void) {
 9 uint f_pll_sys = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_PLL_SYS_CLKSRC_PRIMARY);

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 90

10 uint f_pll_usb = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_PLL_USB_CLKSRC_PRIMARY);
11 uint f_rosc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_ROSC_CLKSRC);
12 uint f_clk_sys = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_SYS);
13 uint f_clk_peri = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_PERI);
14 uint f_clk_usb = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_USB);
15 uint f_clk_adc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_ADC);
16 #ifdef CLOCKS_FC0_SRC_VALUE_CLK_RTC
17 uint f_clk_rtc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_RTC);
18 #endif
19
20 printf("pll_sys = %dkHz\n", f_pll_sys);
21 printf("pll_usb = %dkHz\n", f_pll_usb);
22 printf("rosc = %dkHz\n", f_rosc);
23 printf("clk_sys = %dkHz\n", f_clk_sys);
24 printf("clk_peri = %dkHz\n", f_clk_peri);
25 printf("clk_usb = %dkHz\n", f_clk_usb);
26 printf("clk_adc = %dkHz\n", f_clk_adc);
27 #ifdef CLOCKS_FC0_SRC_VALUE_CLK_RTC
28 printf("clk_rtc = %dkHz\n", f_clk_rtc);
29 #endif
30
31 // Can't measure clk_ref / xosc as it is the ref
32 }
33
34 int main() {
35 stdio_init_all();
36
37 printf("Hello, world!\n");
38
39 measure_freqs();
40
41 // Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB
42 // which has a source frequency of 48MHz
43 clock_configure(clk_sys,
44 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
45 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
46 48 * MHZ,
47 48 * MHZ);
48
49 // Turn off PLL sys for good measure
50 pll_deinit(pll_sys);
51
52 // CLK peri is clocked from clk_sys so need to change clk_peri's freq
53 clock_configure(clk_peri,
54 0,
55 CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,
56 48 * MHZ,
57 48 * MHZ);
58
59 // Re init uart now that clk_peri has changed
60 stdio_init_all();
61
62 measure_freqs();
63 printf("Hello, 48MHz");
64
65 return 0;
66 }

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 91

4.1.4.2. Typedefs

typedef enum clock_num_rp2040 clock_num_t

Clock numbers on RP2040 (used as typedef clock_num_t)

typedef enum clock_dest_num_rp2040 clock_dest_num_t

Clock destination numbers on RP2040 (used as typedef clock_dest_num_t)

typedef enum clock_num_rp2350 clock_num_t

Clock numbers on RP2350 (used as typedef clock_num_t)

typedef enum clock_dest_num_rp2350 clock_dest_num_t

Clock destination numbers on RP2350 (used as typedef clock_dest_num_t)

typedef void(* resus_callback_t)(void)

Resus callback function type.

4.1.4.3. Enumerations

enum clock_num_rp2040 { clk_gpout0 = 0, clk_gpout1 = 1, clk_gpout2 = 2, clk_gpout3 = 3, clk_ref = 4, clk_sys = 5,

clk_peri = 6, clk_usb = 7, clk_adc = 8, clk_rtc = 9, CLK_COUNT }

Clock numbers on RP2040 (used as typedef clock_num_t)

enum clock_dest_num_rp2040 { CLK_DEST_SYS_CLOCKS = 0, CLK_DEST_ADC_ADC = 1, CLK_DEST_SYS_ADC = 2, CLK_DEST_SYS_BUSCTRL =

3, CLK_DEST_SYS_BUSFABRIC = 4, CLK_DEST_SYS_DMA = 5, CLK_DEST_SYS_I2C0 = 6, CLK_DEST_SYS_I2C1 = 7, CLK_DEST_SYS_IO = 8,

CLK_DEST_SYS_JTAG = 9, CLK_DEST_SYS_VREG_AND_CHIP_RESET = 10, CLK_DEST_SYS_PADS = 11, CLK_DEST_SYS_PIO0 = 12,

CLK_DEST_SYS_PIO1 = 13, CLK_DEST_SYS_PLL_SYS = 14, CLK_DEST_SYS_PLL_USB = 15, CLK_DEST_SYS_PSM = 16, CLK_DEST_SYS_PWM =

17, CLK_DEST_SYS_RESETS = 18, CLK_DEST_SYS_ROM = 19, CLK_DEST_SYS_ROSC = 20, CLK_DEST_RTC_RTC = 21, CLK_DEST_SYS_RTC =

22, CLK_DEST_SYS_SIO = 23, CLK_DEST_PERI_SPI0 = 24, CLK_DEST_SYS_SPI0 = 25, CLK_DEST_PERI_SPI1 = 26, CLK_DEST_SYS_SPI1 =

27, CLK_DEST_SYS_SRAM0 = 28, CLK_DEST_SYS_SRAM1 = 29, CLK_DEST_SYS_SRAM2 = 30, CLK_DEST_SYS_SRAM3 = 31,

CLK_DEST_SYS_SRAM4 = 32, CLK_DEST_SYS_SRAM5 = 33, CLK_DEST_SYS_SYSCFG = 34, CLK_DEST_SYS_SYSINFO = 35, CLK_DEST_SYS_TBMAN

= 36, CLK_DEST_SYS_TIMER = 37, CLK_DEST_PERI_UART0 = 38, CLK_DEST_SYS_UART0 = 39, CLK_DEST_PERI_UART1 = 40,

CLK_DEST_SYS_UART1 = 41, CLK_DEST_SYS_USBCTRL = 42, CLK_DEST_USB_USBCTRL = 43, CLK_DEST_SYS_WATCHDOG = 44,

CLK_DEST_SYS_XIP = 45, CLK_DEST_SYS_XOSC = 46, NUM_CLOCK_DESTINATIONS }

Clock destination numbers on RP2040 (used as typedef clock_dest_num_t)

enum clock_num_rp2350 { clk_gpout0 = 0, clk_gpout1 = 1, clk_gpout2 = 2, clk_gpout3 = 3, clk_ref = 4, clk_sys = 5,

clk_peri = 6, clk_hstx = 7, clk_usb = 8, clk_adc = 9, CLK_COUNT }

Clock numbers on RP2350 (used as typedef clock_num_t)

enum clock_dest_num_rp2350 { CLK_DEST_SYS_CLOCKS = 0, CLK_DEST_SYS_ACCESSCTRL = 1, CLK_DEST_ADC = 2, CLK_DEST_SYS_ADC =

3, CLK_DEST_SYS_BOOTRAM = 4, CLK_DEST_SYS_BUSCTRL = 5, CLK_DEST_SYS_BUSFABRIC = 6, CLK_DEST_SYS_DMA = 7,

CLK_DEST_SYS_GLITCH_DETECTOR = 8, CLK_DEST_HSTX = 9, CLK_DEST_SYS_HSTX = 10, CLK_DEST_SYS_I2C0 = 11, CLK_DEST_SYS_I2C1 =

12, CLK_DEST_SYS_IO = 13, CLK_DEST_SYS_JTAG = 14, CLK_DEST_REF_OTP = 15, CLK_DEST_SYS_OTP = 16, CLK_DEST_SYS_PADS = 17,

CLK_DEST_SYS_PIO0 = 18, CLK_DEST_SYS_PIO1 = 19, CLK_DEST_SYS_PIO2 = 20, CLK_DEST_SYS_PLL_SYS = 21, CLK_DEST_SYS_PLL_USB =

22, CLK_DEST_REF_POWMAN = 23, CLK_DEST_SYS_POWMAN = 24, CLK_DEST_SYS_PWM = 25, CLK_DEST_SYS_RESETS = 26, CLK_DEST_SYS_ROM

= 27, CLK_DEST_SYS_ROSC = 28, CLK_DEST_SYS_PSM = 29, CLK_DEST_SYS_SHA256 = 30, CLK_DEST_SYS_SIO = 31, CLK_DEST_PERI_SPI0

= 32, CLK_DEST_SYS_SPI0 = 33, CLK_DEST_PERI_SPI1 = 34, CLK_DEST_SYS_SPI1 = 35, CLK_DEST_SYS_SRAM0 = 36,

CLK_DEST_SYS_SRAM1 = 37, CLK_DEST_SYS_SRAM2 = 38, CLK_DEST_SYS_SRAM3 = 39, CLK_DEST_SYS_SRAM4 = 40, CLK_DEST_SYS_SRAM5 =

41, CLK_DEST_SYS_SRAM6 = 42, CLK_DEST_SYS_SRAM7 = 43, CLK_DEST_SYS_SRAM8 = 44, CLK_DEST_SYS_SRAM9 = 45,

CLK_DEST_SYS_SYSCFG = 46, CLK_DEST_SYS_SYSINFO = 47, CLK_DEST_SYS_TBMAN = 48, CLK_DEST_REF_TICKS = 49, CLK_DEST_SYS_TICKS

= 50, CLK_DEST_SYS_TIMER0 = 51, CLK_DEST_SYS_TIMER1 = 52, CLK_DEST_SYS_TRNG = 53, CLK_DEST_PERI_UART0 = 54,

CLK_DEST_SYS_UART0 = 55, CLK_DEST_PERI_UART1 = 56, CLK_DEST_SYS_UART1 = 57, CLK_DEST_SYS_USBCTRL = 58, CLK_DEST_USB = 59,

CLK_DEST_SYS_WATCHDOG = 60, CLK_DEST_SYS_XIP = 61, CLK_DEST_SYS_XOSC = 62, NUM_CLOCK_DESTINATIONS }

Clock destination numbers on RP2350 (used as typedef clock_dest_num_t)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 92

4.1.4.4. Functions

bool clock_configure (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq)

Configure the specified clock.

void clock_configure_undivided (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq)

Configure the specified clock to use the undividded input source.

void clock_configure_int_divider (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t

int_divider)

Configure the specified clock to use the undividded input source.

void clock_stop (clock_handle_t clock)

Stop the specified clock.

uint32_t clock_get_hz (clock_handle_t clock)

Get the current frequency of the specified clock.

uint32_t frequency_count_khz (uint src)

Measure a clocks frequency using the Frequency counter.

void clock_set_reported_hz (clock_handle_t clock, uint hz)

Set the "current frequency" of the clock as reported by clock_get_hz without actually changing the clock.

void clocks_enable_resus (resus_callback_t resus_callback)

Enable the resus function. Restarts clk_sys if it is accidentally stopped.

void clock_gpio_init_int_frac (uint gpio, uint src, uint32_t div_int, uint8_t div_frac)

Output an optionally divided clock to the specified gpio pin.

static void clock_gpio_init (uint gpio, uint src, float div)

Output an optionally divided clock to the specified gpio pin.

bool clock_configure_gpin (clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq)

Configure a clock to come from a gpio input.

4.1.4.5. Typedef Documentation

4.1.4.5.1. clock_num_t

typedef enum clock_num_rp2040 clock_num_t

Clock numbers on RP2040 (used as typedef clock_num_t)

4.1.4.5.2. clock_dest_num_t

typedef enum clock_dest_num_rp2040 clock_dest_num_t

Clock destination numbers on RP2040 (used as typedef clock_dest_num_t)

4.1.4.5.3. clock_num_t

typedef enum clock_num_rp2350 clock_num_t

Clock numbers on RP2350 (used as typedef clock_num_t)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 93

4.1.4.5.4. clock_dest_num_t

typedef enum clock_dest_num_rp2350 clock_dest_num_t

Clock destination numbers on RP2350 (used as typedef clock_dest_num_t)

4.1.4.5.5. resus_callback_t

typedef void(* resus_callback_t) (void)

Resus callback function type.

User provided callback for a resus event (when clk_sys is stopped by the programmer and is restarted for them).

4.1.4.6. Enumeration Type Documentation

4.1.4.6.1. clock_num_rp2040

enum clock_num_rp2040

Clock numbers on RP2040 (used as typedef clock_num_t)

Table 9. Enumerator
clk_gpout0 Select CLK_GPOUT0 as clock source.

clk_gpout1 Select CLK_GPOUT1 as clock source.

clk_gpout2 Select CLK_GPOUT2 as clock source.

clk_gpout3 Select CLK_GPOUT3 as clock source.

clk_ref Select CLK_REF as clock source.

clk_sys Select CLK_SYS as clock source.

clk_peri Select CLK_PERI as clock source.

clk_usb Select CLK_USB as clock source.

clk_adc Select CLK_ADC as clock source.

clk_rtc Select CLK_RTC as clock source.

4.1.4.6.2. clock_dest_num_rp2040

enum clock_dest_num_rp2040

Clock destination numbers on RP2040 (used as typedef clock_dest_num_t)

Table 10. Enumerator
CLK_DEST_SYS_CLOCKS Select SYS_CLOCKS as clock destination.

CLK_DEST_ADC_ADC Select ADC_ADC as clock destination.

CLK_DEST_SYS_ADC Select SYS_ADC as clock destination.

CLK_DEST_SYS_BUSCTRL Select SYS_BUSCTRL as clock destination.

CLK_DEST_SYS_BUSFABRIC Select SYS_BUSFABRIC as clock destination.

CLK_DEST_SYS_DMA Select SYS_DMA as clock destination.

CLK_DEST_SYS_I2C0 Select SYS_I2C0 as clock destination.

CLK_DEST_SYS_I2C1 Select SYS_I2C1 as clock destination.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 94

CLK_DEST_SYS_IO Select SYS_IO as clock destination.

CLK_DEST_SYS_JTAG Select SYS_JTAG as clock destination.

CLK_DEST_SYS_VREG_AND_CHIP_RESET Select SYS_VREG_AND_CHIP_RESET as clock destination.

CLK_DEST_SYS_PADS Select SYS_PADS as clock destination.

CLK_DEST_SYS_PIO0 Select SYS_PIO0 as clock destination.

CLK_DEST_SYS_PIO1 Select SYS_PIO1 as clock destination.

CLK_DEST_SYS_PLL_SYS Select SYS_PLL_SYS as clock destination.

CLK_DEST_SYS_PLL_USB Select SYS_PLL_USB as clock destination.

CLK_DEST_SYS_PSM Select SYS_PSM as clock destination.

CLK_DEST_SYS_PWM Select SYS_PWM as clock destination.

CLK_DEST_SYS_RESETS Select SYS_RESETS as clock destination.

CLK_DEST_SYS_ROM Select SYS_ROM as clock destination.

CLK_DEST_SYS_ROSC Select SYS_ROSC as clock destination.

CLK_DEST_RTC_RTC Select RTC_RTC as clock destination.

CLK_DEST_SYS_RTC Select SYS_RTC as clock destination.

CLK_DEST_SYS_SIO Select SYS_SIO as clock destination.

CLK_DEST_PERI_SPI0 Select PERI_SPI0 as clock destination.

CLK_DEST_SYS_SPI0 Select SYS_SPI0 as clock destination.

CLK_DEST_PERI_SPI1 Select PERI_SPI1 as clock destination.

CLK_DEST_SYS_SPI1 Select SYS_SPI1 as clock destination.

CLK_DEST_SYS_SRAM0 Select SYS_SRAM0 as clock destination.

CLK_DEST_SYS_SRAM1 Select SYS_SRAM1 as clock destination.

CLK_DEST_SYS_SRAM2 Select SYS_SRAM2 as clock destination.

CLK_DEST_SYS_SRAM3 Select SYS_SRAM3 as clock destination.

CLK_DEST_SYS_SRAM4 Select SYS_SRAM4 as clock destination.

CLK_DEST_SYS_SRAM5 Select SYS_SRAM5 as clock destination.

CLK_DEST_SYS_SYSCFG Select SYS_SYSCFG as clock destination.

CLK_DEST_SYS_SYSINFO Select SYS_SYSINFO as clock destination.

CLK_DEST_SYS_TBMAN Select SYS_TBMAN as clock destination.

CLK_DEST_SYS_TIMER Select SYS_TIMER as clock destination.

CLK_DEST_PERI_UART0 Select PERI_UART0 as clock destination.

CLK_DEST_SYS_UART0 Select SYS_UART0 as clock destination.

CLK_DEST_PERI_UART1 Select PERI_UART1 as clock destination.

CLK_DEST_SYS_UART1 Select SYS_UART1 as clock destination.

CLK_DEST_SYS_USBCTRL Select SYS_USBCTRL as clock destination.

CLK_DEST_USB_USBCTRL Select USB_USBCTRL as clock destination.

CLK_DEST_SYS_WATCHDOG Select SYS_WATCHDOG as clock destination.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 95

CLK_DEST_SYS_XIP Select SYS_XIP as clock destination.

CLK_DEST_SYS_XOSC Select SYS_XOSC as clock destination.

4.1.4.6.3. clock_num_rp2350

enum clock_num_rp2350

Clock numbers on RP2350 (used as typedef clock_num_t)

Table 11. Enumerator
clk_gpout0 Select CLK_GPOUT0 as clock source.

clk_gpout1 Select CLK_GPOUT1 as clock source.

clk_gpout2 Select CLK_GPOUT2 as clock source.

clk_gpout3 Select CLK_GPOUT3 as clock source.

clk_ref Select CLK_REF as clock source.

clk_sys Select CLK_SYS as clock source.

clk_peri Select CLK_PERI as clock source.

clk_hstx Select CLK_HSTX as clock source.

clk_usb Select CLK_USB as clock source.

clk_adc Select CLK_ADC as clock source.

4.1.4.6.4. clock_dest_num_rp2350

enum clock_dest_num_rp2350

Clock destination numbers on RP2350 (used as typedef clock_dest_num_t)

Table 12. Enumerator
CLK_DEST_SYS_CLOCKS Select SYS_CLOCKS as clock destination.

CLK_DEST_SYS_ACCESSCTRL Select SYS_ACCESSCTRL as clock destination.

CLK_DEST_ADC Select ADC as clock destination.

CLK_DEST_SYS_ADC Select SYS_ADC as clock destination.

CLK_DEST_SYS_BOOTRAM Select SYS_BOOTRAM as clock destination.

CLK_DEST_SYS_BUSCTRL Select SYS_BUSCTRL as clock destination.

CLK_DEST_SYS_BUSFABRIC Select SYS_BUSFABRIC as clock destination.

CLK_DEST_SYS_DMA Select SYS_DMA as clock destination.

CLK_DEST_SYS_GLITCH_DETECTOR Select SYS_GLITCH_DETECTOR as clock destination.

CLK_DEST_HSTX Select HSTX as clock destination.

CLK_DEST_SYS_HSTX Select SYS_HSTX as clock destination.

CLK_DEST_SYS_I2C0 Select SYS_I2C0 as clock destination.

CLK_DEST_SYS_I2C1 Select SYS_I2C1 as clock destination.

CLK_DEST_SYS_IO Select SYS_IO as clock destination.

CLK_DEST_SYS_JTAG Select SYS_JTAG as clock destination.

CLK_DEST_REF_OTP Select REF_OTP as clock destination.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 96

CLK_DEST_SYS_OTP Select SYS_OTP as clock destination.

CLK_DEST_SYS_PADS Select SYS_PADS as clock destination.

CLK_DEST_SYS_PIO0 Select SYS_PIO0 as clock destination.

CLK_DEST_SYS_PIO1 Select SYS_PIO1 as clock destination.

CLK_DEST_SYS_PIO2 Select SYS_PIO2 as clock destination.

CLK_DEST_SYS_PLL_SYS Select SYS_PLL_SYS as clock destination.

CLK_DEST_SYS_PLL_USB Select SYS_PLL_USB as clock destination.

CLK_DEST_REF_POWMAN Select REF_POWMAN as clock destination.

CLK_DEST_SYS_POWMAN Select SYS_POWMAN as clock destination.

CLK_DEST_SYS_PWM Select SYS_PWM as clock destination.

CLK_DEST_SYS_RESETS Select SYS_RESETS as clock destination.

CLK_DEST_SYS_ROM Select SYS_ROM as clock destination.

CLK_DEST_SYS_ROSC Select SYS_ROSC as clock destination.

CLK_DEST_SYS_PSM Select SYS_PSM as clock destination.

CLK_DEST_SYS_SHA256 Select SYS_SHA256 as clock destination.

CLK_DEST_SYS_SIO Select SYS_SIO as clock destination.

CLK_DEST_PERI_SPI0 Select PERI_SPI0 as clock destination.

CLK_DEST_SYS_SPI0 Select SYS_SPI0 as clock destination.

CLK_DEST_PERI_SPI1 Select PERI_SPI1 as clock destination.

CLK_DEST_SYS_SPI1 Select SYS_SPI1 as clock destination.

CLK_DEST_SYS_SRAM0 Select SYS_SRAM0 as clock destination.

CLK_DEST_SYS_SRAM1 Select SYS_SRAM1 as clock destination.

CLK_DEST_SYS_SRAM2 Select SYS_SRAM2 as clock destination.

CLK_DEST_SYS_SRAM3 Select SYS_SRAM3 as clock destination.

CLK_DEST_SYS_SRAM4 Select SYS_SRAM4 as clock destination.

CLK_DEST_SYS_SRAM5 Select SYS_SRAM5 as clock destination.

CLK_DEST_SYS_SRAM6 Select SYS_SRAM6 as clock destination.

CLK_DEST_SYS_SRAM7 Select SYS_SRAM7 as clock destination.

CLK_DEST_SYS_SRAM8 Select SYS_SRAM8 as clock destination.

CLK_DEST_SYS_SRAM9 Select SYS_SRAM9 as clock destination.

CLK_DEST_SYS_SYSCFG Select SYS_SYSCFG as clock destination.

CLK_DEST_SYS_SYSINFO Select SYS_SYSINFO as clock destination.

CLK_DEST_SYS_TBMAN Select SYS_TBMAN as clock destination.

CLK_DEST_REF_TICKS Select REF_TICKS as clock destination.

CLK_DEST_SYS_TICKS Select SYS_TICKS as clock destination.

CLK_DEST_SYS_TIMER0 Select SYS_TIMER0 as clock destination.

CLK_DEST_SYS_TIMER1 Select SYS_TIMER1 as clock destination.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 97

CLK_DEST_SYS_TRNG Select SYS_TRNG as clock destination.

CLK_DEST_PERI_UART0 Select PERI_UART0 as clock destination.

CLK_DEST_SYS_UART0 Select SYS_UART0 as clock destination.

CLK_DEST_PERI_UART1 Select PERI_UART1 as clock destination.

CLK_DEST_SYS_UART1 Select SYS_UART1 as clock destination.

CLK_DEST_SYS_USBCTRL Select SYS_USBCTRL as clock destination.

CLK_DEST_USB Select USB as clock destination.

CLK_DEST_SYS_WATCHDOG Select SYS_WATCHDOG as clock destination.

CLK_DEST_SYS_XIP Select SYS_XIP as clock destination.

CLK_DEST_SYS_XOSC Select SYS_XOSC as clock destination.

4.1.4.7. Function Documentation

4.1.4.7.1. clock_configure

bool clock_configure (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq)

Configure the specified clock.

See the tables in the description for details on the possible values for clock sources.

Parameters

clock The clock to configure

src The main clock source, can be 0.

auxsrc The auxiliary clock source, which depends on which clock is being set. Can be 0

src_freq Frequency of the input clock source

freq Requested frequency

4.1.4.7.2. clock_configure_gpin

bool clock_configure_gpin (clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq)

Configure a clock to come from a gpio input.

Parameters

clock The clock to configure

gpio The GPIO pin to run the clock from. Valid GPIOs are: 20 and 22.

src_freq Frequency of the input clock source

freq Requested frequency

4.1.4.7.3. clock_configure_int_divider

void clock_configure_int_divider (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t

int_divider)

Configure the specified clock to use the undividded input source.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 98

See the tables in the description for details on the possible values for clock sources.

Parameters

clock The clock to configure

src The main clock source, can be 0.

auxsrc The auxiliary clock source, which depends on which clock is being set. Can be 0

src_freq Frequency of the input clock source

int_divider an integer divider

4.1.4.7.4. clock_configure_undivided

void clock_configure_undivided (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq)

Configure the specified clock to use the undividded input source.

See the tables in the description for details on the possible values for clock sources.

Parameters

clock The clock to configure

src The main clock source, can be 0.

auxsrc The auxiliary clock source, which depends on which clock is being set. Can be 0

src_freq Frequency of the input clock source

4.1.4.7.5. clock_get_hz

uint32_t clock_get_hz (clock_handle_t clock)

Get the current frequency of the specified clock.

Parameters

clock Clock

Returns

Clock frequency in Hz

4.1.4.7.6. clock_gpio_init

static void clock_gpio_init (uint gpio, uint src, float div) [inline], [static]

Output an optionally divided clock to the specified gpio pin.

Parameters

gpio The GPIO pin to output the clock to. Valid GPIOs are: 21, 23, 24, 25. These GPIOs are connected to the

GPOUT0-3 clock generators.

src The source clock. See the register field CLOCKS_CLK_GPOUT0_CTRL_AUXSRC for a full list. The list is

the same for each GPOUT clock generator.

div The float amount to divide the source clock by. This is useful to not overwhelm the GPIO pin with a fast

clock.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 99

4.1.4.7.7. clock_gpio_init_int_frac

void clock_gpio_init_int_frac (uint gpio, uint src, uint32_t div_int, uint8_t div_frac)

Output an optionally divided clock to the specified gpio pin.

Parameters

gpio The GPIO pin to output the clock to. Valid GPIOs are: 21, 23, 24, 25. These GPIOs are connected to

the GPOUT0-3 clock generators.

src The source clock. See the register field CLOCKS_CLK_GPOUT0_CTRL_AUXSRC for a full list. The list

is the same for each GPOUT clock generator.

div_int The integer part of the value to divide the source clock by. This is useful to not overwhelm the GPIO

pin with a fast clock. this is in range of 1..2^24-1.

div_frac The fractional part of the value to divide the source clock by. This is in range of 0..255 (/256).

4.1.4.7.8. clock_set_reported_hz

void clock_set_reported_hz (clock_handle_t clock, uint hz)

Set the "current frequency" of the clock as reported by clock_get_hz without actually changing the clock.

See also

clock_get_hz()

4.1.4.7.9. clock_stop

void clock_stop (clock_handle_t clock)

Stop the specified clock.

Parameters

clock The clock to stop

4.1.4.7.10. clocks_enable_resus

void clocks_enable_resus (resus_callback_t resus_callback)

Enable the resus function. Restarts clk_sys if it is accidentally stopped.

The resuscitate function will restart the system clock if it falls below a certain speed (or stops). This could happen if the

clock source the system clock is running from stops. For example if a PLL is stopped.

Parameters

resus_callback a function pointer provided by the user to call if a resus event happens.

4.1.4.7.11. frequency_count_khz

uint32_t frequency_count_khz (uint src)

Measure a clocks frequency using the Frequency counter.

Uses the inbuilt frequency counter to measure the specified clocks frequency. Currently, this function is accurate to +-

1KHz. See the datasheet for more details.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 100

4.1.5. hardware_divider

RP2040 Low Low-level hardware-divider API. Non-RP2040 platforms provide software versions of all the functions.

4.1.5.1. Detailed Description

The SIO contains an 8-cycle signed/unsigned divide/modulo circuit, per core. Calculation is started by writing a dividend

and divisor to the two argument registers, DIVIDEND and DIVISOR. The divider calculates the quotient / and remainder %

of this division over the next 8 cycles, and on the 9th cycle the results can be read from the two result registers

DIV_QUOTIENT and DIV_REMAINDER. A 'ready' bit in register DIV_CSR can be polled to wait for the calculation to

complete, or software can insert a fixed 8-cycle delay

This header provides low level macros and inline functions for accessing the hardware dividers directly, and perhaps

most usefully performing asynchronous divides. These functions however do not follow the regular SDK conventions for

saving/restoring the divider state, so are not generally safe to call from interrupt handlers

The pico_divider library provides a more user friendly set of APIs over the divider (and support for 64 bit divides), and of

course by default regular C language integer divisions are redirected through that library, meaning you can just use C

level / and % operators and gain the benefits of the fast hardware divider.

On RP2350 there is no hardware divider, and the functions are implemented in software

See also

pico_divider

4.1.5.1.1. Example

 1 #include <stdio.h>
 2 #include "pico/stdlib.h"
 3 #include "hardware/divider.h"
 4
 5 int main() {
 6 stdio_init_all();
 7 printf("Hello, divider!\n");
 8
 9 // This is the basic hardware divider function
10 int32_t dividend = 123456;
11 int32_t divisor = -321;
12 divmod_result_t result = hw_divider_divmod_s32(dividend, divisor);
13
14 printf("%d/%d = %d remainder %d\n", dividend, divisor, to_quotient_s32(result),
 to_remainder_s32(result));
15
16 // Is it right?
17
18 printf("Working backwards! Result %d should equal %d!\n\n",
19 to_quotient_s32(result) * divisor + to_remainder_s32(result), dividend);
20
21 // This is the recommended unsigned fast divider for general use.
22 int32_t udividend = 123456;
23 int32_t udivisor = 321;
24 divmod_result_t uresult = hw_divider_divmod_u32(udividend, udivisor);
25
26 printf("%d/%d = %d remainder %d\n", udividend, udivisor, to_quotient_u32(uresult),
 to_remainder_u32(uresult));
27
28 // Is it right?
29

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 101

30 printf("Working backwards! Result %d should equal %d!\n\n",
31 to_quotient_u32(result) * divisor + to_remainder_u32(result), dividend);
32
33 // You can also do divides asynchronously. Divides will be complete after 8 cycles.
34
35 hw_divider_divmod_s32_start(dividend, divisor);
36
37 // Do something for 8 cycles!
38
39 // In this example, our results function will wait for completion.
40 // Use hw_divider_result_nowait() if you don't want to wait, but are sure you have delayed
 at least 8 cycles
41
42 result = hw_divider_result_wait();
43
44 printf("Async result %d/%d = %d remainder %d\n", dividend, divisor, to_quotient_s32
 (result),
45 to_remainder_s32(result));
46
47 // For a really fast divide, you can use the inlined versions... the / involves a function
 call as / always does
48 // when using the ARM AEABI, so if you really want the best performance use the inlined
 versions.
49 // Note that the / operator function DOES use the hardware divider by default, although you
 can change
50 // that behavior by calling pico_set_divider_implementation in the cmake build for your
 target.
51 printf("%d / %d = (by operator %d) (inlined %d)\n", dividend, divisor,
52 dividend / divisor, hw_divider_s32_quotient_inlined(dividend, divisor));
53
54 // Note however you must manually save/restore the divider state if you call the inlined
 methods from within an IRQ
55 // handler.
56 hw_divider_state_t state;
57 hw_divider_divmod_s32_start(dividend, divisor);
58 hw_divider_save_state(&state);
59
60 hw_divider_divmod_s32_start(123, 7);
61 printf("inner %d / %d = %d\n", 123, 7, hw_divider_s32_quotient_wait());
62
63 hw_divider_restore_state(&state);
64 int32_t tmp = hw_divider_s32_quotient_wait();
65 printf("outer divide %d / %d = %d\n", dividend, divisor, tmp);
66 return 0;
67 }

4.1.5.2. Functions

static divmod_result_t hw_divider_divmod_s32 (int32_t a, int32_t b)

Do a signed HW divide and wait for result.

static divmod_result_t hw_divider_divmod_u32 (uint32_t a, uint32_t b)

Do an unsigned HW divide and wait for result.

static void hw_divider_divmod_s32_start (int32_t a, int32_t b)

Start a signed asynchronous divide.

static void hw_divider_divmod_u32_start (uint32_t a, uint32_t b)

Start an unsigned asynchronous divide.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 102

static void hw_divider_wait_ready (void)

Wait for a divide to complete.

static divmod_result_t hw_divider_result_nowait (void)

Return result of HW divide, nowait.

static divmod_result_t hw_divider_result_wait (void)

Return result of last asynchronous HW divide.

static uint32_t to_quotient_u32 (divmod_result_t r)

Efficient extraction of unsigned quotient from 32p32 fixed point.

static int32_t to_quotient_s32 (divmod_result_t r)

Efficient extraction of signed quotient from 32p32 fixed point.

static uint32_t to_remainder_u32 (divmod_result_t r)

Efficient extraction of unsigned remainder from 32p32 fixed point.

static int32_t to_remainder_s32 (divmod_result_t r)

Efficient extraction of signed remainder from 32p32 fixed point.

static uint32_t hw_divider_u32_quotient_wait (void)

Return result of last asynchronous HW divide, unsigned quotient only.

static int32_t hw_divider_s32_quotient_wait (void)

Return result of last asynchronous HW divide, signed quotient only.

static uint32_t hw_divider_u32_remainder_wait (void)

Return result of last asynchronous HW divide, unsigned remainder only.

static int32_t hw_divider_s32_remainder_wait (void)

Return result of last asynchronous HW divide, signed remainder only.

static uint32_t hw_divider_u32_quotient (uint32_t a, uint32_t b)

Do an unsigned HW divide, wait for result, return quotient.

static uint32_t hw_divider_u32_remainder (uint32_t a, uint32_t b)

Do an unsigned HW divide, wait for result, return remainder.

static int32_t hw_divider_quotient_s32 (int32_t a, int32_t b)

Do a signed HW divide, wait for result, return quotient.

static int32_t hw_divider_remainder_s32 (int32_t a, int32_t b)

Do a signed HW divide, wait for result, return remainder.

static void hw_divider_pause (void)

Pause for exact amount of time needed for a asynchronous divide to complete.

static uint32_t hw_divider_u32_quotient_inlined (uint32_t a, uint32_t b)

Do a hardware unsigned HW divide, wait for result, return quotient.

static uint32_t hw_divider_u32_remainder_inlined (uint32_t a, uint32_t b)

Do a hardware unsigned HW divide, wait for result, return remainder.

static int32_t hw_divider_s32_quotient_inlined (int32_t a, int32_t b)

Do a hardware signed HW divide, wait for result, return quotient.

static int32_t hw_divider_s32_remainder_inlined (int32_t a, int32_t b)

Do a hardware signed HW divide, wait for result, return remainder.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 103

static void hw_divider_save_state (hw_divider_state_t *dest)

Save the calling cores hardware divider state.

static void hw_divider_restore_state (hw_divider_state_t *src)

Load a saved hardware divider state into the current core’s hardware divider.

4.1.5.3. Function Documentation

4.1.5.3.1. hw_divider_divmod_s32

static divmod_result_t hw_divider_divmod_s32 (int32_t a, int32_t b) [inline], [static]

Do a signed HW divide and wait for result.

Divide a by b, wait for calculation to complete, return result as a pair of 32-bit quotient/remainder values.

Parameters

a The dividend

b The divisor

Returns

Results of divide as a pair of 32-bit quotient/remainder values.

4.1.5.3.2. hw_divider_divmod_s32_start

static void hw_divider_divmod_s32_start (int32_t a, int32_t b) [inline], [static]

Start a signed asynchronous divide.

Start a divide of the specified signed parameters. You should wait for 8 cycles (__div_pause()) or wait for the ready bit to

be set (hw_divider_wait_ready()) prior to reading the results.

Parameters

a The dividend

b The divisor

4.1.5.3.3. hw_divider_divmod_u32

static divmod_result_t hw_divider_divmod_u32 (uint32_t a, uint32_t b) [inline], [static]

Do an unsigned HW divide and wait for result.

Divide a by b, wait for calculation to complete, return result as a pair of 32-bit quotient/remainder values.

Parameters

a The dividend

b The divisor

Returns

Results of divide as a pair of 32-bit quotient/remainder values.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 104

4.1.5.3.4. hw_divider_divmod_u32_start

static void hw_divider_divmod_u32_start (uint32_t a, uint32_t b) [inline], [static]

Start an unsigned asynchronous divide.

Start a divide of the specified unsigned parameters. You should wait for 8 cycles (__div_pause()) or wait for the ready bit

to be set (hw_divider_wait_ready()) prior to reading the results.

Parameters

a The dividend

b The divisor

4.1.5.3.5. hw_divider_pause

static void hw_divider_pause (void) [inline], [static]

Pause for exact amount of time needed for a asynchronous divide to complete.

4.1.5.3.6. hw_divider_quotient_s32

static int32_t hw_divider_quotient_s32 (int32_t a, int32_t b) [inline], [static]

Do a signed HW divide, wait for result, return quotient.

Divide a by b, wait for calculation to complete, return quotient.

Parameters

a The dividend

b The divisor

Returns

Quotient results of the divide

4.1.5.3.7. hw_divider_remainder_s32

static int32_t hw_divider_remainder_s32 (int32_t a, int32_t b) [inline], [static]

Do a signed HW divide, wait for result, return remainder.

Divide a by b, wait for calculation to complete, return remainder.

Parameters

a The dividend

b The divisor

Returns

Remainder results of the divide

4.1.5.3.8. hw_divider_restore_state

static void hw_divider_restore_state (hw_divider_state_t * src) [inline], [static]

Load a saved hardware divider state into the current core’s hardware divider.

Copy the passed hardware divider state into the hardware divider.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 105

Parameters

src the location to load the divider state from

4.1.5.3.9. hw_divider_result_nowait

static divmod_result_t hw_divider_result_nowait (void) [inline], [static]

Return result of HW divide, nowait.

 NOTE

This is UNSAFE in that the calculation may not have been completed.

Returns

Current result. Most significant 32 bits are the remainder, lower 32 bits are the quotient.

4.1.5.3.10. hw_divider_result_wait

static divmod_result_t hw_divider_result_wait (void) [inline], [static]

Return result of last asynchronous HW divide.

This function waits for the result to be ready by calling hw_divider_wait_ready().

Returns

Current result. Most significant 32 bits are the remainder, lower 32 bits are the quotient.

4.1.5.3.11. hw_divider_s32_quotient_inlined

static int32_t hw_divider_s32_quotient_inlined (int32_t a, int32_t b) [inline], [static]

Do a hardware signed HW divide, wait for result, return quotient.

Divide a by b, wait for calculation to complete, return quotient.

Parameters

a The dividend

b The divisor

Returns

Quotient result of the divide

4.1.5.3.12. hw_divider_s32_quotient_wait

static int32_t hw_divider_s32_quotient_wait (void) [inline], [static]

Return result of last asynchronous HW divide, signed quotient only.

This function waits for the result to be ready by calling hw_divider_wait_ready().

Returns

Current signed quotient result.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 106

4.1.5.3.13. hw_divider_s32_remainder_inlined

static int32_t hw_divider_s32_remainder_inlined (int32_t a, int32_t b) [inline], [static]

Do a hardware signed HW divide, wait for result, return remainder.

Divide a by b, wait for calculation to complete, return remainder.

Parameters

a The dividend

b The divisor

Returns

Remainder result of the divide

4.1.5.3.14. hw_divider_s32_remainder_wait

static int32_t hw_divider_s32_remainder_wait (void) [inline], [static]

Return result of last asynchronous HW divide, signed remainder only.

This function waits for the result to be ready by calling hw_divider_wait_ready().

Returns

Current remainder results.

4.1.5.3.15. hw_divider_save_state

static void hw_divider_save_state (hw_divider_state_t * dest) [inline], [static]

Save the calling cores hardware divider state.

Copy the current core’s hardware divider state into the provided structure. This method waits for the divider results to

be stable, then copies them to memory. They can be restored via hw_divider_restore_state()

Parameters

dest the location to store the divider state

4.1.5.3.16. hw_divider_u32_quotient

static uint32_t hw_divider_u32_quotient (uint32_t a, uint32_t b) [inline], [static]

Do an unsigned HW divide, wait for result, return quotient.

Divide a by b, wait for calculation to complete, return quotient.

Parameters

a The dividend

b The divisor

Returns

Quotient results of the divide

4.1.5.3.17. hw_divider_u32_quotient_inlined

static uint32_t hw_divider_u32_quotient_inlined (uint32_t a, uint32_t b) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 107

Do a hardware unsigned HW divide, wait for result, return quotient.

Divide a by b, wait for calculation to complete, return quotient.

Parameters

a The dividend

b The divisor

Returns

Quotient result of the divide

4.1.5.3.18. hw_divider_u32_quotient_wait

static uint32_t hw_divider_u32_quotient_wait (void) [inline], [static]

Return result of last asynchronous HW divide, unsigned quotient only.

This function waits for the result to be ready by calling hw_divider_wait_ready().

Returns

Current unsigned quotient result.

4.1.5.3.19. hw_divider_u32_remainder

static uint32_t hw_divider_u32_remainder (uint32_t a, uint32_t b) [inline], [static]

Do an unsigned HW divide, wait for result, return remainder.

Divide a by b, wait for calculation to complete, return remainder.

Parameters

a The dividend

b The divisor

Returns

Remainder results of the divide

4.1.5.3.20. hw_divider_u32_remainder_inlined

static uint32_t hw_divider_u32_remainder_inlined (uint32_t a, uint32_t b) [inline], [static]

Do a hardware unsigned HW divide, wait for result, return remainder.

Divide a by b, wait for calculation to complete, return remainder.

Parameters

a The dividend

b The divisor

Returns

Remainder result of the divide

4.1.5.3.21. hw_divider_u32_remainder_wait

static uint32_t hw_divider_u32_remainder_wait (void) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 108

Return result of last asynchronous HW divide, unsigned remainder only.

This function waits for the result to be ready by calling hw_divider_wait_ready().

Returns

Current unsigned remainder result.

4.1.5.3.22. hw_divider_wait_ready

static void hw_divider_wait_ready (void) [inline], [static]

Wait for a divide to complete.

Wait for a divide to complete

4.1.5.3.23. to_quotient_s32

static int32_t to_quotient_s32 (divmod_result_t r) [inline], [static]

Efficient extraction of signed quotient from 32p32 fixed point.

Parameters

r A pair of 32-bit quotient/remainder values.

Returns

Unsigned quotient

4.1.5.3.24. to_quotient_u32

static uint32_t to_quotient_u32 (divmod_result_t r) [inline], [static]

Efficient extraction of unsigned quotient from 32p32 fixed point.

Parameters

r A pair of 32-bit quotient/remainder values.

Returns

Unsigned quotient

4.1.5.3.25. to_remainder_s32

static int32_t to_remainder_s32 (divmod_result_t r) [inline], [static]

Efficient extraction of signed remainder from 32p32 fixed point.

Parameters

r A pair of 32-bit quotient/remainder values.

Returns

Signed remainder

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 109

 NOTE

On arm this is just a 32 bit register move or a nop

4.1.5.3.26. to_remainder_u32

static uint32_t to_remainder_u32 (divmod_result_t r) [inline], [static]

Efficient extraction of unsigned remainder from 32p32 fixed point.

Parameters

r A pair of 32-bit quotient/remainder values.

Returns

Unsigned remainder

 NOTE

On Arm this is just a 32 bit register move or a nop

4.1.6. hardware_dcp

Assembly macros for the Double Coprocessor.

4.1.7. hardware_dma

DMA Controller API.

4.1.7.1. Detailed Description

The RP-series microcontroller Direct Memory Access (DMA) master performs bulk data transfers on a processor’s

behalf. This leaves processors free to attend to other tasks, or enter low-power sleep states. The data throughput of the

DMA is also significantly higher than one of RP-series microcontroller’s processors.

The DMA can perform one read access and one write access, up to 32 bits in size, every clock cycle. There are 12

independent channels, which each supervise a sequence of bus transfers, usually in one of the following scenarios:

• Memory to peripheral

• Peripheral to memory

• Memory to memory

4.1.7.2. Modules

channel_config

DMA channel configuration .

4.1.7.3. Macros

• #define DMA_IRQ_NUM(irq_index)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 110

4.1.7.4. Typedefs

typedef enum dreq_num_rp2350 dreq_num_t

DREQ numbers for DMA pacing on RP2350 (used as typedef dreq_num_t)

typedef enum dreq_num_rp2040 dreq_num_t

DREQ numbers for DMA pacing on RP2040 (used as typedef dreq_num_t)

4.1.7.5. Enumerations

enum dreq_num_rp2350 { DREQ_PIO0_TX0 = 0, DREQ_PIO0_TX1 = 1, DREQ_PIO0_TX2 = 2, DREQ_PIO0_TX3 = 3, DREQ_PIO0_RX0 = 4,

DREQ_PIO0_RX1 = 5, DREQ_PIO0_RX2 = 6, DREQ_PIO0_RX3 = 7, DREQ_PIO1_TX0 = 8, DREQ_PIO1_TX1 = 9, DREQ_PIO1_TX2 = 10,

DREQ_PIO1_TX3 = 11, DREQ_PIO1_RX0 = 12, DREQ_PIO1_RX1 = 13, DREQ_PIO1_RX2 = 14, DREQ_PIO1_RX3 = 15, DREQ_PIO2_TX0 = 16,

DREQ_PIO2_TX1 = 17, DREQ_PIO2_TX2 = 18, DREQ_PIO2_TX3 = 19, DREQ_PIO2_RX0 = 20, DREQ_PIO2_RX1 = 21, DREQ_PIO2_RX2 = 22,

DREQ_PIO2_RX3 = 23, DREQ_SPI0_TX = 24, DREQ_SPI0_RX = 25, DREQ_SPI1_TX = 26, DREQ_SPI1_RX = 27, DREQ_UART0_TX = 28,

DREQ_UART0_RX = 29, DREQ_UART1_TX = 30, DREQ_UART1_RX = 31, DREQ_PWM_WRAP0 = 32, DREQ_PWM_WRAP1 = 33, DREQ_PWM_WRAP2 =

34, DREQ_PWM_WRAP3 = 35, DREQ_PWM_WRAP4 = 36, DREQ_PWM_WRAP5 = 37, DREQ_PWM_WRAP6 = 38, DREQ_PWM_WRAP7 = 39,

DREQ_PWM_WRAP8 = 40, DREQ_PWM_WRAP9 = 41, DREQ_PWM_WRAP10 = 42, DREQ_PWM_WRAP11 = 43, DREQ_I2C0_TX = 44, DREQ_I2C0_RX =

45, DREQ_I2C1_TX = 46, DREQ_I2C1_RX = 47, DREQ_ADC = 48, DREQ_XIP_STREAM = 49, DREQ_XIP_QMITX = 50, DREQ_XIP_QMIRX = 51,

DREQ_HSTX = 52, DREQ_CORESIGHT = 53, DREQ_SHA256 = 54, DREQ_DMA_TIMER0 = 59, DREQ_DMA_TIMER1 = 60, DREQ_DMA_TIMER2 = 61,

DREQ_DMA_TIMER3 = 62, DREQ_FORCE = 63, DREQ_COUNT }

DREQ numbers for DMA pacing on RP2350 (used as typedef dreq_num_t)

enum dreq_num_rp2040 { DREQ_PIO0_TX0 = 0, DREQ_PIO0_TX1 = 1, DREQ_PIO0_TX2 = 2, DREQ_PIO0_TX3 = 3, DREQ_PIO0_RX0 = 4,

DREQ_PIO0_RX1 = 5, DREQ_PIO0_RX2 = 6, DREQ_PIO0_RX3 = 7, DREQ_PIO1_TX0 = 8, DREQ_PIO1_TX1 = 9, DREQ_PIO1_TX2 = 10,

DREQ_PIO1_TX3 = 11, DREQ_PIO1_RX0 = 12, DREQ_PIO1_RX1 = 13, DREQ_PIO1_RX2 = 14, DREQ_PIO1_RX3 = 15, DREQ_SPI0_TX = 16,

DREQ_SPI0_RX = 17, DREQ_SPI1_TX = 18, DREQ_SPI1_RX = 19, DREQ_UART0_TX = 20, DREQ_UART0_RX = 21, DREQ_UART1_TX = 22,

DREQ_UART1_RX = 23, DREQ_PWM_WRAP0 = 24, DREQ_PWM_WRAP1 = 25, DREQ_PWM_WRAP2 = 26, DREQ_PWM_WRAP3 = 27, DREQ_PWM_WRAP4 =

28, DREQ_PWM_WRAP5 = 29, DREQ_PWM_WRAP6 = 30, DREQ_PWM_WRAP7 = 31, DREQ_I2C0_TX = 32, DREQ_I2C0_RX = 33, DREQ_I2C1_TX =

34, DREQ_I2C1_RX = 35, DREQ_ADC = 36, DREQ_XIP_STREAM = 37, DREQ_XIP_SSITX = 38, DREQ_XIP_SSIRX = 39, DREQ_DMA_TIMER0 =

59, DREQ_DMA_TIMER1 = 60, DREQ_DMA_TIMER2 = 61, DREQ_DMA_TIMER3 = 62, DREQ_FORCE = 63, DREQ_COUNT }

DREQ numbers for DMA pacing on RP2040 (used as typedef dreq_num_t)

enum dma_channel_transfer_size { DMA_SIZE_8 = 0, DMA_SIZE_16 = 1, DMA_SIZE_32 = 2 }

Enumeration of available DMA channel transfer sizes.

4.1.7.6. Functions

void dma_channel_claim (uint channel)

Mark a dma channel as used.

void dma_claim_mask (uint32_t channel_mask)

Mark multiple dma channels as used.

void dma_channel_unclaim (uint channel)

Mark a dma channel as no longer used.

void dma_unclaim_mask (uint32_t channel_mask)

Mark multiple dma channels as no longer used.

int dma_claim_unused_channel (bool required)

Claim a free dma channel.

bool dma_channel_is_claimed (uint channel)

Determine if a dma channel is claimed.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 111

static void dma_channel_set_config (uint channel, const dma_channel_config *config, bool trigger)

Set a channel configuration.

static void dma_channel_set_read_addr (uint channel, const volatile void *read_addr, bool trigger)

Set the DMA initial read address.

static void dma_channel_set_write_addr (uint channel, volatile void *write_addr, bool trigger)

Set the DMA initial write address.

static void dma_channel_set_trans_count (uint channel, uint32_t trans_count, bool trigger)

Set the number of bus transfers the channel will do.

static void dma_channel_configure (uint channel, const dma_channel_config *config, volatile void *write_addr, const

volatile void *read_addr, uint transfer_count, bool trigger)

Configure all DMA parameters and optionally start transfer.

static void dma_channel_transfer_from_buffer_now (uint channel, const volatile void *read_addr, uint32_t transfer_count)

Start a DMA transfer from a buffer immediately.

static void dma_channel_transfer_to_buffer_now (uint channel, volatile void *write_addr, uint32_t transfer_count)

Start a DMA transfer to a buffer immediately.

static void dma_start_channel_mask (uint32_t chan_mask)

Start one or more channels simultaneously.

static void dma_channel_start (uint channel)

Start a single DMA channel.

static void dma_channel_abort (uint channel)

Stop a DMA transfer.

static void dma_channel_set_irq0_enabled (uint channel, bool enabled)

Enable single DMA channel’s interrupt via DMA_IRQ_0.

static void dma_set_irq0_channel_mask_enabled (uint32_t channel_mask, bool enabled)

Enable multiple DMA channels' interrupts via DMA_IRQ_0.

static void dma_channel_set_irq1_enabled (uint channel, bool enabled)

Enable single DMA channel’s interrupt via DMA_IRQ_1.

static void dma_set_irq1_channel_mask_enabled (uint32_t channel_mask, bool enabled)

Enable multiple DMA channels' interrupts via DMA_IRQ_1.

static void dma_irqn_set_channel_enabled (uint irq_index, uint channel, bool enabled)

Enable single DMA channel interrupt on either DMA_IRQ_0 or DMA_IRQ_1.

static void dma_irqn_set_channel_mask_enabled (uint irq_index, uint32_t channel_mask, bool enabled)

Enable multiple DMA channels' interrupt via either DMA_IRQ_0 or DMA_IRQ_1.

static bool dma_channel_get_irq0_status (uint channel)

Determine if a particular channel is a cause of DMA_IRQ_0.

static bool dma_channel_get_irq1_status (uint channel)

Determine if a particular channel is a cause of DMA_IRQ_1.

static bool dma_irqn_get_channel_status (uint irq_index, uint channel)

Determine if a particular channel is a cause of DMA_IRQ_N.

static void dma_channel_acknowledge_irq0 (uint channel)

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_0.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 112

static void dma_channel_acknowledge_irq1 (uint channel)

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_1.

static void dma_irqn_acknowledge_channel (uint irq_index, uint channel)

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_N.

static bool dma_channel_is_busy (uint channel)

Check if DMA channel is busy.

static void dma_channel_wait_for_finish_blocking (uint channel)

Wait for a DMA channel transfer to complete.

static void dma_sniffer_enable (uint channel, uint mode, bool force_channel_enable)

Enable the DMA sniffing targeting the specified channel.

static void dma_sniffer_set_byte_swap_enabled (bool swap)

Enable the Sniffer byte swap function.

static void dma_sniffer_set_output_invert_enabled (bool invert)

Enable the Sniffer output invert function.

static void dma_sniffer_set_output_reverse_enabled (bool reverse)

Enable the Sniffer output bit reversal function.

static void dma_sniffer_disable (void)

Disable the DMA sniffer.

static void dma_sniffer_set_data_accumulator (uint32_t seed_value)

Set the sniffer’s data accumulator with initial value.

static uint32_t dma_sniffer_get_data_accumulator (void)

Get the sniffer’s data accumulator value.

void dma_timer_claim (uint timer)

Mark a dma timer as used.

void dma_timer_unclaim (uint timer)

Mark a dma timer as no longer used.

int dma_claim_unused_timer (bool required)

Claim a free dma timer.

bool dma_timer_is_claimed (uint timer)

Determine if a dma timer is claimed.

static void dma_timer_set_fraction (uint timer, uint16_t numerator, uint16_t denominator)

Set the multiplier for the given DMA timer.

static uint dma_get_timer_dreq (uint timer_num)

Return the DREQ number for a given DMA timer.

static int dma_get_irq_num (uint irq_index)

Return DMA_IRQ_<irqn>

void dma_channel_cleanup (uint channel)

Performs DMA channel cleanup after use.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 113

4.1.7.7. Macro Definition Documentation

4.1.7.7.1. DMA_IRQ_NUM

#define DMA_IRQ_NUM(irq_index)

Returns the irq_num_t for the nth DMA interrupt.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.7.8. Typedef Documentation

4.1.7.8.1. dreq_num_t

typedef enum dreq_num_rp2350 dreq_num_t

DREQ numbers for DMA pacing on RP2350 (used as typedef dreq_num_t)

4.1.7.8.2. dreq_num_t

typedef enum dreq_num_rp2040 dreq_num_t

DREQ numbers for DMA pacing on RP2040 (used as typedef dreq_num_t)

4.1.7.9. Enumeration Type Documentation

4.1.7.9.1. dreq_num_rp2350

enum dreq_num_rp2350

DREQ numbers for DMA pacing on RP2350 (used as typedef dreq_num_t)

Table 13. Enumerator
DREQ_PIO0_TX0 Select PIO0’s TX FIFO 0 as DREQ.

DREQ_PIO0_TX1 Select PIO0’s TX FIFO 1 as DREQ.

DREQ_PIO0_TX2 Select PIO0’s TX FIFO 2 as DREQ.

DREQ_PIO0_TX3 Select PIO0’s TX FIFO 3 as DREQ.

DREQ_PIO0_RX0 Select PIO0’s RX FIFO 0 as DREQ.

DREQ_PIO0_RX1 Select PIO0’s RX FIFO 1 as DREQ.

DREQ_PIO0_RX2 Select PIO0’s RX FIFO 2 as DREQ.

DREQ_PIO0_RX3 Select PIO0’s RX FIFO 3 as DREQ.

DREQ_PIO1_TX0 Select PIO1’s TX FIFO 0 as DREQ.

DREQ_PIO1_TX1 Select PIO1’s TX FIFO 1 as DREQ.

DREQ_PIO1_TX2 Select PIO1’s TX FIFO 2 as DREQ.

DREQ_PIO1_TX3 Select PIO1’s TX FIFO 3 as DREQ.

DREQ_PIO1_RX0 Select PIO1’s RX FIFO 0 as DREQ.

DREQ_PIO1_RX1 Select PIO1’s RX FIFO 1 as DREQ.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 114

DREQ_PIO1_RX2 Select PIO1’s RX FIFO 2 as DREQ.

DREQ_PIO1_RX3 Select PIO1’s RX FIFO 3 as DREQ.

DREQ_PIO2_TX0 Select PIO2’s TX FIFO 0 as DREQ.

DREQ_PIO2_TX1 Select PIO2’s TX FIFO 1 as DREQ.

DREQ_PIO2_TX2 Select PIO2’s TX FIFO 2 as DREQ.

DREQ_PIO2_TX3 Select PIO2’s TX FIFO 3 as DREQ.

DREQ_PIO2_RX0 Select PIO2’s RX FIFO 0 as DREQ.

DREQ_PIO2_RX1 Select PIO2’s RX FIFO 1 as DREQ.

DREQ_PIO2_RX2 Select PIO2’s RX FIFO 2 as DREQ.

DREQ_PIO2_RX3 Select PIO2’s RX FIFO 3 as DREQ.

DREQ_SPI0_TX Select SPI0’s TX FIFO as DREQ.

DREQ_SPI0_RX Select SPI0’s RX FIFO as DREQ.

DREQ_SPI1_TX Select SPI1’s TX FIFO as DREQ.

DREQ_SPI1_RX Select SPI1’s RX FIFO as DREQ.

DREQ_UART0_TX Select UART0’s TX FIFO as DREQ.

DREQ_UART0_RX Select UART0’s RX FIFO as DREQ.

DREQ_UART1_TX Select UART1’s TX FIFO as DREQ.

DREQ_UART1_RX Select UART1’s RX FIFO as DREQ.

DREQ_PWM_WRAP0 Select PWM Counter 0’s Wrap Value as DREQ.

DREQ_PWM_WRAP1 Select PWM Counter 1’s Wrap Value as DREQ.

DREQ_PWM_WRAP2 Select PWM Counter 2’s Wrap Value as DREQ.

DREQ_PWM_WRAP3 Select PWM Counter 3’s Wrap Value as DREQ.

DREQ_PWM_WRAP4 Select PWM Counter 4’s Wrap Value as DREQ.

DREQ_PWM_WRAP5 Select PWM Counter 5’s Wrap Value as DREQ.

DREQ_PWM_WRAP6 Select PWM Counter 6’s Wrap Value as DREQ.

DREQ_PWM_WRAP7 Select PWM Counter 7’s Wrap Value as DREQ.

DREQ_PWM_WRAP8 Select PWM Counter 8’s Wrap Value as DREQ.

DREQ_PWM_WRAP9 Select PWM Counter 9’s Wrap Value as DREQ.

DREQ_PWM_WRAP10 Select PWM Counter 0’s Wrap Value as DREQ.

DREQ_PWM_WRAP11 Select PWM Counter 1’s Wrap Value as DREQ.

DREQ_I2C0_TX Select I2C0’s TX FIFO as DREQ.

DREQ_I2C0_RX Select I2C0’s RX FIFO as DREQ.

DREQ_I2C1_TX Select I2C1’s TX FIFO as DREQ.

DREQ_I2C1_RX Select I2C1’s RX FIFO as DREQ.

DREQ_ADC Select the ADC as DREQ.

DREQ_XIP_STREAM Select the XIP Streaming FIFO as DREQ.

DREQ_XIP_QMITX Select XIP_QMITX as DREQ.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 115

DREQ_XIP_QMIRX Select XIP_QMIRX as DREQ.

DREQ_HSTX Select HSTX as DREQ.

DREQ_CORESIGHT Select CORESIGHT as DREQ.

DREQ_SHA256 Select SHA256 as DREQ.

DREQ_DMA_TIMER0 Select DMA_TIMER0 as DREQ.

DREQ_DMA_TIMER1 Select DMA_TIMER0 as DREQ.

DREQ_DMA_TIMER2 Select DMA_TIMER1 as DREQ.

DREQ_DMA_TIMER3 Select DMA_TIMER3 as DREQ.

DREQ_FORCE Select FORCE as DREQ.

4.1.7.9.2. dreq_num_rp2040

enum dreq_num_rp2040

DREQ numbers for DMA pacing on RP2040 (used as typedef dreq_num_t)

Table 14. Enumerator
DREQ_PIO0_TX0 Select PIO0’s TX FIFO 0 as DREQ.

DREQ_PIO0_TX1 Select PIO0’s TX FIFO 1 as DREQ.

DREQ_PIO0_TX2 Select PIO0’s TX FIFO 2 as DREQ.

DREQ_PIO0_TX3 Select PIO0’s TX FIFO 3 as DREQ.

DREQ_PIO0_RX0 Select PIO0’s RX FIFO 0 as DREQ.

DREQ_PIO0_RX1 Select PIO0’s RX FIFO 1 as DREQ.

DREQ_PIO0_RX2 Select PIO0’s RX FIFO 2 as DREQ.

DREQ_PIO0_RX3 Select PIO0’s RX FIFO 3 as DREQ.

DREQ_PIO1_TX0 Select PIO1’s TX FIFO 0 as DREQ.

DREQ_PIO1_TX1 Select PIO1’s TX FIFO 1 as DREQ.

DREQ_PIO1_TX2 Select PIO1’s TX FIFO 2 as DREQ.

DREQ_PIO1_TX3 Select PIO1’s TX FIFO 3 as DREQ.

DREQ_PIO1_RX0 Select PIO1’s RX FIFO 0 as DREQ.

DREQ_PIO1_RX1 Select PIO1’s RX FIFO 1 as DREQ.

DREQ_PIO1_RX2 Select PIO1’s RX FIFO 2 as DREQ.

DREQ_PIO1_RX3 Select PIO1’s RX FIFO 3 as DREQ.

DREQ_SPI0_TX Select SPI0’s TX FIFO as DREQ.

DREQ_SPI0_RX Select SPI0’s RX FIFO as DREQ.

DREQ_SPI1_TX Select SPI1’s TX FIFO as DREQ.

DREQ_SPI1_RX Select SPI1’s RX FIFO as DREQ.

DREQ_UART0_TX Select UART0’s TX FIFO as DREQ.

DREQ_UART0_RX Select UART0’s RX FIFO as DREQ.

DREQ_UART1_TX Select UART1’s TX FIFO as DREQ.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 116

DREQ_UART1_RX Select UART1’s RX FIFO as DREQ.

DREQ_PWM_WRAP0 Select PWM Counter 0’s Wrap Value as DREQ.

DREQ_PWM_WRAP1 Select PWM Counter 1’s Wrap Value as DREQ.

DREQ_PWM_WRAP2 Select PWM Counter 2’s Wrap Value as DREQ.

DREQ_PWM_WRAP3 Select PWM Counter 3’s Wrap Value as DREQ.

DREQ_PWM_WRAP4 Select PWM Counter 4’s Wrap Value as DREQ.

DREQ_PWM_WRAP5 Select PWM Counter 5’s Wrap Value as DREQ.

DREQ_PWM_WRAP6 Select PWM Counter 6’s Wrap Value as DREQ.

DREQ_PWM_WRAP7 Select PWM Counter 7’s Wrap Value as DREQ.

DREQ_I2C0_TX Select I2C0’s TX FIFO as DREQ.

DREQ_I2C0_RX Select I2C0’s RX FIFO as DREQ.

DREQ_I2C1_TX Select I2C1’s TX FIFO as DREQ.

DREQ_I2C1_RX Select I2C1’s RX FIFO as DREQ.

DREQ_ADC Select the ADC as DREQ.

DREQ_XIP_STREAM Select the XIP Streaming FIFO as DREQ.

DREQ_XIP_SSITX Select the XIP SSI TX FIFO as DREQ.

DREQ_XIP_SSIRX Select the XIP SSI RX FIFO as DREQ.

DREQ_DMA_TIMER0 Select DMA_TIMER0 as DREQ.

DREQ_DMA_TIMER1 Select DMA_TIMER0 as DREQ.

DREQ_DMA_TIMER2 Select DMA_TIMER1 as DREQ.

DREQ_DMA_TIMER3 Select DMA_TIMER3 as DREQ.

DREQ_FORCE Select FORCE as DREQ.

4.1.7.9.3. dma_channel_transfer_size

enum dma_channel_transfer_size

Enumeration of available DMA channel transfer sizes.

Names indicate the number of bits.

Table 15. Enumerator
DMA_SIZE_8 Byte transfer (8 bits)

DMA_SIZE_16 Half word transfer (16 bits)

DMA_SIZE_32 Word transfer (32 bits)

4.1.7.10. Function Documentation

4.1.7.10.1. dma_channel_abort

static void dma_channel_abort (uint channel) [inline], [static]

Stop a DMA transfer.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 117

Function will only return once the DMA has stopped.

RP2040 only: Note that due to errata RP2040-E13, aborting a channel which has transfers in-flight (i.e. an individual read

has taken place but the corresponding write has not), the ABORT status bit will clear prematurely, and subsequently the

in-flight transfers will trigger a completion interrupt once they complete.

The effect of this is that you may see a spurious completion interrupt on the channel as a result of calling this method.

The calling code should be sure to ignore a completion IRQ as a result of this method. This may not require any

additional work, as aborting a channel which may be about to complete, when you have a completion IRQ handler

registered, is inherently race-prone, and so code is likely needed to disambiguate the two occurrences.

If that is not the case, but you do have a channel completion IRQ handler registered, you can simply disable/re-enable

the IRQ around the call to this method as shown by this code fragment (using DMA IRQ0).

1 // disable the channel on IRQ0
2 dma_channel_set_irq0_enabled(channel, false);
3 // abort the channel
4 dma_channel_abort(channel);
5 // clear the spurious IRQ (if there was one)
6 dma_channel_acknowledge_irq0(channel);
7 // re-enable the channel on IRQ0
8 dma_channel_set_irq0_enabled(channel, true);

RP2350 only: Due to errata RP12350-E5 (see the RP2350 datasheet for further detail), it is necessary to clear the enable

bit of the aborted channel and any chained channels prior to the abort to prevent re-triggering.

Parameters

channel DMA channel

4.1.7.10.2. dma_channel_acknowledge_irq0

static void dma_channel_acknowledge_irq0 (uint channel) [inline], [static]

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_0.

Parameters

channel DMA channel

4.1.7.10.3. dma_channel_acknowledge_irq1

static void dma_channel_acknowledge_irq1 (uint channel) [inline], [static]

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_1.

Parameters

channel DMA channel

4.1.7.10.4. dma_channel_claim

void dma_channel_claim (uint channel)

Mark a dma channel as used.

Method for cooperative claiming of hardware. Will cause a panic if the channel is already claimed. Use of this method

by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 118

channel the dma channel

4.1.7.10.5. dma_channel_cleanup

void dma_channel_cleanup (uint channel)

Performs DMA channel cleanup after use.

This can be used to cleanup dma channels when they’re no longer needed, such that they are in a clean state for reuse.

IRQ’s for the channel are disabled, any in flight-transfer is aborted and any outstanding interrupts are cleared. The

channel is then clear to be reused for other purposes.

1 if (dma_channel >= 0) {
2 dma_channel_cleanup(dma_channel);
3 dma_channel_unclaim(dma_channel);
4 dma_channel = -1;
5 }

Parameters

channel DMA channel

4.1.7.10.6. dma_channel_configure

static void dma_channel_configure (uint channel, const dma_channel_config * config, volatile void * write_addr, const

volatile void * read_addr, uint transfer_count, bool trigger) [inline], [static]

Configure all DMA parameters and optionally start transfer.

Parameters

channel DMA channel

config Pointer to DMA config structure

write_addr Initial write address

read_addr Initial read address

transfer_count Number of transfers to perform

trigger True to start the transfer immediately

4.1.7.10.7. dma_channel_get_irq0_status

static bool dma_channel_get_irq0_status (uint channel) [inline], [static]

Determine if a particular channel is a cause of DMA_IRQ_0.

Parameters

channel DMA channel

Returns

true if the channel is a cause of DMA_IRQ_0, false otherwise

4.1.7.10.8. dma_channel_get_irq1_status

static bool dma_channel_get_irq1_status (uint channel) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 119

Determine if a particular channel is a cause of DMA_IRQ_1.

Parameters

channel DMA channel

Returns

true if the channel is a cause of DMA_IRQ_1, false otherwise

4.1.7.10.9. dma_channel_is_busy

static bool dma_channel_is_busy (uint channel) [inline], [static]

Check if DMA channel is busy.

Parameters

channel DMA channel

Returns

true if the channel is currently busy

4.1.7.10.10. dma_channel_is_claimed

bool dma_channel_is_claimed (uint channel)

Determine if a dma channel is claimed.

Parameters

channel the dma channel

Returns

true if the channel is claimed, false otherwise

See also

dma_channel_claim

dma_channel_claim_mask

4.1.7.10.11. dma_channel_set_config

static void dma_channel_set_config (uint channel, const dma_channel_config * config, bool trigger) [inline], [static]

Set a channel configuration.

Parameters

channel DMA channel

config Pointer to a config structure with required configuration

trigger True to trigger the transfer immediately

4.1.7.10.12. dma_channel_set_irq0_enabled

static void dma_channel_set_irq0_enabled (uint channel, bool enabled) [inline], [static]

Enable single DMA channel’s interrupt via DMA_IRQ_0.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 120

channel DMA channel

enabled true to enable interrupt 0 on specified channel, false to disable.

4.1.7.10.13. dma_channel_set_irq1_enabled

static void dma_channel_set_irq1_enabled (uint channel, bool enabled) [inline], [static]

Enable single DMA channel’s interrupt via DMA_IRQ_1.

Parameters

channel DMA channel

enabled true to enable interrupt 1 on specified channel, false to disable.

4.1.7.10.14. dma_channel_set_read_addr

static void dma_channel_set_read_addr (uint channel, const volatile void * read_addr, bool trigger) [inline], [static]

Set the DMA initial read address.

Parameters

channel DMA channel

read_addr Initial read address of transfer.

trigger True to start the transfer immediately

4.1.7.10.15. dma_channel_set_trans_count

static void dma_channel_set_trans_count (uint channel, uint32_t trans_count, bool trigger) [inline], [static]

Set the number of bus transfers the channel will do.

Parameters

channel DMA channel

trans_count The number of transfers (not NOT bytes, see channel_config_set_transfer_data_size)

trigger True to start the transfer immediately

4.1.7.10.16. dma_channel_set_write_addr

static void dma_channel_set_write_addr (uint channel, volatile void * write_addr, bool trigger) [inline], [static]

Set the DMA initial write address.

Parameters

channel DMA channel

write_addr Initial write address of transfer.

trigger True to start the transfer immediately

4.1.7.10.17. dma_channel_start

static void dma_channel_start (uint channel) [inline], [static]

Start a single DMA channel.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 121

Parameters

channel DMA channel

4.1.7.10.18. dma_channel_transfer_from_buffer_now

static void dma_channel_transfer_from_buffer_now (uint channel, const volatile void * read_addr, uint32_t transfer_count)

[inline], [static]

Start a DMA transfer from a buffer immediately.

Parameters

channel DMA channel

read_addr Sets the initial read address

transfer_count Number of transfers to make. Not bytes, but the number of transfers of

channel_config_set_transfer_data_size() to be sent.

4.1.7.10.19. dma_channel_transfer_to_buffer_now

static void dma_channel_transfer_to_buffer_now (uint channel, volatile void * write_addr, uint32_t transfer_count)

[inline], [static]

Start a DMA transfer to a buffer immediately.

Parameters

channel DMA channel

write_addr Sets the initial write address

transfer_count Number of transfers to make. Not bytes, but the number of transfers of

channel_config_set_transfer_data_size() to be sent.

4.1.7.10.20. dma_channel_unclaim

void dma_channel_unclaim (uint channel)

Mark a dma channel as no longer used.

Parameters

channel the dma channel to release

4.1.7.10.21. dma_channel_wait_for_finish_blocking

static void dma_channel_wait_for_finish_blocking (uint channel) [inline], [static]

Wait for a DMA channel transfer to complete.

Parameters

channel DMA channel

4.1.7.10.22. dma_claim_mask

void dma_claim_mask (uint32_t channel_mask)

Mark multiple dma channels as used.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 122

Method for cooperative claiming of hardware. Will cause a panic if any of the channels are already claimed. Use of this

method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

channel_mask Bitfield of all required channels to claim (bit 0 == channel 0, bit 1 == channel 1 etc)

4.1.7.10.23. dma_claim_unused_channel

int dma_claim_unused_channel (bool required)

Claim a free dma channel.

Parameters

required if true the function will panic if none are available

Returns

the dma channel number or -1 if required was false, and none were free

4.1.7.10.24. dma_claim_unused_timer

int dma_claim_unused_timer (bool required)

Claim a free dma timer.

Parameters

required if true the function will panic if none are available

Returns

the dma timer number or -1 if required was false, and none were free

4.1.7.10.25. dma_get_irq_num

static int dma_get_irq_num (uint irq_index) [inline], [static]

Return DMA_IRQ_<irqn>

Parameters

irq_index 0 the DMA irq index

Returns

The irq_num_to use for DMA

4.1.7.10.26. dma_get_timer_dreq

static uint dma_get_timer_dreq (uint timer_num) [inline], [static]

Return the DREQ number for a given DMA timer.

Parameters

timer_num DMA timer number 0-3

4.1.7.10.27. dma_irqn_acknowledge_channel

static void dma_irqn_acknowledge_channel (uint irq_index, uint channel) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 123

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_N.

Parameters

irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1

channel DMA channel

4.1.7.10.28. dma_irqn_get_channel_status

static bool dma_irqn_get_channel_status (uint irq_index, uint channel) [inline], [static]

Determine if a particular channel is a cause of DMA_IRQ_N.

Parameters

irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1

channel DMA channel

Returns

true if the channel is a cause of the DMA_IRQ_N, false otherwise

4.1.7.10.29. dma_irqn_set_channel_enabled

static void dma_irqn_set_channel_enabled (uint irq_index, uint channel, bool enabled) [inline], [static]

Enable single DMA channel interrupt on either DMA_IRQ_0 or DMA_IRQ_1.

Parameters

irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1

channel DMA channel

enabled true to enable interrupt via irq_index for specified channel, false to disable.

4.1.7.10.30. dma_irqn_set_channel_mask_enabled

static void dma_irqn_set_channel_mask_enabled (uint irq_index, uint32_t channel_mask, bool enabled) [inline], [static]

Enable multiple DMA channels' interrupt via either DMA_IRQ_0 or DMA_IRQ_1.

Parameters

irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1

channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified

in the mask.

4.1.7.10.31. dma_set_irq0_channel_mask_enabled

static void dma_set_irq0_channel_mask_enabled (uint32_t channel_mask, bool enabled) [inline], [static]

Enable multiple DMA channels' interrupts via DMA_IRQ_0.

Parameters

channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified

in the mask.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 124

4.1.7.10.32. dma_set_irq1_channel_mask_enabled

static void dma_set_irq1_channel_mask_enabled (uint32_t channel_mask, bool enabled) [inline], [static]

Enable multiple DMA channels' interrupts via DMA_IRQ_1.

Parameters

channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified

in the mask.

4.1.7.10.33. dma_sniffer_disable

static void dma_sniffer_disable (void) [inline], [static]

Disable the DMA sniffer.

4.1.7.10.34. dma_sniffer_enable

static void dma_sniffer_enable (uint channel, uint mode, bool force_channel_enable) [inline], [static]

Enable the DMA sniffing targeting the specified channel.

The mode can be one of the following:

Mode Function

0x0 Calculate a CRC-32 (IEEE802.3 polynomial)

0x1 Calculate a CRC-32 (IEEE802.3 polynomial) with bit

reversed data

0x2 Calculate a CRC-16-CCITT

0x3 Calculate a CRC-16-CCITT with bit reversed data

0xe XOR reduction over all data. == 1 if the total 1 population

count is odd.

0xf Calculate a simple 32-bit checksum (addition with a 32 bit

accumulator)

Parameters

channel DMA channel

mode See description

force_channel_enable Set true to also turn on sniffing in the channel configuration (this is usually what you

want, but sometimes you might have a chain DMA with only certain segments of the

chain sniffed, in which case you might pass false).

4.1.7.10.35. dma_sniffer_get_data_accumulator

static uint32_t dma_sniffer_get_data_accumulator (void) [inline], [static]

Get the sniffer’s data accumulator value.

Read value calculated by the hardware from sniffing the DMA stream

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 125

4.1.7.10.36. dma_sniffer_set_byte_swap_enabled

static void dma_sniffer_set_byte_swap_enabled (bool swap) [inline], [static]

Enable the Sniffer byte swap function.

Locally perform a byte reverse on the sniffed data, before feeding into checksum.

Note that the sniff hardware is downstream of the DMA channel byteswap performed in the read master: if

channel_config_set_bswap() and dma_sniffer_set_byte_swap_enabled() are both enabled, their effects cancel from the

sniffer’s point of view.

Parameters

swap Set true to enable byte swapping

4.1.7.10.37. dma_sniffer_set_data_accumulator

static void dma_sniffer_set_data_accumulator (uint32_t seed_value) [inline], [static]

Set the sniffer’s data accumulator with initial value.

Generally, CRC algorithms are used with the data accumulator initially seeded with 0xFFFF or 0xFFFFFFFF (for crc16

and crc32 algorithms)

Parameters

seed_value value to set data accumulator

4.1.7.10.38. dma_sniffer_set_output_invert_enabled

static void dma_sniffer_set_output_invert_enabled (bool invert) [inline], [static]

Enable the Sniffer output invert function.

If enabled, the sniff data result appears bit-inverted when read. This does not affect the way the checksum is calculated.

Parameters

invert Set true to enable output bit inversion

4.1.7.10.39. dma_sniffer_set_output_reverse_enabled

static void dma_sniffer_set_output_reverse_enabled (bool reverse) [inline], [static]

Enable the Sniffer output bit reversal function.

If enabled, the sniff data result appears bit-reversed when read. This does not affect the way the checksum is

calculated.

Parameters

reverse Set true to enable output bit reversal

4.1.7.10.40. dma_start_channel_mask

static void dma_start_channel_mask (uint32_t chan_mask) [inline], [static]

Start one or more channels simultaneously.

Parameters

chan_mask Bitmask of all the channels requiring starting. Channel 0 = bit 0, channel 1 = bit 1 etc.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 126

4.1.7.10.41. dma_timer_claim

void dma_timer_claim (uint timer)

Mark a dma timer as used.

Method for cooperative claiming of hardware. Will cause a panic if the timer is already claimed. Use of this method by

libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

timer the dma timer

4.1.7.10.42. dma_timer_is_claimed

bool dma_timer_is_claimed (uint timer)

Determine if a dma timer is claimed.

Parameters

timer the dma timer

Returns

true if the timer is claimed, false otherwise

See also

dma_timer_claim

4.1.7.10.43. dma_timer_set_fraction

static void dma_timer_set_fraction (uint timer, uint16_t numerator, uint16_t denominator) [inline], [static]

Set the multiplier for the given DMA timer.

The timer will run at the system_clock_freq * numerator / denominator, so this is the speed that data elements will be

transferred at via a DMA channel using this timer as a DREQ. The multiplier must be less than or equal to one.

Parameters

timer the dma timer

numerator the fraction’s numerator

denominator the fraction’s denominator

4.1.7.10.44. dma_timer_unclaim

void dma_timer_unclaim (uint timer)

Mark a dma timer as no longer used.

Method for cooperative claiming of hardware.

Parameters

timer the dma timer to release

4.1.7.10.45. dma_unclaim_mask

void dma_unclaim_mask (uint32_t channel_mask)

Mark multiple dma channels as no longer used.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 127

Parameters

channel_mask Bitfield of all channels to unclaim (bit 0 == channel 0, bit 1 == channel 1 etc)

4.1.7.11. channel_config

DMA channel configuration .

4.1.7.11.1. Detailed Description

A DMA channel needs to be configured, these functions provide handy helpers to set up configuration structures. See

dma_channel_config

4.1.7.11.2. Functions

static void channel_config_set_read_increment (dma_channel_config *c, bool incr)

Set DMA channel read increment in a channel configuration object.

static void channel_config_set_write_increment (dma_channel_config *c, bool incr)

Set DMA channel write increment in a channel configuration object.

static void channel_config_set_dreq (dma_channel_config *c, uint dreq)

Select a transfer request signal in a channel configuration object.

static void channel_config_set_chain_to (dma_channel_config *c, uint chain_to)

Set DMA channel chain_to channel in a channel configuration object.

static void channel_config_set_transfer_data_size (dma_channel_config *c, enum dma_channel_transfer_size size)

Set the size of each DMA bus transfer in a channel configuration object.

static void channel_config_set_ring (dma_channel_config *c, bool write, uint size_bits)

Set address wrapping parameters in a channel configuration object.

static void channel_config_set_bswap (dma_channel_config *c, bool bswap)

Set DMA byte swapping config in a channel configuration object.

static void channel_config_set_irq_quiet (dma_channel_config *c, bool irq_quiet)

Set IRQ quiet mode in a channel configuration object.

static void channel_config_set_high_priority (dma_channel_config *c, bool high_priority)

Set the channel priority in a channel configuration object.

static void channel_config_set_enable (dma_channel_config *c, bool enable)

Enable/Disable the DMA channel in a channel configuration object.

static void channel_config_set_sniff_enable (dma_channel_config *c, bool sniff_enable)

Enable access to channel by sniff hardware in a channel configuration object.

static dma_channel_config dma_channel_get_default_config (uint channel)

Get the default channel configuration for a given channel.

static dma_channel_config dma_get_channel_config (uint channel)

Get the current configuration for the specified channel.

static uint32_t channel_config_get_ctrl_value (const dma_channel_config *config)

Get the raw configuration register from a channel configuration.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 128

4.1.7.11.3. Function Documentation

channel_config_get_ctrl_value

static uint32_t channel_config_get_ctrl_value (const dma_channel_config * config) [inline], [static]

Get the raw configuration register from a channel configuration.

Parameters

config Pointer to a config structure.

Returns

Register content

channel_config_set_bswap

static void channel_config_set_bswap (dma_channel_config * c, bool bswap) [inline], [static]

Set DMA byte swapping config in a channel configuration object.

No effect for byte data, for halfword data, the two bytes of each halfword are swapped. For word data, the four bytes of

each word are swapped to reverse their order.

Parameters

c Pointer to channel configuration object

bswap True to enable byte swapping

channel_config_set_chain_to

static void channel_config_set_chain_to (dma_channel_config * c, uint chain_to) [inline], [static]

Set DMA channel chain_to channel in a channel configuration object.

When this channel completes, it will trigger the channel indicated by chain_to. Disable by setting chain_to to itself (the

same channel)

Parameters

c Pointer to channel configuration object

chain_to Channel to trigger when this channel completes.

channel_config_set_dreq

static void channel_config_set_dreq (dma_channel_config * c, uint dreq) [inline], [static]

Select a transfer request signal in a channel configuration object.

The channel uses the transfer request signal to pace its data transfer rate. Sources for TREQ signals are internal

(TIMERS) or external (DREQ, a Data Request from the system). 0x0 to 0x3a -> select DREQ n as TREQ 0x3b -> Select

Timer 0 as TREQ 0x3c -> Select Timer 1 as TREQ 0x3d -> Select Timer 2 as TREQ (Optional) 0x3e -> Select Timer 3 as

TREQ (Optional) 0x3f -> Permanent request, for unpaced transfers.

Parameters

c Pointer to channel configuration data

dreq Source (see description)

channel_config_set_enable

static void channel_config_set_enable (dma_channel_config * c, bool enable) [inline], [static]

Enable/Disable the DMA channel in a channel configuration object.

When false, the channel will ignore triggers, stop issuing transfers, and pause the current transfer sequence (i.e. BUSY

will remain high if already high)

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 129

c Pointer to channel configuration object

enable True to enable the DMA channel. When enabled, the channel will respond to triggering events, and start

transferring data.

channel_config_set_high_priority

static void channel_config_set_high_priority (dma_channel_config * c, bool high_priority) [inline], [static]

Set the channel priority in a channel configuration object.

When true, gives a channel preferential treatment in issue scheduling: in each scheduling round, all high priority

channels are considered first, and then only a single low priority channel, before returning to the high priority channels.

This only affects the order in which the DMA schedules channels. The DMA’s bus priority is not changed. If the DMA is

not saturated then a low priority channel will see no loss of throughput.

Parameters

c Pointer to channel configuration object

high_priority True to enable high priority

channel_config_set_irq_quiet

static void channel_config_set_irq_quiet (dma_channel_config * c, bool irq_quiet) [inline], [static]

Set IRQ quiet mode in a channel configuration object.

In QUIET mode, the channel does not generate IRQs at the end of every transfer block. Instead, an IRQ is raised when

NULL is written to a trigger register, indicating the end of a control block chain.

Parameters

c Pointer to channel configuration object

irq_quiet True to enable quiet mode, false to disable.

channel_config_set_read_increment

static void channel_config_set_read_increment (dma_channel_config * c, bool incr) [inline], [static]

Set DMA channel read increment in a channel configuration object.

Parameters

c Pointer to channel configuration object

incr True to enable read address increments, if false, each read will be from the same address Usually

disabled for peripheral to memory transfers

channel_config_set_ring

static void channel_config_set_ring (dma_channel_config * c, bool write, uint size_bits) [inline], [static]

Set address wrapping parameters in a channel configuration object.

Size of address wrap region. If 0, don’t wrap. For values n > 0, only the lower n bits of the address will change. This

wraps the address on a (1 << n) byte boundary, facilitating access to naturally-aligned ring buffers. Ring sizes between 2

and 32768 bytes are possible (size_bits from 1 - 15)

0x0 -> No wrapping.

Parameters

c Pointer to channel configuration object

write True to apply to write addresses, false to apply to read addresses

size_bits 0 to disable wrapping. Otherwise the size in bits of the changing part of the address. Effectively

wraps the address on a (1 << size_bits) byte boundary.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 130

channel_config_set_sniff_enable

static void channel_config_set_sniff_enable (dma_channel_config * c, bool sniff_enable) [inline], [static]

Enable access to channel by sniff hardware in a channel configuration object.

Sniff HW must be enabled and have this channel selected.

Parameters

c Pointer to channel configuration object

sniff_enable True to enable the Sniff HW access to this DMA channel.

channel_config_set_transfer_data_size

static void channel_config_set_transfer_data_size (dma_channel_config * c, enum dma_channel_transfer_size size) [inline],

[static]

Set the size of each DMA bus transfer in a channel configuration object.

Set the size of each bus transfer (byte/halfword/word). The read and write addresses advance by the specific amount

(1/2/4 bytes) with each transfer.

Parameters

c Pointer to channel configuration object

size See enum for possible values.

channel_config_set_write_increment

static void channel_config_set_write_increment (dma_channel_config * c, bool incr) [inline], [static]

Set DMA channel write increment in a channel configuration object.

Parameters

c Pointer to channel configuration object

incr True to enable write address increments, if false, each write will be to the same address Usually disabled

for memory to peripheral transfers

dma_channel_get_default_config

static dma_channel_config dma_channel_get_default_config (uint channel) [inline], [static]

Get the default channel configuration for a given channel.

Setting Default

Read Increment true

Write Increment false

DReq DREQ_FORCE

Chain to self

Data size DMA_SIZE_32

Ring write=false, size=0 (i.e. off)

Byte Swap false

Quiet IRQs false

High Priority false

Channel Enable true

Sniff Enable false

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 131

Parameters

channel DMA channel

Returns

the default configuration which can then be modified.

dma_get_channel_config

static dma_channel_config dma_get_channel_config (uint channel) [inline], [static]

Get the current configuration for the specified channel.

Parameters

channel DMA channel

Returns

The current configuration as read from the HW register (not cached)

4.1.8. hardware_exception

Methods for setting processor exception handlers.

4.1.8.1. Detailed Description

Exceptions are identified by a exception_number which is a number from -15 to -1; these are the numbers relative to the

index of the first IRQ vector in the vector table. (i.e. vector table index is exception_num plus 16)

There is one set of exception handlers per core, so the exception handlers for each core as set by these methods are

independent.

 NOTE

That all exception APIs affect the executing core only (i.e. the core calling the function).

4.1.8.2. Typedefs

typedef void(* exception_handler_t)(void)

Exception handler function type.

4.1.8.3. Enumerations

enum exception_number { MIN_EXCEPTION_NUM = 2, NMI_EXCEPTION = 2, HARDFAULT_EXCEPTION = 3, SVCALL_EXCEPTION = 11,

PENDSV_EXCEPTION = 14, SYSTICK_EXCEPTION = 15, MAX_EXCEPTION_NUM = 15 }

Exception number definitions.

4.1.8.4. Functions

exception_handler_t exception_set_exclusive_handler (enum exception_number num, exception_handler_t handler)

Set the exception handler for an exception on the executing core.

void exception_restore_handler (enum exception_number num, exception_handler_t original_handler)

Restore the original exception handler for an exception on this core.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 132

exception_handler_t exception_get_vtable_handler (enum exception_number num)

Get the current exception handler for the specified exception from the currently installed vector table of the

execution core.

bool exception_set_priority (uint num, uint8_t hardware_priority)

Set specified exception’s priority.

uint exception_get_priority (uint num)

Get specified exception’s priority.

4.1.8.5. Typedef Documentation

4.1.8.5.1. exception_handler_t

typedef void(* exception_handler_t) (void)

Exception handler function type.

All exception handlers should be of this type, and follow normal ARM EABI register saving conventions

4.1.8.6. Enumeration Type Documentation

4.1.8.6.1. exception_number

enum exception_number

Exception number definitions.

On Arm these are vector table indices:

Name Value Exception

NMI_EXCEPTION 2 Non Maskable Interrupt

HARDFAULT_EXCEPTION 3 HardFault

SVCALL_EXCEPTION 11 SV Call

PENDSV_EXCEPTION 14 Pend SV

SYSTICK_EXCEPTION 15 System Tick

On RISC-V these are exception cause numbers:

Name Value Exception

INSTR_ALIGN_EXCEPTION 0 Instruction fetch misaligned

INSTR_FAULT_EXCEPTION 1 Instruction fetch bus fault

INSTR_ILLEGAL_EXCEPTION 2 Invalid or illegal instruction

EBREAK_EXCEPTION 3 ebreak was not caught by an ex

LOAD_ALIGN_EXCEPTION 4 Load address not naturally ali

LOAD_FAULT_EXCEPTION 5 Load bus fault

STORE_ALIGN_EXCEPTION 6 Store or AMO address not natur

STORE_FAULT_EXCEPTION 7 Store or AMO bus fault

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 133

Name Value Exception

ECALL_UMODE_EXCEPTION 8 ecall was executed in U-mode

ECALL_SMODE_EXCEPTION 9 ecall was executed in S-mode

ECALL_MMODE_EXCEPTION 11 ecall was executed in M-mode

Table 16. Enumerator
NMI_EXCEPTION Non Maskable Interrupt.

HARDFAULT_EXCEPTION HardFault Interrupt.

SVCALL_EXCEPTION SV Call Interrupt.

PENDSV_EXCEPTION Pend SV Interrupt.

SYSTICK_EXCEPTION System Tick Interrupt.

4.1.8.7. Function Documentation

4.1.8.7.1. exception_get_priority

uint exception_get_priority (uint num)

Get specified exception’s priority.

Numerically-lower values indicate a higher priority. Hardware priorities range from 0 (highest priority) to 255 (lowest

priority).

Only the top 2 bits are significant on ARM Cortex-M0+ on RP2040.

Only the top 4 bits are significant on ARM Cortex-M33 on RP2350, and exception priorities are not supported on RISC-V

Parameters

num Exception number exception_number

Returns

the exception priority

4.1.8.7.2. exception_get_vtable_handler

exception_handler_t exception_get_vtable_handler (enum exception_number num)

Get the current exception handler for the specified exception from the currently installed vector table of the execution

core.

Parameters

num Exception number

Returns

the address stored in the VTABLE for the given exception number

4.1.8.7.3. exception_restore_handler

void exception_restore_handler (enum exception_number num, exception_handler_t original_handler)

Restore the original exception handler for an exception on this core.

This method may be used to restore the exception handler for an exception on this core to the state prior to the call to

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 134

exception_set_exclusive_handler(), so that exception_set_exclusive_handler() may be called again in the future.

Parameters

num Exception number exception_number

original_handler The original handler returned from exception_set_exclusive_handler

See also

exception_set_exclusive_handler()

4.1.8.7.4. exception_set_exclusive_handler

exception_handler_t exception_set_exclusive_handler (enum exception_number num, exception_handler_t handler)

Set the exception handler for an exception on the executing core.

This method will assert if an exception handler has been set for this exception number on this core via this method,

without an intervening restore via exception_restore_handler.

 NOTE

this method may not be used to override an exception handler that was specified at link time by providing a strong

replacement for the weakly defined stub exception handlers. It will assert in this case too.

Parameters

num Exception number

handler The handler to set

See also

exception_number

4.1.8.7.5. exception_set_priority

bool exception_set_priority (uint num, uint8_t hardware_priority)

Set specified exception’s priority.

Parameters

num Exception number exception_number

hardware_priority Priority to set.

Numerically-lower values indicate a higher priority. Hardware priorities range from 0 (highest priority) to 255 (lowest

priority).

Only the top 2 bits are significant on ARM Cortex-M0+ on RP2040.

Only the top 4 bits are significant on ARM Cortex-M33 on RP2350, and exception priorities are not supported on RISC-V

4.1.9. hardware_flash

Low level flash programming and erase API.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 135

4.1.9.1. Detailed Description

Note these functions are unsafe if you are using both cores, and the other is executing from flash concurrently with the

operation. In this could be the case, you must perform your own synchronisation to make sure that no XIP accesses

take place during flash programming. One option is to use the lockout functions.

Likewise they are unsafe if you have interrupt handlers or an interrupt vector table in flash, so you must disable

interrupts before calling in this case.

If PICO_NO_FLASH=1 is not defined (i.e. if the program is built to run from flash) then these functions will make a static

copy of the second stage bootloader in SRAM, and use this to reenter execute-in-place mode after programming or

erasing flash, so that they can safely be called from flash-resident code.

4.1.9.1.1. Example

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3
 4 #include "pico/stdlib.h"
 5 #include "hardware/flash.h"
 6
 7 // We're going to erase and reprogram a region 256k from the start of flash.
 8 // Once done, we can access this at XIP_BASE + 256k.
 9 #define FLASH_TARGET_OFFSET (256 * 1024)
10
11 const uint8_t *flash_target_contents = (const uint8_t *) (XIP_BASE + FLASH_TARGET_OFFSET);
12
13 void print_buf(const uint8_t *buf, size_t len) {
14 for (size_t i = 0; i < len; ++i) {
15 printf("%02x", buf[i]);
16 if (i % 16 == 15)
17 printf("\n");
18 else
19 printf(" ");
20 }
21 }
22
23 int main() {
24 stdio_init_all();
25 uint8_t random_data[FLASH_PAGE_SIZE];
26 for (uint i = 0; i < FLASH_PAGE_SIZE; ++i)
27 random_data[i] = rand() >> 16;
28
29 printf("Generated random data:\n");
30 print_buf(random_data, FLASH_PAGE_SIZE);
31
32 // Note that a whole number of sectors must be erased at a time.
33 printf("\nErasing target region...\n");
34 flash_range_erase(FLASH_TARGET_OFFSET, FLASH_SECTOR_SIZE);
35 printf("Done. Read back target region:\n");
36 print_buf(flash_target_contents, FLASH_PAGE_SIZE);
37
38 printf("\nProgramming target region...\n");
39 flash_range_program(FLASH_TARGET_OFFSET, random_data, FLASH_PAGE_SIZE);
40 printf("Done. Read back target region:\n");
41 print_buf(flash_target_contents, FLASH_PAGE_SIZE);
42
43 bool mismatch = false;
44 for (uint i = 0; i < FLASH_PAGE_SIZE; ++i) {
45 if (random_data[i] != flash_target_contents[i])

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 136

46 mismatch = true;
47 }
48 if (mismatch)
49 printf("Programming failed!\n");
50 else
51 printf("Programming successful!\n");
52 }

4.1.9.2. Functions

void flash_range_erase (uint32_t flash_offs, size_t count)

Erase areas of flash.

void flash_range_program (uint32_t flash_offs, const uint8_t *data, size_t count)

Program flash.

void flash_get_unique_id (uint8_t *id_out)

Get flash unique 64 bit identifier.

void flash_do_cmd (const uint8_t *txbuf, uint8_t *rxbuf, size_t count)

Execute bidirectional flash command.

4.1.9.3. Function Documentation

4.1.9.3.1. flash_do_cmd

void flash_do_cmd (const uint8_t * txbuf, uint8_t * rxbuf, size_t count)

Execute bidirectional flash command.

Low-level function to execute a serial command on a flash device attached to the QSPI interface. Bytes are

simultaneously transmitted and received from txbuf and to rxbuf. Therefore, both buffers must be the same length,

count, which is the length of the overall transaction. This is useful for reading metadata from the flash chip, such as

device ID or SFDP parameters.

The XIP cache is flushed following each command, in case flash state has been modified. Like other hardware_flash

functions, the flash is not accessible for execute-in-place transfers whilst the command is in progress, so entering a

flash-resident interrupt handler or executing flash code on the second core concurrently will be fatal. To avoid these

pitfalls it is recommended that this function only be used to extract flash metadata during startup, before the main

application begins to run: see the implementation of pico_get_unique_id() for an example of this.

Parameters

txbuf Pointer to a byte buffer which will be transmitted to the flash

rxbuf Pointer to a byte buffer where data received from the flash will be written. txbuf and rxbuf may be the

same buffer.

count Length in bytes of txbuf and of rxbuf

4.1.9.3.2. flash_get_unique_id

void flash_get_unique_id (uint8_t * id_out)

Get flash unique 64 bit identifier.

Use a standard 4Bh RUID instruction to retrieve the 64 bit unique identifier from a flash device attached to the QSPI

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 137

interface. Since there is a 1:1 association between the MCU and this flash, this also serves as a unique identifier for the

board.

Parameters

id_out Pointer to an 8-byte buffer to which the ID will be written

4.1.9.3.3. flash_range_erase

void flash_range_erase (uint32_t flash_offs, size_t count)

Erase areas of flash.

Parameters

flash_offs Offset into flash, in bytes, to start the erase. Must be aligned to a 4096-byte flash sector.

count Number of bytes to be erased. Must be a multiple of 4096 bytes (one sector).

 NOTE

Erasing a flash sector sets all the bits in all the pages in that sector to one. You can then "program" flash pages in

the sector to turn some of the bits to zero. Once a bit is set to zero it can only be changed back to one by erasing the

whole sector again.

4.1.9.3.4. flash_range_program

void flash_range_program (uint32_t flash_offs, const uint8_t * data, size_t count)

Program flash.

Parameters

flash_offs Flash address of the first byte to be programmed. Must be aligned to a 256-byte flash page.

data Pointer to the data to program into flash

count Number of bytes to program. Must be a multiple of 256 bytes (one page).

 NOTE

: Programming a flash page effectively changes some of the bits from one to zero. The only way to change a zero bit

back to one is to "erase" the whole sector that the page resides in. So you may need to make sure you have called

flash_range_erase before calling flash_range_program.

4.1.10. hardware_gpio

General Purpose Input/Output (GPIO) API.

4.1.10.1. Detailed Description

RP-series microcontrollers have two banks of General Purpose Input / Output (GPIO) pins, which are assigned as

follows:

All GPIOs support digital input and output, but a subset can also be used as inputs to the chip’s Analogue to Digital

Converter (ADC). The allocation of GPIO pins to the ADC depends on the packaging.

RP2040 and RP2350 QFN-60 GPIO, ADC pins are 26-29. RP2350 QFN-80, ADC pins are 40-47.

Each GPIO can be controlled directly by software running on the processors, or by a number of other functional blocks.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 138

The function allocated to each GPIO is selected by calling the gpio_set_function function.

 NOTE

Not all functions are available on all pins.

Each GPIO can have one function selected at a time. Likewise, each peripheral input (e.g. UART0 RX) should only be

selected on one GPIO at a time. If the same peripheral input is connected to multiple GPIOs, the peripheral sees the

logical OR of these GPIO inputs. Please refer to the datasheet for more information on GPIO function select.

4.1.10.1.1. Function Select Table

On RP2040 the function selects are:

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9

0 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 USB

OVCUR

DET

1 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 USB VBUS

DET

2 SPI0 SCK UART0

CTS

I2C1 SDA PWM1 A SIO PIO0 PIO1 USB VBUS

EN

3 SPI0 TX UART0

RTS

I2C1 SCL PWM1 B SIO PIO0 PIO1 USB

OVCUR

DET

4 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 USB VBUS

DET

5 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 USB VBUS

EN

6 SPI0 SCK UART1

CTS

I2C1 SDA PWM3 A SIO PIO0 PIO1 USB

OVCUR

DET

7 SPI0 TX UART1

RTS

I2C1 SCL PWM3 B SIO PIO0 PIO1 USB VBUS

DET

8 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 USB VBUS

EN

9 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 USB

OVCUR

DET

10 SPI1 SCK UART1

CTS

I2C1 SDA PWM5 A SIO PIO0 PIO1 USB VBUS

DET

11 SPI1 TX UART1

RTS

I2C1 SCL PWM5 B SIO PIO0 PIO1 USB VBUS

EN

12 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 USB

OVCUR

DET

13 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 USB VBUS

DET

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 139

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9

14 SPI1 SCK UART0

CTS

I2C1 SDA PWM7 A SIO PIO0 PIO1 USB VBUS

EN

15 SPI1 TX UART0

RTS

I2C1 SCL PWM7 B SIO PIO0 PIO1 USB

OVCUR

DET

16 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 USB VBUS

DET

17 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 USB VBUS

EN

18 SPI0 SCK UART0

CTS

I2C1 SDA PWM1 A SIO PIO0 PIO1 USB

OVCUR

DET

19 SPI0 TX UART0

RTS

I2C1 SCL PWM1 B SIO PIO0 PIO1 USB VBUS

DET

20 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 CLOCK

GPIN0

USB VBUS

EN

21 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 CLOCK

GPOUT0

USB

OVCUR

DET

22 SPI0 SCK UART1

CTS

I2C1 SDA PWM3 A SIO PIO0 PIO1 CLOCK

GPIN1

USB VBUS

DET

23 SPI0 TX UART1

RTS

I2C1 SCL PWM3 B SIO PIO0 PIO1 CLOCK

GPOUT1

USB VBUS

EN

24 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 CLOCK

GPOUT2

USB

OVCUR

DET

25 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 CLOCK

GPOUT3

USB VBUS

DET

26 SPI1 SCK UART1

CTS

I2C1 SDA PWM5 A SIO PIO0 PIO1 USB VBUS

EN

27 SPI1 TX UART1

RTS

I2C1 SCL PWM5 B SIO PIO0 PIO1 USB

OVCUR

DET

28 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 USB VBUS

DET

29 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 USB VBUS

EN

On RP2350 the function selects are:

GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

0 SPI0

RX

UART0

TX

I2C0

SDA

PWM0

A

SIO PIO0 PIO1 PIO2 XIP_CS

1n

USB

OVCUR

DET

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 140

GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

1 SPI0

CSn

UART0

RX

I2C0

SCL

PWM0

B

SIO PIO0 PIO1 PIO2 TRACE

CLK

USB

VBUS

DET

2 SPI0

SCK

UART0

CTS

I2C1

SDA

PWM1

A

SIO PIO0 PIO1 PIO2 TRACE

DATA0

USB

VBUS

EN

UART0

TX

3 SPI0

TX

UART0

RTS

I2C1

SCL

PWM1

B

SIO PIO0 PIO1 PIO2 TRACE

DATA1

USB

OVCUR

DET

UART0

RX

4 SPI0

RX

UART1

TX

I2C0

SDA

PWM2

A

SIO PIO0 PIO1 PIO2 TRACE

DATA2

USB

VBUS

DET

5 SPI0

CSn

UART1

RX

I2C0

SCL

PWM2

B

SIO PIO0 PIO1 PIO2 TRACE

DATA3

USB

VBUS

EN

6 SPI0

SCK

UART1

CTS

I2C1

SDA

PWM3

A

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

UART1

TX

7 SPI0

TX

UART1

RTS

I2C1

SCL

PWM3

B

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

UART1

RX

8 SPI1

RX

UART1

TX

I2C0

SDA

PWM4

A

SIO PIO0 PIO1 PIO2 XIP_CS

1n

USB

VBUS

EN

9 SPI1

CSn

UART1

RX

I2C0

SCL

PWM4

B

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

10 SPI1

SCK

UART1

CTS

I2C1

SDA

PWM5

A

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

UART1

TX

11 SPI1

TX

UART1

RTS

I2C1

SCL

PWM5

B

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

UART1

RX

12 HSTX SPI1

RX

UART0

TX

I2C0

SDA

PWM6

A

SIO PIO0 PIO1 PIO2 CLOCK

GPIN0

USB

OVCUR

DET

13 HSTX SPI1

CSn

UART0

RX

I2C0

SCL

PWM6

B

SIO PIO0 PIO1 PIO2 CLOCK

GPOUT

0

USB

VBUS

DET

14 HSTX SPI1

SCK

UART0

CTS

I2C1

SDA

PWM7

A

SIO PIO0 PIO1 PIO2 CLOCK

GPIN1

USB

VBUS

EN

UART0

TX

15 HSTX SPI1

TX

UART0

RTS

I2C1

SCL

PWM7

B

SIO PIO0 PIO1 PIO2 CLOCK

GPOUT

1

USB

OVCUR

DET

UART0

RX

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 141

GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

16 HSTX SPI0

RX

UART0

TX

I2C0

SDA

PWM0

A

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

17 HSTX SPI0

CSn

UART0

RX

I2C0

SCL

PWM0

B

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

18 HSTX SPI0

SCK

UART0

CTS

I2C1

SDA

PWM1

A

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

UART0

TX

19 HSTX SPI0

TX

UART0

RTS

I2C1

SCL

PWM1

B

SIO PIO0 PIO1 PIO2 XIP_CS

1n

USB

VBUS

DET

UART0

RX

20 SPI0

RX

UART1

TX

I2C0

SDA

PWM2

A

SIO PIO0 PIO1 PIO2 CLOCK

GPIN0

USB

VBUS

EN

21 SPI0

CSn

UART1

RX

I2C0

SCL

PWM2

B

SIO PIO0 PIO1 PIO2 CLOCK

GPOUT

0

USB

OVCUR

DET

22 SPI0

SCK

UART1

CTS

I2C1

SDA

PWM3

A

SIO PIO0 PIO1 PIO2 CLOCK

GPIN1

USB

VBUS

DET

UART1

TX

23 SPI0

TX

UART1

RTS

I2C1

SCL

PWM3

B

SIO PIO0 PIO1 PIO2 CLOCK

GPOUT

1

USB

VBUS

EN

UART1

RX

24 SPI1

RX

UART1

TX

I2C0

SDA

PWM4

A

SIO PIO0 PIO1 PIO2 CLOCK

GPOUT

2

USB

OVCUR

DET

25 SPI1

CSn

UART1

RX

I2C0

SCL

PWM4

B

SIO PIO0 PIO1 PIO2 CLOCK

GPOUT

3

USB

VBUS

DET

26 SPI1

SCK

UART1

CTS

I2C1

SDA

PWM5

A

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

UART1

TX

27 SPI1

TX

UART1

RTS

I2C1

SCL

PWM5

B

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

UART1

RX

28 SPI1

RX

UART0

TX

I2C0

SDA

PWM6

A

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

29 SPI1

CSn

UART0

RX

I2C0

SCL

PWM6

B

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

GPIOs 30 through 47 are QFN-80 only:

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 142

GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

30 SPI1

SCK

UART0

CTS

I2C1

SDA

PWM7

A

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

UART0

TX

31 SPI1

TX

UART0

RTS

I2C1

SCL

PWM7

B

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

UART0

RX

32 SPI0

RX

UART0

TX

I2C0

SDA

PWM8

A

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

33 SPI0

CSn

UART0

RX

I2C0

SCL

PWM8

B

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

34 SPI0

SCK

UART0

CTS

I2C1

SDA

PWM9

A

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

UART0

TX

35 SPI0

TX

UART0

RTS

I2C1

SCL

PWM9

B

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

UART0

RX

36 SPI0

RX

UART1

TX

I2C0

SDA

PWM1

0 A

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

37 SPI0

CSn

UART1

RX

I2C0

SCL

PWM1

0 B

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

38 SPI0

SCK

UART1

CTS

I2C1

SDA

PWM1

1 A

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

UART1

TX

39 SPI0

TX

UART1

RTS

I2C1

SCL

PWM1

1 B

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

UART1

RX

40 SPI1

RX

UART1

TX

I2C0

SDA

PWM8

A

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

41 SPI1

CSn

UART1

RX

I2C0

SCL

PWM8

B

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

42 SPI1

SCK

UART1

CTS

I2C1

SDA

PWM9

A

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

UART1

TX

43 SPI1

TX

UART1

RTS

I2C1

SCL

PWM9

B

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

UART1

RX

44 SPI1

RX

UART0

TX

I2C0

SDA

PWM1

0 A

SIO PIO0 PIO1 PIO2 USB

VBUS

EN

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 143

GPIO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

45 SPI1

CSn

UART0

RX

I2C0

SCL

PWM1

0 B

SIO PIO0 PIO1 PIO2 USB

OVCUR

DET

46 SPI1

SCK

UART0

CTS

I2C1

SDA

PWM1

1 A

SIO PIO0 PIO1 PIO2 USB

VBUS

DET

UART0

TX

47 SPI1

TX

UART0

RTS

I2C1

SCL

PWM1

1 B

SIO PIO0 PIO1 PIO2 XIP_CS

1n

USB

VBUS

EN

UART0

RX

4.1.10.2. Typedefs

typedef enum gpio_function_rp2040 gpio_function_t

GPIO pin function selectors on RP2040 (used as typedef gpio_function_t)

typedef enum gpio_function_rp2350 gpio_function_t

GPIO pin function selectors on RP2350 (used as typedef gpio_function_t)

typedef void(* gpio_irq_callback_t)(uint gpio, uint32_t event_mask)

4.1.10.3. Enumerations

enum gpio_function_rp2040 { GPIO_FUNC_XIP = 0, GPIO_FUNC_SPI = 1, GPIO_FUNC_UART = 2, GPIO_FUNC_I2C = 3, GPIO_FUNC_PWM =

4, GPIO_FUNC_SIO = 5, GPIO_FUNC_PIO0 = 6, GPIO_FUNC_PIO1 = 7, GPIO_FUNC_GPCK = 8, GPIO_FUNC_USB = 9, GPIO_FUNC_NULL =

0x1f }

GPIO pin function selectors on RP2040 (used as typedef gpio_function_t)

enum gpio_function_rp2350 { GPIO_FUNC_HSTX = 0, GPIO_FUNC_SPI = 1, GPIO_FUNC_UART = 2, GPIO_FUNC_I2C = 3, GPIO_FUNC_PWM =

4, GPIO_FUNC_SIO = 5, GPIO_FUNC_PIO0 = 6, GPIO_FUNC_PIO1 = 7, GPIO_FUNC_PIO2 = 8, GPIO_FUNC_GPCK = 9, GPIO_FUNC_XIP_CS1 =

9, GPIO_FUNC_CORESIGHT_TRACE = 9, GPIO_FUNC_USB = 10, GPIO_FUNC_UART_AUX = 11, GPIO_FUNC_NULL = 0x1f }

GPIO pin function selectors on RP2350 (used as typedef gpio_function_t)

enum gpio_irq_level { GPIO_IRQ_LEVEL_LOW = 0x1u, GPIO_IRQ_LEVEL_HIGH = 0x2u, GPIO_IRQ_EDGE_FALL = 0x4u,

GPIO_IRQ_EDGE_RISE = 0x8u }

GPIO Interrupt level definitions (GPIO events)

enum gpio_slew_rate { GPIO_SLEW_RATE_SLOW = 0, GPIO_SLEW_RATE_FAST = 1 }

Slew rate limiting levels for GPIO outputs.

enum gpio_drive_strength { GPIO_DRIVE_STRENGTH_2MA = 0, GPIO_DRIVE_STRENGTH_4MA = 1, GPIO_DRIVE_STRENGTH_8MA = 2,

GPIO_DRIVE_STRENGTH_12MA = 3 }

Drive strength levels for GPIO outputs.

4.1.10.4. Functions

void gpio_set_function (uint gpio, gpio_function_t fn)

Select GPIO function.

void gpio_set_function_masked (uint32_t gpio_mask, gpio_function_t fn)

Select the function for multiple GPIOs.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 144

void gpio_set_function_masked64 (uint64_t gpio_mask, gpio_function_t fn)

Select the function for multiple GPIOs.

gpio_function_t gpio_get_function (uint gpio)

Determine current GPIO function.

void gpio_set_pulls (uint gpio, bool up, bool down)

Select up and down pulls on specific GPIO.

static void gpio_pull_up (uint gpio)

Set specified GPIO to be pulled up.

static bool gpio_is_pulled_up (uint gpio)

Determine if the specified GPIO is pulled up.

static void gpio_pull_down (uint gpio)

Set specified GPIO to be pulled down.

static bool gpio_is_pulled_down (uint gpio)

Determine if the specified GPIO is pulled down.

static void gpio_disable_pulls (uint gpio)

Disable pulls on specified GPIO.

void gpio_set_irqover (uint gpio, uint value)

Set GPIO IRQ override.

void gpio_set_outover (uint gpio, uint value)

Set GPIO output override.

void gpio_set_inover (uint gpio, uint value)

Select GPIO input override.

void gpio_set_oeover (uint gpio, uint value)

Select GPIO output enable override.

void gpio_set_input_enabled (uint gpio, bool enabled)

Enable GPIO input.

void gpio_set_input_hysteresis_enabled (uint gpio, bool enabled)

Enable/disable GPIO input hysteresis (Schmitt trigger)

bool gpio_is_input_hysteresis_enabled (uint gpio)

Determine whether input hysteresis is enabled on a specified GPIO.

void gpio_set_slew_rate (uint gpio, enum gpio_slew_rate slew)

Set slew rate for a specified GPIO.

enum gpio_slew_rate gpio_get_slew_rate (uint gpio)

Determine current slew rate for a specified GPIO.

void gpio_set_drive_strength (uint gpio, enum gpio_drive_strength drive)

Set drive strength for a specified GPIO.

enum gpio_drive_strength gpio_get_drive_strength (uint gpio)

Determine current drive strength for a specified GPIO.

void gpio_set_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)

Enable or disable specific interrupt events for specified GPIO.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 145

void gpio_set_irq_callback (gpio_irq_callback_t callback)

Set the generic callback used for GPIO IRQ events for the current core.

void gpio_set_irq_enabled_with_callback (uint gpio, uint32_t event_mask, bool enabled, gpio_irq_callback_t callback)

Convenience function which performs multiple GPIO IRQ related initializations.

void gpio_set_dormant_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)

Enable dormant wake up interrupt for specified GPIO and events.

static uint32_t gpio_get_irq_event_mask (uint gpio)

Return the current interrupt status (pending events) for the given GPIO.

void gpio_acknowledge_irq (uint gpio, uint32_t event_mask)

Acknowledge a GPIO interrupt for the specified events on the calling core.

void gpio_add_raw_irq_handler_with_order_priority_masked (uint32_t gpio_mask, irq_handler_t handler, uint8_t

order_priority)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

void gpio_add_raw_irq_handler_with_order_priority_masked64 (uint64_t gpio_mask, irq_handler_t handler, uint8_t

order_priority)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

static void gpio_add_raw_irq_handler_with_order_priority (uint gpio, irq_handler_t handler, uint8_t order_priority)

Adds a raw GPIO IRQ handler for a specific GPIO on the current core.

void gpio_add_raw_irq_handler_masked (uint32_t gpio_mask, irq_handler_t handler)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

void gpio_add_raw_irq_handler_masked64 (uint64_t gpio_mask, irq_handler_t handler)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

static void gpio_add_raw_irq_handler (uint gpio, irq_handler_t handler)

Adds a raw GPIO IRQ handler for a specific GPIO on the current core.

void gpio_remove_raw_irq_handler_masked (uint32_t gpio_mask, irq_handler_t handler)

Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

void gpio_remove_raw_irq_handler_masked64 (uint64_t gpio_mask, irq_handler_t handler)

Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

static void gpio_remove_raw_irq_handler (uint gpio, irq_handler_t handler)

Removes a raw GPIO IRQ handler for the specified GPIO on the current core.

void gpio_init (uint gpio)

Initialise a GPIO for (enabled I/O and set func to GPIO_FUNC_SIO)

void gpio_deinit (uint gpio)

Resets a GPIO back to the NULL function, i.e. disables it.

void gpio_init_mask (uint gpio_mask)

Initialise multiple GPIOs (enabled I/O and set func to GPIO_FUNC_SIO)

static bool gpio_get (uint gpio)

Get state of a single specified GPIO.

static uint32_t gpio_get_all (void)

Get raw value of all GPIOs.

static uint64_t gpio_get_all64 (void)

Get raw value of all GPIOs.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 146

static void gpio_set_mask (uint32_t mask)

Drive high every GPIO appearing in mask.

static void gpio_set_mask64 (uint64_t mask)

Drive high every GPIO appearing in mask.

static void gpio_set_mask_n (uint n, uint32_t mask)

Drive high every GPIO appearing in mask.

static void gpio_clr_mask (uint32_t mask)

Drive low every GPIO appearing in mask.

static void gpio_clr_mask64 (uint64_t mask)

Drive low every GPIO appearing in mask.

static void gpio_clr_mask_n (uint n, uint32_t mask)

Drive low every GPIO appearing in mask.

static void gpio_xor_mask (uint32_t mask)

Toggle every GPIO appearing in mask.

static void gpio_xor_mask64 (uint64_t mask)

Toggle every GPIO appearing in mask.

static void gpio_xor_mask_n (uint n, uint32_t mask)

Toggle every GPIO appearing in mask.

static void gpio_put_masked (uint32_t mask, uint32_t value)

Drive GPIOs high/low depending on parameters.

static void gpio_put_masked64 (uint64_t mask, uint64_t value)

Drive GPIOs high/low depending on parameters.

static void gpio_put_masked_n (uint n, uint32_t mask, uint32_t value)

Drive GPIOs high/low depending on parameters.

static void gpio_put_all (uint32_t value)

Drive all pins simultaneously.

static void gpio_put_all64 (uint64_t value)

Drive all pins simultaneously.

static void gpio_put (uint gpio, bool value)

Drive a single GPIO high/low.

static bool gpio_get_out_level (uint gpio)

Determine whether a GPIO is currently driven high or low.

static void gpio_set_dir_out_masked (uint32_t mask)

Set a number of GPIOs to output.

static void gpio_set_dir_out_masked64 (uint64_t mask)

Set a number of GPIOs to output.

static void gpio_set_dir_in_masked (uint32_t mask)

Set a number of GPIOs to input.

static void gpio_set_dir_in_masked64 (uint64_t mask)

Set a number of GPIOs to input.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 147

static void gpio_set_dir_masked (uint32_t mask, uint32_t value)

Set multiple GPIO directions.

static void gpio_set_dir_masked64 (uint64_t mask, uint64_t value)

Set multiple GPIO directions.

static void gpio_set_dir_all_bits (uint32_t values)

Set direction of all pins simultaneously.

static void gpio_set_dir_all_bits64 (uint64_t values)

Set direction of all pins simultaneously.

static void gpio_set_dir (uint gpio, bool out)

Set a single GPIO direction.

static bool gpio_is_dir_out (uint gpio)

Check if a specific GPIO direction is OUT.

static uint gpio_get_dir (uint gpio)

Get a specific GPIO direction.

4.1.10.5. Typedef Documentation

4.1.10.5.1. gpio_function_t

typedef enum gpio_function_rp2040 gpio_function_t

GPIO pin function selectors on RP2040 (used as typedef gpio_function_t)

4.1.10.5.2. gpio_function_t

typedef enum gpio_function_rp2350 gpio_function_t

GPIO pin function selectors on RP2350 (used as typedef gpio_function_t)

4.1.10.5.3. gpio_irq_callback_t

typedef void(* gpio_irq_callback_t) (uint gpio, uint32_t event_mask)

Callback function type for GPIO events

Parameters

gpio Which GPIO caused this interrupt

event_mask Which events caused this interrupt. See gpio_irq_level for details.

See also

gpio_set_irq_enabled_with_callback()

gpio_set_irq_callback()

4.1.10.6. Enumeration Type Documentation

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 148

4.1.10.6.1. gpio_function_rp2040

enum gpio_function_rp2040

GPIO pin function selectors on RP2040 (used as typedef gpio_function_t)

Table 17. Enumerator
GPIO_FUNC_XIP Select XIP as GPIO pin function.

GPIO_FUNC_SPI Select SPI as GPIO pin function.

GPIO_FUNC_UART Select UART as GPIO pin function.

GPIO_FUNC_I2C Select I2C as GPIO pin function.

GPIO_FUNC_PWM Select PWM as GPIO pin function.

GPIO_FUNC_SIO Select SIO as GPIO pin function.

GPIO_FUNC_PIO0 Select PIO0 as GPIO pin function.

GPIO_FUNC_PIO1 Select PIO1 as GPIO pin function.

GPIO_FUNC_GPCK Select GPCK as GPIO pin function.

GPIO_FUNC_USB Select USB as GPIO pin function.

GPIO_FUNC_NULL Select NULL as GPIO pin function.

4.1.10.6.2. gpio_function_rp2350

enum gpio_function_rp2350

GPIO pin function selectors on RP2350 (used as typedef gpio_function_t)

Table 18. Enumerator
GPIO_FUNC_HSTX Select HSTX as GPIO pin function.

GPIO_FUNC_SPI Select SPI as GPIO pin function.

GPIO_FUNC_UART Select UART as GPIO pin function.

GPIO_FUNC_I2C Select I2C as GPIO pin function.

GPIO_FUNC_PWM Select PWM as GPIO pin function.

GPIO_FUNC_SIO Select SIO as GPIO pin function.

GPIO_FUNC_PIO0 Select PIO0 as GPIO pin function.

GPIO_FUNC_PIO1 Select PIO1 as GPIO pin function.

GPIO_FUNC_PIO2 Select PIO2 as GPIO pin function.

GPIO_FUNC_GPCK Select GPCK as GPIO pin function.

GPIO_FUNC_XIP_CS1 Select XIP CS1 as GPIO pin function.

GPIO_FUNC_CORESIGHT_TRACE Select CORESIGHT TRACE as GPIO pin function.

GPIO_FUNC_USB Select USB as GPIO pin function.

GPIO_FUNC_UART_AUX Select UART_AUX as GPIO pin function.

GPIO_FUNC_NULL Select NULL as GPIO pin function.

4.1.10.6.3. gpio_irq_level

enum gpio_irq_level

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 149

GPIO Interrupt level definitions (GPIO events)

GPIO Interrupt levels

An interrupt can be generated for every GPIO pin in 4 scenarios:

• Level High: the GPIO pin is a logical 1

• Level Low: the GPIO pin is a logical 0

• Edge High: the GPIO has transitioned from a logical 0 to a logical 1

• Edge Low: the GPIO has transitioned from a logical 1 to a logical 0

The level interrupts are not latched. This means that if the pin is a logical 1 and the level high interrupt is active, it will

become inactive as soon as the pin changes to a logical 0. The edge interrupts are stored in the INTR register and can

be cleared by writing to the INTR register.

Table 19. Enumerator
GPIO_IRQ_LEVEL_LOW IRQ when the GPIO pin is a logical 1.

GPIO_IRQ_LEVEL_HIGH IRQ when the GPIO pin is a logical 0.

GPIO_IRQ_EDGE_FALL IRQ when the GPIO has transitioned from a logical 0 to a

logical 1.

GPIO_IRQ_EDGE_RISE IRQ when the GPIO has transitioned from a logical 1 to a

logical 0.

4.1.10.6.4. gpio_slew_rate

enum gpio_slew_rate

Slew rate limiting levels for GPIO outputs.

Slew rate limiting increases the minimum rise/fall time when a GPIO output is lightly loaded, which can help to reduce

electromagnetic emissions.

See also

gpio_set_slew_rate

Table 20. Enumerator
GPIO_SLEW_RATE_SLOW Slew rate limiting enabled.

GPIO_SLEW_RATE_FAST Slew rate limiting disabled.

4.1.10.6.5. gpio_drive_strength

enum gpio_drive_strength

Drive strength levels for GPIO outputs.

Drive strength levels for GPIO outputs.

See also

gpio_set_drive_strength

Table 21. Enumerator
GPIO_DRIVE_STRENGTH_2MA 2 mA nominal drive strength

GPIO_DRIVE_STRENGTH_4MA 4 mA nominal drive strength

GPIO_DRIVE_STRENGTH_8MA 8 mA nominal drive strength

GPIO_DRIVE_STRENGTH_12MA 12 mA nominal drive strength

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 150

4.1.10.7. Function Documentation

4.1.10.7.1. gpio_acknowledge_irq

void gpio_acknowledge_irq (uint gpio, uint32_t event_mask)

Acknowledge a GPIO interrupt for the specified events on the calling core.

 NOTE

This may be called with a mask of any of valid bits specified in gpio_irq_level, however it has no effect on level

sensitive interrupts which remain pending while the GPIO is at the specified level. When handling level sensitive

interrupts, you should generally disable the interrupt (see gpio_set_irq_enabled) and then set it up again later once

the GPIO level has changed (or to catch the opposite level).

Parameters

gpio GPIO number

 NOTE

For callbacks set with gpio_set_irq_enabled_with_callback, or gpio_set_irq_callback, this function is called

automatically.

Parameters

event_mask Bitmask of events to clear. See gpio_irq_level for details.

4.1.10.7.2. gpio_add_raw_irq_handler

static void gpio_add_raw_irq_handler (uint gpio, irq_handler_t handler) [inline], [static]

Adds a raw GPIO IRQ handler for a specific GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method adds such a callback, and disables the "default" callback for the specified GPIO.

 NOTE

Multiple raw handlers should not be added for the same GPIO, and this method will assert if you attempt to.

Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers

(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look

something like:

1 void my_irq_handler(void) {
2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
4 // handle the IRQ
5 }
6 }

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 151

gpio the GPIO number that will no longer be passed to the default callback for this core

handler the handler to add to the list of GPIO IRQ handlers for this core

4.1.10.7.3. gpio_add_raw_irq_handler_masked

void gpio_add_raw_irq_handler_masked (uint32_t gpio_mask, irq_handler_t handler)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method adds such a callback, and disables the "default" callback for the specified GPIOs.

 NOTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.

Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers

(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look

something like:

 1 void my_irq_handler(void) {
 2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
 3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
 4 // handle the IRQ
 5 }
 6 if (gpio_get_irq_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
 7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
 8 // handle the IRQ
 9 }
10 }

Parameters

gpio_mask a bit mask of the GPIO numbers that will no longer be passed to the default callback for this core

handler the handler to add to the list of GPIO IRQ handlers for this core

4.1.10.7.4. gpio_add_raw_irq_handler_masked64

void gpio_add_raw_irq_handler_masked64 (uint64_t gpio_mask, irq_handler_t handler)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method adds such a callback, and disables the "default" callback for the specified GPIOs.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 152

 NOTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.

Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers

(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look

something like:

 1 void my_irq_handler(void) {
 2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
 3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
 4 // handle the IRQ
 5 }
 6 if (gpio_get_irq_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
 7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
 8 // handle the IRQ
 9 }
10 }

Parameters

gpio_mask a 64 bit mask of the GPIO numbers that will no longer be passed to the default callback for this core

handler the handler to add to the list of GPIO IRQ handlers for this core

4.1.10.7.5. gpio_add_raw_irq_handler_with_order_priority

static void gpio_add_raw_irq_handler_with_order_priority (uint gpio, irq_handler_t handler, uint8_t order_priority)

[inline], [static]

Adds a raw GPIO IRQ handler for a specific GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default callback. The order relative to the

default callback can be controlled via the order_priority parameter(the default callback has the priority

GPIO_IRQ_CALLBACK_ORDER_PRIORITY which defaults to the lowest priority with the intention of it running last).

This method adds such a callback, and disables the "default" callback for the specified GPIO.

 NOTE

Multiple raw handlers should not be added for the same GPIO, and this method will assert if you attempt to.

Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers

(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look

something like:

1 void my_irq_handler(void) {
2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
4 // handle the IRQ
5 }
6 }

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 153

Parameters

gpio the GPIO number that will no longer be passed to the default callback for this core

handler the handler to add to the list of GPIO IRQ handlers for this core

order_priority the priority order to determine the relative position of the handler in the list of GPIO IRQ

handlers for this core.

4.1.10.7.6. gpio_add_raw_irq_handler_with_order_priority_masked

void gpio_add_raw_irq_handler_with_order_priority_masked (uint32_t gpio_mask, irq_handler_t handler, uint8_t

order_priority)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default callback. The order relative to the

default callback can be controlled via the order_priority parameter (the default callback has the priority

GPIO_IRQ_CALLBACK_ORDER_PRIORITY which defaults to the lowest priority with the intention of it running last).

This method adds such an explicit GPIO IRQ handler, and disables the "default" callback for the specified GPIOs.

 NOTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.

Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers

(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look

something like:

 1 void my_irq_handler(void) {
 2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
 3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
 4 // handle the IRQ
 5 }
 6 if (gpio_get_irq_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
 7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
 8 // handle the IRQ
 9 }
10 }

Parameters

gpio_mask a bit mask of the GPIO numbers that will no longer be passed to the default callback for this

core

handler the handler to add to the list of GPIO IRQ handlers for this core

order_priority the priority order to determine the relative position of the handler in the list of GPIO IRQ

handlers for this core.

4.1.10.7.7. gpio_add_raw_irq_handler_with_order_priority_masked64

void gpio_add_raw_irq_handler_with_order_priority_masked64 (uint64_t gpio_mask, irq_handler_t handler, uint8_t

order_priority)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 154

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default callback. The order relative to the

default callback can be controlled via the order_priority parameter (the default callback has the priority

GPIO_IRQ_CALLBACK_ORDER_PRIORITY which defaults to the lowest priority with the intention of it running last).

This method adds such an explicit GPIO IRQ handler, and disables the "default" callback for the specified GPIOs.

 NOTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.

Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers

(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look

something like:

 1 void my_irq_handler(void) {
 2 if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
 3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
 4 // handle the IRQ
 5 }
 6 if (gpio_get_irq_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
 7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
 8 // handle the IRQ
 9 }
10 }

Parameters

gpio_mask a bit mask of the GPIO numbers that will no longer be passed to the default callback for this

core

handler the handler to add to the list of GPIO IRQ handlers for this core

order_priority the priority order to determine the relative position of the handler in the list of GPIO IRQ

handlers for this core.

4.1.10.7.8. gpio_clr_mask

static void gpio_clr_mask (uint32_t mask) [inline], [static]

Drive low every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to clear

4.1.10.7.9. gpio_clr_mask64

static void gpio_clr_mask64 (uint64_t mask) [inline], [static]

Drive low every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to clear

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 155

4.1.10.7.10. gpio_clr_mask_n

static void gpio_clr_mask_n (uint n, uint32_t mask) [inline], [static]

Drive low every GPIO appearing in mask.

Parameters

n the base GPIO index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.

mask Bitmask of 32 GPIO values to clear

4.1.10.7.11. gpio_deinit

void gpio_deinit (uint gpio)

Resets a GPIO back to the NULL function, i.e. disables it.

Parameters

gpio GPIO number

4.1.10.7.12. gpio_disable_pulls

static void gpio_disable_pulls (uint gpio) [inline], [static]

Disable pulls on specified GPIO.

Parameters

gpio GPIO number

4.1.10.7.13. gpio_get

static bool gpio_get (uint gpio) [inline], [static]

Get state of a single specified GPIO.

Parameters

gpio GPIO number

Returns

Current state of the GPIO. 0 for low, non-zero for high

4.1.10.7.14. gpio_get_all

static uint32_t gpio_get_all (void) [inline], [static]

Get raw value of all GPIOs.

Returns

Bitmask of raw GPIO values

4.1.10.7.15. gpio_get_all64

static uint64_t gpio_get_all64 (void) [inline], [static]

Get raw value of all GPIOs.

Returns

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 156

Bitmask of raw GPIO values

4.1.10.7.16. gpio_get_dir

static uint gpio_get_dir (uint gpio) [inline], [static]

Get a specific GPIO direction.

Parameters

gpio GPIO number

Returns

1 for out, 0 for in

4.1.10.7.17. gpio_get_drive_strength

enum gpio_drive_strength gpio_get_drive_strength (uint gpio)

Determine current drive strength for a specified GPIO.

See also

gpio_set_drive_strength

Parameters

gpio GPIO number

Returns

Current drive strength of that GPIO

4.1.10.7.18. gpio_get_function

gpio_function_t gpio_get_function (uint gpio)

Determine current GPIO function.

Parameters

gpio GPIO number

Returns

Which GPIO function is currently selected from list gpio_function

4.1.10.7.19. gpio_get_irq_event_mask

static uint32_t gpio_get_irq_event_mask (uint gpio) [inline], [static]

Return the current interrupt status (pending events) for the given GPIO.

Parameters

gpio GPIO number

Returns

Bitmask of events that are currently pending for the GPIO. See gpio_irq_level for details.

See also

gpio_acknowledge_irq

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 157

4.1.10.7.20. gpio_get_out_level

static bool gpio_get_out_level (uint gpio) [inline], [static]

Determine whether a GPIO is currently driven high or low.

This function returns the high/low output level most recently assigned to a GPIO via gpio_put() or similar. This is the

value that is presented outward to the IO muxing, not the input level back from the pad (which can be read using

gpio_get()).

To avoid races, this function must not be used for read-modify-write sequences when driving GPIOs – instead functions

like gpio_put() should be used to atomically update GPIOs. This accessor is intended for debug use only.

Parameters

gpio GPIO number

Returns

true if the GPIO output level is high, false if low.

4.1.10.7.21. gpio_get_slew_rate

enum gpio_slew_rate gpio_get_slew_rate (uint gpio)

Determine current slew rate for a specified GPIO.

See also

gpio_set_slew_rate

Parameters

gpio GPIO number

Returns

Current slew rate of that GPIO

4.1.10.7.22. gpio_init

void gpio_init (uint gpio)

Initialise a GPIO for (enabled I/O and set func to GPIO_FUNC_SIO)

Clear the output enable (i.e. set to input). Clear any output value.

Parameters

gpio GPIO number

4.1.10.7.23. gpio_init_mask

void gpio_init_mask (uint gpio_mask)

Initialise multiple GPIOs (enabled I/O and set func to GPIO_FUNC_SIO)

Clear the output enable (i.e. set to input). Clear any output value.

Parameters

gpio_mask Mask with 1 bit per GPIO number to initialize

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 158

4.1.10.7.24. gpio_is_dir_out

static bool gpio_is_dir_out (uint gpio) [inline], [static]

Check if a specific GPIO direction is OUT.

Parameters

gpio GPIO number

Returns

true if the direction for the pin is OUT

4.1.10.7.25. gpio_is_input_hysteresis_enabled

bool gpio_is_input_hysteresis_enabled (uint gpio)

Determine whether input hysteresis is enabled on a specified GPIO.

See also

gpio_set_input_hysteresis_enabled

Parameters

gpio GPIO number

4.1.10.7.26. gpio_is_pulled_down

static bool gpio_is_pulled_down (uint gpio) [inline], [static]

Determine if the specified GPIO is pulled down.

Parameters

gpio GPIO number

Returns

true if the GPIO is pulled down

4.1.10.7.27. gpio_is_pulled_up

static bool gpio_is_pulled_up (uint gpio) [inline], [static]

Determine if the specified GPIO is pulled up.

Parameters

gpio GPIO number

Returns

true if the GPIO is pulled up

4.1.10.7.28. gpio_pull_down

static void gpio_pull_down (uint gpio) [inline], [static]

Set specified GPIO to be pulled down.

Parameters

gpio GPIO number

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 159

4.1.10.7.29. gpio_pull_up

static void gpio_pull_up (uint gpio) [inline], [static]

Set specified GPIO to be pulled up.

Parameters

gpio GPIO number

4.1.10.7.30. gpio_put

static void gpio_put (uint gpio, bool value) [inline], [static]

Drive a single GPIO high/low.

Parameters

gpio GPIO number

value If false clear the GPIO, otherwise set it.

4.1.10.7.31. gpio_put_all

static void gpio_put_all (uint32_t value) [inline], [static]

Drive all pins simultaneously.

Parameters

value Bitmask of GPIO values to change

4.1.10.7.32. gpio_put_all64

static void gpio_put_all64 (uint64_t value) [inline], [static]

Drive all pins simultaneously.

Parameters

value Bitmask of GPIO values to change

4.1.10.7.33. gpio_put_masked

static void gpio_put_masked (uint32_t mask, uint32_t value) [inline], [static]

Drive GPIOs high/low depending on parameters.

Parameters

mask Bitmask of GPIO values to change

value Value to set

For each 1 bit in mask, drive that pin to the value given by corresponding bit in value, leaving other pins unchanged. Since

this uses the TOGL alias, it is concurrency-safe with e.g. an IRQ bashing different pins from the same core.

4.1.10.7.34. gpio_put_masked64

static void gpio_put_masked64 (uint64_t mask, uint64_t value) [inline], [static]

Drive GPIOs high/low depending on parameters.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 160

Parameters

mask Bitmask of GPIO values to change

value Value to set

For each 1 bit in mask, drive that pin to the value given by corresponding bit in value, leaving other pins unchanged. Since

this uses the TOGL alias, it is concurrency-safe with e.g. an IRQ bashing different pins from the same core.

4.1.10.7.35. gpio_put_masked_n

static void gpio_put_masked_n (uint n, uint32_t mask, uint32_t value) [inline], [static]

Drive GPIOs high/low depending on parameters.

Parameters

n the base GPIO index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.

mask Bitmask of GPIO values to change

value Value to set

For each 1 bit in mask, drive that pin to the value given by corresponding bit in value, leaving other pins unchanged. Since

this uses the TOGL alias, it is concurrency-safe with e.g. an IRQ bashing different pins from the same core.

4.1.10.7.36. gpio_remove_raw_irq_handler

static void gpio_remove_raw_irq_handler (uint gpio, irq_handler_t handler) [inline], [static]

Removes a raw GPIO IRQ handler for the specified GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method removes such a callback, and enables the "default" callback for the specified GPIO.

Parameters

gpio the GPIO number that will now be passed to the default callback for this core

handler the handler to remove from the list of GPIO IRQ handlers for this core

4.1.10.7.37. gpio_remove_raw_irq_handler_masked

void gpio_remove_raw_irq_handler_masked (uint32_t gpio_mask, irq_handler_t handler)

Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method removes such a callback, and enables the "default" callback for the specified GPIOs.

Parameters

gpio_mask a bit mask of the GPIO numbers that will now be passed to the default callback for this core

handler the handler to remove from the list of GPIO IRQ handlers for this core

4.1.10.7.38. gpio_remove_raw_irq_handler_masked64

void gpio_remove_raw_irq_handler_masked64 (uint64_t gpio_mask, irq_handler_t handler)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 161

Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is

possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method removes such a callback, and enables the "default" callback for the specified GPIOs.

Parameters

gpio_mask a bit mask of the GPIO numbers that will now be passed to the default callback for this core

handler the handler to remove from the list of GPIO IRQ handlers for this core

4.1.10.7.39. gpio_set_dir

static void gpio_set_dir (uint gpio, bool out) [inline], [static]

Set a single GPIO direction.

Parameters

gpio GPIO number

out true for out, false for in

4.1.10.7.40. gpio_set_dir_all_bits

static void gpio_set_dir_all_bits (uint32_t values) [inline], [static]

Set direction of all pins simultaneously.

Parameters

values individual settings for each gpio; for GPIO N, bit N is 1 for out, 0 for in

4.1.10.7.41. gpio_set_dir_all_bits64

static void gpio_set_dir_all_bits64 (uint64_t values) [inline], [static]

Set direction of all pins simultaneously.

Parameters

values individual settings for each gpio; for GPIO N, bit N is 1 for out, 0 for in

4.1.10.7.42. gpio_set_dir_in_masked

static void gpio_set_dir_in_masked (uint32_t mask) [inline], [static]

Set a number of GPIOs to input.

Parameters

mask Bitmask of GPIO to set to input

4.1.10.7.43. gpio_set_dir_in_masked64

static void gpio_set_dir_in_masked64 (uint64_t mask) [inline], [static]

Set a number of GPIOs to input.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 162

mask Bitmask of GPIO to set to input

4.1.10.7.44. gpio_set_dir_masked

static void gpio_set_dir_masked (uint32_t mask, uint32_t value) [inline], [static]

Set multiple GPIO directions.

Parameters

mask Bitmask of GPIO to set to input, as bits 0-29

value Values to set

For each 1 bit in "mask", switch that pin to the direction given by corresponding bit in "value", leaving other pins

unchanged. E.g. gpio_set_dir_masked(0x3, 0x2); -> set pin 0 to input, pin 1 to output, simultaneously.

4.1.10.7.45. gpio_set_dir_masked64

static void gpio_set_dir_masked64 (uint64_t mask, uint64_t value) [inline], [static]

Set multiple GPIO directions.

Parameters

mask Bitmask of GPIO to set to input, as bits 0-29

value Values to set

For each 1 bit in "mask", switch that pin to the direction given by corresponding bit in "value", leaving other pins

unchanged. E.g. gpio_set_dir_masked(0x3, 0x2); -> set pin 0 to input, pin 1 to output, simultaneously.

4.1.10.7.46. gpio_set_dir_out_masked

static void gpio_set_dir_out_masked (uint32_t mask) [inline], [static]

Set a number of GPIOs to output.

Switch all GPIOs in "mask" to output

Parameters

mask Bitmask of GPIO to set to output

4.1.10.7.47. gpio_set_dir_out_masked64

static void gpio_set_dir_out_masked64 (uint64_t mask) [inline], [static]

Set a number of GPIOs to output.

Switch all GPIOs in "mask" to output

Parameters

mask Bitmask of GPIO to set to output

4.1.10.7.48. gpio_set_dormant_irq_enabled

void gpio_set_dormant_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)

Enable dormant wake up interrupt for specified GPIO and events.

This configures IRQs to restart the XOSC or ROSC when they are disabled in dormant mode

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 163

Parameters

gpio GPIO number

event_mask Which events will cause an interrupt. See gpio_irq_level for details.

enabled Enable/disable flag

4.1.10.7.49. gpio_set_drive_strength

void gpio_set_drive_strength (uint gpio, enum gpio_drive_strength drive)

Set drive strength for a specified GPIO.

See also

gpio_get_drive_strength

Parameters

gpio GPIO number

drive GPIO output drive strength

4.1.10.7.50. gpio_set_function

void gpio_set_function (uint gpio, gpio_function_t fn)

Select GPIO function.

Parameters

gpio GPIO number

fn Which GPIO function select to use from list gpio_function

4.1.10.7.51. gpio_set_function_masked

void gpio_set_function_masked (uint32_t gpio_mask, gpio_function_t fn)

Select the function for multiple GPIOs.

See also

gpio_set_function

Parameters

gpio_mask Mask with 1 bit per GPIO number to set the function for

fn Which GPIO function select to use from list gpio_function

4.1.10.7.52. gpio_set_function_masked64

void gpio_set_function_masked64 (uint64_t gpio_mask, gpio_function_t fn)

Select the function for multiple GPIOs.

See also

gpio_set_function

Parameters

gpio_mask Mask with 1 bit per GPIO number to set the function for

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 164

fn Which GPIO function select to use from list gpio_function

4.1.10.7.53. gpio_set_inover

void gpio_set_inover (uint gpio, uint value)

Select GPIO input override.

Parameters

gpio GPIO number

value See gpio_override

4.1.10.7.54. gpio_set_input_enabled

void gpio_set_input_enabled (uint gpio, bool enabled)

Enable GPIO input.

Parameters

gpio GPIO number

enabled true to enable input on specified GPIO

4.1.10.7.55. gpio_set_input_hysteresis_enabled

void gpio_set_input_hysteresis_enabled (uint gpio, bool enabled)

Enable/disable GPIO input hysteresis (Schmitt trigger)

Enable or disable the Schmitt trigger hysteresis on a given GPIO. This is enabled on all GPIOs by default. Disabling input

hysteresis can lead to inconsistent readings when the input signal has very long rise or fall times, but slightly reduces

the GPIO’s input delay.

See also

gpio_is_input_hysteresis_enabled

Parameters

gpio GPIO number

enabled true to enable input hysteresis on specified GPIO

4.1.10.7.56. gpio_set_irq_callback

void gpio_set_irq_callback (gpio_irq_callback_t callback)

Set the generic callback used for GPIO IRQ events for the current core.

This function sets the callback used for all GPIO IRQs on the current core that are not explicitly hooked via

gpio_add_raw_irq_handler or other gpio_add_raw_irq_handler_ functions.

This function is called with the GPIO number and event mask for each of the (not explicitly hooked) GPIOs that have

events enabled and that are pending (see gpio_get_irq_event_mask).

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 165

 NOTE

The IO IRQs are independent per-processor. This function affects the processor that calls the function.

Parameters

callback default user function to call on GPIO irq. Note only one of these can be set per processor.

4.1.10.7.57. gpio_set_irq_enabled

void gpio_set_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)

Enable or disable specific interrupt events for specified GPIO.

This function sets which GPIO events cause a GPIO interrupt on the calling core. See gpio_set_irq_callback,

gpio_set_irq_enabled_with_callback and gpio_add_raw_irq_handler to set up a GPIO interrupt handler to handle the

events.

 NOTE

The IO IRQs are independent per-processor. This configures the interrupt events for the processor that calls the

function.

Parameters

gpio GPIO number

event_mask Which events will cause an interrupt

enabled Enable or disable flag

Events is a bitmask of the following gpio_irq_level values:

bit constant interrupt

0 GPIO_IRQ_LEVEL_LOW Continuously while level is low

1 GPIO_IRQ_LEVEL_HIGH Continuously while level is high

2 GPIO_IRQ_EDGE_FALL On each transition from high to low

3 GPIO_IRQ_EDGE_RISE On each transition from low to high

which are specified in gpio_irq_level

4.1.10.7.58. gpio_set_irq_enabled_with_callback

void gpio_set_irq_enabled_with_callback (uint gpio, uint32_t event_mask, bool enabled, gpio_irq_callback_t callback)

Convenience function which performs multiple GPIO IRQ related initializations.

This method is a slightly eclectic mix of initialization, that:

• Updates whether the specified events for the specified GPIO causes an interrupt on the calling core based on the

enable flag.

• Sets the callback handler for the calling core to callback (or clears the handler if the callback is NULL).

• Enables GPIO IRQs on the current core if enabled is true.

This method is commonly used to perform a one time setup, and following that any additional IRQs/events are enabled

via gpio_set_irq_enabled. All GPIOs/events added in this way on the same core share the same callback; for multiple

independent handlers for different GPIOs you should use gpio_add_raw_irq_handler and related functions.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 166

This method is equivalent to:

1 gpio_set_irq_enabled(gpio, event_mask, enabled);
2 gpio_set_irq_callback(callback);
3 if (enabled) irq_set_enabled(IO_IRQ_BANK0, true);

 NOTE

The IO IRQs are independent per-processor. This method affects only the processor that calls the function.

Parameters

gpio GPIO number

event_mask Which events will cause an interrupt. See gpio_irq_level for details.

enabled Enable or disable flag

callback user function to call on GPIO irq. if NULL, the callback is removed

4.1.10.7.59. gpio_set_irqover

void gpio_set_irqover (uint gpio, uint value)

Set GPIO IRQ override.

Optionally invert a GPIO IRQ signal, or drive it high or low

Parameters

gpio GPIO number

value See gpio_override

4.1.10.7.60. gpio_set_mask

static void gpio_set_mask (uint32_t mask) [inline], [static]

Drive high every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to set

4.1.10.7.61. gpio_set_mask64

static void gpio_set_mask64 (uint64_t mask) [inline], [static]

Drive high every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to set

4.1.10.7.62. gpio_set_mask_n

static void gpio_set_mask_n (uint n, uint32_t mask) [inline], [static]

Drive high every GPIO appearing in mask.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 167

Parameters

n the base GPIO index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.

mask Bitmask of 32 GPIO values to set

4.1.10.7.63. gpio_set_oeover

void gpio_set_oeover (uint gpio, uint value)

Select GPIO output enable override.

Parameters

gpio GPIO number

value See gpio_override

4.1.10.7.64. gpio_set_outover

void gpio_set_outover (uint gpio, uint value)

Set GPIO output override.

Parameters

gpio GPIO number

value See gpio_override

4.1.10.7.65. gpio_set_pulls

void gpio_set_pulls (uint gpio, bool up, bool down)

Select up and down pulls on specific GPIO.

Parameters

gpio GPIO number

up If true set a pull up on the GPIO

down If true set a pull down on the GPIO

 NOTE

On the RP2040, setting both pulls enables a "bus keep" function, i.e. a weak pull to whatever is current high/low state

of GPIO.

4.1.10.7.66. gpio_set_slew_rate

void gpio_set_slew_rate (uint gpio, enum gpio_slew_rate slew)

Set slew rate for a specified GPIO.

See also

gpio_get_slew_rate

Parameters

gpio GPIO number

slew GPIO output slew rate

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 168

4.1.10.7.67. gpio_xor_mask

static void gpio_xor_mask (uint32_t mask) [inline], [static]

Toggle every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to toggle

4.1.10.7.68. gpio_xor_mask64

static void gpio_xor_mask64 (uint64_t mask) [inline], [static]

Toggle every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to toggle

4.1.10.7.69. gpio_xor_mask_n

static void gpio_xor_mask_n (uint n, uint32_t mask) [inline], [static]

Toggle every GPIO appearing in mask.

Parameters

n the base GPIO index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.

mask Bitmask of 32 GPIO values to toggle

4.1.11. hardware_hazard3

Accessors for Hazard3-specific RISC-V CSRs, and intrinsics for Hazard3 custom instructions.

4.1.12. hardware_i2c

I2C Controller API.

4.1.12.1. Detailed Description

The I2C bus is a two-wire serial interface, consisting of a serial data line SDA and a serial clock SCL. These wires carry

information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can

operate as either a “transmitter” or “receiver”, depending on the function of the device. Devices can also be considered

as masters or slaves when performing data transfers. A master is a device that initiates a data transfer on the bus and

generates the clock signals to permit that transfer. The first byte in the data transfer always contains the 7-bit address

and a read/write bit in the LSB position. This API takes care of toggling the read/write bit. After this, any device

addressed is considered a slave.

This API allows the controller to be set up as a master or a slave using the i2c_set_slave_mode function.

The external pins of each controller are connected to GPIO pins as defined in the GPIO muxing table in the datasheet.

The muxing options give some IO flexibility, but each controller external pin should be connected to only one GPIO.

Note that the controller does NOT support High speed mode or Ultra-fast speed mode, the fastest operation being fast

mode plus at up to 1000Kb/s.

See the datasheet for more information on the I2C controller and its usage.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 169

4.1.12.1.1. Example

 1 // Sweep through all 7-bit I2C addresses, to see if any slaves are present on
 2 // the I2C bus. Print out a table that looks like this:
 3 //
 4 // I2C Bus Scan
 5 // 0 1 2 3 4 5 6 7 8 9 A B C D E F
 6 // 00
 7 // 10 . . @
 8 // 20
 9 // 30 @
10 // 40
11 // 50
12 // 60
13 // 70
14 // E.g. if addresses 0x12 and 0x34 were acknowledged.
15
16 #include <stdio.h>
17 #include "pico/stdlib.h"
18 #include "pico/binary_info.h"
19 #include "hardware/i2c.h"
20
21 // I2C reserves some addresses for special purposes. We exclude these from the scan.
22 // These are any addresses of the form 000 0xxx or 111 1xxx
23 bool reserved_addr(uint8_t addr) {
24 return (addr & 0x78) == 0 || (addr & 0x78) == 0x78;
25 }
26
27 int main() {
28 // Enable UART so we can print status output
29 stdio_init_all();
30 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
31 #warning i2c/bus_scan example requires a board with I2C pins
32 puts("Default I2C pins were not defined");
33 #else
34 // This example will use I2C0 on the default SDA and SCL pins (GP4, GP5 on a Pico)
35 i2c_init(i2c_default, 100 * 1000);
36 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
37 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
38 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
39 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
40 // Make the I2C pins available to picotool
41 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
42
43 printf("\nI2C Bus Scan\n");
44 printf(" 0 1 2 3 4 5 6 7 8 9 A B C D E F\n");
45
46 for (int addr = 0; addr < (1 << 7); ++addr) {
47 if (addr % 16 == 0) {
48 printf("%02x ", addr);
49 }
50
51 // Perform a 1-byte dummy read from the probe address. If a slave
52 // acknowledges this address, the function returns the number of bytes
53 // transferred. If the address byte is ignored, the function returns
54 // -1.
55
56 // Skip over any reserved addresses.
57 int ret;
58 uint8_t rxdata;

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 170

59 if (reserved_addr(addr))
60 ret = PICO_ERROR_GENERIC;
61 else
62 ret = i2c_read_blocking(i2c_default, addr, &rxdata, 1, false);
63
64 printf(ret < 0 ? "." : "@");
65 printf(addr % 16 == 15 ? "\n" : " ");
66 }
67 printf("Done.\n");
68 return 0;
69 #endif
70 }

4.1.12.2. Macros

• #define I2C_NUM(i2c)

• #define I2C_INSTANCE(num)

• #define I2C_DREQ_NUM(i2c, is_tx)

4.1.12.3. Functions

uint i2c_init (i2c_inst_t *i2c, uint baudrate)

Initialise the I2C HW block.

void i2c_deinit (i2c_inst_t *i2c)

Disable the I2C HW block.

uint i2c_set_baudrate (i2c_inst_t *i2c, uint baudrate)

Set I2C baudrate.

void i2c_set_slave_mode (i2c_inst_t *i2c, bool slave, uint8_t addr)

Set I2C port to slave mode.

static uint i2c_get_index (i2c_inst_t *i2c)

Convert I2C instance to hardware instance number.

static i2c_hw_t * i2c_get_hw (i2c_inst_t *i2c)

Return pointer to structure containing i2c hardware registers.

static i2c_inst_t * i2c_get_instance (uint num)

Convert I2C hardware instance number to I2C instance.

int i2c_write_blocking_until (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, absolute_time_t

until)

Attempt to write specified number of bytes to address, blocking until the specified absolute time is reached.

int i2c_read_blocking_until (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, absolute_time_t until)

Attempt to read specified number of bytes from address, blocking until the specified absolute time is reached.

static int i2c_write_timeout_us (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, uint

timeout_us)

Attempt to write specified number of bytes to address, with timeout.

static int i2c_read_timeout_us (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, uint timeout_us)

Attempt to read specified number of bytes from address, with timeout.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 171

int i2c_write_blocking (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop)

Attempt to write specified number of bytes to address, blocking.

int i2c_read_blocking (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop)

Attempt to read specified number of bytes from address, blocking.

static size_t i2c_get_write_available (i2c_inst_t *i2c)

Determine non-blocking write space available.

static size_t i2c_get_read_available (i2c_inst_t *i2c)

Determine number of bytes received.

static void i2c_write_raw_blocking (i2c_inst_t *i2c, const uint8_t *src, size_t len)

Write direct to TX FIFO.

static void i2c_read_raw_blocking (i2c_inst_t *i2c, uint8_t *dst, size_t len)

Read direct from RX FIFO.

static uint8_t i2c_read_byte_raw (i2c_inst_t *i2c)

Pop a byte from I2C Rx FIFO.

static void i2c_write_byte_raw (i2c_inst_t *i2c, uint8_t value)

Push a byte into I2C Tx FIFO.

static uint i2c_get_dreq (i2c_inst_t *i2c, bool is_tx)

Return the DREQ to use for pacing transfers to/from a particular I2C instance.

4.1.12.3.1. i2c0_inst

i2c_inst_t i2c0_inst

The I2C identifiers for use in I2C functions.

e.g. i2c_init(i2c0, 48000)

4.1.12.4. Macro Definition Documentation

4.1.12.4.1. I2C_NUM

#define I2C_NUM(i2c)

Returns the I2C number for a I2C instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.12.4.2. I2C_INSTANCE

#define I2C_INSTANCE(num)

Returns the I2C instance with the given I2C number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.12.4.3. I2C_DREQ_NUM

#define I2C_DREQ_NUM(i2c, is_tx)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 172

Returns the dreq_num_t used for pacing DMA transfers to or from this I2C instance. If is_tx is true, then it is for transfers

to the I2C instance else for transfers from the I2C instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.12.5. Function Documentation

4.1.12.5.1. i2c_deinit

void i2c_deinit (i2c_inst_t * i2c)

Disable the I2C HW block.

Parameters

i2c Either i2c0 or i2c1

Disable the I2C again if it is no longer used. Must be reinitialised before being used again.

4.1.12.5.2. i2c_get_dreq

static uint i2c_get_dreq (i2c_inst_t * i2c, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular I2C instance.

Parameters

i2c Either i2c0 or i2c1

is_tx true for sending data to the I2C instance, false for receiving data from the I2C instance

4.1.12.5.3. i2c_get_hw

static i2c_hw_t * i2c_get_hw (i2c_inst_t * i2c) [inline], [static]

Return pointer to structure containing i2c hardware registers.

Parameters

i2c I2C instance

Returns

pointer to i2c_hw_t

4.1.12.5.4. i2c_get_index

static uint i2c_get_index (i2c_inst_t * i2c) [inline], [static]

Convert I2C instance to hardware instance number.

Parameters

i2c I2C instance

Returns

Number of I2C, 0 or 1.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 173

4.1.12.5.5. i2c_get_instance

static i2c_inst_t * i2c_get_instance (uint num) [inline], [static]

Convert I2C hardware instance number to I2C instance.

Parameters

num Number of I2C, 0 or 1

Returns

I2C hardware instance

4.1.12.5.6. i2c_get_read_available

static size_t i2c_get_read_available (i2c_inst_t * i2c) [inline], [static]

Determine number of bytes received.

Parameters

i2c Either i2c0 or i2c1

Returns

0 if no data available, if return is nonzero at least that many bytes can be read without blocking.

4.1.12.5.7. i2c_get_write_available

static size_t i2c_get_write_available (i2c_inst_t * i2c) [inline], [static]

Determine non-blocking write space available.

Parameters

i2c Either i2c0 or i2c1

Returns

0 if no space is available in the I2C to write more data. If return is nonzero, at least that many bytes can be written

without blocking.

4.1.12.5.8. i2c_init

uint i2c_init (i2c_inst_t * i2c, uint baudrate)

Initialise the I2C HW block.

Put the I2C hardware into a known state, and enable it. Must be called before other functions. By default, the I2C is

configured to operate as a master.

The I2C bus frequency is set as close as possible to requested, and the actual rate set is returned

Parameters

i2c Either i2c0 or i2c1

baudrate Baudrate in Hz (e.g. 100kHz is 100000)

Returns

Actual set baudrate

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 174

4.1.12.5.9. i2c_read_blocking

int i2c_read_blocking (i2c_inst_t * i2c, uint8_t addr, uint8_t * dst, size_t len, bool nostop)

Attempt to read specified number of bytes from address, blocking.

Parameters

i2c Either i2c0 or i2c1

addr 7-bit address of device to read from

dst Pointer to buffer to receive data

len Length of data in bytes to receive

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next

transfer will begin with a Restart rather than a Start.

Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged or no device present.

4.1.12.5.10. i2c_read_blocking_until

int i2c_read_blocking_until (i2c_inst_t * i2c, uint8_t addr, uint8_t * dst, size_t len, bool nostop, absolute_time_t

until)

Attempt to read specified number of bytes from address, blocking until the specified absolute time is reached.

Parameters

i2c Either i2c0 or i2c1

addr 7-bit address of device to read from

dst Pointer to buffer to receive data

len Length of data in bytes to receive

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next

transfer will begin with a Restart rather than a Start.

until The absolute time that the block will wait until the entire transaction is complete.

Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or

PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.12.5.11. i2c_read_byte_raw

static uint8_t i2c_read_byte_raw (i2c_inst_t * i2c) [inline], [static]

Pop a byte from I2C Rx FIFO.

This function is non-blocking and assumes the Rx FIFO isn’t empty.

Parameters

i2c I2C instance.

Returns

uint8_t Byte value.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 175

4.1.12.5.12. i2c_read_raw_blocking

static void i2c_read_raw_blocking (i2c_inst_t * i2c, uint8_t * dst, size_t len) [inline], [static]

Read direct from RX FIFO.

Parameters

i2c Either i2c0 or i2c1

dst Buffer to accept data

len Number of bytes to read

Reads directly from the I2C RX FIFO which is mainly useful for slave-mode operation.

4.1.12.5.13. i2c_read_timeout_us

static int i2c_read_timeout_us (i2c_inst_t * i2c, uint8_t addr, uint8_t * dst, size_t len, bool nostop, uint timeout_us)

[inline], [static]

Attempt to read specified number of bytes from address, with timeout.

Parameters

i2c Either i2c0 or i2c1

addr 7-bit address of device to read from

dst Pointer to buffer to receive data

len Length of data in bytes to receive

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next

transfer will begin with a Restart rather than a Start.

timeout_us The time that the function will wait for the entire transaction to complete

Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or

PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.12.5.14. i2c_set_baudrate

uint i2c_set_baudrate (i2c_inst_t * i2c, uint baudrate)

Set I2C baudrate.

Set I2C bus frequency as close as possible to requested, and return actual rate set. Baudrate may not be as exactly

requested due to clocking limitations.

Parameters

i2c Either i2c0 or i2c1

baudrate Baudrate in Hz (e.g. 100kHz is 100000)

Returns

Actual set baudrate

4.1.12.5.15. i2c_set_slave_mode

void i2c_set_slave_mode (i2c_inst_t * i2c, bool slave, uint8_t addr)

Set I2C port to slave mode.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 176

Parameters

i2c Either i2c0 or i2c1

slave true to use slave mode, false to use master mode

addr If slave is true, set the slave address to this value

4.1.12.5.16. i2c_write_blocking

int i2c_write_blocking (i2c_inst_t * i2c, uint8_t addr, const uint8_t * src, size_t len, bool nostop)

Attempt to write specified number of bytes to address, blocking.

Parameters

i2c Either i2c0 or i2c1

addr 7-bit address of device to write to

src Pointer to data to send

len Length of data in bytes to send

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next

transfer will begin with a Restart rather than a Start.

Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present.

4.1.12.5.17. i2c_write_blocking_until

int i2c_write_blocking_until (i2c_inst_t * i2c, uint8_t addr, const uint8_t * src, size_t len, bool nostop,

absolute_time_t until)

Attempt to write specified number of bytes to address, blocking until the specified absolute time is reached.

Parameters

i2c Either i2c0 or i2c1

addr 7-bit address of device to write to

src Pointer to data to send

len Length of data in bytes to send

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next

transfer will begin with a Restart rather than a Start.

until The absolute time that the block will wait until the entire transaction is complete. Note, an individual

timeout of this value divided by the length of data is applied for each byte transfer, so if the first or

subsequent bytes fails to transfer within that sub timeout, the function will return with an error.

Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or

PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.12.5.18. i2c_write_byte_raw

static void i2c_write_byte_raw (i2c_inst_t * i2c, uint8_t value) [inline], [static]

Push a byte into I2C Tx FIFO.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 177

This function is non-blocking and assumes the Tx FIFO isn’t full.

Parameters

i2c I2C instance.

value Byte value.

4.1.12.5.19. i2c_write_raw_blocking

static void i2c_write_raw_blocking (i2c_inst_t * i2c, const uint8_t * src, size_t len) [inline], [static]

Write direct to TX FIFO.

Parameters

i2c Either i2c0 or i2c1

src Data to send

len Number of bytes to send

Writes directly to the I2C TX FIFO which is mainly useful for slave-mode operation.

4.1.12.5.20. i2c_write_timeout_us

static int i2c_write_timeout_us (i2c_inst_t * i2c, uint8_t addr, const uint8_t * src, size_t len, bool nostop, uint

timeout_us) [inline], [static]

Attempt to write specified number of bytes to address, with timeout.

Parameters

i2c Either i2c0 or i2c1

addr 7-bit address of device to write to

src Pointer to data to send

len Length of data in bytes to send

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next

transfer will begin with a Restart rather than a Start.

timeout_us The time that the function will wait for the entire transaction to complete. Note, an individual

timeout of this value divided by the length of data is applied for each byte transfer, so if the first or

subsequent bytes fails to transfer within that sub timeout, the function will return with an error.

Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or

PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.13. hardware_interp

Hardware Interpolator API.

4.1.13.1. Detailed Description

Each core is equipped with two interpolators (INTERP0 and INTERP1) which can be used to accelerate tasks by

combining certain pre-configured simple operations into a single processor cycle. Intended for cases where the pre-

configured operation is repeated a large number of times, this results in code which uses both fewer CPU cycles and

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 178

fewer CPU registers in the time critical sections of the code.

The interpolators are used heavily to accelerate audio operations within the SDK, but their flexible configuration make it

possible to optimise many other tasks such as quantization and dithering, table lookup address generation, affine

texture mapping, decompression and linear feedback.

Please refer to the appropriate RP-series microcontroller datasheet for more information on the HW interpolators and

how they work.

4.1.13.2. Modules

interp_config

Interpolator configuration .

4.1.13.3. Functions

void interp_claim_lane (interp_hw_t *interp, uint lane)

Claim the interpolator lane specified.

void interp_claim_lane_mask (interp_hw_t *interp, uint lane_mask)

Claim the interpolator lanes specified in the mask.

void interp_unclaim_lane (interp_hw_t *interp, uint lane)

Release a previously claimed interpolator lane.

bool interp_lane_is_claimed (interp_hw_t *interp, uint lane)

Determine if an interpolator lane is claimed.

void interp_unclaim_lane_mask (interp_hw_t *interp, uint lane_mask)

Release previously claimed interpolator lanes.

static void interp_set_force_bits (interp_hw_t *interp, uint lane, uint bits)

Directly set the force bits on a specified lane.

void interp_save (interp_hw_t *interp, interp_hw_save_t *saver)

Save the specified interpolator state.

void interp_restore (interp_hw_t *interp, interp_hw_save_t *saver)

Restore an interpolator state.

static void interp_set_base (interp_hw_t *interp, uint lane, uint32_t val)

Sets the interpolator base register by lane.

static uint32_t interp_get_base (interp_hw_t *interp, uint lane)

Gets the content of interpolator base register by lane.

static void interp_set_base_both (interp_hw_t *interp, uint32_t val)

Sets the interpolator base registers simultaneously.

static void interp_set_accumulator (interp_hw_t *interp, uint lane, uint32_t val)

Sets the interpolator accumulator register by lane.

static uint32_t interp_get_accumulator (interp_hw_t *interp, uint lane)

Gets the content of the interpolator accumulator register by lane.

static uint32_t interp_pop_lane_result (interp_hw_t *interp, uint lane)

Read lane result, and write lane results to both accumulators to update the interpolator.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 179

static uint32_t interp_peek_lane_result (interp_hw_t *interp, uint lane)

Read lane result.

static uint32_t interp_pop_full_result (interp_hw_t *interp)

Read lane result, and write lane results to both accumulators to update the interpolator.

static uint32_t interp_peek_full_result (interp_hw_t *interp)

Read lane result.

static void interp_add_accumulater (interp_hw_t *interp, uint lane, uint32_t val)

Add to accumulator.

static uint32_t interp_get_raw (interp_hw_t *interp, uint lane)

Get raw lane value.

4.1.13.4. Function Documentation

4.1.13.4.1. interp_add_accumulater

static void interp_add_accumulater (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Add to accumulator.

Atomically add the specified value to the accumulator on the specified lane

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane number, 0 or 1

val Value to add

4.1.13.4.2. interp_claim_lane

void interp_claim_lane (interp_hw_t * interp, uint lane)

Claim the interpolator lane specified.

Use this function to claim exclusive access to the specified interpolator lane.

This function will panic if the lane is already claimed.

Parameters

interp Interpolator on which to claim a lane. interp0 or interp1

lane The lane number, 0 or 1.

4.1.13.4.3. interp_claim_lane_mask

void interp_claim_lane_mask (interp_hw_t * interp, uint lane_mask)

Claim the interpolator lanes specified in the mask.

Parameters

interp Interpolator on which to claim lanes. interp0 or interp1

lane_mask Bit pattern of lanes to claim (only bits 0 and 1 are valid)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 180

4.1.13.4.4. interp_get_accumulator

static uint32_t interp_get_accumulator (interp_hw_t * interp, uint lane) [inline], [static]

Gets the content of the interpolator accumulator register by lane.

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane number, 0 or 1

Returns

The current content of the register

4.1.13.4.5. interp_get_base

static uint32_t interp_get_base (interp_hw_t * interp, uint lane) [inline], [static]

Gets the content of interpolator base register by lane.

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane number, 0 or 1 or 2

Returns

The current content of the lane base register

4.1.13.4.6. interp_get_raw

static uint32_t interp_get_raw (interp_hw_t * interp, uint lane) [inline], [static]

Get raw lane value.

Returns the raw shift and mask value from the specified lane, BASE0 is NOT added

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane number, 0 or 1

Returns

The raw shift/mask value

4.1.13.4.7. interp_lane_is_claimed

bool interp_lane_is_claimed (interp_hw_t * interp, uint lane)

Determine if an interpolator lane is claimed.

Parameters

interp Interpolator whose lane to check

lane The lane number, 0 or 1

Returns

true if claimed, false otherwise

See also

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 181

interp_claim_lane

interp_claim_lane_mask

4.1.13.4.8. interp_peek_full_result

static uint32_t interp_peek_full_result (interp_hw_t * interp) [inline], [static]

Read lane result.

Parameters

interp Interpolator instance, interp0 or interp1.

Returns

The content of the FULL register

4.1.13.4.9. interp_peek_lane_result

static uint32_t interp_peek_lane_result (interp_hw_t * interp, uint lane) [inline], [static]

Read lane result.

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane number, 0 or 1

Returns

The content of the lane result register

4.1.13.4.10. interp_pop_full_result

static uint32_t interp_pop_full_result (interp_hw_t * interp) [inline], [static]

Read lane result, and write lane results to both accumulators to update the interpolator.

Parameters

interp Interpolator instance, interp0 or interp1.

Returns

The content of the FULL register

4.1.13.4.11. interp_pop_lane_result

static uint32_t interp_pop_lane_result (interp_hw_t * interp, uint lane) [inline], [static]

Read lane result, and write lane results to both accumulators to update the interpolator.

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane number, 0 or 1

Returns

The content of the lane result register

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 182

4.1.13.4.12. interp_restore

void interp_restore (interp_hw_t * interp, interp_hw_save_t * saver)

Restore an interpolator state.

Parameters

interp Interpolator instance, interp0 or interp1.

saver Pointer to save structure to reapply to the specified interpolator

4.1.13.4.13. interp_save

void interp_save (interp_hw_t * interp, interp_hw_save_t * saver)

Save the specified interpolator state.

Can be used to save state if you need an interpolator for another purpose, state can then be recovered afterwards and

continue from that point

Parameters

interp Interpolator instance, interp0 or interp1.

saver Pointer to the save structure to fill in

4.1.13.4.14. interp_set_accumulator

static void interp_set_accumulator (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Sets the interpolator accumulator register by lane.

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane number, 0 or 1

val The value to apply to the register

4.1.13.4.15. interp_set_base

static void interp_set_base (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Sets the interpolator base register by lane.

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane number, 0 or 1 or 2

val The value to apply to the register

4.1.13.4.16. interp_set_base_both

static void interp_set_base_both (interp_hw_t * interp, uint32_t val) [inline], [static]

Sets the interpolator base registers simultaneously.

The lower 16 bits go to BASE0, upper bits to BASE1 simultaneously. Each half is sign-extended to 32 bits if that lane’s

SIGNED flag is set.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 183

interp Interpolator instance, interp0 or interp1.

val The value to apply to the register

4.1.13.4.17. interp_set_force_bits

static void interp_set_force_bits (interp_hw_t * interp, uint lane, uint bits) [inline], [static]

Directly set the force bits on a specified lane.

These bits are ORed into bits 29:28 of the lane result presented to the processor on the bus. There is no effect on the

internal 32-bit datapath.

Useful for using a lane to generate sequence of pointers into flash or SRAM, saving a subsequent OR or add operation.

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane to set

bits The bits to set (bits 0 and 1, value range 0-3)

4.1.13.4.18. interp_unclaim_lane

void interp_unclaim_lane (interp_hw_t * interp, uint lane)

Release a previously claimed interpolator lane.

Parameters

interp Interpolator on which to release a lane. interp0 or interp1

lane The lane number, 0 or 1

4.1.13.4.19. interp_unclaim_lane_mask

void interp_unclaim_lane_mask (interp_hw_t * interp, uint lane_mask)

Release previously claimed interpolator lanes.

See also

interp_claim_lane_mask

Parameters

interp Interpolator on which to release lanes. interp0 or interp1

lane_mask Bit pattern of lanes to unclaim (only bits 0 and 1 are valid)

4.1.13.5. interp_config

Interpolator configuration .

4.1.13.5.1. Detailed Description

Each interpolator needs to be configured, these functions provide handy helpers to set up configuration structures.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 184

4.1.13.5.2. Functions

static void interp_config_set_shift (interp_config *c, uint shift)

Set the interpolator shift value.

static void interp_config_set_mask (interp_config *c, uint mask_lsb, uint mask_msb)

Set the interpolator mask range.

static void interp_config_set_cross_input (interp_config *c, bool cross_input)

Enable cross input.

static void interp_config_set_cross_result (interp_config *c, bool cross_result)

Enable cross results.

static void interp_config_set_signed (interp_config *c, bool _signed)

Set sign extension.

static void interp_config_set_add_raw (interp_config *c, bool add_raw)

Set raw add option.

static void interp_config_set_blend (interp_config *c, bool blend)

Set blend mode.

static void interp_config_set_clamp (interp_config *c, bool clamp)

Set interpolator clamp mode (Interpolator 1 only)

static void interp_config_set_force_bits (interp_config *c, uint bits)

Set interpolator Force bits.

static interp_config interp_default_config (void)

Get a default configuration.

static void interp_set_config (interp_hw_t *interp, uint lane, interp_config *config)

Send configuration to a lane.

4.1.13.5.3. Function Documentation

interp_config_set_add_raw

static void interp_config_set_add_raw (interp_config * c, bool add_raw) [inline], [static]

Set raw add option.

When enabled, mask + shift is bypassed for LANE0 result. This does not affect the FULL result.

Parameters

c Pointer to interpolation config

add_raw If true, enable raw add option.

interp_config_set_blend

static void interp_config_set_blend (interp_config * c, bool blend) [inline], [static]

Set blend mode.

If enabled, LANE1 result is a linear interpolation between BASE0 and BASE1, controlled by the 8 LSBs of lane 1 shift and

mask value (a fractional number between 0 and 255/256ths)

LANE0 result does not have BASE0 added (yields only the 8 LSBs of lane 1 shift+mask value)

FULL result does not have lane 1 shift+mask value added (BASE2 + lane 0 shift+mask)

LANE1 SIGNED flag controls whether the interpolation is signed or unsig

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 185

Parameters

c Pointer to interpolation config

blend Set true to enable blend mode.

interp_config_set_clamp

static void interp_config_set_clamp (interp_config * c, bool clamp) [inline], [static]

Set interpolator clamp mode (Interpolator 1 only)

Only present on INTERP1 on each core. If CLAMP mode is enabled:

• LANE0 result is a shifted and masked ACCUM0, clamped by a lower bound of BASE0 and an upper bound of

BASE1.

• Signedness of these comparisons is determined by LANE0_CTRL_SIGNED

Parameters

c Pointer to interpolation config

clamp Set true to enable clamp mode

interp_config_set_cross_input

static void interp_config_set_cross_input (interp_config * c, bool cross_input) [inline], [static]

Enable cross input.

Allows feeding of the accumulator content from the other lane back in to this lanes shift+mask hardware. This will take

effect even if the interp_config_set_add_raw option is set as the cross input mux is before the shift+mask bypass

Parameters

c Pointer to interpolation config

cross_input If true, enable the cross input.

interp_config_set_cross_result

static void interp_config_set_cross_result (interp_config * c, bool cross_result) [inline], [static]

Enable cross results.

Allows feeding of the other lane’s result into this lane’s accumulator on a POP operation.

Parameters

c Pointer to interpolation config

cross_result If true, enables the cross result

interp_config_set_force_bits

static void interp_config_set_force_bits (interp_config * c, uint bits) [inline], [static]

Set interpolator Force bits.

ORed into bits 29:28 of the lane result presented to the processor on the bus.

No effect on the internal 32-bit datapath. Handy for using a lane to generate sequence of pointers into flash or SRAM

Parameters

c Pointer to interpolation config

bits Sets the force bits to that specified. Range 0-3 (two bits)

interp_config_set_mask

static void interp_config_set_mask (interp_config * c, uint mask_lsb, uint mask_msb) [inline], [static]

Set the interpolator mask range.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 186

Sets the range of bits (least to most) that are allowed to pass through the interpolator

Parameters

c Pointer to interpolation config

mask_lsb The least significant bit allowed to pass

mask_msb The most significant bit allowed to pass

interp_config_set_shift

static void interp_config_set_shift (interp_config * c, uint shift) [inline], [static]

Set the interpolator shift value.

Sets the number of bits the accumulator is shifted before masking, on each iteration.

Parameters

c Pointer to an interpolator config

shift Number of bits

interp_config_set_signed

static void interp_config_set_signed (interp_config * c, bool _signed) [inline], [static]

Set sign extension.

Enables signed mode, where the shifted and masked accumulator value is sign-extended to 32 bits before adding to

BASE1, and LANE1 PEEK/POP results appear extended to 32 bits when read by processor.

Parameters

c Pointer to interpolation config

_signed If true, enables sign extension

interp_default_config

static interp_config interp_default_config (void) [inline], [static]

Get a default configuration.

Returns

A default interpolation configuration

interp_set_config

static void interp_set_config (interp_hw_t * interp, uint lane, interp_config * config) [inline], [static]

Send configuration to a lane.

If an invalid configuration is specified (ie a lane specific item is set on wrong lane), depending on setup this function

can panic.

Parameters

interp Interpolator instance, interp0 or interp1.

lane The lane to set

config Pointer to interpolation config

4.1.14. hardware_irq

Hardware interrupt handling API.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 187

4.1.14.1. Detailed Description

The RP2040 uses the standard ARM nested vectored interrupt controller (NVIC).

Interrupts are identified by a number from 0 to 31.

On the RP2040, only the lower 26 IRQ signals are connected on the NVIC; IRQs 26 to 31 are tied to zero (never firing).

There is one NVIC per core, and each core’s NVIC has the same hardware interrupt lines routed to it, with the exception

of the IO interrupts where there is one IO interrupt per bank, per core. These are completely independent, so, for

example, processor 0 can be interrupted by GPIO 0 in bank 0, and processor 1 by GPIO 1 in the same bank.

 NOTE

That all IRQ APIs affect the executing core only (i.e. the core calling the function).

You should not enable the same (shared) IRQ number on both cores, as this will lead to race conditions or starvation

of one of the cores. Additionally, don’t forget that disabling interrupts on one core does not disable interrupts on the

other core.

There are three different ways to set handlers for an IRQ:

• Calling irq_add_shared_handler() at runtime to add a handler for a multiplexed interrupt (e.g. GPIO bank) on the

current core. Each handler, should check and clear the relevant hardware interrupt source

• Calling irq_set_exclusive_handler() at runtime to install a single handler for the interrupt on the current core

• Defining the interrupt handler explicitly in your application (e.g. by defining void isr_dma_0 will make that function

the handler for the DMA_IRQ_0 on core 0, and you will not be able to change it using the above APIs at runtime).

Using this method can cause link conflicts at runtime, and offers no runtime performance benefit (i.e, it should not

generally be used).

 NOTE

If an IRQ is enabled and fires with no handler installed, a breakpoint will be hit and the IRQ number will be in register

r0.

4.1.14.1.1. Interrupt Numbers

A set of defines is available (intctrl.h) with these names to avoid using the numbers directly.

On RP2040 the interrupt numbers are as follows:

IRQ Interrupt Source

0 TIMER_IRQ_0

1 TIMER_IRQ_1

2 TIMER_IRQ_2

3 TIMER_IRQ_3

4 PWM_IRQ_WRAP

5 USBCTRL_IRQ

6 XIP_IRQ

7 PIO0_IRQ_0

8 PIO0_IRQ_1

9 PIO1_IRQ_0

10 PIO1_IRQ_1

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 188

IRQ Interrupt Source

11 DMA_IRQ_0

12 DMA_IRQ_1

13 IO_IRQ_BANK0

14 IO_IRQ_QSPI

15 SIO_IRQ_PROC0

16 SIO_IRQ_PROC1

17 CLOCKS_IRQ

18 SPI0_IRQ

19 SPI1_IRQ

20 UART0_IRQ

21 UART1_IRQ

22 ADC0_IRQ_FIFO

23 I2C0_IRQ

24 I2C1_IRQ

25 RTC_IRQ

On RP2350 the interrupt numbers are as follows:

IRQ Interrupt Source

0 TIMER0_IRQ_0

1 TIMER0_IRQ_1

2 TIMER0_IRQ_2

3 TIMER0_IRQ_3

4 TIMER1_IRQ_0

5 TIMER1_IRQ_1

6 TIMER1_IRQ_2

7 TIMER1_IRQ_3

8 PWM_IRQ_WRAP_0

9 PWM_IRQ_WRAP_1

10 DMA_IRQ_0

11 DMA_IRQ_1

12 DMA_IRQ_2

13 DMA_IRQ_3

14 USBCTRL_IRQ

15 PIO0_IRQ_0

16 PIO0_IRQ_1

17 PIO1_IRQ_0

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 189

IRQ Interrupt Source

18 PIO1_IRQ_1

19 PIO2_IRQ_0

20 PIO2_IRQ_1

21 IO_IRQ_BANK0

22 IO_IRQ_BANK0_NS

23 IO_IRQ_QSPI

24 IO_IRQ_QSPI_NS

25 SIO_IRQ_FIFO

26 SIO_IRQ_BELL

27 SIO_IRQ_FIFO_NS

28 SIO_IRQ_BELL_NS

29 SIO_IRQ_MTIMECMP

30 CLOCKS_IRQ

31 SPI0_IRQ

32 SPI1_IRQ

33 UART0_IRQ

34 UART1_IRQ

35 ADC_IRQ_FIFO

36 I2C0_IRQ

37 I2C1_IRQ

38 OTP_IRQ

39 TRNG_IRQ

40 PROC0_IRQ_CTI

41 PROC1_IRQ_CTI

42 PLL_SYS_IRQ

43 PLL_USB_IRQ

44 POWMAN_IRQ_POW

45 POWMAN_IRQ_TIMER

46 SPAREIRQ_IRQ_0

47 SPAREIRQ_IRQ_1

48 SPAREIRQ_IRQ_2

49 SPAREIRQ_IRQ_3

50 SPAREIRQ_IRQ_4

51 SPAREIRQ_IRQ_5

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 190

4.1.14.2. Typedefs

typedef enum irq_num_rp2350 irq_num_t

Interrupt numbers on RP2350 (used as typedef irq_num_t)

typedef enum irq_num_rp2040 irq_num_t

Interrupt numbers on RP2040 (used as typedef irq_num_t)

typedef void(* irq_handler_t)(void)

Interrupt handler function type.

4.1.14.3. Enumerations

enum irq_num_rp2350 { TIMER0_IRQ_0 = 0, TIMER0_IRQ_1 = 1, TIMER0_IRQ_2 = 2, TIMER0_IRQ_3 = 3, TIMER1_IRQ_0 = 4,

TIMER1_IRQ_1 = 5, TIMER1_IRQ_2 = 6, TIMER1_IRQ_3 = 7, PWM_IRQ_WRAP_0 = 8, PWM_IRQ_WRAP_1 = 9, DMA_IRQ_0 = 10, DMA_IRQ_1 =

11, DMA_IRQ_2 = 12, DMA_IRQ_3 = 13, USBCTRL_IRQ = 14, PIO0_IRQ_0 = 15, PIO0_IRQ_1 = 16, PIO1_IRQ_0 = 17, PIO1_IRQ_1 = 18,

PIO2_IRQ_0 = 19, PIO2_IRQ_1 = 20, IO_IRQ_BANK0 = 21, IO_IRQ_BANK0_NS = 22, IO_IRQ_QSPI = 23, IO_IRQ_QSPI_NS = 24,

SIO_IRQ_FIFO = 25, SIO_IRQ_BELL = 26, SIO_IRQ_FIFO_NS = 27, SIO_IRQ_BELL_NS = 28, SIO_IRQ_MTIMECMP = 29, CLOCKS_IRQ = 30,

SPI0_IRQ = 31, SPI1_IRQ = 32, UART0_IRQ = 33, UART1_IRQ = 34, ADC_IRQ_FIFO = 35, I2C0_IRQ = 36, I2C1_IRQ = 37, OTP_IRQ =

38, TRNG_IRQ = 39, PROC0_IRQ_CTI = 40, PROC1_IRQ_CTI = 41, PLL_SYS_IRQ = 42, PLL_USB_IRQ = 43, POWMAN_IRQ_POW = 44,

POWMAN_IRQ_TIMER = 45, SPARE_IRQ_0 = 46, SPARE_IRQ_1 = 47, SPARE_IRQ_2 = 48, SPARE_IRQ_3 = 49, SPARE_IRQ_4 = 50,

SPARE_IRQ_5 = 51, IRQ_COUNT }

Interrupt numbers on RP2350 (used as typedef irq_num_t)

enum irq_num_rp2040 { TIMER_IRQ_0 = 0, TIMER_IRQ_1 = 1, TIMER_IRQ_2 = 2, TIMER_IRQ_3 = 3, PWM_IRQ_WRAP = 4, USBCTRL_IRQ =

5, XIP_IRQ = 6, PIO0_IRQ_0 = 7, PIO0_IRQ_1 = 8, PIO1_IRQ_0 = 9, PIO1_IRQ_1 = 10, DMA_IRQ_0 = 11, DMA_IRQ_1 = 12,

IO_IRQ_BANK0 = 13, IO_IRQ_QSPI = 14, SIO_IRQ_PROC0 = 15, SIO_IRQ_PROC1 = 16, CLOCKS_IRQ = 17, SPI0_IRQ = 18, SPI1_IRQ =

19, UART0_IRQ = 20, UART1_IRQ = 21, ADC_IRQ_FIFO = 22, I2C0_IRQ = 23, I2C1_IRQ = 24, RTC_IRQ = 25, IRQ_COUNT }

Interrupt numbers on RP2040 (used as typedef irq_num_t)

4.1.14.4. Functions

void irq_set_priority (uint num, uint8_t hardware_priority)

Set specified interrupt’s priority.

uint irq_get_priority (uint num)

Get specified interrupt’s priority.

void irq_set_enabled (uint num, bool enabled)

Enable or disable a specific interrupt on the executing core.

bool irq_is_enabled (uint num)

Determine if a specific interrupt is enabled on the executing core.

void irq_set_mask_enabled (uint32_t mask, bool enabled)

Enable/disable multiple interrupts on the executing core.

void irq_set_mask_n_enabled (uint n, uint32_t mask, bool enabled)

Enable/disable multiple interrupts on the executing core.

void irq_set_exclusive_handler (uint num, irq_handler_t handler)

Set an exclusive interrupt handler for an interrupt on the executing core.

irq_handler_t irq_get_exclusive_handler (uint num)

Get the exclusive interrupt handler for an interrupt on the executing core.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 191

void irq_add_shared_handler (uint num, irq_handler_t handler, uint8_t order_priority)

Add a shared interrupt handler for an interrupt on the executing core.

void irq_remove_handler (uint num, irq_handler_t handler)

Remove a specific interrupt handler for the given irq number on the executing core.

bool irq_has_shared_handler (uint num)

Determine if the current handler for the given number is shared.

irq_handler_t irq_get_vtable_handler (uint num)

Get the current IRQ handler for the specified IRQ from the currently installed hardware vector table (VTOR) of the

execution core.

static void irq_clear (uint int_num)

Clear a specific interrupt on the executing core.

void irq_set_pending (uint num)

Force an interrupt to be pending on the executing core.

void user_irq_claim (uint irq_num)

Claim ownership of a user IRQ on the calling core.

void user_irq_unclaim (uint irq_num)

Mark a user IRQ as no longer used on the calling core.

int user_irq_claim_unused (bool required)

Claim ownership of a free user IRQ on the calling core.

4.1.14.5. Typedef Documentation

4.1.14.5.1. irq_num_t

typedef enum irq_num_rp2350 irq_num_t

Interrupt numbers on RP2350 (used as typedef irq_num_t)

4.1.14.5.2. irq_num_t

typedef enum irq_num_rp2040 irq_num_t

Interrupt numbers on RP2040 (used as typedef irq_num_t)

4.1.14.5.3. irq_handler_t

typedef void(* irq_handler_t) (void)

Interrupt handler function type.

All interrupts handlers should be of this type, and follow normal ARM EABI register saving conventions

4.1.14.6. Enumeration Type Documentation

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 192

4.1.14.6.1. irq_num_rp2350

enum irq_num_rp2350

Interrupt numbers on RP2350 (used as typedef irq_num_t)

Table 22. Enumerator
TIMER0_IRQ_0 Select TIMER0’s IRQ 0 output.

TIMER0_IRQ_1 Select TIMER0’s IRQ 1 output.

TIMER0_IRQ_2 Select TIMER0’s IRQ 2 output.

TIMER0_IRQ_3 Select TIMER0’s IRQ 3 output.

TIMER1_IRQ_0 Select TIMER1’s IRQ 0 output.

TIMER1_IRQ_1 Select TIMER1’s IRQ 1 output.

TIMER1_IRQ_2 Select TIMER1’s IRQ 2 output.

TIMER1_IRQ_3 Select TIMER1’s IRQ 3 output.

PWM_IRQ_WRAP_0 Select PWM’s IRQ_WRAP 0 output.

PWM_IRQ_WRAP_1 Select PWM’s IRQ_WRAP 1 output.

DMA_IRQ_0 Select DMA’s IRQ 0 output.

DMA_IRQ_1 Select DMA’s IRQ 1 output.

DMA_IRQ_2 Select DMA’s IRQ 2 output.

DMA_IRQ_3 Select DMA’s IRQ 3 output.

USBCTRL_IRQ Select USBCTRL’s IRQ output.

PIO0_IRQ_0 Select PIO0’s IRQ 0 output.

PIO0_IRQ_1 Select PIO0’s IRQ 1 output.

PIO1_IRQ_0 Select PIO1’s IRQ 0 output.

PIO1_IRQ_1 Select PIO1’s IRQ 1 output.

PIO2_IRQ_0 Select PIO2’s IRQ 0 output.

PIO2_IRQ_1 Select PIO2’s IRQ 1 output.

IO_IRQ_BANK0 Select IO_BANK0’s IRQ output.

IO_IRQ_BANK0_NS Select IO_BANK0_NS’s IRQ output.

IO_IRQ_QSPI Select IO_QSPI’s IRQ output.

IO_IRQ_QSPI_NS Select IO_QSPI_NS’s IRQ output.

SIO_IRQ_FIFO Select SIO’s IRQ_FIFO output.

SIO_IRQ_BELL Select SIO’s IRQ_BELL output.

SIO_IRQ_FIFO_NS Select SIO_NS’s IRQ_FIFO output.

SIO_IRQ_BELL_NS Select SIO_NS’s IRQ_BELL output.

SIO_IRQ_MTIMECMP Select SIO_IRQ_MTIMECMP’s IRQ output.

CLOCKS_IRQ Select CLOCKS’s IRQ output.

SPI0_IRQ Select SPI0’s IRQ output.

SPI1_IRQ Select SPI1’s IRQ output.

UART0_IRQ Select UART0’s IRQ output.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 193

UART1_IRQ Select UART1’s IRQ output.

ADC_IRQ_FIFO Select ADC’s IRQ_FIFO output.

I2C0_IRQ Select I2C0’s IRQ output.

I2C1_IRQ Select I2C1’s IRQ output.

OTP_IRQ Select OTP’s IRQ output.

TRNG_IRQ Select TRNG’s IRQ output.

PROC0_IRQ_CTI Select PROC0’s IRQ_CTI output.

PROC1_IRQ_CTI Select PROC1’s IRQ_CTI output.

PLL_SYS_IRQ Select PLL_SYS’s IRQ output.

PLL_USB_IRQ Select PLL_USB’s IRQ output.

POWMAN_IRQ_POW Select POWMAN’s IRQ_POW output.

POWMAN_IRQ_TIMER Select POWMAN’s IRQ_TIMER output.

SPARE_IRQ_0 Select SPARE IRQ 0.

SPARE_IRQ_1 Select SPARE IRQ 1.

SPARE_IRQ_2 Select SPARE IRQ 2.

SPARE_IRQ_3 Select SPARE IRQ 3.

SPARE_IRQ_4 Select SPARE IRQ 4.

SPARE_IRQ_5 Select SPARE IRQ 5.

4.1.14.6.2. irq_num_rp2040

enum irq_num_rp2040

Interrupt numbers on RP2040 (used as typedef irq_num_t)

Table 23. Enumerator
TIMER_IRQ_0 Select TIMER’s IRQ 0 output.

TIMER_IRQ_1 Select TIMER’s IRQ 1 output.

TIMER_IRQ_2 Select TIMER’s IRQ 2 output.

TIMER_IRQ_3 Select TIMER’s IRQ 3 output.

PWM_IRQ_WRAP Select PWM’s IRQ_WRAP output.

USBCTRL_IRQ Select USBCTRL’s IRQ output.

XIP_IRQ Select XIP’s IRQ output.

PIO0_IRQ_0 Select PIO0’s IRQ 0 output.

PIO0_IRQ_1 Select PIO0’s IRQ 1 output.

PIO1_IRQ_0 Select PIO1’s IRQ 0 output.

PIO1_IRQ_1 Select PIO1’s IRQ 1 output.

DMA_IRQ_0 Select DMA’s IRQ 0 output.

DMA_IRQ_1 Select DMA’s IRQ 1 output.

IO_IRQ_BANK0 Select IO_BANK0’s IRQ output.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 194

IO_IRQ_QSPI Select IO_QSPI’s IRQ output.

SIO_IRQ_PROC0 Select SIO_PROC0’s IRQ output.

SIO_IRQ_PROC1 Select SIO_PROC1’s IRQ output.

CLOCKS_IRQ Select CLOCKS’s IRQ output.

SPI0_IRQ Select SPI0’s IRQ output.

SPI1_IRQ Select SPI1’s IRQ output.

UART0_IRQ Select UART0’s IRQ output.

UART1_IRQ Select UART1’s IRQ output.

ADC_IRQ_FIFO Select ADC’s IRQ_FIFO output.

I2C0_IRQ Select I2C0’s IRQ output.

I2C1_IRQ Select I2C1’s IRQ output.

RTC_IRQ Select RTC’s IRQ output.

4.1.14.7. Function Documentation

4.1.14.7.1. irq_add_shared_handler

void irq_add_shared_handler (uint num, irq_handler_t handler, uint8_t order_priority)

Add a shared interrupt handler for an interrupt on the executing core.

Use this method to add a handler on an irq number shared between multiple distinct hardware sources (e.g. GPIO, DMA

or PIO IRQs). Handlers added by this method will all be called in sequence from highest order_priority to lowest. The

irq_set_exclusive_handler() method should be used instead if you know there will or should only ever be one handler for

the interrupt.

This method will assert if there is an exclusive interrupt handler set for this irq number on this core, or if the (total

across all IRQs on both cores) maximum (configurable via PICO_MAX_SHARED_IRQ_HANDLERS) number of shared

handlers would be exceeded.

Parameters

num Interrupt number Interrupt Numbers

handler The handler to set. See irq_handler_t

order_priority The order priority controls the order that handlers for the same IRQ number on the core are

called. The shared irq handlers for an interrupt are all called when an IRQ fires, however the

order of the calls is based on the order_priority (higher priorities are called first, identical

priorities are called in undefined order). A good rule of thumb is to use

PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY if you don’t much care, as it is in

the middle of the priority range by default.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 195

 NOTE

The order_priority uses higher values for higher priorities which is the opposite of the CPU interrupt priorities passed

to irq_set_priority() which use lower values for higher priorities.

See also

irq_set_exclusive_handler()

4.1.14.7.2. irq_clear

static void irq_clear (uint int_num) [inline], [static]

Clear a specific interrupt on the executing core.

This method is only useful for "software" IRQs that are not connected to hardware (e.g. IRQs 26-31 on RP2040) as the

the NVIC always reflects the current state of the IRQ state of the hardware for hardware IRQs, and clearing of the IRQ

state of the hardware is performed via the hardware’s registers instead.

Parameters

int_num Interrupt number Interrupt Numbers

4.1.14.7.3. irq_get_exclusive_handler

irq_handler_t irq_get_exclusive_handler (uint num)

Get the exclusive interrupt handler for an interrupt on the executing core.

This method will return an exclusive IRQ handler set on this core by irq_set_exclusive_handler if there is one.

Parameters

num Interrupt number Interrupt Numbers

See also

irq_set_exclusive_handler()

Returns

handler The handler if an exclusive handler is set for the IRQ, NULL if no handler is set or shared/shareable handlers are

installed

4.1.14.7.4. irq_get_priority

uint irq_get_priority (uint num)

Get specified interrupt’s priority.

Numerically-lower values indicate a higher priority. Hardware priorities range from 0 (highest priority) to 255 (lowest

priority). To make it easier to specify higher or lower priorities than the default, all IRQ priorities are initialized to

PICO_DEFAULT_IRQ_PRIORITY by the SDK runtime at startup. PICO_DEFAULT_IRQ_PRIORITY defaults to 0x80

Only the top 2 bits are significant on ARM Cortex-M0+ on RP2040.

Only the top 4 bits are significant on ARM Cortex-M33 or Hazard3 (RISC-V) on RP2350. Note that this API uses the same

(inverted) ordering as ARM on RISC-V

Parameters

num Interrupt number Interrupt Numbers

Returns

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 196

the IRQ priority

4.1.14.7.5. irq_get_vtable_handler

irq_handler_t irq_get_vtable_handler (uint num)

Get the current IRQ handler for the specified IRQ from the currently installed hardware vector table (VTOR) of the

execution core.

Parameters

num Interrupt number Interrupt Numbers

Returns

the address stored in the VTABLE for the given irq number

4.1.14.7.6. irq_has_shared_handler

bool irq_has_shared_handler (uint num)

Determine if the current handler for the given number is shared.

Parameters

num Interrupt number Interrupt Numbers

Returns

true if the specified IRQ has a shared handler

4.1.14.7.7. irq_is_enabled

bool irq_is_enabled (uint num)

Determine if a specific interrupt is enabled on the executing core.

Parameters

num Interrupt number Interrupt Numbers

Returns

true if the interrupt is enabled

4.1.14.7.8. irq_remove_handler

void irq_remove_handler (uint num, irq_handler_t handler)

Remove a specific interrupt handler for the given irq number on the executing core.

This method may be used to remove an irq set via either irq_set_exclusive_handler() or irq_add_shared_handler(), and

will assert if the handler is not currently installed for the given IRQ number

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 197

 NOTE

This method may only be called from user (non IRQ code) or from within the handler itself (i.e. an IRQ handler may

remove itself as part of handling the IRQ). Attempts to call from another IRQ will cause an assertion.

Parameters

num Interrupt number Interrupt Numbers

handler The handler to removed.

See also

irq_set_exclusive_handler()

irq_add_shared_handler()

4.1.14.7.9. irq_set_enabled

void irq_set_enabled (uint num, bool enabled)

Enable or disable a specific interrupt on the executing core.

Parameters

num Interrupt number Interrupt Numbers

enabled true to enable the interrupt, false to disable

4.1.14.7.10. irq_set_exclusive_handler

void irq_set_exclusive_handler (uint num, irq_handler_t handler)

Set an exclusive interrupt handler for an interrupt on the executing core.

Use this method to set a handler for single IRQ source interrupts, or when your code, use case or performance

requirements dictate that there should no other handlers for the interrupt.

This method will assert if there is already any sort of interrupt handler installed for the specified irq number.

Parameters

num Interrupt number Interrupt Numbers

handler The handler to set. See irq_handler_t

See also

irq_add_shared_handler()

4.1.14.7.11. irq_set_mask_enabled

void irq_set_mask_enabled (uint32_t mask, bool enabled)

Enable/disable multiple interrupts on the executing core.

Parameters

mask 32-bit mask with one bits set for the interrupts to enable/disable Interrupt Numbers

enabled true to enable the interrupts, false to disable them.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 198

4.1.14.7.12. irq_set_mask_n_enabled

void irq_set_mask_n_enabled (uint n, uint32_t mask, bool enabled)

Enable/disable multiple interrupts on the executing core.

Parameters

n the index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.

mask 32-bit mask with one bits set for the interrupts to enable/disable Interrupt Numbers

enabled true to enable the interrupts, false to disable them.

4.1.14.7.13. irq_set_pending

void irq_set_pending (uint num)

Force an interrupt to be pending on the executing core.

This should generally not be used for IRQs connected to hardware.

Parameters

num Interrupt number Interrupt Numbers

4.1.14.7.14. irq_set_priority

void irq_set_priority (uint num, uint8_t hardware_priority)

Set specified interrupt’s priority.

Parameters

num Interrupt number Interrupt Numbers

hardware_priority Priority to set. Numerically-lower values indicate a higher priority. Hardware priorities range

from 0 (highest priority) to 255 (lowest priority). To make it easier to specify higher or lower

priorities than the default, all IRQ priorities are initialized to PICO_DEFAULT_IRQ_PRIORITY

by the SDK runtime at startup. PICO_DEFAULT_IRQ_PRIORITY defaults to 0x80

Only the top 2 bits are significant on ARM Cortex-M0+ on RP2040.

Only the top 4 bits are significant on ARM Cortex-M33 or Hazard3 (RISC-V) on RP2350. Note that this API uses the same

(inverted) ordering as ARM on RISC-V

4.1.14.7.15. user_irq_claim

void user_irq_claim (uint irq_num)

Claim ownership of a user IRQ on the calling core.

User IRQs starting from FIRST_USER_IRQ are not connected to any hardware, but can be triggered by irq_set_pending.

 NOTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therefore all functions

dealing with Uer IRQs affect only the calling core

This method explicitly claims ownership of a user IRQ, so other code can know it is being used.

Parameters

irq_num the user IRQ to claim

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 199

4.1.14.7.16. user_irq_claim_unused

int user_irq_claim_unused (bool required)

Claim ownership of a free user IRQ on the calling core.

User IRQs starting from FIRST_USER_IRQ are not connected to any hardware, but can be triggered by irq_set_pending.

 NOTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therefore all functions

dealing with Uer IRQs affect only the calling core

This method explicitly claims ownership of an unused user IRQ if there is one, so other code can know it is being used.

Parameters

required if true the function will panic if none are available

Returns

the user IRQ number or -1 if required was false, and none were free

4.1.14.7.17. user_irq_unclaim

void user_irq_unclaim (uint irq_num)

Mark a user IRQ as no longer used on the calling core.

User IRQs starting from FIRST_USER_IRQ are not connected to any hardware, but can be triggered by irq_set_pending.

 NOTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therefore all functions

dealing with Uer IRQs affect only the calling core

This method explicitly releases ownership of a user IRQ, so other code can know it is free to use.

 NOTE

it is customary to have disabled the irq and removed the handler prior to calling this method.

Parameters

irq_num the irq irq_num to unclaim

4.1.15. hardware_pio

Programmable I/O (PIO) API.

4.1.15.1. Detailed Description

A programmable input/output block (PIO) is a versatile hardware interface which can support a number of different IO

standards.

There are two PIO blocks in the RP2040.

There are three PIO blocks in the RP2350

Each PIO is programmable in the same sense as a processor: the four state machines independently execute short,

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 200

sequential programs, to manipulate GPIOs and transfer data. Unlike a general purpose processor, PIO state machines

are highly specialised for IO, with a focus on determinism, precise timing, and close integration with fixed-function

hardware. Each state machine is equipped with:

• Two 32-bit shift registers – either direction, any shift count

• Two 32-bit scratch registers

• 4×32 bit bus FIFO in each direction (TX/RX), reconfigurable as 8×32 in a single direction

• Fractional clock divider (16 integer, 8 fractional bits)

• Flexible GPIO mapping

• DMA interface, sustained throughput up to 1 word per clock from system DMA

• IRQ flag set/clear/status

Full details of the PIO can be found in the appropriate RP-series datasheet. Note that there are additional features in the

RP2350 PIO implementation that mean care should be taken when writing PIO code that needs to run on both the

RP2040 and the RP2350.

4.1.15.2. Modules

sm_config

PIO state machine configuration .

pio_instructions

PIO instruction encoding .

4.1.15.3. Macros

• #define pio0 pio0_hw

• #define pio1 pio1_hw

• #define PIO_NUM(pio)

• #define PIO_INSTANCE(instance)

• #define PIO_FUNCSEL_NUM(pio, gpio)

• #define PIO_DREQ_NUM(pio, sm, is_tx)

• #define PIO_IRQ_NUM(pio, irqn)

4.1.15.4. Typedefs

typedef enum pio_interrupt_source pio_interrupt_source_t

PIO interrupt source numbers for pio related IRQs.

4.1.15.5. Enumerations

enum pio_fifo_join { PIO_FIFO_JOIN_NONE = 0, PIO_FIFO_JOIN_TX = 1, PIO_FIFO_JOIN_RX = 2 }

FIFO join states.

enum pio_mov_status_type { STATUS_TX_LESSTHAN = 0, STATUS_RX_LESSTHAN = 1 }

MOV status types.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 201

enum pio_interrupt_source { pis_interrupt0 = PIO_INTR_SM0_LSB, pis_interrupt1 = PIO_INTR_SM1_LSB, pis_interrupt2 =

PIO_INTR_SM2_LSB, pis_interrupt3 = PIO_INTR_SM3_LSB, pis_sm0_tx_fifo_not_full = PIO_INTR_SM0_TXNFULL_LSB,

pis_sm1_tx_fifo_not_full = PIO_INTR_SM1_TXNFULL_LSB, pis_sm2_tx_fifo_not_full = PIO_INTR_SM2_TXNFULL_LSB,

pis_sm3_tx_fifo_not_full = PIO_INTR_SM3_TXNFULL_LSB, pis_sm0_rx_fifo_not_empty = PIO_INTR_SM0_RXNEMPTY_LSB,

pis_sm1_rx_fifo_not_empty = PIO_INTR_SM1_RXNEMPTY_LSB, pis_sm2_rx_fifo_not_empty = PIO_INTR_SM2_RXNEMPTY_LSB,

pis_sm3_rx_fifo_not_empty = PIO_INTR_SM3_RXNEMPTY_LSB }

PIO interrupt source numbers for pio related IRQs.

4.1.15.6. Functions

static uint pio_get_gpio_base (PIO pio)

Return the base GPIO base for the PIO instance.

static int pio_sm_set_config (PIO pio, uint sm, const pio_sm_config *config)

Apply a state machine configuration to a state machine.

static uint pio_get_index (PIO pio)

Return the instance number of a PIO instance.

static uint pio_get_funcsel (PIO pio)

Return the funcsel number of a PIO instance.

static PIO pio_get_instance (uint instance)

Convert PIO instance to hardware instance.

static void pio_gpio_init (PIO pio, uint pin)

Setup the function select for a GPIO to use output from the given PIO instance.

static uint pio_get_dreq (PIO pio, uint sm, bool is_tx)

Return the DREQ to use for pacing transfers to/from a particular state machine FIFO.

int pio_set_gpio_base (PIO pio, uint gpio_base)

Set the base GPIO base for the PIO instance.

bool pio_can_add_program (PIO pio, const pio_program_t *program)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance.

bool pio_can_add_program_at_offset (PIO pio, const pio_program_t *program, uint offset)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at a

particular location.

int pio_add_program (PIO pio, const pio_program_t *program)

Attempt to load the program.

int pio_add_program_at_offset (PIO pio, const pio_program_t *program, uint offset)

Attempt to load the program at the specified instruction memory offset.

void pio_remove_program (PIO pio, const pio_program_t *program, uint loaded_offset)

Remove a program from a PIO instance’s instruction memory.

void pio_clear_instruction_memory (PIO pio)

Clears all of a PIO instance’s instruction memory.

static void pio_sm_set_enabled (PIO pio, uint sm, bool enabled)

Enable or disable a PIO state machine.

static void pio_set_sm_mask_enabled (PIO pio, uint32_t mask, bool enabled)

Enable or disable multiple PIO state machines.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 202

static void pio_sm_restart (PIO pio, uint sm)

Restart a state machine with a known state.

static void pio_restart_sm_mask (PIO pio, uint32_t mask)

Restart multiple state machine with a known state.

static void pio_sm_clkdiv_restart (PIO pio, uint sm)

Restart a state machine’s clock divider from a phase of 0.

static void pio_clkdiv_restart_sm_mask (PIO pio, uint32_t mask)

Restart multiple state machines' clock dividers from a phase of 0.

static void pio_enable_sm_mask_in_sync (PIO pio, uint32_t mask)

Enable multiple PIO state machines synchronizing their clock dividers.

static void pio_set_irq0_source_enabled (PIO pio, pio_interrupt_source_t source, bool enabled)

Enable/Disable a single source on a PIO’s IRQ 0.

static void pio_set_irq1_source_enabled (PIO pio, pio_interrupt_source_t source, bool enabled)

Enable/Disable a single source on a PIO’s IRQ 1.

static void pio_set_irq0_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled)

Enable/Disable multiple sources on a PIO’s IRQ 0.

static void pio_set_irq1_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled)

Enable/Disable multiple sources on a PIO’s IRQ 1.

static void pio_set_irqn_source_enabled (PIO pio, uint irq_index, pio_interrupt_source_t source, bool enabled)

Enable/Disable a single source on a PIO’s specified (0/1) IRQ index.

static void pio_set_irqn_source_mask_enabled (PIO pio, uint irq_index, uint32_t source_mask, bool enabled)

Enable/Disable multiple sources on a PIO’s specified (0/1) IRQ index.

static bool pio_interrupt_get (PIO pio, uint pio_interrupt_num)

Determine if a particular PIO interrupt is set.

static void pio_interrupt_clear (PIO pio, uint pio_interrupt_num)

Clear a particular PIO interrupt.

static uint8_t pio_sm_get_pc (PIO pio, uint sm)

Return the current program counter for a state machine.

static void pio_sm_exec (PIO pio, uint sm, uint instr)

Immediately execute an instruction on a state machine.

static bool pio_sm_is_exec_stalled (PIO pio, uint sm)

Determine if an instruction set by pio_sm_exec() is stalled executing.

static void pio_sm_exec_wait_blocking (PIO pio, uint sm, uint instr)

Immediately execute an instruction on a state machine and wait for it to complete.

static void pio_sm_set_wrap (PIO pio, uint sm, uint wrap_target, uint wrap)

Set the current wrap configuration for a state machine.

static void pio_sm_set_out_pins (PIO pio, uint sm, uint out_base, uint out_count)

Set the current 'out' pins for a state machine.

static void pio_sm_set_set_pins (PIO pio, uint sm, uint set_base, uint set_count)

Set the current 'set' pins for a state machine.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 203

static void pio_sm_set_in_pins (PIO pio, uint sm, uint in_base)

Set the current 'in' pins for a state machine.

static void pio_sm_set_sideset_pins (PIO pio, uint sm, uint sideset_base)

Set the current 'sideset' pins for a state machine.

static void pio_sm_set_jmp_pin (PIO pio, uint sm, uint pin)

Set the 'jmp' pin for a state machine.

static void pio_sm_put (PIO pio, uint sm, uint32_t data)

Write a word of data to a state machine’s TX FIFO.

static uint32_t pio_sm_get (PIO pio, uint sm)

Read a word of data from a state machine’s RX FIFO.

static bool pio_sm_is_rx_fifo_full (PIO pio, uint sm)

Determine if a state machine’s RX FIFO is full.

static bool pio_sm_is_rx_fifo_empty (PIO pio, uint sm)

Determine if a state machine’s RX FIFO is empty.

static uint pio_sm_get_rx_fifo_level (PIO pio, uint sm)

Return the number of elements currently in a state machine’s RX FIFO.

static bool pio_sm_is_tx_fifo_full (PIO pio, uint sm)

Determine if a state machine’s TX FIFO is full.

static bool pio_sm_is_tx_fifo_empty (PIO pio, uint sm)

Determine if a state machine’s TX FIFO is empty.

static uint pio_sm_get_tx_fifo_level (PIO pio, uint sm)

Return the number of elements currently in a state machine’s TX FIFO.

static void pio_sm_put_blocking (PIO pio, uint sm, uint32_t data)

Write a word of data to a state machine’s TX FIFO, blocking if the FIFO is full.

static uint32_t pio_sm_get_blocking (PIO pio, uint sm)

Read a word of data from a state machine’s RX FIFO, blocking if the FIFO is empty.

void pio_sm_drain_tx_fifo (PIO pio, uint sm)

Empty out a state machine’s TX FIFO.

static void pio_sm_set_clkdiv_int_frac (PIO pio, uint sm, uint16_t div_int, uint8_t div_frac)

set the current clock divider for a state machine using a 16:8 fraction

static void pio_sm_set_clkdiv (PIO pio, uint sm, float div)

set the current clock divider for a state machine

static void pio_sm_clear_fifos (PIO pio, uint sm)

Clear a state machine’s TX and RX FIFOs.

void pio_sm_set_pins (PIO pio, uint sm, uint32_t pin_values)

Use a state machine to set a value on all pins for the PIO instance.

void pio_sm_set_pins_with_mask (PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask)

Use a state machine to set a value on multiple pins for the PIO instance.

void pio_sm_set_pindirs_with_mask (PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_mask)

Use a state machine to set the pin directions for multiple pins for the PIO instance.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 204

int pio_sm_set_consecutive_pindirs (PIO pio, uint sm, uint pins_base, uint pin_count, bool is_out)

Use a state machine to set the same pin direction for multiple consecutive pins for the PIO instance.

void pio_sm_claim (PIO pio, uint sm)

Mark a state machine as used.

void pio_claim_sm_mask (PIO pio, uint sm_mask)

Mark multiple state machines as used.

void pio_sm_unclaim (PIO pio, uint sm)

Mark a state machine as no longer used.

int pio_claim_unused_sm (PIO pio, bool required)

Claim a free state machine on a PIO instance.

bool pio_sm_is_claimed (PIO pio, uint sm)

Determine if a PIO state machine is claimed.

bool pio_claim_free_sm_and_add_program (const pio_program_t *program, PIO *pio, uint *sm, uint *offset)

Finds a PIO and statemachine and adds a program into PIO memory.

bool pio_claim_free_sm_and_add_program_for_gpio_range (const pio_program_t *program, PIO *pio, uint *sm, uint *offset,

uint gpio_base, uint gpio_count, bool set_gpio_base)

Finds a PIO and statemachine and adds a program into PIO memory.

void pio_remove_program_and_unclaim_sm (const pio_program_t *program, PIO pio, uint sm, uint offset)

Removes a program from PIO memory and unclaims the state machine.

static int pio_get_irq_num (PIO pio, uint irqn)

Return an IRQ for a PIO hardware instance.

static pio_interrupt_source_t pio_get_tx_fifo_not_full_interrupt_source (uint sm)

Return the interrupt source for a state machines TX FIFO not full interrupt.

static pio_interrupt_source_t pio_get_rx_fifo_not_empty_interrupt_source (uint sm)

Return the interrupt source for a state machines RX FIFO not empty interrupt.

4.1.15.7. Macro Definition Documentation

4.1.15.7.1. pio0

#define pio0 pio0_hw

Identifier for the first (PIO 0) hardware PIO instance (for use in PIO functions).

e.g. pio_gpio_init(pio0, 5)

4.1.15.7.2. pio1

#define pio1 pio1_hw

Identifier for the second (PIO 1) hardware PIO instance (for use in PIO functions).

e.g. pio_gpio_init(pio1, 5)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 205

4.1.15.7.3. PIO_NUM

#define PIO_NUM(pio)

Returns the PIO number for a PIO instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.7.4. PIO_INSTANCE

#define PIO_INSTANCE(instance)

Returns the PIO instance with the given PIO number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.7.5. PIO_FUNCSEL_NUM

#define PIO_FUNCSEL_NUM(pio, gpio)

Returns gpio_function_t needed to select the PIO function for the given PIO instance on the given GPIO.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.7.6. PIO_DREQ_NUM

#define PIO_DREQ_NUM(pio, sm, is_tx)

Returns the dreq_num_t used for pacing DMA transfers to or from a given state machine’s FIFOs on this PIO instance. If

is_tx is true, then it is for transfers to the PIO state machine TX FIFO else for transfers from the PIO state machine RX

FIFO.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.7.7. PIO_IRQ_NUM

#define PIO_IRQ_NUM(pio, irqn)

Returns the irq_num_t for processor interrupts from the given PIO instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.8. Typedef Documentation

4.1.15.8.1. pio_interrupt_source_t

typedef enum pio_interrupt_source pio_interrupt_source_t

PIO interrupt source numbers for pio related IRQs.

4.1.15.9. Enumeration Type Documentation

4.1.15.9.1. pio_fifo_join

enum pio_fifo_join

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 206

FIFO join states.

Table 24. Enumerator
PIO_FIFO_JOIN_NONE TX FIFO length=4 is used for transmit, RX FIFO length=4 is

used for receive.

PIO_FIFO_JOIN_TX TX FIFO length=8 is used for transmit, RX FIFO is disabled.

PIO_FIFO_JOIN_RX RX FIFO length=8 is used for receive, TX FIFO is disabled.

4.1.15.9.2. pio_mov_status_type

enum pio_mov_status_type

MOV status types.

4.1.15.9.3. pio_interrupt_source

enum pio_interrupt_source

PIO interrupt source numbers for pio related IRQs.

Table 25. Enumerator
pis_interrupt0 PIO interrupt 0 is raised.

pis_interrupt1 PIO interrupt 1 is raised.

pis_interrupt2 PIO interrupt 2 is raised.

pis_interrupt3 PIO interrupt 3 is raised.

pis_sm0_tx_fifo_not_full State machine 0 TX FIFO is not full.

pis_sm1_tx_fifo_not_full State machine 1 TX FIFO is not full.

pis_sm2_tx_fifo_not_full State machine 2 TX FIFO is not full.

pis_sm3_tx_fifo_not_full State machine 3 TX FIFO is not full.

pis_sm0_rx_fifo_not_empty State machine 0 RX FIFO is not empty.

pis_sm1_rx_fifo_not_empty State machine 1 RX FIFO is not empty.

pis_sm2_rx_fifo_not_empty State machine 2 RX FIFO is not empty.

pis_sm3_rx_fifo_not_empty State machine 3 RX FIFO is not empty.

4.1.15.10. Function Documentation

4.1.15.10.1. pio_add_program

int pio_add_program (PIO pio, const pio_program_t * program)

Attempt to load the program.

See also

pio_can_add_program() if you need to check whether the program can be loaded

Parameters

pio The PIO instance; e.g. pio0 or pio1

program the program definition

Returns

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 207

the instruction memory offset the program is loaded at, or negative for error (for backwards compatibility with prior SDK

the error value is -1 i.e. PICO_ERROR_GENERIC)

4.1.15.10.2. pio_add_program_at_offset

int pio_add_program_at_offset (PIO pio, const pio_program_t * program, uint offset)

Attempt to load the program at the specified instruction memory offset.

See also

pio_can_add_program_at_offset() if you need to check whether the program can be loaded

Parameters

pio The PIO instance; e.g. pio0 or pio1

program the program definition

offset the instruction memory offset wanted for the start of the program

Returns

the instruction memory offset the program is loaded at, or negative for error (for backwards compatibility with prior SDK

the error value is -1 i.e. PICO_ERROR_GENERIC)

4.1.15.10.3. pio_can_add_program

bool pio_can_add_program (PIO pio, const pio_program_t * program)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance.

Parameters

pio The PIO instance; e.g. pio0 or pio1

program the program definition

Returns

true if the program can be loaded; false if there is not suitable space in the instruction memory

4.1.15.10.4. pio_can_add_program_at_offset

bool pio_can_add_program_at_offset (PIO pio, const pio_program_t * program, uint offset)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at a

particular location.

Parameters

pio The PIO instance; e.g. pio0 or pio1

program the program definition

offset the instruction memory offset wanted for the start of the program

Returns

true if the program can be loaded at that location; false if there is not space in the instruction memory

4.1.15.10.5. pio_claim_free_sm_and_add_program

bool pio_claim_free_sm_and_add_program (const pio_program_t * program, PIO * pio, uint * sm, uint * offset)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 208

Finds a PIO and statemachine and adds a program into PIO memory.

Parameters

program PIO program to add

pio Returns the PIO hardware instance or NULL if no PIO is available

sm Returns the index of the PIO state machine that was claimed

offset Returns the instruction memory offset of the start of the program

Returns

true on success, false otherwise

See also

pio_remove_program_unclaim_sm

4.1.15.10.6. pio_claim_free_sm_and_add_program_for_gpio_range

bool pio_claim_free_sm_and_add_program_for_gpio_range (const pio_program_t * program, PIO * pio, uint * sm, uint *

offset, uint gpio_base, uint gpio_count, bool set_gpio_base)

Finds a PIO and statemachine and adds a program into PIO memory.

This variation of pio_claim_free_sm_and_add_program is useful on RP2350 QFN80 where the "GPIO Base" must be set

per PIO instance to either address the 32 GPIOs (0->31) or the 32 GPIOS (16-47). No single PIO instance can interact

with both pins 0->15 or 32->47 at the same time.

This method takes additional information about the GPIO pins needed (via gpi_base and gpio_count), and optionally will

set the GPIO base (

See also

pio_set_gpio_base) of an unused PIO instance if necessary

Parameters

program PIO program to add

pio Returns the PIO hardware instance or NULL if no PIO is available

sm Returns the index of the PIO state machine that was claimed

offset Returns the instruction memory offset of the start of the program

gpio_base the lowest GPIO number required

gpio_count the count of GPIOs required

set_gpio_base if there is no free SM on a PIO instance with the right GPIO base, and there IS an unused PIO

instance, then that PIO will be reconfigured so that this method can succeed

Returns

true on success, false otherwise

See also

pio_remove_program_unclaim_sm

4.1.15.10.7. pio_claim_sm_mask

void pio_claim_sm_mask (PIO pio, uint sm_mask)

Mark multiple state machines as used.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 209

Method for cooperative claiming of hardware. Will cause a panic if any of the state machines are already claimed. Use

of this method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm_mask Mask of state machine indexes

4.1.15.10.8. pio_claim_unused_sm

int pio_claim_unused_sm (PIO pio, bool required)

Claim a free state machine on a PIO instance.

Parameters

pio The PIO instance; e.g. pio0 or pio1

required if true the function will panic if none are available

Returns

the state machine index or negative if required was false, and none were free (for backwards compatibility with prior

SDK the error value is -1 i.e. PICO_ERROR_GENERIC)

4.1.15.10.9. pio_clear_instruction_memory

void pio_clear_instruction_memory (PIO pio)

Clears all of a PIO instance’s instruction memory.

Parameters

pio The PIO instance; e.g. pio0 or pio1

4.1.15.10.10. pio_clkdiv_restart_sm_mask

static void pio_clkdiv_restart_sm_mask (PIO pio, uint32_t mask) [inline], [static]

Restart multiple state machines' clock dividers from a phase of 0.

Each state machine’s clock divider is a free-running piece of hardware, that generates a pattern of clock enable pulses

for the state machine, based only on the configured integer/fractional divisor. The pattern of running/halted cycles

slows the state machine’s execution to some controlled rate.

This function simultaneously clears the integer and fractional phase accumulators of multiple state machines' clock

dividers. If these state machines all have the same integer and fractional divisors configured, their clock dividers will run

in precise deterministic lockstep from this point.

With their execution clocks synchronised in this way, it is then safe to e.g. have multiple state machines performing a

'wait irq' on the same flag, and all clear it on the same cycle.

Also note that this function can be called whilst state machines are running (e.g. if you have just changed the clock

divisors of some state machines and wish to resynchronise them), and that disabling a state machine does not halt its

clock divider: that is, if multiple state machines have their clocks synchronised, you can safely disable and re-enable one

of the state machines without losing synchronisation.

Parameters

pio The PIO instance; e.g. pio0 or pio1

mask bit mask of state machine indexes to modify the enabled state of

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 210

4.1.15.10.11. pio_enable_sm_mask_in_sync

static void pio_enable_sm_mask_in_sync (PIO pio, uint32_t mask) [inline], [static]

Enable multiple PIO state machines synchronizing their clock dividers.

This is equivalent to calling both pio_set_sm_mask_enabled() and pio_clkdiv_restart_sm_mask() on the same clock

cycle. All state machines specified by 'mask' are started simultaneously and, assuming they have the same clock

divisors, their divided clocks will stay precisely synchronised.

Parameters

pio The PIO instance; e.g. pio0 or pio1

mask bit mask of state machine indexes to modify the enabled state of

4.1.15.10.12. pio_get_dreq

static uint pio_get_dreq (PIO pio, uint sm, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular state machine FIFO.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

is_tx true for sending data to the state machine, false for receiving data from the state machine

4.1.15.10.13. pio_get_funcsel

static uint pio_get_funcsel (PIO pio) [inline], [static]

Return the funcsel number of a PIO instance.

Parameters

pio The PIO instance; e.g. pio0 or pio1

Returns

the PIO instance number (0, 1, …)

See also

gpio_function

4.1.15.10.14. pio_get_gpio_base

static uint pio_get_gpio_base (PIO pio) [inline], [static]

Return the base GPIO base for the PIO instance.

This method always return 0 in RP2040

Parameters

pio The PIO instance; e.g. pio0 or pio1

Returns

the current GPIO base for the PIO instance

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 211

4.1.15.10.15. pio_get_index

static uint pio_get_index (PIO pio) [inline], [static]

Return the instance number of a PIO instance.

Parameters

pio The PIO instance; e.g. pio0 or pio1

Returns

the PIO instance number (0, 1, …)

4.1.15.10.16. pio_get_instance

static PIO pio_get_instance (uint instance) [inline], [static]

Convert PIO instance to hardware instance.

Parameters

instance Instance of PIO, 0 or 1

Returns

the PIO hardware instance

4.1.15.10.17. pio_get_irq_num

static int pio_get_irq_num (PIO pio, uint irqn) [inline], [static]

Return an IRQ for a PIO hardware instance.

Parameters

pio PIO hardware instance

irqn 0 for PIOx_IRQ_0 or 1 for PIOx_IRQ_1 etc where x is the PIO number

Returns

The IRQ number to use for the PIO

4.1.15.10.18. pio_get_rx_fifo_not_empty_interrupt_source

static pio_interrupt_source_t pio_get_rx_fifo_not_empty_interrupt_source (uint sm) [inline], [static]

Return the interrupt source for a state machines RX FIFO not empty interrupt.

Parameters

sm State machine index (0..3)

Returns

The interrupt source number for use in pio_set_irqn_source_enabled or similar functions

4.1.15.10.19. pio_get_tx_fifo_not_full_interrupt_source

static pio_interrupt_source_t pio_get_tx_fifo_not_full_interrupt_source (uint sm) [inline], [static]

Return the interrupt source for a state machines TX FIFO not full interrupt.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 212

sm State machine index (0..3)

Returns

The interrupt source number for use in pio_set_irqn_source_enabled or similar functions

4.1.15.10.20. pio_gpio_init

static void pio_gpio_init (PIO pio, uint pin) [inline], [static]

Setup the function select for a GPIO to use output from the given PIO instance.

PIO appears as an alternate function in the GPIO muxing, just like an SPI or UART. This function configures that

multiplexing to connect a given PIO instance to a GPIO. Note that this is not necessary for a state machine to be able to

read the input value from a GPIO, but only for it to set the output value or output enable.

Parameters

pio The PIO instance; e.g. pio0 or pio1

pin the GPIO pin whose function select to set

4.1.15.10.21. pio_interrupt_clear

static void pio_interrupt_clear (PIO pio, uint pio_interrupt_num) [inline], [static]

Clear a particular PIO interrupt.

Parameters

pio The PIO instance; e.g. pio0 or pio1

pio_interrupt_num the PIO interrupt number 0-7

4.1.15.10.22. pio_interrupt_get

static bool pio_interrupt_get (PIO pio, uint pio_interrupt_num) [inline], [static]

Determine if a particular PIO interrupt is set.

Parameters

pio The PIO instance; e.g. pio0 or pio1

pio_interrupt_num the PIO interrupt number 0-7

Returns

true if corresponding PIO interrupt is currently set

4.1.15.10.23. pio_remove_program

void pio_remove_program (PIO pio, const pio_program_t * program, uint loaded_offset)

Remove a program from a PIO instance’s instruction memory.

Parameters

pio The PIO instance; e.g. pio0 or pio1

program the program definition

loaded_offset the loaded offset returned when the program was added

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 213

4.1.15.10.24. pio_remove_program_and_unclaim_sm

void pio_remove_program_and_unclaim_sm (const pio_program_t * program, PIO pio, uint sm, uint offset)

Removes a program from PIO memory and unclaims the state machine.

Parameters

program PIO program to remove from memory

pio PIO hardware instance being used

sm PIO state machine that was claimed

offset offset of the program in PIO memory

See also

pio_claim_free_sm_and_add_program

4.1.15.10.25. pio_restart_sm_mask

static void pio_restart_sm_mask (PIO pio, uint32_t mask) [inline], [static]

Restart multiple state machine with a known state.

This method clears the ISR, shift counters, clock divider counter pin write flags, delay counter, latched EXEC instruction,

and IRQ wait condition.

Parameters

pio The PIO instance; e.g. pio0 or pio1

mask bit mask of state machine indexes to modify the enabled state of

4.1.15.10.26. pio_set_gpio_base

int pio_set_gpio_base (PIO pio, uint gpio_base)

Set the base GPIO base for the PIO instance.

Since an individual PIO accesses only 32 pins, to be able to access more pins, the PIO instance must specify a base

GPIO where the instance’s "pin 0" maps. For RP2350 the valid values are 0 and 16, indicating the PIO instance has

access to pins 0-31, or 16-47 respectively.

Parameters

pio The PIO instance; e.g. pio0 or pio1

gpio_base the GPIO base (either 0 or 16)

Returns

PICO_OK (0) on success, error code otherwise

4.1.15.10.27. pio_set_irq0_source_enabled

static void pio_set_irq0_source_enabled (PIO pio, pio_interrupt_source_t source, bool enabled) [inline], [static]

Enable/Disable a single source on a PIO’s IRQ 0.

Parameters

pio The PIO instance; e.g. pio0 or pio1

source the source number (see pio_interrupt_source)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 214

enabled true to enable IRQ 0 for the source, false to disable.

4.1.15.10.28. pio_set_irq0_source_mask_enabled

static void pio_set_irq0_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled) [inline], [static]

Enable/Disable multiple sources on a PIO’s IRQ 0.

Parameters

pio The PIO instance; e.g. pio0 or pio1

source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect

enabled true to enable all the sources specified in the mask on IRQ 0, false to disable all the sources

specified in the mask on IRQ 0

4.1.15.10.29. pio_set_irq1_source_enabled

static void pio_set_irq1_source_enabled (PIO pio, pio_interrupt_source_t source, bool enabled) [inline], [static]

Enable/Disable a single source on a PIO’s IRQ 1.

Parameters

pio The PIO instance; e.g. pio0 or pio1

source the source number (see pio_interrupt_source)

enabled true to enable IRQ 0 for the source, false to disable.

4.1.15.10.30. pio_set_irq1_source_mask_enabled

static void pio_set_irq1_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled) [inline], [static]

Enable/Disable multiple sources on a PIO’s IRQ 1.

Parameters

pio The PIO instance; e.g. pio0 or pio1

source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect

enabled true to enable all the sources specified in the mask on IRQ 1, false to disable all the source

specified in the mask on IRQ 1

4.1.15.10.31. pio_set_irqn_source_enabled

static void pio_set_irqn_source_enabled (PIO pio, uint irq_index, pio_interrupt_source_t source, bool enabled) [inline],

[static]

Enable/Disable a single source on a PIO’s specified (0/1) IRQ index.

Parameters

pio The PIO instance; e.g. pio0 or pio1

irq_index the IRQ index; either 0 or 1

source the source number (see pio_interrupt_source)

enabled true to enable the source on the specified IRQ, false to disable.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 215

4.1.15.10.32. pio_set_irqn_source_mask_enabled

static void pio_set_irqn_source_mask_enabled (PIO pio, uint irq_index, uint32_t source_mask, bool enabled) [inline],

[static]

Enable/Disable multiple sources on a PIO’s specified (0/1) IRQ index.

Parameters

pio The PIO instance; e.g. pio0 or pio1

irq_index the IRQ index; either 0 or 1

source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect

enabled true to enable all the sources specified in the mask on the specified IRQ, false to disable all the

sources specified in the mask on the specified IRQ

4.1.15.10.33. pio_set_sm_mask_enabled

static void pio_set_sm_mask_enabled (PIO pio, uint32_t mask, bool enabled) [inline], [static]

Enable or disable multiple PIO state machines.

Note that this method just sets the enabled state of the state machine; if now enabled they continue exactly from where

they left off.

See also

pio_enable_sm_mask_in_sync() if you wish to enable multiple state machines and ensure their clock dividers are in

sync.

Parameters

pio The PIO instance; e.g. pio0 or pio1

mask bit mask of state machine indexes to modify the enabled state of

enabled true to enable the state machines; false to disable

4.1.15.10.34. pio_sm_claim

void pio_sm_claim (PIO pio, uint sm)

Mark a state machine as used.

Method for cooperative claiming of hardware. Will cause a panic if the state machine is already claimed. Use of this

method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.10.35. pio_sm_clear_fifos

static void pio_sm_clear_fifos (PIO pio, uint sm) [inline], [static]

Clear a state machine’s TX and RX FIFOs.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 216

4.1.15.10.36. pio_sm_clkdiv_restart

static void pio_sm_clkdiv_restart (PIO pio, uint sm) [inline], [static]

Restart a state machine’s clock divider from a phase of 0.

Each state machine’s clock divider is a free-running piece of hardware, that generates a pattern of clock enable pulses

for the state machine, based only on the configured integer/fractional divisor. The pattern of running/halted cycles

slows the state machine’s execution to some controlled rate.

This function clears the divider’s integer and fractional phase accumulators so that it restarts this pattern from the

beginning. It is called automatically by pio_sm_init() but can also be called at a later time, when you enable the state

machine, to ensure precisely consistent timing each time you load and run a given PIO program.

More commonly this hardware mechanism is used to synchronise the execution clocks of multiple state machines –

see pio_clkdiv_restart_sm_mask().

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.10.37. pio_sm_drain_tx_fifo

void pio_sm_drain_tx_fifo (PIO pio, uint sm)

Empty out a state machine’s TX FIFO.

This method executes pull instructions on the state machine until the TX FIFO is empty. This disturbs the contents of

the OSR, so see also pio_sm_clear_fifos() which clears both FIFOs but leaves the state machine’s internal state

undisturbed.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

See also

pio_sm_clear_fifos()

4.1.15.10.38. pio_sm_exec

static void pio_sm_exec (PIO pio, uint sm, uint instr) [inline], [static]

Immediately execute an instruction on a state machine.

This instruction is executed instead of the next instruction in the normal control flow on the state machine. Subsequent

calls to this method replace the previous executed instruction if it is still running.

See also

pio_sm_is_exec_stalled() to see if an executed instruction is still running (i.e. it is stalled on some condition)

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

instr the encoded PIO instruction

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 217

4.1.15.10.39. pio_sm_exec_wait_blocking

static void pio_sm_exec_wait_blocking (PIO pio, uint sm, uint instr) [inline], [static]

Immediately execute an instruction on a state machine and wait for it to complete.

This instruction is executed instead of the next instruction in the normal control flow on the state machine. Subsequent

calls to this method replace the previous executed instruction if it is still running.

See also

pio_sm_is_exec_stalled() to see if an executed instruction is still running (i.e. it is stalled on some condition)

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

instr the encoded PIO instruction

4.1.15.10.40. pio_sm_get

static uint32_t pio_sm_get (PIO pio, uint sm) [inline], [static]

Read a word of data from a state machine’s RX FIFO.

This is a raw FIFO access that does not check for emptiness. If the FIFO is empty, the hardware ignores the attempt to

read from the FIFO (the FIFO remains in an empty state following the read) and the sticky RXUNDER flag for this FIFO is

set in FDEBUG to indicate that the system tried to read from this FIFO when empty. The data returned by this function is

undefined when the FIFO is empty.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

See also

pio_sm_get_blocking()

4.1.15.10.41. pio_sm_get_blocking

static uint32_t pio_sm_get_blocking (PIO pio, uint sm) [inline], [static]

Read a word of data from a state machine’s RX FIFO, blocking if the FIFO is empty.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.10.42. pio_sm_get_pc

static uint8_t pio_sm_get_pc (PIO pio, uint sm) [inline], [static]

Return the current program counter for a state machine.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Returns

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 218

the program counter

4.1.15.10.43. pio_sm_get_rx_fifo_level

static uint pio_sm_get_rx_fifo_level (PIO pio, uint sm) [inline], [static]

Return the number of elements currently in a state machine’s RX FIFO.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Returns

the number of elements in the RX FIFO

4.1.15.10.44. pio_sm_get_tx_fifo_level

static uint pio_sm_get_tx_fifo_level (PIO pio, uint sm) [inline], [static]

Return the number of elements currently in a state machine’s TX FIFO.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Returns

the number of elements in the TX FIFO

4.1.15.10.45. pio_sm_is_claimed

bool pio_sm_is_claimed (PIO pio, uint sm)

Determine if a PIO state machine is claimed.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Returns

true if claimed, false otherwise

See also

pio_sm_claim

pio_claim_sm_mask

4.1.15.10.46. pio_sm_is_exec_stalled

static bool pio_sm_is_exec_stalled (PIO pio, uint sm) [inline], [static]

Determine if an instruction set by pio_sm_exec() is stalled executing.

Parameters

pio The PIO instance; e.g. pio0 or pio1

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 219

sm State machine index (0..3)

Returns

true if the executed instruction is still running (stalled)

4.1.15.10.47. pio_sm_is_rx_fifo_empty

static bool pio_sm_is_rx_fifo_empty (PIO pio, uint sm) [inline], [static]

Determine if a state machine’s RX FIFO is empty.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Returns

true if the RX FIFO is empty

4.1.15.10.48. pio_sm_is_rx_fifo_full

static bool pio_sm_is_rx_fifo_full (PIO pio, uint sm) [inline], [static]

Determine if a state machine’s RX FIFO is full.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Returns

true if the RX FIFO is full

4.1.15.10.49. pio_sm_is_tx_fifo_empty

static bool pio_sm_is_tx_fifo_empty (PIO pio, uint sm) [inline], [static]

Determine if a state machine’s TX FIFO is empty.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Returns

true if the TX FIFO is empty

4.1.15.10.50. pio_sm_is_tx_fifo_full

static bool pio_sm_is_tx_fifo_full (PIO pio, uint sm) [inline], [static]

Determine if a state machine’s TX FIFO is full.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 220

Returns

true if the TX FIFO is full

4.1.15.10.51. pio_sm_put

static void pio_sm_put (PIO pio, uint sm, uint32_t data) [inline], [static]

Write a word of data to a state machine’s TX FIFO.

This is a raw FIFO access that does not check for fullness. If the FIFO is full, the FIFO contents and state are not

affected by the write attempt. Hardware sets the TXOVER sticky flag for this FIFO in FDEBUG, to indicate that the

system attempted to write to a full FIFO.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

data the 32 bit data value

See also

pio_sm_put_blocking()

4.1.15.10.52. pio_sm_put_blocking

static void pio_sm_put_blocking (PIO pio, uint sm, uint32_t data) [inline], [static]

Write a word of data to a state machine’s TX FIFO, blocking if the FIFO is full.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

data the 32 bit data value

4.1.15.10.53. pio_sm_restart

static void pio_sm_restart (PIO pio, uint sm) [inline], [static]

Restart a state machine with a known state.

This method clears the ISR, shift counters, clock divider counter pin write flags, delay counter, latched EXEC instruction,

and IRQ wait condition.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.10.54. pio_sm_set_clkdiv

static void pio_sm_set_clkdiv (PIO pio, uint sm, float div) [inline], [static]

set the current clock divider for a state machine

Parameters

pio The PIO instance; e.g. pio0 or pio1

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 221

sm State machine index (0..3)

div the floating point clock divider

4.1.15.10.55. pio_sm_set_clkdiv_int_frac

static void pio_sm_set_clkdiv_int_frac (PIO pio, uint sm, uint16_t div_int, uint8_t div_frac) [inline], [static]

set the current clock divider for a state machine using a 16:8 fraction

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

div_int the integer part of the clock divider

div_frac the fractional part of the clock divider in 1/256s

4.1.15.10.56. pio_sm_set_config

static int pio_sm_set_config (PIO pio, uint sm, const pio_sm_config * config) [inline], [static]

Apply a state machine configuration to a state machine.

Parameters

pio Handle to PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

config the configuration to apply

Returns

PICO_OK (0) on success, negative error code otherwise

4.1.15.10.57. pio_sm_set_consecutive_pindirs

int pio_sm_set_consecutive_pindirs (PIO pio, uint sm, uint pins_base, uint pin_count, bool is_out)

Use a state machine to set the same pin direction for multiple consecutive pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set

the pin direction on consecutive pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin directions, and should not be used against a state machine

that is enabled.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3) to use

pins_base the first pin to set a direction for

pin_count the count of consecutive pins to set the direction for

is_out the direction to set; true = out, false = in

Returns

PICO_OK (0) on success, error code otherwise

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 222

4.1.15.10.58. pio_sm_set_enabled

static void pio_sm_set_enabled (PIO pio, uint sm, bool enabled) [inline], [static]

Enable or disable a PIO state machine.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

enabled true to enable the state machine; false to disable

4.1.15.10.59. pio_sm_set_in_pins

static void pio_sm_set_in_pins (PIO pio, uint sm, uint in_base) [inline], [static]

Set the current 'in' pins for a state machine.

'in' pins can overlap with the 'out', 'set' and 'sideset' pins

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

in_base 0-31 First pin to use as input

4.1.15.10.60. pio_sm_set_jmp_pin

static void pio_sm_set_jmp_pin (PIO pio, uint sm, uint pin) [inline], [static]

Set the 'jmp' pin for a state machine.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

pin The raw GPIO pin number to use as the source for a jmp pin instruction

4.1.15.10.61. pio_sm_set_out_pins

static void pio_sm_set_out_pins (PIO pio, uint sm, uint out_base, uint out_count) [inline], [static]

Set the current 'out' pins for a state machine.

'out' pins can overlap with the 'in', 'set' and 'sideset' pins

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

out_base 0-31 First pin to set as output

out_count 0-32 Number of pins to set.

4.1.15.10.62. pio_sm_set_pindirs_with_mask

void pio_sm_set_pindirs_with_mask (PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_mask)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 223

Use a state machine to set the pin directions for multiple pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set

pin directions on up to 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin directions, and should not be used against a state machine

that is enabled.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3) to use

pin_dirs the pin directions to set - 1 = out, 0 = in (if the corresponding bit in pin_mask is set)

pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied.

4.1.15.10.63. pio_sm_set_pins

void pio_sm_set_pins (PIO pio, uint sm, uint32_t pin_values)

Use a state machine to set a value on all pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set

values on all 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin states, and should not be used against a state machine that

is enabled.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3) to use

pin_values the pin values to set

4.1.15.10.64. pio_sm_set_pins_with_mask

void pio_sm_set_pins_with_mask (PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask)

Use a state machine to set a value on multiple pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set

values on up to 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin states, and should not be used against a state machine that

is enabled.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3) to use

pin_values the pin values to set (if the corresponding bit in pin_mask is set)

pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied.

4.1.15.10.65. pio_sm_set_set_pins

static void pio_sm_set_set_pins (PIO pio, uint sm, uint set_base, uint set_count) [inline], [static]

Set the current 'set' pins for a state machine.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 224

'set' pins can overlap with the 'in', 'out' and 'sideset' pins

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

set_base 0-31 First pin to set as

set_count 0-5 Number of pins to set.

4.1.15.10.66. pio_sm_set_sideset_pins

static void pio_sm_set_sideset_pins (PIO pio, uint sm, uint sideset_base) [inline], [static]

Set the current 'sideset' pins for a state machine.

'sideset' pins can overlap with the 'in', 'out' and 'set' pins

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

sideset_base 0-31 base pin for 'side set'

4.1.15.10.67. pio_sm_set_wrap

static void pio_sm_set_wrap (PIO pio, uint sm, uint wrap_target, uint wrap) [inline], [static]

Set the current wrap configuration for a state machine.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

wrap_target the instruction memory address to wrap to

wrap the instruction memory address after which to set the program counter to wrap_target if the

instruction does not itself update the program_counter

4.1.15.10.68. pio_sm_unclaim

void pio_sm_unclaim (PIO pio, uint sm)

Mark a state machine as no longer used.

Method for cooperative claiming of hardware.

Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.11. sm_config

PIO state machine configuration .

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 225

4.1.15.11.1. Detailed Description

A PIO block needs to be configured, these functions provide helpers to set up configuration structures. See

pio_sm_set_config

4.1.15.11.2. Functions

static void sm_config_set_out_pin_base (pio_sm_config *c, uint out_base)

Set the base of the 'out' pins in a state machine configuration.

static void sm_config_set_out_pin_count (pio_sm_config *c, uint out_count)

Set the number of 'out' pins in a state machine configuration.

static void sm_config_set_out_pins (pio_sm_config *c, uint out_base, uint out_count)

Set the 'out' pins in a state machine configuration.

static void sm_config_set_set_pin_base (pio_sm_config *c, uint set_base)

Set the base of the 'set' pins in a state machine configuration.

static void sm_config_set_set_pin_count (pio_sm_config *c, uint set_count)

Set the count of 'set' pins in a state machine configuration.

static void sm_config_set_set_pins (pio_sm_config *c, uint set_base, uint set_count)

Set the 'set' pins in a state machine configuration.

static void sm_config_set_in_pin_base (pio_sm_config *c, uint in_base)

Set the base of the 'in' pins in a state machine configuration.

static void sm_config_set_in_pins (pio_sm_config *c, uint in_base)

Set the base fpr the 'in' pins in a state machine configuration.

static void sm_config_set_sideset_pin_base (pio_sm_config *c, uint sideset_base)

Set the base of the 'sideset' pins in a state machine configuration.

static void sm_config_set_sideset_pins (pio_sm_config *c, uint sideset_base)

Set the 'sideset' pins in a state machine configuration.

static void sm_config_set_sideset (pio_sm_config *c, uint bit_count, bool optional, bool pindirs)

Set the 'sideset' options in a state machine configuration.

static void sm_config_set_clkdiv_int_frac (pio_sm_config *c, uint16_t div_int, uint8_t div_frac)

Set the state machine clock divider (from integer and fractional parts - 16:8) in a state machine configuration.

static void sm_config_set_clkdiv (pio_sm_config *c, float div)

Set the state machine clock divider (from a floating point value) in a state machine configuration.

static void sm_config_set_wrap (pio_sm_config *c, uint wrap_target, uint wrap)

Set the wrap addresses in a state machine configuration.

static void sm_config_set_jmp_pin (pio_sm_config *c, uint pin)

Set the 'jmp' pin in a state machine configuration.

static void sm_config_set_in_shift (pio_sm_config *c, bool shift_right, bool autopush, uint push_threshold)

Setup 'in' shifting parameters in a state machine configuration.

static void sm_config_set_out_shift (pio_sm_config *c, bool shift_right, bool autopull, uint pull_threshold)

Setup 'out' shifting parameters in a state machine configuration.

static void sm_config_set_fifo_join (pio_sm_config *c, enum pio_fifo_join join)

Setup the FIFO joining in a state machine configuration.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 226

static void sm_config_set_out_special (pio_sm_config *c, bool sticky, bool has_enable_pin, uint enable_pin_index)

Set special 'out' operations in a state machine configuration.

static void sm_config_set_mov_status (pio_sm_config *c, enum pio_mov_status_type status_sel, uint status_n)

Set source for 'mov status' in a state machine configuration.

static pio_sm_config pio_get_default_sm_config (void)

Get the default state machine configuration.

4.1.15.11.3. Function Documentation

pio_get_default_sm_config

static pio_sm_config pio_get_default_sm_config (void) [inline], [static]

Get the default state machine configuration.

Setting Default

Out Pins 32 starting at 0

Set Pins 0 starting at 0

In Pins (base) 0

Side Set Pins (base) 0

Side Set disabled

Wrap wrap=31, wrap_to=0

In Shift shift_direction=right, autopush=false, push_threshold=32

Out Shift shift_direction=right, autopull=false, pull_threshold=32

Jmp Pin 0

Out Special sticky=false, has_enable_pin=false, enable_pin_index=0

Mov Status status_sel=STATUS_TX_LESSTHAN, n=0

Returns

the default state machine configuration which can then be modified.

sm_config_set_clkdiv

static void sm_config_set_clkdiv (pio_sm_config * c, float div) [inline], [static]

Set the state machine clock divider (from a floating point value) in a state machine configuration.

The clock divider slows the state machine’s execution by masking the system clock on some cycles, in a repeating

pattern, so that the state machine does not advance. Effectively this produces a slower clock for the state machine to

run from, which can be used to generate e.g. a particular UART baud rate. See the datasheet for further detail.

Parameters

c Pointer to the configuration structure to modify

div The fractional divisor to be set. 1 for full speed. An integer clock divisor of n will cause the state machine

to run 1 cycle in every n. Note that for small n, the jitter introduced by a fractional divider (e.g. 2.5) may be

unacceptable although it will depend on the use case.

sm_config_set_clkdiv_int_frac

static void sm_config_set_clkdiv_int_frac (pio_sm_config * c, uint16_t div_int, uint8_t div_frac) [inline], [static]

Set the state machine clock divider (from integer and fractional parts - 16:8) in a state machine configuration.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 227

The clock divider can slow the state machine’s execution to some rate below the system clock frequency, by enabling

the state machine on some cycles but not on others, in a regular pattern. This can be used to generate e.g. a given

UART baud rate. See the datasheet for further detail.

Parameters

c Pointer to the configuration structure to modify

div_int Integer part of the divisor

div_frac Fractional part in 1/256ths

See also

sm_config_set_clkdiv()

sm_config_set_fifo_join

static void sm_config_set_fifo_join (pio_sm_config * c, enum pio_fifo_join join) [inline], [static]

Setup the FIFO joining in a state machine configuration.

Parameters

c Pointer to the configuration structure to modify

join Specifies the join type.

See also

enum pio_fifo_join

sm_config_set_in_pin_base

static void sm_config_set_in_pin_base (pio_sm_config * c, uint in_base) [inline], [static]

Set the base of the 'in' pins in a state machine configuration.

'in' pins can overlap with the 'out', 'set' and 'sideset' pins

Parameters

c Pointer to the configuration structure to modify

in_base 0-31 First pin to use as input

sm_config_set_in_pins

static void sm_config_set_in_pins (pio_sm_config * c, uint in_base) [inline], [static]

Set the base fpr the 'in' pins in a state machine configuration.

'in' pins can overlap with the 'out', 'set' and 'sideset' pins

Parameters

c Pointer to the configuration structure to modify

in_base 0-31 First pin to use as input

sm_config_set_in_shift

static void sm_config_set_in_shift (pio_sm_config * c, bool shift_right, bool autopush, uint push_threshold) [inline],

[static]

Setup 'in' shifting parameters in a state machine configuration.

Parameters

c Pointer to the configuration structure to modify

shift_right true to shift ISR to right, false to shift ISR to left

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 228

autopush whether autopush is enabled

push_threshold threshold in bits to shift in before auto/conditional re-pushing of the ISR

sm_config_set_jmp_pin

static void sm_config_set_jmp_pin (pio_sm_config * c, uint pin) [inline], [static]

Set the 'jmp' pin in a state machine configuration.

Parameters

c Pointer to the configuration structure to modify

pin The raw GPIO pin number to use as the source for a jmp pin instruction

sm_config_set_mov_status

static void sm_config_set_mov_status (pio_sm_config * c, enum pio_mov_status_type status_sel, uint status_n) [inline],

[static]

Set source for 'mov status' in a state machine configuration.

Parameters

c Pointer to the configuration structure to modify

status_sel the status operation selector.

See also

enum pio_mov_status_type

Parameters

status_n parameter for the mov status operation (currently a bit count)

sm_config_set_out_pin_base

static void sm_config_set_out_pin_base (pio_sm_config * c, uint out_base) [inline], [static]

Set the base of the 'out' pins in a state machine configuration.

'out' pins can overlap with the 'in', 'set' and 'sideset' pins

Parameters

c Pointer to the configuration structure to modify

out_base 0-31 First pin to set as output

sm_config_set_out_pin_count

static void sm_config_set_out_pin_count (pio_sm_config * c, uint out_count) [inline], [static]

Set the number of 'out' pins in a state machine configuration.

'out' pins can overlap with the 'in', 'set' and 'sideset' pins

Parameters

c Pointer to the configuration structure to modify

out_count 0-32 Number of pins to set.

sm_config_set_out_pins

static void sm_config_set_out_pins (pio_sm_config * c, uint out_base, uint out_count) [inline], [static]

Set the 'out' pins in a state machine configuration.

'out' pins can overlap with the 'in', 'set' and 'sideset' pins

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 229

c Pointer to the configuration structure to modify

out_base 0-31 First pin to set as output

out_count 0-32 Number of pins to set.

sm_config_set_out_shift

static void sm_config_set_out_shift (pio_sm_config * c, bool shift_right, bool autopull, uint pull_threshold) [inline],

[static]

Setup 'out' shifting parameters in a state machine configuration.

Parameters

c Pointer to the configuration structure to modify

shift_right true to shift OSR to right, false to shift OSR to left

autopull whether autopull is enabled

pull_threshold threshold in bits to shift out before auto/conditional re-pulling of the OSR

sm_config_set_out_special

static void sm_config_set_out_special (pio_sm_config * c, bool sticky, bool has_enable_pin, uint enable_pin_index)

[inline], [static]

Set special 'out' operations in a state machine configuration.

Parameters

c Pointer to the configuration structure to modify

sticky to enable 'sticky' output (i.e. re-asserting most recent OUT/SET pin values on subsequent

cycles)

has_enable_pin true to enable auxiliary OUT enable pin

enable_pin_index pin index for auxiliary OUT enable

sm_config_set_set_pin_base

static void sm_config_set_set_pin_base (pio_sm_config * c, uint set_base) [inline], [static]

Set the base of the 'set' pins in a state machine configuration.

'set' pins can overlap with the 'in', 'out' and 'sideset' pins

Parameters

c Pointer to the configuration structure to modify

set_base 0-31 First pin to set as

sm_config_set_set_pin_count

static void sm_config_set_set_pin_count (pio_sm_config * c, uint set_count) [inline], [static]

Set the count of 'set' pins in a state machine configuration.

'set' pins can overlap with the 'in', 'out' and 'sideset' pins

Parameters

c Pointer to the configuration structure to modify

set_count 0-5 Number of pins to set.

sm_config_set_set_pins

static void sm_config_set_set_pins (pio_sm_config * c, uint set_base, uint set_count) [inline], [static]

Set the 'set' pins in a state machine configuration.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 230

'set' pins can overlap with the 'in', 'out' and 'sideset' pins

Parameters

c Pointer to the configuration structure to modify

set_base 0-31 First pin to set as

set_count 0-5 Number of pins to set.

sm_config_set_sideset

static void sm_config_set_sideset (pio_sm_config * c, uint bit_count, bool optional, bool pindirs) [inline], [static]

Set the 'sideset' options in a state machine configuration.

Parameters

c Pointer to the configuration structure to modify

bit_count Number of bits to steal from delay field in the instruction for use of side set (max 5)

optional True if the topmost side set bit is used as a flag for whether to apply side set on that instruction

pindirs True if the side set affects pin directions rather than values

sm_config_set_sideset_pin_base

static void sm_config_set_sideset_pin_base (pio_sm_config * c, uint sideset_base) [inline], [static]

Set the base of the 'sideset' pins in a state machine configuration.

'sideset' pins can overlap with the 'in', 'out' and 'set' pins

Parameters

c Pointer to the configuration structure to modify

sideset_base 0-31 base pin for 'side set'

sm_config_set_sideset_pins

static void sm_config_set_sideset_pins (pio_sm_config * c, uint sideset_base) [inline], [static]

Set the 'sideset' pins in a state machine configuration.

This method is identical to sm_config_set_sideset_pin_base, and is provided for backwards compatibility

'sideset' pins can overlap with the 'in', 'out' and 'set' pins

Parameters

c Pointer to the configuration structure to modify

sideset_base 0-31 base pin for 'side set'

sm_config_set_wrap

static void sm_config_set_wrap (pio_sm_config * c, uint wrap_target, uint wrap) [inline], [static]

Set the wrap addresses in a state machine configuration.

Parameters

c Pointer to the configuration structure to modify

wrap_target the instruction memory address to wrap to

wrap the instruction memory address after which to set the program counter to wrap_target if the

instruction does not itself update the program_counter

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 231

4.1.15.12. pio_instructions

PIO instruction encoding .

4.1.15.12.1. Detailed Description

Functions for generating PIO instruction encodings programmatically. In debug builds

PARAM_ASSERTIONS_ENABLED_PIO_INSTRUCTIONS can be set to 1 to enable validation of encoding function parameters.

For fuller descriptions of the instructions in question see the "RP2040 Datasheet"

4.1.15.12.2. Enumerations

enum pio_src_dest { pio_pins = 0u, pio_x = 1u, pio_y = 2u, pio_null = 3u | 0x20u | 0x80u, pio_pindirs = 4u | 0x08u |

0x40u | 0x80u, pio_exec_mov = 4u | 0x08u | 0x10u | 0x20u | 0x40u, pio_status = 5u | 0x08u | 0x10u | 0x20u | 0x80u, pio_pc

= 5u | 0x08u | 0x20u | 0x40u, pio_isr = 6u | 0x20u, pio_osr = 7u | 0x10u | 0x20u, pio_exec_out = 7u | 0x08u | 0x20u |

0x40u | 0x80u }

Enumeration of values to pass for source/destination args for instruction encoding functions.

4.1.15.12.3. Functions

static uint pio_encode_delay (uint cycles)

Encode just the delay slot bits of an instruction.

static uint pio_encode_sideset (uint sideset_bit_count, uint value)

Encode just the side set bits of an instruction (in non optional side set mode)

static uint pio_encode_sideset_opt (uint sideset_bit_count, uint value)

Encode just the side set bits of an instruction (in optional -opt side set mode)

static uint pio_encode_jmp (uint addr)

Encode an unconditional JMP instruction.

static uint pio_encode_jmp_not_x (uint addr)

Encode a conditional JMP if scratch X zero instruction.

static uint pio_encode_jmp_x_dec (uint addr)

Encode a conditional JMP if scratch X non-zero (and post-decrement X) instruction.

static uint pio_encode_jmp_not_y (uint addr)

Encode a conditional JMP if scratch Y zero instruction.

static uint pio_encode_jmp_y_dec (uint addr)

Encode a conditional JMP if scratch Y non-zero (and post-decrement Y) instruction.

static uint pio_encode_jmp_x_ne_y (uint addr)

Encode a conditional JMP if scratch X not equal scratch Y instruction.

static uint pio_encode_jmp_pin (uint addr)

Encode a conditional JMP if input pin high instruction.

static uint pio_encode_jmp_not_osre (uint addr)

Encode a conditional JMP if output shift register not empty instruction.

static uint pio_encode_wait_gpio (bool polarity, uint gpio)

Encode a WAIT for GPIO pin instruction.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 232

static uint pio_encode_wait_pin (bool polarity, uint pin)

Encode a WAIT for pin instruction.

static uint pio_encode_wait_irq (bool polarity, bool relative, uint irq)

Encode a WAIT for IRQ instruction.

static uint pio_encode_in (enum pio_src_dest src, uint count)

Encode an IN instruction.

static uint pio_encode_out (enum pio_src_dest dest, uint count)

Encode an OUT instruction.

static uint pio_encode_push (bool if_full, bool block)

Encode a PUSH instruction.

static uint pio_encode_pull (bool if_empty, bool block)

Encode a PULL instruction.

static uint pio_encode_mov (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction.

static uint pio_encode_mov_not (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction with bit invert.

static uint pio_encode_mov_reverse (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction with bit reverse.

static uint pio_encode_irq_set (bool relative, uint irq)

Encode a IRQ SET instruction.

static uint pio_encode_irq_wait (bool relative, uint irq)

Encode a IRQ WAIT instruction.

static uint pio_encode_irq_clear (bool relative, uint irq)

Encode a IRQ CLEAR instruction.

static uint pio_encode_set (enum pio_src_dest dest, uint value)

Encode a SET instruction.

static uint pio_encode_nop (void)

Encode a NOP instruction.

4.1.15.12.4. Enumeration Type Documentation

pio_src_dest

enum pio_src_dest

Enumeration of values to pass for source/destination args for instruction encoding functions.

 NOTE

Not all values are suitable for all functions. Validity is only checked in debug mode when

PARAM_ASSERTIONS_ENABLED_PIO_INSTRUCTIONS is 1

4.1.15.12.5. Function Documentation

pio_encode_delay

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 233

static uint pio_encode_delay (uint cycles) [inline], [static]

Encode just the delay slot bits of an instruction.

 NOTE

This function does not return a valid instruction encoding; instead it returns an encoding of the delay slot suitable for

`OR`ing with the result of an encoding function for an actual instruction. Care should be taken when combining the

results of this function with the results of pio_encode_sideset and pio_encode_sideset_opt as they share the same

bits within the instruction encoding.

Parameters

cycles the number of cycles 0-31 (or less if side set is being used)

Returns

the delay slot bits to be ORed with an instruction encoding

pio_encode_in

static uint pio_encode_in (enum pio_src_dest src, uint count) [inline], [static]

Encode an IN instruction.

This is the equivalent of IN <src>, <count>

Parameters

src The source to take data from

count The number of bits 1-32

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_irq_clear

static uint pio_encode_irq_clear (bool relative, uint irq) [inline], [static]

Encode a IRQ CLEAR instruction.

This is the equivalent of IRQ CLEAR <irq> <relative>

Parameters

relative true for a IRQ CLEAR <irq> REL, false for regular IRQ CLEAR <irq>

irq the irq number 0-7

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_irq_set

static uint pio_encode_irq_set (bool relative, uint irq) [inline], [static]

Encode a IRQ SET instruction.

This is the equivalent of IRQ SET <irq> <relative>

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 234

relative true for a IRQ SET <irq> REL, false for regular IRQ SET <irq>

irq the irq number 0-7

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_irq_wait

static uint pio_encode_irq_wait (bool relative, uint irq) [inline], [static]

Encode a IRQ WAIT instruction.

This is the equivalent of IRQ WAIT <irq> <relative>

Parameters

relative true for a IRQ WAIT <irq> REL, false for regular IRQ WAIT <irq>

irq the irq number 0-7

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_jmp

static uint pio_encode_jmp (uint addr) [inline], [static]

Encode an unconditional JMP instruction.

This is the equivalent of JMP <addr>

Parameters

addr The target address 0-31 (an absolute address within the PIO instruction memory)

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_jmp_not_osre

static uint pio_encode_jmp_not_osre (uint addr) [inline], [static]

Encode a conditional JMP if output shift register not empty instruction.

This is the equivalent of JMP !OSRE <addr>

Parameters

addr The target address 0-31 (an absolute address within the PIO instruction memory)

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_jmp_not_x

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 235

static uint pio_encode_jmp_not_x (uint addr) [inline], [static]

Encode a conditional JMP if scratch X zero instruction.

This is the equivalent of JMP !X <addr>

Parameters

addr The target address 0-31 (an absolute address within the PIO instruction memory)

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_jmp_not_y

static uint pio_encode_jmp_not_y (uint addr) [inline], [static]

Encode a conditional JMP if scratch Y zero instruction.

This is the equivalent of JMP !Y <addr>

Parameters

addr The target address 0-31 (an absolute address within the PIO instruction memory)

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_jmp_pin

static uint pio_encode_jmp_pin (uint addr) [inline], [static]

Encode a conditional JMP if input pin high instruction.

This is the equivalent of JMP PIN <addr>

Parameters

addr The target address 0-31 (an absolute address within the PIO instruction memory)

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_jmp_x_dec

static uint pio_encode_jmp_x_dec (uint addr) [inline], [static]

Encode a conditional JMP if scratch X non-zero (and post-decrement X) instruction.

This is the equivalent of JMP X-- <addr>

Parameters

addr The target address 0-31 (an absolute address within the PIO instruction memory)

Returns

The instruction encoding with 0 delay and no side set value

See also

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 236

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_jmp_x_ne_y

static uint pio_encode_jmp_x_ne_y (uint addr) [inline], [static]

Encode a conditional JMP if scratch X not equal scratch Y instruction.

This is the equivalent of JMP X!=Y <addr>

Parameters

addr The target address 0-31 (an absolute address within the PIO instruction memory)

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_jmp_y_dec

static uint pio_encode_jmp_y_dec (uint addr) [inline], [static]

Encode a conditional JMP if scratch Y non-zero (and post-decrement Y) instruction.

This is the equivalent of JMP Y-- <addr>

Parameters

addr The target address 0-31 (an absolute address within the PIO instruction memory)

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_mov

static uint pio_encode_mov (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]

Encode a MOV instruction.

This is the equivalent of MOV <dest>, <src>

Parameters

dest The destination to write data to

src The source to take data from

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_mov_not

static uint pio_encode_mov_not (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]

Encode a MOV instruction with bit invert.

This is the equivalent of MOV <dest>, ~<src>

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 237

dest The destination to write inverted data to

src The source to take data from

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_mov_reverse

static uint pio_encode_mov_reverse (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]

Encode a MOV instruction with bit reverse.

This is the equivalent of MOV <dest>, ::<src>

Parameters

dest The destination to write bit reversed data to

src The source to take data from

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_nop

static uint pio_encode_nop (void) [inline], [static]

Encode a NOP instruction.

This is the equivalent of NOP which is itself encoded as MOV y, y

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_out

static uint pio_encode_out (enum pio_src_dest dest, uint count) [inline], [static]

Encode an OUT instruction.

This is the equivalent of OUT <src>, <count>

Parameters

dest The destination to write data to

count The number of bits 1-32

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_pull

static uint pio_encode_pull (bool if_empty, bool block) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 238

Encode a PULL instruction.

This is the equivalent of PULL <if_empty>, <block>

Parameters

if_empty true for PULL IF_EMPTY …, false for PULL …

block true for PULL … BLOCK, false for PULL …

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_push

static uint pio_encode_push (bool if_full, bool block) [inline], [static]

Encode a PUSH instruction.

This is the equivalent of PUSH <if_full>, <block>

Parameters

if_full true for PUSH IF_FULL …, false for PUSH …

block true for PUSH … BLOCK, false for PUSH …

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_set

static uint pio_encode_set (enum pio_src_dest dest, uint value) [inline], [static]

Encode a SET instruction.

This is the equivalent of SET <dest>, <value>

Parameters

dest The destination to apply the value to

value The value 0-31

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_sideset

static uint pio_encode_sideset (uint sideset_bit_count, uint value) [inline], [static]

Encode just the side set bits of an instruction (in non optional side set mode)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 239

 NOTE

This function does not return a valid instruction encoding; instead it returns an encoding of the side set bits suitable

for `OR`ing with the result of an encoding function for an actual instruction. Care should be taken when combining

the results of this function with the results of pio_encode_delay as they share the same bits within the instruction

encoding.

Parameters

sideset_bit_count number of side set bits as would be specified via .sideset in pioasm

value the value to sideset on the pins

Returns

the side set bits to be ORed with an instruction encoding

pio_encode_sideset_opt

static uint pio_encode_sideset_opt (uint sideset_bit_count, uint value) [inline], [static]

Encode just the side set bits of an instruction (in optional -opt side set mode)

 NOTE

This function does not return a valid instruction encoding; instead it returns an encoding of the side set bits suitable

for `OR`ing with the result of an encoding function for an actual instruction. Care should be taken when combining

the results of this function with the results of pio_encode_delay as they share the same bits within the instruction

encoding.

Parameters

sideset_bit_count number of side set bits as would be specified via .sideset <n> opt in pioasm

value the value to sideset on the pins

Returns

the side set bits to be ORed with an instruction encoding

pio_encode_wait_gpio

static uint pio_encode_wait_gpio (bool polarity, uint gpio) [inline], [static]

Encode a WAIT for GPIO pin instruction.

This is the equivalent of WAIT <polarity> GPIO <gpio>

Parameters

polarity true for WAIT 1, false for WAIT 0

gpio The real GPIO number 0-31

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_wait_irq

static uint pio_encode_wait_irq (bool polarity, bool relative, uint irq) [inline], [static]

Encode a WAIT for IRQ instruction.

This is the equivalent of WAIT <polarity> IRQ <irq> <relative>

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 240

Parameters

polarity true for WAIT 1, false for WAIT 0

relative true for a WAIT IRQ <irq> REL, false for regular WAIT IRQ <irq>

irq the irq number 0-7

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_wait_pin

static uint pio_encode_wait_pin (bool polarity, uint pin) [inline], [static]

Encode a WAIT for pin instruction.

This is the equivalent of WAIT <polarity> PIN <pin>

Parameters

polarity true for WAIT 1, false for WAIT 0

pin The pin number 0-31 relative to the executing SM’s input pin mapping

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

4.1.16. hardware_pll

Phase Locked Loop control APIs.

4.1.16.1. Detailed Description

There are two PLLs in RP2040. They are:

• pll_sys - Used to generate up to a 133MHz system clock

• pll_usb - Used to generate a 48MHz USB reference clock

For details on how the PLLs are calculated, please refer to the RP2040 datasheet.

4.1.16.2. Macros

• #define PLL_RESET_NUM(pll)

4.1.16.3. Functions

void pll_init (PLL pll, uint ref_div, uint vco_freq, uint post_div1, uint post_div2)

Initialise specified PLL.

void pll_deinit (PLL pll)

Release/uninitialise specified PLL.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 241

4.1.16.4. Macro Definition Documentation

4.1.16.4.1. PLL_RESET_NUM

#define PLL_RESET_NUM(pll)

Returns the reset_num_t used to reset a given PLL instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.16.5. Function Documentation

4.1.16.5.1. pll_deinit

void pll_deinit (PLL pll)

Release/uninitialise specified PLL.

This will turn off the power to the specified PLL. Note this function does not currently check if the PLL is in use before

powering it off so should be used with care.

Parameters

pll pll_sys or pll_usb

4.1.16.5.2. pll_init

void pll_init (PLL pll, uint ref_div, uint vco_freq, uint post_div1, uint post_div2)

Initialise specified PLL.

Parameters

pll pll_sys or pll_usb

ref_div Input clock divider.

vco_freq Requested output from the VCO (voltage controlled oscillator)

post_div1 Post Divider 1 - range 1-7. Must be >= post_div2

post_div2 Post Divider 2 - range 1-7

4.1.17. hardware_powman

Power Management API.

4.1.17.1. Enumerations

enum powman_power_domains { POWMAN_POWER_DOMAIN_SRAM_BANK1 = 0, POWMAN_POWER_DOMAIN_SRAM_BANK0 = 1,

POWMAN_POWER_DOMAIN_XIP_CACHE = 2, POWMAN_POWER_DOMAIN_SWITCHED_CORE = 3, POWMAN_POWER_DOMAIN_COUNT = 4 }

Power domains of powman.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 242

4.1.17.2. Functions

void powman_timer_set_1khz_tick_source_lposc (void)

Use the ~32KHz low power oscillator as the powman timer source.

void powman_timer_set_1khz_tick_source_lposc_with_hz (uint32_t lposc_freq_hz)

Use the low power oscillator (specifying frequency) as the powman timer source.

void powman_timer_set_1khz_tick_source_xosc (void)

Use the crystal oscillator as the powman timer source.

void powman_timer_set_1khz_tick_source_xosc_with_hz (uint32_t xosc_freq_hz)

Use the crystal oscillator as the powman timer source.

void powman_timer_set_1khz_tick_source_gpio (uint32_t gpio)

Use a 1KHz external tick as the powman timer source.

void powman_timer_enable_gpio_1hz_sync (uint32_t gpio)

Use a 1Hz external signal as the powman timer source for seconds only.

void powman_timer_disable_gpio_1hz_sync (void)

Stop using 1Hz external signal as the powman timer source for seconds.

uint64_t powman_timer_get_ms (void)

Returns current time in ms.

void powman_timer_set_ms (uint64_t time_ms)

Set current time in ms.

void powman_timer_enable_alarm_at_ms (uint64_t alarm_time_ms)

Set an alarm at an absolute time in ms.

void powman_timer_disable_alarm (void)

Disable the alarm.

static void powman_set_bits (volatile uint32_t *reg, uint32_t bits)

hw_set_bits helper function

static void powman_clear_bits (volatile uint32_t *reg, uint32_t bits)

hw_clear_bits helper function

static bool powman_timer_is_running (void)

Determine if the powman timer is running.

static void powman_timer_stop (void)

Stop the powman timer.

static void powman_timer_start (void)

Start the powman timer.

static void powman_clear_alarm (void)

Clears the powman alarm.

powman_power_state powman_get_power_state (void)

Get the current power state.

int powman_set_power_state (powman_power_state state)

Set the power state.

static powman_power_state powman_power_state_with_domain_on (powman_power_state orig, enum powman_power_domains domain)

Helper function modify a powman_power_state to turn a domain on.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 243

static powman_power_state powman_power_state_with_domain_off (powman_power_state orig, enum powman_power_domains domain)

Helper function modify a powman_power_state to turn a domain off.

static bool powman_power_state_is_domain_on (powman_power_state state, enum powman_power_domains domain)

Helper function to check if a domain is on in a given powman_power_state.

void powman_enable_alarm_wakeup_at_ms (uint64_t alarm_time_ms)

Wake up from an alarm at a given time.

void powman_enable_gpio_wakeup (uint gpio_wakeup_num, uint32_t gpio, bool edge, bool high)

Wake up from a gpio.

void powman_disable_alarm_wakeup (void)

Disable waking up from alarm.

void powman_disable_gpio_wakeup (uint gpio_wakeup_num)

Disable wake up from a gpio.

void powman_disable_all_wakeups (void)

Disable all wakeup sources.

bool powman_configure_wakeup_state (powman_power_state sleep_state, powman_power_state wakeup_state)

Configure sleep state and wakeup state.

static void powman_set_debug_power_request_ignored (bool ignored)

Ignore wake up when the debugger is attached.

4.1.17.3. Enumeration Type Documentation

4.1.17.3.1. powman_power_domains

enum powman_power_domains

Power domains of powman.

Table 26. Enumerator
POWMAN_POWER_DOMAIN_SRAM_BANK1 bank1 includes the top 256K of sram plus sram 8 and 9

(scratch x and scratch y)

POWMAN_POWER_DOMAIN_SRAM_BANK0 bank0 is bottom 256K of sSRAM

POWMAN_POWER_DOMAIN_XIP_CACHE XIP cache is 2x8K instances.

POWMAN_POWER_DOMAIN_SWITCHED_CORE Switched core logic (processors, busfabric, peris etc)

4.1.17.4. Function Documentation

4.1.17.4.1. powman_clear_alarm

static void powman_clear_alarm (void) [inline], [static]

Clears the powman alarm.

Note, the alarm must be disabled (see powman_timer_disable_alarm) before clearing the alarm, as the alarm fires if the

time is greater than equal to the target, so once the time has passed the alarm will always fire while enabled.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 244

4.1.17.4.2. powman_clear_bits

static void powman_clear_bits (volatile uint32_t * reg, uint32_t bits) [inline], [static]

hw_clear_bits helper function

Powman needs a password for writes, to prevent accidentally writing to it. This function implements hw_clear_bits with

an appropriate password.

Parameters

reg register to clear

bits bits of register to clear

4.1.17.4.3. powman_configure_wakeup_state

bool powman_configure_wakeup_state (powman_power_state sleep_state, powman_power_state wakeup_state)

Configure sleep state and wakeup state.

Parameters

sleep_state power state powman will go to when sleeping, used to validate the wakeup state

wakeup_state power state powman will go to when waking up. Note switched core and xip always power up.

SRAM bank0 and bank1 can be left powered off

Returns

true if the state is valid, false if not

4.1.17.4.4. powman_disable_alarm_wakeup

void powman_disable_alarm_wakeup (void)

Disable waking up from alarm.

4.1.17.4.5. powman_disable_all_wakeups

void powman_disable_all_wakeups (void)

Disable all wakeup sources.

4.1.17.4.6. powman_disable_gpio_wakeup

void powman_disable_gpio_wakeup (uint gpio_wakeup_num)

Disable wake up from a gpio.

Parameters

gpio_wakeup_num hardware wakeup instance to use (0-3)

4.1.17.4.7. powman_enable_alarm_wakeup_at_ms

void powman_enable_alarm_wakeup_at_ms (uint64_t alarm_time_ms)

Wake up from an alarm at a given time.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 245

alarm_time_ms time to wake up in ms

4.1.17.4.8. powman_enable_gpio_wakeup

void powman_enable_gpio_wakeup (uint gpio_wakeup_num, uint32_t gpio, bool edge, bool high)

Wake up from a gpio.

Parameters

gpio_wakeup_num hardware wakeup instance to use (0-3)

gpio gpio to wake up from (0-47)

edge true for edge sensitive, false for level sensitive

high true for active high, false active low

4.1.17.4.9. powman_get_power_state

powman_power_state powman_get_power_state (void)

Get the current power state.

4.1.17.4.10. powman_power_state_is_domain_on

static bool powman_power_state_is_domain_on (powman_power_state state, enum powman_power_domains domain) [inline],

[static]

Helper function to check if a domain is on in a given powman_power_state.

Parameters

state powman_power_state

domain domain to check is on

4.1.17.4.11. powman_power_state_with_domain_off

static powman_power_state powman_power_state_with_domain_off (powman_power_state orig, enum powman_power_domains domain)

[inline], [static]

Helper function modify a powman_power_state to turn a domain off.

Parameters

orig original state

domain domain to turn off

4.1.17.4.12. powman_power_state_with_domain_on

static powman_power_state powman_power_state_with_domain_on (powman_power_state orig, enum powman_power_domains domain)

[inline], [static]

Helper function modify a powman_power_state to turn a domain on.

Parameters

orig original state

domain domain to turn on

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 246

4.1.17.4.13. powman_set_bits

static void powman_set_bits (volatile uint32_t * reg, uint32_t bits) [inline], [static]

hw_set_bits helper function

Parameters

reg register to set

bits bits of register to set Powman needs a password for writes, to prevent accidentally writing to it. This

function implements hw_set_bits with an appropriate password.

4.1.17.4.14. powman_set_debug_power_request_ignored

static void powman_set_debug_power_request_ignored (bool ignored) [inline], [static]

Ignore wake up when the debugger is attached.

Typically, when a debugger is attached it will assert the pwrupreq signal. OpenOCD does not clear this signal, even when

you quit. This means once you have attached a debugger powman will never go to sleep. This function lets you ignore

the debugger pwrupreq which means you can go to sleep with a debugger attached. The debugger will error out if you

go to turn off the switch core with it attached, as the processors have been powered off.

Parameters

ignored should the debugger power up request be ignored

4.1.17.4.15. powman_set_power_state

int powman_set_power_state (powman_power_state state)

Set the power state.

Check the desired state is valid. Powman will go to the state if it is valid and there are no pending power up requests.

Note that if you are turning off the switched core then this function will never return as the processor will have been

turned off at the end.

Parameters

state the power state to go to

Returns

PICO_OK if the state is valid. Misc PICO_ERRORs are returned if not

4.1.17.4.16. powman_timer_disable_alarm

void powman_timer_disable_alarm (void)

Disable the alarm.

Once an alarm has fired it must be disabled to stop firing as the alarm comparison is alarm = alarm_time >=

current_time

4.1.17.4.17. powman_timer_disable_gpio_1hz_sync

void powman_timer_disable_gpio_1hz_sync (void)

Stop using 1Hz external signal as the powman timer source for seconds.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 247

4.1.17.4.18. powman_timer_enable_alarm_at_ms

void powman_timer_enable_alarm_at_ms (uint64_t alarm_time_ms)

Set an alarm at an absolute time in ms.

Note, the timer is stopped and then restarted as part of this function. This only controls the alarm if you want to use the

alarm to wake up powman then you should use powman_enable_alarm_wakeup_at_ms

Parameters

alarm_time_ms time at which the alarm will fire

4.1.17.4.19. powman_timer_enable_gpio_1hz_sync

void powman_timer_enable_gpio_1hz_sync (uint32_t gpio)

Use a 1Hz external signal as the powman timer source for seconds only.

Use a 1hz sync signal, such as from a gps for the seconds component of the timer. The milliseconds will still come from

another configured source such as xosc or lposc

Parameters

gpio the gpio to use. must be 12, 14, 20, 22

4.1.17.4.20. powman_timer_get_ms

uint64_t powman_timer_get_ms (void)

Returns current time in ms.

4.1.17.4.21. powman_timer_is_running

static bool powman_timer_is_running (void) [inline], [static]

Determine if the powman timer is running.

4.1.17.4.22. powman_timer_set_1khz_tick_source_gpio

void powman_timer_set_1khz_tick_source_gpio (uint32_t gpio)

Use a 1KHz external tick as the powman timer source.

Parameters

gpio the gpio to use. must be 12, 14, 20, 22

4.1.17.4.23. powman_timer_set_1khz_tick_source_lposc

void powman_timer_set_1khz_tick_source_lposc (void)

Use the ~32KHz low power oscillator as the powman timer source.

4.1.17.4.24. powman_timer_set_1khz_tick_source_lposc_with_hz

void powman_timer_set_1khz_tick_source_lposc_with_hz (uint32_t lposc_freq_hz)

Use the low power oscillator (specifying frequency) as the powman timer source.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 248

Parameters

lposc_freq_hz specify an exact lposc freq to trim it

4.1.17.4.25. powman_timer_set_1khz_tick_source_xosc

void powman_timer_set_1khz_tick_source_xosc (void)

Use the crystal oscillator as the powman timer source.

4.1.17.4.26. powman_timer_set_1khz_tick_source_xosc_with_hz

void powman_timer_set_1khz_tick_source_xosc_with_hz (uint32_t xosc_freq_hz)

Use the crystal oscillator as the powman timer source.

Parameters

xosc_freq_hz specify a crystal frequency

4.1.17.4.27. powman_timer_set_ms

void powman_timer_set_ms (uint64_t time_ms)

Set current time in ms.

Parameters

time_ms Current time in ms

4.1.17.4.28. powman_timer_start

static void powman_timer_start (void) [inline], [static]

Start the powman timer.

4.1.17.4.29. powman_timer_stop

static void powman_timer_stop (void) [inline], [static]

Stop the powman timer.

4.1.18. hardware_pwm

Hardware Pulse Width Modulation (PWM) API.

4.1.18.1. Detailed Description

The RP2040 PWM block has 8 identical slices, the RP2350 has 12. Each slice can drive two PWM output signals, or

measure the frequency or duty cycle of an input signal. This gives a total of up to 16/24 controllable PWM outputs. All

30 GPIOs can be driven by the PWM block.

The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a

toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of

time spent at the high signal level is known as the duty cycle of the signal.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 249

The default behaviour of a PWM slice is to count upward until the wrap value (pwm_config_set_wrap) is reached, and

then immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward

after reaching TOP, until it reaches 0 again.

4.1.18.1.1. Example

 1 // Output PWM signals on pins 0 and 1
 2
 3 #include "pico/stdlib.h"
 4 #include "hardware/pwm.h"
 5
 6 int main() {
 7
 8 // Tell GPIO 0 and 1 they are allocated to the PWM
 9 gpio_set_function(0, GPIO_FUNC_PWM);
10 gpio_set_function(1, GPIO_FUNC_PWM);
11
12 // Find out which PWM slice is connected to GPIO 0 (it's slice 0)
13 uint slice_num = pwm_gpio_to_slice_num(0);
14
15 // Set period of 4 cycles (0 to 3 inclusive)
16 pwm_set_wrap(slice_num, 3);
17 // Set channel A output high for one cycle before dropping
18 pwm_set_chan_level(slice_num, PWM_CHAN_A, 1);
19 // Set initial B output high for three cycles before dropping
20 pwm_set_chan_level(slice_num, PWM_CHAN_B, 3);
21 // Set the PWM running
22 pwm_set_enabled(slice_num, true);
23
24 // Note we could also use pwm_set_gpio_level(gpio, x) which looks up the
25 // correct slice and channel for a given GPIO.
26 }

4.1.18.2. Macros

• #define PWM_DREQ_NUM(slice_num)

• #define PWM_GPIO_SLICE_NUM(gpio)

• #define PWM_DEFAULT_IRQ_NUM()

4.1.18.3. Enumerations

enum pwm_clkdiv_mode { PWM_DIV_FREE_RUNNING = 0, PWM_DIV_B_HIGH = 1, PWM_DIV_B_RISING = 2, PWM_DIV_B_FALLING = 3 }

PWM Divider mode settings.

4.1.18.4. Functions

static uint pwm_gpio_to_slice_num (uint gpio)

Determine the PWM slice that is attached to the specified GPIO.

static uint pwm_gpio_to_channel (uint gpio)

Determine the PWM channel that is attached to the specified GPIO.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 250

static void pwm_config_set_phase_correct (pwm_config *c, bool phase_correct)

Set phase correction in a PWM configuration.

static void pwm_config_set_clkdiv (pwm_config *c, float div)

Set PWM clock divider in a PWM configuration.

static void pwm_config_set_clkdiv_int_frac (pwm_config *c, uint8_t integer, uint8_t fract)

Set PWM clock divider in a PWM configuration using an 8:4 fractional value.

static void pwm_config_set_clkdiv_int (pwm_config *c, uint div)

Set PWM clock divider in a PWM configuration.

static void pwm_config_set_clkdiv_mode (pwm_config *c, enum pwm_clkdiv_mode mode)

Set PWM counting mode in a PWM configuration.

static void pwm_config_set_output_polarity (pwm_config *c, bool a, bool b)

Set output polarity in a PWM configuration.

static void pwm_config_set_wrap (pwm_config *c, uint16_t wrap)

Set PWM counter wrap value in a PWM configuration.

static void pwm_init (uint slice_num, pwm_config *c, bool start)

Initialise a PWM with settings from a configuration object.

static pwm_config pwm_get_default_config (void)

Get a set of default values for PWM configuration.

static void pwm_set_wrap (uint slice_num, uint16_t wrap)

Set the current PWM counter wrap value.

static void pwm_set_chan_level (uint slice_num, uint chan, uint16_t level)

Set the current PWM counter compare value for one channel.

static void pwm_set_both_levels (uint slice_num, uint16_t level_a, uint16_t level_b)

Set PWM counter compare values.

static void pwm_set_gpio_level (uint gpio, uint16_t level)

Helper function to set the PWM level for the slice and channel associated with a GPIO.

static uint16_t pwm_get_counter (uint slice_num)

Get PWM counter.

static void pwm_set_counter (uint slice_num, uint16_t c)

Set PWM counter.

static void pwm_advance_count (uint slice_num)

Advance PWM count.

static void pwm_retard_count (uint slice_num)

Retard PWM count.

static void pwm_set_clkdiv_int_frac (uint slice_num, uint8_t integer, uint8_t fract)

Set PWM clock divider using an 8:4 fractional value.

static void pwm_set_clkdiv (uint slice_num, float divider)

Set PWM clock divider.

static void pwm_set_output_polarity (uint slice_num, bool a, bool b)

Set PWM output polarity.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 251

static void pwm_set_clkdiv_mode (uint slice_num, enum pwm_clkdiv_mode mode)

Set PWM divider mode.

static void pwm_set_phase_correct (uint slice_num, bool phase_correct)

Set PWM phase correct on/off.

static void pwm_set_enabled (uint slice_num, bool enabled)

Enable/Disable PWM.

static void pwm_set_mask_enabled (uint32_t mask)

Enable/Disable multiple PWM slices simultaneously.

static void pwm_set_irq_enabled (uint slice_num, bool enabled)

Enable PWM instance interrupt via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

static void pwm_set_irq0_enabled (uint slice_num, bool enabled)

Enable PWM instance interrupt via PWM_IRQ_WRAP_0.

static void pwm_irqn_set_slice_enabled (uint irq_index, uint slice_num, bool enabled)

Enable PWM instance interrupt via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

static void pwm_set_irq_mask_enabled (uint32_t slice_mask, bool enabled)

Enable multiple PWM instance interrupts via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

static void pwm_set_irq0_mask_enabled (uint32_t slice_mask, bool enabled)

Enable multiple PWM instance interrupts via PWM_IRQ_WRAP_0.

static void pwm_irqn_set_slice_mask_enabled (uint irq_index, uint slice_mask, bool enabled)

Enable PWM instance interrupts via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

static void pwm_clear_irq (uint slice_num)

Clear a single PWM channel interrupt.

static uint32_t pwm_get_irq_status_mask (void)

Get PWM interrupt status, raw for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

static uint32_t pwm_get_irq0_status_mask (void)

Get PWM interrupt status, raw for the PWM_IRQ_WRAP_0.

static uint32_t pwm_irqn_get_status_mask (uint irq_index)

Get PWM interrupt status, raw for either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

static void pwm_force_irq (uint slice_num)

Force PWM interrupt for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

static void pwm_force_irq0 (uint slice_num)

Force PWM interrupt via PWM_IRQ_WRAP_0.

static void pwm_irqn_force (uint irq_index, uint slice_num)

Force PWM interrupt via PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

static uint pwm_get_dreq (uint slice_num)

Return the DREQ to use for pacing transfers to a particular PWM slice.

4.1.18.5. Macro Definition Documentation

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 252

4.1.18.5.1. PWM_DREQ_NUM

#define PWM_DREQ_NUM(slice_num)

Returns the dreq_num_t used for pacing DMA transfers for a given PWM slice.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.18.5.2. PWM_GPIO_SLICE_NUM

#define PWM_GPIO_SLICE_NUM(gpio)

Returns the PWM slice number for a given GPIO number.

4.1.18.5.3. PWM_DEFAULT_IRQ_NUM

#define PWM_DEFAULT_IRQ_NUM()

Returns the irq_num_t for the default PWM IRQ.

On RP2040, there is only one PWM irq: PWM_IRQ_WRAP

On RP2350 this returns to PWM_IRQ_WRAP0

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.18.6. Enumeration Type Documentation

4.1.18.6.1. pwm_clkdiv_mode

enum pwm_clkdiv_mode

PWM Divider mode settings.

Table 27. Enumerator
PWM_DIV_FREE_RUNNING Free-running counting at rate dictated by fractional divider.

PWM_DIV_B_HIGH Fractional divider is gated by the PWM B pin.

PWM_DIV_B_RISING Fractional divider advances with each rising edge of the

PWM B pin.

PWM_DIV_B_FALLING Fractional divider advances with each falling edge of the

PWM B pin.

4.1.18.7. Function Documentation

4.1.18.7.1. pwm_advance_count

static void pwm_advance_count (uint slice_num) [inline], [static]

Advance PWM count.

Advance the phase of a running the counter by 1 count.

This function will return once the increment is complete.

Parameters

slice_num PWM slice number

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 253

4.1.18.7.2. pwm_clear_irq

static void pwm_clear_irq (uint slice_num) [inline], [static]

Clear a single PWM channel interrupt.

Parameters

slice_num PWM slice number

4.1.18.7.3. pwm_config_set_clkdiv

static void pwm_config_set_clkdiv (pwm_config * c, float div) [inline], [static]

Set PWM clock divider in a PWM configuration.

Parameters

c PWM configuration struct to modify

div Value to divide counting rate by. Must be greater than or equal to 1.

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of

events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.18.7.4. pwm_config_set_clkdiv_int

static void pwm_config_set_clkdiv_int (pwm_config * c, uint div) [inline], [static]

Set PWM clock divider in a PWM configuration.

Parameters

c PWM configuration struct to modify

div Integer value to reduce counting rate by. Must be greater than or equal to 1.

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of

events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.18.7.5. pwm_config_set_clkdiv_int_frac

static void pwm_config_set_clkdiv_int_frac (pwm_config * c, uint8_t integer, uint8_t fract) [inline], [static]

Set PWM clock divider in a PWM configuration using an 8:4 fractional value.

Parameters

c PWM configuration struct to modify

integer 8 bit integer part of the clock divider. Must be greater than or equal to 1.

fract 4 bit fractional part of the clock divider

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of

events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.18.7.6. pwm_config_set_clkdiv_mode

static void pwm_config_set_clkdiv_mode (pwm_config * c, enum pwm_clkdiv_mode mode) [inline], [static]

Set PWM counting mode in a PWM configuration.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 254

c PWM configuration struct to modify

mode PWM divide/count mode

Configure which event gates the operation of the fractional divider. The default is always-on (free-running PWM). Can

also be configured to count on high level, rising edge or falling edge of the B pin input.

4.1.18.7.7. pwm_config_set_output_polarity

static void pwm_config_set_output_polarity (pwm_config * c, bool a, bool b) [inline], [static]

Set output polarity in a PWM configuration.

Parameters

c PWM configuration struct to modify

a true to invert output A

b true to invert output B

4.1.18.7.8. pwm_config_set_phase_correct

static void pwm_config_set_phase_correct (pwm_config * c, bool phase_correct) [inline], [static]

Set phase correction in a PWM configuration.

Parameters

c PWM configuration struct to modify

phase_correct true to set phase correct modulation, false to set trailing edge

Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, the PWM

starts counting back down. The output frequency is halved when phase-correct mode is enabled.

4.1.18.7.9. pwm_config_set_wrap

static void pwm_config_set_wrap (pwm_config * c, uint16_t wrap) [inline], [static]

Set PWM counter wrap value in a PWM configuration.

Set the highest value the counter will reach before returning to 0. Also known as TOP.

Parameters

c PWM configuration struct to modify

wrap Value to set wrap to

4.1.18.7.10. pwm_force_irq

static void pwm_force_irq (uint slice_num) [inline], [static]

Force PWM interrupt for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

Parameters

slice_num PWM slice number

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 255

4.1.18.7.11. pwm_force_irq0

static void pwm_force_irq0 (uint slice_num) [inline], [static]

Force PWM interrupt via PWM_IRQ_WRAP_0.

Parameters

slice_num PWM slice number

4.1.18.7.12. pwm_get_counter

static uint16_t pwm_get_counter (uint slice_num) [inline], [static]

Get PWM counter.

Get current value of PWM counter

Parameters

slice_num PWM slice number

Returns

Current value of the PWM counter

4.1.18.7.13. pwm_get_default_config

static pwm_config pwm_get_default_config (void) [inline], [static]

Get a set of default values for PWM configuration.

PWM config is free-running at system clock speed, no phase correction, wrapping at 0xffff, with standard polarities for

channels A and B.

Returns

Set of default values.

4.1.18.7.14. pwm_get_dreq

static uint pwm_get_dreq (uint slice_num) [inline], [static]

Return the DREQ to use for pacing transfers to a particular PWM slice.

Parameters

slice_num PWM slice number

4.1.18.7.15. pwm_get_irq0_status_mask

static uint32_t pwm_get_irq0_status_mask (void) [inline], [static]

Get PWM interrupt status, raw for the PWM_IRQ_WRAP_0.

Returns

Bitmask of all PWM interrupts currently set

4.1.18.7.16. pwm_get_irq_status_mask

static uint32_t pwm_get_irq_status_mask (void) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 256

Get PWM interrupt status, raw for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

Returns

Bitmask of all PWM interrupts currently set

4.1.18.7.17. pwm_gpio_to_channel

static uint pwm_gpio_to_channel (uint gpio) [inline], [static]

Determine the PWM channel that is attached to the specified GPIO.

Each slice 0 to 7 has two channels, A and B.

Returns

The PWM channel that controls the specified GPIO.

4.1.18.7.18. pwm_gpio_to_slice_num

static uint pwm_gpio_to_slice_num (uint gpio) [inline], [static]

Determine the PWM slice that is attached to the specified GPIO.

Returns

The PWM slice number that controls the specified GPIO.

4.1.18.7.19. pwm_init

static void pwm_init (uint slice_num, pwm_config * c, bool start) [inline], [static]

Initialise a PWM with settings from a configuration object.

Use the pwm_get_default_config() function to initialise a config structure, make changes as needed using the

pwm_config_* functions, then call this function to set up the PWM.

Parameters

slice_num PWM slice number

c The configuration to use

start If true the PWM will be started running once configured. If false you will need to start manually

using pwm_set_enabled() or pwm_set_mask_enabled()

4.1.18.7.20. pwm_irqn_force

static void pwm_irqn_force (uint irq_index, uint slice_num) [inline], [static]

Force PWM interrupt via PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

Parameters

irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1

slice_num PWM slice number

4.1.18.7.21. pwm_irqn_get_status_mask

static uint32_t pwm_irqn_get_status_mask (uint irq_index) [inline], [static]

Get PWM interrupt status, raw for either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 257

Parameters

irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1

Returns

Bitmask of all PWM interrupts currently set

4.1.18.7.22. pwm_irqn_set_slice_enabled

static void pwm_irqn_set_slice_enabled (uint irq_index, uint slice_num, bool enabled) [inline], [static]

Enable PWM instance interrupt via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

Used to enable a single PWM instance interrupt.

Note there is only one PWM_IRQ_WRAP on RP2040.

Parameters

irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1

slice_num PWM block to enable/disable

enabled true to enable, false to disable

4.1.18.7.23. pwm_irqn_set_slice_mask_enabled

static void pwm_irqn_set_slice_mask_enabled (uint irq_index, uint slice_mask, bool enabled) [inline], [static]

Enable PWM instance interrupts via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

Used to enable a single PWM instance interrupt.

Note there is only one PWM_IRQ_WRAP on RP2040.

Parameters

irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1

slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

enabled true to enable, false to disable

4.1.18.7.24. pwm_retard_count

static void pwm_retard_count (uint slice_num) [inline], [static]

Retard PWM count.

Retard the phase of a running counter by 1 count

This function will return once the retardation is complete.

Parameters

slice_num PWM slice number

4.1.18.7.25. pwm_set_both_levels

static void pwm_set_both_levels (uint slice_num, uint16_t level_a, uint16_t level_b) [inline], [static]

Set PWM counter compare values.

Set the value of the PWM counter compare values, A and B.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 258

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the

counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the

next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters

slice_num PWM slice number

level_a Value to set compare A to. When the counter reaches this value the A output is deasserted

level_b Value to set compare B to. When the counter reaches this value the B output is deasserted

4.1.18.7.26. pwm_set_chan_level

static void pwm_set_chan_level (uint slice_num, uint chan, uint16_t level) [inline], [static]

Set the current PWM counter compare value for one channel.

Set the value of the PWM counter compare value, for either channel A or channel B.

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the

counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the

next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters

slice_num PWM slice number

chan Which channel to update. 0 for A, 1 for B.

level new level for the selected output

4.1.18.7.27. pwm_set_clkdiv

static void pwm_set_clkdiv (uint slice_num, float divider) [inline], [static]

Set PWM clock divider.

Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating.

Parameters

slice_num PWM slice number

divider Floating point clock divider, 1.f ⇐ value < 256.f

4.1.18.7.28. pwm_set_clkdiv_int_frac

static void pwm_set_clkdiv_int_frac (uint slice_num, uint8_t integer, uint8_t fract) [inline], [static]

Set PWM clock divider using an 8:4 fractional value.

Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating.

Parameters

slice_num PWM slice number

integer 8 bit integer part of the clock divider

fract 4 bit fractional part of the clock divider

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 259

4.1.18.7.29. pwm_set_clkdiv_mode

static void pwm_set_clkdiv_mode (uint slice_num, enum pwm_clkdiv_mode mode) [inline], [static]

Set PWM divider mode.

Parameters

slice_num PWM slice number

mode Required divider mode

4.1.18.7.30. pwm_set_counter

static void pwm_set_counter (uint slice_num, uint16_t c) [inline], [static]

Set PWM counter.

Set the value of the PWM counter

Parameters

slice_num PWM slice number

c Value to set the PWM counter to

4.1.18.7.31. pwm_set_enabled

static void pwm_set_enabled (uint slice_num, bool enabled) [inline], [static]

Enable/Disable PWM.

When a PWM is disabled, it halts its counter, and the output pins are left high or low depending on exactly when the

counter is halted. When re-enabled the PWM resumes immediately from where it left off.

If the PWM’s output pins need to be low when halted:

• The counter compare can be set to zero whilst the PWM is enabled, and then the PWM disabled once both pins are

seen to be low

• The GPIO output overrides can be used to force the actual pins low

• The PWM can be run for one cycle (i.e. enabled then immediately disabled) with a TOP of 0, count of 0 and counter

compare of 0, to force the pins low when the PWM has already been halted. The same method can be used with a

counter compare value of 1 to force a pin high.

Note that, when disabled, the PWM can still be advanced one count at a time by pulsing the PH_ADV bit in its CSR. The

output pins transition as though the PWM were enabled.

Parameters

slice_num PWM slice number

enabled true to enable the specified PWM, false to disable.

4.1.18.7.32. pwm_set_gpio_level

static void pwm_set_gpio_level (uint gpio, uint16_t level) [inline], [static]

Helper function to set the PWM level for the slice and channel associated with a GPIO.

Look up the correct slice (0 to 7) and channel (A or B) for a given GPIO, and update the corresponding counter compare

field.

This PWM slice should already have been configured and set running. Also be careful of multiple GPIOs mapping to the

same slice and channel (if GPIOs have a difference of 16).

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 260

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the

counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the

next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters

gpio GPIO to set level of

level PWM level for this GPIO

4.1.18.7.33. pwm_set_irq0_enabled

static void pwm_set_irq0_enabled (uint slice_num, bool enabled) [inline], [static]

Enable PWM instance interrupt via PWM_IRQ_WRAP_0.

Used to enable a single PWM instance interrupt.

Parameters

slice_num PWM block to enable/disable

enabled true to enable, false to disable

4.1.18.7.34. pwm_set_irq0_mask_enabled

static void pwm_set_irq0_mask_enabled (uint32_t slice_mask, bool enabled) [inline], [static]

Enable multiple PWM instance interrupts via PWM_IRQ_WRAP_0.

Use this to enable multiple PWM interrupts at once.

Parameters

slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

enabled true to enable, false to disable

4.1.18.7.35. pwm_set_irq_enabled

static void pwm_set_irq_enabled (uint slice_num, bool enabled) [inline], [static]

Enable PWM instance interrupt via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

Used to enable a single PWM instance interrupt.

Note there is only one PWM_IRQ_WRAP on RP2040.

Parameters

slice_num PWM block to enable/disable

enabled true to enable, false to disable

4.1.18.7.36. pwm_set_irq_mask_enabled

static void pwm_set_irq_mask_enabled (uint32_t slice_mask, bool enabled) [inline], [static]

Enable multiple PWM instance interrupts via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

Use this to enable multiple PWM interrupts at once.

Note there is only one PWM_IRQ_WRAP on RP2040.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 261

slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

enabled true to enable, false to disable

4.1.18.7.37. pwm_set_mask_enabled

static void pwm_set_mask_enabled (uint32_t mask) [inline], [static]

Enable/Disable multiple PWM slices simultaneously.

Parameters

mask Bitmap of PWMs to enable/disable. Bits 0 to 7 enable slices 0-7 respectively

4.1.18.7.38. pwm_set_output_polarity

static void pwm_set_output_polarity (uint slice_num, bool a, bool b) [inline], [static]

Set PWM output polarity.

Parameters

slice_num PWM slice number

a true to invert output A

b true to invert output B

4.1.18.7.39. pwm_set_phase_correct

static void pwm_set_phase_correct (uint slice_num, bool phase_correct) [inline], [static]

Set PWM phase correct on/off.

Parameters

slice_num PWM slice number

phase_correct true to set phase correct modulation, false to set trailing edge

Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, the PWM

starts counting back down. The output frequency is halved when phase-correct mode is enabled.

4.1.18.7.40. pwm_set_wrap

static void pwm_set_wrap (uint slice_num, uint16_t wrap) [inline], [static]

Set the current PWM counter wrap value.

Set the highest value the counter will reach before returning to 0. Also known as TOP.

The counter wrap value is double-buffered in hardware. This means that, when the PWM is running, a write to the

counter wrap value does not take effect until after the next time the PWM slice wraps (or, in phase-correct mode, the

next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters

slice_num PWM slice number

wrap Value to set wrap to

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 262

4.1.19. hardware_resets

Hardware Reset API.

4.1.19.1. Detailed Description

The reset controller allows software control of the resets to all of the peripherals that are not critical to boot the

processor in the RP-series microcontroller.

4.1.19.1.1. reset_bitmask

Multiple blocks are referred to using a bitmask as follows:

Block to reset Bit

USB 24

UART 1 23

UART 0 22

Timer 21

TB Manager 20

SysInfo 19

System Config 18

SPI 1 17

SPI 0 16

RTC 15

PWM 14

PLL USB 13

PLL System 12

PIO 1 11

PIO 0 10

Pads - QSPI 9

Pads - bank 0 8

JTAG 7

IO Bank 1 6

IO Bank 0 5

I2C 1 4

I2C 0 3

DMA 2

Bus Control 1

ADC 0 0

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 263

4.1.19.1.2. Example

 1 #include <stdio.h>
 2 #include "pico/stdlib.h"
 3 #include "hardware/resets.h"
 4
 5 int main() {
 6 stdio_init_all();
 7
 8 printf("Hello, reset!\n");
 9
10 // Put the PWM block into reset
11 reset_block_num(RESET_PWM);
12
13 // And bring it out
14 unreset_block_num_wait_blocking(RESET_PWM);
15
16 // Put the PWM and ADC block into reset
17 reset_block_mask((1u << RESET_PWM) | (1u << RESET_ADC));
18
19 // Wait for both to come out of reset
20 unreset_block_mask_wait_blocking((1u << RESET_PWM) | (1u << RESET_ADC));
21
22 return 0;
23 }

4.1.19.2. Typedefs

typedef enum reset_num_rp2040 reset_num_t

Resettable component numbers on RP2040 (used as typedef reset_num_t)

typedef enum reset_num_rp2350 reset_num_t

Resettable component numbers on RP2350 (used as typedef reset_num_t)

4.1.19.3. Enumerations

enum reset_num_rp2040 { RESET_ADC = 0, RESET_BUSCTRL = 1, RESET_DMA = 2, RESET_I2C0 = 3, RESET_I2C1 = 4, RESET_IO_BANK0 =

5, RESET_IO_QSPI = 6, RESET_JTAG = 7, RESET_PADS_BANK0 = 8, RESET_PADS_QSPI = 9, RESET_PIO0 = 10, RESET_PIO1 = 11,

RESET_PLL_SYS = 12, RESET_PLL_USB = 13, RESET_PWM = 14, RESET_RTC = 15, RESET_SPI0 = 16, RESET_SPI1 = 17, RESET_SYSCFG =

18, RESET_SYSINFO = 19, RESET_TBMAN = 20, RESET_TIMER = 21, RESET_UART0 = 22, RESET_UART1 = 23, RESET_USBCTRL = 24,

RESET_COUNT }

Resettable component numbers on RP2040 (used as typedef reset_num_t)

enum reset_num_rp2350 { RESET_ADC = 0, RESET_BUSCTRL = 1, RESET_DMA = 2, RESET_HSTX = 3, RESET_I2C0 = 4, RESET_I2C1 = 5,

RESET_IO_BANK0 = 6, RESET_IO_QSPI = 7, RESET_JTAG = 8, RESET_PADS_BANK0 = 9, RESET_PADS_QSPI = 10, RESET_PIO0 = 11,

RESET_PIO1 = 12, RESET_PIO2 = 13, RESET_PLL_SYS = 14, RESET_PLL_USB = 15, RESET_PWM = 16, RESET_SHA256 = 17, RESET_SPI0 =

18, RESET_SPI1 = 19, RESET_SYSCFG = 20, RESET_SYSINFO = 21, RESET_TBMAN = 22, RESET_TIMER0 = 23, RESET_TIMER1 = 24,

RESET_TRNG = 25, RESET_UART0 = 26, RESET_UART1 = 27, RESET_USBCTRL = 28, RESET_COUNT }

Resettable component numbers on RP2350 (used as typedef reset_num_t)

4.1.19.4. Functions

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 264

static __force_inline void reset_block_mask (uint32_t bits)

Reset the specified HW blocks.

static __force_inline void unreset_block_mask (uint32_t bits)

bring specified HW blocks out of reset

static __force_inline void unreset_block_mask_wait_blocking (uint32_t bits)

Bring specified HW blocks out of reset and wait for completion.

static void reset_block_num (uint32_t block_num)

Reset the specified HW block.

static void unreset_block_num (uint block_num)

bring specified HW block out of reset

static void unreset_block_num_wait_blocking (uint block_num)

Bring specified HW block out of reset and wait for completion.

static void reset_unreset_block_num_wait_blocking (uint block_num)

Reset the specified HW block, and then bring at back out of reset and wait for completion.

4.1.19.5. Typedef Documentation

4.1.19.5.1. reset_num_t

typedef enum reset_num_rp2040 reset_num_t

Resettable component numbers on RP2040 (used as typedef reset_num_t)

4.1.19.5.2. reset_num_t

typedef enum reset_num_rp2350 reset_num_t

Resettable component numbers on RP2350 (used as typedef reset_num_t)

4.1.19.6. Enumeration Type Documentation

4.1.19.6.1. reset_num_rp2040

enum reset_num_rp2040

Resettable component numbers on RP2040 (used as typedef reset_num_t)

Table 28. Enumerator
RESET_ADC Select ADC to be reset.

RESET_BUSCTRL Select BUSCTRL to be reset.

RESET_DMA Select DMA to be reset.

RESET_I2C0 Select I2C0 to be reset.

RESET_I2C1 Select I2C1 to be reset.

RESET_IO_BANK0 Select IO_BANK0 to be reset.

RESET_IO_QSPI Select IO_QSPI to be reset.

RESET_JTAG Select JTAG to be reset.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 265

RESET_PADS_BANK0 Select PADS_BANK0 to be reset.

RESET_PADS_QSPI Select PADS_QSPI to be reset.

RESET_PIO0 Select PIO0 to be reset.

RESET_PIO1 Select PIO1 to be reset.

RESET_PLL_SYS Select PLL_SYS to be reset.

RESET_PLL_USB Select PLL_USB to be reset.

RESET_PWM Select PWM to be reset.

RESET_RTC Select RTC to be reset.

RESET_SPI0 Select SPI0 to be reset.

RESET_SPI1 Select SPI1 to be reset.

RESET_SYSCFG Select SYSCFG to be reset.

RESET_SYSINFO Select SYSINFO to be reset.

RESET_TBMAN Select TBMAN to be reset.

RESET_TIMER Select TIMER to be reset.

RESET_UART0 Select UART0 to be reset.

RESET_UART1 Select UART1 to be reset.

RESET_USBCTRL Select USBCTRL to be reset.

4.1.19.6.2. reset_num_rp2350

enum reset_num_rp2350

Resettable component numbers on RP2350 (used as typedef reset_num_t)

Table 29. Enumerator
RESET_ADC Select ADC to be reset.

RESET_BUSCTRL Select BUSCTRL to be reset.

RESET_DMA Select DMA to be reset.

RESET_HSTX Select HSTX to be reset.

RESET_I2C0 Select I2C0 to be reset.

RESET_I2C1 Select I2C1 to be reset.

RESET_IO_BANK0 Select IO_BANK0 to be reset.

RESET_IO_QSPI Select IO_QSPI to be reset.

RESET_JTAG Select JTAG to be reset.

RESET_PADS_BANK0 Select PADS_BANK0 to be reset.

RESET_PADS_QSPI Select PADS_QSPI to be reset.

RESET_PIO0 Select PIO0 to be reset.

RESET_PIO1 Select PIO1 to be reset.

RESET_PIO2 Select PIO2 to be reset.

RESET_PLL_SYS Select PLL_SYS to be reset.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 266

RESET_PLL_USB Select PLL_USB to be reset.

RESET_PWM Select PWM to be reset.

RESET_SHA256 Select SHA256 to be reset.

RESET_SPI0 Select SPI0 to be reset.

RESET_SPI1 Select SPI1 to be reset.

RESET_SYSCFG Select SYSCFG to be reset.

RESET_SYSINFO Select SYSINFO to be reset.

RESET_TBMAN Select TBMAN to be reset.

RESET_TIMER0 Select TIMER0 to be reset.

RESET_TIMER1 Select TIMER1 to be reset.

RESET_TRNG Select TRNG to be reset.

RESET_UART0 Select UART0 to be reset.

RESET_UART1 Select UART1 to be reset.

RESET_USBCTRL Select USBCTRL to be reset.

4.1.19.7. Function Documentation

4.1.19.7.1. reset_block_mask

static __force_inline void reset_block_mask (uint32_t bits) [static]

Reset the specified HW blocks.

Parameters

bits Bit pattern indicating blocks to reset. See reset_bitmask

4.1.19.7.2. reset_block_num

static void reset_block_num (uint32_t block_num) [inline], [static]

Reset the specified HW block.

Parameters

block_num the block number

4.1.19.7.3. reset_unreset_block_num_wait_blocking

static void reset_unreset_block_num_wait_blocking (uint block_num) [inline], [static]

Reset the specified HW block, and then bring at back out of reset and wait for completion.

Parameters

block_num the block number

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 267

4.1.19.7.4. unreset_block_mask

static __force_inline void unreset_block_mask (uint32_t bits) [static]

bring specified HW blocks out of reset

Parameters

bits Bit pattern indicating blocks to unreset. See reset_bitmask

4.1.19.7.5. unreset_block_mask_wait_blocking

static __force_inline void unreset_block_mask_wait_blocking (uint32_t bits) [static]

Bring specified HW blocks out of reset and wait for completion.

Parameters

bits Bit pattern indicating blocks to unreset. See reset_bitmask

4.1.19.7.6. unreset_block_num

static void unreset_block_num (uint block_num) [inline], [static]

bring specified HW block out of reset

Parameters

block_num the block number

4.1.19.7.7. unreset_block_num_wait_blocking

static void unreset_block_num_wait_blocking (uint block_num) [inline], [static]

Bring specified HW block out of reset and wait for completion.

Parameters

block_num the block number

4.1.20. hardware_riscv

Accessors for standard RISC-V hardware (mainly CSRs)

4.1.21. hardware_riscv_platform_timer

Accessors for standard RISC-V platform timer (mtime/mtimecmp), available on Raspberry Pi microcontrollers with

RISC-V processors.

4.1.21.1. Detailed Description

Note this header can be used by Arm as well as RISC-V processors, as the timer is a memory-mapped peripheral

external to the processors. The name refers to this timer being a standard RISC-V peripheral.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 268

4.1.21.2. Functions

static void riscv_timer_set_enabled (bool enabled)

Enable or disable the RISC-V platform timer.

static void riscv_timer_set_fullspeed (bool fullspeed)

Configure the RISC-V platform timer to run at full system clock speed.

static uint64_t riscv_timer_get_mtime (void)

Read the RISC-V platform timer.

static void riscv_timer_set_mtime (uint64_t mtime)

Update the RISC-V platform timer.

static uint64_t riscv_timer_get_mtimecmp (void)

Get the current RISC-V platform timer mtimecmp value for this core.

static void riscv_timer_set_mtimecmp (uint64_t mtimecmp)

Set a new RISC-V platform timer interrupt comparison value (mtimecmp) for this core.

4.1.21.3. Function Documentation

4.1.21.3.1. riscv_timer_get_mtime

static uint64_t riscv_timer_get_mtime (void) [inline], [static]

Read the RISC-V platform timer.

Returns

Current 64-bit mtime value

4.1.21.3.2. riscv_timer_get_mtimecmp

static uint64_t riscv_timer_get_mtimecmp (void) [inline], [static]

Get the current RISC-V platform timer mtimecmp value for this core.

Get the current mtimecmp value for the calling core. This function is interrupt-safe as long as timer interrupts only

increase the value of mtimecmp. Otherwise, it must be called with timer interrupts disabled.

Returns

Current value of mtimecmp

4.1.21.3.3. riscv_timer_set_enabled

static void riscv_timer_set_enabled (bool enabled) [inline], [static]

Enable or disable the RISC-V platform timer.

This enables and disables the counting of the RISC-V platform timer. It does not enable or disable the interrupts, which

are asserted unconditionally when a given core’s mtimecmp/mtimecmph registers are greater than the current 64-bit

value of the mtime/mtimeh registers.

Parameters

enabled Pass true to enable, false to disable

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 269

4.1.21.3.4. riscv_timer_set_fullspeed

static void riscv_timer_set_fullspeed (bool fullspeed) [inline], [static]

Configure the RISC-V platform timer to run at full system clock speed.

Parameters

fullspeed Pass true to increment at system clock speed, false to increment at the frequency defined by the

system tick generator (the ticks block)

4.1.21.3.5. riscv_timer_set_mtime

static void riscv_timer_set_mtime (uint64_t mtime) [inline], [static]

Update the RISC-V platform timer.

This function should only be called when the timer is disabled via riscv_timer_set_enabled(). Note also that unlike the

mtimecmp comparison values, mtime is not core-local, so updates on one core will be visible to the other core.

Parameters

mtime New value to set the RISC-V platform timer to

4.1.21.3.6. riscv_timer_set_mtimecmp

static void riscv_timer_set_mtimecmp (uint64_t mtimecmp) [inline], [static]

Set a new RISC-V platform timer interrupt comparison value (mtimecmp) for this core.

This function updates the mtimecmp value for the current core. The calling core’s RISC-V platform timer interrupt is

asserted whenever the 64-bit mtime value (stored in 32-bit mtime/mtimeh registers) is greater than or equal to this

core’s current mtime/mtimecmph value.

Parameters

mtime New value to set the RISC-V platform timer to

4.1.22. hardware_rtc

Hardware Real Time Clock API.

4.1.22.1. Detailed Description

The RTC keeps track of time in human readable format and generates events when the time is equal to a preset value.

Think of a digital clock, not epoch time used by most computers. There are seven fields, one each for year (12 bit),

month (4 bit), day (5 bit), day of the week (3 bit), hour (5 bit) minute (6 bit) and second (6 bit), storing the data in binary

format.

See also

datetime_t

4.1.22.1.1. Example

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 270

 1 #include <stdio.h>
 2 #include "hardware/rtc.h"
 3 #include "pico/stdlib.h"
 4 #include "pico/util/datetime.h"
 5
 6 int main() {
 7 stdio_init_all();
 8 printf("Hello RTC!\n");
 9
10 char datetime_buf[256];
11 char *datetime_str = &datetime_buf[0];
12
13 // Start on Friday 5th of June 2020 15:45:00
14 datetime_t t = {
15 .year = 2020,
16 .month = 06,
17 .day = 05,
18 .dotw = 5, // 0 is Sunday, so 5 is Friday
19 .hour = 15,
20 .min = 45,
21 .sec = 00
22 };
23
24 // Start the RTC
25 rtc_init();
26 rtc_set_datetime(&t);
27
28 // clk_sys is >2000x faster than clk_rtc, so datetime is not updated immediately when
 rtc_get_datetime() is called.
29 // The delay is up to 3 RTC clock cycles (which is 64us with the default clock settings)
30 sleep_us(64);
31
32 // Print the time
33 while (true) {
34 rtc_get_datetime(&t);
35 datetime_to_str(datetime_str, sizeof(datetime_buf), &t);
36 printf("\r%s ", datetime_str);
37 sleep_ms(100);
38 }
39 }

4.1.22.2. Typedefs

typedef void(* rtc_callback_t)(void)

4.1.22.3. Functions

void rtc_init (void)

Initialise the RTC system.

bool rtc_set_datetime (const datetime_t *t)

Set the RTC to the specified time.

bool rtc_get_datetime (datetime_t *t)

Get the current time from the RTC.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 271

bool rtc_running (void)

Is the RTC running?

void rtc_set_alarm (const datetime_t *t, rtc_callback_t user_callback)

Set a time in the future for the RTC to call a user provided callback.

void rtc_enable_alarm (void)

Enable the RTC alarm (if inactive)

void rtc_disable_alarm (void)

Disable the RTC alarm (if active)

4.1.22.4. Typedef Documentation

4.1.22.4.1. rtc_callback_t

typedef void(* rtc_callback_t) (void)

Callback function type for RTC alarms

See also

rtc_set_alarm()

4.1.22.5. Function Documentation

4.1.22.5.1. rtc_disable_alarm

void rtc_disable_alarm (void)

Disable the RTC alarm (if active)

4.1.22.5.2. rtc_enable_alarm

void rtc_enable_alarm (void)

Enable the RTC alarm (if inactive)

4.1.22.5.3. rtc_get_datetime

bool rtc_get_datetime (datetime_t * t)

Get the current time from the RTC.

Parameters

t Pointer to a datetime_t structure to receive the current RTC time

Returns

true if datetime is valid, false if the RTC is not running.

4.1.22.5.4. rtc_init

void rtc_init (void)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 272

Initialise the RTC system.

4.1.22.5.5. rtc_running

bool rtc_running (void)

Is the RTC running?

4.1.22.5.6. rtc_set_alarm

void rtc_set_alarm (const datetime_t * t, rtc_callback_t user_callback)

Set a time in the future for the RTC to call a user provided callback.

Parameters

t Pointer to a datetime_t structure containing a time in the future to fire the alarm. Any values set

to -1 will not be matched on.

user_callback pointer to a rtc_callback_t to call when the alarm fires

4.1.22.5.7. rtc_set_datetime

bool rtc_set_datetime (const datetime_t * t)

Set the RTC to the specified time.

 NOTE

Note that after setting the RTC date and time, a subsequent read of the values (e.g. via rtc_get_datetime()) may not

reflect the new setting until up to three cycles of the potentially-much-slower RTC clock domain have passed. This

represents a period of 64 microseconds with the default RTC clock configuration.

Parameters

t Pointer to a datetime_t structure contains time to set

Returns

true if set, false if the passed in datetime was invalid.

4.1.23. hardware_rcp

Inline functions and assembly macros for the Redundancy Coprocessor.

4.1.24. hardware_spi

Hardware SPI API.

4.1.24.1. Detailed Description

RP-series microcontrollers have 2 identical instances of the Serial Peripheral Interface (SPI) controller.

The PrimeCell SSP is a master or slave interface for synchronous serial communication with peripheral devices that

have Motorola SPI, National Semiconductor Microwire, or Texas Instruments synchronous serial interfaces.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 273

Controller can be defined as master or slave using the spi_set_slave function.

Each controller can be connected to a number of GPIO pins, see the datasheet GPIO function selection table for more

information.

4.1.24.2. Macros

• #define spi0 ((spi_inst_t *)spi0_hw)

• #define spi1 ((spi_inst_t *)spi1_hw)

• #define SPI_NUM(spi)

• #define SPI_INSTANCE(num)

• #define SPI_DREQ_NUM(spi, is_tx)

4.1.24.3. Enumerations

enum spi_cpha_t { SPI_CPHA_0 = 0, SPI_CPHA_1 = 1 }

Enumeration of SPI CPHA (clock phase) values.

enum spi_cpol_t { SPI_CPOL_0 = 0, SPI_CPOL_1 = 1 }

Enumeration of SPI CPOL (clock polarity) values.

enum spi_order_t { SPI_LSB_FIRST = 0, SPI_MSB_FIRST = 1 }

Enumeration of SPI bit-order values.

4.1.24.4. Functions

uint spi_init (spi_inst_t *spi, uint baudrate)

Initialise SPI instances.

void spi_deinit (spi_inst_t *spi)

Deinitialise SPI instances.

uint spi_set_baudrate (spi_inst_t *spi, uint baudrate)

Set SPI baudrate.

uint spi_get_baudrate (const spi_inst_t *spi)

Get SPI baudrate.

static uint spi_get_index (const spi_inst_t *spi)

Convert SPI instance to hardware instance number.

static void spi_set_format (spi_inst_t *spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t cpha, __unused spi_order_t

order)

Configure SPI.

static void spi_set_slave (spi_inst_t *spi, bool slave)

Set SPI master/slave.

static bool spi_is_writable (const spi_inst_t *spi)

Check whether a write can be done on SPI device.

static bool spi_is_readable (const spi_inst_t *spi)

Check whether a read can be done on SPI device.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 274

static bool spi_is_busy (const spi_inst_t *spi)

Check whether SPI is busy.

int spi_write_read_blocking (spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t len)

Write/Read to/from an SPI device.

int spi_write_blocking (spi_inst_t *spi, const uint8_t *src, size_t len)

Write to an SPI device, blocking.

int spi_read_blocking (spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t len)

Read from an SPI device.

int spi_write16_read16_blocking (spi_inst_t *spi, const uint16_t *src, uint16_t *dst, size_t len)

Write/Read half words to/from an SPI device.

int spi_write16_blocking (spi_inst_t *spi, const uint16_t *src, size_t len)

Write to an SPI device.

int spi_read16_blocking (spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst, size_t len)

Read from an SPI device.

static uint spi_get_dreq (spi_inst_t *spi, bool is_tx)

Return the DREQ to use for pacing transfers to/from a particular SPI instance.

4.1.24.5. Macro Definition Documentation

4.1.24.5.1. spi0

#define spi0 ((spi_inst_t *)spi0_hw)

Identifier for the first (SPI 0) hardware SPI instance (for use in SPI functions).

e.g. spi_init(spi0, 48000)

4.1.24.5.2. spi1

#define spi1 ((spi_inst_t *)spi1_hw)

Identifier for the second (SPI 1) hardware SPI instance (for use in SPI functions).

e.g. spi_init(spi1, 48000)

4.1.24.5.3. SPI_NUM

#define SPI_NUM(spi)

Returns the SPI number for a SPI instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.24.5.4. SPI_INSTANCE

#define SPI_INSTANCE(num)

Returns the SPI instance with the given SPI number.

Note this macro is intended to resolve at compile time, and does no parameter checking

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 275

4.1.24.5.5. SPI_DREQ_NUM

#define SPI_DREQ_NUM(spi, is_tx)

Returns the dreq_num_t used for pacing DMA transfers to or from this SPI instance. If is_tx is true, then it is for transfers

to the SPI else for transfers from the SPI.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.24.6. Enumeration Type Documentation

4.1.24.6.1. spi_cpha_t

enum spi_cpha_t

Enumeration of SPI CPHA (clock phase) values.

4.1.24.6.2. spi_cpol_t

enum spi_cpol_t

Enumeration of SPI CPOL (clock polarity) values.

4.1.24.6.3. spi_order_t

enum spi_order_t

Enumeration of SPI bit-order values.

4.1.24.7. Function Documentation

4.1.24.7.1. spi_deinit

void spi_deinit (spi_inst_t * spi)

Deinitialise SPI instances.

Puts the SPI into a disabled state. Init will need to be called to re-enable the device functions.

Parameters

spi SPI instance specifier, either spi0 or spi1

4.1.24.7.2. spi_get_baudrate

uint spi_get_baudrate (const spi_inst_t * spi)

Get SPI baudrate.

Get SPI baudrate which was set by

See also

spi_set_baudrate

Parameters

spi SPI instance specifier, either spi0 or spi1

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 276

Returns

The actual baudrate set

4.1.24.7.3. spi_get_dreq

static uint spi_get_dreq (spi_inst_t * spi, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular SPI instance.

Parameters

spi SPI instance specifier, either spi0 or spi1

is_tx true for sending data to the SPI instance, false for receiving data from the SPI instance

4.1.24.7.4. spi_get_index

static uint spi_get_index (const spi_inst_t * spi) [inline], [static]

Convert SPI instance to hardware instance number.

Parameters

spi SPI instance

Returns

Number of SPI, 0 or 1.

4.1.24.7.5. spi_init

uint spi_init (spi_inst_t * spi, uint baudrate)

Initialise SPI instances.

Puts the SPI into a known state, and enable it. Must be called before other functions.

 NOTE

There is no guarantee that the baudrate requested can be achieved exactly; the nearest will be chosen and returned

Parameters

spi SPI instance specifier, either spi0 or spi1

baudrate Baudrate requested in Hz

Returns

the actual baud rate set

4.1.24.7.6. spi_is_busy

static bool spi_is_busy (const spi_inst_t * spi) [inline], [static]

Check whether SPI is busy.

Parameters

spi SPI instance specifier, either spi0 or spi1

Returns

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 277

true if SPI is busy

4.1.24.7.7. spi_is_readable

static bool spi_is_readable (const spi_inst_t * spi) [inline], [static]

Check whether a read can be done on SPI device.

Parameters

spi SPI instance specifier, either spi0 or spi1

Returns

true if a read is possible i.e. data is present

4.1.24.7.8. spi_is_writable

static bool spi_is_writable (const spi_inst_t * spi) [inline], [static]

Check whether a write can be done on SPI device.

Parameters

spi SPI instance specifier, either spi0 or spi1

Returns

false if no space is available to write. True if a write is possible

4.1.24.7.9. spi_read16_blocking

int spi_read16_blocking (spi_inst_t * spi, uint16_t repeated_tx_data, uint16_t * dst, size_t len)

Read from an SPI device.

Read len halfwords from SPI to dst. Blocks until all data is transferred. No timeout, as SPI hardware always transfers at

a known data rate. repeated_tx_data is output repeatedly on TX as data is read in from RX. Generally this can be 0, but

some devices require a specific value here, e.g. SD cards expect 0xff

 NOTE

SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only read 8

data_bits.

Parameters

spi SPI instance specifier, either spi0 or spi1

repeated_tx_data Buffer of data to write

dst Buffer for read data

len Length of buffer dst in halfwords

Returns

Number of halfwords written/read

4.1.24.7.10. spi_read_blocking

int spi_read_blocking (spi_inst_t * spi, uint8_t repeated_tx_data, uint8_t * dst, size_t len)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 278

Read from an SPI device.

Read len bytes from SPI to dst. Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a

known data rate. repeated_tx_data is output repeatedly on TX as data is read in from RX. Generally this can be 0, but

some devices require a specific value here, e.g. SD cards expect 0xff

Parameters

spi SPI instance specifier, either spi0 or spi1

repeated_tx_data Buffer of data to write

dst Buffer for read data

len Length of buffer dst

Returns

Number of bytes written/read

4.1.24.7.11. spi_set_baudrate

uint spi_set_baudrate (spi_inst_t * spi, uint baudrate)

Set SPI baudrate.

Set SPI frequency as close as possible to baudrate, and return the actual achieved rate.

Parameters

spi SPI instance specifier, either spi0 or spi1

baudrate Baudrate required in Hz, should be capable of a bitrate of at least 2Mbps, or higher, depending on

system clock settings.

Returns

The actual baudrate set

4.1.24.7.12. spi_set_format

static void spi_set_format (spi_inst_t * spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t cpha, __unused spi_order_t

order) [inline], [static]

Configure SPI.

Configure how the SPI serialises and deserialises data on the wire

Parameters

spi SPI instance specifier, either spi0 or spi1

data_bits Number of data bits per transfer. Valid values 4..16.

cpol SSPCLKOUT polarity, applicable to Motorola SPI frame format only.

cpha SSPCLKOUT phase, applicable to Motorola SPI frame format only

order Must be SPI_MSB_FIRST, no other values supported on the PL022

4.1.24.7.13. spi_set_slave

static void spi_set_slave (spi_inst_t * spi, bool slave) [inline], [static]

Set SPI master/slave.

Configure the SPI for master- or slave-mode operation. By default, spi_init() sets master-mode.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 279

Parameters

spi SPI instance specifier, either spi0 or spi1

slave true to set SPI device as a slave device, false for master.

4.1.24.7.14. spi_write16_blocking

int spi_write16_blocking (spi_inst_t * spi, const uint16_t * src, size_t len)

Write to an SPI device.

Write len halfwords from src to SPI. Discard any data received back. Blocks until all data is transferred. No timeout, as

SPI hardware always transfers at a known data rate.

 NOTE

SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only write 8

data_bits.

Parameters

spi SPI instance specifier, either spi0 or spi1

src Buffer of data to write

len Length of buffers

Returns

Number of halfwords written/read

4.1.24.7.15. spi_write16_read16_blocking

int spi_write16_read16_blocking (spi_inst_t * spi, const uint16_t * src, uint16_t * dst, size_t len)

Write/Read half words to/from an SPI device.

Write len halfwords from src to SPI. Simultaneously read len halfwords from SPI to dst. Blocks until all data is

transferred. No timeout, as SPI hardware always transfers at a known data rate.

 NOTE

SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only read/write 8

data_bits.

Parameters

spi SPI instance specifier, either spi0 or spi1

src Buffer of data to write

dst Buffer for read data

len Length of BOTH buffers in halfwords

Returns

Number of halfwords written/read

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 280

4.1.24.7.16. spi_write_blocking

int spi_write_blocking (spi_inst_t * spi, const uint8_t * src, size_t len)

Write to an SPI device, blocking.

Write len bytes from src to SPI, and discard any data received back Blocks until all data is transferred. No timeout, as

SPI hardware always transfers at a known data rate.

Parameters

spi SPI instance specifier, either spi0 or spi1

src Buffer of data to write

len Length of src

Returns

Number of bytes written/read

4.1.24.7.17. spi_write_read_blocking

int spi_write_read_blocking (spi_inst_t * spi, const uint8_t * src, uint8_t * dst, size_t len)

Write/Read to/from an SPI device.

Write len bytes from src to SPI. Simultaneously read len bytes from SPI to dst. Blocks until all data is transferred. No

timeout, as SPI hardware always transfers at a known data rate.

Parameters

spi SPI instance specifier, either spi0 or spi1

src Buffer of data to write

dst Buffer for read data

len Length of BOTH buffers

Returns

Number of bytes written/read

4.1.25. hardware_sha256

Hardware SHA-256 Accelerator API.

4.1.25.1. Detailed Description

RP2350 is equipped with an implementation of the SHA-256 hash algorithm. The hardware should first be configured by

calling the sha256_set_dma_size and sha256_set_bswap functions. To generate a new hash the hardware should first

be initialised by calling sha256_start. The hardware is ready to accept data when sha256_is_ready returns true, at which

point the data to be hashed can be written to the address returned by sha256_get_write_addr. The hardware requires 64

bytes to be written in one go or else sha256_err_not_ready will indicate an error and the hashing process must be

restarted. sha256_is_sum_valid will return true when there is a valid checksum result which can be retrieved by calling

sha256_get_result.

4.1.25.2. Macros

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 281

• #define SHA256_RESULT_BYTES 32

4.1.25.3. Enumerations

enum sha256_endianness { SHA256_LITTLE_ENDIAN, SHA256_BIG_ENDIAN }

SHA-256 endianness definition used in the API.

4.1.25.4. Functions

static void sha256_set_dma_size (uint size_in_bytes)

Configure the correct DMA data size.

static void sha256_set_bswap (bool swap)

Enable or disable byte swapping of 32-bit values.

static void sha256_start (void)

Prepare the hardware for a new checksum.

static bool sha256_is_sum_valid (void)

Check if a valid checksum has been calculated.

static bool sha256_is_ready (void)

Check if a the hardware is ready to accept more data.

static void sha256_wait_valid_blocking (void)

Wait until the checksum is valid.

static void sha256_wait_ready_blocking (void)

Wait until the hardware is ready to accept more data.

void sha256_get_result (sha256_result_t *out, enum sha256_endianness endianness)

Get the checksum result.

static bool sha256_err_not_ready (void)

Check if data was written before the hardware was ready.

static void sha256_err_not_ready_clear (void)

Clear the "not ready" error condition.

static volatile void * sha256_get_write_addr (void)

Address to write the data to be hashed.

static void sha256_put_word (uint32_t word)

Write one 32bit word of data to the SHA-256 hardware.

static void sha256_put_byte (uint8_t b)

Write one byte of data to the SHA-256 hardware.

4.1.25.5. Macro Definition Documentation

4.1.25.5.1. SHA256_RESULT_BYTES

#define SHA256_RESULT_BYTES 32

Size of a sha256 result in bytes.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 282

4.1.25.6. Enumeration Type Documentation

4.1.25.6.1. sha256_endianness

enum sha256_endianness

SHA-256 endianness definition used in the API.

Table 30. Enumerator
SHA256_LITTLE_ENDIAN Little Endian.

SHA256_BIG_ENDIAN Big Endian.

4.1.25.7. Function Documentation

4.1.25.7.1. sha256_err_not_ready

static bool sha256_err_not_ready (void) [inline], [static]

Check if data was written before the hardware was ready.

Indicates if an error has occurred due to data being written when the hardware is not ready.

Returns

True if data was written before the hardware was ready

4.1.25.7.2. sha256_err_not_ready_clear

static void sha256_err_not_ready_clear (void) [inline], [static]

Clear the "not ready" error condition.

Resets the hardware if a "not ready" error condition is indicated.

4.1.25.7.3. sha256_get_result

void sha256_get_result (sha256_result_t * out, enum sha256_endianness endianness)

Get the checksum result.

Read the 32 byte result calculated by the hardware. Only valid if sha256_is_sum_valid is True

Parameters

out The checksum result

Copyright (c) 2024 Raspberry Pi (Trading) Ltd.

SPDX-License-Identifier: BSD-3-Clause

4.1.25.7.4. sha256_get_write_addr

static volatile void * sha256_get_write_addr (void) [inline], [static]

Address to write the data to be hashed.

Returns the hardware address where data to be hashed should be written

Returns

Address to write data to be hashed

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 283

4.1.25.7.5. sha256_is_ready

static bool sha256_is_ready (void) [inline], [static]

Check if a the hardware is ready to accept more data.

After writing 64 bytes of data to the hardware, it will be unable to accept more data for a time. Call this to check if the

hardware is ready for more data to be written.

See also

sha256_err_not_ready

Returns

True if the hardware is ready to receive more data

4.1.25.7.6. sha256_is_sum_valid

static bool sha256_is_sum_valid (void) [inline], [static]

Check if a valid checksum has been calculated.

The checksum result will be invalid when data is first written to the hardware, and then once 64 bytes of data has been

written it may take some time to complete the digest of the current block. This function can be used to determine when

the checksum is valid.

Returns

True if sha256_get_result would return a valid result

4.1.25.7.7. sha256_put_byte

static void sha256_put_byte (uint8_t b) [inline], [static]

Write one byte of data to the SHA-256 hardware.

Parameters

b data to write

4.1.25.7.8. sha256_put_word

static void sha256_put_word (uint32_t word) [inline], [static]

Write one 32bit word of data to the SHA-256 hardware.

Parameters

word data to write

4.1.25.7.9. sha256_set_bswap

static void sha256_set_bswap (bool swap) [inline], [static]

Enable or disable byte swapping of 32-bit values.

The SHA256 algorithm expects bytes in big endian order, but the system bus deals with little endian data, so control is

provided to convert little endian bus data to big endian internal data. This defaults to true

Parameters

swap false to disable byte swapping

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 284

4.1.25.7.10. sha256_set_dma_size

static void sha256_set_dma_size (uint size_in_bytes) [inline], [static]

Configure the correct DMA data size.

This must be configured before the DMA channel is triggered and ensures the correct number of transfers is requested

per block.

Parameters

size_in_bytes Size of DMA transfers, either 1, 2 or 4 bytes only.

4.1.25.7.11. sha256_start

static void sha256_start (void) [inline], [static]

Prepare the hardware for a new checksum.

Called to initialise the hardware before starting the checksum calculation

4.1.25.7.12. sha256_wait_ready_blocking

static void sha256_wait_ready_blocking (void) [inline], [static]

Wait until the hardware is ready to accept more data.

Before writing to the hardware, it’s necessary to check it is ready to accept more data. This function waits until the

hardware is ready to accept more data

4.1.25.7.13. sha256_wait_valid_blocking

static void sha256_wait_valid_blocking (void) [inline], [static]

Wait until the checksum is valid.

When a multiple of 64 bytes of data has been written to the hardware, the checksum will be valid once the digest of the

current block is complete. This function waits until when the checksum result is valid.

4.1.26. hardware_sync

Low level hardware spin locks, barrier and processor event APIs.

4.1.26.1. Detailed Description

4.1.26.1.1. Spin Locks

The RP-series microcontrollers provide 32 hardware spin locks, which can be used to manage mutually-exclusive

access to shared software and hardware resources.

Generally each spin lock itself is a shared resource, i.e. the same hardware spin lock can be used by multiple higher

level primitives (as long as the spin locks are neither held for long periods, nor held concurrently with other spin locks by

the same core - which could lead to deadlock). A hardware spin lock that is exclusively owned can be used individually

without more flexibility and without regard to other software. Note that no hardware spin lock may be acquired re-

entrantly (i.e. hardware spin locks are not on their own safe for use by both thread code and IRQs) however the default

spinlock related methods here (e.g. spin_lock_blocking) always disable interrupts while the lock is held as use by IRQ

handlers and user code is common/desirable, and spin locks are only expected to be held for brief periods.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 285

RP2350 Warning. Due to erratum RP2350-E2, writes to new SIO registers above an offset of +0x180 alias the spinlocks,

causing spurious lock releases. This SDK by default uses atomic memory accesses to implement the

hardware_sync_spin_lock API, as a workaround on RP2350 A2.

The SDK uses the following default spin lock assignments, classifying which spin locks are reserved for

exclusive/special purposes vs those suitable for more general shared use:

Number (ID) Description

0-13 Currently reserved for exclusive use by the SDK and other

libraries. If you use these spin locks, you risk breaking SDK

or other library functionality. Each reserved spin lock used

individually has its own PICO_SPINLOCK_ID so you can

search for those.

14,15 (PICO_SPINLOCK_ID_OS1 and PICO_SPINLOCK_ID_OS2).

Currently reserved for exclusive use by an operating

system (or other system level software) co-existing with

the SDK.

16-23 (PICO_SPINLOCK_ID_STRIPED_FIRST -

PICO_SPINLOCK_ID_STRIPED_LAST). Spin locks from this

range are assigned in a round-robin fashion via

next_striped_spin_lock_num(). These spin locks are

shared, but assigning numbers from a range reduces the

probability that two higher level locking primitives using

striped spin locks will actually be using the same spin

lock.

24-31 (PICO_SPINLOCK_ID_CLAIM_FREE_FIRST -

PICO_SPINLOCK_ID_CLAIM_FREE_LAST). These are

reserved for exclusive use and are allocated on a first

come first served basis at runtime via

spin_lock_claim_unused()

4.1.26.2. Macros

• #define SW_SPIN_LOCK_TYPE volatile uint8_t

4.1.26.3. Functions

static __force_inline void __nop (void)

Insert a NOP instruction in to the code path.

static __force_inline void __sev (void)

Insert a SEV instruction in to the code path.

static __force_inline void __wfe (void)

Insert a WFE instruction in to the code path.

static __force_inline void __wfi (void)

Insert a WFI instruction in to the code path.

static __force_inline void __dmb (void)

Insert a DMB instruction in to the code path.

static __force_inline void __dsb (void)

Insert a DSB instruction in to the code path.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 286

static __force_inline void __isb (void)

Insert a ISB instruction in to the code path.

static __force_inline void __mem_fence_acquire (void)

Acquire a memory fence.

static __force_inline void __mem_fence_release (void)

Release a memory fence.

static __force_inline uint32_t save_and_disable_interrupts (void)

Save and disable interrupts.

static __force_inline void restore_interrupts (uint32_t status)

Restore interrupts to a specified state.

static __force_inline void restore_interrupts_from_disabled (uint32_t status)

Restore interrupts to a specified state with restricted transitions.

uint next_striped_spin_lock_num (void)

Return a spin lock number from the striped range.

void spin_lock_claim (uint lock_num)

Mark a spin lock as used.

void spin_lock_claim_mask (uint32_t lock_num_mask)

Mark multiple spin locks as used.

void spin_lock_unclaim (uint lock_num)

Mark a spin lock as no longer used.

int spin_lock_claim_unused (bool required)

Claim a free spin lock.

bool spin_lock_is_claimed (uint lock_num)

Determine if a spin lock is claimed.

static __force_inline spin_lock_t * spin_lock_instance (uint lock_num)

Get HW Spinlock instance from number.

static __force_inline uint spin_lock_get_num (spin_lock_t *lock)

Get HW Spinlock number from instance.

static __force_inline void spin_lock_unsafe_blocking (spin_lock_t *lock)

Acquire a spin lock without disabling interrupts (hence unsafe)

static __force_inline void spin_unlock_unsafe (spin_lock_t *lock)

Release a spin lock without re-enabling interrupts.

static __force_inline uint32_t spin_lock_blocking (spin_lock_t *lock)

Acquire a spin lock safely.

static bool is_spin_locked (spin_lock_t *lock)

Check to see if a spinlock is currently acquired elsewhere.

static __force_inline void spin_unlock (spin_lock_t *lock, uint32_t saved_irq)

Release a spin lock safely.

spin_lock_t * spin_lock_init (uint lock_num)

Initialise a spin lock.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 287

void spin_locks_reset (void)

Release all spin locks.

4.1.26.4. Macro Definition Documentation

4.1.26.4.1. SW_SPIN_LOCK_TYPE

#define SW_SPIN_LOCK_TYPE volatile uint8_t

A spin lock identifier.

4.1.26.5. Function Documentation

4.1.26.5.1. __dmb

static __force_inline void __dmb (void) [static]

Insert a DMB instruction in to the code path.

The DMB (data memory barrier) acts as a memory barrier, all memory accesses prior to this instruction will be observed

before any explicit access after the instruction.

4.1.26.5.2. __dsb

static __force_inline void __dsb (void) [static]

Insert a DSB instruction in to the code path.

The DSB (data synchronization barrier) acts as a special kind of data memory barrier (DMB). The DSB operation

completes when all explicit memory accesses before this instruction complete.

4.1.26.5.3. __isb

static __force_inline void __isb (void) [static]

Insert a ISB instruction in to the code path.

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions

following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

4.1.26.5.4. __mem_fence_acquire

static __force_inline void __mem_fence_acquire (void) [static]

Acquire a memory fence.

4.1.26.5.5. __mem_fence_release

static __force_inline void __mem_fence_release (void) [static]

Release a memory fence.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 288

4.1.26.5.6. __nop

static __force_inline void __nop (void) [static]

Insert a NOP instruction in to the code path.

NOP does nothing for one cycle. On RP2350 Arm binaries this is forced to be a 32-bit instruction to avoid dual-issue of

NOPs.

4.1.26.5.7. __sev

static __force_inline void __sev (void) [static]

Insert a SEV instruction in to the code path.

The SEV (send event) instruction sends an event to both cores.

4.1.26.5.8. __wfe

static __force_inline void __wfe (void) [static]

Insert a WFE instruction in to the code path.

The WFE (wait for event) instruction waits until one of a number of events occurs, including events signalled by the SEV

instruction on either core.

4.1.26.5.9. __wfi

static __force_inline void __wfi (void) [static]

Insert a WFI instruction in to the code path.

The WFI (wait for interrupt) instruction waits for a interrupt to wake up the core.

4.1.26.5.10. is_spin_locked

static bool is_spin_locked (spin_lock_t * lock) [inline], [static]

Check to see if a spinlock is currently acquired elsewhere.

Parameters

lock Spinlock instance

4.1.26.5.11. next_striped_spin_lock_num

uint next_striped_spin_lock_num (void)

Return a spin lock number from the striped range.

Returns a spin lock number in the range PICO_SPINLOCK_ID_STRIPED_FIRST to PICO_SPINLOCK_ID_STRIPED_LAST in

a round robin fashion. This does not grant the caller exclusive access to the spin lock, so the caller must:

1. Abide (with other callers) by the contract of only holding this spin lock briefly (and with IRQs disabled - the default

via spin_lock_blocking()), and not whilst holding other spin locks.

2. Be OK with any contention caused by the - brief due to the above requirement - contention with other possible

users of the spin lock.

Returns

lock_num a spin lock number the caller may use (non exclusively)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 289

See also

PICO_SPINLOCK_ID_STRIPED_FIRST

PICO_SPINLOCK_ID_STRIPED_LAST

4.1.26.5.12. restore_interrupts

static __force_inline void restore_interrupts (uint32_t status) [static]

Restore interrupts to a specified state.

Parameters

status Previous interrupt status from save_and_disable_interrupts()

4.1.26.5.13. restore_interrupts_from_disabled

static __force_inline void restore_interrupts_from_disabled (uint32_t status) [static]

Restore interrupts to a specified state with restricted transitions.

This method should only be used when the interrupt state is known to be disabled, e.g. when paired with

save_and_disable_interrupts()

Parameters

status Previous interrupt status from save_and_disable_interrupts()

4.1.26.5.14. save_and_disable_interrupts

static __force_inline uint32_t save_and_disable_interrupts (void) [static]

Save and disable interrupts.

Returns

The prior interrupt enable status for restoration later via restore_interrupts()

4.1.26.5.15. spin_lock_blocking

static __force_inline uint32_t spin_lock_blocking (spin_lock_t * lock) [static]

Acquire a spin lock safely.

This function will disable interrupts prior to acquiring the spinlock

Parameters

lock Spinlock instance

Returns

interrupt status to be used when unlocking, to restore to original state

4.1.26.5.16. spin_lock_claim

void spin_lock_claim (uint lock_num)

Mark a spin lock as used.

Method for cooperative claiming of hardware. Will cause a panic if the spin lock is already claimed. Use of this method

by libraries detects accidental configurations that would fail in unpredictable ways.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 290

Parameters

lock_num the spin lock number

4.1.26.5.17. spin_lock_claim_mask

void spin_lock_claim_mask (uint32_t lock_num_mask)

Mark multiple spin locks as used.

Method for cooperative claiming of hardware. Will cause a panic if any of the spin locks are already claimed. Use of this

method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

lock_num_mask Bitfield of all required spin locks to claim (bit 0 == spin lock 0, bit 1 == spin lock 1 etc)

4.1.26.5.18. spin_lock_claim_unused

int spin_lock_claim_unused (bool required)

Claim a free spin lock.

Parameters

required if true the function will panic if none are available

Returns

the spin lock number or -1 if required was false, and none were free

4.1.26.5.19. spin_lock_get_num

static __force_inline uint spin_lock_get_num (spin_lock_t * lock) [static]

Get HW Spinlock number from instance.

Parameters

lock The Spinlock instance

Returns

The Spinlock ID

4.1.26.5.20. spin_lock_init

spin_lock_t * spin_lock_init (uint lock_num)

Initialise a spin lock.

The spin lock is initially unlocked

Parameters

lock_num The spin lock number

Returns

The spin lock instance

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 291

4.1.26.5.21. spin_lock_instance

static __force_inline spin_lock_t * spin_lock_instance (uint lock_num) [static]

Get HW Spinlock instance from number.

Parameters

lock_num Spinlock ID

Returns

The spinlock instance

4.1.26.5.22. spin_lock_is_claimed

bool spin_lock_is_claimed (uint lock_num)

Determine if a spin lock is claimed.

Parameters

lock_num the spin lock number

Returns

true if claimed, false otherwise

See also

spin_lock_claim

spin_lock_claim_mask

4.1.26.5.23. spin_lock_unclaim

void spin_lock_unclaim (uint lock_num)

Mark a spin lock as no longer used.

Method for cooperative claiming of hardware.

Parameters

lock_num the spin lock number to release

4.1.26.5.24. spin_lock_unsafe_blocking

static __force_inline void spin_lock_unsafe_blocking (spin_lock_t * lock) [static]

Acquire a spin lock without disabling interrupts (hence unsafe)

Parameters

lock Spinlock instance

4.1.26.5.25. spin_locks_reset

void spin_locks_reset (void)

Release all spin locks.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 292

4.1.26.5.26. spin_unlock

static __force_inline void spin_unlock (spin_lock_t * lock, uint32_t saved_irq) [static]

Release a spin lock safely.

This function will re-enable interrupts according to the parameters.

Parameters

lock Spinlock instance

saved_irq Return value from the spin_lock_blocking() function.

See also

spin_lock_blocking()

4.1.26.5.27. spin_unlock_unsafe

static __force_inline void spin_unlock_unsafe (spin_lock_t * lock) [static]

Release a spin lock without re-enabling interrupts.

Parameters

lock Spinlock instance

4.1.27. hardware_ticks

Hardware Tick API.

4.1.27.1. Detailed Description

RP2040 only has one tick generator, and it is part of the watchdog hardware.

The RP2350 has a dedicated Tick block that is used to supply ticks to TIMER0, TIMER1, RISC-V platform timer, Arm

Cortex-M33 0 timer, Arm Cortex-M33 1 timer and the WATCHDOG block.

4.1.27.2. Typedefs

typedef enum tick_gen_num_rp2350 tick_gen_num_t

Tick generator numbers on RP2350 (used as typedef tick_gen_num_t)

typedef enum tick_gen_num_rp2040 tick_gen_num_t

Tick generator numbers on RP2040 (used as typedef tick_gen_num_t)

4.1.27.3. Enumerations

enum tick_gen_num_rp2350 { TICK_PROC0 = 0, TICK_PROC1 = 1, TICK_TIMER0 = 2, TICK_TIMER1 = 3, TICK_WATCHDOG = 4,

TICK_RISCV = 5, TICK_COUNT }

Tick generator numbers on RP2350 (used as typedef tick_gen_num_t)

enum tick_gen_num_rp2040 { TICK_WATCHDOG = 0, TICK_COUNT }

Tick generator numbers on RP2040 (used as typedef tick_gen_num_t)

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 293

4.1.27.4. Functions

void tick_start (tick_gen_num_t tick, uint cycles)

Start a tick generator.

void tick_stop (tick_gen_num_t tick)

Stop a tick generator.

bool tick_is_running (tick_gen_num_t tick)

Check if a tick genererator is currently running.

4.1.27.5. Typedef Documentation

4.1.27.5.1. tick_gen_num_t

typedef enum tick_gen_num_rp2350 tick_gen_num_t

Tick generator numbers on RP2350 (used as typedef tick_gen_num_t)

4.1.27.5.2. tick_gen_num_t

typedef enum tick_gen_num_rp2040 tick_gen_num_t

Tick generator numbers on RP2040 (used as typedef tick_gen_num_t)

RP2040 only has one tick generator, and it is part of the watchdog hardware

4.1.27.6. Enumeration Type Documentation

4.1.27.6.1. tick_gen_num_rp2350

enum tick_gen_num_rp2350

Tick generator numbers on RP2350 (used as typedef tick_gen_num_t)

4.1.27.6.2. tick_gen_num_rp2040

enum tick_gen_num_rp2040

Tick generator numbers on RP2040 (used as typedef tick_gen_num_t)

RP2040 only has one tick generator, and it is part of the watchdog hardware

4.1.27.7. Function Documentation

4.1.27.7.1. tick_is_running

bool tick_is_running (tick_gen_num_t tick)

Check if a tick genererator is currently running.

Parameters

tick The tick generator number

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 294

Returns

true if the specific ticker is running.

4.1.27.7.2. tick_start

void tick_start (tick_gen_num_t tick, uint cycles)

Start a tick generator.

Parameters

tick The tick generator number

cycles The number of clock cycles per tick

4.1.27.7.3. tick_stop

void tick_stop (tick_gen_num_t tick)

Stop a tick generator.

Parameters

tick The tick generator number

4.1.28. hardware_timer

Low-level hardware timer API.

4.1.28.1. Detailed Description

This API provides medium level access to the timer HW. See also pico_time which provides higher levels functionality

using the hardware timer.

The timer peripheral on RP-series microcontrollers supports the following features:

• RP2040 single 64-bit counter, incrementing once per microsecond

• RP2350 two 64-bit counters, ticks generated from the tick block

• Latching two-stage read of counter, for race-free read over 32 bit bus

• Four alarms: match on the lower 32 bits of counter, IRQ on match.

On RP2040, by default the timer uses a one microsecond reference that is generated in the Watchdog (see RP2040

Datasheet Section 4.8.2) which is derived from the clk_ref.

On RP2350, by default the timer uses a one microsecond reference that is generated by the tick block (see RP2350

Datasheet Section 8.5)

The timer has 4 alarms, and can output a separate interrupt for each alarm. The alarms match on the lower 32 bits of

the 64 bit counter which means they can be fired a maximum of 2^32 microseconds into the future. This is equivalent

to:

• 2^32 ÷ 10^6: ~4295 seconds

• 4295 ÷ 60: ~72 minutes

The timer is expected to be used for short sleeps, if you want a longer alarm see the hardware_rtc functions.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 295

4.1.28.1.1. Example

 1 #include <stdio.h>
 2 #include "pico/stdlib.h"
 3
 4 volatile bool timer_fired = false;
 5
 6 int64_t alarm_callback(alarm_id_t id, __unused void *user_data) {
 7 printf("Timer %d fired!\n", (int) id);
 8 timer_fired = true;
 9 // Can return a value here in us to fire in the future
10 return 0;
11 }
12
13 bool repeating_timer_callback(__unused struct repeating_timer *t) {
14 printf("Repeat at %lld\n", time_us_64());
15 return true;
16 }
17
18 int main() {
19 stdio_init_all();
20 printf("Hello Timer!\n");
21
22 // Call alarm_callback in 2 seconds
23 add_alarm_in_ms(2000, alarm_callback, NULL, false);
24
25 // Wait for alarm callback to set timer_fired
26 while (!timer_fired) {
27 tight_loop_contents();
28 }
29
30 // Create a repeating timer that calls repeating_timer_callback.
31 // If the delay is > 0 then this is the delay between the previous callback ending and the
 next starting.
32 // If the delay is negative (see below) then the next call to the callback will be exactly
 500ms after the
33 // start of the call to the last callback
34 struct repeating_timer timer;
35 add_repeating_timer_ms(500, repeating_timer_callback, NULL, &timer);
36 sleep_ms(3000);
37 bool cancelled = cancel_repeating_timer(&timer);
38 printf("cancelled... %d\n", cancelled);
39 sleep_ms(2000);
40
41 // Negative delay so means we will call repeating_timer_callback, and call it again
42 // 500ms later regardless of how long the callback took to execute
43 add_repeating_timer_ms(-500, repeating_timer_callback, NULL, &timer);
44 sleep_ms(3000);
45 cancelled = cancel_repeating_timer(&timer);
46 printf("cancelled... %d\n", cancelled);
47 sleep_ms(2000);
48 printf("Done\n");
49 return 0;
50 }

See also

pico_time

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 296

4.1.28.2. Macros

• #define TIMER_ALARM_IRQ_NUM(timer, alarm_num)

• #define TIMER_ALARM_NUM_FROM_IRQ(irq_num)

• #define TIMER_NUM_FROM_IRQ(irq_num)

• #define PICO_DEFAULT_TIMER 0

• #define PICO_DEFAULT_TIMER_INSTANCE()

4.1.28.3. Typedefs

typedef void(* hardware_alarm_callback_t)(uint alarm_num)

4.1.28.4. Functions

static uint32_t timer_time_us_32 (timer_hw_t *timer)

Return a 32 bit timestamp value in microseconds for a given timer instance.

static uint32_t time_us_32 (void)

Return a 32 bit timestamp value in microseconds for the default timer instance.

uint64_t timer_time_us_64 (timer_hw_t *timer)

Return the current 64 bit timestamp value in microseconds for a given timer instance.

uint64_t time_us_64 (void)

Return the current 64 bit timestamp value in microseconds for the default timer instance.

void timer_busy_wait_us_32 (timer_hw_t *timer, uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds using the given timer instance.

void busy_wait_us_32 (uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds using the default timer instance.

void timer_busy_wait_us (timer_hw_t *timer, uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds using the given timer instance.

void busy_wait_us (uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds using the default timer instance.

void timer_busy_wait_ms (timer_hw_t *timer, uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds using the given timer instance.

void busy_wait_ms (uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds using the default timer instance.

void timer_busy_wait_until (timer_hw_t *timer, absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp using the given timer instance.

void busy_wait_until (absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp using the default timer instance.

static bool timer_time_reached (timer_hw_t *timer, absolute_time_t t)

Check if the specified timestamp has been reached on the given timer instance.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 297

static bool time_reached (absolute_time_t t)

Check if the specified timestamp has been reached on the default timer instance.

void timer_hardware_alarm_claim (timer_hw_t *timer, uint alarm_num)

cooperatively claim the use of this hardware alarm_num on the given timer instance

void hardware_alarm_claim (uint alarm_num)

cooperatively claim the use of this hardware alarm_num on the default timer instance

int timer_hardware_alarm_claim_unused (timer_hw_t *timer, bool required)

cooperatively claim the use of a hardware alarm_num on the given timer instance

int hardware_alarm_claim_unused (bool required)

cooperatively claim the use of a hardware alarm_num on the default timer instance

void timer_hardware_alarm_unclaim (timer_hw_t *timer, uint alarm_num)

cooperatively release the claim on use of this hardware alarm_num on the given timer instance

void hardware_alarm_unclaim (uint alarm_num)

cooperatively release the claim on use of this hardware alarm_num on the default timer instance

bool timer_hardware_alarm_is_claimed (timer_hw_t *timer, uint alarm_num)

Determine if a hardware alarm has been claimed on the given timer instance.

bool hardware_alarm_is_claimed (uint alarm_num)

Determine if a hardware alarm has been claimed on the default timer instance.

void timer_hardware_alarm_set_callback (timer_hw_t *timer, uint alarm_num, hardware_alarm_callback_t callback)

Enable/Disable a callback for a hardware alarm for a given timer instance on this core.

void hardware_alarm_set_callback (uint alarm_num, hardware_alarm_callback_t callback)

Enable/Disable a callback for a hardware alarm on the default timer instance on this core.

bool timer_hardware_alarm_set_target (timer_hw_t *timer, uint alarm_num, absolute_time_t t)

Set the current target for a specific hardware alarm on the given timer instance.

bool hardware_alarm_set_target (uint alarm_num, absolute_time_t t)

Set the current target for the specified hardware alarm on the default timer instance.

void timer_hardware_alarm_cancel (timer_hw_t *timer, uint alarm_num)

Cancel an existing target (if any) for a specific hardware_alarm on the given timer instance.

void hardware_alarm_cancel (uint alarm_num)

Cancel an existing target (if any) for the specified hardware_alarm on the default timer instance.

void timer_hardware_alarm_force_irq (timer_hw_t *timer, uint alarm_num)

Force and IRQ for a specific hardware alarm on the given timer instance.

void hardware_alarm_force_irq (uint alarm_num)

Force and IRQ for a specific hardware alarm on the default timer instance.

static uint timer_hardware_alarm_get_irq_num (__unused timer_hw_t *timer, uint alarm_num)

Returns the irq_num_t for the alarm interrupt from the given alarm on the given timer instance.

static uint hardware_alarm_get_irq_num (timer_hw_t *timer, uint alarm_num)

Returns the irq_num_t for the alarm interrupt from the given alarm on the default timer instance.

static uint timer_get_index (timer_hw_t *timer)

Returns the timer number for a timer instance.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 298

static timer_hw_t * timer_get_instance (uint timer_num)

Returns the timer instance with the given timer number.

4.1.28.5. Macro Definition Documentation

4.1.28.5.1. TIMER_ALARM_IRQ_NUM

#define TIMER_ALARM_IRQ_NUM(timer, alarm_num)

Returns the irq_num_t for the alarm interrupt from the given alarm on the given timer instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.28.5.2. TIMER_ALARM_NUM_FROM_IRQ

#define TIMER_ALARM_NUM_FROM_IRQ(irq_num)

Returns the alarm number from an \irq_num_t. See TIMER_INSTANCE_NUM_FROM_IRQ to get the timer instance

number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.28.5.3. TIMER_NUM_FROM_IRQ

#define TIMER_NUM_FROM_IRQ(irq_num)

Returns the alarm number from an \irq_num_t. See TIMER_INSTANCE_NUM_FROM_IRQ to get the alarm number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.28.5.4. PICO_DEFAULT_TIMER

#define PICO_DEFAULT_TIMER 0

The default timer instance number of the timer instance used for APIs that don’t take an explicit timer instance On

RP2040 this must be 0 as there is only one timer instance On RP2040 this may be set to 0 or 1 .

4.1.28.5.5. PICO_DEFAULT_TIMER_INSTANCE

#define PICO_DEFAULT_TIMER_INSTANCE()

Returns the default timer instance on the platform based on the setting of PICO_DEFAULT_TIMER.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.28.6. Typedef Documentation

4.1.28.6.1. hardware_alarm_callback_t

typedef void(* hardware_alarm_callback_t) (uint alarm_num)

Callback function type for hardware alarms

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 299

alarm_num the hardware alarm number

See also

hardware_alarm_set_callback()

4.1.28.7. Function Documentation

4.1.28.7.1. busy_wait_ms

void busy_wait_ms (uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds using the default timer instance.

Parameters

delay_ms delay amount in milliseconds

See also

timer_busy_wait_ms

4.1.28.7.2. busy_wait_until

void busy_wait_until (absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp using the default timer instance.

Parameters

t Absolute time to wait until

See also

timer_busy_wait_until

4.1.28.7.3. busy_wait_us

void busy_wait_us (uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds using the default timer instance.

Parameters

delay_us delay amount in microseconds

See also

timer_busy_wait_us

4.1.28.7.4. busy_wait_us_32

void busy_wait_us_32 (uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds using the default timer instance.

Parameters

delay_us delay amount in microseconds

See also

timer_busy_wait_us_32

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 300

4.1.28.7.5. hardware_alarm_cancel

void hardware_alarm_cancel (uint alarm_num)

Cancel an existing target (if any) for the specified hardware_alarm on the default timer instance.

Parameters

alarm_num the hardware alarm number

See also

timer_hardware_alarm_cancel

4.1.28.7.6. hardware_alarm_claim

void hardware_alarm_claim (uint alarm_num)

cooperatively claim the use of this hardware alarm_num on the default timer instance

This method hard asserts if the hardware alarm is currently claimed.

Parameters

alarm_num the hardware alarm to claim

See also

timer_hardware_alarm_claim

hardware_claiming

4.1.28.7.7. hardware_alarm_claim_unused

int hardware_alarm_claim_unused (bool required)

cooperatively claim the use of a hardware alarm_num on the default timer instance

This method attempts to claim an unused hardware alarm

Parameters

required if true the function will panic if none are available

Returns

alarm_num the hardware alarm claimed or -1 if required was false, and none are available

See also

timer_hardware_alarm_claim_unused

hardware_claiming

4.1.28.7.8. hardware_alarm_force_irq

void hardware_alarm_force_irq (uint alarm_num)

Force and IRQ for a specific hardware alarm on the default timer instance.

This method will forcibly make sure the current alarm callback (if present) for the hardware alarm is called from an IRQ

context after this call. If an actual callback is due at the same time then the callback may only be called once.

Calling this method does not otherwise interfere with regular callback operations.

Parameters

alarm_num the hardware alarm number

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 301

See also

timer_hardware_alarm_force_irq

4.1.28.7.9. hardware_alarm_get_irq_num

static uint hardware_alarm_get_irq_num (timer_hw_t * timer, uint alarm_num) [inline], [static]

Returns the irq_num_t for the alarm interrupt from the given alarm on the default timer instance.

Parameters

timer the timer instance

alarm_num the alarm number

4.1.28.7.10. hardware_alarm_is_claimed

bool hardware_alarm_is_claimed (uint alarm_num)

Determine if a hardware alarm has been claimed on the default timer instance.

Parameters

alarm_num the hardware alarm number

Returns

true if claimed, false otherwise

See also

timer_hardware_alarm_is_claimed

hardware_alarm_claim

4.1.28.7.11. hardware_alarm_set_callback

void hardware_alarm_set_callback (uint alarm_num, hardware_alarm_callback_t callback)

Enable/Disable a callback for a hardware alarm on the default timer instance on this core.

This method enables/disables the alarm IRQ for the specified hardware alarm on the calling core, and set the specified

callback to be associated with that alarm.

This callback will be used for the timeout set via hardware_alarm_set_target

 NOTE

This will install the handler on the current core if the IRQ handler isn’t already set. Therefore the user has the

opportunity to call this up from the core of their choice

Parameters

alarm_num the hardware alarm number

callback the callback to install, or NULL to unset

See also

timer_hardware_alarm_set_callback

hardware_alarm_set_target()

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 302

4.1.28.7.12. hardware_alarm_set_target

bool hardware_alarm_set_target (uint alarm_num, absolute_time_t t)

Set the current target for the specified hardware alarm on the default timer instance.

This will replace any existing target

Parameters

alarm_num the hardware alarm number

t the target timestamp

Returns

true if the target was "missed"; i.e. it was in the past, or occurred before a future hardware timeout could be set

See also

timer_hardware_alarm_set_target

4.1.28.7.13. hardware_alarm_unclaim

void hardware_alarm_unclaim (uint alarm_num)

cooperatively release the claim on use of this hardware alarm_num on the default timer instance

Parameters

alarm_num the hardware alarm to unclaim

See also

timer_hardware_alarm_unclaim

hardware_claiming

4.1.28.7.14. time_reached

static bool time_reached (absolute_time_t t) [inline], [static]

Check if the specified timestamp has been reached on the default timer instance.

Parameters

t Absolute time to compare against current time

Returns

true if it is now after the specified timestamp

See also

timer_time_reached

4.1.28.7.15. time_us_32

static uint32_t time_us_32 (void) [inline], [static]

Return a 32 bit timestamp value in microseconds for the default timer instance.

Returns the low 32 bits of the hardware timer.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 303

 NOTE

This value wraps roughly every 1 hour 11 minutes and 35 seconds.

Returns

the 32 bit timestamp

See also

timer_time_us_32

4.1.28.7.16. time_us_64

uint64_t time_us_64 (void)

Return the current 64 bit timestamp value in microseconds for the default timer instance.

Returns the full 64 bits of the hardware timer. The pico_time and other functions rely on the fact that this value

monotonically increases from power up. As such it is expected that this value counts upwards and never wraps (we

apologize for introducing a potential year 5851444 bug).

Returns

the 64 bit timestamp

See also

timer_time_us_64

4.1.28.7.17. timer_busy_wait_ms

void timer_busy_wait_ms (timer_hw_t * timer, uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds using the given timer instance.

Parameters

timer the timer instance

delay_ms delay amount in milliseconds

See also

busy_wait_ms

4.1.28.7.18. timer_busy_wait_until

void timer_busy_wait_until (timer_hw_t * timer, absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp using the given timer instance.

Parameters

timer the timer instance

t Absolute time to wait until

See also

busy_wait_until

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 304

4.1.28.7.19. timer_busy_wait_us

void timer_busy_wait_us (timer_hw_t * timer, uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds using the given timer instance.

Parameters

timer the timer instance

delay_us delay amount in microseconds

See also

busy_wait_us

4.1.28.7.20. timer_busy_wait_us_32

void timer_busy_wait_us_32 (timer_hw_t * timer, uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds using the given timer instance.

Parameters

timer the timer instance

delay_us delay amount in microseconds

See also

busy_wait_us_32

Busy wait wasting cycles for the given (32 bit) number of microseconds using the given timer instance.

4.1.28.7.21. timer_get_index

static uint timer_get_index (timer_hw_t * timer) [inline], [static]

Returns the timer number for a timer instance.

Parameters

timer the timer instance

Returns

the timer number

See also

TIMER_NUM

4.1.28.7.22. timer_get_instance

static timer_hw_t * timer_get_instance (uint timer_num) [inline], [static]

Returns the timer instance with the given timer number.

Parameters

timer_num the timer number

Returns

the timer instance

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 305

4.1.28.7.23. timer_hardware_alarm_cancel

void timer_hardware_alarm_cancel (timer_hw_t * timer, uint alarm_num)

Cancel an existing target (if any) for a specific hardware_alarm on the given timer instance.

Parameters

timer the timer instance

alarm_num the hardware alarm number

See also

hardware_alarm_cancel

4.1.28.7.24. timer_hardware_alarm_claim

void timer_hardware_alarm_claim (timer_hw_t * timer, uint alarm_num)

cooperatively claim the use of this hardware alarm_num on the given timer instance

This method hard asserts if the hardware alarm is currently claimed.

Parameters

timer the timer instance

alarm_num the hardware alarm to claim

See also

hardware_alarm_claim

hardware_claiming

4.1.28.7.25. timer_hardware_alarm_claim_unused

int timer_hardware_alarm_claim_unused (timer_hw_t * timer, bool required)

cooperatively claim the use of a hardware alarm_num on the given timer instance

This method attempts to claim an unused hardware alarm

Parameters

timer the timer instance

required if true the function will panic if none are available

Returns

alarm_num the hardware alarm claimed or -1 if required was false, and none are available

See also

hardware_alarm_claim_unused

hardware_claiming

4.1.28.7.26. timer_hardware_alarm_force_irq

void timer_hardware_alarm_force_irq (timer_hw_t * timer, uint alarm_num)

Force and IRQ for a specific hardware alarm on the given timer instance.

This method will forcibly make sure the current alarm callback (if present) for the hardware alarm is called from an IRQ

context after this call. If an actual callback is due at the same time then the callback may only be called once.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 306

Calling this method does not otherwise interfere with regular callback operations.

Parameters

timer the timer instance

alarm_num the hardware alarm number

See also

hardware_alarm_force_irq

4.1.28.7.27. timer_hardware_alarm_get_irq_num

static uint timer_hardware_alarm_get_irq_num (__unused timer_hw_t * timer, uint alarm_num) [inline], [static]

Returns the irq_num_t for the alarm interrupt from the given alarm on the given timer instance.

Parameters

timer the timer instance

alarm_num the alarm number

See also

TIMER_ALARM_IRQ_NUM

4.1.28.7.28. timer_hardware_alarm_is_claimed

bool timer_hardware_alarm_is_claimed (timer_hw_t * timer, uint alarm_num)

Determine if a hardware alarm has been claimed on the given timer instance.

Parameters

timer the timer instance

alarm_num the hardware alarm number

Returns

true if claimed, false otherwise

See also

hardware_alarm_is_claimed

hardware_alarm_claim

4.1.28.7.29. timer_hardware_alarm_set_callback

void timer_hardware_alarm_set_callback (timer_hw_t * timer, uint alarm_num, hardware_alarm_callback_t callback)

Enable/Disable a callback for a hardware alarm for a given timer instance on this core.

This method enables/disables the alarm IRQ for the specified hardware alarm on the calling core, and set the specified

callback to be associated with that alarm.

This callback will be used for the timeout set via hardware_alarm_set_target

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 307

 NOTE

This will install the handler on the current core if the IRQ handler isn’t already set. Therefore the user has the

opportunity to call this up from the core of their choice

Parameters

timer the timer instance

alarm_num the hardware alarm number

callback the callback to install, or NULL to unset

See also

hardware_alarm_set_callback

timer_hardware_alarm_set_target()

4.1.28.7.30. timer_hardware_alarm_set_target

bool timer_hardware_alarm_set_target (timer_hw_t * timer, uint alarm_num, absolute_time_t t)

Set the current target for a specific hardware alarm on the given timer instance.

This will replace any existing target

Parameters

timer the timer instance

alarm_num the hardware alarm number

t the target timestamp

Returns

true if the target was "missed"; i.e. it was in the past, or occurred before a future hardware timeout could be set

See also

hardware_alarm_set_target

4.1.28.7.31. timer_hardware_alarm_unclaim

void timer_hardware_alarm_unclaim (timer_hw_t * timer, uint alarm_num)

cooperatively release the claim on use of this hardware alarm_num on the given timer instance

Parameters

timer the timer instance

alarm_num the hardware alarm to unclaim

See also

hardware_alarm_unclaim

hardware_claiming

4.1.28.7.32. timer_time_reached

static bool timer_time_reached (timer_hw_t * timer, absolute_time_t t) [inline], [static]

Check if the specified timestamp has been reached on the given timer instance.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 308

Parameters

timer the timer instance

t Absolute time to compare against current time

Returns

true if it is now after the specified timestamp

See also

time_reached

4.1.28.7.33. timer_time_us_32

static uint32_t timer_time_us_32 (timer_hw_t * timer) [inline], [static]

Return a 32 bit timestamp value in microseconds for a given timer instance.

Returns the low 32 bits of the hardware timer.

 NOTE

This value wraps roughly every 1 hour 11 minutes and 35 seconds.

Parameters

timer the timer instance

Returns

the 32 bit timestamp

See also

time_us_32

4.1.28.7.34. timer_time_us_64

uint64_t timer_time_us_64 (timer_hw_t * timer)

Return the current 64 bit timestamp value in microseconds for a given timer instance.

Returns the full 64 bits of the hardware timer. The pico_time and other functions rely on the fact that this value

monotonically increases from power up. As such it is expected that this value counts upwards and never wraps (we

apologize for introducing a potential year 5851444 bug).

Parameters

timer the timer instance

Returns

the 64 bit timestamp

See also

time_us_64

Return the current 64 bit timestamp value in microseconds for a given timer instance.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 309

4.1.29. hardware_uart

Hardware UART API.

4.1.29.1. Detailed Description

RP-series microcontrollers have 2 identical instances of a UART peripheral, based on the ARM PL011. Each UART can

be connected to a number of GPIO pins as defined in the GPIO muxing.

Only the TX, RX, RTS, and CTS signals are connected, meaning that the modem mode and IrDA mode of the PL011 are

not supported.

4.1.29.1.1. Example

 1 int main() {
 2
 3 // Set the GPIO pin mux to the UART - pin 0 is TX, 1 is RX; note use of UART_FUNCSEL_NUM
 for the general
 4 // case where the func sel used for UART depends on the pin number
 5 // Do this before calling uart_init to avoid losing data
 6 gpio_set_function(0, UART_FUNCSEL_NUM(uart0, 0));
 7 gpio_set_function(1, UART_FUNCSEL_NUM(uart0, 1));
 8
 9 // Initialise UART 0
10 uart_init(uart0, 115200);
11
12 uart_puts(uart0, "Hello world!");
13 }

4.1.29.2. Macros

• #define UART_NUM(uart)

• #define UART_INSTANCE(num)

• #define UART_DREQ_NUM(uart, is_tx)

• #define UART_CLOCK_NUM(uart)

• #define UART_FUNCSEL_NUM(uart, gpio)

• #define UART_IRQ_NUM(uart)

• #define UART_RESET_NUM(uart)

4.1.29.3. Enumerations

enum uart_parity_t { UART_PARITY_NONE, UART_PARITY_EVEN, UART_PARITY_ODD }

UART Parity enumeration.

4.1.29.4. Functions

static uint uart_get_index (uart_inst_t *uart)

Convert UART instance to hardware instance number.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 310

static uart_inst_t * uart_get_instance (uint num)

Get the UART instance from an instance number.

static uart_hw_t * uart_get_hw (uart_inst_t *uart)

Get the real hardware UART instance from a UART instance.

uint uart_init (uart_inst_t *uart, uint baudrate)

Initialise a UART.

void uart_deinit (uart_inst_t *uart)

DeInitialise a UART.

uint uart_set_baudrate (uart_inst_t *uart, uint baudrate)

Set UART baud rate.

static void uart_set_hw_flow (uart_inst_t *uart, bool cts, bool rts)

Set UART flow control CTS/RTS.

void uart_set_format (uart_inst_t *uart, uint data_bits, uint stop_bits, uart_parity_t parity)

Set UART data format.

static void uart_set_irqs_enabled (uart_inst_t *uart, bool rx_has_data, bool tx_needs_data)

Enable/Disable UART interrupt outputs.

static bool uart_is_enabled (uart_inst_t *uart)

Test if specific UART is enabled.

void uart_set_fifo_enabled (uart_inst_t *uart, bool enabled)

Enable/Disable the FIFOs on specified UART.

static bool uart_is_writable (uart_inst_t *uart)

Determine if space is available in the TX FIFO.

static void uart_tx_wait_blocking (uart_inst_t *uart)

Wait for the UART TX fifo to be drained.

static bool uart_is_readable (uart_inst_t *uart)

Determine whether data is waiting in the RX FIFO.

static void uart_write_blocking (uart_inst_t *uart, const uint8_t *src, size_t len)

Write to the UART for transmission.

static void uart_read_blocking (uart_inst_t *uart, uint8_t *dst, size_t len)

Read from the UART.

static void uart_putc_raw (uart_inst_t *uart, char c)

Write single character to UART for transmission.

static void uart_putc (uart_inst_t *uart, char c)

Write single character to UART for transmission, with optional CR/LF conversions.

static void uart_puts (uart_inst_t *uart, const char *s)

Write string to UART for transmission, doing any CR/LF conversions.

static char uart_getc (uart_inst_t *uart)

Read a single character from the UART.

void uart_set_break (uart_inst_t *uart, bool en)

Assert a break condition on the UART transmission.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 311

void uart_set_translate_crlf (uart_inst_t *uart, bool translate)

Set CR/LF conversion on UART.

static void uart_default_tx_wait_blocking (void)

Wait for the default UART’s TX FIFO to be drained.

bool uart_is_readable_within_us (uart_inst_t *uart, uint32_t us)

Wait for up to a certain number of microseconds for the RX FIFO to be non empty.

static uint uart_get_dreq_num (uart_inst_t *uart, bool is_tx)

Return the dreq_num_t to use for pacing transfers to/from a particular UART instance.

static uint uart_get_reset_num (uart_inst_t *uart)

Return the reset_num_t to use for pacing transfers to/from a particular UART instance.

4.1.29.4.1. uart0

#define uart0 ((uart_inst_t *)uart0_hw)

Identifier for UART instance 0.

The UART identifiers for use in UART functions.

e.g. uart_init(uart1, 48000)

4.1.29.4.2. uart1

#define uart1 ((uart_inst_t *)uart1_hw)

Identifier for UART instance 1.

4.1.29.5. Macro Definition Documentation

4.1.29.5.1. UART_NUM

#define UART_NUM(uart)

Returns the UART number for a UART instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.2. UART_INSTANCE

#define UART_INSTANCE(num)

Returns the UART instance with the given UART number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.3. UART_DREQ_NUM

#define UART_DREQ_NUM(uart, is_tx)

Returns the dreq_num_t used for pacing DMA transfers to or from this UART instance. If is_tx is true, then it is for

transfers to the UART else for transfers from the UART.

Note this macro is intended to resolve at compile time, and does no parameter checking

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 312

4.1.29.5.4. UART_CLOCK_NUM

#define UART_CLOCK_NUM(uart)

Returns clock_num_t of the clock for the given UART instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.5. UART_FUNCSEL_NUM

#define UART_FUNCSEL_NUM(uart, gpio)

Returns gpio_function_t needed to select the UART function for the given UART instance on the given GPIO number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.6. UART_IRQ_NUM

#define UART_IRQ_NUM(uart)

Returns the irq_num_t for processor interrupts from the given UART instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.7. UART_RESET_NUM

#define UART_RESET_NUM(uart)

Returns the reset_num_t used to reset a given UART instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.6. Enumeration Type Documentation

4.1.29.6.1. uart_parity_t

enum uart_parity_t

UART Parity enumeration.

4.1.29.7. Function Documentation

4.1.29.7.1. uart_default_tx_wait_blocking

static void uart_default_tx_wait_blocking (void) [inline], [static]

Wait for the default UART’s TX FIFO to be drained.

4.1.29.7.2. uart_deinit

void uart_deinit (uart_inst_t * uart)

DeInitialise a UART.

Disable the UART if it is no longer used. Must be reinitialised before being used again.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 313

uart UART instance. uart0 or uart1

4.1.29.7.3. uart_get_dreq_num

static uint uart_get_dreq_num (uart_inst_t * uart, bool is_tx) [inline], [static]

Return the dreq_num_t to use for pacing transfers to/from a particular UART instance.

Parameters

uart UART instance. uart0 or uart1

is_tx true for sending data to the UART instance, false for receiving data from the UART instance

4.1.29.7.4. uart_get_hw

static uart_hw_t * uart_get_hw (uart_inst_t * uart) [inline], [static]

Get the real hardware UART instance from a UART instance.

This extra level of abstraction was added to facilitate adding PIO UARTs in the future. It currently does nothing, and

costs nothing.

Parameters

uart UART instance

Returns

The uart_hw_t pointer to the UART instance registers

4.1.29.7.5. uart_get_index

static uint uart_get_index (uart_inst_t * uart) [inline], [static]

Convert UART instance to hardware instance number.

Parameters

uart UART instance

Returns

Number of UART, 0 or 1.

4.1.29.7.6. uart_get_instance

static uart_inst_t * uart_get_instance (uint num) [inline], [static]

Get the UART instance from an instance number.

Parameters

uart UART instance

Returns

Number of UART, 0 or 1

4.1.29.7.7. uart_get_reset_num

static uint uart_get_reset_num (uart_inst_t * uart) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 314

Return the reset_num_t to use for pacing transfers to/from a particular UART instance.

Parameters

uart UART instance. uart0 or uart1

is_tx true for sending data to the UART instance, false for receiving data from the UART instance

4.1.29.7.8. uart_getc

static char uart_getc (uart_inst_t * uart) [inline], [static]

Read a single character from the UART.

This function will block until a character has been read

Parameters

uart UART instance. uart0 or uart1

Returns

The character read.

4.1.29.7.9. uart_init

uint uart_init (uart_inst_t * uart, uint baudrate)

Initialise a UART.

Put the UART into a known state, and enable it. Must be called before other functions.

This function always enables the FIFOs, and configures the UART for the following default line format:

• 8 data bits

• No parity bit

• One stop bit

 NOTE

There is no guarantee that the baudrate requested will be possible, the nearest will be chosen, and this function will

return the configured baud rate.

Parameters

uart UART instance. uart0 or uart1

baudrate Baudrate of UART in Hz

Returns

Actual set baudrate

4.1.29.7.10. uart_is_enabled

static bool uart_is_enabled (uart_inst_t * uart) [inline], [static]

Test if specific UART is enabled.

Parameters

uart UART instance. uart0 or uart1

Returns

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 315

true if the UART is enabled

4.1.29.7.11. uart_is_readable

static bool uart_is_readable (uart_inst_t * uart) [inline], [static]

Determine whether data is waiting in the RX FIFO.

Parameters

uart UART instance. uart0 or uart1

Returns

true if the RX FIFO is not empty, otherwise false.

4.1.29.7.12. uart_is_readable_within_us

bool uart_is_readable_within_us (uart_inst_t * uart, uint32_t us)

Wait for up to a certain number of microseconds for the RX FIFO to be non empty.

Parameters

uart UART instance. uart0 or uart1

us the number of microseconds to wait at most (may be 0 for an instantaneous check)

Returns

true if the RX FIFO became non empty before the timeout, false otherwise

4.1.29.7.13. uart_is_writable

static bool uart_is_writable (uart_inst_t * uart) [inline], [static]

Determine if space is available in the TX FIFO.

Parameters

uart UART instance. uart0 or uart1

Returns

false if no space available, true otherwise

4.1.29.7.14. uart_putc

static void uart_putc (uart_inst_t * uart, char c) [inline], [static]

Write single character to UART for transmission, with optional CR/LF conversions.

This function will block until the character has been sent to the UART transmit buffer

Parameters

uart UART instance. uart0 or uart1

c The character to send

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 316

4.1.29.7.15. uart_putc_raw

static void uart_putc_raw (uart_inst_t * uart, char c) [inline], [static]

Write single character to UART for transmission.

This function will block until the entire character has been sent to the UART transmit buffer

Parameters

uart UART instance. uart0 or uart1

c The character to send

4.1.29.7.16. uart_puts

static void uart_puts (uart_inst_t * uart, const char * s) [inline], [static]

Write string to UART for transmission, doing any CR/LF conversions.

This function will block until the entire string has been sent to the UART transmit buffer

Parameters

uart UART instance. uart0 or uart1

s The null terminated string to send

4.1.29.7.17. uart_read_blocking

static void uart_read_blocking (uart_inst_t * uart, uint8_t * dst, size_t len) [inline], [static]

Read from the UART.

This function blocks until len characters have been read from the UART

Parameters

uart UART instance. uart0 or uart1

dst Buffer to accept received bytes

len The number of bytes to receive.

4.1.29.7.18. uart_set_baudrate

uint uart_set_baudrate (uart_inst_t * uart, uint baudrate)

Set UART baud rate.

Set baud rate as close as possible to requested, and return actual rate selected.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time

may be dropped by the UART.

Any characters still in the transmit buffer will be sent using the new updated baud rate. uart_tx_wait_blocking() can be

called before this function to ensure all characters at the old baud rate have been sent before the rate is changed.

This function should not be called from an interrupt context, and the UART interrupt should be disabled before calling

this function.

Parameters

uart UART instance. uart0 or uart1

baudrate Baudrate in Hz

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 317

Returns

Actual set baudrate

4.1.29.7.19. uart_set_break

void uart_set_break (uart_inst_t * uart, bool en)

Assert a break condition on the UART transmission.

Parameters

uart UART instance. uart0 or uart1

en Assert break condition (TX held low) if true. Clear break condition if false.

4.1.29.7.20. uart_set_fifo_enabled

void uart_set_fifo_enabled (uart_inst_t * uart, bool enabled)

Enable/Disable the FIFOs on specified UART.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time

may be dropped by the UART.

Any characters still in the transmit FIFO will be lost if the FIFO is disabled. uart_tx_wait_blocking() can be called before

this function to avoid this.

This function should not be called from an interrupt context, and the UART interrupt should be disabled when calling this

function.

Parameters

uart UART instance. uart0 or uart1

enabled true to enable FIFO (default), false to disable

4.1.29.7.21. uart_set_format

void uart_set_format (uart_inst_t * uart, uint data_bits, uint stop_bits, uart_parity_t parity)

Set UART data format.

Configure the data format (bits etc) for the UART.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time

may be dropped by the UART.

Any characters still in the transmit buffer will be sent using the new updated data format. uart_tx_wait_blocking() can be

called before this function to ensure all characters needing the old format have been sent before the format is changed.

This function should not be called from an interrupt context, and the UART interrupt should be disabled before calling

this function.

Parameters

uart UART instance. uart0 or uart1

data_bits Number of bits of data. 5..8

stop_bits Number of stop bits 1..2

parity Parity option.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 318

4.1.29.7.22. uart_set_hw_flow

static void uart_set_hw_flow (uart_inst_t * uart, bool cts, bool rts) [inline], [static]

Set UART flow control CTS/RTS.

Parameters

uart UART instance. uart0 or uart1

cts If true enable flow control of TX by clear-to-send input

rts If true enable assertion of request-to-send output by RX flow control

4.1.29.7.23. uart_set_irqs_enabled

static void uart_set_irqs_enabled (uart_inst_t * uart, bool rx_has_data, bool tx_needs_data) [inline], [static]

Enable/Disable UART interrupt outputs.

Enable/Disable the UART’s interrupt outputs. An interrupt handler should be installed prior to calling this function.

Parameters

uart UART instance. uart0 or uart1

rx_has_data If true an interrupt will be fired when the RX FIFO contains data.

tx_needs_data If true an interrupt will be fired when the TX FIFO needs data.

4.1.29.7.24. uart_set_translate_crlf

void uart_set_translate_crlf (uart_inst_t * uart, bool translate)

Set CR/LF conversion on UART.

Parameters

uart UART instance. uart0 or uart1

translate If true, convert line feeds to carriage return on transmissions

4.1.29.7.25. uart_tx_wait_blocking

static void uart_tx_wait_blocking (uart_inst_t * uart) [inline], [static]

Wait for the UART TX fifo to be drained.

Parameters

uart UART instance. uart0 or uart1

4.1.29.7.26. uart_write_blocking

static void uart_write_blocking (uart_inst_t * uart, const uint8_t * src, size_t len) [inline], [static]

Write to the UART for transmission.

This function will block until all the data has been sent to the UART transmit buffer hardware. Note: Serial data

transmission will continue until the Tx FIFO and the transmit shift register (not programmer-accessible) are empty. To

ensure the UART FIFO has been emptied, you can use uart_tx_wait_blocking()

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 319

uart UART instance. uart0 or uart1

src The bytes to send

len The number of bytes to send

4.1.30. hardware_vreg

Voltage Regulation API.

4.1.30.1. Functions

void vreg_set_voltage (enum vreg_voltage voltage)

Set voltage.

void vreg_disable_voltage_limit (void)

Enable use of voltages beyond the safe range of operation.

4.1.30.2. Function Documentation

4.1.30.2.1. vreg_disable_voltage_limit

void vreg_disable_voltage_limit (void)

Enable use of voltages beyond the safe range of operation.

This allows voltages beyond VREG_VOLTAGE_MAX to be used, on platforms where they are available (e.g. RP2350).

Attempting to set a higher voltage without first calling this function will result in a voltage of VREG_VOLTAGE_MAX.

4.1.30.2.2. vreg_set_voltage

void vreg_set_voltage (enum vreg_voltage voltage)

Set voltage.

Parameters

voltage The voltage (from enumeration vreg_voltage) to apply to the voltage regulator

4.1.31. hardware_watchdog

Hardware Watchdog Timer API.

4.1.31.1. Detailed Description

Supporting functions for the Pico hardware watchdog timer.

The RP-series microcontrollers have a built in HW watchdog Timer. This is a countdown timer that can restart parts of

the chip if it reaches zero. For example, this can be used to restart the processor if the software running on it gets stuck

in an infinite loop or similar. The programmer has to periodically write a value to the watchdog to stop it reaching zero.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 320

4.1.31.1.1. Example

 1 #include <stdio.h>
 2 #include "pico/stdlib.h"
 3 #include "hardware/watchdog.h"
 4
 5 int main() {
 6 stdio_init_all();
 7
 8 if (watchdog_caused_reboot()) {
 9 printf("Rebooted by Watchdog!\n");
10 return 0;
11 } else {
12 printf("Clean boot\n");
13 }
14
15 // Enable the watchdog, requiring the watchdog to be updated every 100ms or the chip will
 reboot
16 // second arg is pause on debug which means the watchdog will pause when stepping through
 code
17 watchdog_enable(100, 1);
18
19 for (uint i = 0; i < 5; i++) {
20 printf("Updating watchdog %d\n", i);
21 watchdog_update();
22 }
23
24 // Wait in an infinite loop and don't update the watchdog so it reboots us
25 printf("Waiting to be rebooted by watchdog\n");
26 while(1);
27 }

4.1.31.2. Functions

void watchdog_reboot (uint32_t pc, uint32_t sp, uint32_t delay_ms)

Define actions to perform at watchdog timeout.

void watchdog_start_tick (uint cycles)

Start the watchdog tick.

void watchdog_update (void)

Reload the watchdog counter with the amount of time set in watchdog_enable.

void watchdog_enable (uint32_t delay_ms, bool pause_on_debug)

Enable the watchdog.

void watchdog_disable (void)

Disable the watchdog.

bool watchdog_caused_reboot (void)

Did the watchdog cause the last reboot?

bool watchdog_enable_caused_reboot (void)

Did watchdog_enable cause the last reboot?

uint32_t watchdog_get_time_remaining_ms (void)

Returns the number of microseconds before the watchdog will reboot the chip.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 321

4.1.31.3. Function Documentation

4.1.31.3.1. watchdog_caused_reboot

bool watchdog_caused_reboot (void)

Did the watchdog cause the last reboot?

Returns

true If the watchdog timer or a watchdog force caused the last reboot

Returns

false If there has been no watchdog reboot since the last power on reset. A power on reset is typically caused by a

power cycle or the run pin (reset button) being toggled.

4.1.31.3.2. watchdog_disable

void watchdog_disable (void)

Disable the watchdog.

4.1.31.3.3. watchdog_enable

void watchdog_enable (uint32_t delay_ms, bool pause_on_debug)

Enable the watchdog.

 NOTE

If watchdog_start_tick value does not give a 1MHz clock to the watchdog system, then the delay_ms parameter will

not be in milliseconds. See the datasheet for more details.

By default the SDK assumes a 12MHz XOSC and sets the watchdog_start_tick appropriately.

This method sets a marker in the watchdog scratch register 4 that is checked by watchdog_enable_caused_reboot. If

the device is subsequently reset via a call to watchdog_reboot (including for example by dragging a UF2 onto the RPI-

RP2), then this value will be cleared, and so watchdog_enable_caused_reboot will return false.

Parameters

delay_ms Number of milliseconds before watchdog will reboot without watchdog_update being called.

Maximum of 8388, which is approximately 8.3 seconds

pause_on_debug If the watchdog should be paused when the debugger is stepping through code

4.1.31.3.4. watchdog_enable_caused_reboot

bool watchdog_enable_caused_reboot (void)

Did watchdog_enable cause the last reboot?

Perform additional checking along with watchdog_caused_reboot to determine if a watchdog timeout initiated by

watchdog_enable caused the last reboot.

This method checks for a special value in watchdog scratch register 4 placed there by watchdog_enable. This would not

be present if a watchdog reset is initiated by watchdog_reboot or by the RP-series microcontroller bootrom (e.g.

dragging a UF2 onto the RPI-RP2 drive).

Returns

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 322

true If the watchdog timer or a watchdog force caused (see watchdog_caused_reboot) the last reboot and the

watchdog reboot happened after watchdog_enable was called

Returns

false If there has been no watchdog reboot since the last power on reset, or the watchdog reboot was not caused by a

watchdog timeout after watchdog_enable was called. A power on reset is typically caused by a power cycle or the run

pin (reset button) being toggled.

4.1.31.3.5. watchdog_get_time_remaining_ms

uint32_t watchdog_get_time_remaining_ms (void)

Returns the number of microseconds before the watchdog will reboot the chip.

Returns

The number of microseconds before the watchdog will reboot the chip.

4.1.31.3.6. watchdog_reboot

void watchdog_reboot (uint32_t pc, uint32_t sp, uint32_t delay_ms)

Define actions to perform at watchdog timeout.

 NOTE

If watchdog_start_tick value does not give a 1MHz clock to the watchdog system, then the delay_ms parameter will

not be in milliseconds. See the datasheet for more details.

By default the SDK assumes a 12MHz XOSC and sets the watchdog_start_tick appropriately.

Parameters

pc If Zero, a standard boot will be performed, if non-zero this is the program counter to jump to on reset.

sp If pc is non-zero, this will be the stack pointer used.

delay_ms Initial load value. Maximum value 8388, approximately 8.3s.

4.1.31.3.7. watchdog_start_tick

void watchdog_start_tick (uint cycles)

Start the watchdog tick.

Parameters

cycles This needs to be a divider that when applied to the XOSC input, produces a 1MHz clock. So if the XOSC

is 12MHz, this will need to be 12.

4.1.31.3.8. watchdog_update

void watchdog_update (void)

Reload the watchdog counter with the amount of time set in watchdog_enable.

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs 323

4.1.32. hardware_xosc

Crystal Oscillator (XOSC) API.

4.1.32.1. Functions

void xosc_init (void)

Initialise the crystal oscillator system.

void xosc_disable (void)

Disable the Crystal oscillator.

void xosc_dormant (void)

Set the crystal oscillator system to dormant.

4.1.32.2. Function Documentation

4.1.32.2.1. xosc_disable

void xosc_disable (void)

Disable the Crystal oscillator.

Turns off the crystal oscillator source, and waits for it to become unstable

4.1.32.2.2. xosc_dormant

void xosc_dormant (void)

Set the crystal oscillator system to dormant.

Turns off the crystal oscillator until it is woken by an interrupt. This will block and hence the entire system will stop, until

an interrupt wakes it up. This function will continue to block until the oscillator becomes stable after its wakeup.

4.1.32.2.3. xosc_init

void xosc_init (void)

Initialise the crystal oscillator system.

This function will block until the crystal oscillator has stabilised.

4.2. High Level APIs

This group of libraries provide higher level functionality that isn’t hardware related or provides a richer set of

functionality above the basic hardware interfaces

pico_aon_timer High Level "Always on Timer" Abstraction.

pico_async_context An async_context provides a logically single-threaded context for performing work, and

responding to asynchronous events. Thus an async_context instance is suitable for servicing

third-party libraries that are not re-entrant.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 324

 async_context_freer

tos

async_context_freertos provides an implementation of async_context that handles

asynchronous work in a separate FreeRTOS task.

 async_context_poll async_context_poll provides an implementation of async_context that is intended for use with

a simple polling loop on one core. It is not thread safe.

 async_context_thre

adsafe_background

async_context_threadsafe_background provides an implementation of async_context that

handles asynchronous work in a low priority IRQ, and there is no need for the user to poll for

work

pico_bootsel_via_dou

ble_reset

Optional support to make fast double reset of the system enter BOOTSEL mode.

pico_flash High level flash API.

pico_i2c_slave Functions providing an interrupt driven I2C slave interface.

pico_multicore Adds support for running code on, and interacting with the second processor core (core 1).

 fifo Functions for the inter-core FIFOs.

 doorbell Functions related to doorbells which a core can use to raise IRQs on itself or the other core.

 lockout Functions to enable one core to force the other core to pause execution in a known state.

pico_rand Random Number Generator API.

pico_sha256 SHA-256 Hardware Accelerated implementation.

pico_stdlib Aggregation of a core subset of Raspberry Pi Pico SDK libraries used by most executables

along with some additional utility methods.

pico_sync Synchronization primitives and mutual exclusion.

 critical_section Critical Section API for short-lived mutual exclusion safe for IRQ and multi-core.

 lock_core base synchronization/lock primitive support.

 mutex Mutex API for non IRQ mutual exclusion between cores.

 sem Semaphore API for restricting access to a resource.

pico_time API for accurate timestamps, sleeping, and time based callbacks.

 timestamp Timestamp functions relating to points in time (including the current time).

 sleep Sleep functions for delaying execution in a lower power state.

 alarm Alarm functions for scheduling future execution.

 repeating_timer Repeating Timer functions for simple scheduling of repeated execution.

pico_unique_id Unique device ID access API.

pico_util Useful data structures and utility functions.

 datetime Date/Time formatting.

 pheap Pairing Heap Implementation.

 queue Multi-core and IRQ safe queue implementation.

4.2.1. pico_aon_timer

High Level "Always on Timer" Abstraction.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 325

4.2.1.1. Detailed Description

This library uses the RTC on RP2040. This library uses the RTC on RP2350.

4.2.1.2. Functions

void aon_timer_start_with_timeofday (void)

Start the AON timer running using the result from the gettimeofday() function as the current time.

void aon_timer_start (const struct timespec *ts)

Start the AON timer running using the specified timespec as the current time.

void aon_timer_stop (void)

Stop the AON timer.

void aon_timer_set_time (const struct timespec *ts)

Update the current time of the AON timer.

void aon_timer_get_time (struct timespec *ts)

Get the current time of the AON timer.

void aon_timer_get_resolution (struct timespec *ts)

Get the resolution of the AON timer.

aon_timer_alarm_handler_t aon_timer_enable_alarm (const struct timespec *ts, aon_timer_alarm_handler_t handler, bool

wakeup_from_low_power)

Enable an AON timer alarm for a specifed time.

void aon_timer_disable_alarm (void)

Disable the currently enabled AON timer alarm if any.

bool aon_timer_is_running (void)

Disable the currently enabled AON timer alarm if any.

4.2.1.3. Function Documentation

4.2.1.3.1. aon_timer_disable_alarm

void aon_timer_disable_alarm (void)

Disable the currently enabled AON timer alarm if any.

4.2.1.3.2. aon_timer_enable_alarm

aon_timer_alarm_handler_t aon_timer_enable_alarm (const struct timespec * ts, aon_timer_alarm_handler_t handler, bool

wakeup_from_low_power)

Enable an AON timer alarm for a specifed time.

On RP2040 The alarm will not fire if it is in the past On RP2040 The alarm will fire if it is in the past

Parameters

ts the alarm time

handler a callback to call when the timer fires (may be NULL for wakeup_from_low_power =

true)

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 326

wakeup_from_low_power true if the AON timer is to be used to wake up from a DORMANT state

4.2.1.3.3. aon_timer_get_resolution

void aon_timer_get_resolution (struct timespec * ts)

Get the resolution of the AON timer.

Parameters

ts out value for the resolution of the AON timer

4.2.1.3.4. aon_timer_get_time

void aon_timer_get_time (struct timespec * ts)

Get the current time of the AON timer.

Parameters

ts out value for the current time

4.2.1.3.5. aon_timer_is_running

bool aon_timer_is_running (void)

Disable the currently enabled AON timer alarm if any.

Returns

true if the AON timer is running

4.2.1.3.6. aon_timer_set_time

void aon_timer_set_time (const struct timespec * ts)

Update the current time of the AON timer.

Parameters

ts the new current time

4.2.1.3.7. aon_timer_start

void aon_timer_start (const struct timespec * ts)

Start the AON timer running using the specified timespec as the current time.

Parameters

ts the current time

4.2.1.3.8. aon_timer_start_with_timeofday

void aon_timer_start_with_timeofday (void)

Start the AON timer running using the result from the gettimeofday() function as the current time.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 327

4.2.1.3.9. aon_timer_stop

void aon_timer_stop (void)

Stop the AON timer.

4.2.2. pico_async_context

An async_context provides a logically single-threaded context for performing work, and responding to asynchronous

events. Thus an async_context instance is suitable for servicing third-party libraries that are not re-entrant.

4.2.2.1. Detailed Description

The "context" in async_context refers to the fact that when calling workers or timeouts within the async_context various

pre-conditions hold:

1. That there is a single logical thread of execution; i.e. that the context does not call any worker functions

concurrently.

2. That the context always calls workers from the same processor core, as most uses of async_context rely on

interaction with IRQs which are themselves core-specific.

THe async_context provides two mechanisms for asynchronous work:

• when_pending workers, which are processed whenever they have work pending. See

async_context_add_when_pending_worker, async_context_remove_when_pending_worker, and

async_context_set_work_pending, the latter of which can be used from an interrupt handler to signal that servicing

work is required to be performed by the worker from the regular async_context.

• at_time workers, that are executed after at a specific time.

Note: "when pending" workers with work pending are executed before "at time" workers.

The async_context provides locking mechanisms, see async_context_acquire_lock_blocking,

async_context_release_lock and async_context_lock_check which can be used by external code to ensure execution of

external code does not happen concurrently with worker code. Locked code runs on the calling core, however

async_context_execute_sync is provided to synchronously run a function from the core of the async_context.

The SDK ships with the following default async_contexts:

async_context_poll - this context is not thread-safe, and the user is responsible for calling async_context_poll()

periodically, and can use async_context_wait_for_work_until() to sleep between calls until work is needed if the user has

nothing else to do.

async_context_threadsafe_background - in order to work in the background, a low priority IRQ is used to handle

callbacks. Code is usually invoked from this IRQ context, but may be invoked after any other code that uses the async

context in another (non-IRQ) context on the same core. Calling async_context_poll() is not required, and is a no-op. This

context implements async_context locking and is thus safe to call from either core, according to the specific notes on

each API.

async_context_freertos - Work is performed from a separate "async_context" task, however once again, code may also

be invoked after a direct use of the async_context on the same core that the async_context belongs to. Calling

async_context_poll() is not required, and is a no-op. This context implements async_context locking and is thus safe to

call from any task, and from either core, according to the specific notes on each API.

Each async_context provides bespoke methods of instantiation which are provided in the corresponding headers (e.g.

async_context_poll.h, async_context_threadsafe_background.h, asycn_context_freertos.h). async_contexts are de-

initialized by the common async_context_deint() method.

Multiple async_context instances can be used by a single application, and they will operate independently.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 328

4.2.2.2. Modules

async_context_freertos

async_context_freertos provides an implementation of async_context that handles asynchronous work in a

separate FreeRTOS task.

async_context_poll

async_context_poll provides an implementation of async_context that is intended for use with a simple polling loop

on one core. It is not thread safe.

async_context_threadsafe_background

async_context_threadsafe_background provides an implementation of async_context that handles asynchronous

work in a low priority IRQ, and there is no need for the user to poll for work

4.2.2.3. Typedefs

typedef struct async_work_on_timeout async_at_time_worker_t

A "timeout" instance used by an async_context.

typedef struct async_when_pending_worker async_when_pending_worker_t

A "worker" instance used by an async_context.

typedef struct async_context_type async_context_type_t

Implementation of an async_context type, providing methods common to that type.

4.2.2.4. Functions

static void async_context_acquire_lock_blocking (async_context_t *context)

Acquire the async_context lock.

static void async_context_release_lock (async_context_t *context)

Release the async_context lock.

static void async_context_lock_check (async_context_t *context)

Assert if the caller does not own the lock for the async_context.

static uint32_t async_context_execute_sync (async_context_t *context, uint32_t(*func)(void *param), void *param)

Execute work synchronously on the core the async_context belongs to.

static bool async_context_add_at_time_worker (async_context_t *context, async_at_time_worker_t *worker)

Add an "at time" worker to a context.

static bool async_context_add_at_time_worker_at (async_context_t *context, async_at_time_worker_t *worker,

absolute_time_t at)

Add an "at time" worker to a context.

static bool async_context_add_at_time_worker_in_ms (async_context_t *context, async_at_time_worker_t *worker, uint32_t

ms)

Add an "at time" worker to a context.

static bool async_context_remove_at_time_worker (async_context_t *context, async_at_time_worker_t *worker)

Remove an "at time" worker from a context.

static bool async_context_add_when_pending_worker (async_context_t *context, async_when_pending_worker_t *worker)

Add a "when pending" worker to a context.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 329

static bool async_context_remove_when_pending_worker (async_context_t *context, async_when_pending_worker_t *worker)

Remove a "when pending" worker from a context.

static void async_context_set_work_pending (async_context_t *context, async_when_pending_worker_t *worker)

Mark a "when pending" worker as having work pending.

static void async_context_poll (async_context_t *context)

Perform any pending work for polling style async_context.

static void async_context_wait_until (async_context_t *context, absolute_time_t until)

sleep until the specified time in an async_context callback safe way

static void async_context_wait_for_work_until (async_context_t *context, absolute_time_t until)

Block until work needs to be done or the specified time has been reached.

static void async_context_wait_for_work_ms (async_context_t *context, uint32_t ms)

Block until work needs to be done or the specified number of milliseconds have passed.

static uint async_context_core_num (const async_context_t *context)

Return the processor core this async_context belongs to.

static void async_context_deinit (async_context_t *context)

End async_context processing, and free any resources.

4.2.2.5. Typedef Documentation

4.2.2.5.1. async_at_time_worker_t

typedef struct async_work_on_timeout async_at_time_worker_t

A "timeout" instance used by an async_context.

A "timeout" represents some future action that must be taken at a specific time. Its methods are called from the

async_context under lock at the given time

See also

async_context_add_worker_at

async_context_add_worker_in_ms

4.2.2.5.2. async_when_pending_worker_t

typedef struct async_when_pending_worker async_when_pending_worker_t

A "worker" instance used by an async_context.

A "worker" represents some external entity that must do work in response to some external stimulus (usually an IRQ).

Its methods are called from the async_context under lock at the given time

See also

async_context_add_worker_at

async_context_add_worker_in_ms

4.2.2.5.3. async_context_type_t

typedef struct async_context_type async_context_type_t

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 330

Implementation of an async_context type, providing methods common to that type.

4.2.2.6. Function Documentation

4.2.2.6.1. async_context_acquire_lock_blocking

static void async_context_acquire_lock_blocking (async_context_t * context) [inline], [static]

Acquire the async_context lock.

The owner of the async_context lock is the logic owner of the async_context and other work related to this

async_context will not happen concurrently.

This method may be called in a nested fashion by the the lock owner.

 NOTE

the async_context lock is nestable by the same caller, so an internal count is maintained

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

See also

async_context_release_lock

4.2.2.6.2. async_context_add_at_time_worker

static bool async_context_add_at_time_worker (async_context_t * context, async_at_time_worker_t * worker) [inline],

[static]

Add an "at time" worker to a context.

An "at time" worker will run at or after a specific point in time, and is automatically when (just before) it runs.

The time to fire is specified in the next_time field of the worker.

 NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "at time" worker to add

Returns

true if the worker was added, false if the worker was already present.

4.2.2.6.3. async_context_add_at_time_worker_at

static bool async_context_add_at_time_worker_at (async_context_t * context, async_at_time_worker_t * worker,

absolute_time_t at) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 331

Add an "at time" worker to a context.

An "at time" worker will run at or after a specific point in time, and is automatically when (just before) it runs.

The time to fire is specified by the at parameter.

 NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "at time" worker to add

at the time to fire at

Returns

true if the worker was added, false if the worker was already present.

4.2.2.6.4. async_context_add_at_time_worker_in_ms

static bool async_context_add_at_time_worker_in_ms (async_context_t * context, async_at_time_worker_t * worker, uint32_t

ms) [inline], [static]

Add an "at time" worker to a context.

An "at time" worker will run at or after a specific point in time, and is automatically when (just before) it runs.

The time to fire is specified by a delay via the ms parameter

 NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "at time" worker to add

ms the number of milliseconds from now to fire after

Returns

true if the worker was added, false if the worker was already present.

4.2.2.6.5. async_context_add_when_pending_worker

static bool async_context_add_when_pending_worker (async_context_t * context, async_when_pending_worker_t * worker)

[inline], [static]

Add a "when pending" worker to a context.

An "when pending" worker will run when it is pending (can be set via async_context_set_work_pending), and is NOT

automatically removed when it runs.

The time to fire is specified by a delay via the ms parameter

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 332

 NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "when pending" worker to add

Returns

true if the worker was added, false if the worker was already present.

4.2.2.6.6. async_context_core_num

static uint async_context_core_num (const async_context_t * context) [inline], [static]

Return the processor core this async_context belongs to.

Parameters

context the async_context

Returns

the physical core number

4.2.2.6.7. async_context_deinit

static void async_context_deinit (async_context_t * context) [inline], [static]

End async_context processing, and free any resources.

Note the user should clean up any resources associated with workers in the async_context themselves.

Asynchronous (non-polled) async_contexts guarantee that no callback is being called once this method returns.

Parameters

context the async_context

4.2.2.6.8. async_context_execute_sync

static uint32_t async_context_execute_sync (async_context_t * context, uint32_t(*)(void *param) func, void * param)

[inline], [static]

Execute work synchronously on the core the async_context belongs to.

This method is intended for code external to the async_context (e.g. another thread/task) to execute a function with the

same guarantees (single core, logical thread of execution) that async_context workers are called with.

 NOTE

you should NOT call this method while holding the async_context's lock

Parameters

context the async_context

func the function to call

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 333

param the parameter to pass to the function

Returns

the return value from func

4.2.2.6.9. async_context_lock_check

static void async_context_lock_check (async_context_t * context) [inline], [static]

Assert if the caller does not own the lock for the async_context.

 NOTE

this method is thread-safe

Parameters

context the async_context

4.2.2.6.10. async_context_poll

static void async_context_poll (async_context_t * context) [inline], [static]

Perform any pending work for polling style async_context.

For a polled async_context (e.g. async_context_poll) the user is responsible for calling this method periodically to

perform any required work.

This method may immediately perform outstanding work on other context types, but is not required to.

Parameters

context the async_context

4.2.2.6.11. async_context_release_lock

static void async_context_release_lock (async_context_t * context) [inline], [static]

Release the async_context lock.

 NOTE

the async_context lock may be called in a nested fashion, so an internal count is maintained. On the outermost

release, When the outermost lock is released, a check is made for work which might have been skipped while the

lock was held, and any such work may be performed during this call IF the call is made from the same core that the

async_context belongs to.

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

See also

async_context_acquire_lock_blocking

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 334

4.2.2.6.12. async_context_remove_at_time_worker

static bool async_context_remove_at_time_worker (async_context_t * context, async_at_time_worker_t * worker) [inline],

[static]

Remove an "at time" worker from a context.

 NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "at time" worker to remove

Returns

true if the worker was removed, false if the instance not present.

4.2.2.6.13. async_context_remove_when_pending_worker

static bool async_context_remove_when_pending_worker (async_context_t * context, async_when_pending_worker_t * worker)

[inline], [static]

Remove a "when pending" worker from a context.

 NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

worker the "when pending" worker to remove

Returns

true if the worker was removed, false if the instance not present.

4.2.2.6.14. async_context_set_work_pending

static void async_context_set_work_pending (async_context_t * context, async_when_pending_worker_t * worker) [inline],

[static]

Mark a "when pending" worker as having work pending.

The worker will be run from the async_context at a later time.

 NOTE

this method may be called from any context including IRQs

Parameters

context the async_context

worker the "when pending" worker to mark as pending.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 335

4.2.2.6.15. async_context_wait_for_work_ms

static void async_context_wait_for_work_ms (async_context_t * context, uint32_t ms) [inline], [static]

Block until work needs to be done or the specified number of milliseconds have passed.

 NOTE

this method should not be called from a worker callback

Parameters

context the async_context

ms the number of milliseconds to return after if no work is required

4.2.2.6.16. async_context_wait_for_work_until

static void async_context_wait_for_work_until (async_context_t * context, absolute_time_t until) [inline], [static]

Block until work needs to be done or the specified time has been reached.

 NOTE

this method should not be called from a worker callback

Parameters

context the async_context

until the time to return at if no work is required

4.2.2.6.17. async_context_wait_until

static void async_context_wait_until (async_context_t * context, absolute_time_t until) [inline], [static]

sleep until the specified time in an async_context callback safe way

 NOTE

for async_contexts that provide locking (not async_context_poll), this method is threadsafe. and may be called from

within any worker method called by the async_context or from any other non-IRQ context.

Parameters

context the async_context

until the time to sleep until

4.2.2.7. async_context_freertos

async_context_freertos provides an implementation of async_context that handles asynchronous work in a separate

FreeRTOS task.

4.2.2.7.1. Functions

bool async_context_freertos_init (async_context_freertos_t *self, async_context_freertos_config_t *config)

Initialize an async_context_freertos instance using the specified configuration.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 336

static async_context_freertos_config_t async_context_freertos_default_config (void)

Return a copy of the default configuration object used by async_context_freertos_init_with_defaults()

static bool async_context_freertos_init_with_defaults (async_context_freertos_t *self)

Initialize an async_context_freertos instance with default values.

4.2.2.7.2. Function Documentation

async_context_freertos_default_config

static async_context_freertos_config_t async_context_freertos_default_config (void) [inline], [static]

Return a copy of the default configuration object used by async_context_freertos_init_with_defaults()

The caller can then modify just the settings it cares about, and call async_context_freertos_init()

Returns

the default configuration object

async_context_freertos_init

bool async_context_freertos_init (async_context_freertos_t * self, async_context_freertos_config_t * config)

Initialize an async_context_freertos instance using the specified configuration.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling

async_context_deinit().

Parameters

self a pointer to async_context_freertos structure to initialize

config the configuration object specifying characteristics for the async_context

Returns

true if initialization is successful, false otherwise

async_context_freertos_init_with_defaults

static bool async_context_freertos_init_with_defaults (async_context_freertos_t * self) [inline], [static]

Initialize an async_context_freertos instance with default values.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling

async_context_deinit().

Parameters

self a pointer to async_context_freertos structure to initialize

Returns

true if initialization is successful, false otherwise

4.2.2.8. async_context_poll

async_context_poll provides an implementation of async_context that is intended for use with a simple polling loop on

one core. It is not thread safe.

4.2.2.8.1. Detailed Description

The async_context_poll() method must be called periodically to handle asynchronous work that may now be pending.

async_context_wait_for_work_until() may be used to block a polling loop until there is work to do, and prevent tight

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 337

spinning.

4.2.2.8.2. Functions

bool async_context_poll_init_with_defaults (async_context_poll_t *self)

Initialize an async_context_poll instance with default values.

4.2.2.8.3. Function Documentation

async_context_poll_init_with_defaults

bool async_context_poll_init_with_defaults (async_context_poll_t * self)

Initialize an async_context_poll instance with default values.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling

async_context_deinit().

Parameters

self a pointer to async_context_poll structure to initialize

Returns

true if initialization is successful, false otherwise

4.2.2.9. async_context_threadsafe_background

async_context_threadsafe_background provides an implementation of async_context that handles asynchronous work

in a low priority IRQ, and there is no need for the user to poll for work

4.2.2.9.1. Detailed Description

 NOTE

The workers used with this async_context MUST be safe to call from an IRQ.

4.2.2.9.2. Functions

bool async_context_threadsafe_background_init (async_context_threadsafe_background_t *self,

async_context_threadsafe_background_config_t *config)

Initialize an async_context_threadsafe_background instance using the specified configuration.

async_context_threadsafe_background_config_t async_context_threadsafe_background_default_config (void)

Return a copy of the default configuration object used by

async_context_threadsafe_background_init_with_defaults()

static bool async_context_threadsafe_background_init_with_defaults (async_context_threadsafe_background_t *self)

Initialize an async_context_threadsafe_background instance with default values.

4.2.2.9.3. Function Documentation

async_context_threadsafe_background_default_config

async_context_threadsafe_background_config_t async_context_threadsafe_background_default_config (void)

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 338

Return a copy of the default configuration object used by async_context_threadsafe_background_init_with_defaults()

The caller can then modify just the settings it cares about, and call async_context_threadsafe_background_init()

Returns

the default configuration object

async_context_threadsafe_background_init

bool async_context_threadsafe_background_init (async_context_threadsafe_background_t * self,

async_context_threadsafe_background_config_t * config)

Initialize an async_context_threadsafe_background instance using the specified configuration.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling

async_context_deinit().

Parameters

self a pointer to async_context_threadsafe_background structure to initialize

config the configuration object specifying characteristics for the async_context

Returns

true if initialization is successful, false otherwise

async_context_threadsafe_background_init_with_defaults

static bool async_context_threadsafe_background_init_with_defaults (async_context_threadsafe_background_t * self)

[inline], [static]

Initialize an async_context_threadsafe_background instance with default values.

If this method succeeds (returns true), then the async_context is available for use and can be de-initialized by calling

async_context_deinit().

Parameters

self a pointer to async_context_threadsafe_background structure to initialize

Returns

true if initialization is successful, false otherwise

4.2.3. pico_bootsel_via_double_reset

Optional support to make fast double reset of the system enter BOOTSEL mode.

4.2.3.1. Detailed Description

When the 'pico_bootsel_via_double_reset' library is linked, a function is injected before main() which will detect when the

system has been reset twice in quick succession, and enter the USB ROM bootloader (BOOTSEL mode) when this

happens. This allows a double tap of a reset button on a development board to be used to enter the ROM bootloader,

provided this library is always linked.

4.2.4. pico_flash

High level flash API.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 339

4.2.4.1. Detailed Description

Flash cannot be erased or written to when in XIP mode. However the system cannot directly access memory in the flash

address space when not in XIP mode.

It is therefore critical that no code or data is being read from flash while flash is been written or erased.

If only one core is being used, then the problem is simple - just disable interrupts; however if code is running on the

other core, then it has to be asked, nicely, to avoid flash for a bit. This is hard to do if you don’t have complete control of

the code running on that core at all times.

This library provides a flash_safe_execute method which calls a function back having successfully gotten into a state

where interrupts are disabled, and the other core is not executing or reading from flash.

How it does this is dependent on the supported environment (Free RTOS SMP or pico_multicore). Additionally the user

can provide their own mechanism by providing a strong definition of get_flash_safety_helper().

Using the default settings, flash_safe_execute will only call the callback function if the state is safe otherwise returning

an error (or an assert depending on PICO_FLASH_ASSERT_ON_UNSAFE).

There are conditions where safety would not be guaranteed:

1. FreeRTOS smp with configNUM_CORES=1 - FreeRTOS still uses pico_multicore in this case, so flash_safe_execute

cannot know what the other core is doing, and there is no way to force code execution between a FreeRTOS core

and a non FreeRTOS core.

2. FreeRTOS non SMP with pico_multicore - Again, there is no way to force code execution between a FreeRTOS core

and a non FreeRTOS core.

3. pico_multicore without flash_safe_execute_core_init() having been called on the other core - The

flash_safe_execute method does not know if code is executing on the other core, so it has to assume it is. Either

way, it is not able to intervene if flash_safe_execute_core_init() has not been called on the other core.

Fortunately, all is not lost in this situation, you may:

• Set PICO_FLASH_ASSUME_CORE0_SAFE=1 to explicitly say that core 0 is never using flash.

• Set PICO_FLASH_ASSUME_CORE1_SAFE=1 to explicitly say that core 1 is never using flash.

4.2.4.2. Functions

bool flash_safe_execute_core_init (void)

Initialize a core such that the other core can lock it out during flash_safe_execute.

bool flash_safe_execute_core_deinit (void)

De-initialize work done by flash_safe_execute_core_init.

int flash_safe_execute (void(*func)(void *), void *param, uint32_t enter_exit_timeout_ms)

Execute a function with IRQs disabled and with the other core also not executing/reading flash.

flash_safety_helper_t * get_flash_safety_helper (void)

Internal method to return the flash safety helper implementation.

4.2.4.3. Function Documentation

4.2.4.3.1. flash_safe_execute

int flash_safe_execute (void(*)(void *) func, void * param, uint32_t enter_exit_timeout_ms)

Execute a function with IRQs disabled and with the other core also not executing/reading flash.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 340

func the function to call

param the parameter to pass to the function

enter_exit_timeout_ms the timeout for each of the enter/exit phases when coordinating with the other core

Returns

PICO_OK on success (the function will have been called). PICO_ERROR_TIMEOUT on timeout (the function may have

been called). PICO_ERROR_NOT_PERMITTED if safe execution is not possible (the function will not have been called).

PICO_ERROR_INSUFFICIENT_RESOURCES if the method fails due to dynamic resource exhaustion (the function will not

have been called)

 NOTE

if PICO_FLASH_ASSERT_ON_UNSAFE is 1, this function will assert in debug mode vs returning

PICO_ERROR_NOT_PERMITTED

4.2.4.3.2. flash_safe_execute_core_deinit

bool flash_safe_execute_core_deinit (void)

De-initialize work done by flash_safe_execute_core_init.

Returns

true on success

4.2.4.3.3. flash_safe_execute_core_init

bool flash_safe_execute_core_init (void)

Initialize a core such that the other core can lock it out during flash_safe_execute.

 NOTE

This is not necessary for FreeRTOS SMP, but should be used when launching via multicore_launch_core1

Returns

true on success; there is no need to call flash_safe_execute_core_deinit() on failure.

4.2.4.3.4. get_flash_safety_helper

flash_safety_helper_t * get_flash_safety_helper (void)

Internal method to return the flash safety helper implementation.

Advanced users can provide their own implementation of this function to perform different inter-core coordination

before disabling XIP mode.

Returns

the flash_safety_helper_t

4.2.5. pico_i2c_slave

Functions providing an interrupt driven I2C slave interface.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 341

4.2.5.1. Detailed Description

This I2C slave helper library configures slave mode and hooks the relevant I2C IRQ so that a user supplied handler is

called with enumerated I2C events.

An example application slave_mem_i2c, which makes use of this library, can be found in pico_examples.

4.2.5.2. Typedefs

typedef enum i2c_slave_event_t i2c_slave_event_t

I2C slave event types.

typedef void(* i2c_slave_handler_t)(i2c_inst_t *i2c, i2c_slave_event_t event)

I2C slave event handler.

4.2.5.3. Enumerations

enum i2c_slave_event_t { I2C_SLAVE_RECEIVE, I2C_SLAVE_REQUEST, I2C_SLAVE_FINISH }

I2C slave event types.

4.2.5.4. Functions

void i2c_slave_init (i2c_inst_t *i2c, uint8_t address, i2c_slave_handler_t handler)

Configure an I2C instance for slave mode.

void i2c_slave_deinit (i2c_inst_t *i2c)

Restore an I2C instance to master mode.

4.2.5.5. Typedef Documentation

4.2.5.5.1. i2c_slave_event_t

typedef enum i2c_slave_event_t i2c_slave_event_t

I2C slave event types.

4.2.5.5.2. i2c_slave_handler_t

typedef void(* i2c_slave_handler_t) (i2c_inst_t *i2c, i2c_slave_event_t event)

I2C slave event handler.

The event handler will run from the I2C ISR, so it should return quickly (under 25 us at 400 kb/s). Avoid blocking inside

the handler and split large data transfers across multiple calls for best results. When sending data to master, up to

i2c_get_write_available() bytes can be written without blocking. When receiving data from master, up to

i2c_get_read_available() bytes can be read without blocking.

Parameters

i2c Either i2c0 or i2c1

event Event type.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 342

https://github.com/raspberrypi/pico-examples/blob/master/i2c/slave_mem_i2c/slave_mem_i2c.c

4.2.5.6. Enumeration Type Documentation

4.2.5.6.1. i2c_slave_event_t

enum i2c_slave_event_t

I2C slave event types.

Table 31. Enumerator
I2C_SLAVE_RECEIVE Data from master is available for reading. Slave must read

from Rx FIFO.

I2C_SLAVE_REQUEST Master is requesting data. Slave must write into Tx FIFO.

I2C_SLAVE_FINISH Master has sent a Stop or Restart signal. Slave may

prepare for the next transfer.

4.2.5.7. Function Documentation

4.2.5.7.1. i2c_slave_deinit

void i2c_slave_deinit (i2c_inst_t * i2c)

Restore an I2C instance to master mode.

Parameters

i2c Either i2c0 or i2c1

4.2.5.7.2. i2c_slave_init

void i2c_slave_init (i2c_inst_t * i2c, uint8_t address, i2c_slave_handler_t handler)

Configure an I2C instance for slave mode.

Parameters

i2c I2C instance.

address 7-bit slave address.

handler Callback for events from I2C master. It will run from the I2C ISR, on the CPU core where the slave was

initialised.

4.2.6. pico_multicore

Adds support for running code on, and interacting with the second processor core (core 1).

4.2.6.1. Detailed Description

4.2.6.1.1. Example

 1 #include <stdio.h>
 2 #include "pico/stdlib.h"
 3 #include "pico/multicore.h"

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 343

 4
 5 #define FLAG_VALUE 123
 6
 7 void core1_entry() {
 8
 9 multicore_fifo_push_blocking(FLAG_VALUE);
10
11 uint32_t g = multicore_fifo_pop_blocking();
12
13 if (g != FLAG_VALUE)
14 printf("Hmm, that's not right on core 1!\n");
15 else
16 printf("Its all gone well on core 1!");
17
18 while (1)
19 tight_loop_contents();
20 }
21
22 int main() {
23 stdio_init_all();
24 printf("Hello, multicore!\n");
25
26
27 multicore_launch_core1(core1_entry);
28
29 // Wait for it to start up
30
31 uint32_t g = multicore_fifo_pop_blocking();
32
33 if (g != FLAG_VALUE)
34 printf("Hmm, that's not right on core 0!\n");
35 else {
36 multicore_fifo_push_blocking(FLAG_VALUE);
37 printf("It's all gone well on core 0!");
38 }
39
40 }

4.2.6.2. Modules

fifo

Functions for the inter-core FIFOs.

doorbell

Functions related to doorbells which a core can use to raise IRQs on itself or the other core.

lockout

Functions to enable one core to force the other core to pause execution in a known state.

4.2.6.3. Macros

• #define SIO_FIFO_IRQ_NUM(core)

4.2.6.4. Functions

void multicore_reset_core1 (void)

Reset core 1.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 344

void multicore_launch_core1 (void(*entry)(void))

Run code on core 1.

void multicore_launch_core1_with_stack (void(*entry)(void), uint32_t *stack_bottom, size_t stack_size_bytes)

Launch code on core 1 with stack.

void multicore_launch_core1_raw (void(*entry)(void), uint32_t *sp, uint32_t vector_table)

Launch code on core 1 with no stack protection.

4.2.6.5. Macro Definition Documentation

4.2.6.5.1. SIO_FIFO_IRQ_NUM

#define SIO_FIFO_IRQ_NUM(core)

Returns the irq_num_t for the FIFO IRQ on the given core.

On RP2040 each core has a different IRQ number: SIO_IRQ_PROC0 and SIO_IRQ_PROC1. On RP2350 both cores share the

same irq number (SIO_IRQ_PROC) just with a different SIO interrupt output routed to that IRQ input on each core.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.2.6.6. Function Documentation

4.2.6.6.1. multicore_launch_core1

void multicore_launch_core1 (void(*)(void) entry)

Run code on core 1.

Wake up (a previously reset) core 1 and enter the given function on core 1 using the default core 1 stack (below core 0

stack).

core 1 must previously have been reset either as a result of a system reset or by calling multicore_reset_core1

core 1 will use the same vector table as core 0

Parameters

entry Function entry point

See also

multicore_reset_core1

4.2.6.6.2. multicore_launch_core1_raw

void multicore_launch_core1_raw (void(*)(void) entry, uint32_t * sp, uint32_t vector_table)

Launch code on core 1 with no stack protection.

Wake up (a previously reset) core 1 and start it executing with a specific entry point, stack pointer and vector table.

This is a low level function that does not provide a stack guard even if USE_STACK_GUARDS is defined

core 1 must previously have been reset either as a result of a system reset or by calling multicore_reset_core1

Parameters

entry Function entry point

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 345

sp Pointer to the top of the core 1 stack

vector_table address of the vector table to use for core 1

See also

multicore_reset_core1

4.2.6.6.3. multicore_launch_core1_with_stack

void multicore_launch_core1_with_stack (void(*)(void) entry, uint32_t * stack_bottom, size_t stack_size_bytes)

Launch code on core 1 with stack.

Wake up (a previously reset) core 1 and enter the given function on core 1 using the passed stack for core 1

core 1 must previously have been reset either as a result of a system reset or by calling multicore_reset_core1

core 1 will use the same vector table as core 0

Parameters

entry Function entry point

stack_bottom The bottom (lowest address) of the stack

stack_size_bytes The size of the stack in bytes (must be a multiple of 4)

See also

multicore_reset_core1

4.2.6.6.4. multicore_reset_core1

void multicore_reset_core1 (void)

Reset core 1.

This function can be used to reset core 1 into its initial state (ready for launching code against via

multicore_launch_core1 and similar methods)

 NOTE

this function should only be called from core 0

4.2.6.7. fifo

Functions for the inter-core FIFOs.

4.2.6.7.1. Detailed Description

RP-series microcontrollers contains two FIFOs for passing data, messages or ordered events between the two cores.

Each FIFO is 32 bits wide, and 8 entries deep on the RP2040, and 4 entries deep on the RP2350. One of the FIFOs can

only be written by core 0, and read by core 1. The other can only be written by core 1, and read by core 0.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 346

 NOTE

The inter-core FIFOs are a very precious resource and are frequently used for SDK functionality (e.g. during core 1

launch or by the lockout functions). Additionally they are often required for the exclusive use of an RTOS (e.g.

FreeRTOS SMP). For these reasons it is suggested that you do not use the FIFO for your own purposes unless none

of the above concerns apply; the majority of cases for transferring data between cores can be eqaully well handled

by using a queue

4.2.6.7.2. Functions

static bool multicore_fifo_rvalid (void)

Check the read FIFO to see if there is data available (sent by the other core)

static bool multicore_fifo_wready (void)

Check the write FIFO to see if it has space for more data.

void multicore_fifo_push_blocking (uint32_t data)

Push data on to the write FIFO (data to the other core).

static void multicore_fifo_push_blocking_inline (uint32_t data)

Push data on to the write FIFO (data to the other core).

bool multicore_fifo_push_timeout_us (uint32_t data, uint64_t timeout_us)

Push data on to the write FIFO (data to the other core) with timeout.

uint32_t multicore_fifo_pop_blocking (void)

Pop data from the read FIFO (data from the other core).

static uint32_t multicore_fifo_pop_blocking_inline (void)

Pop data from the read FIFO (data from the other core).

bool multicore_fifo_pop_timeout_us (uint64_t timeout_us, uint32_t *out)

Pop data from the read FIFO (data from the other core) with timeout.

static void multicore_fifo_drain (void)

Discard any data in the read FIFO.

static void multicore_fifo_clear_irq (void)

Clear FIFO interrupt.

static uint32_t multicore_fifo_get_status (void)

Get FIFO statuses.

4.2.6.7.3. Function Documentation

multicore_fifo_clear_irq

static void multicore_fifo_clear_irq (void) [inline], [static]

Clear FIFO interrupt.

Note that this only clears an interrupt that was caused by the ROE or WOF flags. To clear the VLD flag you need to use

one of the 'pop' or 'drain' functions.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

See also

multicore_fifo_get_status

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 347

multicore_fifo_drain

static void multicore_fifo_drain (void) [inline], [static]

Discard any data in the read FIFO.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

multicore_fifo_get_status

static uint32_t multicore_fifo_get_status (void) [inline], [static]

Get FIFO statuses.

Returns

The statuses as a bitfield

Bit Description

3 Sticky flag indicating the RX FIFO was read when empty

(ROE). This read was ignored by the FIFO.

2 Sticky flag indicating the TX FIFO was written when full

(WOF). This write was ignored by the FIFO.

1 Value is 1 if this core’s TX FIFO is not full (i.e. if FIFO_WR

is ready for more data)

0 Value is 1 if this core’s RX FIFO is not empty (i.e. if

FIFO_RD is valid)

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

multicore_fifo_pop_blocking

uint32_t multicore_fifo_pop_blocking (void)

Pop data from the read FIFO (data from the other core).

This function will block until there is data ready to be read Use multicore_fifo_rvalid() to check if data is ready to be read

if you don’t want to block.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

Returns

32 bit data from the read FIFO.

multicore_fifo_pop_blocking_inline

static uint32_t multicore_fifo_pop_blocking_inline (void) [inline], [static]

Pop data from the read FIFO (data from the other core).

This function will block until there is data ready to be read Use multicore_fifo_rvalid() to check if data is ready to be read

if you don’t want to block.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

Returns

32 bit data from the read FIFO.

multicore_fifo_pop_timeout_us

bool multicore_fifo_pop_timeout_us (uint64_t timeout_us, uint32_t * out)

Pop data from the read FIFO (data from the other core) with timeout.

This function will block until there is data ready to be read or the timeout is reached

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 348

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

Parameters

timeout_us the timeout in microseconds

out the location to store the popped data if available

Returns

true if the data was popped and a value copied into out, false if the timeout occurred before data could be popped

multicore_fifo_push_blocking

void multicore_fifo_push_blocking (uint32_t data)

Push data on to the write FIFO (data to the other core).

This function will block until there is space for the data to be sent. Use multicore_fifo_wready() to check if it is possible

to write to the FIFO if you don’t want to block.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

Parameters

data A 32 bit value to push on to the FIFO

multicore_fifo_push_blocking_inline

static void multicore_fifo_push_blocking_inline (uint32_t data) [inline], [static]

Push data on to the write FIFO (data to the other core).

This function will block until there is space for the data to be sent. Use multicore_fifo_wready() to check if it is possible

to write to the FIFO if you don’t want to block.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

Parameters

data A 32 bit value to push on to the FIFO

multicore_fifo_push_timeout_us

bool multicore_fifo_push_timeout_us (uint32_t data, uint64_t timeout_us)

Push data on to the write FIFO (data to the other core) with timeout.

This function will block until there is space for the data to be sent or the timeout is reached

Parameters

data A 32 bit value to push on to the FIFO

timeout_us the timeout in microseconds

Returns

true if the data was pushed, false if the timeout occurred before data could be pushed

multicore_fifo_rvalid

static bool multicore_fifo_rvalid (void) [inline], [static]

Check the read FIFO to see if there is data available (sent by the other core)

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

Returns

true if the FIFO has data in it, false otherwise

multicore_fifo_wready

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 349

static bool multicore_fifo_wready (void) [inline], [static]

Check the write FIFO to see if it has space for more data.

See the note in the fifo section for considerations regarding use of the inter-core FIFOs

Returns

true if the FIFO has room for more data, false otherwise

4.2.6.8. doorbell

Functions related to doorbells which a core can use to raise IRQs on itself or the other core.

4.2.6.8.1. Macros

• #define DOORBELL_IRQ_NUM(doorbell_num)

4.2.6.8.2. Functions

void multicore_doorbell_claim (uint doorbell_num, uint core_mask)

Cooperatively claim the use of this hardware alarm_num.

int multicore_doorbell_claim_unused (uint core_mask, bool required)

Cooperatively claim the use of this hardware alarm_num.

void multicore_doorbell_unclaim (uint doorbell_num, uint core_mask)

Cooperatively release the claim on use of this hardware alarm_num.

static void multicore_doorbell_set_other_core (uint doorbell_num)

Activate the given doorbell on the other core.

static void multicore_doorbell_clear_other_core (uint doorbell_num)

Deactivate the given doorbell on the other core.

static void multicore_doorbell_set_current_core (uint doorbell_num)

Activate the given doorbell on this core.

static void multicore_doorbell_clear_current_core (uint doorbell_num)

Deactivate the given doorbell on this core.

static bool multicore_doorbell_is_set_current_core (uint doorbell_num)

Determine if the given doorbell is active on the other core.

static bool multicore_doorbell_is_set_other_core (uint doorbell_num)

Determine if the given doorbell is active on the this core.

4.2.6.8.3. Macro Definition Documentation

DOORBELL_IRQ_NUM

#define DOORBELL_IRQ_NUM(doorbell_num)

Returns the irq_num_t for processor interrupts for the given doorbell number.

Note this macro is intended to resolve at compile time, and does no parameter checking

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 350

4.2.6.8.4. Function Documentation

multicore_doorbell_claim

void multicore_doorbell_claim (uint doorbell_num, uint core_mask)

Cooperatively claim the use of this hardware alarm_num.

This method hard asserts if the hardware alarm is currently claimed.

Parameters

doorbell_num the doorbell number to claim

core_mask 0b01: core 0, 0b10: core 1, 0b11 both core 0 and core 1

See also

hardware_claiming

multicore_doorbell_claim_unused

int multicore_doorbell_claim_unused (uint core_mask, bool required)

Cooperatively claim the use of this hardware alarm_num.

This method attempts to claim an unused hardware alarm

Parameters

core_mask 0b01: core 0, 0b10: core 1, 0b11 both core 0 and core 1

required if true the function will panic if none are available

Returns

the doorbell number claimed or -1 if required was false, and none are available

See also

hardware_claiming

multicore_doorbell_clear_current_core

static void multicore_doorbell_clear_current_core (uint doorbell_num) [inline], [static]

Deactivate the given doorbell on this core.

Parameters

doorbell_num the doorbell number

multicore_doorbell_clear_other_core

static void multicore_doorbell_clear_other_core (uint doorbell_num) [inline], [static]

Deactivate the given doorbell on the other core.

Parameters

doorbell_num the doorbell number

multicore_doorbell_is_set_current_core

static bool multicore_doorbell_is_set_current_core (uint doorbell_num) [inline], [static]

Determine if the given doorbell is active on the other core.

Parameters

doorbell_num the doorbell number

multicore_doorbell_is_set_other_core

static bool multicore_doorbell_is_set_other_core (uint doorbell_num) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 351

Determine if the given doorbell is active on the this core.

Parameters

doorbell_num the doorbell number

multicore_doorbell_set_current_core

static void multicore_doorbell_set_current_core (uint doorbell_num) [inline], [static]

Activate the given doorbell on this core.

Parameters

doorbell_num the doorbell number

multicore_doorbell_set_other_core

static void multicore_doorbell_set_other_core (uint doorbell_num) [inline], [static]

Activate the given doorbell on the other core.

Parameters

doorbell_num the doorbell number

multicore_doorbell_unclaim

void multicore_doorbell_unclaim (uint doorbell_num, uint core_mask)

Cooperatively release the claim on use of this hardware alarm_num.

Parameters

doorbell_num the doorbell number to unclaim

core_mask 0b01: core 0, 0b10: core 1, 0b11 both core 0 and core 1

See also

hardware_claiming

4.2.6.9. lockout

Functions to enable one core to force the other core to pause execution in a known state.

4.2.6.9.1. Detailed Description

Sometimes it is useful to enter a critical section on both cores at once. On a single core system a critical section can

trivially be entered by disabling interrupts, however on a multi-core system that is not sufficient, and unless the other

core is polling in some way, then it will need to be interrupted in order to cooperatively enter a blocked state.

These "lockout" functions use the inter core FIFOs to cause an interrupt on one core from the other, and manage waiting

for the other core to enter the "locked out" state.

The usage is that the "victim" core … i.e the core that can be "locked out" by the other core calls

multicore_lockout_victim_init to hook the FIFO interrupt. Note that either or both cores may do this.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 352

 NOTE

When "locked out" the victim core is paused (it is actually executing a tight loop with code in RAM) and has

interrupts disabled. This makes the lockout functions suitable for use by code that wants to write to flash (at which

point no code may be executing from flash)

The core which wishes to lockout the other core calls multicore_lockout_start_blocking or

multicore_lockout_start_timeout_us to interrupt the other "victim" core and wait for it to be in a "locked out" state. Once

the lockout is no longer needed it calls multicore_lockout_end_blocking or multicore_lockout_end_timeout_us to release

the lockout and wait for confirmation.

 NOTE

Because multicore lockout uses the intercore FIFOs, the FIFOs cannot be used for any other purpose

4.2.6.9.2. Functions

void multicore_lockout_victim_init (void)

Initialize the current core such that it can be a "victim" of lockout (i.e. forced to pause in a known state by the other

core)

bool multicore_lockout_victim_is_initialized (uint core_num)

Determine if multicore_victim_init() has been called on the specified core.

void multicore_lockout_start_blocking (void)

Request the other core to pause in a known state and wait for it to do so.

bool multicore_lockout_start_timeout_us (uint64_t timeout_us)

Request the other core to pause in a known state and wait up to a time limit for it to do so.

void multicore_lockout_end_blocking (void)

Release the other core from a locked out state amd wait for it to acknowledge.

bool multicore_lockout_end_timeout_us (uint64_t timeout_us)

Release the other core from a locked out state amd wait up to a time limit for it to acknowledge.

4.2.6.9.3. Function Documentation

multicore_lockout_end_blocking

void multicore_lockout_end_blocking (void)

Release the other core from a locked out state amd wait for it to acknowledge.

 NOTE

The other core must previously have been "locked out" by calling a multicore_lockout_start_ function from this core

multicore_lockout_end_timeout_us

bool multicore_lockout_end_timeout_us (uint64_t timeout_us)

Release the other core from a locked out state amd wait up to a time limit for it to acknowledge.

The other core must previously have been "locked out" by calling a multicore_lockout_start_ function from this core

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 353

 NOTE

be very careful using small timeout values, as a timeout here will leave the "lockout" functionality in a bad state. It is

probably preferable to use multicore_lockout_end_blocking anyway as if you have already waited for the victim core

to enter the lockout state, then the victim core will be ready to exit the lockout state very quickly.

Parameters

timeout_us the timeout in microseconds

Returns

true if the other core successfully exited locked out state within the timeout, false otherwise

multicore_lockout_start_blocking

void multicore_lockout_start_blocking (void)

Request the other core to pause in a known state and wait for it to do so.

The other (victim) core must have previously executed multicore_lockout_victim_init()

 NOTE

multicore_lockout_start_ functions are not nestable, and must be paired with a call to a corresponding

multicore_lockout_end_blocking

multicore_lockout_start_timeout_us

bool multicore_lockout_start_timeout_us (uint64_t timeout_us)

Request the other core to pause in a known state and wait up to a time limit for it to do so.

The other core must have previously executed multicore_lockout_victim_init()

 NOTE

multicore_lockout_start_ functions are not nestable, and must be paired with a call to a corresponding

multicore_lockout_end_blocking

Parameters

timeout_us the timeout in microseconds

Returns

true if the other core entered the locked out state within the timeout, false otherwise

multicore_lockout_victim_init

void multicore_lockout_victim_init (void)

Initialize the current core such that it can be a "victim" of lockout (i.e. forced to pause in a known state by the other

core)

This code hooks the intercore FIFO IRQ, and the FIFO may not be used for any other purpose after this.

multicore_lockout_victim_is_initialized

bool multicore_lockout_victim_is_initialized (uint core_num)

Determine if multicore_victim_init() has been called on the specified core.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 354

 NOTE

this state persists even if the core is subsequently reset; therefore you are advised to always call

multicore_lockout_victim_init() again after resetting a core, which had previously been initialized.

Parameters

core_num the core number (0 or 1)

Returns

true if multicore_victim_init() has been called on the specified core, false otherwise.

4.2.7. pico_rand

Random Number Generator API.

4.2.7.1. Detailed Description

This module generates random numbers at runtime utilizing a number of possible entropy sources and uses those

sources to modify the state of a 128-bit 'Pseudo Random Number Generator' implemented in software.

The random numbers (32 to 128 bit) to be supplied are read from the PRNG which is used to help provide a large

number space.

The following (multiple) sources of entropy are available (of varying quality), each enabled by a #define:

• The Ring Oscillator (ROSC) (PICO_RAND_ENTROPY_SRC_ROSC == 1): PICO_RAND_ROSC_BIT_SAMPLE_COUNT

bits are gathered from the ring oscillator "random bit" and mixed in each time. This should not be used if the ROSC

is off, or the processor is running from the ROSC.

 NOTE

the maximum throughput of ROSC bit sampling is controlled by

PICO_RAND_MIN_ROSC_BIT_SAMPLE_TIME_US which defaults to 10us, i.e. 100,000 bits per second.

• Time (PICO_RAND_ENTROPY_SRC_TIME == 1): The 64-bit microsecond timer is mixed in each time.

• Bus Performance Counter (PICO_RAND_ENTROPY_SRC_BUS_PERF_COUNTER == 1): One of the bus fabric’s

performance counters is mixed in each time.

 NOTE

All entropy sources are hashed before application to the PRNG state machine.

The first time a random number is requested, the 128-bit PRNG state must be seeded. Multiple entropy sources are also

available for the seeding operation:

• The Ring Oscillator (ROSC) (PICO_RAND_SEED_ENTROPY_SRC_ROSC == 1): 64 bits are gathered from the ring

oscillator "random bit" and mixed into the seed.

• Time (PICO_RAND_SEED_ENTROPY_SRC_TIME == 1): The 64-bit microsecond timer is mixed into the seed.

• Board Identifier (PICO_RAND_SEED_ENTROPY_SRC_BOARD_ID == 1): The board id via pico_get_unique_board_id is

mixed into the seed.

• RAM hash (PICO_RAND_SEED_ENTROPY_SRC_RAM_HASH (PICO_RAND_SEED_ENTROPY_SRC_RAM_HASH): The

hashed contents of a subset of RAM are mixed in. Initial RAM contents are undefined on power up, so provide a

reasonable source of entropy. By default the last 1K of RAM (which usually contains the core 0 stack) is hashed,

which may also provide for differences after each warm reset.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 355

With default settings, the seed generation takes approximately 1 millisecond while subsequent random numbers

generally take between 10 and 20 microseconds to generate.

pico_rand methods may be safely called from either core or from an IRQ, but be careful in the latter case as the calls

may block for a number of microseconds waiting on more entropy.

4.2.7.2. Functions

void get_rand_128 (rng_128_t *rand128)

Get 128-bit random number.

uint64_t get_rand_64 (void)

Get 64-bit random number.

uint32_t get_rand_32 (void)

Get 32-bit random number.

4.2.7.3. Function Documentation

4.2.7.3.1. get_rand_128

void get_rand_128 (rng_128_t * rand128)

Get 128-bit random number.

This method may be safely called from either core or from an IRQ, but be careful in the latter case as the call may block

for a number of microseconds waiting on more entropy.

Parameters

rand128 Pointer to storage to accept a 128-bit random number

4.2.7.3.2. get_rand_32

uint32_t get_rand_32 (void)

Get 32-bit random number.

This method may be safely called from either core or from an IRQ, but be careful in the latter case as the call may block

for a number of microseconds waiting on more entropy.

Returns

32-bit random number

4.2.7.3.3. get_rand_64

uint64_t get_rand_64 (void)

Get 64-bit random number.

This method may be safely called from either core or from an IRQ, but be careful in the latter case as the call may block

for a number of microseconds waiting on more entropy.

Returns

64-bit random number

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 356

4.2.8. pico_sha256

SHA-256 Hardware Accelerated implementation.

4.2.8.1. Detailed Description

RP2350 is equipped with a hardware accelerated implementation of the SHA-256 hash algorithm. This should be much

quicker than performing a SHA-256 checksum in software.

 1 pico_sha256_state_t state;
 2 if (pico_sha256_try_start(&state, SHA256_BIG_ENDIAN, true) == PICO_OK) {
 3 sha256_result_t result;
 4 pico_sha256_update(&state, some_data, sizeof(some_data));
 5 pico_sha256_update(&state, some_more_data, sizeof(some_more_data));
 6 pico_sha256_finish(&state, &result);
 7 for (int i = 0; i < SHA256_RESULT_BYTES; i++) {
 8 printf("%02x", result.bytes[i]);
 9 }
10 }

4.2.8.1.1. Example

 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <inttypes.h>
 4 #include <stdlib.h>
 5
 6 #include "pico/stdlib.h"
 7 #include "pico/sha256.h"
 8
 9 // This was generated by cmake from sample.txt.inc
10 #include "sample.txt.inc"
11
12 static void sha_example() {
13 printf("Text: %d bytes\n", sizeof(sample_txt) - 1);
14 for(int i = 0; i < sizeof(sample_txt) - 1; i++) {
15 if (i > 0 && i % 128 == 0) printf("\n");
16 putchar(sample_txt[i]);
17 }
18 printf("\n");
19
20 // Allocate a state object and start the calculation
21 pico_sha256_state_t state;
22 int rc = pico_sha256_start_blocking(&state, SHA256_BIG_ENDIAN, true); // using some DMA
 system resources
23 hard_assert(rc == PICO_OK);
24 pico_sha256_update_blocking(&state, (const uint8_t*)sample_txt, sizeof(sample_txt) - 1);
25
26 // Get the result of the sha256 calculation
27 sha256_result_t result;
28 pico_sha256_finish(&state, &result);
29
30 // print resulting sha256 result
31 printf("Result:\n");
32 for(int i = 0; i < SHA256_RESULT_BYTES; i++) {
33 printf("%02x ", result.bytes[i]);

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 357

34 if ((i+1) % 16 == 0) printf("\n");
35 }
36
37 // check it's what we expect from "sha256sum sample.txt"
38 const uint8_t sha_expected[SHA256_RESULT_BYTES] = {
39 0x2d, 0x8c, 0x2f, 0x6d, 0x97, 0x8c, 0xa2, 0x17, 0x12, 0xb5, 0xf6, 0xde, 0x36, 0xc9,
 0xd3, 0x1f,
40 0xa8, 0xe9, 0x6a, 0x4f, 0xa5, 0xd8, 0xff, 0x8b, 0x01, 0x88, 0xdf, 0xb9, 0xe7, 0xc1,
 0x71, 0xbb
41 };
42 hard_assert(memcmp(sha_expected, &result, SHA256_RESULT_BYTES) == 0);
43 }
44
45
46 #define BUFFER_SIZE 10000
47
48 // A performance test with a large amount of data
49 static void nist_test(bool use_dma) {
50 // nist 3
51 uint8_t *buffer = malloc(BUFFER_SIZE);
52 memset(buffer, 0x61, BUFFER_SIZE);
53 const uint8_t nist_3_expected[] = { \
54 0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7, 0xe2, 0x84, 0xd7,
 0x3e, 0x67,
55 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97, 0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11,
 0x2c, 0xd0 };
56
57 uint64_t start = time_us_64();
58 pico_sha256_state_t state;
59 int rc = pico_sha256_start_blocking(&state, SHA256_BIG_ENDIAN, use_dma); // call start
 once
60 hard_assert(rc == PICO_OK);
61 for(int i = 0; i < 1000000; i += BUFFER_SIZE) {
62 pico_sha256_update_blocking(&state, buffer, BUFFER_SIZE); // call update as many
 times as required
63 }
64 sha256_result_t result;
65 pico_sha256_finish(&state, &result); // Call finish when done to get the result
66
67 // Display the time taken
68 uint64_t pico_time = time_us_64() - start;
69 printf("Time for sha256 of 1M bytes %s DMA %"PRIu64"ms\n", use_dma ? "with" : "without",
 pico_time / 1000);
70 hard_assert(memcmp(nist_3_expected, result.bytes, SHA256_RESULT_BYTES) == 0);
71 }
72
73 int main() {
74 stdio_init_all();
75
76 sha_example();
77
78 // performance test with and without DMA
79 nist_test(false);
80 nist_test(true);
81
82 printf("Success\n");
83 }

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 358

4.2.8.2. Typedefs

typedef struct pico_sha256_state pico_sha256_state_t

SHA-256 state used by the API.

4.2.8.3. Functions

int pico_sha256_try_start (pico_sha256_state_t *state, enum sha256_endianness endianness, bool use_dma)

Start a SHA-256 calculation returning immediately with an error if the SHA-256 hardware is not available.

int pico_sha256_start_blocking_until (pico_sha256_state_t *state, enum sha256_endianness endianness, bool use_dma,

absolute_time_t until)

Start a SHA-256 calculation waiting for a defined period for the SHA-256 hardware to be available.

static int pico_sha256_start_blocking (pico_sha256_state_t *state, enum sha256_endianness endianness, bool use_dma)

Start a SHA-256 calculation, blocking forever waiting until the SHA-256 hardware is available.

void pico_sha256_update (pico_sha256_state_t *state, const uint8_t *data, size_t data_size_bytes)

Add byte data to be SHA-256 calculation.

void pico_sha256_update_blocking (pico_sha256_state_t *state, const uint8_t *data, size_t data_size_bytes)

Add byte data to be SHA-256 calculation.

void pico_sha256_finish (pico_sha256_state_t *state, sha256_result_t *out)

Finish the SHA-256 calculation and return the result.

4.2.8.4. Typedef Documentation

4.2.8.4.1. pico_sha256_state_t

typedef struct pico_sha256_state pico_sha256_state_t

SHA-256 state used by the API.

4.2.8.5. Function Documentation

4.2.8.5.1. pico_sha256_finish

void pico_sha256_finish (pico_sha256_state_t * state, sha256_result_t * out)

Finish the SHA-256 calculation and return the result.

Ends the SHA-256 calculation freeing the hardware for use by another caller. You must have called

pico_sha256_try_start already.

Parameters

state A pointer to a pico_sha256_state_t instance

out The SHA-256 checksum

4.2.8.5.2. pico_sha256_start_blocking

static int pico_sha256_start_blocking (pico_sha256_state_t * state, enum sha256_endianness endianness, bool use_dma)

[inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 359

Start a SHA-256 calculation, blocking forever waiting until the SHA-256 hardware is available.

Initialises the hardware and state ready to start a new SHA-256 calculation. Only one instance can be started at any

time.

Parameters

state A pointer to a pico_sha256_state_t instance

endianness SHA256_BIG_ENDIAN or SHA256_LITTLE_ENDIAN for data in and data out

use_dma Set to true to use DMA internally to copy data to hardware. This is quicker at the expense of

hardware DMA resources.

Returns

Returns PICO_OK if the hardware was available for use and the sha256 calculation could be started, otherwise an error

is returned

4.2.8.5.3. pico_sha256_start_blocking_until

int pico_sha256_start_blocking_until (pico_sha256_state_t * state, enum sha256_endianness endianness, bool use_dma,

absolute_time_t until)

Start a SHA-256 calculation waiting for a defined period for the SHA-256 hardware to be available.

Initialises the hardware and state ready to start a new SHA-256 calculation. Only one instance can be started at any

time.

Parameters

state A pointer to a pico_sha256_state_t instance

endianness SHA256_BIG_ENDIAN or SHA256_LITTLE_ENDIAN for data in and data out

use_dma Set to true to use DMA internally to copy data to hardware. This is quicker at the expense of

hardware DMA resources.

until How long to wait for the SHA hardware to be available

Returns

Returns PICO_OK if the hardware was available for use and the sha256 calculation could be started in time, otherwise

an error is returned

4.2.8.5.4. pico_sha256_try_start

int pico_sha256_try_start (pico_sha256_state_t * state, enum sha256_endianness endianness, bool use_dma)

Start a SHA-256 calculation returning immediately with an error if the SHA-256 hardware is not available.

Initialises the hardware and state ready to start a new SHA-256 calculation. Only one instance can be started at any

time.

Parameters

state A pointer to a pico_sha256_state_t instance

endianness SHA256_BIG_ENDIAN or SHA256_LITTLE_ENDIAN for data in and data out

use_dma Set to true to use DMA internally to copy data to hardware. This is quicker at the expense of

hardware DMA resources.

Returns

Returns PICO_OK if the hardware was available for use and the sha256 calculation could be started, otherwise an error

is returned

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 360

4.2.8.5.5. pico_sha256_update

void pico_sha256_update (pico_sha256_state_t * state, const uint8_t * data, size_t data_size_bytes)

Add byte data to be SHA-256 calculation.

Add byte data to be SHA-256 calculation You may call this as many times as required to add all the data needed. You

must have called pico_sha256_try_start (or equivalent) already.

Parameters

state A pointer to a pico_sha256_state_t instance

data Pointer to the data to be added to the calculation

data_size_bytes Amount of data to add

 NOTE

This function may return before the copy has completed in which case the data passed to the function must remain

valid and unchanged until a further call to pico_sha256_update or pico_sha256_finish. If this is not done, corrupt

data may be used for the SHA-256 calculation giving an unexpected result.

4.2.8.5.6. pico_sha256_update_blocking

void pico_sha256_update_blocking (pico_sha256_state_t * state, const uint8_t * data, size_t data_size_bytes)

Add byte data to be SHA-256 calculation.

Add byte data to be SHA-256 calculation You may call this as many times as required to add all the data needed. You

must have called pico_sha256_try_start already.

Parameters

state A pointer to a pico_sha256_state_t instance

data Pointer to the data to be added to the calculation

data_size_bytes Amount of data to add

 NOTE

This function will only return when the data passed in is no longer required, so it can be freed or changed on return.

4.2.9. pico_stdlib

Aggregation of a core subset of Raspberry Pi Pico SDK libraries used by most executables along with some additional

utility methods.

4.2.9.1. Detailed Description

Including pico_stdlib gives you everything you need to get a basic program running which prints to stdout or flashes a

LED

This library aggregates:

• hardware_divider

• hardware_gpio

• hardware_uart

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 361

• pico_runtime

• pico_platform

• pico_stdio

• pico_time

• pico_util

There are some basic default values used by these functions that will default to usable values, however, they can be

customised in a board definition header via config.h or similar

4.2.9.2. Functions

void setup_default_uart (void)

Set up the default UART and assign it to the default GPIOs.

void set_sys_clock_48mhz (void)

Initialise the system clock to 48MHz.

void set_sys_clock_pll (uint32_t vco_freq, uint post_div1, uint post_div2)

Initialise the system clock.

bool check_sys_clock_hz (uint32_t freq_hz, uint *vco_freq_out, uint *post_div1_out, uint *post_div2_out)

Check if a given system clock frequency is valid/attainable.

bool check_sys_clock_khz (uint32_t freq_khz, uint *vco_freq_out, uint *post_div1_out, uint *post_div2_out)

Check if a given system clock frequency is valid/attainable.

static bool set_sys_clock_hz (uint32_t freq_hz, bool required)

Attempt to set a system clock frequency in hz.

static bool set_sys_clock_khz (uint32_t freq_khz, bool required)

Attempt to set a system clock frequency in khz.

4.2.9.3. Function Documentation

4.2.9.3.1. check_sys_clock_hz

bool check_sys_clock_hz (uint32_t freq_hz, uint * vco_freq_out, uint * post_div1_out, uint * post_div2_out)

Check if a given system clock frequency is valid/attainable.

Parameters

freq_hz Requested frequency

vco_freq_out On success, the voltage controlled oscillator frequency to be used by the SYS PLL

post_div1_out On success, The first post divider for the SYS PLL

post_div2_out On success, The second post divider for the SYS PLL.

Returns

true if the frequency is possible and the output parameters have been written.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 362

4.2.9.3.2. check_sys_clock_khz

bool check_sys_clock_khz (uint32_t freq_khz, uint * vco_freq_out, uint * post_div1_out, uint * post_div2_out)

Check if a given system clock frequency is valid/attainable.

Parameters

freq_khz Requested frequency

vco_freq_out On success, the voltage controlled oscillator frequency to be used by the SYS PLL

post_div1_out On success, The first post divider for the SYS PLL

post_div2_out On success, The second post divider for the SYS PLL.

Returns

true if the frequency is possible and the output parameters have been written.

4.2.9.3.3. set_sys_clock_48mhz

void set_sys_clock_48mhz (void)

Initialise the system clock to 48MHz.

Set the system clock to 48MHz, and set the peripheral clock to match.

4.2.9.3.4. set_sys_clock_hz

static bool set_sys_clock_hz (uint32_t freq_hz, bool required) [inline], [static]

Attempt to set a system clock frequency in hz.

Note that not all clock frequencies are possible; it is preferred that you use

src/rp2_common/hardware_clocks/scripts/vcocalc.py to calculate the parameters for use with set_sys_clock_pll

Parameters

freq_hz Requested frequency

required if true then this function will assert if the frequency is not attainable.

Returns

true if the clock was configured

4.2.9.3.5. set_sys_clock_khz

static bool set_sys_clock_khz (uint32_t freq_khz, bool required) [inline], [static]

Attempt to set a system clock frequency in khz.

Note that not all clock frequencies are possible; it is preferred that you use

src/rp2_common/hardware_clocks/scripts/vcocalc.py to calculate the parameters for use with set_sys_clock_pll

Parameters

freq_khz Requested frequency

required if true then this function will assert if the frequency is not attainable.

Returns

true if the clock was configured

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 363

4.2.9.3.6. set_sys_clock_pll

void set_sys_clock_pll (uint32_t vco_freq, uint post_div1, uint post_div2)

Initialise the system clock.

Parameters

vco_freq The voltage controller oscillator frequency to be used by the SYS PLL

post_div1 The first post divider for the SYS PLL

post_div2 The second post divider for the SYS PLL.

See the PLL documentation in the datasheet for details of driving the PLLs.

4.2.9.3.7. setup_default_uart

void setup_default_uart (void)

Set up the default UART and assign it to the default GPIOs.

By default this will use UART 0, with TX to pin GPIO 0, RX to pin GPIO 1, and the baudrate to 115200

Calling this method also initializes stdin/stdout over UART if the pico_stdio_uart library is linked.

Defaults can be changed using configuration defines, PICO_DEFAULT_UART_INSTANCE,

PICO_DEFAULT_UART_BAUD_RATE PICO_DEFAULT_UART_TX_PIN PICO_DEFAULT_UART_RX_PIN

4.2.10. pico_sync

Synchronization primitives and mutual exclusion.

4.2.10.1. Modules

critical_section

Critical Section API for short-lived mutual exclusion safe for IRQ and multi-core.

lock_core

base synchronization/lock primitive support.

mutex

Mutex API for non IRQ mutual exclusion between cores.

sem

Semaphore API for restricting access to a resource.

4.2.10.2. critical_section

Critical Section API for short-lived mutual exclusion safe for IRQ and multi-core.

4.2.10.2.1. Detailed Description

A critical section is non-reentrant, and provides mutual exclusion using a spin-lock to prevent access from the other

core, and from (higher priority) interrupts on the same core. It does the former using a spin lock and the latter by

disabling interrupts on the calling core.

Because interrupts are disabled when a critical_section is owned, uses of the critical_section should be as short as

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 364

possible.

4.2.10.2.2. Functions

void critical_section_init (critical_section_t *crit_sec)

Initialise a critical_section structure allowing the system to assign a spin lock number.

void critical_section_init_with_lock_num (critical_section_t *crit_sec, uint lock_num)

Initialise a critical_section structure assigning a specific spin lock number.

static void critical_section_enter_blocking (critical_section_t *crit_sec)

Enter a critical_section.

static void critical_section_exit (critical_section_t *crit_sec)

Release a critical_section.

void critical_section_deinit (critical_section_t *crit_sec)

De-Initialise a critical_section created by the critical_section_init method.

4.2.10.2.3. Function Documentation

critical_section_deinit

void critical_section_deinit (critical_section_t * crit_sec)

De-Initialise a critical_section created by the critical_section_init method.

This method is only used to free the associated spin lock allocated via the critical_section_init method (it should not be

used to de-initialize a spin lock created via critical_section_init_with_lock_num). After this call, the critical section is

invalid

Parameters

crit_sec Pointer to critical_section structure

critical_section_enter_blocking

static void critical_section_enter_blocking (critical_section_t * crit_sec) [inline], [static]

Enter a critical_section.

If the spin lock associated with this critical section is in use, then this method will block until it is released.

Parameters

crit_sec Pointer to critical_section structure

critical_section_exit

static void critical_section_exit (critical_section_t * crit_sec) [inline], [static]

Release a critical_section.

Parameters

crit_sec Pointer to critical_section structure

critical_section_init

void critical_section_init (critical_section_t * crit_sec)

Initialise a critical_section structure allowing the system to assign a spin lock number.

The critical section is initialized ready for use, and will use a (possibly shared) spin lock number assigned by the

system. Note that in general it is unlikely that you would be nesting critical sections, however if you do so you must use

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 365

critical_section_init_with_lock_num to ensure that the spin locks used are different.

Parameters

crit_sec Pointer to critical_section structure

critical_section_init_with_lock_num

void critical_section_init_with_lock_num (critical_section_t * crit_sec, uint lock_num)

Initialise a critical_section structure assigning a specific spin lock number.

Parameters

crit_sec Pointer to critical_section structure

lock_num the specific spin lock number to use

4.2.10.3. lock_core

base synchronization/lock primitive support.

4.2.10.3.1. Detailed Description

Most of the pico_sync locking primitives contain a lock_core_t structure member. This currently just holds a spin lock

which is used only to protect the contents of the rest of the structure as part of implementing the synchronization

primitive. As such, the spin_lock member of lock core is never still held on return from any function for the primitive.

critical_section is an exceptional case in that it does not have a lock_core_t and simply wraps a spin lock, providing

methods to lock and unlock said spin lock.

lock_core based structures work by locking the spin lock, checking state, and then deciding whether they additionally

need to block or notify when the spin lock is released. In the blocking case, they will wake up again in the future, and try

the process again.

By default the SDK just uses the processors' events via SEV and WEV for notification and blocking as these are

sufficient for cross core, and notification from interrupt handlers. However macros are defined in this file that abstract

the wait and notify mechanisms to allow the SDK locking functions to effectively be used within an RTOS or other

environment.

When implementing an RTOS, it is desirable for the SDK synchronization primitives that wait, to block the calling task

(and immediately yield), and those that notify, to wake a blocked task which isn’t on processor. At least the wait macro

implementation needs to be atomic with the protecting spin_lock unlock from the callers point of view; i.e. the task

should unlock the spin lock when it starts its wait. Such implementation is up to the RTOS integration, however the

macros are defined such that such operations are always combined into a single call (so they can be performed

atomically) even though the default implementation does not need this, as a WFE which starts following the

corresponding SEV is not missed.

4.2.10.3.2. Macros

• #define lock_owner_id_t int8_t

• #define LOCK_INVALID_OWNER_ID ((lock_owner_id_t)-1)

• #define lock_get_caller_owner_id() ((lock_owner_id_t)get_core_num())

• #define lock_internal_spin_unlock_with_wait(lock, save) spin_unlock((lock)->spin_lock, save), __wfe()

• #define lock_internal_spin_unlock_with_notify(lock, save) spin_unlock((lock)->spin_lock, save), __sev()

• #define lock_internal_spin_unlock_with_best_effort_wait_or_timeout(lock, save, until)

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 366

• #define sync_internal_yield_until_before(until) ((void)0)

4.2.10.3.3. Functions

void lock_init (lock_core_t *core, uint lock_num)

Initialise a lock structure.

4.2.10.3.4. Macro Definition Documentation

lock_owner_id_t

#define lock_owner_id_t int8_t

type to use to store the 'owner' of a lock.

By default this is int8_t as it only needs to store the core number or -1, however it may be overridden if a larger type is

required (e.g. for an RTOS task id)

LOCK_INVALID_OWNER_ID

#define LOCK_INVALID_OWNER_ID ((lock_owner_id_t)-1)

marker value to use for a lock_owner_id_t which does not refer to any valid owner

lock_get_caller_owner_id

#define lock_get_caller_owner_id() ((lock_owner_id_t)get_core_num())

return the owner id for the caller

By default this returns the calling core number, but may be overridden (e.g. to return an RTOS task id)

lock_internal_spin_unlock_with_wait

#define lock_internal_spin_unlock_with_wait(lock, save) spin_unlock((lock)->spin_lock, save), __wfe()

Atomically unlock the lock’s spin lock, and wait for a notification.

Atomic here refers to the fact that it should not be possible for a concurrent lock_internal_spin_unlock_with_notify to

insert itself between the spin unlock and this wait in a way that the wait does not see the notification (i.e. causing a

missed notification). In other words this method should always wake up in response to a

lock_internal_spin_unlock_with_notify for the same lock, which completes after this call starts.

In an ideal implementation, this method would return exactly after the corresponding

lock_internal_spin_unlock_with_notify has subsequently been called on the same lock instance, however this method is

free to return at any point before that; this macro is always used in a loop which locks the spin lock, checks the internal

locking primitive state and then waits again if the calling thread should not proceed.

By default this macro simply unlocks the spin lock, and then performs a WFE, but may be overridden (e.g. to actually

block the RTOS task).

Parameters

lock the lock_core for the primitive which needs to block

save the uint32_t value that should be passed to spin_unlock when the spin lock is unlocked. (i.e. the PRIMASK

state when the spin lock was acquire

lock_internal_spin_unlock_with_notify

#define lock_internal_spin_unlock_with_notify(lock, save) spin_unlock((lock)->spin_lock, save), __sev()

Atomically unlock the lock’s spin lock, and send a notification.

Atomic here refers to the fact that it should not be possible for this notification to happen during a

lock_internal_spin_unlock_with_wait in a way that that wait does not see the notification (i.e. causing a missed

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 367

notification). In other words this method should always wake up any lock_internal_spin_unlock_with_wait which started

before this call completes.

In an ideal implementation, this method would wake up only the corresponding lock_internal_spin_unlock_with_wait that

has been called on the same lock instance, however it is free to wake up any of them, as they will check their condition

and then re-wait if necessary/

By default this macro simply unlocks the spin lock, and then performs a SEV, but may be overridden (e.g. to actually un-

block RTOS task(s)).

Parameters

lock the lock_core for the primitive which needs to block

save the uint32_t value that should be passed to spin_unlock when the spin lock is unlocked. (i.e. the

PRIMASK state when the spin lock was acquire)

lock_internal_spin_unlock_with_best_effort_wait_or_timeout

#define lock_internal_spin_unlock_with_best_effort_wait_or_timeout(lock, save, until) ({ \
 spin_unlock((lock)->spin_lock, save); \
 best_effort_wfe_or_timeout(until); \
})

Atomically unlock the lock’s spin lock, and wait for a notification or a timeout.

Atomic here refers to the fact that it should not be possible for a concurrent lock_internal_spin_unlock_with_notify to

insert itself between the spin unlock and this wait in a way that the wait does not see the notification (i.e. causing a

missed notification). In other words this method should always wake up in response to a

lock_internal_spin_unlock_with_notify for the same lock, which completes after this call starts.

In an ideal implementation, this method would return exactly after the corresponding

lock_internal_spin_unlock_with_notify has subsequently been called on the same lock instance or the timeout has been

reached, however this method is free to return at any point before that; this macro is always used in a loop which locks

the spin lock, checks the internal locking primitive state and then waits again if the calling thread should not proceed.

By default this simply unlocks the spin lock, and then calls best_effort_wfe_or_timeout but may be overridden (e.g. to

actually block the RTOS task with a timeout).

Parameters

lock the lock_core for the primitive which needs to block

save the uint32_t value that should be passed to spin_unlock when the spin lock is unlocked. (i.e. the

PRIMASK state when the spin lock was acquire)

until the absolute_time_t value

Returns

true if the timeout has been reached

sync_internal_yield_until_before

#define sync_internal_yield_until_before(until) ((void)0)

yield to other processing until some time before the requested time

This method is provided for cases where the caller has no useful work to do until the specified time.

By default this method does nothing, however it can be overridden (for example by an RTOS which is able to block the

current task until the scheduler tick before the given time)

Parameters

until the absolute_time_t value

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 368

4.2.10.3.5. Function Documentation

lock_init

void lock_init (lock_core_t * core, uint lock_num)

Initialise a lock structure.

Inititalize a lock structure, providing the spin lock number to use for protecting internal state.

Parameters

core Pointer to the lock_core to initialize

lock_num Spin lock number to use for the lock. As the spin lock is only used internally to the locking primitive

method implementations, this does not need to be globally unique, however could suffer contention

4.2.10.4. mutex

Mutex API for non IRQ mutual exclusion between cores.

4.2.10.4.1. Detailed Description

Mutexes are application level locks usually used protecting data structures that might be used by multiple threads of

execution. Unlike critical sections, the mutex protected code is not necessarily required/expected to complete quickly,

as no other system wide locks are held on account of an acquired mutex.

When acquired, the mutex has an owner (see lock_get_caller_owner_id) which with the plain SDK is just the acquiring

core, but in an RTOS it could be a task, or an IRQ handler context.

Two variants of mutex are provided; mutex_t (and associated mutex_ functions) is a regular mutex that cannot be

acquired recursively by the same owner (a deadlock will occur if you try). recursive_mutex_t (and associated

recursive_mutex_ functions) is a recursive mutex that can be recursively obtained by the same caller, at the expense of

some more overhead when acquiring and releasing.

It is generally a bad idea to call blocking mutex_ or recursive_mutex_ functions from within an IRQ handler. It is valid to

call mutex_try_enter or recursive_mutex_try_enter from within an IRQ handler, if the operation that would be conducted

under lock can be skipped if the mutex is locked (at least by the same owner).

 NOTE

For backwards compatibility with version 1.2.0 of the SDK, if the define

PICO_MUTEX_ENABLE_SDK120_COMPATIBILITY is set to 1, then the the regular mutex_ functions may also be used

for recursive mutexes. This flag will be removed in a future version of the SDK.

See critical_section.h for protecting access between multiple cores AND IRQ handlers

4.2.10.4.2. Macros

• #define auto_init_mutex(name) static __attribute__((section(".mutex_array"))) mutex_t name

• #define auto_init_recursive_mutex(name) static __attribute__((section(".mutex_array"))) recursive_mutex_t name = {

.core = { .spin_lock = (spin_lock_t *)1 /* marker for runtime_init */ }, .owner = 0, .enter_count = 0 }

4.2.10.4.3. Typedefs

typedef struct mutex mutex_t

regular (non recursive) mutex instance

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 369

4.2.10.4.4. Functions

static bool critical_section_is_initialized (critical_section_t *crit_sec)

Test whether a critical_section has been initialized.

void mutex_init (mutex_t *mtx)

Initialise a mutex structure.

void recursive_mutex_init (recursive_mutex_t *mtx)

Initialise a recursive mutex structure.

void mutex_enter_blocking (mutex_t *mtx)

Take ownership of a mutex.

void recursive_mutex_enter_blocking (recursive_mutex_t *mtx)

Take ownership of a recursive mutex.

bool mutex_try_enter (mutex_t *mtx, uint32_t *owner_out)

Attempt to take ownership of a mutex.

bool mutex_try_enter_block_until (mutex_t *mtx, absolute_time_t until)

Attempt to take ownership of a mutex until the specified time.

bool recursive_mutex_try_enter (recursive_mutex_t *mtx, uint32_t *owner_out)

Attempt to take ownership of a recursive mutex.

bool mutex_enter_timeout_ms (mutex_t *mtx, uint32_t timeout_ms)

Wait for mutex with timeout.

bool recursive_mutex_enter_timeout_ms (recursive_mutex_t *mtx, uint32_t timeout_ms)

Wait for recursive mutex with timeout.

bool mutex_enter_timeout_us (mutex_t *mtx, uint32_t timeout_us)

Wait for mutex with timeout.

bool recursive_mutex_enter_timeout_us (recursive_mutex_t *mtx, uint32_t timeout_us)

Wait for recursive mutex with timeout.

bool mutex_enter_block_until (mutex_t *mtx, absolute_time_t until)

Wait for mutex until a specific time.

bool recursive_mutex_enter_block_until (recursive_mutex_t *mtx, absolute_time_t until)

Wait for mutex until a specific time.

void mutex_exit (mutex_t *mtx)

Release ownership of a mutex.

void recursive_mutex_exit (recursive_mutex_t *mtx)

Release ownership of a recursive mutex.

static bool mutex_is_initialized (mutex_t *mtx)

Test for mutex initialized state.

static bool recursive_mutex_is_initialized (recursive_mutex_t *mtx)

Test for recursive mutex initialized state.

4.2.10.4.5. Macro Definition Documentation

auto_init_mutex

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 370

#define auto_init_mutex(name) static __attribute__((section(".mutex_array"))) mutex_t name

Helper macro for static definition of mutexes.

A mutex defined as follows:

1 auto_init_mutex(my_mutex);

Is equivalent to doing

1 static mutex_t my_mutex;
2
3 void my_init_function() {
4 mutex_init(&my_mutex);
5 }

But the initialization of the mutex is performed automatically during runtime initialization

auto_init_recursive_mutex

#define auto_init_recursive_mutex(name) static __attribute__((section(".mutex_array"))) recursive_mutex_t name = { .core

= { .spin_lock = (spin_lock_t *)1 /* marker for runtime_init */ }, .owner = 0, .enter_count = 0 }

Helper macro for static definition of recursive mutexes.

A recursive mutex defined as follows:

1 auto_init_recursive_mutex(my_recursive_mutex);

Is equivalent to doing

1 static recursive_mutex_t my_recursive_mutex;
2
3 void my_init_function() {
4 recursive_mutex_init(&my_recursive_mutex);
5 }

But the initialization of the mutex is performed automatically during runtime initialization

4.2.10.4.6. Typedef Documentation

mutex_t

typedef struct mutex mutex_t

regular (non recursive) mutex instance

4.2.10.4.7. Function Documentation

critical_section_is_initialized

static bool critical_section_is_initialized (critical_section_t * crit_sec) [inline], [static]

Test whether a critical_section has been initialized.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 371

Parameters

crit_sec Pointer to critical_section structure

Returns

true if the critical section is initialized, false otherwise

mutex_enter_block_until

bool mutex_enter_block_until (mutex_t * mtx, absolute_time_t until)

Wait for mutex until a specific time.

Wait until the specific time to take ownership of the mutex. If the caller can be granted ownership of the mutex before

the timeout expires, then true will be returned and the caller will own the mutex, otherwise false will be returned and the

caller will NOT own the mutex.

Parameters

mtx Pointer to mutex structure

until The time after which to return if the caller cannot be granted ownership of the mutex

Returns

true if mutex now owned, false if timeout occurred before ownership could be granted

mutex_enter_blocking

void mutex_enter_blocking (mutex_t * mtx)

Take ownership of a mutex.

This function will block until the caller can be granted ownership of the mutex. On return the caller owns the mutex

Parameters

mtx Pointer to mutex structure

mutex_enter_timeout_ms

bool mutex_enter_timeout_ms (mutex_t * mtx, uint32_t timeout_ms)

Wait for mutex with timeout.

Wait for up to the specific time to take ownership of the mutex. If the caller can be granted ownership of the mutex

before the timeout expires, then true will be returned and the caller will own the mutex, otherwise false will be returned

and the caller will NOT own the mutex.

Parameters

mtx Pointer to mutex structure

timeout_ms The timeout in milliseconds.

Returns

true if mutex now owned, false if timeout occurred before ownership could be granted

mutex_enter_timeout_us

bool mutex_enter_timeout_us (mutex_t * mtx, uint32_t timeout_us)

Wait for mutex with timeout.

Wait for up to the specific time to take ownership of the mutex. If the caller can be granted ownership of the mutex

before the timeout expires, then true will be returned and the caller will own the mutex, otherwise false will be returned

and the caller will NOT own the mutex.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 372

mtx Pointer to mutex structure

timeout_us The timeout in microseconds.

Returns

true if mutex now owned, false if timeout occurred before ownership could be granted

mutex_exit

void mutex_exit (mutex_t * mtx)

Release ownership of a mutex.

Parameters

mtx Pointer to mutex structure

mutex_init

void mutex_init (mutex_t * mtx)

Initialise a mutex structure.

Parameters

mtx Pointer to mutex structure

mutex_is_initialized

static bool mutex_is_initialized (mutex_t * mtx) [inline], [static]

Test for mutex initialized state.

Parameters

mtx Pointer to mutex structure

Returns

true if the mutex is initialized, false otherwise

mutex_try_enter

bool mutex_try_enter (mutex_t * mtx, uint32_t * owner_out)

Attempt to take ownership of a mutex.

If the mutex wasn’t owned, this will claim the mutex for the caller and return true. Otherwise (if the mutex was already

owned) this will return false and the caller will NOT own the mutex.

Parameters

mtx Pointer to mutex structure

owner_out If mutex was already owned, and this pointer is non-zero, it will be filled in with the owner id of the

current owner of the mutex

Returns

true if mutex now owned, false otherwise

mutex_try_enter_block_until

bool mutex_try_enter_block_until (mutex_t * mtx, absolute_time_t until)

Attempt to take ownership of a mutex until the specified time.

If the mutex wasn’t owned, this method will immediately claim the mutex for the caller and return true. If the mutex is

owned by the caller, this method will immediately return false, If the mutex is owned by someone else, this method will

try to claim it until the specified time, returning true if it succeeds, or false on timeout

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 373

mtx Pointer to mutex structure

until The time after which to return if the caller cannot be granted ownership of the mutex

Returns

true if mutex now owned, false otherwise

recursive_mutex_enter_block_until

bool recursive_mutex_enter_block_until (recursive_mutex_t * mtx, absolute_time_t until)

Wait for mutex until a specific time.

Wait until the specific time to take ownership of the mutex. If the caller already has ownership of the mutex or can be

granted ownership of the mutex before the timeout expires, then true will be returned and the caller will own the mutex,

otherwise false will be returned and the caller will NOT own the mutex.

Parameters

mtx Pointer to recursive mutex structure

until The time after which to return if the caller cannot be granted ownership of the mutex

Returns

true if the recursive mutex (now) owned, false if timeout occurred before ownership could be granted

recursive_mutex_enter_blocking

void recursive_mutex_enter_blocking (recursive_mutex_t * mtx)

Take ownership of a recursive mutex.

This function will block until the caller can be granted ownership of the mutex. On return the caller owns the mutex

Parameters

mtx Pointer to recursive mutex structure

recursive_mutex_enter_timeout_ms

bool recursive_mutex_enter_timeout_ms (recursive_mutex_t * mtx, uint32_t timeout_ms)

Wait for recursive mutex with timeout.

Wait for up to the specific time to take ownership of the recursive mutex. If the caller already has ownership of the

mutex or can be granted ownership of the mutex before the timeout expires, then true will be returned and the caller will

own the mutex, otherwise false will be returned and the caller will NOT own the mutex.

Parameters

mtx Pointer to recursive mutex structure

timeout_ms The timeout in milliseconds.

Returns

true if the recursive mutex (now) owned, false if timeout occurred before ownership could be granted

recursive_mutex_enter_timeout_us

bool recursive_mutex_enter_timeout_us (recursive_mutex_t * mtx, uint32_t timeout_us)

Wait for recursive mutex with timeout.

Wait for up to the specific time to take ownership of the recursive mutex. If the caller already has ownership of the

mutex or can be granted ownership of the mutex before the timeout expires, then true will be returned and the caller will

own the mutex, otherwise false will be returned and the caller will NOT own the mutex.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 374

mtx Pointer to mutex structure

timeout_us The timeout in microseconds.

Returns

true if the recursive mutex (now) owned, false if timeout occurred before ownership could be granted

recursive_mutex_exit

void recursive_mutex_exit (recursive_mutex_t * mtx)

Release ownership of a recursive mutex.

Parameters

mtx Pointer to recursive mutex structure

recursive_mutex_init

void recursive_mutex_init (recursive_mutex_t * mtx)

Initialise a recursive mutex structure.

A recursive mutex may be entered in a nested fashion by the same owner

Parameters

mtx Pointer to recursive mutex structure

recursive_mutex_is_initialized

static bool recursive_mutex_is_initialized (recursive_mutex_t * mtx) [inline], [static]

Test for recursive mutex initialized state.

Parameters

mtx Pointer to recursive mutex structure

Returns

true if the recursive mutex is initialized, false otherwise

recursive_mutex_try_enter

bool recursive_mutex_try_enter (recursive_mutex_t * mtx, uint32_t * owner_out)

Attempt to take ownership of a recursive mutex.

If the mutex wasn’t owned or was owned by the caller, this will claim the mutex and return true. Otherwise (if the mutex

was already owned by another owner) this will return false and the caller will NOT own the mutex.

Parameters

mtx Pointer to recursive mutex structure

owner_out If mutex was already owned by another owner, and this pointer is non-zero, it will be filled in with the

owner id of the current owner of the mutex

Returns

true if the recursive mutex (now) owned, false otherwise

4.2.10.5. sem

Semaphore API for restricting access to a resource.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 375

4.2.10.5.1. Detailed Description

A semaphore holds a number of available permits. sem_acquire methods will acquire a permit if available (reducing the

available count by 1) or block if the number of available permits is 0. sem_release() increases the number of available

permits by one potentially unblocking a sem_acquire method.

Note that sem_release() may be called an arbitrary number of times, however the number of available permits is capped

to the max_permit value specified during semaphore initialization.

Although these semaphore related functions can be used from IRQ handlers, it is obviously preferable to only release

semaphores from within an IRQ handler (i.e. avoid blocking)

4.2.10.5.2. Functions

void sem_init (semaphore_t *sem, int16_t initial_permits, int16_t max_permits)

Initialise a semaphore structure.

int sem_available (semaphore_t *sem)

Return number of available permits on the semaphore.

bool sem_release (semaphore_t *sem)

Release a permit on a semaphore.

void sem_reset (semaphore_t *sem, int16_t permits)

Reset semaphore to a specific number of available permits.

void sem_acquire_blocking (semaphore_t *sem)

Acquire a permit from the semaphore.

bool sem_acquire_timeout_ms (semaphore_t *sem, uint32_t timeout_ms)

Acquire a permit from a semaphore, with timeout.

bool sem_acquire_timeout_us (semaphore_t *sem, uint32_t timeout_us)

Acquire a permit from a semaphore, with timeout.

bool sem_acquire_block_until (semaphore_t *sem, absolute_time_t until)

Wait to acquire a permit from a semaphore until a specific time.

bool sem_try_acquire (semaphore_t *sem)

Attempt to acquire a permit from a semaphore without blocking.

4.2.10.5.3. Function Documentation

sem_acquire_block_until

bool sem_acquire_block_until (semaphore_t * sem, absolute_time_t until)

Wait to acquire a permit from a semaphore until a specific time.

This function will block and wait if no permits are available, until the specified timeout time. If the timeout is reached the

function will return false, otherwise it will return true.

Parameters

sem Pointer to semaphore structure

until The time after which to return if the sem is not available.

Returns

true if permit was acquired, false if the until time was reached before acquiring.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 376

sem_acquire_blocking

void sem_acquire_blocking (semaphore_t * sem)

Acquire a permit from the semaphore.

This function will block and wait if no permits are available.

Parameters

sem Pointer to semaphore structure

sem_acquire_timeout_ms

bool sem_acquire_timeout_ms (semaphore_t * sem, uint32_t timeout_ms)

Acquire a permit from a semaphore, with timeout.

This function will block and wait if no permits are available, until the defined timeout has been reached. If the timeout is

reached the function will return false, otherwise it will return true.

Parameters

sem Pointer to semaphore structure

timeout_ms Time to wait to acquire the semaphore, in milliseconds.

Returns

false if timeout reached, true if permit was acquired.

sem_acquire_timeout_us

bool sem_acquire_timeout_us (semaphore_t * sem, uint32_t timeout_us)

Acquire a permit from a semaphore, with timeout.

This function will block and wait if no permits are available, until the defined timeout has been reached. If the timeout is

reached the function will return false, otherwise it will return true.

Parameters

sem Pointer to semaphore structure

timeout_us Time to wait to acquire the semaphore, in microseconds.

Returns

false if timeout reached, true if permit was acquired.

sem_available

int sem_available (semaphore_t * sem)

Return number of available permits on the semaphore.

Parameters

sem Pointer to semaphore structure

Returns

The number of permits available on the semaphore.

sem_init

void sem_init (semaphore_t * sem, int16_t initial_permits, int16_t max_permits)

Initialise a semaphore structure.

Parameters

sem Pointer to semaphore structure

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 377

initial_permits How many permits are initially acquired

max_permits Total number of permits allowed for this semaphore

sem_release

bool sem_release (semaphore_t * sem)

Release a permit on a semaphore.

Increases the number of permits by one (unless the number of permits is already at the maximum). A blocked

sem_acquire will be released if the number of permits is increased.

Parameters

sem Pointer to semaphore structure

Returns

true if the number of permits available was increased.

sem_reset

void sem_reset (semaphore_t * sem, int16_t permits)

Reset semaphore to a specific number of available permits.

Reset value should be from 0 to the max_permits specified in the init function

Parameters

sem Pointer to semaphore structure

permits the new number of available permits

sem_try_acquire

bool sem_try_acquire (semaphore_t * sem)

Attempt to acquire a permit from a semaphore without blocking.

This function will return false without blocking if no permits are available, otherwise it will acquire a permit and return

true.

Parameters

sem Pointer to semaphore structure

Returns

true if permit was acquired.

4.2.11. pico_time

API for accurate timestamps, sleeping, and time based callbacks.

4.2.11.1. Detailed Description

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 378

 NOTE

The functions defined here provide a much more powerful and user friendly wrapping around the low level hardware

timer functionality. For these functions (and any other SDK functionality e.g. timeouts, that relies on them) to work

correctly, the hardware timer should not be modified. i.e. it is expected to be monotonically increasing once per

microsecond. Fortunately there is no need to modify the hardware timer as any functionality you can think of that

isn’t already covered here can easily be modelled by adding or subtracting a constant value from the unmodified

hardware timer.

See also

hardware_timer

4.2.11.2. Modules

timestamp

Timestamp functions relating to points in time (including the current time).

sleep

Sleep functions for delaying execution in a lower power state.

alarm

Alarm functions for scheduling future execution.

repeating_timer

Repeating Timer functions for simple scheduling of repeated execution.

4.2.11.3. timestamp

Timestamp functions relating to points in time (including the current time).

4.2.11.3.1. Detailed Description

These are functions for dealing with timestamps (i.e. instants in time) represented by the type absolute_time_t. This

opaque type is provided to help prevent accidental mixing of timestamps and relative time values.

4.2.11.3.2. Functions

static uint64_t to_us_since_boot (absolute_time_t t)

convert an absolute_time_t into a number of microseconds since boot.

static void update_us_since_boot (absolute_time_t *t, uint64_t us_since_boot)

update an absolute_time_t value to represent a given number of microseconds since boot

static absolute_time_t from_us_since_boot (uint64_t us_since_boot)

convert a number of microseconds since boot to an absolute_time_t

static absolute_time_t get_absolute_time (void)

Return a representation of the current time.

static uint32_t to_ms_since_boot (absolute_time_t t)

Convert a timestamp into a number of milliseconds since boot.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 379

static absolute_time_t delayed_by_us (const absolute_time_t t, uint64_t us)

Return a timestamp value obtained by adding a number of microseconds to another timestamp.

static absolute_time_t delayed_by_ms (const absolute_time_t t, uint32_t ms)

Return a timestamp value obtained by adding a number of milliseconds to another timestamp.

static absolute_time_t make_timeout_time_us (uint64_t us)

Convenience method to get the timestamp a number of microseconds from the current time.

static absolute_time_t make_timeout_time_ms (uint32_t ms)

Convenience method to get the timestamp a number of milliseconds from the current time.

static int64_t absolute_time_diff_us (absolute_time_t from, absolute_time_t to)

Return the difference in microseconds between two timestamps.

static absolute_time_t absolute_time_min (absolute_time_t a, absolute_time_t b)

Return the earlier of two timestamps.

static bool is_at_the_end_of_time (absolute_time_t t)

Determine if the given timestamp is "at_the_end_of_time".

static bool is_nil_time (absolute_time_t t)

Determine if the given timestamp is nil.

4.2.11.3.3. Variables

const absolute_time_t at_the_end_of_time

The timestamp representing the end of time; this is actually not the maximum possible timestamp, but is set to

0x7fffffff_ffffffff microseconds to avoid sign overflows with time arithmetic. This is almost 300,000 years, so

should be sufficient.

const absolute_time_t nil_time

The timestamp representing a null timestamp.

4.2.11.3.4. Function Documentation

absolute_time_diff_us

static int64_t absolute_time_diff_us (absolute_time_t from, absolute_time_t to) [inline], [static]

Return the difference in microseconds between two timestamps.

 NOTE

be careful when diffing against large timestamps (e.g. at_the_end_of_time) as the signed integer may overflow.

Parameters

from the first timestamp

to the second timestamp

Returns

the number of microseconds between the two timestamps (positive if to is after from except in case of overflow)

absolute_time_min

static absolute_time_t absolute_time_min (absolute_time_t a, absolute_time_t b) [inline], [static]

Return the earlier of two timestamps.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 380

Parameters

a the first timestamp

b the second timestamp

Returns

the earlier of the two timestamps

delayed_by_ms

static absolute_time_t delayed_by_ms (const absolute_time_t t, uint32_t ms) [inline], [static]

Return a timestamp value obtained by adding a number of milliseconds to another timestamp.

Parameters

t the base timestamp

ms the number of milliseconds to add

Returns

the timestamp representing the resulting time

delayed_by_us

static absolute_time_t delayed_by_us (const absolute_time_t t, uint64_t us) [inline], [static]

Return a timestamp value obtained by adding a number of microseconds to another timestamp.

Parameters

t the base timestamp

us the number of microseconds to add

Returns

the timestamp representing the resulting time

from_us_since_boot

static absolute_time_t from_us_since_boot (uint64_t us_since_boot) [inline], [static]

convert a number of microseconds since boot to an absolute_time_t

fn from_us_since_boot

Parameters

us_since_boot number of microseconds since boot

Returns

an absolute time equivalent to us_since_boot

get_absolute_time

static absolute_time_t get_absolute_time (void) [inline], [static]

Return a representation of the current time.

Returns an opaque high fidelity representation of the current time sampled during the call.

Returns

the absolute time (now) of the hardware timer

See also

absolute_time_t

sleep_until()

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 381

time_us_64()

is_at_the_end_of_time

static bool is_at_the_end_of_time (absolute_time_t t) [inline], [static]

Determine if the given timestamp is "at_the_end_of_time".

Parameters

t the timestamp

Returns

true if the timestamp is at_the_end_of_time

See also

at_the_end_of_time

is_nil_time

static bool is_nil_time (absolute_time_t t) [inline], [static]

Determine if the given timestamp is nil.

Parameters

t the timestamp

Returns

true if the timestamp is nil

See also

nil_time

make_timeout_time_ms

static absolute_time_t make_timeout_time_ms (uint32_t ms) [inline], [static]

Convenience method to get the timestamp a number of milliseconds from the current time.

Parameters

ms the number of milliseconds to add to the current timestamp

Returns

the future timestamp

make_timeout_time_us

static absolute_time_t make_timeout_time_us (uint64_t us) [inline], [static]

Convenience method to get the timestamp a number of microseconds from the current time.

Parameters

us the number of microseconds to add to the current timestamp

Returns

the future timestamp

to_ms_since_boot

static uint32_t to_ms_since_boot (absolute_time_t t) [inline], [static]

Convert a timestamp into a number of milliseconds since boot.

fn to_ms_since_boot

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 382

t an absolute_time_t value to convert

Returns

the number of milliseconds since boot represented by t

See also

to_us_since_boot()

to_us_since_boot

static uint64_t to_us_since_boot (absolute_time_t t) [inline], [static]

convert an absolute_time_t into a number of microseconds since boot.

fn to_us_since_boot

Parameters

t the absolute time to convert

Returns

a number of microseconds since boot, equivalent to t

update_us_since_boot

static void update_us_since_boot (absolute_time_t * t, uint64_t us_since_boot) [inline], [static]

update an absolute_time_t value to represent a given number of microseconds since boot

fn update_us_since_boot

Parameters

t the absolute time value to update

us_since_boot the number of microseconds since boot to represent. Note this should be representable as a

signed 64 bit integer

4.2.11.3.5. Variable Documentation

at_the_end_of_time

const absolute_time_t at_the_end_of_time

The timestamp representing the end of time; this is actually not the maximum possible timestamp, but is set to

0x7fffffff_ffffffff microseconds to avoid sign overflows with time arithmetic. This is almost 300,000 years, so should be

sufficient.

nil_time

const absolute_time_t nil_time

The timestamp representing a null timestamp.

4.2.11.4. sleep

Sleep functions for delaying execution in a lower power state.

4.2.11.4.1. Detailed Description

These functions allow the calling core to sleep. This is a lower powered sleep; waking and re-checking time on every

processor event (WFE)

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 383

 NOTE

These functions should not be called from an IRQ handler.

Lower powered sleep requires use of the default alarm pool which may be disabled by the

PICO_TIME_DEFAULT_ALARM_POOL_DISABLED #define or currently full in which case these functions become busy

waits instead.

Whilst sleep_ functions are preferable to busy_wait functions from a power perspective, the busy_wait equivalent

function may return slightly sooner after the target is reached.

See also

busy_wait_until()

busy_wait_us()

busy_wait_us_32()

4.2.11.4.2. Functions

void sleep_until (absolute_time_t target)

Wait until after the given timestamp to return.

void sleep_us (uint64_t us)

Wait for the given number of microseconds before returning.

void sleep_ms (uint32_t ms)

Wait for the given number of milliseconds before returning.

bool best_effort_wfe_or_timeout (absolute_time_t timeout_timestamp)

Helper method for blocking on a timeout.

4.2.11.4.3. Function Documentation

best_effort_wfe_or_timeout

bool best_effort_wfe_or_timeout (absolute_time_t timeout_timestamp)

Helper method for blocking on a timeout.

This method will return in response to an event (as per __wfe) or when the target time is reached, or at any point before.

This method can be used to implement a lower power polling loop waiting on some condition signalled by an event

(__sev()).

This is called best_effort because under certain circumstances (notably the default timer pool being disabled or full) the

best effort is simply to return immediately without a __wfe, thus turning the calling code into a busy wait.

Example usage:

 1 bool my_function_with_timeout_us(uint64_t timeout_us) {
 2 absolute_time_t timeout_time = make_timeout_time_us(timeout_us);
 3 do {
 4 // each time round the loop, we check to see if the condition
 5 // we are waiting on has happened
 6 if (my_check_done()) {
 7 // do something
 8 return true;
 9 }

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 384

10 // will try to sleep until timeout or the next processor event
11 } while (!best_effort_wfe_or_timeout(timeout_time));
12 return false; // timed out
13 }

Parameters

timeout_timestamp the timeout time

Returns

true if the target time is reached, false otherwise

sleep_ms

void sleep_ms (uint32_t ms)

Wait for the given number of milliseconds before returning.

 NOTE

This method attempts to perform a lower power sleep (using WFE) as much as possible.

Parameters

ms the number of milliseconds to sleep

sleep_until

void sleep_until (absolute_time_t target)

Wait until after the given timestamp to return.

 NOTE

This method attempts to perform a lower power (WFE) sleep

Parameters

target the time after which to return

See also

sleep_us()

busy_wait_until()

sleep_us

void sleep_us (uint64_t us)

Wait for the given number of microseconds before returning.

 NOTE

This method attempts to perform a lower power (WFE) sleep

Parameters

us the number of microseconds to sleep

See also

busy_wait_us()

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 385

4.2.11.5. alarm

Alarm functions for scheduling future execution.

4.2.11.5.1. Detailed Description

Alarms are added to alarm pools, which may hold a certain fixed number of active alarms. Each alarm pool utilizes one

of four underlying timer_alarms, thus you may have up to four alarm pools. An alarm pool calls (except when the

callback would happen before or during being set) the callback on the core from which the alarm pool was created.

Callbacks are called from the timer_alarm IRQ handler, so care must be taken in their implementation.

A default pool is created the core specified by PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM on core

0, and may be used by the method variants that take no alarm pool parameter.

See also

struct alarm_pool

hardware_timer

4.2.11.5.2. Macros

• #define PICO_TIME_DEFAULT_ALARM_POOL_DISABLED 0

• #define PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM 3

• #define PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS 16

4.2.11.5.3. Typedefs

typedef int32_t alarm_id_t

The identifier for an alarm.

typedef int64_t(* alarm_callback_t)(alarm_id_t id, void *user_data)

User alarm callback.

4.2.11.5.4. Functions

void alarm_pool_init_default (void)

Create the default alarm pool (if not already created or disabled)

alarm_pool_t * alarm_pool_get_default (void)

The default alarm pool used when alarms are added without specifying an alarm pool, and also used by the SDK to

support lower power sleeps and timeouts.

static alarm_pool_t * alarm_pool_create (uint timer_alarm_num, uint max_timers)

Create an alarm pool.

static alarm_pool_t * alarm_pool_create_with_unused_hardware_alarm (uint max_timers)

Create an alarm pool, claiming an used timer_alarm to back it.

uint alarm_pool_timer_alarm_num (alarm_pool_t *pool)

Return the timer alarm used by an alarm pool.

uint alarm_pool_core_num (alarm_pool_t *pool)

Return the core number the alarm pool was initialized on (and hence callbacks are called on)

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 386

void alarm_pool_destroy (alarm_pool_t *pool)

Destroy the alarm pool, cancelling all alarms and freeing up the underlying timer_alarm.

alarm_id_t alarm_pool_add_alarm_at (alarm_pool_t *pool, absolute_time_t time, alarm_callback_t callback, void *user_data,

bool fire_if_past)

Add an alarm callback to be called at a specific time.

alarm_id_t alarm_pool_add_alarm_at_force_in_context (alarm_pool_t *pool, absolute_time_t time, alarm_callback_t callback,

void *user_data)

Add an alarm callback to be called at or after a specific time.

static alarm_id_t alarm_pool_add_alarm_in_us (alarm_pool_t *pool, uint64_t us, alarm_callback_t callback, void

*user_data, bool fire_if_past)

Add an alarm callback to be called after a delay specified in microseconds.

static alarm_id_t alarm_pool_add_alarm_in_ms (alarm_pool_t *pool, uint32_t ms, alarm_callback_t callback, void

*user_data, bool fire_if_past)

Add an alarm callback to be called after a delay specified in milliseconds.

int64_t alarm_pool_remaining_alarm_time_us (alarm_pool_t *pool, alarm_id_t alarm_id)

Return the time remaining before the next trigger of an alarm.

int32_t alarm_pool_remaining_alarm_time_ms (alarm_pool_t *pool, alarm_id_t alarm_id)

Return the time remaining before the next trigger of an alarm.

bool alarm_pool_cancel_alarm (alarm_pool_t *pool, alarm_id_t alarm_id)

Cancel an alarm.

static alarm_id_t add_alarm_at (absolute_time_t time, alarm_callback_t callback, void *user_data, bool fire_if_past)

Add an alarm callback to be called at a specific time.

static alarm_id_t add_alarm_in_us (uint64_t us, alarm_callback_t callback, void *user_data, bool fire_if_past)

Add an alarm callback to be called after a delay specified in microseconds.

static alarm_id_t add_alarm_in_ms (uint32_t ms, alarm_callback_t callback, void *user_data, bool fire_if_past)

Add an alarm callback to be called after a delay specified in milliseconds.

static bool cancel_alarm (alarm_id_t alarm_id)

Cancel an alarm from the default alarm pool.

int64_t remaining_alarm_time_us (alarm_id_t alarm_id)

Return the time remaining before the next trigger of an alarm.

int32_t remaining_alarm_time_ms (alarm_id_t alarm_id)

Return the time remaining before the next trigger of an alarm.

4.2.11.5.5. Macro Definition Documentation

PICO_TIME_DEFAULT_ALARM_POOL_DISABLED

#define PICO_TIME_DEFAULT_ALARM_POOL_DISABLED 0

If 1 then the default alarm pool is disabled (so no timer_alarm is claimed for the pool)

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 387

 NOTE

Setting to 1 may cause some code not to compile as default timer pool related methods are removed

When the default alarm pool is disabled, _sleep methods and timeouts are no longer lower powered (they become

_busy_wait)

See also

PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM

alarm_pool_get_default()

PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM

#define PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM 3

Selects which timer_alarm is used for the default alarm pool.

See also

alarm_pool_get_default()

PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS

#define PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS 16

Selects the maximum number of concurrent timers in the default alarm pool.

 NOTE

For implementation reasons this is limited to PICO_PHEAP_MAX_ENTRIES which defaults to 255

See also

PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM

alarm_pool_get_default()

4.2.11.5.6. Typedef Documentation

alarm_id_t

typedef int32_t alarm_id_t

The identifier for an alarm.

 NOTE

this identifier is signed because <0 is used as an error condition when creating alarms

alarm ids may be reused, however for convenience the implementation makes an attempt to defer reusing as long

as possible. You should certainly expect it to be hundreds of ids before one is reused, although in most cases it is

more. Nonetheless care must still be taken when cancelling alarms or other functionality based on alarms when the

alarm may have expired, as eventually the alarm id may be reused for another alarm.

See also

pico_error_codes

alarm_callback_t

typedef int64_t(* alarm_callback_t) (alarm_id_t id, void *user_data)

User alarm callback.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 388

Parameters

id the alarm_id as returned when the alarm was added

user_data the user data passed when the alarm was added

Returns

<0 to reschedule the same alarm this many us from the time the alarm was previously scheduled to fire

Returns

>0 to reschedule the same alarm this many us from the time this method returns

Returns

0 to not reschedule the alarm

4.2.11.5.7. Function Documentation

add_alarm_at

static alarm_id_t add_alarm_at (absolute_time_t time, alarm_callback_t callback, void * user_data, bool fire_if_past)

[inline], [static]

Add an alarm callback to be called at a specific time.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the

default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be

completed, then this method will optionally call the callback itself and then return a return code to indicate that the

target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

time the timestamp when (after which) the callback should fire

callback the callback function

user_data user data to pass to the callback function

fire_if_past if true, and the alarm time falls before or during this call before the alarm can be set, then the

callback should be called during (by) this function instead

Returns

>0 the alarm id

Returns

0 if the alarm time passed before or during the call and fire_if_past was false

Returns

<0 if there were no alarm slots available, or other error occurred

add_alarm_in_ms

static alarm_id_t add_alarm_in_ms (uint32_t ms, alarm_callback_t callback, void * user_data, bool fire_if_past) [inline],

[static]

Add an alarm callback to be called after a delay specified in milliseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the

default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 389

completed, then this method will optionally call the callback itself and then return a return code to indicate that the

target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

ms the delay (from now) in milliseconds when (after which) the callback should fire

callback the callback function

user_data user data to pass to the callback function

fire_if_past if true, and the alarm time falls during this call before the alarm can be set, then the callback

should be called during (by) this function instead

Returns

>0 the alarm id

Returns

0 if the alarm time passed before or during the call and fire_if_past was false

Returns

<0 if there were no alarm slots available, or other error occurred

add_alarm_in_us

static alarm_id_t add_alarm_in_us (uint64_t us, alarm_callback_t callback, void * user_data, bool fire_if_past) [inline],

[static]

Add an alarm callback to be called after a delay specified in microseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the

default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be

completed, then this method will optionally call the callback itself and then return a return code to indicate that the

target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

us the delay (from now) in microseconds when (after which) the callback should fire

callback the callback function

user_data user data to pass to the callback function

fire_if_past if true, and the alarm time falls during this call before the alarm can be set, then the callback

should be called during (by) this function instead

Returns

>0 the alarm id

Returns

0 if the alarm time passed before or during the call and fire_if_past was false

Returns

<0 if there were no alarm slots available, or other error occurred

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 390

alarm_pool_add_alarm_at

alarm_id_t alarm_pool_add_alarm_at (alarm_pool_t * pool, absolute_time_t time, alarm_callback_t callback, void *

user_data, bool fire_if_past)

Add an alarm callback to be called at a specific time.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm

pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this

method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

pool the alarm pool to use for scheduling the callback (this determines which timer_alarm is used,

and which core calls the callback)

time the timestamp when (after which) the callback should fire

callback the callback function

user_data user data to pass to the callback function

fire_if_past if true, and the alarm time falls before or during this call before the alarm can be set, then the

callback should be called during (by) this function instead

Returns

>0 the alarm id for an active (at the time of return) alarm

Returns

0 if the alarm time passed before or during the call and fire_if_past was false

Returns

<0 if there were no alarm slots available, or other error occurred

alarm_pool_add_alarm_at_force_in_context

alarm_id_t alarm_pool_add_alarm_at_force_in_context (alarm_pool_t * pool, absolute_time_t time, alarm_callback_t

callback, void * user_data)

Add an alarm callback to be called at or after a specific time.

The callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm pool was

created on. Unlike alarm_pool_add_alarm_at, this method guarantees to call the callback from that core even if the time

is during this method call or in the past.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

pool the alarm pool to use for scheduling the callback (this determines which timer_alarm is used, and

which core calls the callback)

time the timestamp when (after which) the callback should fire

callback the callback function

user_data user data to pass to the callback function

Returns

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 391

>0 the alarm id for an active (at the time of return) alarm

Returns

<0 if there were no alarm slots available, or other error occurred

alarm_pool_add_alarm_in_ms

static alarm_id_t alarm_pool_add_alarm_in_ms (alarm_pool_t * pool, uint32_t ms, alarm_callback_t callback, void *

user_data, bool fire_if_past) [inline], [static]

Add an alarm callback to be called after a delay specified in milliseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm

pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this

method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

pool the alarm pool to use for scheduling the callback (this determines which timer_alarm is used,

and which core calls the callback)

ms the delay (from now) in milliseconds when (after which) the callback should fire

callback the callback function

user_data user data to pass to the callback function

fire_if_past if true, and the alarm time falls before or during this call before the alarm can be set, then the

callback should be called during (by) this function instead

Returns

>0 the alarm id

Returns

0 if the alarm time passed before or during the call and fire_if_past was false

Returns

<0 if there were no alarm slots available, or other error occurred

alarm_pool_add_alarm_in_us

static alarm_id_t alarm_pool_add_alarm_in_us (alarm_pool_t * pool, uint64_t us, alarm_callback_t callback, void *

user_data, bool fire_if_past) [inline], [static]

Add an alarm callback to be called after a delay specified in microseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm

pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this

method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

pool the alarm pool to use for scheduling the callback (this determines which timer_alarm is used,

and which core calls the callback)

us the delay (from now) in microseconds when (after which) the callback should fire

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 392

callback the callback function

user_data user data to pass to the callback function

fire_if_past if true, and the alarm time falls during this call before the alarm can be set, then the callback

should be called during (by) this function instead

Returns

>0 the alarm id

Returns

0 if the alarm time passed before or during the call and fire_if_past was false

Returns

<0 if there were no alarm slots available, or other error occurred

alarm_pool_cancel_alarm

bool alarm_pool_cancel_alarm (alarm_pool_t * pool, alarm_id_t alarm_id)

Cancel an alarm.

Parameters

pool the alarm_pool containing the alarm

alarm_id the alarm

Returns

true if the alarm was cancelled, false if it didn’t exist

See also

alarm_id_t for a note on reuse of IDs

alarm_pool_core_num

uint alarm_pool_core_num (alarm_pool_t * pool)

Return the core number the alarm pool was initialized on (and hence callbacks are called on)

Parameters

pool the pool

Returns

the core used by the pool

alarm_pool_create

static alarm_pool_t * alarm_pool_create (uint timer_alarm_num, uint max_timers) [inline], [static]

Create an alarm pool.

The alarm pool will call callbacks from an alarm IRQ Handler on the core of this function is called from.

In many situations there is never any need for anything other than the default alarm pool, however you might want to

create another if you want alarm callbacks on core 1 or require alarm pools of different priority (IRQ priority based

preemption of callbacks)

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 393

 NOTE

This method will hard assert if the timer_alarm is already claimed.

Parameters

timer_alarm_num the timer_alarm to use to back this pool

max_timers the maximum number of timers

 NOTE

For implementation reasons this is limited to PICO_PHEAP_MAX_ENTRIES which defaults to 255

See also

alarm_pool_get_default()

hardware_claiming

alarm_pool_create_with_unused_hardware_alarm

static alarm_pool_t * alarm_pool_create_with_unused_hardware_alarm (uint max_timers) [inline], [static]

Create an alarm pool, claiming an used timer_alarm to back it.

The alarm pool will call callbacks from an alarm IRQ Handler on the core of this function is called from.

In many situations there is never any need for anything other than the default alarm pool, however you might want to

create another if you want alarm callbacks on core 1 or require alarm pools of different priority (IRQ priority based

preemption of callbacks)

 NOTE

This method will hard assert if the there is no free hardware to claim.

Parameters

max_timers the maximum number of timers

 NOTE

For implementation reasons this is limited to PICO_PHEAP_MAX_ENTRIES which defaults to 255

See also

alarm_pool_get_default()

hardware_claiming

alarm_pool_destroy

void alarm_pool_destroy (alarm_pool_t * pool)

Destroy the alarm pool, cancelling all alarms and freeing up the underlying timer_alarm.

Parameters

pool the pool

alarm_pool_get_default

alarm_pool_t * alarm_pool_get_default (void)

The default alarm pool used when alarms are added without specifying an alarm pool, and also used by the SDK to

support lower power sleeps and timeouts.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 394

See also

PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM

alarm_pool_init_default

void alarm_pool_init_default (void)

Create the default alarm pool (if not already created or disabled)

alarm_pool_remaining_alarm_time_ms

int32_t alarm_pool_remaining_alarm_time_ms (alarm_pool_t * pool, alarm_id_t alarm_id)

Return the time remaining before the next trigger of an alarm.

Parameters

pool the alarm_pool containing the alarm

alarm_id the alarm

Returns

>=0 the number of microseconds before the next trigger (INT32_MAX if the number of ms is higher than can be

represented0

Returns

<0 if either the given alarm is not in progress or it has passed

alarm_pool_remaining_alarm_time_us

int64_t alarm_pool_remaining_alarm_time_us (alarm_pool_t * pool, alarm_id_t alarm_id)

Return the time remaining before the next trigger of an alarm.

Parameters

pool the alarm_pool containing the alarm

alarm_id the alarm

Returns

>=0 the number of microseconds before the next trigger

Returns

<0 if either the given alarm is not in progress or it has passed

alarm_pool_timer_alarm_num

uint alarm_pool_timer_alarm_num (alarm_pool_t * pool)

Return the timer alarm used by an alarm pool.

Parameters

pool the pool

Returns

the timer_alarm used by the pool

cancel_alarm

static bool cancel_alarm (alarm_id_t alarm_id) [inline], [static]

Cancel an alarm from the default alarm pool.

Parameters

alarm_id the alarm

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 395

Returns

true if the alarm was cancelled, false if it didn’t exist

See also

alarm_id_t for a note on reuse of IDs

remaining_alarm_time_ms

int32_t remaining_alarm_time_ms (alarm_id_t alarm_id)

Return the time remaining before the next trigger of an alarm.

Parameters

alarm_id the alarm

Returns

>=0 the number of microseconds before the next trigger (INT32_MAX if the number of ms is higher than can be

represented0

Returns

<0 if either the given alarm is not in progress or it has passed

remaining_alarm_time_us

int64_t remaining_alarm_time_us (alarm_id_t alarm_id)

Return the time remaining before the next trigger of an alarm.

Parameters

pool the alarm_pool containing the alarm

alarm_id the alarm

Returns

>=0 the number of microseconds before the next trigger

Returns

<0 if either the given alarm is not in progress or it has passed

4.2.11.6. repeating_timer

Repeating Timer functions for simple scheduling of repeated execution.

4.2.11.6.1. Detailed Description

 NOTE

The regular alarm_ functionality can be used to make repeating alarms (by return non zero from the callback),

however these methods abstract that further (at the cost of a user structure to store the repeat delay in (which the

alarm framework does not have space for).

4.2.11.6.2. Typedefs

typedef bool(* repeating_timer_callback_t)(repeating_timer_t *rt)

Callback for a repeating timer.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 396

4.2.11.6.3. Functions

bool alarm_pool_add_repeating_timer_us (alarm_pool_t *pool, int64_t delay_us, repeating_timer_callback_t callback, void

*user_data, repeating_timer_t *out)

Add a repeating timer that is called repeatedly at the specified interval in microseconds.

static bool alarm_pool_add_repeating_timer_ms (alarm_pool_t *pool, int32_t delay_ms, repeating_timer_callback_t callback,

void *user_data, repeating_timer_t *out)

Add a repeating timer that is called repeatedly at the specified interval in milliseconds.

static bool add_repeating_timer_us (int64_t delay_us, repeating_timer_callback_t callback, void *user_data,

repeating_timer_t *out)

Add a repeating timer that is called repeatedly at the specified interval in microseconds.

static bool add_repeating_timer_ms (int32_t delay_ms, repeating_timer_callback_t callback, void *user_data,

repeating_timer_t *out)

Add a repeating timer that is called repeatedly at the specified interval in milliseconds.

bool cancel_repeating_timer (repeating_timer_t *timer)

Cancel a repeating timer.

4.2.11.6.4. Typedef Documentation

repeating_timer_callback_t

typedef bool(* repeating_timer_callback_t) (repeating_timer_t *rt)

Callback for a repeating timer.

Parameters

rt repeating time structure containing information about the repeating time. user_data is of primary

important to the user

Returns

true to continue repeating, false to stop.

4.2.11.6.5. Function Documentation

add_repeating_timer_ms

static bool add_repeating_timer_ms (int32_t delay_ms, repeating_timer_callback_t callback, void * user_data,

repeating_timer_t * out) [inline], [static]

Add a repeating timer that is called repeatedly at the specified interval in milliseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the

default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be

completed, then this method will optionally call the callback itself and then return a return code to indicate that the

target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 397

delay_ms the repeat delay in milliseconds; if >0 then this is the delay between one callback ending and the

next starting; if <0 then this is the negative of the time between the starts of the callbacks. The

value of 0 is treated as 1 microsecond

callback the repeating timer callback function

user_data user data to pass to store in the repeating_timer structure for use by the callback.

out the pointer to the user owned structure to store the repeating timer info in. BEWARE this storage

location must outlive the repeating timer, so be careful of using stack space

Returns

false if there were no alarm slots available to create the timer, true otherwise.

add_repeating_timer_us

static bool add_repeating_timer_us (int64_t delay_us, repeating_timer_callback_t callback, void * user_data,

repeating_timer_t * out) [inline], [static]

Add a repeating timer that is called repeatedly at the specified interval in microseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the

default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be

completed, then this method will optionally call the callback itself and then return a return code to indicate that the

target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

delay_us the repeat delay in microseconds; if >0 then this is the delay between one callback ending and the

next starting; if <0 then this is the negative of the time between the starts of the callbacks. The

value of 0 is treated as 1

callback the repeating timer callback function

user_data user data to pass to store in the repeating_timer structure for use by the callback.

out the pointer to the user owned structure to store the repeating timer info in. BEWARE this storage

location must outlive the repeating timer, so be careful of using stack space

Returns

false if there were no alarm slots available to create the timer, true otherwise.

alarm_pool_add_repeating_timer_ms

static bool alarm_pool_add_repeating_timer_ms (alarm_pool_t * pool, int32_t delay_ms, repeating_timer_callback_t

callback, void * user_data, repeating_timer_t * out) [inline], [static]

Add a repeating timer that is called repeatedly at the specified interval in milliseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm

pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this

method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 398

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

pool the alarm pool to use for scheduling the repeating timer (this determines which timer_alarm is used,

and which core calls the callback)

delay_ms the repeat delay in milliseconds; if >0 then this is the delay between one callback ending and the

next starting; if <0 then this is the negative of the time between the starts of the callbacks. The

value of 0 is treated as 1 microsecond

callback the repeating timer callback function

user_data user data to pass to store in the repeating_timer structure for use by the callback.

out the pointer to the user owned structure to store the repeating timer info in. BEWARE this storage

location must outlive the repeating timer, so be careful of using stack space

Returns

false if there were no alarm slots available to create the timer, true otherwise.

alarm_pool_add_repeating_timer_us

bool alarm_pool_add_repeating_timer_us (alarm_pool_t * pool, int64_t delay_us, repeating_timer_callback_t callback, void

* user_data, repeating_timer_t * out)

Add a repeating timer that is called repeatedly at the specified interval in microseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm

pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this

method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

 NOTE

It is safe to call this method from an IRQ handler (including alarm callbacks), and from either core.

Parameters

pool the alarm pool to use for scheduling the repeating timer (this determines which timer_alarm is used,

and which core calls the callback)

delay_us the repeat delay in microseconds; if >0 then this is the delay between one callback ending and the

next starting; if <0 then this is the negative of the time between the starts of the callbacks. The

value of 0 is treated as 1

callback the repeating timer callback function

user_data user data to pass to store in the repeating_timer structure for use by the callback.

out the pointer to the user owned structure to store the repeating timer info in. BEWARE this storage

location must outlive the repeating timer, so be careful of using stack space

Returns

false if there were no alarm slots available to create the timer, true otherwise.

cancel_repeating_timer

bool cancel_repeating_timer (repeating_timer_t * timer)

Cancel a repeating timer.

Parameters

timer the repeating timer to cancel

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 399

Returns

true if the repeating timer was cancelled, false if it didn’t exist

See also

alarm_id_t for a note on reuse of IDs

4.2.12. pico_unique_id

Unique device ID access API.

4.2.12.1. Detailed Description

RP2040 does not have an on-board unique identifier (all instances of RP2040 silicon are identical and have no

persistent state). However, RP2040 boots from serial NOR flash devices which have a 64-bit unique ID as a standard

feature, and there is a 1:1 association between RP2040 and flash, so this is suitable for use as a unique identifier for an

RP2040-based board.

This library injects a call to the flash_get_unique_id function from the hardware_flash library, to run before main, and

stores the result in a static location which can safely be accessed at any time via pico_get_unique_id().

This avoids some pitfalls of the hardware_flash API, which requires any flash-resident interrupt routines to be disabled

when called into.

4.2.12.2. Functions

void pico_get_unique_board_id (pico_unique_board_id_t *id_out)

Get unique ID.

void pico_get_unique_board_id_string (char *id_out, uint len)

Get unique ID in string format.

4.2.12.3. Function Documentation

4.2.12.3.1. pico_get_unique_board_id

void pico_get_unique_board_id (pico_unique_board_id_t * id_out)

Get unique ID.

Get the unique 64-bit device identifier which was retrieved from the external NOR flash device at boot.

On PICO_NO_FLASH builds the unique identifier is set to all 0xEE.

Parameters

id_out a pointer to a pico_unique_board_id_t struct, to which the identifier will be written

4.2.12.3.2. pico_get_unique_board_id_string

void pico_get_unique_board_id_string (char * id_out, uint len)

Get unique ID in string format.

Get the unique 64-bit device identifier which was retrieved from the external NOR flash device at boot, formatted as an

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 400

ASCII hex string. Will always 0-terminate.

On PICO_NO_FLASH builds the unique identifier is set to all 0xEE.

Parameters

id_out a pointer to a char buffer of size len, to which the identifier will be written

len the size of id_out. For full serial, len >= 2 * PICO_UNIQUE_BOARD_ID_SIZE_BYTES + 1

4.2.13. pico_util

Useful data structures and utility functions.

4.2.13.1. Modules

datetime

Date/Time formatting.

pheap

Pairing Heap Implementation.

queue

Multi-core and IRQ safe queue implementation.

4.2.13.2. datetime

Date/Time formatting.

4.2.13.3. pheap

Pairing Heap Implementation.

4.2.13.3.1. Detailed Description

pheap defines a simple pairing heap. The implementation simply tracks array indexes, it is up to the user to provide

storage for heap entries and a comparison function.

 NOTE

This class is not safe for concurrent usage. It should be externally protected. Furthermore if used concurrently, the

caller needs to protect around their use of the returned id. For example, ph_remove_and_free_head returns the id of

an element that is no longer in the heap. The user can still use this to look at the data in their companion array,

however obviously further operations on the heap may cause them to overwrite that data as the id may be reused on

subsequent operations

4.2.13.4. queue

Multi-core and IRQ safe queue implementation.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 401

4.2.13.4.1. Detailed Description

Note that this queue stores values of a specified size, and pushed values are copied into the queue

4.2.13.4.2. Functions

void queue_init_with_spinlock (queue_t *q, uint element_size, uint element_count, uint spinlock_num)

Initialise a queue with a specific spinlock for concurrency protection.

static void queue_init (queue_t *q, uint element_size, uint element_count)

Initialise a queue, allocating a (possibly shared) spinlock.

void queue_free (queue_t *q)

Destroy the specified queue.

static uint queue_get_level_unsafe (queue_t *q)

Unsafe check of level of the specified queue.

static uint queue_get_level (queue_t *q)

Check of level of the specified queue.

static bool queue_is_empty (queue_t *q)

Check if queue is empty.

static bool queue_is_full (queue_t *q)

Check if queue is full.

bool queue_try_add (queue_t *q, const void *data)

Non-blocking add value queue if not full.

bool queue_try_remove (queue_t *q, void *data)

Non-blocking removal of entry from the queue if non empty.

bool queue_try_peek (queue_t *q, void *data)

Non-blocking peek at the next item to be removed from the queue.

void queue_add_blocking (queue_t *q, const void *data)

Blocking add of value to queue.

void queue_remove_blocking (queue_t *q, void *data)

Blocking remove entry from queue.

void queue_peek_blocking (queue_t *q, void *data)

Blocking peek at next value to be removed from queue.

4.2.13.4.3. Function Documentation

queue_add_blocking

void queue_add_blocking (queue_t * q, const void * data)

Blocking add of value to queue.

Parameters

q Pointer to a queue_t structure, used as a handle

data Pointer to value to be copied into the queue

If the queue is full this function will block, until a removal happens on the queue

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 402

queue_free

void queue_free (queue_t * q)

Destroy the specified queue.

Parameters

q Pointer to a queue_t structure, used as a handle

Does not deallocate the queue_t structure itself.

queue_get_level

static uint queue_get_level (queue_t * q) [inline], [static]

Check of level of the specified queue.

Parameters

q Pointer to a queue_t structure, used as a handle

Returns

Number of entries in the queue

queue_get_level_unsafe

static uint queue_get_level_unsafe (queue_t * q) [inline], [static]

Unsafe check of level of the specified queue.

Parameters

q Pointer to a queue_t structure, used as a handle

Returns

Number of entries in the queue

This does not use the spinlock, so may return incorrect results if the spin lock is not externally locked

queue_init

static void queue_init (queue_t * q, uint element_size, uint element_count) [inline], [static]

Initialise a queue, allocating a (possibly shared) spinlock.

Parameters

q Pointer to a queue_t structure, used as a handle

element_size Size of each value in the queue

element_count Maximum number of entries in the queue

queue_init_with_spinlock

void queue_init_with_spinlock (queue_t * q, uint element_size, uint element_count, uint spinlock_num)

Initialise a queue with a specific spinlock for concurrency protection.

Parameters

q Pointer to a queue_t structure, used as a handle

element_size Size of each value in the queue

element_count Maximum number of entries in the queue

spinlock_num The spin ID used to protect the queue

queue_is_empty

static bool queue_is_empty (queue_t * q) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 403

Check if queue is empty.

Parameters

q Pointer to a queue_t structure, used as a handle

Returns

true if queue is empty, false otherwise

This function is interrupt and multicore safe.

queue_is_full

static bool queue_is_full (queue_t * q) [inline], [static]

Check if queue is full.

Parameters

q Pointer to a queue_t structure, used as a handle

Returns

true if queue is full, false otherwise

This function is interrupt and multicore safe.

queue_peek_blocking

void queue_peek_blocking (queue_t * q, void * data)

Blocking peek at next value to be removed from queue.

Parameters

q Pointer to a queue_t structure, used as a handle

data Pointer to the location to receive the peeked value, or NULL if the data isn’t required

If the queue is empty function will block until a value is added

queue_remove_blocking

void queue_remove_blocking (queue_t * q, void * data)

Blocking remove entry from queue.

Parameters

q Pointer to a queue_t structure, used as a handle

data Pointer to the location to receive the removed value, or NULL if the data isn’t required

If the queue is empty this function will block until a value is added.

queue_try_add

bool queue_try_add (queue_t * q, const void * data)

Non-blocking add value queue if not full.

Parameters

q Pointer to a queue_t structure, used as a handle

data Pointer to value to be copied into the queue

Returns

true if the value was added

If the queue is full this function will return immediately with false, otherwise the data is copied into a new value added to

the queue, and this function will return true.

Raspberry Pi Pico-series C/C++ SDK

4.2. High Level APIs 404

queue_try_peek

bool queue_try_peek (queue_t * q, void * data)

Non-blocking peek at the next item to be removed from the queue.

Parameters

q Pointer to a queue_t structure, used as a handle

data Pointer to the location to receive the peeked value, or NULL if the data isn’t required

Returns

true if there was a value to peek

If the queue is not empty this function will return immediately with true with the peeked entry copied into the location

specified by the data parameter, otherwise the function will return false.

queue_try_remove

bool queue_try_remove (queue_t * q, void * data)

Non-blocking removal of entry from the queue if non empty.

Parameters

q Pointer to a queue_t structure, used as a handle

data Pointer to the location to receive the removed value, or NULL if the data isn’t required

Returns

true if a value was removed

If the queue is not empty function will copy the removed value into the location provided and return immediately with

true, otherwise the function will return immediately with false.

4.3. Third-party Libraries

Third party libraries for implementing high level functionality.

tinyusb_device TinyUSB Device-mode support for the RP2040. The TinyUSB documentation site can be found

here.

tinyusb_host TinyUSB Host-mode support for the RP2040.

4.3.1. tinyusb_device

TinyUSB Device-mode support for the RP2040. The TinyUSB documentation site can be found here.

4.3.2. tinyusb_host

TinyUSB Host-mode support for the RP2040.

4.4. Networking Libraries

Functions for implementing networking

Raspberry Pi Pico-series C/C++ SDK

4.3. Third-party Libraries 405

https://github.com/hathach/tinyusb
https://docs.tinyusb.org/en/latest/
https://github.com/hathach/tinyusb
https://github.com/hathach/tinyusb
https://docs.tinyusb.org/en/latest/
https://github.com/hathach/tinyusb

pico_btstack Integration/wrapper libraries for BTstack the documentation for which is here.

pico_lwip Integration/wrapper libraries for lwIP the documentation for which is here.

 pico_lwip_arch lwIP compiler adapters. This is not included by default in pico_lwip in case you wish to

implement your own.

 pico_lwip_freertos Glue library for integration lwIP in NO_SYS=0 mode with the SDK.

 pico_lwip_nosys Glue library for integration lwIP in NO_SYS=1 mode with the SDK.

pico_cyw43_driver A wrapper around the lower level cyw43_driver, that integrates it with pico_async_context for

handling background work.

 pico_btstack_cyw43 Low-level Bluetooth HCI support.

pico_cyw43_arch Architecture for integrating the CYW43 driver (for the wireless on Pico W) and lwIP (for TCP/IP

stack) into the SDK. It is also necessary for accessing the on-board LED on Pico W.

 cyw43_driver Driver used for Pico W wireless.

 cyw43_ll Low Level CYW43 driver interface.

4.4.1. pico_btstack

Integration/wrapper libraries for BTstack the documentation for which is here.

4.4.1.1. Detailed Description

A supplemental license for BTstack (in addition to the stock BTstack licensing terms) is provided here.

The pico_btstack_ble library adds the support needed for Bluetooth Low Energy (BLE). The pico_btstack_classic library

adds the support needed for Bluetooth Classic. You can link to either library individually, or to both libraries thus

enabling dual-mode support provided by BTstack.

To use BTstack you need to provide a btstack_config.h file in your source tree and add its location to your include path.

The BTstack configuration macros ENABLE_CLASSIC and ENABLE_BLE are defined for you when you link the

pico_btstack_classic and pico_btstack_ble libraries respectively, so you should not define them yourself.

For more details, see How to configure BTstack and the relevant pico-examples.

The follow libraries are provided for you to link.

• pico_btstack_ble - Adds Bluetooth Low Energy (LE) support.

• pico_btstack_classic - Adds Bluetooth Classic support.

• pico_btstack_sbc_encoder - Adds Bluetooth Sub Band Coding (SBC) encoder support.

• pico_btstack_sbc_decoder - Adds Bluetooth Sub Band Coding (SBC) decoder support.

• pico_btstack_bnep_lwip - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using LwIP.

• pico_btstack_bnep_lwip_sys_freertos - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using LwIP

with FreeRTOS for NO_SYS=0.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 406

https://github.com/bluekitchen/btstack
https://bluekitchen-gmbh.com/btstack/
https://savannah.nongnu.org/projects/lwip/lwIP
https://www.nongnu.org/lwip/2_1_x/index.html
https://github.com/bluekitchen/btstack
https://bluekitchen-gmbh.com/btstack/
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/LICENSE.RP
https://bluekitchen-gmbh.com/btstack/develop/#how_to/
https://github.com/raspberrypi/pico-examples#pico-w-bluetooth

 NOTE

The CMake function pico_btstack_make_gatt_header can be used to run the BTstack compile_gatt tool to make a

GATT header file from a BTstack GATT file.

See also

pico_btstack_cyw43 in pico_cyw43_driver, which adds the cyw43 driver support needed for BTstack including BTstack

run loop support.

4.4.1.2. Functions

const hal_flash_bank_t * pico_flash_bank_instance (void)

Return the singleton BTstack HAL flash instance, used for non-volatile storage.

const btstack_run_loop_t * btstack_run_loop_async_context_get_instance (async_context_t *context)

Initialize and return the singleton BTstack run loop instance that integrates with the async_context API.

const btstack_chipset_t * btstack_chipset_cyw43_instance (void)

Return the singleton BTstack chipset CY43 API instance.

4.4.1.3. Function Documentation

4.4.1.3.1. btstack_chipset_cyw43_instance

const btstack_chipset_t * btstack_chipset_cyw43_instance (void)

Return the singleton BTstack chipset CY43 API instance.

4.4.1.3.2. btstack_run_loop_async_context_get_instance

const btstack_run_loop_t * btstack_run_loop_async_context_get_instance (async_context_t * context)

Initialize and return the singleton BTstack run loop instance that integrates with the async_context API.

Parameters

context the async_context instance that provides the abstraction for handling asynchronous work.

Returns

the BTstack run loop instance

4.4.1.3.3. pico_flash_bank_instance

const hal_flash_bank_t * pico_flash_bank_instance (void)

Return the singleton BTstack HAL flash instance, used for non-volatile storage.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 407

 NOTE

By default two sectors at the end of flash are used (see PICO_FLASH_BANK_STORAGE_OFFSET and PICO_FLASH_BANK_TOTAL_SIZE)

4.4.2. pico_lwip

Integration/wrapper libraries for lwIP the documentation for which is here.

4.4.2.1. Detailed Description

The main pico_lwip library itself aggregates the lwIP RAW API: pico_lwip_core, pico_lwip_core4, pico_lwip_core6,

pico_lwip_api, pico_lwip_netif, pico_lwip_sixlowpan and pico_lwip_ppp.

If you wish to run in NO_SYS=1 mode, then you can link pico_lwip along with pico_lwip_nosys.

If you wish to run in NO_SYS=0 mode, then you can link pico_lwip with (for instance) pico_lwip_freertos, and also link in

pico_lwip_api for the additional blocking/thread-safe APIs.

Additionally you must link in pico_lwip_arch unless you provide your own compiler bindings for lwIP.

Additional individual pieces of lwIP functionality are available à la cart, by linking any of the libraries below.

The following libraries are provided that contain exactly the equivalent lwIP functionality groups:

• pico_lwip_core -

• pico_lwip_core4 -

• pico_lwip_core6 -

• pico_lwip_netif -

• pico_lwip_sixlowpan -

• pico_lwip_ppp -

• pico_lwip_api -
The following libraries are provided that contain exactly the equivalent lwIP application support:

• pico_lwip_snmp -

• pico_lwip_http -

• pico_lwip_makefsdata -

• pico_lwip_iperf -

• pico_lwip_smtp -

• pico_lwip_sntp -

• pico_lwip_mdns -

• pico_lwip_netbios -

• pico_lwip_tftp -

• pico_lwip_mbedtls -

• pico_lwip_mqtt -

4.4.2.2. Modules

pico_lwip_arch

lwIP compiler adapters. This is not included by default in pico_lwip in case you wish to implement your own.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 408

https://savannah.nongnu.org/projects/lwip/lwIP
https://www.nongnu.org/lwip/2_1_x/index.html

pico_lwip_freertos

Glue library for integration lwIP in NO_SYS=0 mode with the SDK.

pico_lwip_nosys

Glue library for integration lwIP in NO_SYS=1 mode with the SDK.

4.4.2.3. pico_lwip_arch

lwIP compiler adapters. This is not included by default in pico_lwip in case you wish to implement your own.

4.4.2.4. pico_lwip_freertos

Glue library for integration lwIP in NO_SYS=0 mode with the SDK.

4.4.2.4.1. Detailed Description

Simple init and deinit are all that is required to hook up lwIP (with full blocking API support) via an async_context

instance

4.4.2.4.2. Functions

bool lwip_freertos_init (async_context_t *context)

Initializes lwIP (NO_SYS=0 mode) support support for FreeRTOS using the provided async_context.

void lwip_freertos_deinit (async_context_t *context)

De-initialize lwIP (NO_SYS=0 mode) support for FreeRTOS.

4.4.2.4.3. Function Documentation

lwip_freertos_deinit

void lwip_freertos_deinit (async_context_t * context)

De-initialize lwIP (NO_SYS=0 mode) support for FreeRTOS.

Note that since lwIP may only be initialized once, and doesn’t itself provide a shutdown mechanism, lwIP itself may still

consume resources.

It is however safe to call lwip_freertos_init again later.

Parameters

context the async_context the lwip_freertos support was added to via lwip_freertos_init

lwip_freertos_init

bool lwip_freertos_init (async_context_t * context)

Initializes lwIP (NO_SYS=0 mode) support support for FreeRTOS using the provided async_context.

If the initialization succeeds, lwip_freertos_deinit() can be called to shutdown lwIP support

Parameters

context the async_context instance that provides the abstraction for handling asynchronous work. Note in

general this would be an async_context_freertos instance, though it doesn’t have to be.

Returns

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 409

true if the initialization succeeded

4.4.2.5. pico_lwip_nosys

Glue library for integration lwIP in NO_SYS=1 mode with the SDK.

4.4.2.5.1. Detailed Description

Simple init and deinit are all that is required to hook up lwIP via an async_context instance.

4.4.2.5.2. Functions

bool lwip_nosys_init (async_context_t *context)

Initializes lwIP (NO_SYS=1 mode) support support using the provided async_context.

void lwip_nosys_deinit (async_context_t *context)

De-initialize lwIP (NO_SYS=1 mode) support.

4.4.2.5.3. Function Documentation

lwip_nosys_deinit

void lwip_nosys_deinit (async_context_t * context)

De-initialize lwIP (NO_SYS=1 mode) support.

Note that since lwIP may only be initialized once, and doesn’t itself provide a shutdown mechanism, lwIP itself may still

consume resources

It is however safe to call lwip_nosys_init again later.

Parameters

context the async_context the lwip_nosys support was added to via lwip_nosys_init

lwip_nosys_init

bool lwip_nosys_init (async_context_t * context)

Initializes lwIP (NO_SYS=1 mode) support support using the provided async_context.

If the initialization succeeds, lwip_nosys_deinit() can be called to shutdown lwIP support

Parameters

context the async_context instance that provides the abstraction for handling asynchronous work.

Returns

true if the initialization succeeded

4.4.3. pico_cyw43_driver

A wrapper around the lower level cyw43_driver, that integrates it with pico_async_context for handling background

work.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 410

4.4.3.1. Modules

pico_btstack_cyw43

Low-level Bluetooth HCI support.

4.4.3.2. Functions

const hci_transport_t * hci_transport_cyw43_instance (void)

Get the Bluetooth HCI transport instance for cyw43.

bool cyw43_driver_init (struct async_context *context)

Initializes the lower level cyw43_driver and integrates it with the provided async_context.

void cyw43_driver_deinit (struct async_context *context)

De-initialize the lowever level cyw43_driver and unhooks it from the async_context.

4.4.3.3. Function Documentation

4.4.3.3.1. cyw43_driver_deinit

void cyw43_driver_deinit (struct async_context * context)

De-initialize the lowever level cyw43_driver and unhooks it from the async_context.

Parameters

context the async_context the cyw43_driver support was added to via cyw43_driver_init

4.4.3.3.2. cyw43_driver_init

bool cyw43_driver_init (struct async_context * context)

Initializes the lower level cyw43_driver and integrates it with the provided async_context.

If the initialization succeeds, lwip_nosys_deinit() can be called to shutdown lwIP support

Parameters

context the async_context instance that provides the abstraction for handling asynchronous work.

Returns

true if the initialization succeeded

4.4.3.3.3. hci_transport_cyw43_instance

const hci_transport_t * hci_transport_cyw43_instance (void)

Get the Bluetooth HCI transport instance for cyw43.

Returns

An instantiation of the hci_transport_t interface for the cyw43 chipset

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 411

4.4.3.4. pico_btstack_cyw43

Low-level Bluetooth HCI support.

4.4.3.4.1. Detailed Description

This library provides utility functions to initialise and de-initialise BTstack for CYW43,

4.4.4. pico_cyw43_arch

Architecture for integrating the CYW43 driver (for the wireless on Pico W) and lwIP (for TCP/IP stack) into the SDK. It is

also necessary for accessing the on-board LED on Pico W.

4.4.4.1. Detailed Description

Both the low level cyw43_driver and the lwIP stack require periodic servicing, and have limitations on whether they can be

called from multiple cores/threads.

pico_cyw43_arch attempts to abstract these complications into several behavioral groups:

• 'poll' - This not multi-core/IRQ safe, and requires the user to call cyw43_arch_poll periodically from their main loop

• 'thread_safe_background' - This is multi-core/thread/task safe, and maintenance of the driver and TCP/IP stack is

handled automatically in the background

• 'freertos' - This is multi-core/thread/task safe, and uses a separate FreeRTOS task to handle lwIP and and driver

work.

As of right now, lwIP is the only supported TCP/IP stack, however the use of pico_cyw43_arch is intended to be

independent of the particular TCP/IP stack used (and possibly Bluetooth stack used) in the future. For this reason, the

integration of lwIP is handled in the base (pico_cyw43_arch) library based on the #define CYW43_LWIP used by the

cyw43_driver.

 NOTE

As of version 1.5.0 of the Raspberry Pi Pico SDK, the pico_cyw43_arch library no longer directly implements the distinct

behavioral abstractions. This is now handled by the more general pico_async_context library. The user facing

behavior of pico_cyw43_arch has not changed as a result of this implementation detail, however pico_cyw43_arch is

now just a thin wrapper which creates an appropriate async_context and makes a simple call to add lwIP or

cyw43_driver support as appropriate. You are free to perform this context creation and adding of lwIP, cyw43_driver

or indeed any other additional future protocol/driver support to your async_context, however for now

pico_cyw43_arch does still provide a few cyw43_ specific (i.e. Pico W) APIs for connection management, locking

and GPIO interaction.

The connection management APIs at least may be moved to a more generic library in a future release. The locking

methods are now backed by their pico_async_context equivalents, and those methods may be used interchangeably

(see cyw43_arch_lwip_begin, cyw43_arch_lwip_end and cyw43_arch_lwip_check for more details).

For examples of creating of your own async_context and addition of cyw43_driver and lwIP support, please refer to the

specific source files cyw43_arch_poll.c, cyw43_arch_threadsafe_background.c and cyw43_arch_freertos.c.

Whilst you can use the pico_cyw43_arch library directly and specify CYW43_LWIP (and other defines) yourself, several

other libraries are made available to the build which aggregate the defines and other dependencies for you:

• pico_cyw43_arch_lwip_poll - For using the RAW lwIP API (in NO_SYS=1 mode) without any background processing or

multi-core/thread safety.

The user must call cyw43_arch_poll periodically from their main loop.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 412

This wrapper library:

◦ Sets CYW43_LWIP=1 to enable lwIP support in pico_cyw43_arch and cyw43_driver.

◦ Sets PICO_CYW43_ARCH_POLL=1 to select the polling behavior.

◦ Adds the pico_lwip as a dependency to pull in lwIP.

• pico_cyw43_arch_lwip_threadsafe_background - For using the RAW lwIP API (in NO_SYS=1 mode) with multi-

core/thread safety, and automatic servicing of the cyw43_driver and lwIP in background.

Calls into the cyw43_driver high level API (cyw43.h) may be made from either core or from lwIP callbacks, however

calls into lwIP (which is not thread-safe) other than those made from lwIP callbacks, must be bracketed with

cyw43_arch_lwip_begin and cyw43_arch_lwip_end. It is fine to bracket calls made from within lwIP callbacks too;

you just don’t have to.

 NOTE

lwIP callbacks happen in a (low priority) IRQ context (similar to an alarm callback), so care should be taken

when interacting with other code.

This wrapper library:

◦ Sets CYW43_LWIP=1 to enable lwIP support in pico_cyw43_arch and cyw43_driver

◦ Sets PICO_CYW43_ARCH_THREADSAFE_BACKGROUND=1 to select the thread-safe/non-polling behavior.

◦ Adds the pico_lwip as a dependency to pull in lwIP.

This library can also be used under the RP2040 port of FreeRTOS with lwIP in NO_SYS=1 mode (allowing you to call

cyw43_driver APIs from any task, and to call lwIP from lwIP callbacks, or from any task if you bracket the calls with

cyw43_arch_lwip_begin and cyw43_arch_lwip_end. Again, you should be careful about what you do in lwIP

callbacks, as you cannot call most FreeRTOS APIs from within an IRQ context. Unless you have good reason, you

should probably use the full FreeRTOS integration (with NO_SYS=0) provided by pico_cyw43_arch_lwip_sys_freertos.

• pico_cyw43_arch_lwip_sys_freertos - For using the full lwIP API including blocking sockets in OS (NO_SYS=0) mode,

along with with multi-core/task/thread safety, and automatic servicing of the cyw43_driver and the lwIP stack.

This wrapper library:

◦ Sets CYW43_LWIP=1 to enable lwIP support in pico_cyw43_arch and cyw43_driver.

◦ Sets PICO_CYW43_ARCH_FREERTOS=1 to select the NO_SYS=0 lwip/FreeRTOS integration

◦ Sets LWIP_PROVIDE_ERRNO=1 to provide error numbers needed for compilation without an OS

◦ Adds the pico_lwip as a dependency to pull in lwIP.

◦ Adds the lwIP/FreeRTOS code from lwip-contrib (in the contrib directory of lwIP)

Calls into the cyw43_driver high level API (cyw43.h) may be made from any task or from lwIP callbacks, but not from

IRQs. Calls into the lwIP RAW API (which is not thread safe) must be bracketed with cyw43_arch_lwip_begin and

cyw43_arch_lwip_end. It is fine to bracket calls made from within lwIP callbacks too; you just don’t have to.

 NOTE

this wrapper library requires you to link FreeRTOS functionality with your application yourself.

• pico_cyw43_arch_none - If you do not need the TCP/IP stack but wish to use the on-board LED.

This wrapper library:

◦ Sets CYW43_LWIP=0 to disable lwIP support in pico_cyw43_arch and cyw43_driver

4.4.4.2. Modules

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 413

cyw43_driver

Driver used for Pico W wireless.

4.4.4.3. Functions

int cyw43_arch_init (void)

Initialize the CYW43 architecture.

int cyw43_arch_init_with_country (uint32_t country)

Initialize the CYW43 architecture for use in a specific country.

void cyw43_arch_deinit (void)

De-initialize the CYW43 architecture.

async_context_t * cyw43_arch_async_context (void)

Return the current async_context currently in use by the cyw43_arch code.

void cyw43_arch_set_async_context (async_context_t *context)

Set the async_context to be used by the cyw43_arch_init.

async_context_t * cyw43_arch_init_default_async_context (void)

Initialize the default async_context for the current cyw43_arch type.

void cyw43_arch_poll (void)

Perform any processing required by the cyw43_driver or the TCP/IP stack.

void cyw43_arch_wait_for_work_until (absolute_time_t until)

Sleep until there is cyw43_driver work to be done.

uint32_t cyw43_arch_get_country_code (void)

Return the country code used to initialize cyw43_arch.

void cyw43_arch_enable_sta_mode (void)

Enables Wi-Fi STA (Station) mode.

void cyw43_arch_disable_sta_mode (void)

Disables Wi-Fi STA (Station) mode.

void cyw43_arch_enable_ap_mode (const char *ssid, const char *password, uint32_t auth)

Enables Wi-Fi AP (Access point) mode.

void cyw43_arch_disable_ap_mode (void)

Disables Wi-Fi AP (Access point) mode.

int cyw43_arch_wifi_connect_blocking (const char *ssid, const char *pw, uint32_t auth)

Attempt to connect to a wireless access point, blocking until the network is joined or a failure is detected.

int cyw43_arch_wifi_connect_bssid_blocking (const char *ssid, const uint8_t *bssid, const char *pw, uint32_t auth)

Attempt to connect to a wireless access point specified by SSID and BSSID, blocking until the network is joined or a

failure is detected.

int cyw43_arch_wifi_connect_timeout_ms (const char *ssid, const char *pw, uint32_t auth, uint32_t timeout)

Attempt to connect to a wireless access point, blocking until the network is joined, a failure is detected or a timeout

occurs.

int cyw43_arch_wifi_connect_bssid_timeout_ms (const char *ssid, const uint8_t *bssid, const char *pw, uint32_t auth,

uint32_t timeout)

Attempt to connect to a wireless access point specified by SSID and BSSID, blocking until the network is joined, a

failure is detected or a timeout occurs.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 414

int cyw43_arch_wifi_connect_async (const char *ssid, const char *pw, uint32_t auth)

Start attempting to connect to a wireless access point.

int cyw43_arch_wifi_connect_bssid_async (const char *ssid, const uint8_t *bssid, const char *pw, uint32_t auth)

Start attempting to connect to a wireless access point specified by SSID and BSSID.

void cyw43_arch_gpio_put (uint wl_gpio, bool value)

Set a GPIO pin on the wireless chip to a given value.

bool cyw43_arch_gpio_get (uint wl_gpio)

Read the value of a GPIO pin on the wireless chip.

4.4.4.4. Function Documentation

4.4.4.4.1. cyw43_arch_async_context

async_context_t * cyw43_arch_async_context (void)

Return the current async_context currently in use by the cyw43_arch code.

Returns

the async_context.

4.4.4.4.2. cyw43_arch_deinit

void cyw43_arch_deinit (void)

De-initialize the CYW43 architecture.

This method de-initializes the cyw43_driver code and de-initializes the lwIP stack (if it was enabled at build time). Note

this method should always be called from the same core (or RTOS task, depending on the environment) as

cyw43_arch_init.

Additionally if the cyw43_arch is using its own async_context instance, then that instance is de-initialized.

4.4.4.4.3. cyw43_arch_disable_ap_mode

void cyw43_arch_disable_ap_mode (void)

Disables Wi-Fi AP (Access point) mode.

This Disbles the Wi-Fi in Access Point mode.

4.4.4.4.4. cyw43_arch_disable_sta_mode

void cyw43_arch_disable_sta_mode (void)

Disables Wi-Fi STA (Station) mode.

This disables the Wi-Fi in Station mode, disconnecting any active connection. You should subsequently check the status

by calling cyw43_wifi_link_status.

4.4.4.4.5. cyw43_arch_enable_ap_mode

void cyw43_arch_enable_ap_mode (const char * ssid, const char * password, uint32_t auth)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 415

Enables Wi-Fi AP (Access point) mode.

This enables the Wi-Fi in Access Point mode such that connections can be made to the device by other Wi-Fi clients

Parameters

ssid the name for the access point

password the password to use or NULL for no password.

auth the authorization type to use when the password is enabled. Values are

CYW43_AUTH_WPA_TKIP_PSK, CYW43_AUTH_WPA2_AES_PSK, or

CYW43_AUTH_WPA2_MIXED_PSK (see CYW43_AUTH_)

4.4.4.4.6. cyw43_arch_enable_sta_mode

void cyw43_arch_enable_sta_mode (void)

Enables Wi-Fi STA (Station) mode.

This enables the Wi-Fi in Station mode such that connections can be made to other Wi-Fi Access Points

4.4.4.4.7. cyw43_arch_get_country_code

uint32_t cyw43_arch_get_country_code (void)

Return the country code used to initialize cyw43_arch.

Returns

the country code (see CYW43_COUNTRY_)

4.4.4.4.8. cyw43_arch_gpio_get

bool cyw43_arch_gpio_get (uint wl_gpio)

Read the value of a GPIO pin on the wireless chip.

 NOTE

this method does not check for errors setting the GPIO. You can use the lower level cyw43_gpio_get instead if you

wish to check for errors.

Parameters

wl_gpio the GPIO number on the wireless chip

Returns

true if the GPIO is high, false otherwise

4.4.4.4.9. cyw43_arch_gpio_put

void cyw43_arch_gpio_put (uint wl_gpio, bool value)

Set a GPIO pin on the wireless chip to a given value.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 416

 NOTE

this method does not check for errors setting the GPIO. You can use the lower level cyw43_gpio_set instead if you

wish to check for errors.

Parameters

wl_gpio the GPIO number on the wireless chip

value true to set the GPIO, false to clear it.

4.4.4.4.10. cyw43_arch_init

int cyw43_arch_init (void)

Initialize the CYW43 architecture.

This method initializes the cyw43_driver code and initializes the lwIP stack (if it was enabled at build time). This method

must be called prior to using any other pico_cyw43_arch, cyw43_driver or lwIP functions.

 NOTE

this method initializes wireless with a country code of PICO_CYW43_ARCH_DEFAULT_COUNTRY_CODE which defaults to

CYW43_COUNTRY_WORLDWIDE. Worldwide settings may not give the best performance; consider setting

PICO_CYW43_ARCH_DEFAULT_COUNTRY_CODE to a different value or calling cyw43_arch_init_with_country

By default this method initializes the cyw43_arch code’s own async_context by calling

cyw43_arch_init_default_async_context, however the user can specify use of their own async_context by calling

cyw43_arch_set_async_context() before calling this method

Returns

0 if the initialization is successful, an error code otherwise

See also

pico_error_codes

4.4.4.4.11. cyw43_arch_init_default_async_context

async_context_t * cyw43_arch_init_default_async_context (void)

Initialize the default async_context for the current cyw43_arch type.

This method initializes and returns a pointer to the static async_context associated with cyw43_arch. This method is

called by cyw43_arch_init automatically if a different async_context has not been set by cyw43_arch_set_async_context

Returns

the context or NULL if initialization failed.

4.4.4.4.12. cyw43_arch_init_with_country

int cyw43_arch_init_with_country (uint32_t country)

Initialize the CYW43 architecture for use in a specific country.

This method initializes the cyw43_driver code and initializes the lwIP stack (if it was enabled at build time). This method

must be called prior to using any other pico_cyw43_arch, cyw43_driver or lwIP functions.

By default this method initializes the cyw43_arch code’s own async_context by calling

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 417

cyw43_arch_init_default_async_context, however the user can specify use of their own async_context by calling

cyw43_arch_set_async_context() before calling this method

Parameters

country the country code to use (see CYW43_COUNTRY_)

Returns

0 if the initialization is successful, an error code otherwise

See also

pico_error_codes

4.4.4.4.13. cyw43_arch_poll

void cyw43_arch_poll (void)

Perform any processing required by the cyw43_driver or the TCP/IP stack.

This method must be called periodically from the main loop when using a polling style pico_cyw43_arch (e.g.

pico_cyw43_arch_lwip_poll). It may be called in other styles, but it is unnecessary to do so.

4.4.4.4.14. cyw43_arch_set_async_context

void cyw43_arch_set_async_context (async_context_t * context)

Set the async_context to be used by the cyw43_arch_init.

 NOTE

This method must be called before calling cyw43_arch_init or cyw43_arch_init_with_country if you wish to use a

custom async_context instance.

Parameters

context the async_context to be used

4.4.4.4.15. cyw43_arch_wait_for_work_until

void cyw43_arch_wait_for_work_until (absolute_time_t until)

Sleep until there is cyw43_driver work to be done.

This method may be called by code that is waiting for an event to come from the cyw43_driver, and has no work to do,

but would like to sleep without blocking any background work associated with the cyw43_driver.

Parameters

until the time to wait until if there is no work to do.

4.4.4.4.16. cyw43_arch_wifi_connect_async

int cyw43_arch_wifi_connect_async (const char * ssid, const char * pw, uint32_t auth)

Start attempting to connect to a wireless access point.

This method tells the CYW43 driver to start connecting to an access point. You should subsequently check the status by

calling cyw43_wifi_link_status.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 418

ssid the network name to connect to

pw the network password or NULL if there is no password required

auth the authorization type to use when the password is enabled. Values are CYW43_AUTH_WPA_TKIP_PSK,

CYW43_AUTH_WPA2_AES_PSK, or CYW43_AUTH_WPA2_MIXED_PSK (see CYW43_AUTH_)

Returns

0 if the scan was started successfully, an error code otherwise

See also

pico_error_codes

4.4.4.4.17. cyw43_arch_wifi_connect_blocking

int cyw43_arch_wifi_connect_blocking (const char * ssid, const char * pw, uint32_t auth)

Attempt to connect to a wireless access point, blocking until the network is joined or a failure is detected.

Parameters

ssid the network name to connect to

pw the network password or NULL if there is no password required

auth the authorization type to use when the password is enabled. Values are CYW43_AUTH_WPA_TKIP_PSK,

CYW43_AUTH_WPA2_AES_PSK, or CYW43_AUTH_WPA2_MIXED_PSK (see CYW43_AUTH_)

Returns

0 if the initialization is successful, an error code otherwise

See also

pico_error_codes

4.4.4.4.18. cyw43_arch_wifi_connect_bssid_async

int cyw43_arch_wifi_connect_bssid_async (const char * ssid, const uint8_t * bssid, const char * pw, uint32_t auth)

Start attempting to connect to a wireless access point specified by SSID and BSSID.

This method tells the CYW43 driver to start connecting to an access point. You should subsequently check the status by

calling cyw43_wifi_link_status.

Parameters

ssid the network name to connect to

bssid the network BSSID to connect to or NULL if ignored

pw the network password or NULL if there is no password required

auth the authorization type to use when the password is enabled. Values are CYW43_AUTH_WPA_TKIP_PSK,

CYW43_AUTH_WPA2_AES_PSK, or CYW43_AUTH_WPA2_MIXED_PSK (see CYW43_AUTH_)

Returns

0 if the scan was started successfully, an error code otherwise

See also

pico_error_codes

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 419

4.4.4.4.19. cyw43_arch_wifi_connect_bssid_blocking

int cyw43_arch_wifi_connect_bssid_blocking (const char * ssid, const uint8_t * bssid, const char * pw, uint32_t auth)

Attempt to connect to a wireless access point specified by SSID and BSSID, blocking until the network is joined or a

failure is detected.

Parameters

ssid the network name to connect to

bssid the network BSSID to connect to or NULL if ignored

pw the network password or NULL if there is no password required

auth the authorization type to use when the password is enabled. Values are CYW43_AUTH_WPA_TKIP_PSK,

CYW43_AUTH_WPA2_AES_PSK, or CYW43_AUTH_WPA2_MIXED_PSK (see CYW43_AUTH_)

Returns

0 if the initialization is successful, an error code otherwise

See also

pico_error_codes

4.4.4.4.20. cyw43_arch_wifi_connect_bssid_timeout_ms

int cyw43_arch_wifi_connect_bssid_timeout_ms (const char * ssid, const uint8_t * bssid, const char * pw, uint32_t auth,

uint32_t timeout)

Attempt to connect to a wireless access point specified by SSID and BSSID, blocking until the network is joined, a failure

is detected or a timeout occurs.

Parameters

ssid the network name to connect to

bssid the network BSSID to connect to or NULL if ignored

pw the network password or NULL if there is no password required

auth the authorization type to use when the password is enabled. Values are

CYW43_AUTH_WPA_TKIP_PSK, CYW43_AUTH_WPA2_AES_PSK, or

CYW43_AUTH_WPA2_MIXED_PSK (see CYW43_AUTH_)

timeout how long to wait in milliseconds for a connection to succeed before giving up

Returns

0 if the initialization is successful, an error code otherwise

See also

pico_error_codes

4.4.4.4.21. cyw43_arch_wifi_connect_timeout_ms

int cyw43_arch_wifi_connect_timeout_ms (const char * ssid, const char * pw, uint32_t auth, uint32_t timeout)

Attempt to connect to a wireless access point, blocking until the network is joined, a failure is detected or a timeout

occurs.

Parameters

ssid the network name to connect to

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 420

pw the network password or NULL if there is no password required

auth the authorization type to use when the password is enabled. Values are

CYW43_AUTH_WPA_TKIP_PSK, CYW43_AUTH_WPA2_AES_PSK, or

CYW43_AUTH_WPA2_MIXED_PSK (see CYW43_AUTH_)

timeout how long to wait in milliseconds for a connection to succeed before giving up

Returns

0 if the initialization is successful, an error code otherwise

See also

pico_error_codes

4.4.4.5. cyw43_driver

Driver used for Pico W wireless.

4.4.4.5.1. Modules

cyw43_ll

Low Level CYW43 driver interface.

4.4.4.5.2. Macros

• #define CYW43_DEFAULT_PM cyw43_pm_value(CYW43_PM2_POWERSAVE_MODE, 200, 1, 1, 10)

• #define CYW43_AGGRESSIVE_PM cyw43_pm_value(CYW43_PM2_POWERSAVE_MODE, 2000, 1, 1, 10)

• #define CYW43_PERFORMANCE_PM cyw43_pm_value(CYW43_PM2_POWERSAVE_MODE, 20, 1, 1, 1)

• #define CYW43_COUNTRY(A, B, REV) ((unsigned char)(A) | ((unsigned char)(B) << 8) | ((REV) << 16))

4.4.4.5.3. Typedefs

typedef struct _cyw43_t cyw43_t

4.4.4.5.4. Functions

void cyw43_init (cyw43_t *self)

Initialize the driver.

void cyw43_deinit (cyw43_t *self)

Shut the driver down.

int cyw43_ioctl (cyw43_t *self, uint32_t cmd, size_t len, uint8_t *buf, uint32_t iface)

Send an ioctl command to cyw43.

int cyw43_send_ethernet (cyw43_t *self, int itf, size_t len, const void *buf, bool is_pbuf)

Send a raw ethernet packet.

int cyw43_wifi_pm (cyw43_t *self, uint32_t pm)

Set the wifi power management mode.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 421

int cyw43_wifi_get_pm (cyw43_t *self, uint32_t *pm)

Get the wifi power management mode.

int cyw43_wifi_link_status (cyw43_t *self, int itf)

Get the wifi link status.

void cyw43_wifi_set_up (cyw43_t *self, int itf, bool up, uint32_t country)

Set up and initialise wifi.

int cyw43_wifi_get_mac (cyw43_t *self, int itf, uint8_t mac[6])

Get the mac address of the device.

int cyw43_wifi_update_multicast_filter (cyw43_t *self, uint8_t *addr, bool add)

Add/remove multicast group address.

int cyw43_wifi_scan (cyw43_t *self, cyw43_wifi_scan_options_t *opts, void *env, int(*result_cb)(void *, const

cyw43_ev_scan_result_t *))

Perform a wifi scan for wifi networks.

static bool cyw43_wifi_scan_active (cyw43_t *self)

Determine if a wifi scan is in progress.

int cyw43_wifi_join (cyw43_t *self, size_t ssid_len, const uint8_t *ssid, size_t key_len, const uint8_t *key, uint32_t

auth_type, const uint8_t *bssid, uint32_t channel)

Connect or join a wifi network.

int cyw43_wifi_leave (cyw43_t *self, int itf)

Disassociate from a wifi network.

int cyw43_wifi_get_rssi (cyw43_t *self, int32_t *rssi)

Get the signal strength (RSSI) of the wifi network.

int cyw43_wifi_get_bssid (cyw43_t *self, uint8_t bssid[6])

Get the BSSID of the connected wifi network.

static void cyw43_wifi_ap_get_ssid (cyw43_t *self, size_t *len, const uint8_t **buf)

Get the ssid for the access point.

static uint32_t cyw43_wifi_ap_get_auth (cyw43_t *self)

Get the security authorisation used in AP mode.

static void cyw43_wifi_ap_set_channel (cyw43_t *self, uint32_t channel)

Set the the channel for the access point.

static void cyw43_wifi_ap_set_ssid (cyw43_t *self, size_t len, const uint8_t *buf)

Set the ssid for the access point.

static void cyw43_wifi_ap_set_password (cyw43_t *self, size_t len, const uint8_t *buf)

Set the password for the wifi access point.

static void cyw43_wifi_ap_set_auth (cyw43_t *self, uint32_t auth)

Set the security authorisation used in AP mode.

void cyw43_wifi_ap_get_max_stas (cyw43_t *self, int *max_stas)

Get the maximum number of devices (STAs) that can be associated with the wifi access point.

void cyw43_wifi_ap_get_stas (cyw43_t *self, int *num_stas, uint8_t *macs)

Get the number of devices (STAs) associated with the wifi access point.

static bool cyw43_is_initialized (cyw43_t *self)

Determines if the cyw43 driver been initialised.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 422

void cyw43_cb_tcpip_init (cyw43_t *self, int itf)

Initialise the IP stack.

void cyw43_cb_tcpip_deinit (cyw43_t *self, int itf)

Deinitialise the IP stack.

void cyw43_cb_tcpip_set_link_up (cyw43_t *self, int itf)

Notify the IP stack that the link is up.

void cyw43_cb_tcpip_set_link_down (cyw43_t *self, int itf)

Notify the IP stack that the link is down.

int cyw43_tcpip_link_status (cyw43_t *self, int itf)

Get the link status.

static uint32_t cyw43_pm_value (uint8_t pm_mode, uint16_t pm2_sleep_ret_ms, uint8_t li_beacon_period, uint8_t

li_dtim_period, uint8_t li_assoc)

Return a power management value to pass to cyw43_wifi_pm.

4.4.4.5.5. Variables

cyw43_t cyw43_state

void(* cyw43_poll)(void)

uint32_t cyw43_sleep

4.4.4.5.6. CYW43 driver version as components

Current version of the CYW43 driver as major/minor/micro components

CYW43_VERSION_MAJOR

#define CYW43_VERSION_MAJOR 1

CYW43_VERSION_MINOR

#define CYW43_VERSION_MINOR 0

CYW43_VERSION_MICRO

#define CYW43_VERSION_MICRO 3

4.4.4.5.7. CYW43 driver version

Combined CYW43 driver version as a 32-bit number

CYW43_VERSION

#define CYW43_VERSION (CYW43_VERSION_MAJOR << 16 | CYW43_VERSION_MINOR << 8 | CYW43_VERSION_MICRO)

4.4.4.5.8. Trace flags

CYW43_TRACE_ASYNC_EV

#define CYW43_TRACE_ASYNC_EV (0x0001)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 423

CYW43_TRACE_ETH_TX

#define CYW43_TRACE_ETH_TX (0x0002)

CYW43_TRACE_ETH_RX

#define CYW43_TRACE_ETH_RX (0x0004)

CYW43_TRACE_ETH_FULL

#define CYW43_TRACE_ETH_FULL (0x0008)

CYW43_TRACE_MAC

#define CYW43_TRACE_MAC (0x0010)

4.4.4.5.9. Link status

See also

status_name() to get a user readable name of the status for debug

cyw43_wifi_link_status() to get the wifi status

cyw43_tcpip_link_status() to get the overall link status

CYW43_LINK_DOWN

#define CYW43_LINK_DOWN (0)

link is down

CYW43_LINK_JOIN

#define CYW43_LINK_JOIN (1)

Connected to wifi.

CYW43_LINK_NOIP

#define CYW43_LINK_NOIP (2)

Connected to wifi, but no IP address.

CYW43_LINK_UP

#define CYW43_LINK_UP (3)

Connected to wifi with an IP address.

CYW43_LINK_FAIL

#define CYW43_LINK_FAIL (-1)

Connection failed.

CYW43_LINK_NONET

#define CYW43_LINK_NONET (-2)

No matching SSID found (could be out of range, or down)

CYW43_LINK_BADAUTH

#define CYW43_LINK_BADAUTH (-3)

Authenticatation failure

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 424

4.4.4.5.10. Country codes

CYW43_COUNTRY_WORLDWIDE

#define CYW43_COUNTRY_WORLDWIDE CYW43_COUNTRY('X', 'X', 0)

CYW43_COUNTRY_AUSTRALIA

#define CYW43_COUNTRY_AUSTRALIA CYW43_COUNTRY('A', 'U', 0)

CYW43_COUNTRY_AUSTRIA

#define CYW43_COUNTRY_AUSTRIA CYW43_COUNTRY('A', 'T', 0)

CYW43_COUNTRY_BELGIUM

#define CYW43_COUNTRY_BELGIUM CYW43_COUNTRY('B', 'E', 0)

CYW43_COUNTRY_BRAZIL

#define CYW43_COUNTRY_BRAZIL CYW43_COUNTRY('B', 'R', 0)

CYW43_COUNTRY_CANADA

#define CYW43_COUNTRY_CANADA CYW43_COUNTRY('C', 'A', 0)

CYW43_COUNTRY_CHILE

#define CYW43_COUNTRY_CHILE CYW43_COUNTRY('C', 'L', 0)

CYW43_COUNTRY_CHINA

#define CYW43_COUNTRY_CHINA CYW43_COUNTRY('C', 'N', 0)

CYW43_COUNTRY_COLOMBIA

#define CYW43_COUNTRY_COLOMBIA CYW43_COUNTRY('C', 'O', 0)

CYW43_COUNTRY_CZECH_REPUBLIC

#define CYW43_COUNTRY_CZECH_REPUBLIC CYW43_COUNTRY('C', 'Z', 0)

CYW43_COUNTRY_DENMARK

#define CYW43_COUNTRY_DENMARK CYW43_COUNTRY('D', 'K', 0)

CYW43_COUNTRY_ESTONIA

#define CYW43_COUNTRY_ESTONIA CYW43_COUNTRY('E', 'E', 0)

CYW43_COUNTRY_FINLAND

#define CYW43_COUNTRY_FINLAND CYW43_COUNTRY('F', 'I', 0)

CYW43_COUNTRY_FRANCE

#define CYW43_COUNTRY_FRANCE CYW43_COUNTRY('F', 'R', 0)

CYW43_COUNTRY_GERMANY

#define CYW43_COUNTRY_GERMANY CYW43_COUNTRY('D', 'E', 0)

CYW43_COUNTRY_GREECE

#define CYW43_COUNTRY_GREECE CYW43_COUNTRY('G', 'R', 0)

CYW43_COUNTRY_HONG_KONG

#define CYW43_COUNTRY_HONG_KONG CYW43_COUNTRY('H', 'K', 0)

CYW43_COUNTRY_HUNGARY

#define CYW43_COUNTRY_HUNGARY CYW43_COUNTRY('H', 'U', 0)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 425

CYW43_COUNTRY_ICELAND

#define CYW43_COUNTRY_ICELAND CYW43_COUNTRY('I', 'S', 0)

CYW43_COUNTRY_INDIA

#define CYW43_COUNTRY_INDIA CYW43_COUNTRY('I', 'N', 0)

CYW43_COUNTRY_ISRAEL

#define CYW43_COUNTRY_ISRAEL CYW43_COUNTRY('I', 'L', 0)

CYW43_COUNTRY_ITALY

#define CYW43_COUNTRY_ITALY CYW43_COUNTRY('I', 'T', 0)

CYW43_COUNTRY_JAPAN

#define CYW43_COUNTRY_JAPAN CYW43_COUNTRY('J', 'P', 0)

CYW43_COUNTRY_KENYA

#define CYW43_COUNTRY_KENYA CYW43_COUNTRY('K', 'E', 0)

CYW43_COUNTRY_LATVIA

#define CYW43_COUNTRY_LATVIA CYW43_COUNTRY('L', 'V', 0)

CYW43_COUNTRY_LIECHTENSTEIN

#define CYW43_COUNTRY_LIECHTENSTEIN CYW43_COUNTRY('L', 'I', 0)

CYW43_COUNTRY_LITHUANIA

#define CYW43_COUNTRY_LITHUANIA CYW43_COUNTRY('L', 'T', 0)

CYW43_COUNTRY_LUXEMBOURG

#define CYW43_COUNTRY_LUXEMBOURG CYW43_COUNTRY('L', 'U', 0)

CYW43_COUNTRY_MALAYSIA

#define CYW43_COUNTRY_MALAYSIA CYW43_COUNTRY('M', 'Y', 0)

CYW43_COUNTRY_MALTA

#define CYW43_COUNTRY_MALTA CYW43_COUNTRY('M', 'T', 0)

CYW43_COUNTRY_MEXICO

#define CYW43_COUNTRY_MEXICO CYW43_COUNTRY('M', 'X', 0)

CYW43_COUNTRY_NETHERLANDS

#define CYW43_COUNTRY_NETHERLANDS CYW43_COUNTRY('N', 'L', 0)

CYW43_COUNTRY_NEW_ZEALAND

#define CYW43_COUNTRY_NEW_ZEALAND CYW43_COUNTRY('N', 'Z', 0)

CYW43_COUNTRY_NIGERIA

#define CYW43_COUNTRY_NIGERIA CYW43_COUNTRY('N', 'G', 0)

CYW43_COUNTRY_NORWAY

#define CYW43_COUNTRY_NORWAY CYW43_COUNTRY('N', 'O', 0)

CYW43_COUNTRY_PERU

#define CYW43_COUNTRY_PERU CYW43_COUNTRY('P', 'E', 0)

CYW43_COUNTRY_PHILIPPINES

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 426

#define CYW43_COUNTRY_PHILIPPINES CYW43_COUNTRY('P', 'H', 0)

CYW43_COUNTRY_POLAND

#define CYW43_COUNTRY_POLAND CYW43_COUNTRY('P', 'L', 0)

CYW43_COUNTRY_PORTUGAL

#define CYW43_COUNTRY_PORTUGAL CYW43_COUNTRY('P', 'T', 0)

CYW43_COUNTRY_SINGAPORE

#define CYW43_COUNTRY_SINGAPORE CYW43_COUNTRY('S', 'G', 0)

CYW43_COUNTRY_SLOVAKIA

#define CYW43_COUNTRY_SLOVAKIA CYW43_COUNTRY('S', 'K', 0)

CYW43_COUNTRY_SLOVENIA

#define CYW43_COUNTRY_SLOVENIA CYW43_COUNTRY('S', 'I', 0)

CYW43_COUNTRY_SOUTH_AFRICA

#define CYW43_COUNTRY_SOUTH_AFRICA CYW43_COUNTRY('Z', 'A', 0)

CYW43_COUNTRY_SOUTH_KOREA

#define CYW43_COUNTRY_SOUTH_KOREA CYW43_COUNTRY('K', 'R', 0)

CYW43_COUNTRY_SPAIN

#define CYW43_COUNTRY_SPAIN CYW43_COUNTRY('E', 'S', 0)

CYW43_COUNTRY_SWEDEN

#define CYW43_COUNTRY_SWEDEN CYW43_COUNTRY('S', 'E', 0)

CYW43_COUNTRY_SWITZERLAND

#define CYW43_COUNTRY_SWITZERLAND CYW43_COUNTRY('C', 'H', 0)

CYW43_COUNTRY_TAIWAN

#define CYW43_COUNTRY_TAIWAN CYW43_COUNTRY('T', 'W', 0)

CYW43_COUNTRY_THAILAND

#define CYW43_COUNTRY_THAILAND CYW43_COUNTRY('T', 'H', 0)

CYW43_COUNTRY_TURKEY

#define CYW43_COUNTRY_TURKEY CYW43_COUNTRY('T', 'R', 0)

CYW43_COUNTRY_UK

#define CYW43_COUNTRY_UK CYW43_COUNTRY('G', 'B', 0)

CYW43_COUNTRY_USA

#define CYW43_COUNTRY_USA CYW43_COUNTRY('U', 'S', 0)

4.4.4.5.11. Macro Definition Documentation

CYW43_DEFAULT_PM

#define CYW43_DEFAULT_PM cyw43_pm_value(CYW43_PM2_POWERSAVE_MODE, 200, 1, 1, 10)

Default power management mode.

CYW43_AGGRESSIVE_PM

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 427

#define CYW43_AGGRESSIVE_PM cyw43_pm_value(CYW43_PM2_POWERSAVE_MODE, 2000, 1, 1, 10)

Aggressive power management mode for optimal power usage at the cost of performance.

CYW43_PERFORMANCE_PM

#define CYW43_PERFORMANCE_PM cyw43_pm_value(CYW43_PM2_POWERSAVE_MODE, 20, 1, 1, 1)

Performance power management mode where more power is used to increase performance.

CYW43_COUNTRY

#define CYW43_COUNTRY(A, B, REV) ((unsigned char)(A) | ((unsigned char)(B) << 8) | ((REV) << 16))

create a country code from the two character country and revision number

4.4.4.5.12. Typedef Documentation

cyw43_t

typedef struct _cyw43_t cyw43_t

4.4.4.5.13. Function Documentation

cyw43_cb_tcpip_deinit

void cyw43_cb_tcpip_deinit (cyw43_t * self, int itf)

Deinitialise the IP stack.

This method must be provided by the network stack interface It is called to close the IP stack and free resources.

Parameters

self the driver state object. This should always be &cyw43_state

itf the interface used, either CYW43_ITF_STA or CYW43_ITF_AP

cyw43_cb_tcpip_init

void cyw43_cb_tcpip_init (cyw43_t * self, int itf)

Initialise the IP stack.

This method must be provided by the network stack interface It is called to initialise the IP stack.

Parameters

self the driver state object. This should always be &cyw43_state

itf the interface used, either CYW43_ITF_STA or CYW43_ITF_AP

cyw43_cb_tcpip_set_link_down

void cyw43_cb_tcpip_set_link_down (cyw43_t * self, int itf)

Notify the IP stack that the link is down.

This method must be provided by the network stack interface It is called to notify the IP stack that the link is down.

Parameters

self the driver state object. This should always be &cyw43_state

itf the interface used, either CYW43_ITF_STA or CYW43_ITF_AP

cyw43_cb_tcpip_set_link_up

void cyw43_cb_tcpip_set_link_up (cyw43_t * self, int itf)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 428

Notify the IP stack that the link is up.

This method must be provided by the network stack interface It is called to notify the IP stack that the link is up. This

can, for example be used to request an IP address via DHCP.

Parameters

self the driver state object. This should always be &cyw43_state

itf the interface used, either CYW43_ITF_STA or CYW43_ITF_AP

cyw43_deinit

void cyw43_deinit (cyw43_t * self)

Shut the driver down.

This method will close the network interfaces, and free up resources

Parameters

self the driver state object. This should always be &cyw43_state

cyw43_init

void cyw43_init (cyw43_t * self)

Initialize the driver.

This method must be called before using the driver

Parameters

self the driver state object. This should always be &cyw43_state

cyw43_ioctl

int cyw43_ioctl (cyw43_t * self, uint32_t cmd, size_t len, uint8_t * buf, uint32_t iface)

Send an ioctl command to cyw43.

This method sends a command to cyw43.

Parameters

self the driver state object. This should always be &cyw43_state

cmd the command to send

len the amount of data to send with the command

buf a buffer containing the data to send

iface the interface to use, either CYW43_ITF_STA or CYW43_ITF_AP

Returns

0 on success

cyw43_is_initialized

static bool cyw43_is_initialized (cyw43_t * self) [inline], [static]

Determines if the cyw43 driver been initialised.

Returns true if the cyw43 driver has been initialised with a call to cyw43_init

Parameters

self the driver state object. This should always be &cyw43_state

Returns

True if the cyw43 driver has been initialised

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 429

cyw43_pm_value

static uint32_t cyw43_pm_value (uint8_t pm_mode, uint16_t pm2_sleep_ret_ms, uint8_t li_beacon_period, uint8_t

li_dtim_period, uint8_t li_assoc) [inline], [static]

Return a power management value to pass to cyw43_wifi_pm.

Generate the power management (PM) value to pass to cyw43_wifi_pm

pm_mode Meaning

CYW43_NO_POWERSAVE_MODE No power saving

CYW43_PM1_POWERSAVE_MODE Aggressive power saving which reduces wifi throughput

CYW43_PM2_POWERSAVE_MODE Power saving with High throughput (preferred). Saves

power when there is no wifi activity for some time.

See also

CYW43_DEFAULT_PM

CYW43_AGGRESSIVE_PM

CYW43_PERFORMANCE_PM

Parameters

pm_mode Power management mode

pm2_sleep_ret_ms The maximum time to wait before going back to sleep for CYW43_PM2_POWERSAVE_MODE

mode. Value measured in milliseconds and must be between 10 and 2000ms and divisible

by 10

li_beacon_period Wake period is measured in beacon periods

li_dtim_period Wake interval measured in DTIMs. If this is set to 0, the wake interval is measured in beacon

periods

li_assoc Wake interval sent to the access point

cyw43_send_ethernet

int cyw43_send_ethernet (cyw43_t * self, int itf, size_t len, const void * buf, bool is_pbuf)

Send a raw ethernet packet.

This method sends a raw ethernet packet.

Parameters

self the driver state object. This should always be &cyw43_state

itf interface to use, either CYW43_ITF_STA or CYW43_ITF_AP

len the amount of data to send

buf the data to send

is_pbuf true if buf points to an lwip struct pbuf

Returns

0 on success

cyw43_tcpip_link_status

int cyw43_tcpip_link_status (cyw43_t * self, int itf)

Get the link status.

Returns the status of the link which is a superset of the wifi link status returned by cyw43_wifi_link_status

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 430

 NOTE

If the link status is negative it indicates an error

link status Meaning

CYW43_LINK_DOWN Wifi down

CYW43_LINK_JOIN Connected to wifi

CYW43_LINK_NOIP Connected to wifi, but no IP address

CYW43_LINK_UP Connect to wifi with an IP address

CYW43_LINK_FAIL Connection failed

CYW43_LINK_NONET No matching SSID found (could be out of range, or down)

CYW43_LINK_BADAUTH Authenticatation failure

Parameters

self the driver state object. This should always be &cyw43_state

itf the interface for which to return the link status, should be CYW43_ITF_STA or CYW43_ITF_AP

Returns

A value representing the link status

cyw43_wifi_ap_get_auth

static uint32_t cyw43_wifi_ap_get_auth (cyw43_t * self) [inline], [static]

Get the security authorisation used in AP mode.

For access point (AP) mode, this method can be used to get the security authorisation mode.

Parameters

self the driver state object. This should always be &cyw43_state

Returns

the current security authorisation mode for the access point

cyw43_wifi_ap_get_max_stas

void cyw43_wifi_ap_get_max_stas (cyw43_t * self, int * max_stas)

Get the maximum number of devices (STAs) that can be associated with the wifi access point.

For access point (AP) mode, this method can be used to get the maximum number of devices that can be connected to

the wifi access point.

Parameters

self the driver state object. This should always be &cyw43_state

max_stas Returns the maximum number of devices (STAs) that can be connected to the access point (set to 0

on error)

cyw43_wifi_ap_get_ssid

static void cyw43_wifi_ap_get_ssid (cyw43_t * self, size_t * len, const uint8_t ** buf) [inline], [static]

Get the ssid for the access point.

For access point (AP) mode, this method can be used to get the SSID name of the wifi access point.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 431

self the driver state object. This should always be &cyw43_state

len Returns the length of the AP SSID name

buf Returns a pointer to an internal buffer containing the AP SSID name

cyw43_wifi_ap_get_stas

void cyw43_wifi_ap_get_stas (cyw43_t * self, int * num_stas, uint8_t * macs)

Get the number of devices (STAs) associated with the wifi access point.

For access point (AP) mode, this method can be used to get the number of devices and mac addresses of devices

connected to the wifi access point.

Parameters

self the driver state object. This should always be &cyw43_state

num_stas Caller must provide the number of MACs that will fit in the macs buffer; The supplied buffer should

have enough room for 6 bytes per MAC address. Returns the number of devices (STA) connected to

the access point.

macs Returns up to num_stas MAC addresses of devices (STA) connected to the access point. Call

cyw43_wifi_ap_get_max_stas to determine how many mac addresses can be returned.

cyw43_wifi_ap_set_auth

static void cyw43_wifi_ap_set_auth (cyw43_t * self, uint32_t auth) [inline], [static]

Set the security authorisation used in AP mode.

For access point (AP) mode, this method can be used to set how access to the access point is authorised.

Auth mode Meaning

CYW43_AUTH_OPEN Use an open access point with no authorisation required

CYW43_AUTH_WPA_TKIP_PSK Use WPA authorisation

CYW43_AUTH_WPA2_AES_PSK Use WPA2 (preferred)

CYW43_AUTH_WPA2_MIXED_PSK Use WPA2/WPA mixed (currently treated the same as

CYW43_AUTH_WPA2_AES_PSK)

Parameters

self the driver state object. This should always be &cyw43_state

auth Auth mode for the access point

cyw43_wifi_ap_set_channel

static void cyw43_wifi_ap_set_channel (cyw43_t * self, uint32_t channel) [inline], [static]

Set the the channel for the access point.

For access point (AP) mode, this method can be used to set the channel used for the wifi access point.

Parameters

self the driver state object. This should always be &cyw43_state

channel Wifi channel to use for the wifi access point

cyw43_wifi_ap_set_password

static void cyw43_wifi_ap_set_password (cyw43_t * self, size_t len, const uint8_t * buf) [inline], [static]

Set the password for the wifi access point.

For access point (AP) mode, this method can be used to set the password for the wifi access point.

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 432

Parameters

self the driver state object. This should always be &cyw43_state

len The length of the AP password

buf A buffer containing the AP password

cyw43_wifi_ap_set_ssid

static void cyw43_wifi_ap_set_ssid (cyw43_t * self, size_t len, const uint8_t * buf) [inline], [static]

Set the ssid for the access point.

For access point (AP) mode, this method can be used to set the SSID name of the wifi access point.

Parameters

self the driver state object. This should always be &cyw43_state

len The length of the AP SSID name

buf A buffer containing the AP SSID name

cyw43_wifi_get_bssid

int cyw43_wifi_get_bssid (cyw43_t * self, uint8_t bssid)

Get the BSSID of the connected wifi network.

Parameters

self the driver state object. This should always be &cyw43_state

bssid a buffer to receive the BSSID

Returns

0 on success

cyw43_wifi_get_mac

int cyw43_wifi_get_mac (cyw43_t * self, int itf, uint8_t mac)

Get the mac address of the device.

This method returns the mac address of the interface.

Parameters

self the driver state object. This should always be &cyw43_state

itf the interface to use, either CYW43_ITF_STA or CYW43_ITF_AP

mac a buffer to receive the mac address

Returns

0 on success

cyw43_wifi_get_pm

int cyw43_wifi_get_pm (cyw43_t * self, uint32_t * pm)

Get the wifi power management mode.

This method gets the power management mode used by cyw43. The value is expressed as an unsigned integer

0x00adbrrm where, m = pm_mode Power management mode rr = pm2_sleep_ret (in units of 10ms) b = li_beacon_period

d = li_dtim_period a = li_assoc

See also

cyw43_pm_value for an explanation of these values This should be called after cyw43_wifi_set_up

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 433

Parameters

self the driver state object. This should always be &cyw43_state

pm Power management value

Returns

0 on success

cyw43_wifi_get_rssi

int cyw43_wifi_get_rssi (cyw43_t * self, int32_t * rssi)

Get the signal strength (RSSI) of the wifi network.

For STA (client) mode, returns the signal strength or RSSI of the wifi network. An RSSI value of zero is returned if you

call this function before a network is connected.

Parameters

self the driver state object. This should always be &cyw43_state

rssi a pointer to which the returned RSSI value is stored.

Returns

0 on success

cyw43_wifi_join

int cyw43_wifi_join (cyw43_t * self, size_t ssid_len, const uint8_t * ssid, size_t key_len, const uint8_t * key, uint32_t

auth_type, const uint8_t * bssid, uint32_t channel)

Connect or join a wifi network.

Connect to a wifi network in STA (client) mode After success is returned, periodically call cyw43_wifi_link_status or

cyw43_tcpip_link_status, to query the status of the link. It can take a many seconds to connect to fully join a network.

 NOTE

Call cyw43_wifi_leave to disassociate from a wifi network.

Parameters

self the driver state object. This should always be &cyw43_state

ssid_len the length of the wifi network name

ssid A buffer containing the wifi network name

key_len The length of the wifi password

key A buffer containing the wifi password

auth_type Auth type,

See also

CYW43_AUTH_

Parameters

bssid the mac address of the access point to connect to. This can be NULL.

channel Used to set the band of the connection. This is only used if bssid is non NULL.

Returns

0 on success

cyw43_wifi_leave

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 434

int cyw43_wifi_leave (cyw43_t * self, int itf)

Disassociate from a wifi network.

This method disassociates from a wifi network.

Parameters

self the driver state object. This should always be &cyw43_state

itf The interface to disconnect, either CYW43_ITF_STA or CYW43_ITF_AP

Returns

0 on success

cyw43_wifi_link_status

int cyw43_wifi_link_status (cyw43_t * self, int itf)

Get the wifi link status.

Returns the status of the wifi link.

link status Meaning

CYW43_LINK_DOWN Wifi down

CYW43_LINK_JOIN Connected to wifi

CYW43_LINK_FAIL Connection failed

CYW43_LINK_NONET No matching SSID found (could be out of range, or down)

CYW43_LINK_BADAUTH Authenticatation failure

 NOTE

If the link status is negative it indicates an error The wifi link status for the interface CYW43_ITF_AP is always

CYW43_LINK_DOWN

Parameters

self the driver state object. This should always be &cyw43_state

itf the interface to use, should be CYW43_ITF_STA or CYW43_ITF_AP

Returns

A integer value representing the link status

cyw43_wifi_pm

int cyw43_wifi_pm (cyw43_t * self, uint32_t pm)

Set the wifi power management mode.

This method sets the power management mode used by cyw43. This should be called after cyw43_wifi_set_up

See also

cyw43_pm_value

CYW43_DEFAULT_PM

CYW43_AGGRESSIVE_PM

CYW43_PERFORMANCE_PM

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 435

self the driver state object. This should always be &cyw43_state

pm Power management value

Returns

0 on success

cyw43_wifi_scan

int cyw43_wifi_scan (cyw43_t * self, cyw43_wifi_scan_options_t * opts, void * env, int(*)(void *, const

cyw43_ev_scan_result_t *) result_cb)

Perform a wifi scan for wifi networks.

Start a scan for wifi networks. Results are returned via the callback.

 NOTE

The scan is complete when cyw43_wifi_scan_active return false

Parameters

self the driver state object. This should always be &cyw43_state

opts An instance of cyw43_wifi_scan_options_t. Values in here are currently ignored.

env Pointer passed back in the callback

result_cb Callback for wifi scan results, see cyw43_ev_scan_result_t

Returns

0 on success

cyw43_wifi_scan_active

static bool cyw43_wifi_scan_active (cyw43_t * self) [inline], [static]

Determine if a wifi scan is in progress.

This method tells you if the scan is still in progress

Parameters

self the driver state object. This should always be &cyw43_state

Returns

true if a wifi scan is in progress

cyw43_wifi_set_up

void cyw43_wifi_set_up (cyw43_t * self, int itf, bool up, uint32_t country)

Set up and initialise wifi.

This method turns on wifi and sets the country for regulation purposes. The power management mode is initialised to

CYW43_DEFAULT_PM For CYW43_ITF_AP, the access point is enabled. For CYW43_ITF_STA, the TCP/IP stack is

reinitialised

Parameters

self the driver state object. This should always be &cyw43_state

itf the interface to use either CYW43_ITF_STA or CYW43_ITF_AP

up true to enable the link. Set to false to disable AP mode. Setting the up parameter to false for

CYW43_ITF_STA is ignored.

country the country code, see CYW43_COUNTRY_

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 436

cyw43_wifi_update_multicast_filter

int cyw43_wifi_update_multicast_filter (cyw43_t * self, uint8_t * addr, bool add)

Add/remove multicast group address.

This method adds/removes an address from the multicast filter, allowing frames sent to this group to be received

Parameters

self the driver state object. This should always be &cyw43_state

addr a buffer containing a group mac address

add true to add the address, false to remove it

Returns

0 on success

4.4.4.5.14. Variable Documentation

cyw43_state

cyw43_t cyw43_state

cyw43_poll

void(* cyw43_poll) (void)

cyw43_sleep

uint32_t cyw43_sleep

4.4.4.5.15. cyw43_ll

Low Level CYW43 driver interface.

Macros

• #define CYW43_IOCTL_GET_SSID (0x32)

• #define CYW43_IOCTL_GET_CHANNEL (0x3a)

• #define CYW43_IOCTL_SET_DISASSOC (0x69)

• #define CYW43_IOCTL_GET_ANTDIV (0x7e)

• #define CYW43_IOCTL_SET_ANTDIV (0x81)

• #define CYW43_IOCTL_SET_MONITOR (0xd9)

• #define CYW43_IOCTL_GET_RSSI (0xfe)

• #define CYW43_IOCTL_GET_VAR (0x20c)

• #define CYW43_IOCTL_SET_VAR (0x20f)

• #define CYW43_EV_SET_SSID (0)

• #define CYW43_EV_JOIN (1)

• #define CYW43_EV_AUTH (3)

• #define CYW43_EV_DEAUTH (5)

• #define CYW43_EV_DEAUTH_IND (6)

• #define CYW43_EV_ASSOC (7)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 437

• #define CYW43_EV_DISASSOC (11)

• #define CYW43_EV_DISASSOC_IND (12)

• #define CYW43_EV_LINK (16)

• #define CYW43_EV_PRUNE (23)

• #define CYW43_EV_PSK_SUP (46)

• #define CYW43_EV_ESCAN_RESULT (69)

• #define CYW43_EV_CSA_COMPLETE_IND (80)

• #define CYW43_EV_ASSOC_REQ_IE (87)

• #define CYW43_EV_ASSOC_RESP_IE (88)

• #define CYW43_STATUS_SUCCESS (0)

• #define CYW43_STATUS_FAIL (1)

• #define CYW43_STATUS_TIMEOUT (2)

• #define CYW43_STATUS_NO_NETWORKS (3)

• #define CYW43_STATUS_ABORT (4)

• #define CYW43_STATUS_NO_ACK (5)

• #define CYW43_STATUS_UNSOLICITED (6)

• #define CYW43_STATUS_ATTEMPT (7)

• #define CYW43_STATUS_PARTIAL (8)

• #define CYW43_STATUS_NEWSCAN (9)

• #define CYW43_STATUS_NEWASSOC (10)

• #define CYW43_SUP_DISCONNECTED (0)

• #define CYW43_SUP_CONNECTING (1)

• #define CYW43_SUP_IDREQUIRED (2)

• #define CYW43_SUP_AUTHENTICATING (3)

• #define CYW43_SUP_AUTHENTICATED (4)

• #define CYW43_SUP_KEYXCHANGE (5)

• #define CYW43_SUP_KEYED (6)

• #define CYW43_SUP_TIMEOUT (7)

• #define CYW43_SUP_LAST_BASIC_STATE (8)

• #define CYW43_SUP_KEYXCHANGE_WAIT_M1 CYW43_SUP_AUTHENTICATED

• #define CYW43_SUP_KEYXCHANGE_PREP_M2 CYW43_SUP_KEYXCHANGE

• #define CYW43_SUP_KEYXCHANGE_WAIT_M3 CYW43_SUP_LAST_BASIC_STATE

• #define CYW43_SUP_KEYXCHANGE_PREP_M4 (9)

• #define CYW43_SUP_KEYXCHANGE_WAIT_G1 (10)

• #define CYW43_SUP_KEYXCHANGE_PREP_G2 (11)

• #define CYW43_REASON_INITIAL_ASSOC (0)

• #define CYW43_REASON_LOW_RSSI (1)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 438

• #define CYW43_REASON_DEAUTH (2)

• #define CYW43_REASON_DISASSOC (3)

• #define CYW43_REASON_BCNS_LOST (4)

• #define CYW43_REASON_FAST_ROAM_FAILED (5)

• #define CYW43_REASON_DIRECTED_ROAM (6)

• #define CYW43_REASON_TSPEC_REJECTED (7)

• #define CYW43_REASON_BETTER_AP (8)

• #define CYW43_REASON_PRUNE_ENCR_MISMATCH (1)

• #define CYW43_REASON_PRUNE_BCAST_BSSID (2)

• #define CYW43_REASON_PRUNE_MAC_DENY (3)

• #define CYW43_REASON_PRUNE_MAC_NA (4)

• #define CYW43_REASON_PRUNE_REG_PASSV (5)

• #define CYW43_REASON_PRUNE_SPCT_MGMT (6)

• #define CYW43_REASON_PRUNE_RADAR (7)

• #define CYW43_REASON_RSN_MISMATCH (8)

• #define CYW43_REASON_PRUNE_NO_COMMON_RATES (9)

• #define CYW43_REASON_PRUNE_BASIC_RATES (10)

• #define CYW43_REASON_PRUNE_CCXFAST_PREVAP (11)

• #define CYW43_REASON_PRUNE_CIPHER_NA (12)

• #define CYW43_REASON_PRUNE_KNOWN_STA (13)

• #define CYW43_REASON_PRUNE_CCXFAST_DROAM (14)

• #define CYW43_REASON_PRUNE_WDS_PEER (15)

• #define CYW43_REASON_PRUNE_QBSS_LOAD (16)

• #define CYW43_REASON_PRUNE_HOME_AP (17)

• #define CYW43_REASON_PRUNE_AP_BLOCKED (18)

• #define CYW43_REASON_PRUNE_NO_DIAG_SUPPORT (19)

• #define CYW43_REASON_SUP_OTHER (0)

• #define CYW43_REASON_SUP_DECRYPT_KEY_DATA (1)

• #define CYW43_REASON_SUP_BAD_UCAST_WEP128 (2)

• #define CYW43_REASON_SUP_BAD_UCAST_WEP40 (3)

• #define CYW43_REASON_SUP_UNSUP_KEY_LEN (4)

• #define CYW43_REASON_SUP_PW_KEY_CIPHER (5)

• #define CYW43_REASON_SUP_MSG3_TOO_MANY_IE (6)

• #define CYW43_REASON_SUP_MSG3_IE_MISMATCH (7)

• #define CYW43_REASON_SUP_NO_INSTALL_FLAG (8)

• #define CYW43_REASON_SUP_MSG3_NO_GTK (9)

• #define CYW43_REASON_SUP_GRP_KEY_CIPHER (10)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 439

• #define CYW43_REASON_SUP_GRP_MSG1_NO_GTK (11)

• #define CYW43_REASON_SUP_GTK_DECRYPT_FAIL (12)

• #define CYW43_REASON_SUP_SEND_FAIL (13)

• #define CYW43_REASON_SUP_DEAUTH (14)

• #define CYW43_REASON_SUP_WPA_PSK_TMO (15)

• #define CYW43_NO_POWERSAVE_MODE (0)

• #define CYW43_PM1_POWERSAVE_MODE (1)

• #define CYW43_PM2_POWERSAVE_MODE (2)

• #define CYW43_BUS_MAX_BLOCK_SIZE 16384

• #define CYW43_BACKPLANE_READ_PAD_LEN_BYTES 0

• #define CYW43_LL_STATE_SIZE_WORDS 526 + 5

• #define CYW43_CHANNEL_NONE (0xffffffff)

Typedefs

typedef struct _cyw43_async_event_t cyw43_async_event_t

typedef struct _cyw43_ll_t cyw43_ll_t

Functions

void cyw43_ll_init (cyw43_ll_t *self, void *cb_data)

void cyw43_ll_deinit (cyw43_ll_t *self)

int cyw43_ll_bus_init (cyw43_ll_t *self, const uint8_t *mac)

void cyw43_ll_bus_sleep (cyw43_ll_t *self, bool can_sleep)

void cyw43_ll_process_packets (cyw43_ll_t *self)

int cyw43_ll_ioctl (cyw43_ll_t *self, uint32_t cmd, size_t len, uint8_t *buf, uint32_t iface)

int cyw43_ll_send_ethernet (cyw43_ll_t *self, int itf, size_t len, const void *buf, bool is_pbuf)

int cyw43_ll_wifi_on (cyw43_ll_t *self, uint32_t country)

int cyw43_ll_wifi_pm (cyw43_ll_t *self, uint32_t pm, uint32_t pm_sleep_ret, uint32_t li_bcn, uint32_t li_dtim, uint32_t

li_assoc)

int cyw43_ll_wifi_get_pm (cyw43_ll_t *self, uint32_t *pm, uint32_t *pm_sleep_ret, uint32_t *li_bcn, uint32_t *li_dtim,

uint32_t *li_assoc)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 440

int cyw43_ll_wifi_scan (cyw43_ll_t *self, cyw43_wifi_scan_options_t *opts)

int cyw43_ll_wifi_join (cyw43_ll_t *self, size_t ssid_len, const uint8_t *ssid, size_t key_len, const uint8_t *key,

uint32_t auth_type, const uint8_t *bssid, uint32_t channel)

void cyw43_ll_wifi_set_wpa_auth (cyw43_ll_t *self)

void cyw43_ll_wifi_rejoin (cyw43_ll_t *self)

int cyw43_ll_wifi_get_bssid (cyw43_ll_t *self_in, uint8_t *bssid)

int cyw43_ll_wifi_ap_init (cyw43_ll_t *self, size_t ssid_len, const uint8_t *ssid, uint32_t auth, size_t key_len, const

uint8_t *key, uint32_t channel)

int cyw43_ll_wifi_ap_set_up (cyw43_ll_t *self, bool up)

int cyw43_ll_wifi_ap_get_stas (cyw43_ll_t *self, int *num_stas, uint8_t *macs)

int cyw43_ll_wifi_get_mac (cyw43_ll_t *self_in, uint8_t *addr)

int cyw43_ll_wifi_update_multicast_filter (cyw43_ll_t *self_in, uint8_t *addr, bool add)

bool cyw43_ll_has_work (cyw43_ll_t *self)

bool cyw43_ll_bt_has_work (cyw43_ll_t *self)

int cyw43_cb_read_host_interrupt_pin (void *cb_data)

void cyw43_cb_ensure_awake (void *cb_data)

void cyw43_cb_process_async_event (void *cb_data, const cyw43_async_event_t *ev)

void cyw43_cb_process_ethernet (void *cb_data, int itf, size_t len, const uint8_t *buf)

void cyw43_ll_write_backplane_reg (cyw43_ll_t *self_in, uint32_t addr, uint32_t val)

uint32_t cyw43_ll_read_backplane_reg (cyw43_ll_t *self_in, uint32_t addr)

int cyw43_ll_write_backplane_mem (cyw43_ll_t *self_in, uint32_t addr, uint32_t len, const uint8_t *buf)

int cyw43_ll_read_backplane_mem (cyw43_ll_t *self_in, uint32_t addr, uint32_t len, uint8_t *buf)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 441

anonymous enum

anonymous enum

Network interface types .

Table 32. Enumerator
CYW43_ITF_STA Client interface STA mode.

CYW43_ITF_AP Access point (AP) interface mode.

cyw43_ev_scan_result_t

typedef struct _cyw43_ev_scan_result_t cyw43_ev_scan_result_t

Structure to return wifi scan results.

cyw43_wifi_scan_options_t

typedef struct _cyw43_wifi_scan_options_t cyw43_wifi_scan_options_t

wifi scan options passed to cyw43_wifi_scan

Authorization types

Used when setting up an access point, or connecting to an access point

CYW43_AUTH_OPEN

#define CYW43_AUTH_OPEN (0)

No authorisation required (open)

CYW43_AUTH_WPA_TKIP_PSK

#define CYW43_AUTH_WPA_TKIP_PSK (0x00200002)

WPA authorisation.

CYW43_AUTH_WPA2_AES_PSK

#define CYW43_AUTH_WPA2_AES_PSK (0x00400004)

WPA2 authorisation (preferred)

CYW43_AUTH_WPA2_MIXED_PSK

#define CYW43_AUTH_WPA2_MIXED_PSK (0x00400006)

WPA2/WPA mixed authorisation.

CYW43_AUTH_WPA3_SAE_AES_PSK

#define CYW43_AUTH_WPA3_SAE_AES_PSK (0x01000004)

WPA3 AES authorisation.

CYW43_AUTH_WPA3_WPA2_AES_PSK

#define CYW43_AUTH_WPA3_WPA2_AES_PSK (0x01400004)

WPA2/WPA3 authorisation

Macro Definition Documentation

CYW43_IOCTL_GET_SSID

#define CYW43_IOCTL_GET_SSID (0x32)

CYW43_IOCTL_GET_CHANNEL

#define CYW43_IOCTL_GET_CHANNEL (0x3a)

CYW43_IOCTL_SET_DISASSOC

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 442

#define CYW43_IOCTL_SET_DISASSOC (0x69)

CYW43_IOCTL_GET_ANTDIV

#define CYW43_IOCTL_GET_ANTDIV (0x7e)

CYW43_IOCTL_SET_ANTDIV

#define CYW43_IOCTL_SET_ANTDIV (0x81)

CYW43_IOCTL_SET_MONITOR

#define CYW43_IOCTL_SET_MONITOR (0xd9)

CYW43_IOCTL_GET_RSSI

#define CYW43_IOCTL_GET_RSSI (0xfe)

CYW43_IOCTL_GET_VAR

#define CYW43_IOCTL_GET_VAR (0x20c)

CYW43_IOCTL_SET_VAR

#define CYW43_IOCTL_SET_VAR (0x20f)

CYW43_EV_SET_SSID

#define CYW43_EV_SET_SSID (0)

CYW43_EV_JOIN

#define CYW43_EV_JOIN (1)

CYW43_EV_AUTH

#define CYW43_EV_AUTH (3)

CYW43_EV_DEAUTH

#define CYW43_EV_DEAUTH (5)

CYW43_EV_DEAUTH_IND

#define CYW43_EV_DEAUTH_IND (6)

CYW43_EV_ASSOC

#define CYW43_EV_ASSOC (7)

CYW43_EV_DISASSOC

#define CYW43_EV_DISASSOC (11)

CYW43_EV_DISASSOC_IND

#define CYW43_EV_DISASSOC_IND (12)

CYW43_EV_LINK

#define CYW43_EV_LINK (16)

CYW43_EV_PRUNE

#define CYW43_EV_PRUNE (23)

CYW43_EV_PSK_SUP

#define CYW43_EV_PSK_SUP (46)

CYW43_EV_ESCAN_RESULT

#define CYW43_EV_ESCAN_RESULT (69)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 443

CYW43_EV_CSA_COMPLETE_IND

#define CYW43_EV_CSA_COMPLETE_IND (80)

CYW43_EV_ASSOC_REQ_IE

#define CYW43_EV_ASSOC_REQ_IE (87)

CYW43_EV_ASSOC_RESP_IE

#define CYW43_EV_ASSOC_RESP_IE (88)

CYW43_STATUS_SUCCESS

#define CYW43_STATUS_SUCCESS (0)

CYW43_STATUS_FAIL

#define CYW43_STATUS_FAIL (1)

CYW43_STATUS_TIMEOUT

#define CYW43_STATUS_TIMEOUT (2)

CYW43_STATUS_NO_NETWORKS

#define CYW43_STATUS_NO_NETWORKS (3)

CYW43_STATUS_ABORT

#define CYW43_STATUS_ABORT (4)

CYW43_STATUS_NO_ACK

#define CYW43_STATUS_NO_ACK (5)

CYW43_STATUS_UNSOLICITED

#define CYW43_STATUS_UNSOLICITED (6)

CYW43_STATUS_ATTEMPT

#define CYW43_STATUS_ATTEMPT (7)

CYW43_STATUS_PARTIAL

#define CYW43_STATUS_PARTIAL (8)

CYW43_STATUS_NEWSCAN

#define CYW43_STATUS_NEWSCAN (9)

CYW43_STATUS_NEWASSOC

#define CYW43_STATUS_NEWASSOC (10)

CYW43_SUP_DISCONNECTED

#define CYW43_SUP_DISCONNECTED (0)

CYW43_SUP_CONNECTING

#define CYW43_SUP_CONNECTING (1)

CYW43_SUP_IDREQUIRED

#define CYW43_SUP_IDREQUIRED (2)

CYW43_SUP_AUTHENTICATING

#define CYW43_SUP_AUTHENTICATING (3)

CYW43_SUP_AUTHENTICATED

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 444

#define CYW43_SUP_AUTHENTICATED (4)

CYW43_SUP_KEYXCHANGE

#define CYW43_SUP_KEYXCHANGE (5)

CYW43_SUP_KEYED

#define CYW43_SUP_KEYED (6)

CYW43_SUP_TIMEOUT

#define CYW43_SUP_TIMEOUT (7)

CYW43_SUP_LAST_BASIC_STATE

#define CYW43_SUP_LAST_BASIC_STATE (8)

CYW43_SUP_KEYXCHANGE_WAIT_M1

#define CYW43_SUP_KEYXCHANGE_WAIT_M1 CYW43_SUP_AUTHENTICATED

CYW43_SUP_KEYXCHANGE_PREP_M2

#define CYW43_SUP_KEYXCHANGE_PREP_M2 CYW43_SUP_KEYXCHANGE

CYW43_SUP_KEYXCHANGE_WAIT_M3

#define CYW43_SUP_KEYXCHANGE_WAIT_M3 CYW43_SUP_LAST_BASIC_STATE

CYW43_SUP_KEYXCHANGE_PREP_M4

#define CYW43_SUP_KEYXCHANGE_PREP_M4 (9)

CYW43_SUP_KEYXCHANGE_WAIT_G1

#define CYW43_SUP_KEYXCHANGE_WAIT_G1 (10)

CYW43_SUP_KEYXCHANGE_PREP_G2

#define CYW43_SUP_KEYXCHANGE_PREP_G2 (11)

CYW43_REASON_INITIAL_ASSOC

#define CYW43_REASON_INITIAL_ASSOC (0)

CYW43_REASON_LOW_RSSI

#define CYW43_REASON_LOW_RSSI (1)

CYW43_REASON_DEAUTH

#define CYW43_REASON_DEAUTH (2)

CYW43_REASON_DISASSOC

#define CYW43_REASON_DISASSOC (3)

CYW43_REASON_BCNS_LOST

#define CYW43_REASON_BCNS_LOST (4)

CYW43_REASON_FAST_ROAM_FAILED

#define CYW43_REASON_FAST_ROAM_FAILED (5)

CYW43_REASON_DIRECTED_ROAM

#define CYW43_REASON_DIRECTED_ROAM (6)

CYW43_REASON_TSPEC_REJECTED

#define CYW43_REASON_TSPEC_REJECTED (7)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 445

CYW43_REASON_BETTER_AP

#define CYW43_REASON_BETTER_AP (8)

CYW43_REASON_PRUNE_ENCR_MISMATCH

#define CYW43_REASON_PRUNE_ENCR_MISMATCH (1)

CYW43_REASON_PRUNE_BCAST_BSSID

#define CYW43_REASON_PRUNE_BCAST_BSSID (2)

CYW43_REASON_PRUNE_MAC_DENY

#define CYW43_REASON_PRUNE_MAC_DENY (3)

CYW43_REASON_PRUNE_MAC_NA

#define CYW43_REASON_PRUNE_MAC_NA (4)

CYW43_REASON_PRUNE_REG_PASSV

#define CYW43_REASON_PRUNE_REG_PASSV (5)

CYW43_REASON_PRUNE_SPCT_MGMT

#define CYW43_REASON_PRUNE_SPCT_MGMT (6)

CYW43_REASON_PRUNE_RADAR

#define CYW43_REASON_PRUNE_RADAR (7)

CYW43_REASON_RSN_MISMATCH

#define CYW43_REASON_RSN_MISMATCH (8)

CYW43_REASON_PRUNE_NO_COMMON_RATES

#define CYW43_REASON_PRUNE_NO_COMMON_RATES (9)

CYW43_REASON_PRUNE_BASIC_RATES

#define CYW43_REASON_PRUNE_BASIC_RATES (10)

CYW43_REASON_PRUNE_CCXFAST_PREVAP

#define CYW43_REASON_PRUNE_CCXFAST_PREVAP (11)

CYW43_REASON_PRUNE_CIPHER_NA

#define CYW43_REASON_PRUNE_CIPHER_NA (12)

CYW43_REASON_PRUNE_KNOWN_STA

#define CYW43_REASON_PRUNE_KNOWN_STA (13)

CYW43_REASON_PRUNE_CCXFAST_DROAM

#define CYW43_REASON_PRUNE_CCXFAST_DROAM (14)

CYW43_REASON_PRUNE_WDS_PEER

#define CYW43_REASON_PRUNE_WDS_PEER (15)

CYW43_REASON_PRUNE_QBSS_LOAD

#define CYW43_REASON_PRUNE_QBSS_LOAD (16)

CYW43_REASON_PRUNE_HOME_AP

#define CYW43_REASON_PRUNE_HOME_AP (17)

CYW43_REASON_PRUNE_AP_BLOCKED

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 446

#define CYW43_REASON_PRUNE_AP_BLOCKED (18)

CYW43_REASON_PRUNE_NO_DIAG_SUPPORT

#define CYW43_REASON_PRUNE_NO_DIAG_SUPPORT (19)

CYW43_REASON_SUP_OTHER

#define CYW43_REASON_SUP_OTHER (0)

CYW43_REASON_SUP_DECRYPT_KEY_DATA

#define CYW43_REASON_SUP_DECRYPT_KEY_DATA (1)

CYW43_REASON_SUP_BAD_UCAST_WEP128

#define CYW43_REASON_SUP_BAD_UCAST_WEP128 (2)

CYW43_REASON_SUP_BAD_UCAST_WEP40

#define CYW43_REASON_SUP_BAD_UCAST_WEP40 (3)

CYW43_REASON_SUP_UNSUP_KEY_LEN

#define CYW43_REASON_SUP_UNSUP_KEY_LEN (4)

CYW43_REASON_SUP_PW_KEY_CIPHER

#define CYW43_REASON_SUP_PW_KEY_CIPHER (5)

CYW43_REASON_SUP_MSG3_TOO_MANY_IE

#define CYW43_REASON_SUP_MSG3_TOO_MANY_IE (6)

CYW43_REASON_SUP_MSG3_IE_MISMATCH

#define CYW43_REASON_SUP_MSG3_IE_MISMATCH (7)

CYW43_REASON_SUP_NO_INSTALL_FLAG

#define CYW43_REASON_SUP_NO_INSTALL_FLAG (8)

CYW43_REASON_SUP_MSG3_NO_GTK

#define CYW43_REASON_SUP_MSG3_NO_GTK (9)

CYW43_REASON_SUP_GRP_KEY_CIPHER

#define CYW43_REASON_SUP_GRP_KEY_CIPHER (10)

CYW43_REASON_SUP_GRP_MSG1_NO_GTK

#define CYW43_REASON_SUP_GRP_MSG1_NO_GTK (11)

CYW43_REASON_SUP_GTK_DECRYPT_FAIL

#define CYW43_REASON_SUP_GTK_DECRYPT_FAIL (12)

CYW43_REASON_SUP_SEND_FAIL

#define CYW43_REASON_SUP_SEND_FAIL (13)

CYW43_REASON_SUP_DEAUTH

#define CYW43_REASON_SUP_DEAUTH (14)

CYW43_REASON_SUP_WPA_PSK_TMO

#define CYW43_REASON_SUP_WPA_PSK_TMO (15)

CYW43_NO_POWERSAVE_MODE

#define CYW43_NO_POWERSAVE_MODE (0)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 447

Power save mode parameter passed to cyw43_ll_wifi_pm.

No Powersave mode

CYW43_PM1_POWERSAVE_MODE

#define CYW43_PM1_POWERSAVE_MODE (1)

Powersave mode on specified interface without regard for throughput reduction.

CYW43_PM2_POWERSAVE_MODE

#define CYW43_PM2_POWERSAVE_MODE (2)

Powersave mode on specified interface with High throughput.

CYW43_BUS_MAX_BLOCK_SIZE

#define CYW43_BUS_MAX_BLOCK_SIZE 16384

CYW43_BACKPLANE_READ_PAD_LEN_BYTES

#define CYW43_BACKPLANE_READ_PAD_LEN_BYTES 0

CYW43_LL_STATE_SIZE_WORDS

#define CYW43_LL_STATE_SIZE_WORDS 526 + 5

CYW43_CHANNEL_NONE

#define CYW43_CHANNEL_NONE (0xffffffff)

To indicate no specific channel when calling cyw43_ll_wifi_join with bssid specified.

No Channel specified (use the AP’s channel)

Typedef Documentation

cyw43_async_event_t

typedef struct _cyw43_async_event_t cyw43_async_event_t

cyw43_ll_t

typedef struct _cyw43_ll_t cyw43_ll_t

Function Documentation

cyw43_cb_ensure_awake

void cyw43_cb_ensure_awake (void * cb_data)

cyw43_cb_process_async_event

void cyw43_cb_process_async_event (void * cb_data, const cyw43_async_event_t * ev)

cyw43_cb_process_ethernet

void cyw43_cb_process_ethernet (void * cb_data, int itf, size_t len, const uint8_t * buf)

cyw43_cb_read_host_interrupt_pin

int cyw43_cb_read_host_interrupt_pin (void * cb_data)

cyw43_ll_bt_has_work

bool cyw43_ll_bt_has_work (cyw43_ll_t * self)

cyw43_ll_bus_init

int cyw43_ll_bus_init (cyw43_ll_t * self, const uint8_t * mac)

cyw43_ll_bus_sleep

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 448

void cyw43_ll_bus_sleep (cyw43_ll_t * self, bool can_sleep)

cyw43_ll_deinit

void cyw43_ll_deinit (cyw43_ll_t * self)

cyw43_ll_has_work

bool cyw43_ll_has_work (cyw43_ll_t * self)

cyw43_ll_init

void cyw43_ll_init (cyw43_ll_t * self, void * cb_data)

cyw43_ll_ioctl

int cyw43_ll_ioctl (cyw43_ll_t * self, uint32_t cmd, size_t len, uint8_t * buf, uint32_t iface)

cyw43_ll_process_packets

void cyw43_ll_process_packets (cyw43_ll_t * self)

cyw43_ll_read_backplane_mem

int cyw43_ll_read_backplane_mem (cyw43_ll_t * self_in, uint32_t addr, uint32_t len, uint8_t * buf)

cyw43_ll_read_backplane_reg

uint32_t cyw43_ll_read_backplane_reg (cyw43_ll_t * self_in, uint32_t addr)

cyw43_ll_send_ethernet

int cyw43_ll_send_ethernet (cyw43_ll_t * self, int itf, size_t len, const void * buf, bool is_pbuf)

cyw43_ll_wifi_ap_get_stas

int cyw43_ll_wifi_ap_get_stas (cyw43_ll_t * self, int * num_stas, uint8_t * macs)

cyw43_ll_wifi_ap_init

int cyw43_ll_wifi_ap_init (cyw43_ll_t * self, size_t ssid_len, const uint8_t * ssid, uint32_t auth, size_t key_len, const

uint8_t * key, uint32_t channel)

cyw43_ll_wifi_ap_set_up

int cyw43_ll_wifi_ap_set_up (cyw43_ll_t * self, bool up)

cyw43_ll_wifi_get_bssid

int cyw43_ll_wifi_get_bssid (cyw43_ll_t * self_in, uint8_t * bssid)

cyw43_ll_wifi_get_mac

int cyw43_ll_wifi_get_mac (cyw43_ll_t * self_in, uint8_t * addr)

cyw43_ll_wifi_get_pm

int cyw43_ll_wifi_get_pm (cyw43_ll_t * self, uint32_t * pm, uint32_t * pm_sleep_ret, uint32_t * li_bcn, uint32_t *

li_dtim, uint32_t * li_assoc)

cyw43_ll_wifi_join

int cyw43_ll_wifi_join (cyw43_ll_t * self, size_t ssid_len, const uint8_t * ssid, size_t key_len, const uint8_t * key,

uint32_t auth_type, const uint8_t * bssid, uint32_t channel)

cyw43_ll_wifi_on

int cyw43_ll_wifi_on (cyw43_ll_t * self, uint32_t country)

cyw43_ll_wifi_pm

int cyw43_ll_wifi_pm (cyw43_ll_t * self, uint32_t pm, uint32_t pm_sleep_ret, uint32_t li_bcn, uint32_t li_dtim, uint32_t

li_assoc)

Raspberry Pi Pico-series C/C++ SDK

4.4. Networking Libraries 449

cyw43_ll_wifi_rejoin

void cyw43_ll_wifi_rejoin (cyw43_ll_t * self)

cyw43_ll_wifi_scan

int cyw43_ll_wifi_scan (cyw43_ll_t * self, cyw43_wifi_scan_options_t * opts)

cyw43_ll_wifi_set_wpa_auth

void cyw43_ll_wifi_set_wpa_auth (cyw43_ll_t * self)

cyw43_ll_wifi_update_multicast_filter

int cyw43_ll_wifi_update_multicast_filter (cyw43_ll_t * self_in, uint8_t * addr, bool add)

cyw43_ll_write_backplane_mem

int cyw43_ll_write_backplane_mem (cyw43_ll_t * self_in, uint32_t addr, uint32_t len, const uint8_t * buf)

cyw43_ll_write_backplane_reg

void cyw43_ll_write_backplane_reg (cyw43_ll_t * self_in, uint32_t addr, uint32_t val)

4.5. Runtime Infrastructure

Libraries that are used to provide efficient implementation of certain language level and C library functions, as well as

CMake INTERFACE libraries abstracting the compilation and link steps in the SDK

boot_stage2 Second stage boot loaders responsible for setting up external flash.

pico_atomic Helper implementations for C11 atomics.

pico_base Core types and macros for the Raspberry Pi Pico SDK.

pico_binary_info Binary info is intended for embedding machine readable information with the binary in FLASH.

pico_bootrom Access to functions and data in the bootrom.

pico_bit_ops Optimized bit manipulation functions.

pico_cxx_options non-code library controlling C++ related compile options

pico_clib_interface Provides the necessary glue code required by the particular C/C++ runtime being used.

pico_crt0 Provides the default linker scripts and the program entry/exit point.

pico_divider Optimized 32 and 64 bit division functions accelerated by the RP2040 hardware divider.

pico_double Optimized double-precision floating point functions.

pico_float Optimized single-precision floating point functions.

pico_int64_ops Optimized replacement implementations of the compiler built-in 64 bit multiplication.

pico_malloc Multi-core safety for malloc, calloc and free.

pico_mem_ops Provides optimized replacement implementations of the compiler built-in memcpy, memset

and related functions.

pico_platform Macros and definitions (and functions when included by non assembly code) for the RP2

family device / architecture to provide a common abstraction over low level compiler /

platform specifics.

pico_printf Compact replacement for printf by Marco Paland (info@paland.com)

pico_runtime Basic runtime support for running pre-main initializers provided by other libraries.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 450

mailto:info@paland.com

pico_runtime_init Main runtime initialization functions required to set up the runtime environment before

entering main.

pico_stdio Customized stdio support allowing for input and output from UART, USB, semi-hosting etc.

 pico_stdio_semihos

ting

Experimental support for stdout using RAM semihosting .

 pico_stdio_uart Support for stdin/stdout using UART .

 pico_stdio_rtt Support for stdin/stdout using SEGGER RTT .

 pico_stdio_usb Support for stdin/stdout over USB serial (CDC) .

pico_standard_binary_

info

Includes default information about the binary that can be displayed by picotool.

pico_standard_link Setup for link options for a standard SDK executable.

4.5.1. boot_stage2

Second stage boot loaders responsible for setting up external flash.

4.5.2. pico_atomic

Helper implementations for C11 atomics.

4.5.2.1. Detailed Description

On RP2040 a spin lock is used as protection for all atomic operations, since there is no C library support.

On RP2350 the C-library provides implementations for all 1-byte, 2-byte and 4-byte atomics using processor exclusive

operations. This library provides a spin-lock protected version for arbitrary-sized atomics (including 64-bit).

4.5.3. pico_base

Core types and macros for the Raspberry Pi Pico SDK.

4.5.3.1. Detailed Description

This header is intended to be included by all source code as it includes configuration headers and overrides in the

correct order

This header may be included by assembly code

4.5.3.2. Enumerations

enum pico_error_codes { PICO_OK = 0, PICO_ERROR_NONE = 0, PICO_ERROR_GENERIC = -1, PICO_ERROR_TIMEOUT = -2,

PICO_ERROR_NO_DATA = -3, PICO_ERROR_NOT_PERMITTED = -4, PICO_ERROR_INVALID_ARG = -5, PICO_ERROR_IO = -6,

PICO_ERROR_BADAUTH = -7, PICO_ERROR_CONNECT_FAILED = -8, PICO_ERROR_INSUFFICIENT_RESOURCES = -9,

PICO_ERROR_INVALID_ADDRESS = -10, PICO_ERROR_BAD_ALIGNMENT = -11, PICO_ERROR_INVALID_STATE = -12,

PICO_ERROR_BUFFER_TOO_SMALL = -13, PICO_ERROR_PRECONDITION_NOT_MET = -14, PICO_ERROR_MODIFIED_DATA = -15,

PICO_ERROR_INVALID_DATA = -16, PICO_ERROR_NOT_FOUND = -17, PICO_ERROR_UNSUPPORTED_MODIFICATION = -18,

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 451

PICO_ERROR_LOCK_REQUIRED = -19, PICO_ERROR_VERSION_MISMATCH = -20, PICO_ERROR_RESOURCE_IN_USE = -21 }

Common return codes from pico_sdk methods that return a status.

4.5.3.3. Enumeration Type Documentation

4.5.3.3.1. pico_error_codes

enum pico_error_codes

Common return codes from pico_sdk methods that return a status.

All PICO_ERROR_ values are negative so they can be returned from functions that also want to return a zero or positive

value on success.

Note these error codes may be returned via bootrom functions too.

Table 33. Enumerator
PICO_OK No error; the operation succeeded.

PICO_ERROR_NONE No error; the operation succeeded.

PICO_ERROR_GENERIC An unspecified error occurred.

PICO_ERROR_TIMEOUT The function failed due to timeout.

PICO_ERROR_NO_DATA Attempt for example to read from an empty buffer/FIFO.

PICO_ERROR_NOT_PERMITTED Permission violation e.g. write to read-only flash partition,

or security violation.

PICO_ERROR_INVALID_ARG Argument is outside of range of supported values`.

PICO_ERROR_IO An I/O error occurred.

PICO_ERROR_BADAUTH The authorization failed due to bad credentials.

PICO_ERROR_CONNECT_FAILED The connection failed.

PICO_ERROR_INSUFFICIENT_RESOURCES Dynamic allocation of resources failed.

PICO_ERROR_INVALID_ADDRESS Address argument was out-of-bounds or was determined

to be an address that the caller may not access.

PICO_ERROR_BAD_ALIGNMENT Address was mis-aligned (usually not on word boundary)

PICO_ERROR_INVALID_STATE Something happened or failed to happen in the past, and

consequently we (currently) can’t service the request.

PICO_ERROR_BUFFER_TOO_SMALL A user-allocated buffer was too small to hold the result or

working state of this function.

PICO_ERROR_PRECONDITION_NOT_MET The call failed because another function must be called

first.

PICO_ERROR_MODIFIED_DATA Cached data was determined to be inconsistent with the

actual version of the data.

PICO_ERROR_INVALID_DATA A data structure failed to validate.

PICO_ERROR_NOT_FOUND Attempted to access something that does not exist; or, a

search failed.

PICO_ERROR_UNSUPPORTED_MODIFICATION Write is impossible based on previous writes; e.g.

attempted to clear an OTP bit.

PICO_ERROR_LOCK_REQUIRED A required lock is not owned.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 452

PICO_ERROR_VERSION_MISMATCH A version mismatch occurred (e.g. trying to run PIO

version 1 code on RP2040)

PICO_ERROR_RESOURCE_IN_USE The call could not proceed because requires resourcesw

were unavailable.

4.5.4. pico_binary_info

Binary info is intended for embedding machine readable information with the binary in FLASH.

4.5.4.1. Detailed Description

Example uses include:

• Program identification / information

• Pin layouts

• Included features

• Identifying flash regions used as block devices/storage

4.5.4.2. Macros

• #define bi_decl(_decl) __bi_mark_enclosure _decl; __bi_decl(__bi_ptr_lineno_var_name, &__bi_lineno_var_name.core,

".binary_info.keep.", __used);

• #define bi_decl_if_func_used(_decl) ({__bi_mark_enclosure _decl; __bi_decl(__bi_ptr_lineno_var_name,

&__bi_lineno_var_name.core, ".binary_info.",); *(const volatile uint8_t *)&__bi_ptr_lineno_var_name;});

4.5.4.3. Macro Definition Documentation

4.5.4.3.1. bi_decl

#define bi_decl(_decl) __bi_mark_enclosure _decl; __bi_decl(__bi_ptr_lineno_var_name, &__bi_lineno_var_name.core,

".binary_info.keep.", __used);

Declare some binary information that will be included if the contain source file/line is compiled into the binary.

4.5.4.3.2. bi_decl_if_func_used

#define bi_decl_if_func_used(_decl) ({__bi_mark_enclosure _decl; __bi_decl(__bi_ptr_lineno_var_name,

&__bi_lineno_var_name.core, ".binary_info.",); *(const volatile uint8_t *)&__bi_ptr_lineno_var_name;});

Declare some binary information that will be included if the function containing the decl is linked into the binary. The

SDK uses –gc-sections, so functions that are never called will be removed by the linker, and any associated binary

information declared this way will also be stripped.

4.5.5. pico_bootrom

Access to functions and data in the bootrom.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 453

4.5.5.1. Detailed Description

This header may be included by assembly code

4.5.5.2. Macros

• #define ROM_TABLE_CODE(c1, c2) ((c1) | ((c2) << 8))

4.5.5.3. Functions

static uint32_t rom_table_code (uint8_t c1, uint8_t c2)

Return a bootrom lookup code based on two ASCII characters.

void * rom_func_lookup (uint32_t code)

Lookup a bootrom function by its code.

void * rom_data_lookup (uint32_t code)

Lookup a bootrom data address by its code.

bool rom_funcs_lookup (uint32_t *table, unsigned int count)

Helper function to lookup the addresses of multiple bootrom functions.

static __force_inline void * rom_func_lookup_inline (uint32_t code)

Lookup a bootrom function by code. This method is forcibly inlined into the caller for FLASH/RAM sensitive code

usage.

void rom_reset_usb_boot (uint32_t usb_activity_gpio_pin_mask, uint32_t disable_interface_mask)

Reboot the device into BOOTSEL mode.

static void rom_connect_internal_flash ()

Connect the SSI/QMI to the QSPI pads.

static void rom_flash_exit_xip ()

Return the QSPI device from its XIP state to a serial command state.

static void rom_flash_range_erase (uint32_t addr, size_t count, uint32_t block_size, uint8_t block_cmd)

Erase bytes in flash.

static void rom_flash_range_program (uint32_t addr, const uint8_t *data, size_t count)

Program bytes in flash.

static void rom_flash_flush_cache ()

Flush the XIP cache.

static void rom_flash_enter_cmd_xip ()

Configure the SSI/QMI with a standard command.

4.5.5.4. Macro Definition Documentation

4.5.5.4.1. ROM_TABLE_CODE

#define ROM_TABLE_CODE(c1, c2) ((c1) | ((c2) << 8))

Return a bootrom lookup code based on two ASCII characters.

These codes are uses to lookup data or function addresses in the bootrom

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 454

Parameters

c1 the first character

c2 the second character

Returns

the 'code' to use in rom_func_lookup() or rom_data_lookup()

4.5.5.5. Function Documentation

4.5.5.5.1. rom_connect_internal_flash

static void rom_connect_internal_flash [inline], [static]

Connect the SSI/QMI to the QSPI pads.

Restore all QSPI pad controls to their default state, and connect the SSI/QMI peripheral to the QSPI pads.

On RP2350 if a secondary flash chip select GPIO has been configured via OTP OTP_DATA_FLASH_DEVINFO, or by

writing to the runtime copy of FLASH_DEVINFO in bootram, then this bank 0 GPIO is also initialised and the QMI

peripheral is connected. Otherwise, bank 0 IOs are untouched.

4.5.5.5.2. rom_data_lookup

void * rom_data_lookup (uint32_t code)

Lookup a bootrom data address by its code.

Parameters

code the code

Returns

a pointer to the data, or NULL if the code does not match any bootrom function

4.5.5.5.3. rom_flash_enter_cmd_xip

static void rom_flash_enter_cmd_xip [inline], [static]

Configure the SSI/QMI with a standard command.

Configure the SSI/QMI to generate a standard 03h serial read command, with 24 address bits, upon each XIP access.

This is a slow XIP configuration, but is widely supported. CLKDIV is set to 12 on RP2350. The debugger may call this

function to ensure that flash is readable following a program/erase operation.

Note that the same setup is performed by flash_exit_xip(), and the RP2350 flash program/erase functions do not leave

XIP in an inaccessible state, so calls to this function are largely redundant on RP2350. It is provided on RP2350 for

compatibility with RP2040.

4.5.5.5.4. rom_flash_exit_xip

static void rom_flash_exit_xip [inline], [static]

Return the QSPI device from its XIP state to a serial command state.

On RP2040, first set up the SSI for serial-mode operations, then issue the fixed XIP exit sequence described in Section

2.8.1.2 of the datasheet. Note that the bootrom code uses the IO forcing logic to drive the CS pin, which must be cleared

before returning the SSI to XIP mode (e.g. by a call to _flash_flush_cache). This function configures the SSI with a fixed

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 455

SCK clock divisor of /6.

On RP2350, Initialise the QMI for serial operations (direct mode), and also initialise a basic XIP mode, where the QMI will

perform 03h serial read commands at low speed (CLKDIV=12) in response to XIP reads.

Then, issue a sequence to the QSPI device on chip select 0, designed to return it from continuous read mode ("XIP

mode") and/or QPI mode to a state where it will accept serial commands. This is necessary after system reset to

restore the QSPI device to a known state, because resetting RP2350 does not reset attached QSPI devices. It is also

necessary when user code, having already performed some continuous-read-mode or QPI-mode accesses, wishes to

return the QSPI device to a state where it will accept the serial erase and programming commands issued by the

bootrom’s flash access functions.

If a GPIO for the secondary chip select is configured via FLASH_DEVINFO, then the XIP exit sequence is also issued to

chip select 1.

The QSPI device should be accessible for XIP reads after calling this function; the name flash_exit_xip refers to

returning the QSPI device from its XIP state to a serial command state.

4.5.5.5.5. rom_flash_flush_cache

static void rom_flash_flush_cache [inline], [static]

Flush the XIP cache.

Flush and enable the XIP cache. Also clears the IO forcing on QSPI CSn, so that the SSI can drive the flash chip select as

normal.

Flush the entire XIP cache, by issuing an invalidate by set/way maintenance operation to every cache line. This ensures

that flash program/erase operations are visible to subsequent cached XIP reads.

Note that this unpins pinned cache lines, which may interfere with cache-as-SRAM use of the XIP cache.

No other operations are performed.

4.5.5.5.6. rom_flash_range_erase

static void rom_flash_range_erase (uint32_t addr, size_t count, uint32_t block_size, uint8_t block_cmd) [inline],

[static]

Erase bytes in flash.

Erase count bytes, starting at addr (offset from start of flash). Optionally, pass a block erase command e.g. D8h block

erase, and the size of the block erased by this command - this function will use the larger block erase where possible,

for much higher erase speed. addr must be aligned to a 4096-byte sector, and count must be a multiple of 4096 bytes.

This is a low-level flash API, and no validation of the arguments is performed.

See rom_flash_op on RP2350 for a higher-level API which checks alignment, flash bounds and partition permissions,

and can transparently apply a runtime-to-storage address translation.

The QSPI device must be in a serial command state before calling this API, which can be achieved by calling

rom_connect_internal_flash() followed by rom_flash_exit_xip(). After the erase, the flash cache should be flushed via

rom_flash_flush_cache() to ensure the modified flash data is visible to cached XIP accesses.

Finally, the original XIP mode should be restored by copying the saved XIP setup function from bootram into SRAM, and

executing it: the bootrom provides a default function which restores the flash mode/clkdiv discovered during flash

scanning, and user programs can override this with their own XIP setup function.

For the duration of the erase operation, QMI is in direct mode and attempting to access XIP from DMA, the debugger or

the other core will return a bus fault. XIP becomes accessible again once the function returns.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 456

addr the offset from start of flash to be erased

count number of bytes to erase

block_size optional size of block erased by block_cmd

block_cmd optional block erase command e.g. D8h block erase

4.5.5.5.7. rom_flash_range_program

static void rom_flash_range_program (uint32_t addr, const uint8_t * data, size_t count) [inline], [static]

Program bytes in flash.

Program data to a range of flash addresses starting at addr (offset from the start of flash) and count bytes in size. addr

must be aligned to a 256-byte boundary, and count must be a multiple of 256.

This is a low-level flash API, and no validation of the arguments is performed.

See rom_flash_op on RP2350 for a higher-level API which checks alignment, flash bounds and partition permissions,

and can transparently apply a runtime-to-storage address translation.

The QSPI device must be in a serial command state before calling this API - see notes on rom_flash_range_erase

Parameters

addr the offset from start of flash to be erased

data buffer containing the data to be written

count number of bytes to erase

4.5.5.5.8. rom_func_lookup

void * rom_func_lookup (uint32_t code)

Lookup a bootrom function by its code.

Parameters

code the code

Returns

a pointer to the function, or NULL if the code does not match any bootrom function

4.5.5.5.9. rom_func_lookup_inline

static __force_inline void * rom_func_lookup_inline (uint32_t code) [static]

Lookup a bootrom function by code. This method is forcibly inlined into the caller for FLASH/RAM sensitive code usage.

Parameters

code the code

Returns

a pointer to the function, or NULL if the code does not match any bootrom function

4.5.5.5.10. rom_funcs_lookup

bool rom_funcs_lookup (uint32_t * table, unsigned int count)

Helper function to lookup the addresses of multiple bootrom functions.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 457

This method looks up the 'codes' in the table, and convert each table entry to the looked up function pointer, if there is a

function for that code in the bootrom.

Parameters

table an IN/OUT array, elements are codes on input, function pointers on success.

count the number of elements in the table

Returns

true if all the codes were found, and converted to function pointers, false otherwise

4.5.5.5.11. rom_reset_usb_boot

void rom_reset_usb_boot (uint32_t usb_activity_gpio_pin_mask, uint32_t disable_interface_mask)

Reboot the device into BOOTSEL mode.

This function reboots the device into the BOOTSEL mode ('usb boot"). Facilities are provided to enable an "activity light"

via GPIO attached LED for the USB Mass Storage Device, and to limit the USB interfaces exposed.

Parameters

usb_activity_gpio_pin_mask 0 No pins are used as per a cold boot. Otherwise a single bit set indicating which

GPIO pin should be set to output and raised whenever there is mass storage

activity from the host.

disable_interface_mask value to control exposed interfaces

• 0 To enable both interfaces (as per a cold boot)

• 1 To disable the USB Mass Storage Interface

• 2 To disable the USB PICOBOOT Interface

4.5.5.5.12. rom_table_code

static uint32_t rom_table_code (uint8_t c1, uint8_t c2) [inline], [static]

Return a bootrom lookup code based on two ASCII characters.

These codes are uses to lookup data or function addresses in the bootrom

Parameters

c1 the first character

c2 the second character

Returns

the 'code' to use in rom_func_lookup() or rom_data_lookup()

4.5.6. pico_bit_ops

Optimized bit manipulation functions.

4.5.6.1. Detailed Description

Additionally provides replacement implementations of the compiler built-ins __builtin_popcount, __builtin_clz and

__bulitin_ctz

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 458

4.5.6.2. Functions

uint32_t __rev (uint32_t bits)

Reverse the bits in a 32 bit word.

uint64_t __revll (uint64_t bits)

Reverse the bits in a 64 bit double word.

4.5.6.3. Function Documentation

4.5.6.3.1. __rev

uint32_t __rev (uint32_t bits)

Reverse the bits in a 32 bit word.

Parameters

bits 32 bit input

Returns

the 32 input bits reversed

4.5.6.3.2. __revll

uint64_t __revll (uint64_t bits)

Reverse the bits in a 64 bit double word.

Parameters

bits 64 bit input

Returns

the 64 input bits reversed

4.5.7. pico_cxx_options

non-code library controlling C++ related compile options

4.5.8. pico_clib_interface

Provides the necessary glue code required by the particular C/C++ runtime being used.

4.5.9. pico_crt0

Provides the default linker scripts and the program entry/exit point.

4.5.10. pico_divider

Optimized 32 and 64 bit division functions accelerated by the RP2040 hardware divider.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 459

4.5.10.1. Detailed Description

Additionally provides integration with the C / and % operators

4.5.10.2. Functions

int32_t div_s32s32 (int32_t a, int32_t b)

Integer divide of two signed 32-bit values.

static int32_t divmod_s32s32_rem (int32_t a, int32_t b, int32_t *rem)

Integer divide of two signed 32-bit values, with remainder.

divmod_result_t divmod_s32s32 (int32_t a, int32_t b)

Integer divide of two signed 32-bit values.

uint32_t div_u32u32 (uint32_t a, uint32_t b)

Integer divide of two unsigned 32-bit values.

static uint32_t divmod_u32u32_rem (uint32_t a, uint32_t b, uint32_t *rem)

Integer divide of two unsigned 32-bit values, with remainder.

divmod_result_t divmod_u32u32 (uint32_t a, uint32_t b)

Integer divide of two unsigned 32-bit values.

int64_t div_s64s64 (int64_t a, int64_t b)

Integer divide of two signed 64-bit values.

int64_t divmod_s64s64_rem (int64_t a, int64_t b, int64_t *rem)

Integer divide of two signed 64-bit values, with remainder.

int64_t divmod_s64s64 (int64_t a, int64_t b)

Integer divide of two signed 64-bit values.

uint64_t div_u64u64 (uint64_t a, uint64_t b)

Integer divide of two unsigned 64-bit values.

uint64_t divmod_u64u64_rem (uint64_t a, uint64_t b, uint64_t *rem)

Integer divide of two unsigned 64-bit values, with remainder.

uint64_t divmod_u64u64 (uint64_t a, uint64_t b)

Integer divide of two signed 64-bit values.

int32_t div_s32s32_unsafe (int32_t a, int32_t b)

Unsafe integer divide of two signed 32-bit values.

int32_t divmod_s32s32_rem_unsafe (int32_t a, int32_t b, int32_t *rem)

Unsafe integer divide of two signed 32-bit values, with remainder.

divmod_result_t divmod_s32s32_unsafe (int32_t a, int32_t b)

Unsafe integer divide of two unsigned 32-bit values.

uint32_t div_u32u32_unsafe (uint32_t a, uint32_t b)

Unsafe integer divide of two unsigned 32-bit values.

uint32_t divmod_u32u32_rem_unsafe (uint32_t a, uint32_t b, uint32_t *rem)

Unsafe integer divide of two unsigned 32-bit values, with remainder.

divmod_result_t divmod_u32u32_unsafe (uint32_t a, uint32_t b)

Unsafe integer divide of two unsigned 32-bit values.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 460

int64_t div_s64s64_unsafe (int64_t a, int64_t b)

Unsafe integer divide of two signed 64-bit values.

int64_t divmod_s64s64_rem_unsafe (int64_t a, int64_t b, int64_t *rem)

Unsafe integer divide of two signed 64-bit values, with remainder.

int64_t divmod_s64s64_unsafe (int64_t a, int64_t b)

Unsafe integer divide of two signed 64-bit values.

uint64_t div_u64u64_unsafe (uint64_t a, uint64_t b)

Unsafe integer divide of two unsigned 64-bit values.

uint64_t divmod_u64u64_rem_unsafe (uint64_t a, uint64_t b, uint64_t *rem)

Unsafe integer divide of two unsigned 64-bit values, with remainder.

uint64_t divmod_u64u64_unsafe (uint64_t a, uint64_t b)

Unsafe integer divide of two signed 64-bit values.

4.5.10.3. Function Documentation

4.5.10.3.1. div_s32s32

int32_t div_s32s32 (int32_t a, int32_t b)

Integer divide of two signed 32-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient

4.5.10.3.2. div_s32s32_unsafe

int32_t div_s32s32_unsafe (int32_t a, int32_t b)

Unsafe integer divide of two signed 32-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient

Do not use in interrupts

4.5.10.3.3. div_s64s64

int64_t div_s64s64 (int64_t a, int64_t b)

Integer divide of two signed 64-bit values.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 461

a Dividend

b Divisor

Returns

Quotient

4.5.10.3.4. div_s64s64_unsafe

int64_t div_s64s64_unsafe (int64_t a, int64_t b)

Unsafe integer divide of two signed 64-bit values.

Parameters

a Dividend

b Divisor

Returns

Quotient

Do not use in interrupts

4.5.10.3.5. div_u32u32

uint32_t div_u32u32 (uint32_t a, uint32_t b)

Integer divide of two unsigned 32-bit values.

Parameters

a Dividend

b Divisor

Returns

Quotient

4.5.10.3.6. div_u32u32_unsafe

uint32_t div_u32u32_unsafe (uint32_t a, uint32_t b)

Unsafe integer divide of two unsigned 32-bit values.

Parameters

a Dividend

b Divisor

Returns

Quotient

Do not use in interrupts

4.5.10.3.7. div_u64u64

uint64_t div_u64u64 (uint64_t a, uint64_t b)

Integer divide of two unsigned 64-bit values.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 462

Parameters

a Dividend

b Divisor

Returns

Quotient

4.5.10.3.8. div_u64u64_unsafe

uint64_t div_u64u64_unsafe (uint64_t a, uint64_t b)

Unsafe integer divide of two unsigned 64-bit values.

Parameters

a Dividend

b Divisor

Returns

Quotient

Do not use in interrupts

4.5.10.3.9. divmod_s32s32

divmod_result_t divmod_s32s32 (int32_t a, int32_t b)

Integer divide of two signed 32-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient in low word/r0, remainder in high word/r1

4.5.10.3.10. divmod_s32s32_rem

static int32_t divmod_s32s32_rem (int32_t a, int32_t b, int32_t * rem) [inline], [static]

Integer divide of two signed 32-bit values, with remainder.

Parameters

a Dividend

b Divisor

rem The remainder of dividend/divisor

Returns

Quotient result of dividend/divisor

4.5.10.3.11. divmod_s32s32_rem_unsafe

int32_t divmod_s32s32_rem_unsafe (int32_t a, int32_t b, int32_t * rem)

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 463

Unsafe integer divide of two signed 32-bit values, with remainder.

Parameters

a Dividend

b Divisor

rem The remainder of dividend/divisor

Returns

Quotient result of dividend/divisor

Do not use in interrupts

4.5.10.3.12. divmod_s32s32_unsafe

divmod_result_t divmod_s32s32_unsafe (int32_t a, int32_t b)

Unsafe integer divide of two unsigned 32-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient in low word/r0, remainder in high word/r1

Do not use in interrupts

4.5.10.3.13. divmod_s64s64

int64_t divmod_s64s64 (int64_t a, int64_t b)

Integer divide of two signed 64-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient in result (r0,r1), remainder in regs (r2, r3)

4.5.10.3.14. divmod_s64s64_rem

int64_t divmod_s64s64_rem (int64_t a, int64_t b, int64_t * rem)

Integer divide of two signed 64-bit values, with remainder.

Parameters

a Dividend

b Divisor

rem The remainder of dividend/divisor

Returns

Quotient result of dividend/divisor

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 464

4.5.10.3.15. divmod_s64s64_rem_unsafe

int64_t divmod_s64s64_rem_unsafe (int64_t a, int64_t b, int64_t * rem)

Unsafe integer divide of two signed 64-bit values, with remainder.

Parameters

a Dividend

b Divisor

rem The remainder of dividend/divisor

Returns

Quotient result of dividend/divisor

Do not use in interrupts

4.5.10.3.16. divmod_s64s64_unsafe

int64_t divmod_s64s64_unsafe (int64_t a, int64_t b)

Unsafe integer divide of two signed 64-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient in result (r0,r1), remainder in regs (r2, r3)

Do not use in interrupts

4.5.10.3.17. divmod_u32u32

divmod_result_t divmod_u32u32 (uint32_t a, uint32_t b)

Integer divide of two unsigned 32-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient in low word/r0, remainder in high word/r1

4.5.10.3.18. divmod_u32u32_rem

static uint32_t divmod_u32u32_rem (uint32_t a, uint32_t b, uint32_t * rem) [inline], [static]

Integer divide of two unsigned 32-bit values, with remainder.

Parameters

a Dividend

b Divisor

rem The remainder of dividend/divisor

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 465

Returns

Quotient result of dividend/divisor

4.5.10.3.19. divmod_u32u32_rem_unsafe

uint32_t divmod_u32u32_rem_unsafe (uint32_t a, uint32_t b, uint32_t * rem)

Unsafe integer divide of two unsigned 32-bit values, with remainder.

Parameters

a Dividend

b Divisor

rem The remainder of dividend/divisor

Returns

Quotient result of dividend/divisor

Do not use in interrupts

4.5.10.3.20. divmod_u32u32_unsafe

divmod_result_t divmod_u32u32_unsafe (uint32_t a, uint32_t b)

Unsafe integer divide of two unsigned 32-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient in low word/r0, remainder in high word/r1

Do not use in interrupts

4.5.10.3.21. divmod_u64u64

uint64_t divmod_u64u64 (uint64_t a, uint64_t b)

Integer divide of two signed 64-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient in result (r0,r1), remainder in regs (r2, r3)

4.5.10.3.22. divmod_u64u64_rem

uint64_t divmod_u64u64_rem (uint64_t a, uint64_t b, uint64_t * rem)

Integer divide of two unsigned 64-bit values, with remainder.

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 466

a Dividend

b Divisor

rem The remainder of dividend/divisor

Returns

Quotient result of dividend/divisor

4.5.10.3.23. divmod_u64u64_rem_unsafe

uint64_t divmod_u64u64_rem_unsafe (uint64_t a, uint64_t b, uint64_t * rem)

Unsafe integer divide of two unsigned 64-bit values, with remainder.

Parameters

a Dividend

b Divisor

rem The remainder of dividend/divisor

Returns

Quotient result of dividend/divisor

Do not use in interrupts

4.5.10.3.24. divmod_u64u64_unsafe

uint64_t divmod_u64u64_unsafe (uint64_t a, uint64_t b)

Unsafe integer divide of two signed 64-bit values.

Parameters

a Dividend

b Divisor

Returns

quotient in result (r0,r1), remainder in regs (r2, r3)

Do not use in interrupts

4.5.11. pico_double

Optimized double-precision floating point functions.

4.5.11.1. Detailed Description

(Replacement) optimized implementations are provided of the following compiler built-ins and math library functions:

• __aeabi_dadd, __aeabi_ddiv, __aeabi_dmul, __aeabi_drsub, __aeabi_dsub, __aeabi_cdcmpeq, __aeabi_cdrcmple,

__aeabi_cdcmple, __aeabi_dcmpeq, __aeabi_dcmplt, __aeabi_dcmple, __aeabi_dcmpge, __aeabi_dcmpgt,

__aeabi_dcmpun, __aeabi_i2d, __aeabi_l2d, __aeabi_ui2d, __aeabi_ul2d, __aeabi_d2iz, __aeabi_d2lz, __aeabi_d2uiz,

__aeabi_d2ulz, __aeabi_d2f

• sqrt, cos, sin, tan, atan2, exp, log, ldexp, copysign, trunc, floor, ceil, round, asin, acos, atan, sinh, cosh, tanh, asinh,

acosh, atanh, exp2, log2, exp10, log10, pow,, hypot, cbrt, fmod, drem, remainder, remquo, expm1, log1p, fma

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 467

• powint, sincos (GNU extensions)

The following additional optimized functions are also provided:

• int2double, uint2double, int642double, uint642double, fix2double, ufix2double, fix642double, ufix642double

• double2fix, double2ufix, double2fix64, double2ufix64, double2int, double2uint, double2int64, double2uint64,

double2int_z, double2int64_z,

• exp10, sincos, powint

On RP2350 the following additional functions are available; the _fast methods are faster but do not round correctly"

• ddiv_fast, sqrt_fast

4.5.12. pico_float

Optimized single-precision floating point functions.

4.5.12.1. Detailed Description

(Replacement) optimized implementations are provided of the following compiler built-ins and math library functions:

• __aeabi_fadd, __aeabi_fdiv, __aeabi_fmul, __aeabi_frsub, __aeabi_fsub, __aeabi_cfcmpeq, __aeabi_cfrcmple,

__aeabi_cfcmple, __aeabi_fcmpeq, __aeabi_fcmplt, __aeabi_fcmple, __aeabi_fcmpge, __aeabi_fcmpgt,

__aeabi_fcmpun, __aeabi_i2f, __aeabi_l2f, __aeabi_ui2f, __aeabi_ul2f, __aeabi_f2iz, __aeabi_f2lz, __aeabi_f2uiz,

__aeabi_f2ulz, __aeabi_f2d, sqrtf, cosf, sinf, tanf, atan2f, expf, logf

• ldexpf, copysignf, truncf, floorf, ceilf, roundf, asinf, acosf, atanf, sinhf, coshf, tanhf, asinhf, acoshf, atanhf, exp2f,

log2f, exp10f, log10f, powf, hypotf, cbrtf, fmodf, dremf, remainderf, remquof, expm1f, log1pf, fmaf

• powintf, sincosf (GNU extensions)

The following additional optimized functions are also provided:

• int2float, uint2float, int642float, uint642float, fix2float, ufix2float, fix642float, ufix642float

• float2fix, float2ufix, float2fix64, float2ufix64, float2int, float2uint, float2int64, float2uint64, float2int_z,

float2int64_z, float2uint_z, float2uint64_z

• exp10f, sincosf, powintf

On RP2350 the following additional functions are available; the _fast methods are faster but do not round correctly

• float2fix64_z, fdiv_fast, fsqrt_fast,

4.5.13. pico_int64_ops

Optimized replacement implementations of the compiler built-in 64 bit multiplication.

4.5.13.1. Detailed Description

This library does not provide any additional functions

4.5.14. pico_malloc

Multi-core safety for malloc, calloc and free.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 468

4.5.14.1. Detailed Description

This library does not provide any additional functions

4.5.15. pico_mem_ops

Provides optimized replacement implementations of the compiler built-in memcpy, memset and related functions.

4.5.15.1. Detailed Description

The functions include:

• memset, memcpy

• __aeabi_memset, __aeabi_memset4, __aeabi_memset8, __aeabi_memcpy, __aeabi_memcpy4, __aeabi_memcpy8

This library does not provide any additional functions

4.5.16. pico_platform

Macros and definitions (and functions when included by non assembly code) for the RP2 family device / architecture to

provide a common abstraction over low level compiler / platform specifics.

4.5.16.1. Detailed Description

Macros and definitions (and functions when included by non assembly code) to adapt for different compilers.

Macros and definitions for accessing the CPU registers.

This header may be included by assembly code

This header may be included by assembly code

This header may be included by assembly code

4.5.16.2. Macros

• #define __fast_mul(a, b)

• #define __isr

• #define __force_inline __always_inline

• #define count_of(a) (sizeof(a)/sizeof((a)[0]))

• #define MAX(a, b) ((a)>(b)?(a):(b))

• #define MIN(a, b) ((b)>(a)?(a):(b))

• #define __check_type_compatible(type_a, type_b) static_assert(__builtin_types_compatible_p(type_a, type_b),

__STRING(type_a) " is not compatible with " __STRING(type_b));

• #define __after_data(group) __attribute__((section(".after_data." group)))

• #define __scratch_x(group) __attribute__((section(".scratch_x." group)))

• #define __scratch_y(group) __attribute__((section(".scratch_y." group)))

• #define __uninitialized_ram(group) __attribute__((section(".uninitialized_data." #group))) group

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 469

• #define __in_flash(group) __attribute__((section(".flashdata." group)))

• #define __no_inline_not_in_flash_func(func_name) __noinline __not_in_flash_func(func_name)

4.5.16.3. Functions

static __force_inline void tight_loop_contents (void)

No-op function for the body of tight loops.

static void busy_wait_at_least_cycles (uint32_t minimum_cycles)

Helper method to busy-wait for at least the given number of cycles.

static __force_inline void __breakpoint (void)

Execute a breakpoint instruction.

static __force_inline uint get_core_num (void)

Get the current core number.

static __force_inline uint __get_current_exception (void)

Get the current exception level on this core.

static __force_inline bool pico_processor_state_is_nonsecure (void)

Return true if executing in the NonSecure state (Arm-only)

uint8_t rp2350_chip_version (void)

Returns the RP2350 chip revision number.

static uint8_t rp2040_chip_version (void)

Returns the RP2040 chip revision number for compatibility.

static uint8_t rp2040_rom_version (void)

Returns the RP2040 rom version number.

static __force_inline int32_t __mul_instruction (int32_t a, int32_t b)

Multiply two integers using an assembly MUL instruction.

static __always_inline void __compiler_memory_barrier (void)

Ensure that the compiler does not move memory access across this method call.

void panic_unsupported (void)

Panics with the message "Unsupported".

void panic (const char *fmt,…)

Displays a panic message and halts execution.

4.5.16.4. Macro Definition Documentation

4.5.16.4.1. __fast_mul

#define __fast_mul(a, b) __builtin_choose_expr(__builtin_constant_p(b) &&
!__builtin_constant_p(a), \
 (__builtin_popcount(b) >= 2 ? __mul_instruction(a,b) : (a)*(b)), \
 (a)*(b))

multiply two integer values using the fastest method possible

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 470

Efficiently multiplies value a by possibly constant value b.

If b is known to be constant and not zero or a power of 2, then a mul instruction is used rather than gcc’s default which

is often a slow combination of shifts and adds. If b is a power of 2 then a single shift is of course preferable and will be

used

Parameters

a the first operand

b the second operand

Returns

a * b

4.5.16.4.2. __isr

#define __isr

Marker for an interrupt handler.

For example an IRQ handler function called my_interrupt_handler:

void __isr my_interrupt_handler(void) {

4.5.16.4.3. __force_inline

#define __force_inline __always_inline

Attribute to force inlining of a function regardless of optimization level.

For example my_function here will always be inlined:

int __force_inline my_function(int x) {

4.5.16.4.4. count_of

#define count_of(a) (sizeof(a)/sizeof((a)[0]))

Macro to determine the number of elements in an array.

4.5.16.4.5. MAX

#define MAX(a, b) ((a)>(b)?(a):(b))

Macro to return the maximum of two comparable values.

4.5.16.4.6. MIN

#define MIN(a, b) ((b)>(a)?(a):(b))

Macro to return the minimum of two comparable values.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 471

4.5.16.4.7. __check_type_compatible

#define __check_type_compatible(type_a, type_b) static_assert(__builtin_types_compatible_p(type_a, type_b),

__STRING(type_a) " is not compatible with " __STRING(type_b));

Utility macro to assert two types are equivalent.

This macro can be useful in other macros along with typeof to assert that two parameters are of equivalent type (or that

a single parameter is of an expected type)

4.5.16.4.8. __after_data

#define __after_data(group) __attribute__((section(".after_data." group)))

Section attribute macro for placement in RAM after the .data section.

For example a 400 element uint32_t array placed after the .data section

uint32_t __after_data("my_group_name") a_big_array[400];

The section attribute is .after_data.<group>

Parameters

group a string suffix to use in the section name to distinguish groups that can be linker garbage-collected

independently

4.5.16.4.9. __scratch_x

#define __scratch_x(group) __attribute__((section(".scratch_x." group)))

Section attribute macro for placement not in flash (i.e in RAM)

For example a 3 element uint32_t array placed in RAM (even though it is static const)

static const uint32_t __not_in_flash("my_group_name") an_array[3];

The section attribute is .time_critical.<group>

Parameters

group a string suffix to use in the section name to distinguish groups that can be linker garbage-collected

independently

Section attribute macro for placement in the SRAM bank 4 (known as "scratch X")

Scratch X is commonly used for critical data and functions accessed only by one core (when only one core is accessing

the RAM bank, there is no opportunity for stalls)

For example a uint32_t variable placed in "scratch X"

uint32_t __scratch_x("my_group_name") foo = 23;

The section attribute is .scratch_x.<group>

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 472

group a string suffix to use in the section name to distinguish groups that can be linker garbage-collected

independently

4.5.16.4.10. __scratch_y

#define __scratch_y(group) __attribute__((section(".scratch_y." group)))

Section attribute macro for placement in the SRAM bank 5 (known as "scratch Y")

Scratch Y is commonly used for critical data and functions accessed only by one core (when only one core is accessing

the RAM bank, there is no opportunity for stalls)

For example a uint32_t variable placed in "scratch Y"

uint32_t __scratch_y("my_group_name") foo = 23;

The section attribute is .scratch_y.<group>

Parameters

group a string suffix to use in the section name to distinguish groups that can be linker garbage-collected

independently

4.5.16.4.11. __uninitialized_ram

#define __uninitialized_ram(group) __attribute__((section(".uninitialized_data." #group))) group

Section attribute macro for data that is to be left uninitialized.

Data marked this way will retain its value across a reset (normally uninitialized data - in the .bss section) is initialized to

zero during runtime initialization

For example a uint32_t foo that will retain its value if the program is restarted by reset.

uint32_t __uninitialized_ram(foo);

The section attribute is .uninitialized_data.<group>

Parameters

group a string suffix to use in the section name to distinguish groups that can be linker garbage-collected

independently

4.5.16.4.12. __in_flash

#define __in_flash(group) __attribute__((section(".flashdata." group)))

Section attribute macro for placement in flash even in a COPY_TO_RAM binary.

For example a uint32_t variable explicitly placed in flash (it will hard fault if you attempt to write it!)

uint32_t __in_flash("my_group_name") foo = 23;

The section attribute is .flashdata.<group>

Parameters

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 473

group a string suffix to use in the section name to distinguish groups that can be linker garbage-collected

independently

4.5.16.4.13. __no_inline_not_in_flash_func

#define __no_inline_not_in_flash_func(func_name) __noinline __not_in_flash_func(func_name)

Indicates a function should not be stored in flash.

Decorates a function name, such that the function will execute from RAM (assuming it is not inlined into a flash function

by the compiler)

For example a function called my_func taking an int parameter:

void __not_in_flash_func(my_func)(int some_arg) {

The function is placed in the .time_critical.<func_name> linker section

See also

__no_inline_not_in_flash_func

Indicates a function is time/latency critical and should not run from flash

Decorates a function name, such that the function will execute from RAM (assuming it is not inlined into a flash function

by the compiler) to avoid possible flash latency. Currently this macro is identical in implementation to

__not_in_flash_func, however the semantics are distinct and a __time_critical_func may in the future be treated more

specially to reduce the overhead when calling such function from a flash function.

For example a function called my_func taking an int parameter:

void __time_critical(my_func)(int some_arg) {

The function is placed in the .time_critical.<func_name> linker section

See also

__not_in_flash_func

Indicate a function should not be stored in flash and should not be inlined

Decorates a function name, such that the function will execute from RAM, explicitly marking it as noinline to prevent it

being inlined into a flash function by the compiler

For example a function called my_func taking an int parameter:

void __no_inline_not_in_flash_func(my_func)(int some_arg) {

The function is placed in the .time_critical.<func_name> linker section

4.5.16.5. Function Documentation

4.5.16.5.1. __breakpoint

static __force_inline void __breakpoint (void) [static]

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 474

Execute a breakpoint instruction.

4.5.16.5.2. __compiler_memory_barrier

static __always_inline void __compiler_memory_barrier (void) [static]

Ensure that the compiler does not move memory access across this method call.

For example in the following code:

*some_memory_location = var_a;
__compiler_memory_barrier();
uint32_t var_b = *some_other_memory_location

The compiler will not move the load from some_other_memory_location above the memory barrier (which it otherwise might

- even above the memory store!)

4.5.16.5.3. __get_current_exception

static __force_inline uint __get_current_exception (void) [static]

Get the current exception level on this core.

On Cortex-M this is the exception number defined in the architecture reference, which is equal to VTABLE_FIRST_IRQ +

irq num if inside an interrupt handler. (VTABLE_FIRST_IRQ is defined in platform_defs.h).

On Hazard3, this function returns VTABLE_FIRST_IRQ + irq num if inside of an external IRQ handler (or a fault from such

a handler), and 0 otherwise, generally aligning with the Cortex-M values.

Returns

the exception number if the CPU is handling an exception, or 0 otherwise

4.5.16.5.4. __mul_instruction

static __force_inline int32_t __mul_instruction (int32_t a, int32_t b) [static]

Multiply two integers using an assembly MUL instruction.

This multiplies a by b using multiply instruction using the ARM mul instruction regardless of values (the compiler might

otherwise choose to perform shifts/adds), i.e. this is a 1 cycle operation.

Parameters

a the first operand

b the second operand

Returns

a * b

4.5.16.5.5. busy_wait_at_least_cycles

static void busy_wait_at_least_cycles (uint32_t minimum_cycles) [inline], [static]

Helper method to busy-wait for at least the given number of cycles.

This method is useful for introducing very short delays.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 475

This method busy-waits in a tight loop for the given number of system clock cycles. The total wait time is only accurate

to within 2 cycles, and this method uses a loop counter rather than a hardware timer, so the method will always take

longer than expected if an interrupt is handled on the calling core during the busy-wait; you can of course disable

interrupts to prevent this.

You can use clock_get_hz(clk_sys) to determine the number of clock cycles per second if you want to convert an actual

time duration to a number of cycles.

Parameters

minimum_cycles the minimum number of system clock cycles to delay for

4.5.16.5.6. get_core_num

static __force_inline uint get_core_num (void) [static]

Get the current core number.

Returns

The core number the call was made from

4.5.16.5.7. panic

void panic (const char * fmt, …)

Displays a panic message and halts execution.

An attempt is made to output the message to all registered STDOUT drivers after which this method executes a BKPT

instruction.

Parameters

fmt format string (printf-like)

… printf-like arguments

4.5.16.5.8. panic_unsupported

void panic_unsupported (void)

Panics with the message "Unsupported".

See also

panic

4.5.16.5.9. pico_processor_state_is_nonsecure

static __force_inline bool pico_processor_state_is_nonsecure (void) [static]

Return true if executing in the NonSecure state (Arm-only)

Returns

True if currently executing in the NonSecure state on an Arm processor

4.5.16.5.10. rp2040_chip_version

static uint8_t rp2040_chip_version (void) [inline], [static]

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 476

Returns the RP2040 chip revision number for compatibility.

Returns

2 RP2040 errata fixed in B2 are fixed in RP2350

4.5.16.5.11. rp2040_rom_version

static uint8_t rp2040_rom_version (void) [inline], [static]

Returns the RP2040 rom version number.

Returns

the RP2040 rom version number (1 for RP2040-B0, 2 for RP2040-B1, 3 for RP2040-B2)

4.5.16.5.12. rp2350_chip_version

uint8_t rp2350_chip_version (void)

Returns the RP2350 chip revision number.

Returns

the RP2350 chip revision number (1 for B0/B1, 2 for B2)

4.5.16.5.13. tight_loop_contents

static __force_inline void tight_loop_contents (void) [static]

No-op function for the body of tight loops.

No-op function intended to be called by any tight hardware polling loop. Using this ubiquitously makes it much easier to

find tight loops, but also in the future #ifdef-ed support for lockup debugging might be added

4.5.17. pico_printf

Compact replacement for printf by Marco Paland (info@paland.com)

4.5.18. pico_runtime

Basic runtime support for running pre-main initializers provided by other libraries.

4.5.18.1. Detailed Description

This library aggregates the following other libraries (if available):

• hardware_uart

• pico_bit_ops

• pico_divider

• pico_double

• pico_int64_ops

• pico_float

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 477

mailto:info@paland.com

• pico_malloc

• pico_mem_ops

• pico_atomic

• pico_cxx_options

• pico_standard_binary_info

• pico_standard_link

• pico_sync

• pico_printf

• pico_crt0

• pico_clib_interface

• pico_stdio

4.5.18.2. Functions

void runtime_init (void)

Run all the initializations that are usually called by crt0.S before entering main.

4.5.18.3. Function Documentation

4.5.18.3.1. runtime_init

void runtime_init (void)

Run all the initializations that are usually called by crt0.S before entering main.

This method is useful to set up the runtime after performing a watchdog or powman reboot via scratch vector.

4.5.19. pico_runtime_init

Main runtime initialization functions required to set up the runtime environment before entering main.

4.5.19.1. Detailed Description

The runtime initialization is registration based:

For each step of the initialization there is a 5 digit ordinal which indicates the ordering (alphabetic increasing sort of the

5 digits) of the steps.

e.g. for the step "bootrom_reset", there is:

1 #ifndef PICO_RUNTIME_INIT_BOOTROM_RESET
2 #define PICO_RUNTIME_INIT_BOOTROM_RESET "00050"
3 #endif

The user can override the order if they wish, by redefining PICO_RUNTIME_INIT_BOOTROM_RESET

For each step, the automatic initialization may be skipped by defining (in this case)

PICO_RUNTIME_SKIP_INIT_BOOTROM_RESET = 1. The user can then choose to either omit the step completely or

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 478

register their own replacement initialization.

The default method used to perform the initialization is provided, in case the user wishes to call it manually; in this case:

1 void runtime_init_bootrom_reset(void);

If PICO_RUNTIME_NO_INIT_BOOTOROM_RESET define is set (NO vs SKIP above), then the function is not defined,

allowing the user to provide a replacement (and also avoiding cases where the default implementation won’t compile

due to missing dependencies)

4.5.19.2. Functions

static void clocks_init (void)

Initialise the clock hardware.

4.5.19.3. Function Documentation

4.5.19.3.1. clocks_init

static void clocks_init (void) [inline], [static]

Initialise the clock hardware.

Must be called before any other clock function.

4.5.20. pico_stdio

Customized stdio support allowing for input and output from UART, USB, semi-hosting etc.

4.5.20.1. Detailed Description

Note the API for adding additional input output devices is not yet considered stable

4.5.20.2. Modules

pico_stdio_semihosting

Experimental support for stdout using RAM semihosting .

pico_stdio_uart

Support for stdin/stdout using UART .

pico_stdio_rtt

Support for stdin/stdout using SEGGER RTT .

pico_stdio_usb

Support for stdin/stdout over USB serial (CDC) .

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 479

4.5.20.3. Functions

bool stdio_init_all (void)

Initialize all of the present standard stdio types that are linked into the binary.

bool stdio_deinit_all (void)

Deinitialize all of the present standard stdio types that are linked into the binary.

void stdio_flush (void)

Flushes any buffered output.

int stdio_getchar_timeout_us (uint32_t timeout_us)

Return a character from stdin if there is one available within a timeout.

static int getchar_timeout_us (uint32_t timeout_us)

Alias for stdio_getchar_timeout_us for backwards compatibility.

void stdio_set_driver_enabled (stdio_driver_t *driver, bool enabled)

Adds or removes a driver from the list of active drivers used for input/output.

void stdio_filter_driver (stdio_driver_t *driver)

Control limiting of output to a single driver.

void stdio_set_translate_crlf (stdio_driver_t *driver, bool translate)

control conversion of line feeds to carriage return on transmissions

int stdio_putchar_raw (int c)

putchar variant that skips any CR/LF conversion if enabled

static int putchar_raw (int c)

Alias for stdio_putchar_raw for backwards compatibility.

int stdio_puts_raw (const char *s)

puts variant that skips any CR/LF conversion if enabled

static int puts_raw (const char *s)

Alias for stdio_puts_raw for backwards compatibility.

void stdio_set_chars_available_callback (void(*fn)(void *), void *param)

get notified when there are input characters available

int stdio_get_until (char *buf, int len, absolute_time_t until)

Waits until a timeout to reard at least one character into a buffer.

int stdio_put_string (const char *s, int len, bool newline, bool cr_translation)

Prints a buffer to stdout with optional newline and carriage return insertion.

int stdio_getchar (void)

stdio_getchar Alias for getchar that definitely does not go thru the implementation in the standard C library even

when PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

int stdio_putchar (int)

stdio_getchar Alias for putchar that definitely does not go thru the implementation in the standard C library even

when PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

int stdio_puts (const char *s)

stdio_getchar Alias for puts that definitely does not go thru the implementation in the standard C library even when

PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

int stdio_vprintf (const char *format, va_list va)

stdio_getchar Alias for vprintf that definitely does not go thru the implementation in the standard C library even

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 480

when PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

int __printflike (1, 0) stdio_printf(const char *format

stdio_getchar Alias for printf that definitely does not go thru the implementation in the standard C library even when

PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

4.5.20.4. Function Documentation

4.5.20.4.1. __printflike

int __printflike (1, 0)

stdio_getchar Alias for printf that definitely does not go thru the implementation in the standard C library even when

PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

4.5.20.4.2. getchar_timeout_us

static int getchar_timeout_us (uint32_t timeout_us) [inline], [static]

Alias for stdio_getchar_timeout_us for backwards compatibility.

4.5.20.4.3. putchar_raw

static int putchar_raw (int c) [inline], [static]

Alias for stdio_putchar_raw for backwards compatibility.

4.5.20.4.4. puts_raw

static int puts_raw (const char * s) [inline], [static]

Alias for stdio_puts_raw for backwards compatibility.

4.5.20.4.5. stdio_deinit_all

bool stdio_deinit_all (void)

Deinitialize all of the present standard stdio types that are linked into the binary.

This method currently only supports stdio_uart and stdio_semihosting

Returns

true if all outputs was successfully deinitialized, false otherwise.

See also

stdio_uart, stdio_usb, stdio_semihosting, stdio_rtt

4.5.20.4.6. stdio_filter_driver

void stdio_filter_driver (stdio_driver_t * driver)

Control limiting of output to a single driver.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 481

 NOTE

this method should always be called on an initialized driver

Parameters

driver if non-null then output only that driver will be used for input/output (assuming it is in the list of enabled

drivers). if NULL then all enabled drivers will be used

4.5.20.4.7. stdio_flush

void stdio_flush (void)

Flushes any buffered output.

4.5.20.4.8. stdio_get_until

int stdio_get_until (char * buf, int len, absolute_time_t until)

Waits until a timeout to reard at least one character into a buffer.

This method returns as soon as input is available, but more characters may be returned up to the end of the buffer.

Parameters

buf the buffer to read into

len the length of the buffer

Returns

the number of characters read or PICO_ERROR_TIMEOUT

Parameters

until the time after which to return PICO_ERROR_TIMEOUT if no characters are available

4.5.20.4.9. stdio_getchar

int stdio_getchar (void)

stdio_getchar Alias for getchar that definitely does not go thru the implementation in the standard C library even when

PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

4.5.20.4.10. stdio_getchar_timeout_us

int stdio_getchar_timeout_us (uint32_t timeout_us)

Return a character from stdin if there is one available within a timeout.

Parameters

timeout_us the timeout in microseconds, or 0 to not wait for a character if none available.

Returns

the character from 0-255 or PICO_ERROR_TIMEOUT if timeout occurs

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 482

4.5.20.4.11. stdio_init_all

bool stdio_init_all (void)

Initialize all of the present standard stdio types that are linked into the binary.

Call this method once you have set up your clocks to enable the stdio support for UART, USB, semihosting, and RTT

based on the presence of the respective libraries in the binary.

When stdio_usb is configured, this method can be optionally made to block, waiting for a connection via the variables

specified in stdio_usb_init (i.e. PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS)

Returns

true if at least one output was successfully initialized, false otherwise.

See also

stdio_uart, stdio_usb, stdio_semihosting, stdio_rtt

4.5.20.4.12. stdio_put_string

int stdio_put_string (const char * s, int len, bool newline, bool cr_translation)

Prints a buffer to stdout with optional newline and carriage return insertion.

This method returns as soon as input is available, but more characters may be returned up to the end of the buffer.

Parameters

s the characters to print

len the length of s

newline true if a newline should be added after the string

cr_translation true if line feed to carriage return translation should be performed

Returns

the number of characters written

4.5.20.4.13. stdio_putchar

int stdio_putchar (int c)

stdio_getchar Alias for putchar that definitely does not go thru the implementation in the standard C library even when

PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

4.5.20.4.14. stdio_putchar_raw

int stdio_putchar_raw (int c)

putchar variant that skips any CR/LF conversion if enabled

4.5.20.4.15. stdio_puts

int stdio_puts (const char * s)

stdio_getchar Alias for puts that definitely does not go thru the implementation in the standard C library even when

PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 483

4.5.20.4.16. stdio_puts_raw

int stdio_puts_raw (const char * s)

puts variant that skips any CR/LF conversion if enabled

4.5.20.4.17. stdio_set_chars_available_callback

void stdio_set_chars_available_callback (void(*)(void *) fn, void * param)

get notified when there are input characters available

Parameters

fn Callback function to be called when characters are available. Pass NULL to cancel any existing callback

param Pointer to pass to the callback

4.5.20.4.18. stdio_set_driver_enabled

void stdio_set_driver_enabled (stdio_driver_t * driver, bool enabled)

Adds or removes a driver from the list of active drivers used for input/output.

 NOTE

this method should always be called on an initialized driver and is not re-entrant

Parameters

driver the driver

enabled true to add, false to remove

4.5.20.4.19. stdio_set_translate_crlf

void stdio_set_translate_crlf (stdio_driver_t * driver, bool translate)

control conversion of line feeds to carriage return on transmissions

 NOTE

this method should always be called on an initialized driver

Parameters

driver the driver

translate If true, convert line feeds to carriage return on transmissions

4.5.20.4.20. stdio_vprintf

int stdio_vprintf (const char * format, va_list va)

stdio_getchar Alias for vprintf that definitely does not go thru the implementation in the standard C library even when

PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS == 0

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 484

4.5.20.5. pico_stdio_semihosting

Experimental support for stdout using RAM semihosting .

4.5.20.5.1. Detailed Description

Linking this library or calling pico_enable_stdio_semihosting(TARGET ENABLED) in the CMake (which achieves the same thing)

will add semihosting to the drivers used for standard output

4.5.20.5.2. Functions

void stdio_semihosting_init (void)

Explicitly initialize stdout over semihosting and add it to the current set of stdout targets.

void stdio_semihosting_deinit (void)

Explicitly deinitialize stdout over semihosting and add it to the current set of stdout targets.

4.5.20.5.3. Function Documentation

stdio_semihosting_deinit

void stdio_semihosting_deinit (void)

Explicitly deinitialize stdout over semihosting and add it to the current set of stdout targets.

 NOTE

this method is automatically called by stdio_deinit_all() if pico_stdio_semihosting is included in the build

stdio_semihosting_init

void stdio_semihosting_init (void)

Explicitly initialize stdout over semihosting and add it to the current set of stdout targets.

 NOTE

this method is automatically called by stdio_init_all() if pico_stdio_semihosting is included in the build

4.5.20.6. pico_stdio_uart

Support for stdin/stdout using UART .

4.5.20.6.1. Detailed Description

Linking this library or calling pico_enable_stdio_uart(TARGET ENABLED) in the CMake (which achieves the same thing) will

add UART to the drivers used for standard input/output

4.5.20.6.2. Functions

void stdio_uart_init (void)

Explicitly initialize stdin/stdout over UART and add it to the current set of stdin/stdout drivers.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 485

void stdout_uart_init (void)

Explicitly initialize stdout only (no stdin) over UART and add it to the current set of stdout drivers.

void stdin_uart_init (void)

Explicitly initialize stdin only (no stdout) over UART and add it to the current set of stdin drivers.

void stdio_uart_init_full (uart_inst_t *uart, uint baud_rate, int tx_pin, int rx_pin)

Perform custom initialization initialize stdin/stdout over UART and add it to the current set of stdin/stdout drivers.

void stdio_uart_deinit (void)

Explicitly deinitialize stdin/stdout over UART and remove it from the current set of stdin/stdout drivers.

void stdout_uart_deinit (void)

Explicitly deinitialize stdout only (no stdin) over UART and remove it from the current set of stdout drivers.

void stdin_uart_deinit (void)

Explicitly deinitialize stdin only (no stdout) over UART and remove it from the current set of stdin drivers.

void stdio_uart_deinit_full (uart_inst_t *uart, int tx_pin, int rx_pin)

Perform custom deinitialization deinitialize stdin/stdout over UART and remove it from the current set of

stdin/stdout drivers.

4.5.20.6.3. Function Documentation

stdin_uart_deinit

void stdin_uart_deinit (void)

Explicitly deinitialize stdin only (no stdout) over UART and remove it from the current set of stdin drivers.

This method disables PICO_DEFAULT_UART_RX_PIN for UART input (if defined), and leaves the pads isolated

stdin_uart_init

void stdin_uart_init (void)

Explicitly initialize stdin only (no stdout) over UART and add it to the current set of stdin drivers.

This method sets up PICO_DEFAULT_UART_RX_PIN for UART input (if defined) , and configures the baud rate as

PICO_DEFAULT_UART_BAUD_RATE

stdio_uart_deinit

void stdio_uart_deinit (void)

Explicitly deinitialize stdin/stdout over UART and remove it from the current set of stdin/stdout drivers.

This method disables PICO_DEFAULT_UART_TX_PIN for UART output (if defined), PICO_DEFAULT_UART_RX_PIN for

input (if defined) and leaves the pads isolated.

 NOTE

this method is automatically called by stdio_deinit_all() if pico_stdio_uart is included in the build

stdio_uart_deinit_full

void stdio_uart_deinit_full (uart_inst_t * uart, int tx_pin, int rx_pin)

Perform custom deinitialization deinitialize stdin/stdout over UART and remove it from the current set of stdin/stdout

drivers.

Parameters

uart the uart instance to use, uart0 or uart1

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 486

tx_pin the UART pin to use for stdout (or -1 for no stdout)

rx_pin the UART pin to use for stdin (or -1 for no stdin)

stdio_uart_init

void stdio_uart_init (void)

Explicitly initialize stdin/stdout over UART and add it to the current set of stdin/stdout drivers.

This method sets up PICO_DEFAULT_UART_TX_PIN for UART output (if defined), PICO_DEFAULT_UART_RX_PIN for

input (if defined) and configures the baud rate as PICO_DEFAULT_UART_BAUD_RATE.

 NOTE

this method is automatically called by stdio_init_all() if pico_stdio_uart is included in the build

stdio_uart_init_full

void stdio_uart_init_full (uart_inst_t * uart, uint baud_rate, int tx_pin, int rx_pin)

Perform custom initialization initialize stdin/stdout over UART and add it to the current set of stdin/stdout drivers.

Parameters

uart the uart instance to use, uart0 or uart1

baud_rate the baud rate in Hz

tx_pin the UART pin to use for stdout (or -1 for no stdout)

rx_pin the UART pin to use for stdin (or -1 for no stdin)

stdout_uart_deinit

void stdout_uart_deinit (void)

Explicitly deinitialize stdout only (no stdin) over UART and remove it from the current set of stdout drivers.

This method disables PICO_DEFAULT_UART_TX_PIN for UART output (if defined), and leaves the pad isolated

stdout_uart_init

void stdout_uart_init (void)

Explicitly initialize stdout only (no stdin) over UART and add it to the current set of stdout drivers.

This method sets up PICO_DEFAULT_UART_TX_PIN for UART output (if defined) , and configures the baud rate as

PICO_DEFAULT_UART_BAUD_RATE

4.5.20.7. pico_stdio_rtt

Support for stdin/stdout using SEGGER RTT .

4.5.20.7.1. Detailed Description

Linking this library or calling pico_enable_stdio_rtt(TARGET) in the CMake (which achieves the same thing) will add RTT to

the drivers used for standard output

4.5.20.7.2. Functions

void stdio_rtt_init (void)

Explicitly initialize stdin/stdout over RTT and add it to the current set of stdin/stdout drivers.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 487

void stdio_rtt_deinit (void)

Explicitly deinitialize stdin/stdout over RTT and remove it from the current set of stdin/stdout drivers.

4.5.20.7.3. Function Documentation

stdio_rtt_deinit

void stdio_rtt_deinit (void)

Explicitly deinitialize stdin/stdout over RTT and remove it from the current set of stdin/stdout drivers.

 NOTE

this method is automatically called by stdio_deinit_all() if pico_stdio_rtt is included in the build

stdio_rtt_init

void stdio_rtt_init (void)

Explicitly initialize stdin/stdout over RTT and add it to the current set of stdin/stdout drivers.

 NOTE

this method is automatically called by stdio_init_all() if pico_stdio_rtt is included in the build

4.5.20.8. pico_stdio_usb

Support for stdin/stdout over USB serial (CDC) .

4.5.20.8.1. Detailed Description

Linking this library or calling pico_enable_stdio_usb(TARGET ENABLED) in the CMake (which achieves the same thing) will add

USB CDC to the drivers used for standard input/output

Note this library is a developer convenience. It is not applicable in all cases; for one it takes full control of the USB

device precluding your use of the USB in device or host mode. For this reason, this library will automatically disengage if

you try to using it alongside tinyusb_device or tinyusb_host. It also takes control of a lower level IRQ and sets up a

periodic background task.

This library also includes (by default) functionality to enable the RP-series microcontroller to be reset over the USB

interface.

4.5.20.8.2. Functions

bool stdio_usb_init (void)

Explicitly initialize USB stdio and add it to the current set of stdin drivers.

bool stdio_usb_deinit (void)

Explicitly deinitialize USB stdio and remove it from the current set of stdin drivers.

bool stdio_usb_connected (void)

Check if there is an active stdio CDC connection to a host.

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 488

4.5.20.8.3. Function Documentation

stdio_usb_connected

bool stdio_usb_connected (void)

Check if there is an active stdio CDC connection to a host.

Returns

true if stdio is connected over CDC

stdio_usb_deinit

bool stdio_usb_deinit (void)

Explicitly deinitialize USB stdio and remove it from the current set of stdin drivers.

Returns

true if the USB CDC was deinitialized, false if an error occurred

stdio_usb_init

bool stdio_usb_init (void)

Explicitly initialize USB stdio and add it to the current set of stdin drivers.

PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS can be set to cause this method to wait for a CDC connection from

the host before returning, which is useful if you don’t want any initial stdout output to be discarded before the

connection is established.

Returns

true if the USB CDC was initialized, false if an error occurred

Copyright (c) 2020 Raspberry Pi (Trading) Ltd.

SPDX-License-Identifier: BSD-3-Clause

4.5.21. pico_standard_binary_info

Includes default information about the binary that can be displayed by picotool.

4.5.21.1. Detailed Description

Information is included only if PICO_NO_BINARY_INFO and PICO_NO_PROGRAM_INFO are both false.

This library adds the following information to the binary:

• The program name if defined (unless PICO_NO_BINARY_SIZE=1). The value is PICO_PROGRAM_NAME or PICO_TARGET_NAME if the

former isn’t defined

• The value of PICO_BOARD (unless PICO_NO_BI_PICO_BOARD=1)

• The SDK version (unless PICO_NO_BI_SDK_VERSION=1)

• The program version string if defined (unless PICO_NO_BI_PROGRAM_VERSION_STRING=1). The value is

PICO_PROGRAM_VERSION_STRING``

• The program description if defined (unless`PICO_NO_BI_PROGRAM_DESCRIPTION=1). The value

is`PICO_PROGRAM_DESCRIPTION``

• The program url if defined (unless`PICO_NO_BI_PROGRAM_URL=1). The value is`PICO_PROGRAM_URL``

• The boot stage 2 used if any (unless`PICO_NO_BI_BOOT_STAGE2_NAME=1). The value is`PICO_BOOT_STAGE2_NAME``

Raspberry Pi Pico-series C/C++ SDK

4.5. Runtime Infrastructure 489

• The program build date (unless`PICO_NO_BI_PROGRAM_BUILD_DATE=1). The value defaults to the C preprocessor value

`__DATE__, but can be overridden with PICO_PROGRAM_BUILD_DATE. Note you should do a clean build if you want to be

sure this value is up to date.

• The program build type (unless PICO_NO_BI_BUILD_TYPE=1). The value is PICO_CMAKE_BUILD_TYPE which comes from the

CMake build - e.g. Release, Debug, RelMinSize

• The binary size (unless PICO_NO_BI_BINARY_SIZE=1)

4.5.22. pico_standard_link

Setup for link options for a standard SDK executable.

4.5.22.1. Detailed Description

This includes

• C runtime initialization

• Linker scripts for 'default', 'no_flash', 'blocked_ram' and 'copy_to_ram' binaries

• 'Binary Information' support

• Linker option control

4.6. External API Headers

Headers for interfaces that are shared with code outside of the SDK

boot_picobin_headers Constants for PICOBIN format.

boot_picoboot_header

s

Header file for the PICOBOOT USB interface exposed by an RP2xxx chip in BOOTSEL mode.

boot_uf2_headers Header file for the UF2 format supported by a RP2xxx chip in BOOTSEL mode.

pico_usb_reset_interf

ace_headers

Definition for the reset interface that may be exposed by the pico_stdio_usb library.

4.6.1. boot_picobin_headers

Constants for PICOBIN format.

4.6.2. boot_picoboot_headers

Header file for the PICOBOOT USB interface exposed by an RP2xxx chip in BOOTSEL mode.

4.6.3. boot_uf2_headers

Header file for the UF2 format supported by a RP2xxx chip in BOOTSEL mode.

Raspberry Pi Pico-series C/C++ SDK

4.6. External API Headers 490

4.6.4. pico_usb_reset_interface_headers

Definition for the reset interface that may be exposed by the pico_stdio_usb library.

Raspberry Pi Pico-series C/C++ SDK

4.6. External API Headers 491

Chapter 5. SDK configuration
SDK configuration is the process of customising the SDK code for your particular build/application. As the parts of the

SDK that you use are recompiled as part of your build, configuration options can be chosen at compile time resulting in

smaller and more efficient customized versions of the code.

This chapter will show what configuration parameters are available, and how they can be changed.

SDK configuration parameters are passed as C preprocessor definitions to the build. The most common way to override

them is to specify them in your CMakeLists.txt when you define your executable or library:

e.g.

add_executable(my_program main.c)
...
target_compile_definitions(my_program PRIVATE
 PICO_STACK_SIZE=4096
)

or if you are creating a library, and you want to add compile definitions whenever your library is included:

add_library(my_library INTERFACE)
...
target_compile_definitions(my_library INTERFACE
 PICO_STDIO_DEFAULT_CRLF=0
 PICO_DEFAULT_UART=1
)

The definitions can also be specified in header files, as is commonly done for board configuration (see Chapter 8).

For example,. the Pimoroni Tiny2040 board header configures the following to specify appropriate board settings for the

default I2C channel exposed on that board.

// --- I2C ---
#ifndef PICO_DEFAULT_I2C
#define PICO_DEFAULT_I2C 1
#endif
#ifndef PICO_DEFAULT_I2C_SDA_PIN
#define PICO_DEFAULT_I2C_SDA_PIN 2
#endif
#ifndef PICO_DEFAULT_I2C_SCL_PIN
#define PICO_DEFAULT_I2C_SCL_PIN 3
#endif

 NOTE

The #ifdef still allows the values to be by the build (i.e. in CMakeLists.txt)

If you would rather set values in your own header file rather than via CMake, then you must make sure the header is

included by all compilation (including the SDK sources). Using a custom PICO_BOARD header is one way of doing this, but a

more advanced way is to have the SDK include your header via pico/config.h which itself is included by every SDK

source file.

Raspberry Pi Pico-series C/C++ SDK

Chapter 5. SDK configuration 492

This can be done by adding the following before the pico_sdk_init() in your CMakeLists.txt:

list(APPEND PICO_CONFIG_HEADER_FILES path/to/your/header.h)

5.1. Full List of SDK Configuration Defines

Table 34. SDK and

Board Configuration

Defines

Name / Description Default

CYW43_PIO_CLOCK_DIV_DYNAMIC

Enable runtime configuration of the clock divider for communication with the

wireless chip

0

CYW43_PIO_CLOCK_DIV_FRAC

Fractional part of the clock divider for communication with the wireless chip

0

CYW43_PIO_CLOCK_DIV_INT

Integer part of the clock divider for communication with the wireless chip

2

CYW43_TASK_PRIORITY

Priority for the CYW43 FreeRTOS task

tskIDLE_PRIORITY + 4

CYW43_TASK_STACK_SIZE

Stack size for the CYW43 FreeRTOS task in 4-byte words

1024

GPIO_IRQ_CALLBACK_ORDER_PRIORITY

IRQ priority order of the default IRQ callback

PICO_SHARED_IRQ_HANDLER_LOWE

ST_ORDER_PRIORITY

GPIO_RAW_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY

IRQ priority order of raw IRQ handlers if the priority is not specified

PICO_SHARED_IRQ_HANDLER_DEFAU

LT_ORDER_PRIORITY

PARAM_ASSERTIONS_DISABLE_ALL

Global assert disable

0

PARAM_ASSERTIONS_ENABLED_ADDRESS_ALIAS

Enable/disable assertions in memory address aliasing macros

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_ADC

Enable/disable assertions in the hardware_adc module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_BOOT_LOCK

Enable/disable assertions in the hardware_boot_lock module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_CLOCKS

Enable/disable assertions in the hardware_clocks module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_DMA

Enable/disable hardware_dma assertions

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_EXCEPTION

Enable/disable assertions in the hardware_exception module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_FLASH

Enable/disable assertions in the hardware_flash module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_GPIO

Enable/disable assertions in the hardware_gpio module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_I2C

Enable/disable assertions in the hardware_i2c module

0

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 493

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cyw43_driver/include/pico/cyw43_driver.h#L42
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cyw43_driver/include/pico/cyw43_driver.h#L57
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cyw43_driver/include/pico/cyw43_driver.h#L47
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch/arch_freertos.h#L15
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch/arch_freertos.h#L10
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L468
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L473
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/include/pico/assert.h#L22
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_base/include/hardware/address_mapped.h#L58
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_adc/include/hardware/adc.h#L57
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_boot_lock/include/hardware/boot_lock.h#L12
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L249
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_dma/include/hardware/dma.h#L38
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_exception/include/hardware/exception.h#L26
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_flash/include/hardware/flash.h#L37
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L29
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L15

Name / Description Default

PARAM_ASSERTIONS_ENABLED_HARDWARE_INTERP

Enable/disable assertions in the hardware_interp module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_IRQ

Enable/disable assertions in the hardware_irq module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_PIO

Enable/disable assertions in the hardware_pio module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_POWMAN

Enable/disable hardware_powman assertions

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM

Enable/disable assertions in the hardware_pwm module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_RESETS

Enable/disable assertions in the hardware_resets module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_SHA256

Enable/disable hardware_sha256 assertions

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_SPI

Enable/disable assertions in the hardware_spi module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_SYNC

Enable/disable assertions in the hardware_sync module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_TICKS

Enable/disable assertions in the hardware_ticks module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_TIMER

Enable/disable assertions in the hardware_timer module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_UART

Enable/disable assertions in the hardware_uart module

0

PARAM_ASSERTIONS_ENABLED_HARDWARE_WATCHDOG

Enable/disable assertions in the hardware_watchdog module

0

PARAM_ASSERTIONS_ENABLED_LOCK_CORE

Enable/disable assertions in the lock core

0

PARAM_ASSERTIONS_ENABLED_PHEAP

Enable/disable assertions in the pheap module

0

PARAM_ASSERTIONS_ENABLED_PICO_CYW43_ARCH

Enable/disable assertions in the pico_cyw43_arch module

0

PARAM_ASSERTIONS_ENABLED_PICO_MULTICORE

Enable/disable assertions in the pico_multicore module

0

PARAM_ASSERTIONS_ENABLED_PICO_TIME

Enable/disable assertions in the pico_time module

0

PARAM_ASSERTIONS_ENABLED_PIO_INSTRUCTIONS

Enable/disable assertions in the PIO instructions

0

PARAM_ASSERTIONS_ENABLE_ALL

Global assert enable

0

PICO_BOOTROM_LOCKING_ENABLED

Enable/disable locking for bootrom functions that use shared reqsources. If

this flag is enabled bootrom lock checking is turned on and BOOT locks are

taken around the relevant bootrom functions

1

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 494

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_interp/include/hardware/interp.h#L14
https://github.com/raspberrypi/pico-sdk/blob/develop/src/host/hardware_irq/include/hardware/irq.h#L110
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_pio/include/hardware/pio.h#L17
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_powman/include/hardware/powman.h#L20
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_pwm/include/hardware/pwm.h#L19
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_resets/include/hardware/resets.h#L59
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sha256/include/hardware/sha256.h#L32
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_spi/include/hardware/spi.h#L14
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync/include/hardware/sync.h#L56
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_ticks/include/hardware/ticks.h#L45
https://github.com/raspberrypi/pico-sdk/blob/develop/src/host/hardware_timer/include/hardware/timer.h#L16
https://github.com/raspberrypi/pico-sdk/blob/develop/src/host/hardware_uart/include/hardware/uart.h#L12
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_watchdog/include/hardware/watchdog.h#L33
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_sync/include/pico/lock_core.h#L41
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_util/include/pico/util/pheap.h#L16
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h#L133
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_multicore/include/pico/multicore.h#L18
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_time/include/pico/time.h#L32
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_pio/include/hardware/pio_instructions.h#L23
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/include/pico/assert.h#L21
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_bootrom/include/pico/bootrom/lock.h#L13

Name / Description Default

PICO_BOOTSEL_VIA_DOUBLE_RESET_ACTIVITY_LED

Optionally define a pin to use as bootloader activity LED when BOOTSEL mode

is entered via reset double tap

PICO_BOOTSEL_VIA_DOUBLE_RESET_INTERFACE_DISABLE_MASK

Optionally disable either the mass storage interface (bit 0) or the PICOBOOT

interface (bit 1) when entering BOOTSEL mode via double reset

0

PICO_BOOTSEL_VIA_DOUBLE_RESET_TIMEOUT_MS

Window of opportunity for a second press of a reset button to enter BOOTSEL

mode (milliseconds)

200

PICO_BOOT_STAGE2_CHOOSE_AT25SF128A

Select boot2_at25sf128a as the boot stage 2 when no boot stage 2 selection

is made by the CMake build

0

PICO_BOOT_STAGE2_CHOOSE_GENERIC_03H

Select boot2_generic_03h as the boot stage 2 when no boot stage 2 selection

is made by the CMake build

1

PICO_BOOT_STAGE2_CHOOSE_IS25LP080

Select boot2_is25lp080 as the boot stage 2 when no boot stage 2 selection is

made by the CMake build

0

PICO_BOOT_STAGE2_CHOOSE_W25Q080

Select boot2_w25q080 as the boot stage 2 when no boot stage 2 selection is

made by the CMake build

0

PICO_BOOT_STAGE2_CHOOSE_W25X10CL

Select boot2_w25x10cl as the boot stage 2 when no boot stage 2 selection is

made by the CMake build

0

PICO_BUILD_BOOT_STAGE2_NAME

The name of the boot stage 2 if selected by the build

PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK

When the SYS clock PLL is changed keep the peripheral clock attached to it

0

PICO_CMSIS_RENAME_EXCEPTIONS

Whether to rename SDK exceptions such as isr_nmi to their CMSIS equivalent

i.e. NMI_Handler

1

PICO_CONFIG_HEADER

Unquoted path to header include in place of the default pico/config.h which

may be desirable for build systems which can’t easily generate the

config_autogen header

PICO_CONFIG_RTOS_ADAPTER_HEADER

Unquoted path to header include in the default pico/config.h for RTOS

integration defines that must be included in all sources

PICO_CORE1_STACK_SIZE

Minimum amount of stack space reserved in the linker script for core 1

PICO_STACK_SIZE (0x800)

PICO_CYW43_ARCH_DEBUG_ENABLED

Enable/disable some debugging output in the pico_cyw43_arch module

1 in debug builds

PICO_CYW43_ARCH_DEFAULT_COUNTRY_CODE

Default country code for the cyw43 wireless driver

CYW43_COUNTRY_WORLDWIDE

PICO_DEBUG_MALLOC

Enable/disable debug printf from malloc

0

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 495

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L21
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L23
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L16
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/boot_stage2/include/boot_stage2/config.h#L47
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/boot_stage2/include/boot_stage2/config.h#L57
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/boot_stage2/include/boot_stage2/config.h#L20
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/boot_stage2/include/boot_stage2/config.h#L29
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/boot_stage2/include/boot_stage2/config.h#L38
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/boot_stage2/include/boot_stage2/config.h#L14
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/clocks.c#L345
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/cmsis/include/cmsis/rename_exceptions.h#L11
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/include/pico.h#L29
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/include/pico/config.h#L21
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_multicore/include/pico/multicore.h#L32
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h#L142
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h#L151
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_malloc/include/pico/malloc.h#L28

Name / Description Default

PICO_DEBUG_MALLOC_LOW_WATER

Define the lower bound for allocation addresses to be printed by

PICO_DEBUG_MALLOC

0

PICO_DEBUG_PIN_BASE

First pin to use for debug output (if enabled)

19

PICO_DEBUG_PIN_COUNT

Number of pins to use for debug output (if enabled)

3

PICO_DEFAULT_I2C

Define the default I2C for a board

Usually provided via board header

PICO_DEFAULT_I2C_SCL_PIN

Define the default I2C SCL pin

Usually provided via board header

PICO_DEFAULT_I2C_SDA_PIN

Define the default I2C SDA pin

Usually provided via board header

PICO_DEFAULT_IRQ_PRIORITY

Define the default IRQ priority

0x80

PICO_DEFAULT_LED_PIN

Optionally define a pin that drives a regular LED on the board

Usually provided via board header

PICO_DEFAULT_LED_PIN_INVERTED

1 if LED is inverted or 0 if not

0

PICO_DEFAULT_SPI

Define the default SPI for a board

Usually provided via board header

PICO_DEFAULT_SPI_CSN_PIN

Define the default SPI CSN pin

Usually provided via board header

PICO_DEFAULT_SPI_RX_PIN

Define the default SPI RX pin

Usually provided via board header

PICO_DEFAULT_SPI_SCK_PIN

Define the default SPI SCK pin

Usually provided via board header

PICO_DEFAULT_SPI_TX_PIN

Define the default SPI TX pin

Usually provided via board header

PICO_DEFAULT_TIMER

Timer instance number to use for RP2040-period hardware_timer APIs that

assumed a single timer instance

0

PICO_DEFAULT_UART

Define the default UART used for printf etc

Usually provided via board header

PICO_DEFAULT_UART_BAUD_RATE

Define the default UART baudrate

115200

PICO_DEFAULT_UART_RX_PIN

Define the default UART RX pin

Usually provided via board header

PICO_DEFAULT_UART_TX_PIN

Define the default UART TX pin

Usually provided via board header

PICO_DEFAULT_WS2812_PIN

Optionally define a pin that controls data to a WS2812 compatible LED on the

board

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 496

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_malloc/include/pico/malloc.h#L33
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L1406
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L1411
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L57
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L59
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L58
https://github.com/raspberrypi/pico-sdk/blob/develop/src/host/hardware_irq/include/hardware/irq.h#L94
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_stdlib_headers/include/pico/stdlib.h#L60
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_stdlib_headers/include/pico/stdlib.h#L62
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_spi/include/hardware/spi.h#L42
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_spi/include/hardware/spi.h#L46
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_spi/include/hardware/spi.h#L45
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_spi/include/hardware/spi.h#L43
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_spi/include/hardware/spi.h#L44
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_timer/include/hardware/timer.h#L151
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/include/hardware/uart.h#L36
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/include/hardware/uart.h#L40
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/include/hardware/uart.h#L38
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/include/hardware/uart.h#L37
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_stdlib_headers/include/pico/stdlib.h#L67

Name / Description Default

PICO_DEFAULT_WS2812_POWER_PIN

Optionally define a pin that controls power to a WS2812 compatible LED on

the board

PICO_DISABLE_SHARED_IRQ_HANDLERS

Disable shared IRQ handlers

0

PICO_DOUBLE_SUPPORT_ROM_V1

Include double support code for RP2040 B0 when that chip revision is

supported

1

PICO_EMBED_XIP_SETUP

Embed custom XIP setup (boot2) in an RP2350 binary

0

PICO_FLASH_ASSERT_ON_UNSAFE

Assert in debug mode rather than returning an error if flash_safe_execute

cannot guarantee safety to catch bugs early

1

PICO_FLASH_ASSUME_CORE0_SAFE

Assume that core 0 will never be accessing flash and so doesn’t need to be

considered during flash_safe_execute

0

PICO_FLASH_ASSUME_CORE1_SAFE

Assume that core 1 will never be accessing flash and so doesn’t need to be

considered during flash_safe_execute

0

PICO_FLASH_BANK_STORAGE_OFFSET

Offset in flash of the Bluetooth flash storage

PICO_FLASH_SIZE_BYTES -

PICO_FLASH_BANK_TOTAL_SIZE

PICO_FLASH_BANK_TOTAL_SIZE

Total size of the Bluetooth flash storage. Must be an even multiple of

FLASH_SECTOR_SIZE

FLASH_SECTOR_SIZE * 2

PICO_FLASH_SAFE_EXECUTE_PICO_SUPPORT_MULTICORE_LOCKOUT

Support using multicore_lockout functions to make the other core safe during

flash_safe_execute

1 when using pico_multicore

PICO_FLASH_SAFE_EXECUTE_SUPPORT_FREERTOS_SMP

Support using FreeRTOS SMP to make the other core safe during

flash_safe_execute

1 when using FreeRTOS SMP

PICO_FLASH_SIZE_BYTES

size of primary flash in bytes

Usually provided via board header

PICO_FLOAT_SUPPORT_ROM_V1

Include float support code for RP2040 B0 when that chip revision is supported

1

PICO_HEAP_SIZE

Minimum amount of heap space reserved by the linker script

0x800

PICO_INCLUDE_RTC_DATETIME

Whether to include the datetime_t type used with the RP2040 RTC hardware

1 on RP2040

PICO_MALLOC_PANIC

Enable/disable panic when an allocation failure occurs

1

PICO_MAX_SHARED_IRQ_HANDLERS

Maximum number of shared IRQ handlers

4

PICO_MBEDTLS_SHA256_ALT_USE_DMA

Whether to use DMA for writing to hardware for the mbedtls SHA-256

hardware acceleration

1

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 497

https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_stdlib_headers/include/pico/stdlib.h#L68
https://github.com/raspberrypi/pico-sdk/blob/develop/src/host/hardware_irq/include/hardware/irq.h#L16
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L54
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_crt0/doc.h#L6
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_flash/include/pico/flash.h#L89
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_flash/include/pico/flash.h#L94
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_flash/include/pico/flash.h#L99
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_btstack/include/pico/btstack_flash_bank.h#L23
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_btstack/include/pico/btstack_flash_bank.h#L18
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_flash/include/pico/flash.h#L111
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_flash/include/pico/flash.h#L104
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_flash/include/hardware/flash.h#L51
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L49
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L34
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/include/pico/types.h#L94
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_malloc/include/pico/malloc.h#L23
https://github.com/raspberrypi/pico-sdk/blob/develop/src/host/hardware_irq/include/hardware/irq.h#L11
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_mbedtls/pico_mbedtls.c#L30

Name / Description Default

PICO_NO_BINARY_INFO

Don’t include "binary info" in the output binary

0 except for PICO_PLATFORM host

PICO_NO_FPGA_CHECK

Remove the FPGA platform check for small code size reduction

1

PICO_NO_RAM_VECTOR_TABLE

Enable/disable the RAM vector table

0

PICO_NO_SIM_CHECK

Remove the SIM platform check for small code size reduction

1

PICO_OPAQUE_ABSOLUTE_TIME_T

Enable opaque type for absolute_time_t to help catch inadvertent confusing

uint64_t delays with absolute times

0

PICO_PANIC_FUNCTION

Name of a function to use in place of the stock panic function or empty string

to simply breakpoint on panic

PICO_PHEAP_MAX_ENTRIES

Maximum number of entries in the pheap

255

PICO_PIO_USE_GPIO_BASE

Enable code for handling more than 32 PIO pins

true when supported and when the

device has more than 32 pins

PICO_PIO_VERSION

The PIO hardware version

0 on RP2040 and 1 on RP2350

PICO_PRINTF_ALWAYS_INCLUDED

Whether to always include printf code even if only called weakly (by panic)

1 in debug build 0 otherwise

PICO_PRINTF_DEFAULT_FLOAT_PRECISION

Define default floating point precision

6

PICO_PRINTF_FTOA_BUFFER_SIZE

Define printf ftoa buffer size

32

PICO_PRINTF_MAX_FLOAT

Define the largest float suitable to print with %f

1e9

PICO_PRINTF_NTOA_BUFFER_SIZE

Define printf ntoa buffer size

32

PICO_PRINTF_SUPPORT_EXPONENTIAL

Enable exponential floating point printing

1

PICO_PRINTF_SUPPORT_FLOAT

Enable floating point printing

1

PICO_PRINTF_SUPPORT_LONG_LONG

Enable support for long long types (%llu or %p)

1

PICO_PRINTF_SUPPORT_PTRDIFF_T

Enable support for the ptrdiff_t type (%t)

1

PICO_QUEUE_MAX_LEVEL

Maintain a field for the highest level that has been reached by a queue

0

PICO_RAND_BUS_PERF_COUNTER_EVENT

Bus performance counter event to use for sourcing entropy

arbiter_sram5_perf_event_access

PICO_RAND_BUS_PERF_COUNTER_INDEX

Bus performance counter index to use for sourcing entropy

Undefined meaning pick one that is

not counting any valid event already

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 498

https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_binary_info/include/pico/binary_info.h#L26
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L111
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L39
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/pico_platform/include/pico/platform.h#L109
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/include/pico/types.h#L20
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_platform_panic/panic.c#L24
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_util/include/pico/util/pheap.h#L37
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_pio/include/hardware/pio.h#L129
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_pio/include/hardware/pio.h#L26
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/include/pico/printf.h#L49
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/printf.c#L66
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/printf.c#L47
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/printf.c#L71
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/printf.c#L40
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/printf.c#L60
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/printf.c#L54
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/printf.c#L76
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_printf/printf.c#L81
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_util/include/pico/util/queue.h#L13
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L160
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L154

Name / Description Default

PICO_RAND_ENTROPY_SRC_BUS_PERF_COUNTER

Enable/disable use of a bus performance counter as an entropy source

1 if no hardware TRNG

PICO_RAND_ENTROPY_SRC_ROSC

Enable/disable use of ROSC as an entropy source

1 if no hardware TRNG

PICO_RAND_ENTROPY_SRC_TIME

Enable/disable use of hardware timestamp as an entropy source

1

PICO_RAND_ENTROPY_SRC_TRNG

Enable/disable use of hardware TRNG as an entropy source

1 if no hardware TRNG

PICO_RAND_MIN_ROSC_BIT_SAMPLE_TIME_US

Define a default minimum time between sampling the ROSC random bit

10

PICO_RAND_RAM_HASH_END

End of address in RAM (non-inclusive) to hash during pico_rand seed

initialization

SRAM_END

PICO_RAND_RAM_HASH_START

Start of address in RAM (inclusive) to hash during pico_rand seed initialization

PICO_RAND_RAM_HASH_END - 1024

PICO_RAND_ROSC_BIT_SAMPLE_COUNT

Number of samples to take of the ROSC random bit per random number

generation

1

PICO_RAND_SEED_ENTROPY_SRC_BOARD_ID

Enable/disable use of board id as part of the random seed

not

PICO_RAND_SEED_ENTROPY_SRC_B

OOT_RANDOM

PICO_RAND_SEED_ENTROPY_SRC_BOOT_RANDOM

Enable/disable use of the per boot random number as an entropy source for

the random seed

0 on RP2040 which has none

PICO_RAND_SEED_ENTROPY_SRC_BUF_PERF_COUNTER

Enable/disable use of a bus performance counter as an entropy source for the

random seed

PICO_RAND_ENTROPY_SRC_BUS_PE

RF_COUNTER

PICO_RAND_SEED_ENTROPY_SRC_RAM_HASH

Enable/disable use of a RAM hash as an entropy source for the random seed

1 if no hardware TRNG

PICO_RAND_SEED_ENTROPY_SRC_ROSC

Enable/disable use of ROSC as an entropy source for the random seed

PICO_RAND_ENTROPY_SRC_ROSC

PICO_RAND_SEED_ENTROPY_SRC_TIME

Enable/disable use of hardware timestamp as an entropy source for the

random seed

PICO_RAND_ENTROPY_SRC_TIME

PICO_RAND_SEED_ENTROPY_SRC_TRNG

Enable/disable use of hardware TRNG as an entropy source for the random

seed

PICO_RAND_ENTROPY_SRC_TRNG

PICO_RP2040_B0_SUPPORTED

Whether to include any specific software support for RP2040 B0 revision

1

PICO_RP2040_B1_SUPPORTED

Whether to include any specific software support for RP2040 B1 revision

1

PICO_RP2040_B2_SUPPORTED

Whether to include any specific software support for RP2040 B2 revision

1

PICO_RP2350A

Whether the current board has an RP2350 in an A (30 GPIO) package

Usually provided via board header

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 499

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L85
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L66
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L80
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L73
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L144
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L169
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L173
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L139
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L123
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L116
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L111
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L128
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L96
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L106
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_rand/include/pico/rand.h#L101
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L44
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L59
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L64
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/pico_platform/include/pico/platform.h#L32

Name / Description Default

PICO_RP2350_A2_SUPPORTED

Whether to include any specific software support for RP2350 A2 revision

1

PICO_RUNTIME_NO_INIT_BOOTROM_RESET

Do not include SDK implementation of runtime_init_bootrom_reset function

1 on RP2040

PICO_RUNTIME_NO_INIT_CLOCKS

Do not include SDK implementation of runtime_init_clocks function

0

PICO_RUNTIME_NO_INIT_DEFAULT_ALARM_POOL

Do not include SDK implementation of runtime_init_default_alarm_pool function

1 if

PICO_TIME_DEFAULT_ALARM_POOL_DISABLED

is

PICO_RUNTIME_NO_INIT_EARLY_RESETS

Do not include SDK implementation of runtime_init_early_resets function

1 on RP2040

PICO_RUNTIME_NO_INIT_INSTALL_RAM_VECTOR_TABLE

Do not include SDK implementation of runtime_init_install_ram_vector_table

function

0 unless RISC-V or RAM binary

PICO_RUNTIME_NO_INIT_MUTEX

Do not include SDK implementation of runtime_init_mutex function

0

PICO_RUNTIME_NO_INIT_PER_CORE_BOOTROM_RESET

Do not include SDK implementation of runtime_init_per_core_bootrom_reset

function

1 on RP2040

PICO_RUNTIME_NO_INIT_PER_CORE_ENABLE_COPROCESSORS

Do not include SDK implementation of

runtime_init_per_core_enable_coprocessors function

1 on RP2040 or RISC-V

PICO_RUNTIME_NO_INIT_PER_CORE_INSTALL_STACK_GUARD

Do not include SDK implementation of

runtime_init_per_core_install_stack_guard function

1 unless PICO_USE_STACK_GUARDS is 1

PICO_RUNTIME_NO_INIT_RP2040_GPIO_IE_DISABLE

Do not include SDK implementation of runtime_init_rp2040_gpio_ie_disable

function

0 on RP2040

PICO_RUNTIME_NO_INIT_SPIN_LOCKS_RESET

Do not include SDK implementation of runtime_init_spin_locks_reset function

0

PICO_RUNTIME_NO_INIT_USB_POWER_DOWN

Do not include SDK implementation of runtime_init_usb_power_down function

0

PICO_RUNTIME_SKIP_INIT_BOOTROM_LOCKING_ENABLE

Skip calling of runtime_init_bootrom_locking_enable function during runtime init

0

PICO_RUNTIME_SKIP_INIT_BOOTROM_RESET

Skip calling of runtime_init_bootrom_reset function during runtime init

1 on RP2040

PICO_RUNTIME_SKIP_INIT_BOOT_LOCKS_RESET

Skip calling of runtime_init_boot_locks_reset function during runtime init

0

PICO_RUNTIME_SKIP_INIT_CLOCKS

Skip calling of runtime_init_clocks function during runtime init

0

PICO_RUNTIME_SKIP_INIT_DEFAULT_ALARM_POOL

Skip calling of runtime_init_default_alarm_pool function during runtime init

1 if

PICO_TIME_DEFAULT_ALARM_POOL_DISABLED

is 1

PICO_RUNTIME_SKIP_INIT_EARLY_RESETS

Skip calling of runtime_init_early_resets function during runtime init

1 on RP2040

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 500

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L69
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L60
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L218
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L406
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L131
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L375
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L345
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L90
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L171
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L424
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L263
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L289
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L148
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L329
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L59
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L312
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L217
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L405
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L130

Name / Description Default

PICO_RUNTIME_SKIP_INIT_INSTALL_RAM_VECTOR_TABLE

Skip calling of runtime_init_install_ram_vector_table function during runtime

init

0 unless RISC-V or RAM binary

PICO_RUNTIME_SKIP_INIT_MUTEX

Skip calling of runtime_init_mutex function during runtime init

0

PICO_RUNTIME_SKIP_INIT_PER_CORE_BOOTROM_RESET

Skip calling of runtime_init_per_core_bootrom_reset function during per-core init

1 on RP2040

PICO_RUNTIME_SKIP_INIT_PER_CORE_ENABLE_COPROCESSORS

Skip calling of runtime_init_per_core_enable_coprocessors function during per-

core init

1 on RP2040 or RISC-V

PICO_RUNTIME_SKIP_INIT_PER_CORE_H3_IRQ_REGISTERS

Skip calling of runtime_init_per_core_h3_irq_registers function during per-core

init

1 on non RISC-V

PICO_RUNTIME_SKIP_INIT_PER_CORE_INSTALL_STACK_GUARD

Skip calling of runtime_init_per_core_install_stack_guard function during

runtime init

1 unless PICO_USE_STACK_GUARDS is 1

PICO_RUNTIME_SKIP_INIT_RP2040_GPIO_IE_DISABLE

Skip calling of runtime_init_rp2040_gpio_ie_disable function during runtime init

0 on RP2040

PICO_RUNTIME_SKIP_INIT_SPIN_LOCKS_RESET

Skip calling of runtime_init_spin_locks_reset function during runtime init

0

PICO_RUNTIME_SKIP_INIT_USB_POWER_DOWN

Skip calling of runtime_init_usb_power_down function during runtime init

0

PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY

Set default shared IRQ order priority

0x80

PICO_SPINLOCK_ID_ATOMIC

Spinlock ID for atomics

13

PICO_SPINLOCK_ID_CLAIM_FREE_FIRST

Lowest Spinlock ID in the 'claim free' range

24

PICO_SPINLOCK_ID_CLAIM_FREE_LAST

Highest Spinlock ID in the 'claim free' range

31

PICO_SPINLOCK_ID_HARDWARE_CLAIM

Spinlock ID for Hardware claim protection

11

PICO_SPINLOCK_ID_IRQ

Spinlock ID for IRQ protection

9

PICO_SPINLOCK_ID_OS1

First Spinlock ID reserved for use by low level OS style software

14

PICO_SPINLOCK_ID_OS2

Second Spinlock ID reserved for use by low level OS style software

15

PICO_SPINLOCK_ID_RAND

Spinlock ID for Random Number Generator

12

PICO_SPINLOCK_ID_STRIPED_FIRST

Lowest Spinlock ID in the 'striped' range

16

PICO_SPINLOCK_ID_STRIPED_LAST

Highest Spinlock ID in the 'striped' range

23

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 501

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L374
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L344
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L89
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L170
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L111
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L423
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L262
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L288
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_runtime_init/include/pico/runtime_init.h#L147
https://github.com/raspberrypi/pico-sdk/blob/develop/src/host/hardware_irq/include/hardware/irq.h#L102
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L40
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L65
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L74
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L30
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L20
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L45
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L50
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L35
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L55
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L60

Name / Description Default

PICO_SPINLOCK_ID_TIMER

Spinlock ID for Timer protection

10

PICO_STACK_SIZE

Minimum amount of stack space reserved in the linker script for each core.

See also PICO_CORE1_STACK_SIZE

0x800

PICO_STDIO_DEADLOCK_TIMEOUT_MS

Time after which to assume stdio_usb is deadlocked by use in IRQ and give up

1000

PICO_STDIO_DEFAULT_CRLF

Default for CR/LF conversion enabled on all stdio outputs

1

PICO_STDIO_ENABLE_CRLF_SUPPORT

Enable/disable CR/LF output conversion support

1

PICO_STDIO_RTT_DEFAULT_CRLF

Default state of CR/LF translation for rtt output

PICO_STDIO_DEFAULT_CRLF

PICO_STDIO_SEMIHOSTING_DEFAULT_CRLF

Default state of CR/LF translation for semihosting output

PICO_STDIO_DEFAULT_CRLF

PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS

Directly replace common stdio functions such as putchar from the C-library to

avoid pulling in lots of c library code for simple output

1

PICO_STDIO_STACK_BUFFER_SIZE

Define printf buffer size (on stack)… this is just a working buffer not a max

output size

128

PICO_STDIO_UART_DEFAULT_CRLF

Default state of CR/LF translation for UART output

PICO_STDIO_DEFAULT_CRLF

PICO_STDIO_UART_SUPPORT_CHARS_AVAILABLE_CALLBACK

Enable UART STDIO support for stdio_set_chars_available_callback. Can be

disabled to make use of the uart elsewhere

1

PICO_STDIO_USB_CONNECTION_WITHOUT_DTR

Disable use of DTR for connection checking meaning connection is assumed

to be valid

0

PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS

Maximum number of milliseconds to wait during initialization for a CDC

connection from the host (negative means indefinite) during initialization

0

PICO_STDIO_USB_DEFAULT_CRLF

Default state of CR/LF translation for USB output

PICO_STDIO_DEFAULT_CRLF

PICO_STDIO_USB_DEINIT_DELAY_MS

Number of milliseconds to wait before deinitializing stdio_usb

110

PICO_STDIO_USB_DEVICE_SELF_POWERED

Set USB device as self powered device

0

PICO_STDIO_USB_ENABLE_RESET_VIA_BAUD_RATE

Enable/disable resetting into BOOTSEL mode if the host sets the baud rate to

a magic value (PICO_STDIO_USB_RESET_MAGIC_BAUD_RATE)

1 if application is not using TinyUSB

directly

PICO_STDIO_USB_ENABLE_RESET_VIA_VENDOR_INTERFACE

Enable/disable resetting into BOOTSEL mode via an additional VENDOR USB

interface - enables picotool based reset

1 if application is not using TinyUSB

directly

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 502

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L25
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/pico_platform/include/pico/platform.h#L29
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/include/pico/stdio.h#L39
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/include/pico/stdio.h#L29
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/include/pico/stdio.h#L24
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_rtt/include/pico/stdio_rtt.h#L20
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_semihosting/include/pico/stdio_semihosting.h#L20
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/include/pico/stdio.h#L44
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/include/pico/stdio.h#L34
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_uart/include/pico/stdio_uart.h#L21
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_uart/include/pico/stdio_uart.h#L26
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L114
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L59
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L26
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L69
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L119
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L47
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L87

Name / Description Default

PICO_STDIO_USB_LOW_PRIORITY_IRQ

Explicit User IRQ number to claim for tud_task() background execution instead

of letting the implementation pick a free one dynamically (deprecated)

PICO_STDIO_USB_POST_CONNECT_WAIT_DELAY_MS

Number of extra milliseconds to wait when using

PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS after a host CDC

connection is detected (some host terminals seem to sometimes lose

transmissions sent right after connection)

50

PICO_STDIO_USB_RESET_BOOTSEL_ACTIVITY_LED

Optionally define a pin to use as bootloader activity LED when BOOTSEL mode

is entered via USB (either VIA_BAUD_RATE or VIA_VENDOR_INTERFACE)

PICO_STDIO_USB_RESET_BOOTSEL_FIXED_ACTIVITY_LED

Whether the pin specified by

PICO_STDIO_USB_RESET_BOOTSEL_ACTIVITY_LED is fixed or can be

modified by picotool over the VENDOR USB interface

0

PICO_STDIO_USB_RESET_BOOTSEL_INTERFACE_DISABLE_MASK

Optionally disable either the mass storage interface (bit 0) or the PICOBOOT

interface (bit 1) when entering BOOTSEL mode via USB (either

VIA_BAUD_RATE or VIA_VENDOR_INTERFACE)

0

PICO_STDIO_USB_RESET_INTERFACE_SUPPORT_MS_OS_20_DESCRIPTOR

If vendor reset interface is included add support for Microsoft OS 2.0

Descriptor

1

PICO_STDIO_USB_RESET_INTERFACE_SUPPORT_RESET_TO_BOOTSEL

If vendor reset interface is included allow rebooting to BOOTSEL mode

1

PICO_STDIO_USB_RESET_INTERFACE_SUPPORT_RESET_TO_FLASH_BOOT

If vendor reset interface is included allow rebooting with regular flash boot

1

PICO_STDIO_USB_RESET_MAGIC_BAUD_RATE

baud rate that if selected causes a reset into BOOTSEL mode (if

PICO_STDIO_USB_ENABLE_RESET_VIA_BAUD_RATE is set)

1200

PICO_STDIO_USB_RESET_RESET_TO_FLASH_DELAY_MS

Delay in ms before rebooting via regular flash boot

100

PICO_STDIO_USB_STDOUT_TIMEOUT_US

Number of microseconds to be blocked trying to write USB output before

assuming the host has disappeared and discarding data

500000

PICO_STDIO_USB_SUPPORT_CHARS_AVAILABLE_CALLBACK

Enable USB STDIO support for stdio_set_chars_available_callback. Can be

disabled to make use of USB CDC RX callback elsewhere

1

PICO_STDIO_USB_TASK_INTERVAL_US

Period of microseconds between calling tud_task in the background

1000

PICO_STDOUT_MUTEX

Enable/disable mutex around stdout

1

PICO_TIME_DEFAULT_ALARM_POOL_DISABLED

Disable the default alarm pool

0

PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM

Select which HW alarm is used for the default alarm pool

3

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 503

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L42
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L64
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L74
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L76
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L82
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L104
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L94
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L99
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L54
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L109
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L31
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L124
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L37
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/include/pico/stdio.h#L19
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_time/include/pico/time.h#L311
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_time/include/pico/time.h#L328

Name / Description Default

PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS

Selects the maximum number of concurrent timers in the default alarm pool

16

PICO_TIME_SLEEP_OVERHEAD_ADJUST_US

How many microseconds to wake up early (and then busy_wait) to account for

timer overhead when sleeping in low power mode

6

PICO_UART_DEFAULT_CRLF

Enable/disable CR/LF translation on UART

0

PICO_UART_ENABLE_CRLF_SUPPORT

Enable/disable CR/LF translation support

1

PICO_USE_GPIO_COPROCESSOR

Enable/disable use of the GPIO coprocessor for GPIO access

1

PICO_USE_MALLOC_MUTEX

Whether to protect malloc etc with a mutex

1 with pico_multicore, 0 otherwise

PICO_USE_STACK_GUARDS

Enable/disable stack guards

0

PICO_USE_SW_SPIN_LOCKS

Use software implementation for spin locks

1 on RP2350 due to errata

PICO_VTABLE_PER_CORE

user is using separate vector tables per core

0

PICO_XOSC_STARTUP_DELAY_MULTIPLIER

Multiplier to lengthen xosc startup delay to accommodate slow-starting

oscillators

1

PLL_SYS_POSTDIV1

System clock PLL post divider 1 setting

6 on RP2040 5 or on RP2350

PLL_SYS_POSTDIV2

System clock PLL post divider 2 setting

2

PLL_SYS_REFDIV

PLL reference divider setting for PLL_SYS

1

PLL_SYS_VCO_FREQ_HZ

System clock PLL frequency

(1500 * MHZ)

PLL_USB_POSTDIV1

USB clock PLL post divider 1 setting

5

PLL_USB_POSTDIV2

USB clock PLL post divider 2 setting

5

PLL_USB_REFDIV

PLL reference divider setting for PLL_USB

1

PLL_USB_VCO_FREQ_HZ

USB clock PLL frequency

(1200 * MHZ)

SYS_CLK_HZ

System operating frequency in Hz

125000000

USB_CLK_HZ

USB clock frequency. Must be 48MHz for the USB interface to operate

correctly

48000000

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 504

https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_time/include/pico/time.h#L338
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_time/include/pico/time.h#L41
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/include/hardware/uart.h#L31
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_uart/include/hardware/uart.h#L26
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L16
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_malloc/include/pico/malloc.h#L18
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2350/pico_platform/include/pico/platform.h#L53
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_sync_spin_lock/include/hardware/sync/spin_lock.h#L13
https://github.com/raspberrypi/pico-sdk/blob/develop/src/host/hardware_irq/include/hardware/irq.h#L21
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_xosc/include/hardware/xosc.h#L16
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L195
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L203
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L172
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L191
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L236
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L240
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L213
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L232
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/hardware_regs/include/hardware/platform_defs.h#L64
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/hardware_regs/include/hardware/platform_defs.h#L75

Name / Description Default

USB_DPRAM_MAX

Set amount of USB RAM used by USB system

4096

XOSC_HZ

Crystal oscillator frequency in Hz

12000000

Raspberry Pi Pico-series C/C++ SDK

5.1. Full List of SDK Configuration Defines 505

https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/hardware_structs/include/hardware/structs/usb_dpram.h#L56
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/hardware_regs/include/hardware/platform_defs.h#L49

Chapter 6. CMake build
configuration
Use CMake cache variables to customize SDK builds.

6.1. Full List of SDK Configuration Variables

Table 35. SDK CMake

Configuration

Variables

Name / Description Default

PICO_BARE_METAL

Flag to exclude anything except base headers from the build

0

PICO_BOARD

Board name being built for. This may be specified in the user environment

(see Section 6.2)

pico or pico2

PICO_BOARD_CMAKE_DIRS

List of directories to look for <PICO_BOARD>.cmake in. This may be specified

in the user environment

PICO_BOARD_HEADER_DIRS

List of directories to look for <PICO_BOARD>.h in. This may be specified the

user environment

PICO_CMAKE_PRELOAD_PLATFORM_FILE

Custom CMake file to use to set up the platform environment

PICO_COMPILER

Specifies the compiler family to use (see Section 6.3)

PICO_DEFAULT_COMPILER which is

set based on PICO_PLATFORM

PICO_CONFIG_HEADER_FILES

List of extra header files to include from pico/config.h for all platforms

PICO_COPY_TO_RAM

Option to default all binaries to copy code from flash to SRAM before running

(see Section 6.4)

0

PICO_CXX_ENABLE_CXA_ATEXIT

Enable cxa-atexit

0

PICO_CXX_ENABLE_EXCEPTIONS

Enable CXX exception handling

0

PICO_CXX_ENABLE_RTTI

Enable CXX rtti

0

PICO_DEFAULT_BOOT_STAGE2

Simpler alternative to specifying PICO_DEFAULT_BOOT_STAGE2_FILE where

the latter is set to

src/rp2_common/boot_stage2/{PICO_DEFAULT_BOOT_STAGE2}.S

compile_time_choice

PICO_DEFAULT_BOOT_STAGE2_FILE

Default boot stage 2 file to use unless overridden by pico_set_boot_stage2 on

the TARGET; this setting is useful when explicitly setting the default build from

a per board CMake file

Raspberry Pi Pico-series C/C++ SDK

6.1. Full List of SDK Configuration Variables 506

https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/rp2_common.cmake#L17
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/pico_pre_load_platform.cmake#L3
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/pico_pre_load_platform.cmake#L57
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/generic_board.cmake#L3
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/pico_pre_load_platform.cmake#L127
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/pico_pre_load_toolchain.cmake#L28
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/generate_config_header.cmake#L14
https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/rp2_common.cmake#L7
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cxx_options/CMakeLists.txt#L23
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cxx_options/CMakeLists.txt#L8
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_cxx_options/CMakeLists.txt#L18
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/boot_stage2/CMakeLists.txt#L2
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2040/boot_stage2/CMakeLists.txt#L1

Name / Description Default

PICO_DEFAULT_PIOASM_OUTPUT_FORMAT

Default output format used by pioasm when using pico_generate_pio_header

c-sdk

PICO_DEFAULT_RP2350_PLATFORM

Default actual platform to build for if rp2350 is specified for PICO_PLATFORM

e.g. rp2350-arm-s/rp2350-riscv

rp2350-arm-s

PICO_GCC_TRIPLE

List of GCC_TRIPLES — usually only one — to try when searching for a

compiler. This may be specified the user environment

PICO_DEFAULT_GCC_TRIPLE which is

set based on PICO_COMPILER

PICO_HOST_CONFIG_HEADER_FILES

List of extra header files to include from pico/config.h for the host platform

only

PICO_NO_COPRO_DIS

Disable disassembly listing postprocessing that disassembles RP2350

coprocessor instructions

0

PICO_NO_FLASH

Option to default all binaries to not use flash i.e. run from SRAM (see Section

6.4)

0

PICO_NO_GC_SECTIONS

Disable -ffunction-sections -fdata-sections and --gc-sections

0

PICO_NO_HARDWARE

Option as to whether the build is not targeting an RP2040 or RP2350 device

1 when PICO_PLATFORM is host, 0

otherwise

PICO_NO_PICOTOOL

Disable use/requirement for picotool meaning that UF2 output and

signing/hashing and coprocoessor disassembly will all be unavailable

0

PICO_NO_TARGET_NAME

Don’t define PICO_TARGET_NAME

0

PICO_NO_UF2

Disable UF2 output

0

PICO_ON_DEVICE

Option as to whether the build is targeting an RP2040 or RP2350 device

0 when PICO_PLATFORM is host, 1

otherwise

PICO_PLATFORM

Platform to build for e.g. rp2040/rp2350/rp2350-arm-s/rp2350-riscv/host.

This may be specified in the user environment (see Section 6.2)

based on PICO_BOARD or

environment value

PICO_RP2040_CONFIG_HEADER_FILES

List of extra header files to include from pico/config.h for the rp2040 platform

only

PICO_RP2350_ARM_S_CONFIG_HEADER_FILES

List of extra header files to include from pico/config.h for the rp2350-arm-s

platform only

PICO_RP2350_RISCV_CONFIG_HEADER_FILES

List of extra header files to include from pico/config.h for the riscv platform

only

PICO_SDK_VERSION_MAJOR

SDK major version number

Current SDK major version

Raspberry Pi Pico-series C/C++ SDK

6.1. Full List of SDK Configuration Variables 507

https://github.com/raspberrypi/pico-sdk/blob/develop/tools/CMakeLists.txt#L150
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/pico_pre_load_platform.cmake#L75
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/preload/toolchains/util/pico_arm_gcc_common.cmake#L6
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/generate_config_header.cmake#L20
https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/on_device.cmake#L31
https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/rp2_common.cmake#L5
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_standard_link/CMakeLists.txt#L106
https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/on_device.cmake#L89
https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/on_device.cmake#L54
https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/on_device.cmake#L65
https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/on_device.cmake#L83
https://github.com/raspberrypi/pico-sdk/blob/develop/src/cmake/on_device.cmake#L92
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/pico_pre_load_platform.cmake#L9
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/generate_config_header.cmake#L17
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/generate_config_header.cmake#L18
https://github.com/raspberrypi/pico-sdk/blob/develop/src/common/pico_base_headers/generate_config_header.cmake#L19
https://github.com/raspberrypi/pico-sdk/blob/develop/pico_sdk_version.cmake#L2

Name / Description Default

PICO_SDK_VERSION_MINOR

SDK minor version number

Current SDK minor version

PICO_SDK_VERSION_PRE_RELEASE_ID

Optional SDK pre-release version identifier

Current SDK pre-release identifier

PICO_SDK_VERSION_REVISION

SDK version revision

Current SDK revision

PICO_SDK_VERSION_STRING

SDK version string

Current SDK version string

PICO_STDIO_RTT

Option to globally enable stdio RTT for all targets by default

0

PICO_STDIO_SEMIHOSTING

Option to globally enable stdio semi-hosting for all targets by default

0

PICO_STDIO_UART

Option to globally enable stdio UART for all targets by default

1

PICO_STDIO_USB

Option to globally enable stdio USB for all targets by default

0

PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS

Maximum number of milliseconds to wait during initialization for a CDC

connection from the host (negative means indefinite) during initialization

0

PICO_TOOLCHAIN_PATH

Path to search for compiler (see Section 6.3)

none (i.e. search system paths)

PICO_USE_DEFAULT_MAX_PAGE_SIZE

Don’t shrink linker max page to 4096

0

6.2. Platform and Board Configuration

Passing PICO_BOARD=my_board_name to the CMake build (or specifying it in your environment) will cause the header

my_board_name.h to be included by all other SDK headers in order to provide #defines particular to the board you are using.

You may also wish to specify your own board configuration in which case you can set PICO_BOARD_HEADER_DIRS in the

environment or CMake to a semicolon separated list of paths to search for my_board_name.h.

On previous versions of the SDK there was generally little need for setting PICO_PLATFORM as the default value rp2040

selected RP2040 - the one and only RP-series microcontroller at the time.

SDK version 2.0.0 now supports the following RP-series microcontroller platforms along with the pre-existing value host

that can be used to build code for testing.

rp2040

Building for RP2040

rp2350-arm-s

Building for RP2350 on Arm processors; the "s" stands for secure, and means the binary runs directly from the

bootrom, when the processor is still in secure mode.

rp2350-riscv

Building for RP2350 on RISC-V processors.

Individual manufactured boards will usually support only one of either RP2040 or RP2350. To avoid having to specify

PICO_PLATFORM in addition to PICO_BOARD, specifying the latter can now automatically set the former (or vice versa).

Raspberry Pi Pico-series C/C++ SDK

6.2. Platform and Board Configuration 508

https://github.com/raspberrypi/pico-sdk/blob/develop/pico_sdk_version.cmake#L5
https://github.com/raspberrypi/pico-sdk/blob/develop/pico_sdk_version.cmake#L11
https://github.com/raspberrypi/pico-sdk/blob/develop/pico_sdk_version.cmake#L8
https://github.com/raspberrypi/pico-sdk/blob/develop/pico_sdk_version.cmake#L15
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/CMakeLists.txt#L7
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/CMakeLists.txt#L5
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/CMakeLists.txt#L1
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio/CMakeLists.txt#L3
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_stdio_usb/CMakeLists.txt#L21
https://github.com/raspberrypi/pico-sdk/blob/develop/cmake/pico_pre_load_toolchain.cmake#L1
https://github.com/raspberrypi/pico-sdk/blob/develop/src/rp2_common/pico_standard_link/CMakeLists.txt#L96

The following steps are applied in order, with the results from the previous step being used in the next:

1. If neither PICO_BOARD or PICO_PLATFORM is specified, PICO_PLATFORM defaults to PICO_DEFAULT_PLATFORM which itself defaults

to rp2040

2. If PICO_PLATFORM is specified and not PICO_BOARD, then PICO_BOARD is defaulted based on the value of PICO_PLATFORM:

◦ pico for PICO_PLATFORM=rp2040

◦ pico2 for PICO_PLATFORM=rp2350-arm-s or PICO_PLATFORM=rp2350-riscv

3. If PICO_BOARD is specified but not PICO_PLATFORM, PICO_PLATFORM will be set if a value for it is specified in the board

header.

Because most RP2350 boards allow both Arm and RISC-V development, rp2350 is also a valid value for PICO_PLATFORM, and

is often specified by a board header in step 3 above, but is always replaced with the value of PICO_DEFAULT_RP2350_PLATFORM

to allow the user their own preference. PICO_DEFAULT_RP2350_PLATFORM defaults to rp2350-arm-s if not otherwise specified.

 NOTE

Both PICO_PLATFORM and PICO_BOARD are latched if they have been specified via the environment, on the first CMake

configuration; i.e. the value from the environment will not be used when configuring CMake subsequently in the

same existing build directory.

6.3. Compiler and Toolchain Configuration

The SDK supports building for Arm Cortex-M0 plus processors on RP2040 and for both Arm Cortex-M33 processors and

RISC-V Hazard3 processors on RP2350.

The SDK also supports building with either GCC or LLVM (clang) on Arm. See Section 2.10 for more details of supported

compilers.

6.3.1. Variables

The following variables are used to find and configure the right compiler.

6.3.1.1. PICO_COMPILER

This is usuually defaulted for you to a GCC compiler based on PICO_PLATFORM. However, you can select one of the

following values

• pico_arm_gcc - Selects pico_arm_cortex_m0plus_gcc on RP2040 and pico_arm_cortex_m33_gcc on RP2350

• pico_arm_cortex_m0plus_gcc - Configures GCC to build for Arm Cortex-M0 plus

• pico_arm_cortex_m33_gcc - Configures GCC to build for Arm Cortex-M33

• pico_arm_clang - Selects pico_arm_cortex_m0plus_clang on RP2040 and pico_arm_cortex_m33_clang on RP2350

• pico_arm_cortex_m0plus_clang - Configures LLVM/clang to build for Arm Cortex-M0 plus

• pico_arm_cortex_m33_clang - Configures LLVM/clang to build for Arm Cortex-M33

• pico_riscv_gcc - Configures GCC to build for RISC-V Hazard3

• pico_riscv_gcc_zcb_zcmp - Configures GCC to build for RISC-V Hazard3 using zcb and zcmp extensions that aren’t

supported by all compilers

Raspberry Pi Pico-series C/C++ SDK

6.3. Compiler and Toolchain Configuration 509

6.3.1.2. PICO_GCC_TRIPLE

This specifies one or more compiler "triples" to try when looking for a GCC compiler.

On Arm this defaults to arm-none-eabi.

On RISC-V this defaults to riscv32-unknown-elf;riscv32-corev-elf i.e. the two most common options are supported.

6.3.1.3. PICO_TOOLCHAIN_PATH

Armed with PICO_COMPILER and PICO_GCC_TRIPLE (if using GCC) the SDK will then search for a compiler. By default, it

searches the path, but PICO_TOOLCHAIN_PATH may be set to specify the root directory of a compiler toolchain install.

6.3.1.4. PICO_CLIB

Most programs for the SDK require a C-library. Generally your installed compiler will include the toolchain. In this case,

the SDK will try to detect either of the following runtimes, as which one is used effects how the SDK interacts with it.

• newlib

• picolibc

• llvm-libc

The SDK sets PICO_CLIB to one of these values, however you can set it yourself first if you want to force a choice.

6.4. Binary Type configuration

These variables control how executables for RP-series microcontroller are laid out in memory. The default is for the

code and data to be entirely stored in flash with writable data (and some specifically marked) methods to copy into

RAM at startup.

Variable name Values Result

PICO_DEFAULT_BINARY_TYPE default Stores binaries in flash storage. Runs binaries from flash storage.

no_flash Stores binaries in memory. Runs binaries from memory. Does not

require any flash storage. Note: You must reload this type of binary

after every reboot via UF2 file or debugger.

copy_to_ram Stores binaries in flash, but copies them to memory (RAM) before

executing.

blocked_ram

PICO_NO_FLASH 0 / 1 Equivalent to PICO_DEFAULT_BINARY_TYPE=no_flash if =1.

PICO_COPY_TO_RAM 0 / 1 Equivalent to PICO_DEFAULT_BINARY_TYPE=copy_to_ram if =1.

PICO_USE_BLOCKED_RAM 0 / 1 Equivalent to PICO_DEFAULT_BINARY_TYPE=blocked_ram if =1.

Raspberry Pi Pico-series C/C++ SDK

6.4. Binary Type configuration 510

 TIP

You can set the binary type for each executable target (as created by add_executable) by calling

pico_set_binary_type(target type) using the same type as PICO_DEFAULT_BINARY_TYPE.

Raspberry Pi Pico-series C/C++ SDK

6.4. Binary Type configuration 511

Chapter 7. CMake build functions

7.1. Control of picotool post-processing (not available on RP2040)

These functions control what post-processing is performed by picotool on the executables produced by the sdk. They

can be used to hash/sign binaries, package no_flash binaries, and embed partition tables into block loops. These

functions all set the specified target properties, and therefore if the property should be set for multiple targets then it

can be set manually with set_property or other CMake functions to set properties for a given scope.

pico_package_uf2_output(TARGET PACKADDR) Package a UF2 output to be written to the PACKADDR address.

This can be used with a no_flash binary to write the UF2 to flash

when dragging & dropping, and it will be copied to SRAM by the

bootrom before execution. This sets

PICOTOOL_UF2_PACKAGE_ADDR to PACKADDR.

pico_set_otp_key_output_file(TARGET OTPFILE) Output the public key hash and other necessary rows to an otp

JSON file. This sets PICOTOOL_OTP_FILE to OTPFILE.

pico_load_map_clear_sram(TARGET) Adds an entry to the load map to instruct the bootrom to clear all

of SRAM before loading the binary. This appends the --clear

argument to PICOTOOL_EXTRA_PROCESS_ARGS.

pico_set_binary_version(<TARGET> [MAJOR

<version>] [MINOR <version>] [ROLLBACK

<version>] [ROLLBACK_ROWS <rows…>])

Adds a version item to the metadata block, with the given major,

minor and rollback version, along with the rollback rows. These are

appended as arguments to PICOTOOL_EXTRA_PROCESS_ARGS if

setting the rollback version, or set as compile definitions if only

setting the major/minor versions.

pico_set_uf2_family(TARGET FAMILY) Set the UF2 family to use when creating the UF2. This sets

PICOTOOL_UF2_FAMILY to FAMILY.

pico_sign_binary(TARGET [SIGFILE]) Sign the target binary with the given PEM signature. This sets

PICOTOOL_SIGN_OUTPUT to true, PICOTOOL_SIGFILE to SIGFILE

(if specified), and PICOTOOL_OTP_FILE to ${TARGET}.otp.json (if

not already set). To specify a common SIGFILE for multiple targets,

the SIGFILE property can be set for a given scope, and then the

SIGFILE argument is optional.

pico_hash_binary(TARGET) Hash the target binary. This sets PICOTOOL_HASH_OUTPUT to

true.

pico_embed_pt_in_binary(TARGET PTFILE) Create the specified partition table from JSON, and embed it in the

block loop. This sets PICOTOOL_EMBED_PT to PTFILE.

pico_encrypt_binary(TARGET AESFILE [SIGFILE]) Encrypt the target binary with the given AES key (should be a binary

file containing 32 bytes of a random key), and sign the encrypted

binary. This sets PICOTOOL_AESFILE to AESFILE, and

PICOTOOL_ENC_SIGFILE to SIGFILE if present, else

PICOTOOL_SIGFILE.

Raspberry Pi Pico-series C/C++ SDK

Chapter 7. CMake build functions 512

Chapter 8. Board configuration
Board configuration is the process of customising the SDK to run on a specific board design. The SDK comes with

some predefined configurations for boards produced by Raspberry Pi and other manufacturers, the main (and default)

example being the Raspberry Pi Pico 2.

Configurations specify a number of parameters that could vary between hardware designs. For example, default UART

ports, on-board LED locations and flash capacities etc.

This chapter will go through where these configurations files are, how to make changes and set parameters, and how to

build your SDK using CMake with your customisations.

8.1. The Configuration files

Board specific configuration files are stored in the SDK source tree, at …/src/boards/include/boards/<boardname>.h. The

default configuration file is that for the Raspberry Pi Pico 2, and at the time of writing is:

<sdk_path>/src/boards/include/boards/pico.h

This relatively short file contains overrides from default of a small number of parameters used by the SDK when building

code.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h

 1 /*
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 // ---
 8 // NOTE: THIS HEADER IS ALSO INCLUDED BY ASSEMBLER SO
 9 // SHOULD ONLY CONSIST OF PREPROCESSOR DIRECTIVES
10 // ---
11
12 // This header may be included by other board headers as "boards/pico.h"
13
14 // pico_cmake_set PICO_PLATFORM=rp2040
15
16 #ifndef _BOARDS_PICO_H
17 #define _BOARDS_PICO_H
18
19 // For board detection
20 #define RASPBERRYPI_PICO
21
22 // --- UART ---
23 #ifndef PICO_DEFAULT_UART
24 #define PICO_DEFAULT_UART 0
25 #endif
26 #ifndef PICO_DEFAULT_UART_TX_PIN
27 #define PICO_DEFAULT_UART_TX_PIN 0
28 #endif
29 #ifndef PICO_DEFAULT_UART_RX_PIN
30 #define PICO_DEFAULT_UART_RX_PIN 1
31 #endif
32
33 // --- LED ---
34 #ifndef PICO_DEFAULT_LED_PIN

Raspberry Pi Pico-series C/C++ SDK

8.1. The Configuration files 513

https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h

35 #define PICO_DEFAULT_LED_PIN 25
36 #endif
37 // no PICO_DEFAULT_WS2812_PIN
38
39 // --- I2C ---
40 #ifndef PICO_DEFAULT_I2C
41 #define PICO_DEFAULT_I2C 0
42 #endif
43 #ifndef PICO_DEFAULT_I2C_SDA_PIN
44 #define PICO_DEFAULT_I2C_SDA_PIN 4
45 #endif
46 #ifndef PICO_DEFAULT_I2C_SCL_PIN
47 #define PICO_DEFAULT_I2C_SCL_PIN 5
48 #endif
49
50 // --- SPI ---
51 #ifndef PICO_DEFAULT_SPI
52 #define PICO_DEFAULT_SPI 0
53 #endif
54 #ifndef PICO_DEFAULT_SPI_SCK_PIN
55 #define PICO_DEFAULT_SPI_SCK_PIN 18
56 #endif
57 #ifndef PICO_DEFAULT_SPI_TX_PIN
58 #define PICO_DEFAULT_SPI_TX_PIN 19
59 #endif
60 #ifndef PICO_DEFAULT_SPI_RX_PIN
61 #define PICO_DEFAULT_SPI_RX_PIN 16
62 #endif
63 #ifndef PICO_DEFAULT_SPI_CSN_PIN
64 #define PICO_DEFAULT_SPI_CSN_PIN 17
65 #endif
66
67 // --- FLASH ---
68
69 #define PICO_BOOT_STAGE2_CHOOSE_W25Q080 1
70
71 #ifndef PICO_FLASH_SPI_CLKDIV
72 #define PICO_FLASH_SPI_CLKDIV 2
73 #endif
74
75 // pico_cmake_set_default PICO_FLASH_SIZE_BYTES = (2 * 1024 * 1024)
76 #ifndef PICO_FLASH_SIZE_BYTES
77 #define PICO_FLASH_SIZE_BYTES (2 * 1024 * 1024)
78 #endif
79 // Drive high to force power supply into PWM mode (lower ripple on 3V3 at light loads)
80 #define PICO_SMPS_MODE_PIN 23
81
82 #ifndef PICO_RP2040_B0_SUPPORTED
83 #define PICO_RP2040_B0_SUPPORTED 1
84 #endif
85
86 // The GPIO Pin used to read VBUS to determine if the device is battery powered.
87 #ifndef PICO_VBUS_PIN
88 #define PICO_VBUS_PIN 24
89 #endif
90
91 // The GPIO Pin used to monitor VSYS. Typically you would use this with ADC.
92 // There is an example in adc/read_vsys in pico-examples.
93 #ifndef PICO_VSYS_PIN
94 #define PICO_VSYS_PIN 29
95 #endif
96
97 #endif

Raspberry Pi Pico-series C/C++ SDK

8.1. The Configuration files 514

As can be seen, it sets up the default UART to uart0, the GPIO pins to be used for that UART, the GPIO pin used for the

on-board LED, and the flash size.

To create your own configuration file, create a file in the board ../source/folder with the name of your board, for

example, myboard.h. Enter your board specific parameters in this file.

8.2. Building applications with a custom board
configuration

The CMake system is what specifies which board configuration is going to be used.

To create a new build based on a new board configuration (we will use the myboard example from the previous section)

first create a new build folder under your project folder. For our example we will use the pico-examples folder.

$ cd pico-examples
$ mkdir myboard_build
$ cd myboard_build

then run cmake as follows:

$ cmake -D"PICO_BOARD=myboard" ..

This will set up the system ready to build so you can simply type make in the myboard_build folder and the examples will be

built for your new board configuration.

8.3. Available configuration parameters

Table 34 lists all the available configuration parameters available within the SDK. You can set any configuration variable

in a board configuration header file, however the convention is to limit that to configuration items directly affected by

the board design (e.g. pins, clock frequencies etc.) Other configuration items should generally be overridden in the

CMake configuration (or another configuration header) for the application being built.

Raspberry Pi Pico-series C/C++ SDK

8.2. Building applications with a custom board configuration 515

Chapter 9. Embedded Binary
Information
Binary information is machine-readable information embedded in a binary by the SDK (or other development tools) such

that it can be read by `picotool` or other tooling.

9.1. Basic information

This information is really handy when you pick up a Pico-series device and don’t know what is on it!

Basic information includes

• program name

• program description

• program version string

• program build date

• program url

• program end address

• program features, this is a list built from individual strings in the binary, that can be displayed (e.g. we will have one

for UART stdio and one for USB stdio) in the SDK

• build attributes, this is a similar list of strings, for things pertaining to the binary itself (e.g. Debug Build)

9.2. Pins

This is certainly handy when you have an executable called hello_serial.elf but you forgot what Raspberry Pi

microcontroller-based board it was built for, as different boards may have different pins broken out.

Static (fixed) pin assignments can be recorded in the binary in very compact form:

$ picotool info --pins sprite_demo.elf
File sprite_demo.elf:

Fixed Pin Information
0-4: Red 0-4
6-10: Green 0-4
11-15: Blue 0-4
16: HSync
17: VSync
18: Display Enable
19: Pixel Clock
20: UART1 TX
21: UART1 RX

Raspberry Pi Pico-series C/C++ SDK

9.1. Basic information 516

9.3. Full Information

Full information is available with the -a option:

$ picotool info -a i2c_bus_scan.elf
File i2c_bus_scan.elf:

Program Information
 name: i2c_bus_scan
 web site: https://github.com/raspberrypi/pico-examples/tree/HEAD/i2c/bus_scan
 features: UART stdin / stdout
 binary start: 0x10000000
 binary end: 0x10004c74

Fixed Pin Information
 0: UART0 TX
 1: UART0 RX
 4: I2C0 SDA
 5: I2C0 SCL

Build Information
 sdk version: 2.0.0-develop
 pico_board: pico
 build date: Aug 1 2024
 build attributes: Debug

9.4. Including Binary Information

Binary information is declared in the program by macros; for the following example:

$ picotool info --pins sprite_demo.elf
File sprite_demo.elf:

Fixed Pin Information
0-4: Red 0-4
6-10: Green 0-4
11-15: Blue 0-4
16: HSync
17: VSync
18: Display Enable
19: Pixel Clock
20: UART1 TX
21: UART1 RX

There is one line in the setup_default_uart function:

bi_decl_if_func_used(bi_2pins_with_func(PICO_DEFAULT_UART_RX_PIN, PICO_DEFAULT_UART_TX_PIN,
GPIO_FUNC_UART));

The two pin numbers, and the function UART are stored, then decoded to their actual function names (UART1 TX etc) by

picotool. The bi_decl_if_func_used makes sure the binary information is only included if the containing function is called.

Equally, the video code contains a few lines like this:

Raspberry Pi Pico-series C/C++ SDK

9.3. Full Information 517

bi_decl_if_func_used(bi_pin_mask_with_name(0x1f << (PICO_SCANVIDEO_COLOR_PIN_BASE +
PICO_SCANVIDEO_DPI_PIXEL_RSHIFT), "Red 0-4"));

The macros are designed to waste as little space as possible, but you can turn everything off with preprocessor var

PICO_NO_BINARY_INFO=1. Additionally, any SDK code that inserts binary info can be separately excluded by its own

preprocessor var.

To ad your own binary info, you need:

#include "pico/binary_info.h"

There are a bunch of bi_ macros in the headers

#define bi_binary_end(end)
#define bi_program_name(name)
#define bi_program_description(description)
#define bi_program_version_string(version_string)
#define bi_program_build_date_string(date_string)
#define bi_program_url(url)
#define bi_program_feature(feature)
#define bi_program_build_attribute(attr)
#define bi_1pin_with_func(p0, func)
#define bi_2pins_with_func(p0, p1, func)
#define bi_3pins_with_func(p0, p1, p2, func)
#define bi_4pins_with_func(p0, p1, p2, p3, func)
#define bi_5pins_with_func(p0, p1, p2, p3, p4, func)
#define bi_pin_range_with_func(plo, phi, func)
#define bi_pin_mask_with_name(pmask, label)
#define bi_pin_mask_with_names(pmask, label)
#define bi_1pin_with_name(p0, name)
#define bi_2pins_with_names(p0, name0, p1, name1)
#define bi_3pins_with_names(p0, name0, p1, name1, p2, name2)
#define bi_4pins_with_names(p0, name0, p1, name1, p2, name2, p3, name3)

which make use of underlying macros, e.g.

#define bi_program_url(url) bi_string(BINARY_INFO_TAG_RASPBERRY_PI, BINARY_INFO_ID_RP_PROGRAM_URL,
url)

You then either use bi_decl(bi_blah(…)) for unconditional inclusion of the binary info blah, or

bi_decl_if_func_used(bi_blah(…)) for binary information that may be stripped if the enclosing function is not included in

the binary by the linker (think --gc-sections).

For example,

 1 #include <stdio.h>
 2 #include "pico/stdlib.h"
 3 #include "hardware/gpio.h"
 4 #include "pico/binary_info.h"
 5
 6 const uint LED_PIN = 25;
 7
 8 int main() {

Raspberry Pi Pico-series C/C++ SDK

9.4. Including Binary Information 518

 9
10 bi_decl(bi_program_description("This is a test binary."));
11 bi_decl(bi_1pin_with_name(LED_PIN, "On-board LED"));
12
13 setup_default_uart();
14 gpio_set_function(LED_PIN, GPIO_FUNC_PROC);
15 gpio_set_dir(LED_PIN, GPIO_OUT);
16 while (1) {
17 gpio_put(LED_PIN, 0);
18 sleep_ms(250);
19 gpio_put(LED_PIN, 1);
20 puts("Hello World\n");
21 sleep_ms(1000);
22 }
23 }

when queried with picotool,

$ sudo picotool info -a test.uf2
File test.uf2:

Program Information
 name: test
 description: This is a test binary.
 features: stdout to UART
 binary start: 0x10000000
 binary end: 0x100031f8

Fixed Pin Information
 0: UART0 TX
 1: UART0 RX
 25: On-board LED

Build Information
 build date: Jan 4 2021

shows our information strings in the output.

9.5. Setting Common Information from CMake

You can also set fields directly from your project’s CMake file, e.g.,

pico_set_program_name(foo "not foo") ①
pico_set_program_description(foo "this is a foo")
pico_set_program_version_string(foo "0.00001a")
pico_set_program_url(foo "www.plinth.com/foo")

1. The name "foo" would be the default.

Raspberry Pi Pico-series C/C++ SDK

9.5. Setting Common Information from CMake 519

 NOTE

All of these are passed as command line arguments to the compilation, so if you plan to use quotes, newlines etc.

you may have better luck defining it using bi_decl in the code.

Raspberry Pi Pico-series C/C++ SDK

9.5. Setting Common Information from CMake 520

Appendix A: App Notes

Attaching a 7 segment LED via GPIO

This example code shows how to interface the Raspberry Pi Pico to a generic 7 segment LED device. It uses the LED to

count from 0 to 9 and then repeat. If the button is pressed, then the numbers will count down instead of up.

Wiring information

Our 7 Segment display has pins as follows.

 --A--
 F B
 --G--
 E C
 --D--

By default we are allocating GPIO 2 to segment A, 3 to B etc. So, connect GPIO 2 to pin A on the 7 segment LED display

and so on. You will need the appropriate resistors (68 ohm should be fine) for each segment. The LED device used here

is common anode, so the anode pin is connected to the 3.3v supply, and the GPIOs need to pull low (to ground) to

complete the circuit. The pull direction of the GPIOs is specified in the code itself.

Connect the switch to connect on pressing. One side should be connected to ground, the other to GPIO 9.

Figure 9. Wiring

Diagram for 7

segment LED.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/gpio/hello_7segment/CMakeLists.txt

 1 add_executable(hello_7segment
 2 hello_7segment.c
 3)
 4
 5 # pull in common dependencies
 6 target_link_libraries(hello_7segment pico_stdlib)
 7

Raspberry Pi Pico-series C/C++ SDK

Attaching a 7 segment LED via GPIO 521

https://github.com/raspberrypi/pico-examples/blob/develop/gpio/hello_7segment/CMakeLists.txt

 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(hello_7segment)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(hello_7segment)

hello_7segment.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/gpio/hello_7segment/hello_7segment.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include "pico/stdlib.h"
 9 #include "hardware/gpio.h"
10
11 /*
12 Our 7 Segment display has pins as follows:
13
14 --A--
15 F B
16 --G--
17 E C
18 --D--
19
20 By default we are allocating GPIO 2 to segment A, 3 to B etc.
21 So, connect GPIO 2 to pin A on the 7 segment LED display etc. Don't forget
22 the appropriate resistors, best to use one for each segment!
23
24 Connect button so that pressing the switch connects the GPIO 9 (default) to
25 ground (pull down)
26 */
27
28 #define FIRST_GPIO 2
29 #define BUTTON_GPIO (FIRST_GPIO+7)
30
31 // This array converts a number 0-9 to a bit pattern to send to the GPIOs
32 int bits[10] = {
33 0x3f, // 0
34 0x06, // 1
35 0x5b, // 2
36 0x4f, // 3
37 0x66, // 4
38 0x6d, // 5
39 0x7d, // 6
40 0x07, // 7
41 0x7f, // 8
42 0x67 // 9
43 };
44
45 /// \tag::hello_gpio[]
46 int main() {
47 stdio_init_all();
48 printf("Hello, 7segment - press button to count down!\n");
49
50 // We could use gpio_set_dir_out_masked() here
51 for (int gpio = FIRST_GPIO; gpio < FIRST_GPIO + 7; gpio++) {

Raspberry Pi Pico-series C/C++ SDK

Attaching a 7 segment LED via GPIO 522

https://github.com/raspberrypi/pico-examples/blob/develop/gpio/hello_7segment/hello_7segment.c

52 gpio_init(gpio);
53 gpio_set_dir(gpio, GPIO_OUT);
54 // Our bitmap above has a bit set where we need an LED on, BUT, we are pulling low to
 light
55 // so invert our output
56 gpio_set_outover(gpio, GPIO_OVERRIDE_INVERT);
57 }
58
59 gpio_init(BUTTON_GPIO);
60 gpio_set_dir(BUTTON_GPIO, GPIO_IN);
61 // We are using the button to pull down to 0v when pressed, so ensure that when
62 // unpressed, it uses internal pull ups. Otherwise when unpressed, the input will
63 // be floating.
64 gpio_pull_up(BUTTON_GPIO);
65
66 int val = 0;
67 while (true) {
68 // Count upwards or downwards depending on button input
69 // We are pulling down on switch active, so invert the get to make
70 // a press count downwards
71 if (!gpio_get(BUTTON_GPIO)) {
72 if (val == 9) {
73 val = 0;
74 } else {
75 val++;
76 }
77 } else if (val == 0) {
78 val = 9;
79 } else {
80 val--;
81 }
82
83 // We are starting with GPIO 2, our bitmap starts at bit 0 so shift to start at 2.
84 int32_t mask = bits[val] << FIRST_GPIO;
85
86 // Set all our GPIOs in one go!
87 // If something else is using GPIO, we might want to use gpio_put_masked()
88 gpio_set_mask(mask);
89 sleep_ms(250);
90 gpio_clr_mask(mask);
91 }
92 }
93 /// \end::hello_gpio[]

Bill of Materials

Table 36. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

7 segment LED module 1 generic part

68 ohm resistor 7 generic part

DIL push to make switch 1 generic switch

M/M Jumper wires 10 generic part

Raspberry Pi Pico-series C/C++ SDK

Attaching a 7 segment LED via GPIO 523

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

DHT-11, DHT-22, and AM2302 Sensors

The DHT sensors are fairly well known hobbyist sensors for measuring relative humidity and temperature using a

capacitive humidity sensor, and a thermistor. While they are slow, one reading every ~2 seconds, they are reliable and

good for basic data logging. Communication is based on a custom protocol which uses a single wire for data.

 NOTE

The DHT-11 and DHT-22 sensors are the most common. They use the same protocol but have different

characteristics, the DHT-22 has better accuracy, and has a larger sensor range than the DHT-11. The sensor is

available from a number of retailers.

Wiring information

See Figure 10 for wiring instructions.

Figure 10. Wiring the

DHT-22 temperature

sensor to Raspberry Pi

Pico, and connecting

Pico’s UART0 to the

Raspberry Pi 4.

 NOTE

One of the pins (pin 3) on the DHT sensor will not be connected, it is not used.

You will want to place a 10 kΩ resistor between VCC and the data pin, to act as a medium-strength pull up on the data

line.

Connecting UART0 of Pico to Raspberry Pi as in Figure 10 and you should see something similar to Figure 11 in minicom

when connected to /dev/serial0 on the Raspberry Pi.

Raspberry Pi Pico-series C/C++ SDK

DHT-11, DHT-22, and AM2302 Sensors 524

Figure 11. Serial

output over Pico’s

UART0 in a terminal

window.

Connect to /dev/serial0 by typing,

$ minicom -b 115200 -o -D /dev/serial0

at the command line.

List of Files

A list of files with descriptions of their function;

CMakeLists.txt

Make file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/gpio/dht_sensor/CMakeLists.txt

 1 add_executable(dht
 2 dht.c
 3)
 4
 5 target_link_libraries(dht pico_stdlib)
 6
 7 pico_add_extra_outputs(dht)
 8
 9 # add url via pico_set_program_url
10 example_auto_set_url(dht)

dht.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/gpio/dht_sensor/dht.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *

Raspberry Pi Pico-series C/C++ SDK

DHT-11, DHT-22, and AM2302 Sensors 525

https://github.com/raspberrypi/pico-examples/blob/develop/gpio/dht_sensor/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/gpio/dht_sensor/dht.c

 4 * SPDX-License-Identifier: BSD-3-Clause
 5 **/
 6
 7 #include <stdio.h>
 8 #include <math.h>
 9 #include "pico/stdlib.h"
10 #include "hardware/gpio.h"
11
12 #ifdef PICO_DEFAULT_LED_PIN
13 #define LED_PIN PICO_DEFAULT_LED_PIN
14 #endif
15
16 const uint DHT_PIN = 15;
17 const uint MAX_TIMINGS = 85;
18
19 typedef struct {
20 float humidity;
21 float temp_celsius;
22 } dht_reading;
23
24 void read_from_dht(dht_reading *result);
25
26 int main() {
27 stdio_init_all();
28 gpio_init(DHT_PIN);
29 #ifdef LED_PIN
30 gpio_init(LED_PIN);
31 gpio_set_dir(LED_PIN, GPIO_OUT);
32 #endif
33 while (1) {
34 dht_reading reading;
35 read_from_dht(&reading);
36 float fahrenheit = (reading.temp_celsius * 9 / 5) + 32;
37 printf("Humidity = %.1f%%, Temperature = %.1fC (%.1fF)\n",
38 reading.humidity, reading.temp_celsius, fahrenheit);
39
40 sleep_ms(2000);
41 }
42 }
43
44 void read_from_dht(dht_reading *result) {
45 int data[5] = {0, 0, 0, 0, 0};
46 uint last = 1;
47 uint j = 0;
48
49 gpio_set_dir(DHT_PIN, GPIO_OUT);
50 gpio_put(DHT_PIN, 0);
51 sleep_ms(20);
52 gpio_set_dir(DHT_PIN, GPIO_IN);
53
54 #ifdef LED_PIN
55 gpio_put(LED_PIN, 1);
56 #endif
57 for (uint i = 0; i < MAX_TIMINGS; i++) {
58 uint count = 0;
59 while (gpio_get(DHT_PIN) == last) {
60 count++;
61 sleep_us(1);
62 if (count == 255) break;
63 }
64 last = gpio_get(DHT_PIN);
65 if (count == 255) break;
66
67 if ((i >= 4) && (i % 2 == 0)) {

Raspberry Pi Pico-series C/C++ SDK

DHT-11, DHT-22, and AM2302 Sensors 526

68 data[j / 8] <<= 1;
69 if (count > 16) data[j / 8] |= 1;
70 j++;
71 }
72 }
73 #ifdef LED_PIN
74 gpio_put(LED_PIN, 0);
75 #endif
76
77 if ((j >= 40) && (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF))) {
78 result->humidity = (float) ((data[0] << 8) + data[1]) / 10;
79 if (result->humidity > 100) {
80 result->humidity = data[0];
81 }
82 result->temp_celsius = (float) (((data[2] & 0x7F) << 8) + data[3]) / 10;
83 if (result->temp_celsius > 125) {
84 result->temp_celsius = data[2];
85 }
86 if (data[2] & 0x80) {
87 result->temp_celsius = -result->temp_celsius;
88 }
89 } else {
90 printf("Bad data\n");
91 }
92 }

Bill of Materials

Table 37. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

10 kΩ resistor 1 generic part

M/M Jumper wires 4 generic part

DHT-22 sensor 1 generic part

Attaching a 16x2 LCD via TTL

This example code shows how to interface the Raspberry Pi Pico to one of the very common 16x2 LCD character

displays. Due to the large number of pins these displays use, they are commonly used with extra drivers or backpacks.

In this example, we will use an Adafruit LCD display backpack, which supports communication over USB or TTL. A

monochrome display with an RGB backlight is also used, but the backpack is compatible with monochrome backlight

displays too. There is another example that uses I2C to control a 16x2 display.

The backpack processes a set of commands that are documented here and preceded by the "special" byte 0xFE. The

backpack does the ASCII character conversion and even supports custom character creation. In this example, we use

the Pico’s primary UART (uart0) to read characters from our computer and send them via the other UART (uart1) to print

them onto the LCD. We also define a special startup sequence and vary the display’s backlight color.

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via TTL 527

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://learn.adafruit.com/usb-plus-serial-backpack/command-reference

 NOTE

You can change where stdio output goes (Pico’s USB, uart0 or both) with CMake directives. The CMakeLists.txt file

shows how to enable both.

Wiring information

Wiring up the backpack to the Pico requires 3 jumpers, to connect VCC (3.3v), GND, TX. The example here uses both of

the Pico’s UARTs, one (uart0) for stdio and the other (uart1) for communication with the backpack. Pin 8 is used as the

TX pin. Power is supplied from the 3.3V pin. To connect the backpack to the display, it is common practice to solder it

onto the back of the display, or during the prototyping stage to use the same parallel lanes on a breadboard.

 NOTE

While this display will work at 3.3V, it will be quite dim. Using a 5V source will make it brighter.

Figure 12. Wiring

Diagram for LCD with

TTL backpack.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/uart/lcd_uart/CMakeLists.txt

 1 add_executable(lcd_uart
 2 lcd_uart.c
 3)
 4
 5 # pull in common dependencies and additional uart hardware support
 6 target_link_libraries(lcd_uart pico_stdlib hardware_uart)
 7
 8 # enable usb output and uart output
 9 # modify here as required
10 pico_enable_stdio_usb(lcd_uart 1)
11 pico_enable_stdio_uart(lcd_uart 1)
12
13 # create map/bin/hex file etc.
14 pico_add_extra_outputs(lcd_uart)
15
16 # add url via pico_set_program_url

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via TTL 528

https://github.com/raspberrypi/pico-examples/blob/develop/uart/lcd_uart/CMakeLists.txt

17 example_auto_set_url(lcd_uart)

lcd_uart.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/uart/lcd_uart/lcd_uart.c

 1 /**
 2 * Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 /* Example code to drive a 16x2 LCD panel via an Adafruit TTL LCD "backpack"
 8
 9 Optionally, the backpack can be connected the VBUS (pin 40) at 5V if
 10 the Pico in question is powered by USB for greater brightness.
 11
 12 If this is done, then no other connections should be made to the backpack apart
 13 from those listed below as the backpack's logic levels will change.
 14
 15 Connections on Raspberry Pi Pico board, other boards may vary.
 16
 17 GPIO 8 (pin 11)-> RX on backpack
 18 3.3v (pin 36) -> 3.3v on backpack
 19 GND (pin 38) -> GND on backpack
 20 */
 21
 22 #include <stdio.h>
 23 #include <math.h>
 24 #include "pico/stdlib.h"
 25 #include "pico/binary_info.h"
 26 #include "hardware/uart.h"
 27
 28 // leave uart0 free for stdio
 29 #define UART_ID uart1
 30 #define BAUD_RATE 9600
 31 #define UART_TX_PIN 8
 32 #define LCD_WIDTH 16
 33 #define LCD_HEIGHT 2
 34
 35 // basic commands
 36 #define LCD_DISPLAY_ON 0x42
 37 #define LCD_DISPLAY_OFF 0x46
 38 #define LCD_SET_BRIGHTNESS 0x99
 39 #define LCD_SET_CONTRAST 0x50
 40 #define LCD_AUTOSCROLL_ON 0x51
 41 #define LCD_AUTOSCROLL_OFF 0x52
 42 #define LCD_CLEAR_SCREEN 0x58
 43 #define LCD_SET_SPLASH 0x40
 44
 45 // cursor commands
 46 #define LCD_SET_CURSOR_POS 0x47
 47 #define LCD_CURSOR_HOME 0x48
 48 #define LCD_CURSOR_BACK 0x4C
 49 #define LCD_CURSOR_FORWARD 0x4D
 50 #define LCD_UNDERLINE_CURSOR_ON 0x4A
 51 #define LCD_UNDERLINE_CURSOR_OFF 0x4B
 52 #define LCD_BLOCK_CURSOR_ON 0x53
 53 #define LCD_BLOCK_CURSOR_OFF 0x54
 54
 55 // rgb commands

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via TTL 529

https://github.com/raspberrypi/pico-examples/blob/develop/uart/lcd_uart/lcd_uart.c

 56 #define LCD_SET_BACKLIGHT_COLOR 0xD0
 57 #define LCD_SET_DISPLAY_SIZE 0xD1
 58
 59 // change to 0 if display is not RGB capable
 60 #define LCD_IS_RGB 1
 61
 62 void lcd_write(uint8_t cmd, uint8_t* buf, uint8_t buflen) {
 63 // all commands are prefixed with 0xFE
 64 const uint8_t pre = 0xFE;
 65 uart_write_blocking(UART_ID, &pre, 1);
 66 uart_write_blocking(UART_ID, &cmd, 1);
 67 uart_write_blocking(UART_ID, buf, buflen);
 68 sleep_ms(10); // give the display some time
 69 }
 70
 71 void lcd_set_size(uint8_t w, uint8_t h) {
 72 // sets the dimensions of the display
 73 uint8_t buf[] = { w, h };
 74 lcd_write(LCD_SET_DISPLAY_SIZE, buf, 2);
 75 }
 76
 77 void lcd_set_contrast(uint8_t contrast) {
 78 // sets the display contrast
 79 lcd_write(LCD_SET_CONTRAST, &contrast, 1);
 80 }
 81
 82 void lcd_set_brightness(uint8_t brightness) {
 83 // sets the backlight brightness
 84 lcd_write(LCD_SET_BRIGHTNESS, &brightness, 1);
 85 }
 86
 87 void lcd_set_cursor(bool is_on) {
 88 // set is_on to true if we want the blinking block and underline cursor to show
 89 if (is_on) {
 90 lcd_write(LCD_BLOCK_CURSOR_ON, NULL, 0);
 91 lcd_write(LCD_UNDERLINE_CURSOR_ON, NULL, 0);
 92 } else {
 93 lcd_write(LCD_BLOCK_CURSOR_OFF, NULL, 0);
 94 lcd_write(LCD_UNDERLINE_CURSOR_OFF, NULL, 0);
 95 }
 96 }
 97
 98 void lcd_set_backlight(bool is_on) {
 99 // turn the backlight on (true) or off (false)
100 if (is_on) {
101 lcd_write(LCD_DISPLAY_ON, (uint8_t *) 0, 1);
102 } else {
103 lcd_write(LCD_DISPLAY_OFF, NULL, 0);
104 }
105 }
106
107 void lcd_clear() {
108 // clear the contents of the display
109 lcd_write(LCD_CLEAR_SCREEN, NULL, 0);
110 }
111
112 void lcd_cursor_reset() {
113 // reset the cursor to (1, 1)
114 lcd_write(LCD_CURSOR_HOME, NULL, 0);
115 }
116
117 #if LCD_IS_RGB
118 void lcd_set_backlight_color(uint8_t r, uint8_t g, uint8_t b) {
119 // only supported on RGB displays!

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via TTL 530

120 uint8_t buf[] = { r, g, b };
121 lcd_write(LCD_SET_BACKLIGHT_COLOR, buf, 3);
122 }
123 #endif
124
125 void lcd_init() {
126 lcd_set_backlight(true);
127 lcd_set_size(LCD_WIDTH, LCD_HEIGHT);
128 lcd_set_contrast(155);
129 lcd_set_brightness(255);
130 lcd_set_cursor(false);
131 }
132
133 int main() {
134 stdio_init_all();
135 uart_init(UART_ID, BAUD_RATE);
136 uart_set_translate_crlf(UART_ID, false);
137 gpio_set_function(UART_TX_PIN, UART_FUNCSEL_NUM(UART_ID, UART_TX_PIN));
138
139 bi_decl(bi_1pin_with_func(UART_TX_PIN, UART_FUNCSEL_NUM(UART_ID, UART_TX_PIN)));
140
141 lcd_init();
142
143 // define startup sequence and save to EEPROM
144 // no more or less than 32 chars, if not enough, fill remaining ones with spaces
145 uint8_t splash_buf[] = "Hello LCD, from Pi Towers! ";
146 lcd_write(LCD_SET_SPLASH, splash_buf, LCD_WIDTH * LCD_HEIGHT);
147
148 lcd_cursor_reset();
149 lcd_clear();
150
151 #if LCD_IS_RGB
152 uint8_t i = 0; // it's ok if this overflows and wraps, we're using sin
153 const float frequency = 0.1f;
154 uint8_t red, green, blue;
155 #endif
156
157 while (1) {
158 // send any chars from stdio straight to the backpack
159 char c = getchar();
160 // any bytes not followed by 0xFE (the special command) are interpreted
161 // as text to be displayed on the backpack, so we just send the char
162 // down the UART byte pipe!
163 if (c < 128) uart_putc_raw(UART_ID, c); // skip extra non-ASCII chars
164 #if LCD_IS_RGB
165 // change the display color on keypress, rainbow style!
166 red = (uint8_t)(sin(frequency * i + 0) * 127 + 128);
167 green = (uint8_t)(sin(frequency * i + 2) * 127 + 128);
168 blue = (uint8_t)(sin(frequency * i + 4) * 127 + 128);
169 lcd_set_backlight_color(red, green, blue);
170 i++;
171 #endif
172 }
173 }

Bill of Materials

Table 38. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via TTL 531

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

16x2 RGB LCD panel 3.3v 1 generic part, available on Adafruit

16x2 LCD backpack 1 from Adafruit

M/M Jumper wires 3 generic part

Attaching a microphone using the ADC

This example code shows how to interface the Raspberry Pi Pico with a standard analog microphone via the onboard

analog to digital converter (ADC). In this example, we use an ICS-40180 breakout board by SparkFun but any analog

microphone should be compatible with this tutorial. SparkFun have written a guide for this board that goes into more

detail about the board and how it works.

 TIP

An analog to digital converter (ADC) is responsible for reading continually varying input signals that may range from

0 to a specified reference voltage (in the Pico’s case this reference voltage is set by the supply voltage and can be

measured on pin 35, ADC_VREF) and converting them into binary, i.e. a number that can be digitally stored.

The Pico has a 12-bit ADC (ENOB of 8.7-bit, see RP2040 datasheet section 4.9.3 for more details), meaning that a read

operation will return a number ranging from 0 to 4095 (2^12 - 1) for a total of 4096 possible values. Therefore, the

resolution of the ADC is 3.3/4096, so roughly steps of 0.8 millivolts. The SparkFun breakout uses an OPA344

operational amplifier to boost the signal coming from the microphone to voltage levels that can be easily read by the

ADC. An important side effect is that a bias of 0.5*Vcc is added to the signal, even when the microphone is not picking

up any sound.

The ADC provides us with a raw voltage value but when dealing with sound, we’re more interested in the amplitude of

the audio signal. This is defined as one half the peak-to-peak amplitude. Included with this example is a very simple

Python script that will plot the voltage values it receives via the serial port. By tweaking the sampling rates, and various

other parameters, the data from the microphone can be analysed in various ways, such as in a Fast Fourier Transform

to see what frequencies make up the signal.

Figure 13. Example

output from included

Python script

Wiring information

Wiring up the device requires 3 jumpers, to connect VCC (3.3v), GND, and AOUT. The example here uses ADC0, which is

GP26. Power is supplied from the 3.3V pin.

Raspberry Pi Pico-series C/C++ SDK

Attaching a microphone using the ADC 532

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/398
https://www.adafruit.com/product/781
https://learn.sparkfun.com/tutorials/mems-microphone-hookup-guide
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

 WARNING

Most boards will take a range of VCC voltages from the Pico’s default 3.3V to the 5 volts commonly seen on other

microcontrollers. Ensure your board doesn’t output an analogue signal greater than 3.3V as this may result in

permanent damage to the Pico’s ADC.

Figure 14. Wiring

Diagram for ICS-40180

microphone breakout

board.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/adc/microphone_adc/CMakeLists.txt

 1 add_executable(microphone_adc
 2 microphone_adc.c
 3)
 4
 5 # pull in common dependencies and adc hardware support
 6 target_link_libraries(microphone_adc pico_stdlib hardware_adc)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(microphone_adc)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(microphone_adc)

microphone_adc.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/adc/microphone_adc/microphone_adc.c

 1 /**
 2 * Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6

Raspberry Pi Pico-series C/C++ SDK

Attaching a microphone using the ADC 533

https://github.com/raspberrypi/pico-examples/blob/develop/adc/microphone_adc/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/adc/microphone_adc/microphone_adc.c

 7 #include <stdio.h>
 8 #include "pico/stdlib.h"
 9 #include "hardware/gpio.h"
10 #include "hardware/adc.h"
11 #include "hardware/uart.h"
12 #include "pico/binary_info.h"
13
14 /* Example code to extract analog values from a microphone using the ADC
15 with accompanying Python file to plot these values
16
17 Connections on Raspberry Pi Pico board, other boards may vary.
18
19 GPIO 26/ADC0 (pin 31)-> AOUT or AUD on microphone board
20 3.3v (pin 36) -> VCC on microphone board
21 GND (pin 38) -> GND on microphone board
22 */
23
24 #define ADC_NUM 0
25 #define ADC_PIN (26 + ADC_NUM)
26 #define ADC_VREF 3.3
27 #define ADC_RANGE (1 << 12)
28 #define ADC_CONVERT (ADC_VREF / (ADC_RANGE - 1))
29
30 int main() {
31 stdio_init_all();
32 printf("Beep boop, listening...\n");
33
34 bi_decl(bi_program_description("Analog microphone example for Raspberry Pi Pico")); //
 for picotool
35 bi_decl(bi_1pin_with_name(ADC_PIN, "ADC input pin"));
36
37 adc_init();
38 adc_gpio_init(ADC_PIN);
39 adc_select_input(ADC_NUM);
40
41 uint adc_raw;
42 while (1) {
43 adc_raw = adc_read(); // raw voltage from ADC
44 printf("%.2f\n", adc_raw * ADC_CONVERT);
45 sleep_ms(10);
46 }
47 }

Bill of Materials

Table 39. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

ICS-40180 microphone breakout

board or similar

1 From SparkFun

M/M Jumper wires 3 generic part

Raspberry Pi Pico-series C/C++ SDK

Attaching a microphone using the ADC 534

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.sparkfun.com/products/18011

Attaching a BME280 temperature/humidity/pressure
sensor via SPI

This example code shows how to interface the Raspberry Pi Pico to a BME280 temperature/humidity/pressure. The

particular device used can be interfaced via I2C or SPI, we are using SPI, and interfacing at 3.3v.

This examples reads the data from the sensor, and runs it through the appropriate compensation routines (see the chip

datasheet for details https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-

ds002.pdf). At startup the compensation parameters required by the compensation routines are read from the chip.)

Wiring information

Wiring up the device requires 6 jumpers as follows:

• GPIO 16 (pin 21) MISO/spi0_rx→ SDO/SDO on bme280 board

• GPIO 17 (pin 22) Chip select → CSB/!CS on bme280 board

• GPIO 18 (pin 24) SCK/spi0_sclk → SCL/SCK on bme280 board

• GPIO 19 (pin 25) MOSI/spi0_tx → SDA/SDI on bme280 board

• 3.3v (pin 3;6) → VCC on bme280 board

• GND (pin 38) → GND on bme280 board

The example here uses SPI port 0. Power is supplied from the 3.3V pin.

 NOTE

There are many different manufacturers who sell boards with the BME280. Whilst they all appear slightly different,

they all have, at least, the same 6 pins required to power and communicate. When wiring up a board that is different

to the one in the diagram, ensure you connect up as described in the previous paragraph.

Figure 15. Wiring

Diagram for bme280.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/spi/bme280_spi/CMakeLists.txt

 1 add_executable(bme280_spi
 2 bme280_spi.c
 3)
 4
 5 # pull in common dependencies and additional spi hardware support
 6 target_link_libraries(bme280_spi pico_stdlib hardware_spi)

Raspberry Pi Pico-series C/C++ SDK

Attaching a BME280 temperature/humidity/pressure sensor via SPI 535

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://github.com/raspberrypi/pico-examples/blob/develop/spi/bme280_spi/CMakeLists.txt

 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(bme280_spi)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(bme280_spi)

bme280_spi.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/spi/bme280_spi/bme280_spi.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "pico/binary_info.h"
 11 #include "hardware/spi.h"
 12
 13 /* Example code to talk to a bme280 humidity/temperature/pressure sensor.
 14
 15 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
 16 GPIO (and therefore SPI) cannot be used at 5v.
 17
 18 You will need to use a level shifter on the SPI lines if you want to run the
 19 board at 5v.
 20
 21 Connections on Raspberry Pi Pico board and a generic bme280 board, other
 22 boards may vary.
 23
 24 GPIO 16 (pin 21) MISO/spi0_rx-> SDO/SDO on bme280 board
 25 GPIO 17 (pin 22) Chip select -> CSB/!CS on bme280 board
 26 GPIO 18 (pin 24) SCK/spi0_sclk -> SCL/SCK on bme280 board
 27 GPIO 19 (pin 25) MOSI/spi0_tx -> SDA/SDI on bme280 board
 28 3.3v (pin 36) -> VCC on bme280 board
 29 GND (pin 38) -> GND on bme280 board
 30
 31 Note: SPI devices can have a number of different naming schemes for pins. See
 32 the Wikipedia page at https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
 33 for variations.
 34
 35 This code uses a bunch of register definitions, and some compensation code derived
 36 from the Bosch datasheet which can be found here.
 37 https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-
 ds002.pdf
 38 */
 39
 40 #define READ_BIT 0x80
 41
 42 int32_t t_fine;
 43
 44 uint16_t dig_T1;
 45 int16_t dig_T2, dig_T3;
 46 uint16_t dig_P1;
 47 int16_t dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9;
 48 uint8_t dig_H1, dig_H3;
 49 int8_t dig_H6;

Raspberry Pi Pico-series C/C++ SDK

Attaching a BME280 temperature/humidity/pressure sensor via SPI 536

https://github.com/raspberrypi/pico-examples/blob/develop/spi/bme280_spi/bme280_spi.c

 50 int16_t dig_H2, dig_H4, dig_H5;
 51
 52 /* The following compensation functions are required to convert from the raw ADC
 53 data from the chip to something usable. Each chip has a different set of
 54 compensation parameters stored on the chip at point of manufacture, which are
 55 read from the chip at startup and used in these routines.
 56 */
 57 int32_t compensate_temp(int32_t adc_T) {
 58 int32_t var1, var2, T;
 59 var1 = ((((adc_T >> 3) - ((int32_t) dig_T1 << 1))) * ((int32_t) dig_T2)) >> 11;
 60 var2 = (((((adc_T >> 4) - ((int32_t) dig_T1)) * ((adc_T >> 4) - ((int32_t) dig_T1))) >>
 12) * ((int32_t) dig_T3))
 61 >> 14;
 62
 63 t_fine = var1 + var2;
 64 T = (t_fine * 5 + 128) >> 8;
 65 return T;
 66 }
 67
 68 uint32_t compensate_pressure(int32_t adc_P) {
 69 int32_t var1, var2;
 70 uint32_t p;
 71 var1 = (((int32_t) t_fine) >> 1) - (int32_t) 64000;
 72 var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((int32_t) dig_P6);
 73 var2 = var2 + ((var1 * ((int32_t) dig_P5)) << 1);
 74 var2 = (var2 >> 2) + (((int32_t) dig_P4) << 16);
 75 var1 = (((dig_P3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) + ((((int32_t) dig_P2) *
 var1) >> 1)) >> 18;
 76 var1 = ((((32768 + var1)) * ((int32_t) dig_P1)) >> 15);
 77 if (var1 == 0)
 78 return 0;
 79
 80 p = (((uint32_t) (((int32_t) 1048576) - adc_P) - (var2 >> 12))) * 3125;
 81 if (p < 0x80000000)
 82 p = (p << 1) / ((uint32_t) var1);
 83 else
 84 p = (p / (uint32_t) var1) * 2;
 85
 86 var1 = (((int32_t) dig_P9) * ((int32_t) (((p >> 3) * (p >> 3)) >> 13))) >> 12;
 87 var2 = (((int32_t) (p >> 2)) * ((int32_t) dig_P8)) >> 13;
 88 p = (uint32_t) ((int32_t) p + ((var1 + var2 + dig_P7) >> 4));
 89
 90 return p;
 91 }
 92
 93 uint32_t compensate_humidity(int32_t adc_H) {
 94 int32_t v_x1_u32r;
 95 v_x1_u32r = (t_fine - ((int32_t) 76800));
 96 v_x1_u32r = (((((adc_H << 14) - (((int32_t) dig_H4) << 20) - (((int32_t) dig_H5) *
 v_x1_u32r)) +
 97 ((int32_t) 16384)) >> 15) * (((((((v_x1_u32r * ((int32_t) dig_H6)) >> 10)
 * (((v_x1_u32r *
 98
 ((int32_t) dig_H3))
 99 >> 11) + ((int32_t) 32768))) >> 10) + ((int32_t) 2097152)) *
100 ((int32_t) dig_H2) + 8192) >> 14));
101 v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)
 dig_H1)) >> 4));
102 v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
103 v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
104
105 return (uint32_t) (v_x1_u32r >> 12);
106 }
107

Raspberry Pi Pico-series C/C++ SDK

Attaching a BME280 temperature/humidity/pressure sensor via SPI 537

108 #ifdef PICO_DEFAULT_SPI_CSN_PIN
109 static inline void cs_select() {
110 asm volatile("nop \n nop \n nop");
111 gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 0); // Active low
112 asm volatile("nop \n nop \n nop");
113 }
114
115 static inline void cs_deselect() {
116 asm volatile("nop \n nop \n nop");
117 gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 1);
118 asm volatile("nop \n nop \n nop");
119 }
120 #endif
121
122 #if defined(spi_default) && defined(PICO_DEFAULT_SPI_CSN_PIN)
123 static void write_register(uint8_t reg, uint8_t data) {
124 uint8_t buf[2];
125 buf[0] = reg & 0x7f; // remove read bit as this is a write
126 buf[1] = data;
127 cs_select();
128 spi_write_blocking(spi_default, buf, 2);
129 cs_deselect();
130 sleep_ms(10);
131 }
132
133 static void read_registers(uint8_t reg, uint8_t *buf, uint16_t len) {
134 // For this particular device, we send the device the register we want to read
135 // first, then subsequently read from the device. The register is auto incrementing
136 // so we don't need to keep sending the register we want, just the first.
137 reg |= READ_BIT;
138 cs_select();
139 spi_write_blocking(spi_default, ®, 1);
140 sleep_ms(10);
141 spi_read_blocking(spi_default, 0, buf, len);
142 cs_deselect();
143 sleep_ms(10);
144 }
145
146 /* This function reads the manufacturing assigned compensation parameters from the device */
147 void read_compensation_parameters() {
148 uint8_t buffer[26];
149
150 read_registers(0x88, buffer, 26);
151
152 dig_T1 = buffer[0] | (buffer[1] << 8);
153 dig_T2 = buffer[2] | (buffer[3] << 8);
154 dig_T3 = buffer[4] | (buffer[5] << 8);
155
156 dig_P1 = buffer[6] | (buffer[7] << 8);
157 dig_P2 = buffer[8] | (buffer[9] << 8);
158 dig_P3 = buffer[10] | (buffer[11] << 8);
159 dig_P4 = buffer[12] | (buffer[13] << 8);
160 dig_P5 = buffer[14] | (buffer[15] << 8);
161 dig_P6 = buffer[16] | (buffer[17] << 8);
162 dig_P7 = buffer[18] | (buffer[19] << 8);
163 dig_P8 = buffer[20] | (buffer[21] << 8);
164 dig_P9 = buffer[22] | (buffer[23] << 8);
165
166 dig_H1 = buffer[25]; // 0xA1
167
168 read_registers(0xE1, buffer, 8);
169
170 dig_H2 = buffer[0] | (buffer[1] << 8); // 0xE1 | 0xE2
171 dig_H3 = (int8_t) buffer[2]; // 0xE3

Raspberry Pi Pico-series C/C++ SDK

Attaching a BME280 temperature/humidity/pressure sensor via SPI 538

172 dig_H4 = buffer[3] << 4 | (buffer[4] & 0xf); // 0xE4 | 0xE5[3:0]
173 dig_H5 = (buffer[4] >> 4) | (buffer[5] << 4); // 0xE5[7:4] | 0xE6
174 dig_H6 = (int8_t) buffer[6]; // 0xE7
175 }
176
177 static void bme280_read_raw(int32_t *humidity, int32_t *pressure, int32_t *temperature) {
178 uint8_t buffer[8];
179
180 read_registers(0xF7, buffer, 8);
181 *pressure = ((uint32_t) buffer[0] << 12) | ((uint32_t) buffer[1] << 4) | (buffer[2] >>
 4);
182 *temperature = ((uint32_t) buffer[3] << 12) | ((uint32_t) buffer[4] << 4) | (buffer[5]
 >> 4);
183 *humidity = (uint32_t) buffer[6] << 8 | buffer[7];
184 }
185 #endif
186
187 int main() {
188 stdio_init_all();
189 #if !defined(spi_default) || !defined(PICO_DEFAULT_SPI_SCK_PIN) ||
 !defined(PICO_DEFAULT_SPI_TX_PIN) || !defined(PICO_DEFAULT_SPI_RX_PIN) ||
 !defined(PICO_DEFAULT_SPI_CSN_PIN)
190 #warning spi/bme280_spi example requires a board with SPI pins
191 puts("Default SPI pins were not defined");
192 #else
193
194 printf("Hello, bme280! Reading raw data from registers via SPI...\n");
195
196 // This example will use SPI0 at 0.5MHz.
197 spi_init(spi_default, 500 * 1000);
198 gpio_set_function(PICO_DEFAULT_SPI_RX_PIN, GPIO_FUNC_SPI);
199 gpio_set_function(PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI);
200 gpio_set_function(PICO_DEFAULT_SPI_TX_PIN, GPIO_FUNC_SPI);
201 // Make the SPI pins available to picotool
202 bi_decl(bi_3pins_with_func(PICO_DEFAULT_SPI_RX_PIN, PICO_DEFAULT_SPI_TX_PIN,
 PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI));
203
204 // Chip select is active-low, so we'll initialise it to a driven-high state
205 gpio_init(PICO_DEFAULT_SPI_CSN_PIN);
206 gpio_set_dir(PICO_DEFAULT_SPI_CSN_PIN, GPIO_OUT);
207 gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 1);
208 // Make the CS pin available to picotool
209 bi_decl(bi_1pin_with_name(PICO_DEFAULT_SPI_CSN_PIN, "SPI CS"));
210
211 // See if SPI is working - interrograte the device for its I2C ID number, should be 0x60
212 uint8_t id;
213 read_registers(0xD0, &id, 1);
214 printf("Chip ID is 0x%x\n", id);
215
216 read_compensation_parameters();
217
218 write_register(0xF2, 0x1); // Humidity oversampling register - going for x1
219 write_register(0xF4, 0x27);// Set rest of oversampling modes and run mode to normal
220
221 int32_t humidity, pressure, temperature;
222
223 while (1) {
224 bme280_read_raw(&humidity, &pressure, &temperature);
225
226 // These are the raw numbers from the chip, so we need to run through the
227 // compensations to get human understandable numbers
228 temperature = compensate_temp(temperature);
229 pressure = compensate_pressure(pressure);
230 humidity = compensate_humidity(humidity);

Raspberry Pi Pico-series C/C++ SDK

Attaching a BME280 temperature/humidity/pressure sensor via SPI 539

231
232 printf("Humidity = %.2f%%\n", humidity / 1024.0);
233 printf("Pressure = %dPa\n", pressure);
234 printf("Temp. = %.2fC\n", temperature / 100.0);
235
236 sleep_ms(1000);
237 }
238 #endif
239 }

Bill of Materials

Table 40. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

BME280 board 1 generic part

M/M Jumper wires 6 generic part

Attaching a MPU9250 accelerometer/gyroscope via SPI

This example code shows how to interface the Raspberry Pi Pico to the MPU9250 accelerometer/gyroscope board. The

particular device used can be interfaced via I2C or SPI, we are using SPI, and interfacing at 3.3v.

 NOTE

This is a very basic example, and only recovers raw data from the sensor. There are various calibration options

available that should be used to ensure that the final results are accurate. It is also possible to wire up the interrupt

pin to a GPIO and read data only when it is ready, rather than using the polling approach in the example.

Wiring information

Wiring up the device requires 6 jumpers as follows:

• GPIO 4 (pin 6) MISO/spi0_rx→ ADO on MPU9250 board

• GPIO 5 (pin 7) Chip select → NCS on MPU9250 board

• GPIO 6 (pin 9) SCK/spi0_sclk → SCL on MPU9250 board

• GPIO 7 (pin 10) MOSI/spi0_tx → SDA on MPU9250 board

• 3.3v (pin 36) → VCC on MPU9250 board

• GND (pin 38) → GND on MPU9250 board

The example here uses SPI port 0. Power is supplied from the 3.3V pin.

Raspberry Pi Pico-series C/C++ SDK

Attaching a MPU9250 accelerometer/gyroscope via SPI 540

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

 NOTE

There are many different manufacturers who sell boards with the MPU9250. Whilst they all appear slightly different,

they all have, at least, the same 6 pins required to power and communicate. When wiring up a board that is different

to the one in the diagram, ensure you connect up as described in the previous paragraph.

Figure 16. Wiring

Diagram for MPU9250.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/spi/mpu9250_spi/CMakeLists.txt

 1 add_executable(mpu9250_spi
 2 mpu9250_spi.c
 3)
 4
 5 # pull in common dependencies and additional spi hardware support
 6 target_link_libraries(mpu9250_spi pico_stdlib hardware_spi)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(mpu9250_spi)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(mpu9250_spi)

mpu9250_spi.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/spi/mpu9250_spi/mpu9250_spi.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "pico/binary_info.h"
 11 #include "hardware/spi.h"
 12
 13 /* Example code to talk to a MPU9250 MEMS accelerometer and gyroscope.
 14 Ignores the magnetometer, that is left as a exercise for the reader.
 15

Raspberry Pi Pico-series C/C++ SDK

Attaching a MPU9250 accelerometer/gyroscope via SPI 541

https://github.com/raspberrypi/pico-examples/blob/develop/spi/mpu9250_spi/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/spi/mpu9250_spi/mpu9250_spi.c

 16 This is taking to simple approach of simply reading registers. It's perfectly
 17 possible to link up an interrupt line and set things up to read from the
 18 inbuilt FIFO to make it more useful.
 19
 20 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
 21 GPIO (and therefore SPI) cannot be used at 5v.
 22
 23 You will need to use a level shifter on the I2C lines if you want to run the
 24 board at 5v.
 25
 26 Connections on Raspberry Pi Pico board and a generic MPU9250 board, other
 27 boards may vary.
 28
 29 GPIO 4 (pin 6) MISO/spi0_rx-> ADO on MPU9250 board
 30 GPIO 5 (pin 7) Chip select -> NCS on MPU9250 board
 31 GPIO 6 (pin 9) SCK/spi0_sclk -> SCL on MPU9250 board
 32 GPIO 7 (pin 10) MOSI/spi0_tx -> SDA on MPU9250 board
 33 3.3v (pin 36) -> VCC on MPU9250 board
 34 GND (pin 38) -> GND on MPU9250 board
 35
 36 Note: SPI devices can have a number of different naming schemes for pins. See
 37 the Wikipedia page at https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
 38 for variations.
 39 The particular device used here uses the same pins for I2C and SPI, hence the
 40 using of I2C names
 41 */
 42
 43 #define PIN_MISO 4
 44 #define PIN_CS 5
 45 #define PIN_SCK 6
 46 #define PIN_MOSI 7
 47
 48 #define SPI_PORT spi0
 49 #define READ_BIT 0x80
 50
 51 static inline void cs_select() {
 52 asm volatile("nop \n nop \n nop");
 53 gpio_put(PIN_CS, 0); // Active low
 54 asm volatile("nop \n nop \n nop");
 55 }
 56
 57 static inline void cs_deselect() {
 58 asm volatile("nop \n nop \n nop");
 59 gpio_put(PIN_CS, 1);
 60 asm volatile("nop \n nop \n nop");
 61 }
 62
 63 static void mpu9250_reset() {
 64 // Two byte reset. First byte register, second byte data
 65 // There are a load more options to set up the device in different ways that could be
 added here
 66 uint8_t buf[] = {0x6B, 0x00};
 67 cs_select();
 68 spi_write_blocking(SPI_PORT, buf, 2);
 69 cs_deselect();
 70 }
 71
 72
 73 static void read_registers(uint8_t reg, uint8_t *buf, uint16_t len) {
 74 // For this particular device, we send the device the register we want to read
 75 // first, then subsequently read from the device. The register is auto incrementing
 76 // so we don't need to keep sending the register we want, just the first.
 77
 78 reg |= READ_BIT;

Raspberry Pi Pico-series C/C++ SDK

Attaching a MPU9250 accelerometer/gyroscope via SPI 542

 79 cs_select();
 80 spi_write_blocking(SPI_PORT, ®, 1);
 81 sleep_ms(10);
 82 spi_read_blocking(SPI_PORT, 0, buf, len);
 83 cs_deselect();
 84 sleep_ms(10);
 85 }
 86
 87
 88 static void mpu9250_read_raw(int16_t accel[3], int16_t gyro[3], int16_t *temp) {
 89 uint8_t buffer[6];
 90
 91 // Start reading acceleration registers from register 0x3B for 6 bytes
 92 read_registers(0x3B, buffer, 6);
 93
 94 for (int i = 0; i < 3; i++) {
 95 accel[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);
 96 }
 97
 98 // Now gyro data from reg 0x43 for 6 bytes
 99 read_registers(0x43, buffer, 6);
100
101 for (int i = 0; i < 3; i++) {
102 gyro[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);;
103 }
104
105 // Now temperature from reg 0x41 for 2 bytes
106 read_registers(0x41, buffer, 2);
107
108 *temp = buffer[0] << 8 | buffer[1];
109 }
110
111 int main() {
112 stdio_init_all();
113
114 printf("Hello, MPU9250! Reading raw data from registers via SPI...\n");
115
116 // This example will use SPI0 at 0.5MHz.
117 spi_init(SPI_PORT, 500 * 1000);
118 gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);
119 gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);
120 gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);
121 // Make the SPI pins available to picotool
122 bi_decl(bi_3pins_with_func(PIN_MISO, PIN_MOSI, PIN_SCK, GPIO_FUNC_SPI));
123
124 // Chip select is active-low, so we'll initialise it to a driven-high state
125 gpio_init(PIN_CS);
126 gpio_set_dir(PIN_CS, GPIO_OUT);
127 gpio_put(PIN_CS, 1);
128 // Make the CS pin available to picotool
129 bi_decl(bi_1pin_with_name(PIN_CS, "SPI CS"));
130
131 mpu9250_reset();
132
133 // See if SPI is working - interrograte the device for its I2C ID number, should be 0x71
134 uint8_t id;
135 read_registers(0x75, &id, 1);
136 printf("I2C address is 0x%x\n", id);
137
138 int16_t acceleration[3], gyro[3], temp;
139
140 while (1) {
141 mpu9250_read_raw(acceleration, gyro, &temp);
142

Raspberry Pi Pico-series C/C++ SDK

Attaching a MPU9250 accelerometer/gyroscope via SPI 543

143 // These are the raw numbers from the chip, so will need tweaking to be really useful.
144 // See the datasheet for more information
145 printf("Acc. X = %d, Y = %d, Z = %d\n", acceleration[0], acceleration[1],
 acceleration[2]);
146 printf("Gyro. X = %d, Y = %d, Z = %d\n", gyro[0], gyro[1], gyro[2]);
147 // Temperature is simple so use the datasheet calculation to get deg C.
148 // Note this is chip temperature.
149 printf("Temp. = %f\n", (temp / 340.0) + 36.53);
150
151 sleep_ms(100);
152 }
153 }

Bill of Materials

Table 41. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

MPU9250 board 1 generic part

M/M Jumper wires 6 generic part

Attaching a MPU6050 accelerometer/gyroscope via I2C

This example code shows how to interface the Raspberry Pi Pico to the MPU6050 accelerometer/gyroscope board. This

device uses I2C for communications, and most MPU6050 parts are happy running at either 3.3 or 5v. The Raspberry Pi

RP2040 GPIO’s work at 3.3v so that is what the example uses.

 NOTE

This is a very basic example, and only recovers raw data from the sensor. There are various calibration options

available that should be used to ensure that the final results are accurate. It is also possible to wire up the interrupt

pin to a GPIO and read data only when it is ready, rather than using the polling approach in the example.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses I2C port 0,

which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin.

 NOTE

There are many different manufacturers who sell boards with the MPU6050. Whilst they all appear slightly different,

they all have, at least, the same 4 pins required to power and communicate. When wiring up a board that is different

to the one in the diagram, ensure you connect up as described in the previous paragraph.

Raspberry Pi Pico-series C/C++ SDK

Attaching a MPU6050 accelerometer/gyroscope via I2C 544

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

Figure 17. Wiring

Diagram for MPU6050.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mpu6050_i2c/CMakeLists.txt

 1 add_executable(mpu6050_i2c
 2 mpu6050_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(mpu6050_i2c pico_stdlib hardware_i2c)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(mpu6050_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(mpu6050_i2c)

mpu6050_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mpu6050_i2c/mpu6050_i2c.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "pico/binary_info.h"
 11 #include "hardware/i2c.h"
 12
 13 /* Example code to talk to a MPU6050 MEMS accelerometer and gyroscope
 14
 15 This is taking to simple approach of simply reading registers. It's perfectly
 16 possible to link up an interrupt line and set things up to read from the
 17 inbuilt FIFO to make it more useful.
 18
 19 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
 20 GPIO (and therefore I2C) cannot be used at 5v.
 21
 22 You will need to use a level shifter on the I2C lines if you want to run the

Raspberry Pi Pico-series C/C++ SDK

Attaching a MPU6050 accelerometer/gyroscope via I2C 545

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mpu6050_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mpu6050_i2c/mpu6050_i2c.c

 23 board at 5v.
 24
 25 Connections on Raspberry Pi Pico board, other boards may vary.
 26
 27 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is GP4 (pin 6)) -> SDA on MPU6050 board
 28 GPIO PICO_DEFAULT_I2C_SCL_PIN (On Pico this is GP5 (pin 7)) -> SCL on MPU6050 board
 29 3.3v (pin 36) -> VCC on MPU6050 board
 30 GND (pin 38) -> GND on MPU6050 board
 31 */
 32
 33 // By default these devices are on bus address 0x68
 34 static int addr = 0x68;
 35
 36 #ifdef i2c_default
 37 static void mpu6050_reset() {
 38 // Two byte reset. First byte register, second byte data
 39 // There are a load more options to set up the device in different ways that could be
 added here
 40 uint8_t buf[] = {0x6B, 0x80};
 41 i2c_write_blocking(i2c_default, addr, buf, 2, false);
 42 }
 43
 44 static void mpu6050_read_raw(int16_t accel[3], int16_t gyro[3], int16_t *temp) {
 45 // For this particular device, we send the device the register we want to read
 46 // first, then subsequently read from the device. The register is auto incrementing
 47 // so we don't need to keep sending the register we want, just the first.
 48
 49 uint8_t buffer[6];
 50
 51 // Start reading acceleration registers from register 0x3B for 6 bytes
 52 uint8_t val = 0x3B;
 53 i2c_write_blocking(i2c_default, addr, &val, 1, true); // true to keep master control of
 bus
 54 i2c_read_blocking(i2c_default, addr, buffer, 6, false);
 55
 56 for (int i = 0; i < 3; i++) {
 57 accel[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);
 58 }
 59
 60 // Now gyro data from reg 0x43 for 6 bytes
 61 // The register is auto incrementing on each read
 62 val = 0x43;
 63 i2c_write_blocking(i2c_default, addr, &val, 1, true);
 64 i2c_read_blocking(i2c_default, addr, buffer, 6, false); // False - finished with bus
 65
 66 for (int i = 0; i < 3; i++) {
 67 gyro[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);;
 68 }
 69
 70 // Now temperature from reg 0x41 for 2 bytes
 71 // The register is auto incrementing on each read
 72 val = 0x41;
 73 i2c_write_blocking(i2c_default, addr, &val, 1, true);
 74 i2c_read_blocking(i2c_default, addr, buffer, 2, false); // False - finished with bus
 75
 76 *temp = buffer[0] << 8 | buffer[1];
 77 }
 78 #endif
 79
 80 int main() {
 81 stdio_init_all();
 82 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
 83 #warning i2c/mpu6050_i2c example requires a board with I2C pins

Raspberry Pi Pico-series C/C++ SDK

Attaching a MPU6050 accelerometer/gyroscope via I2C 546

 84 puts("Default I2C pins were not defined");
 85 return 0;
 86 #else
 87 printf("Hello, MPU6050! Reading raw data from registers...\n");
 88
 89 // This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
 90 i2c_init(i2c_default, 400 * 1000);
 91 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
 92 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
 93 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
 94 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
 95 // Make the I2C pins available to picotool
 96 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
 97
 98 mpu6050_reset();
 99
100 int16_t acceleration[3], gyro[3], temp;
101
102 while (1) {
103 mpu6050_read_raw(acceleration, gyro, &temp);
104
105 // These are the raw numbers from the chip, so will need tweaking to be really useful.
106 // See the datasheet for more information
107 printf("Acc. X = %d, Y = %d, Z = %d\n", acceleration[0], acceleration[1],
 acceleration[2]);
108 printf("Gyro. X = %d, Y = %d, Z = %d\n", gyro[0], gyro[1], gyro[2]);
109 // Temperature is simple so use the datasheet calculation to get deg C.
110 // Note this is chip temperature.
111 printf("Temp. = %f\n", (temp / 340.0) + 36.53);
112
113 sleep_ms(100);
114 }
115 #endif
116 }

Bill of Materials

Table 42. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

MPU6050 board 1 generic part

M/M Jumper wires 4 generic part

Attaching a 16x2 LCD via I2C

This example code shows how to interface the Raspberry Pi Pico to one of the very common 16x2 LCD character

displays. The display will need a 3.3V I2C adapter board as this example uses I2C for communications.

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via I2C 547

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

 NOTE

These LCD displays can also be driven directly using GPIO without the use of an adapter board. That is beyond the

scope of this example.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses I2C port 0,

which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin.

 WARNING

Many displays of this type are 5v. If you wish to use a 5v display you will need to use level shifters on the SDA and

SCL lines to convert from the 3.3V used by the RP2040. Whilst a 5v display will just about work at 3.3v, the display

will be dim.

Figure 18. Wiring

Diagram for

LCD1602A LCD with

I2C bridge.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/lcd_1602_i2c/CMakeLists.txt

 1 add_executable(lcd_1602_i2c
 2 lcd_1602_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(lcd_1602_i2c pico_stdlib hardware_i2c)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(lcd_1602_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(lcd_1602_i2c)

lcd_1602_i2c.c

The example code.

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via I2C 548

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/lcd_1602_i2c/CMakeLists.txt

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/lcd_1602_i2c/lcd_1602_i2c.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "hardware/i2c.h"
 11 #include "pico/binary_info.h"
 12
 13 /* Example code to drive a 16x2 LCD panel via a I2C bridge chip (e.g. PCF8574)
 14
 15 NOTE: The panel must be capable of being driven at 3.3v NOT 5v. The Pico
 16 GPIO (and therefore I2C) cannot be used at 5v.
 17
 18 You will need to use a level shifter on the I2C lines if you want to run the
 19 board at 5v.
 20
 21 Connections on Raspberry Pi Pico board, other boards may vary.
 22
 23 GPIO 4 (pin 6)-> SDA on LCD bridge board
 24 GPIO 5 (pin 7)-> SCL on LCD bridge board
 25 3.3v (pin 36) -> VCC on LCD bridge board
 26 GND (pin 38) -> GND on LCD bridge board
 27 */
 28 // commands
 29 const int LCD_CLEARDISPLAY = 0x01;
 30 const int LCD_RETURNHOME = 0x02;
 31 const int LCD_ENTRYMODESET = 0x04;
 32 const int LCD_DISPLAYCONTROL = 0x08;
 33 const int LCD_CURSORSHIFT = 0x10;
 34 const int LCD_FUNCTIONSET = 0x20;
 35 const int LCD_SETCGRAMADDR = 0x40;
 36 const int LCD_SETDDRAMADDR = 0x80;
 37
 38 // flags for display entry mode
 39 const int LCD_ENTRYSHIFTINCREMENT = 0x01;
 40 const int LCD_ENTRYLEFT = 0x02;
 41
 42 // flags for display and cursor control
 43 const int LCD_BLINKON = 0x01;
 44 const int LCD_CURSORON = 0x02;
 45 const int LCD_DISPLAYON = 0x04;
 46
 47 // flags for display and cursor shift
 48 const int LCD_MOVERIGHT = 0x04;
 49 const int LCD_DISPLAYMOVE = 0x08;
 50
 51 // flags for function set
 52 const int LCD_5x10DOTS = 0x04;
 53 const int LCD_2LINE = 0x08;
 54 const int LCD_8BITMODE = 0x10;
 55
 56 // flag for backlight control
 57 const int LCD_BACKLIGHT = 0x08;
 58
 59 const int LCD_ENABLE_BIT = 0x04;
 60
 61 // By default these LCD display drivers are on bus address 0x27

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via I2C 549

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/lcd_1602_i2c/lcd_1602_i2c.c

 62 static int addr = 0x27;
 63
 64 // Modes for lcd_send_byte
 65 #define LCD_CHARACTER 1
 66 #define LCD_COMMAND 0
 67
 68 #define MAX_LINES 2
 69 #define MAX_CHARS 16
 70
 71 /* Quick helper function for single byte transfers */
 72 void i2c_write_byte(uint8_t val) {
 73 #ifdef i2c_default
 74 i2c_write_blocking(i2c_default, addr, &val, 1, false);
 75 #endif
 76 }
 77
 78 void lcd_toggle_enable(uint8_t val) {
 79 // Toggle enable pin on LCD display
 80 // We cannot do this too quickly or things don't work
 81 #define DELAY_US 600
 82 sleep_us(DELAY_US);
 83 i2c_write_byte(val | LCD_ENABLE_BIT);
 84 sleep_us(DELAY_US);
 85 i2c_write_byte(val & ~LCD_ENABLE_BIT);
 86 sleep_us(DELAY_US);
 87 }
 88
 89 // The display is sent a byte as two separate nibble transfers
 90 void lcd_send_byte(uint8_t val, int mode) {
 91 uint8_t high = mode | (val & 0xF0) | LCD_BACKLIGHT;
 92 uint8_t low = mode | ((val << 4) & 0xF0) | LCD_BACKLIGHT;
 93
 94 i2c_write_byte(high);
 95 lcd_toggle_enable(high);
 96 i2c_write_byte(low);
 97 lcd_toggle_enable(low);
 98 }
 99
100 void lcd_clear(void) {
101 lcd_send_byte(LCD_CLEARDISPLAY, LCD_COMMAND);
102 }
103
104 // go to location on LCD
105 void lcd_set_cursor(int line, int position) {
106 int val = (line == 0) ? 0x80 + position : 0xC0 + position;
107 lcd_send_byte(val, LCD_COMMAND);
108 }
109
110 static inline void lcd_char(char val) {
111 lcd_send_byte(val, LCD_CHARACTER);
112 }
113
114 void lcd_string(const char *s) {
115 while (*s) {
116 lcd_char(*s++);
117 }
118 }
119
120 void lcd_init() {
121 lcd_send_byte(0x03, LCD_COMMAND);
122 lcd_send_byte(0x03, LCD_COMMAND);
123 lcd_send_byte(0x03, LCD_COMMAND);
124 lcd_send_byte(0x02, LCD_COMMAND);
125

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via I2C 550

126 lcd_send_byte(LCD_ENTRYMODESET | LCD_ENTRYLEFT, LCD_COMMAND);
127 lcd_send_byte(LCD_FUNCTIONSET | LCD_2LINE, LCD_COMMAND);
128 lcd_send_byte(LCD_DISPLAYCONTROL | LCD_DISPLAYON, LCD_COMMAND);
129 lcd_clear();
130 }
131
132 int main() {
133 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
134 #warning i2c/lcd_1602_i2c example requires a board with I2C pins
135 #else
136 // This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
137 i2c_init(i2c_default, 100 * 1000);
138 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
139 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
140 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
141 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
142 // Make the I2C pins available to picotool
143 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
144
145 lcd_init();
146
147 static char *message[] =
148 {
149 "RP2040 by", "Raspberry Pi",
150 "A brand new", "microcontroller",
151 "Twin core M0", "Full C SDK",
152 "More power in", "your product",
153 "More beans", "than Heinz!"
154 };
155
156 while (1) {
157 for (uint m = 0; m < sizeof(message) / sizeof(message[0]); m += MAX_LINES) {
158 for (int line = 0; line < MAX_LINES; line++) {
159 lcd_set_cursor(line, (MAX_CHARS / 2) - strlen(message[m + line]) / 2);
160 lcd_string(message[m + line]);
161 }
162 sleep_ms(2000);
163 lcd_clear();
164 }
165 }
166 #endif
167 }

Bill of Materials

Table 43. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

1602A based LCD panel 3.3v 1 generic part

1602A to I2C bridge device 3.3v 1 generic part

M/M Jumper wires 4 generic part

Raspberry Pi Pico-series C/C++ SDK

Attaching a 16x2 LCD via I2C 551

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

Attaching a BMP280 temp/pressure sensor via I2C

This example code shows how to interface the Raspberry Pi Pico with the popular BMP280 temperature and air

pressure sensor manufactured by Bosch. A similar variant, the BME280, exists that can also measure humidity. There is

another example that uses the BME280 device but talks to it via SPI as opposed to I2C.

The code reads data from the sensor’s registers every 500 milliseconds and prints it via the onboard UART. This

example operates the BMP280 in normal mode, meaning that the device continuously cycles between a measurement

period and a standby period at a regular interval we can set. This has the advantage that subsequent reads do not

require configuration register writes and is the recommended mode of operation to filter out short-term disturbances.

 TIP

The BMP280 is highly configurable with 3 modes of operation, various oversampling levels, and 5 filter settings. Find

the datasheet online (https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-

bmp280-ds001.pdf) to explore all of its capabilities beyond the simple example given here.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses the default

I2C port 0, which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin from the

Pico.

 WARNING

The BMP280 has a maximum supply voltage rating of 3.6V. Most breakout boards have voltage regulators that will

allow a range of input voltages of 2-6V, but make sure to check beforehand.

Figure 19. Wiring

Diagram for BMP280

sensor via I2C.

List of Files

CMakeLists.txt

CMake file to incorporate the example into the examples build tree.

Raspberry Pi Pico-series C/C++ SDK

Attaching a BMP280 temp/pressure sensor via I2C 552

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/bmp280_i2c/CMakeLists.txt

 1 add_executable(bmp280_i2c
 2 bmp280_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(bmp280_i2c pico_stdlib hardware_i2c)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(bmp280_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(bmp280_i2c)

bmp280_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/bmp280_i2c/bmp280_i2c.c

 1 /**
 2 * Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 **/
 6
 7 #include <stdio.h>
 8
 9 #include "hardware/i2c.h"
 10 #include "pico/binary_info.h"
 11 #include "pico/stdlib.h"
 12
 13 /* Example code to talk to a BMP280 temperature and pressure sensor
 14
 15 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
 16 GPIO (and therefore I2C) cannot be used at 5v.
 17
 18 You will need to use a level shifter on the I2C lines if you want to run the
 19 board at 5v.
 20
 21 Connections on Raspberry Pi Pico board, other boards may vary.
 22
 23 GPIO PICO_DEFAULT_I2C_SDA_PIN (on Pico this is GP4 (pin 6)) -> SDA on BMP280
 24 board
 25 GPIO PICO_DEFAULT_I2C_SCK_PIN (on Pico this is GP5 (pin 7)) -> SCL on
 26 BMP280 board
 27 3.3v (pin 36) -> VCC on BMP280 board
 28 GND (pin 38) -> GND on BMP280 board
 29 */
 30
 31 // device has default bus address of 0x76
 32 #define ADDR _u(0x76)
 33
 34 // hardware registers
 35 #define REG_CONFIG _u(0xF5)
 36 #define REG_CTRL_MEAS _u(0xF4)
 37 #define REG_RESET _u(0xE0)
 38
 39 #define REG_TEMP_XLSB _u(0xFC)
 40 #define REG_TEMP_LSB _u(0xFB)
 41 #define REG_TEMP_MSB _u(0xFA)

Raspberry Pi Pico-series C/C++ SDK

Attaching a BMP280 temp/pressure sensor via I2C 553

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/bmp280_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/i2c/bmp280_i2c/bmp280_i2c.c

 42
 43 #define REG_PRESSURE_XLSB _u(0xF9)
 44 #define REG_PRESSURE_LSB _u(0xF8)
 45 #define REG_PRESSURE_MSB _u(0xF7)
 46
 47 // calibration registers
 48 #define REG_DIG_T1_LSB _u(0x88)
 49 #define REG_DIG_T1_MSB _u(0x89)
 50 #define REG_DIG_T2_LSB _u(0x8A)
 51 #define REG_DIG_T2_MSB _u(0x8B)
 52 #define REG_DIG_T3_LSB _u(0x8C)
 53 #define REG_DIG_T3_MSB _u(0x8D)
 54 #define REG_DIG_P1_LSB _u(0x8E)
 55 #define REG_DIG_P1_MSB _u(0x8F)
 56 #define REG_DIG_P2_LSB _u(0x90)
 57 #define REG_DIG_P2_MSB _u(0x91)
 58 #define REG_DIG_P3_LSB _u(0x92)
 59 #define REG_DIG_P3_MSB _u(0x93)
 60 #define REG_DIG_P4_LSB _u(0x94)
 61 #define REG_DIG_P4_MSB _u(0x95)
 62 #define REG_DIG_P5_LSB _u(0x96)
 63 #define REG_DIG_P5_MSB _u(0x97)
 64 #define REG_DIG_P6_LSB _u(0x98)
 65 #define REG_DIG_P6_MSB _u(0x99)
 66 #define REG_DIG_P7_LSB _u(0x9A)
 67 #define REG_DIG_P7_MSB _u(0x9B)
 68 #define REG_DIG_P8_LSB _u(0x9C)
 69 #define REG_DIG_P8_MSB _u(0x9D)
 70 #define REG_DIG_P9_LSB _u(0x9E)
 71 #define REG_DIG_P9_MSB _u(0x9F)
 72
 73 // number of calibration registers to be read
 74 #define NUM_CALIB_PARAMS 24
 75
 76 struct bmp280_calib_param {
 77 // temperature params
 78 uint16_t dig_t1;
 79 int16_t dig_t2;
 80 int16_t dig_t3;
 81
 82 // pressure params
 83 uint16_t dig_p1;
 84 int16_t dig_p2;
 85 int16_t dig_p3;
 86 int16_t dig_p4;
 87 int16_t dig_p5;
 88 int16_t dig_p6;
 89 int16_t dig_p7;
 90 int16_t dig_p8;
 91 int16_t dig_p9;
 92 };
 93
 94 #ifdef i2c_default
 95 void bmp280_init() {
 96 // use the "handheld device dynamic" optimal setting (see datasheet)
 97 uint8_t buf[2];
 98
 99 // 500ms sampling time, x16 filter
100 const uint8_t reg_config_val = ((0x04 << 5) | (0x05 << 2)) & 0xFC;
101
102 // send register number followed by its corresponding value
103 buf[0] = REG_CONFIG;
104 buf[1] = reg_config_val;
105 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

Raspberry Pi Pico-series C/C++ SDK

Attaching a BMP280 temp/pressure sensor via I2C 554

106
107 // osrs_t x1, osrs_p x4, normal mode operation
108 const uint8_t reg_ctrl_meas_val = (0x01 << 5) | (0x03 << 2) | (0x03);
109 buf[0] = REG_CTRL_MEAS;
110 buf[1] = reg_ctrl_meas_val;
111 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
112 }
113
114 void bmp280_read_raw(int32_t* temp, int32_t* pressure) {
115 // BMP280 data registers are auto-incrementing and we have 3 temperature and
116 // pressure registers each, so we start at 0xF7 and read 6 bytes to 0xFC
117 // note: normal mode does not require further ctrl_meas and config register writes
118
119 uint8_t buf[6];
120 uint8_t reg = REG_PRESSURE_MSB;
121 i2c_write_blocking(i2c_default, ADDR, ®, 1, true); // true to keep master control of
 bus
122 i2c_read_blocking(i2c_default, ADDR, buf, 6, false); // false - finished with bus
123
124 // store the 20 bit read in a 32 bit signed integer for conversion
125 *pressure = (buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4);
126 *temp = (buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4);
127 }
128
129 void bmp280_reset() {
130 // reset the device with the power-on-reset procedure
131 uint8_t buf[2] = { REG_RESET, 0xB6 };
132 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
133 }
134
135 // intermediate function that calculates the fine resolution temperature
136 // used for both pressure and temperature conversions
137 int32_t bmp280_convert(int32_t temp, struct bmp280_calib_param* params) {
138 // use the 32-bit fixed point compensation implementation given in the
139 // datasheet
140
141 int32_t var1, var2;
142 var1 = ((((temp >> 3) - ((int32_t)params->dig_t1 << 1))) * ((int32_t)params->dig_t2)) >>
 11;
143 var2 = (((((temp >> 4) - ((int32_t)params->dig_t1)) * ((temp >> 4) - ((int32_t)params-
 >dig_t1))) >> 12) * ((int32_t)params->dig_t3)) >> 14;
144 return var1 + var2;
145 }
146
147 int32_t bmp280_convert_temp(int32_t temp, struct bmp280_calib_param* params) {
148 // uses the BMP280 calibration parameters to compensate the temperature value read from
 its registers
149 int32_t t_fine = bmp280_convert(temp, params);
150 return (t_fine * 5 + 128) >> 8;
151 }
152
153 int32_t bmp280_convert_pressure(int32_t pressure, int32_t temp, struct bmp280_calib_param*
 params) {
154 // uses the BMP280 calibration parameters to compensate the pressure value read from its
 registers
155
156 int32_t t_fine = bmp280_convert(temp, params);
157
158 int32_t var1, var2;
159 uint32_t converted = 0.0;
160 var1 = (((int32_t)t_fine) >> 1) - (int32_t)64000;
161 var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((int32_t)params->dig_p6);
162 var2 += ((var1 * ((int32_t)params->dig_p5)) << 1);
163 var2 = (var2 >> 2) + (((int32_t)params->dig_p4) << 16);

Raspberry Pi Pico-series C/C++ SDK

Attaching a BMP280 temp/pressure sensor via I2C 555

164 var1 = (((params->dig_p3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) + ((((int32_t
)params->dig_p2) * var1) >> 1)) >> 18;
165 var1 = ((((32768 + var1)) * ((int32_t)params->dig_p1)) >> 15);
166 if (var1 == 0) {
167 return 0; // avoid exception caused by division by zero
168 }
169 converted = (((uint32_t)(((int32_t)1048576) - pressure) - (var2 >> 12))) * 3125;
170 if (converted < 0x80000000) {
171 converted = (converted << 1) / ((uint32_t)var1);
172 } else {
173 converted = (converted / (uint32_t)var1) * 2;
174 }
175 var1 = (((int32_t)params->dig_p9) * ((int32_t)(((converted >> 3) * (converted >> 3)) >>
 13))) >> 12;
176 var2 = (((int32_t)(converted >> 2)) * ((int32_t)params->dig_p8)) >> 13;
177 converted = (uint32_t)((int32_t)converted + ((var1 + var2 + params->dig_p7) >> 4));
178 return converted;
179 }
180
181 void bmp280_get_calib_params(struct bmp280_calib_param* params) {
182 // raw temp and pressure values need to be calibrated according to
183 // parameters generated during the manufacturing of the sensor
184 // there are 3 temperature params, and 9 pressure params, each with a LSB
185 // and MSB register, so we read from 24 registers
186
187 uint8_t buf[NUM_CALIB_PARAMS] = { 0 };
188 uint8_t reg = REG_DIG_T1_LSB;
189 i2c_write_blocking(i2c_default, ADDR, ®, 1, true); // true to keep master control of
 bus
190 // read in one go as register addresses auto-increment
191 i2c_read_blocking(i2c_default, ADDR, buf, NUM_CALIB_PARAMS, false); // false, we're
 done reading
192
193 // store these in a struct for later use
194 params->dig_t1 = (uint16_t)(buf[1] << 8) | buf[0];
195 params->dig_t2 = (int16_t)(buf[3] << 8) | buf[2];
196 params->dig_t3 = (int16_t)(buf[5] << 8) | buf[4];
197
198 params->dig_p1 = (uint16_t)(buf[7] << 8) | buf[6];
199 params->dig_p2 = (int16_t)(buf[9] << 8) | buf[8];
200 params->dig_p3 = (int16_t)(buf[11] << 8) | buf[10];
201 params->dig_p4 = (int16_t)(buf[13] << 8) | buf[12];
202 params->dig_p5 = (int16_t)(buf[15] << 8) | buf[14];
203 params->dig_p6 = (int16_t)(buf[17] << 8) | buf[16];
204 params->dig_p7 = (int16_t)(buf[19] << 8) | buf[18];
205 params->dig_p8 = (int16_t)(buf[21] << 8) | buf[20];
206 params->dig_p9 = (int16_t)(buf[23] << 8) | buf[22];
207 }
208
209 #endif
210
211 int main() {
212 stdio_init_all();
213
214 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
215 #warning i2c / bmp280_i2c example requires a board with I2C pins
216 puts("Default I2C pins were not defined");
217 return 0;
218 #else
219 // useful information for picotool
220 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
221 bi_decl(bi_program_description("BMP280 I2C example for the Raspberry Pi Pico"));

Raspberry Pi Pico-series C/C++ SDK

Attaching a BMP280 temp/pressure sensor via I2C 556

222
223 printf("Hello, BMP280! Reading temperaure and pressure values from sensor...\n");
224
225 // I2C is "open drain", pull ups to keep signal high when no data is being sent
226 i2c_init(i2c_default, 100 * 1000);
227 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
228 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
229 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
230 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
231
232 // configure BMP280
233 bmp280_init();
234
235 // retrieve fixed compensation params
236 struct bmp280_calib_param params;
237 bmp280_get_calib_params(¶ms);
238
239 int32_t raw_temperature;
240 int32_t raw_pressure;
241
242 sleep_ms(250); // sleep so that data polling and register update don't collide
243 while (1) {
244 bmp280_read_raw(&raw_temperature, &raw_pressure);
245 int32_t temperature = bmp280_convert_temp(raw_temperature, ¶ms);
246 int32_t pressure = bmp280_convert_pressure(raw_pressure, raw_temperature, ¶ms);
247 printf("Pressure = %.3f kPa\n", pressure / 1000.f);
248 printf("Temp. = %.2f C\n", temperature / 100.f);
249 // poll every 500ms
250 sleep_ms(500);
251 }
252 #endif
253 }

Bill of Materials

Table 44. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

BMP280-based breakout board 1 from Pimoroni

M/M Jumper wires 4 generic part

Attaching a LIS3DH Nano Accelerometer via i2c.

This example shows you how to interface the Raspberry Pi Pico to the LIS3DH accelerometer and temperature sensor.

The code reads and displays the acceleration values of the board in the 3 axes and the ambient temperature value. The

datasheet for the sensor can be found at https://www.st.com/resource/en/datasheet/cd00274221.pdf. The device is

being operated on 'normal mode' and at a frequency of 1.344 kHz (this can be changed by editing the ODR bits of

CTRL_REG4). The range of the data is controlled by the FS bit in CTRL_REG4 and is equal to ±2g in this example. The

sensitivity depends on the operating mode and data range; exact values can be found on page 10 of the datasheet. In

this case, the sensitivity value is 4mg (where g is the value of gravitational acceleration on the surface of Earth). In order

to use the auxiliary ADC to read temperature, the we must set the BDU bit to 1 in CTRL_REG4 and the ADC_EN bit to 1 in

TEMP_CFG_REG. Temperature is communicated through ADC 3.

Raspberry Pi Pico-series C/C++ SDK

Attaching a LIS3DH Nano Accelerometer via i2c. 557

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://shop.pimoroni.com/products/bmp280-breakout-temperature-pressure-altitude-sensor
https://www.st.com/resource/en/datasheet/cd00274221.pdf

 NOTE

The sensor doesn’t have features to eliminate offsets in the data and these will need to be taken into account in the

code.

Wiring information

Wiring up the device requires 4 jumpers, to connect VIN, GND, SDA and SCL. The example here uses I2C port 0, which is

assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3V pin.

Figure 20. Wiring

Diagram for LIS3DH.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/lis3dh_i2c/CMakeLists.txt

 1 add_executable(lis3dh_i2c
 2 lis3dh_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(lis3dh_i2c pico_stdlib hardware_i2c)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(lis3dh_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(lis3dh_i2c)

lis3dh_i2c.c

The example code.

Raspberry Pi Pico-series C/C++ SDK

Attaching a LIS3DH Nano Accelerometer via i2c. 558

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/lis3dh_i2c/CMakeLists.txt

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/lis3dh_i2c/lis3dh_i2c.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "pico/binary_info.h"
 11 #include "hardware/i2c.h"
 12
 13 /* Example code to talk to a LIS3DH Mini GPS module.
 14
 15 This example reads data from all 3 axes of the accelerometer and uses an auxiliary ADC to
 output temperature values.
 16
 17 Connections on Raspberry Pi Pico board, other boards may vary.
 18
 19 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is 4 (physical pin 6)) -> SDA on LIS3DH board
 20 GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is 5 (physical pin 7)) -> SCL on LIS3DH board
 21 3.3v (physical pin 36) -> VIN on LIS3DH board
 22 GND (physical pin 38) -> GND on LIS3DH board
 23 */
 24
 25 // By default this device is on bus address 0x18
 26
 27 const int ADDRESS = 0x18;
 28 const uint8_t CTRL_REG_1 = 0x20;
 29 const uint8_t CTRL_REG_4 = 0x23;
 30 const uint8_t TEMP_CFG_REG = 0xC0;
 31
 32 #ifdef i2c_default
 33
 34 void lis3dh_init() {
 35 uint8_t buf[2];
 36
 37 // Turn normal mode and 1.344kHz data rate on
 38 buf[0] = CTRL_REG_1;
 39 buf[1] = 0x97;
 40 i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);
 41
 42 // Turn block data update on (for temperature sensing)
 43 buf[0] = CTRL_REG_4;
 44 buf[1] = 0x80;
 45 i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);
 46
 47 // Turn auxiliary ADC on
 48 buf[0] = TEMP_CFG_REG;
 49 buf[1] = 0xC0;
 50 i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);
 51 }
 52
 53 void lis3dh_calc_value(uint16_t raw_value, float *final_value, bool isAccel) {
 54 // Convert with respect to the value being temperature or acceleration reading
 55 float scaling;
 56 float senstivity = 0.004f; // g per unit
 57
 58 if (isAccel == true) {
 59 scaling = 64 / senstivity;
 60 } else {

Raspberry Pi Pico-series C/C++ SDK

Attaching a LIS3DH Nano Accelerometer via i2c. 559

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/lis3dh_i2c/lis3dh_i2c.c

 61 scaling = 64;
 62 }
 63
 64 // raw_value is signed
 65 *final_value = (float) ((int16_t) raw_value) / scaling;
 66 }
 67
 68 void lis3dh_read_data(uint8_t reg, float *final_value, bool IsAccel) {
 69 // Read two bytes of data and store in a 16 bit data structure
 70 uint8_t lsb;
 71 uint8_t msb;
 72 uint16_t raw_accel;
 73 i2c_write_blocking(i2c_default, ADDRESS, ®, 1, true);
 74 i2c_read_blocking(i2c_default, ADDRESS, &lsb, 1, false);
 75
 76 reg |= 0x01;
 77 i2c_write_blocking(i2c_default, ADDRESS, ®, 1, true);
 78 i2c_read_blocking(i2c_default, ADDRESS, &msb, 1, false);
 79
 80 raw_accel = (msb << 8) | lsb;
 81
 82 lis3dh_calc_value(raw_accel, final_value, IsAccel);
 83 }
 84
 85 #endif
 86
 87 int main() {
 88 stdio_init_all();
 89 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
 90 #warning i2c/lis3dh_i2c example requires a board with I2C pins
 91 puts("Default I2C pins were not defined");
 92 #else
 93 printf("Hello, LIS3DH! Reading raw data from registers...\n");
 94
 95 // This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
 96 i2c_init(i2c_default, 400 * 1000);
 97 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
 98 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
 99 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
100 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
101 // Make the I2C pins available to picotool
102 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
103
104 float x_accel, y_accel, z_accel, temp;
105
106 lis3dh_init();
107
108 while (1) {
109 lis3dh_read_data(0x28, &x_accel, true);
110 lis3dh_read_data(0x2A, &y_accel, true);
111 lis3dh_read_data(0x2C, &z_accel, true);
112 lis3dh_read_data(0x0C, &temp, false);
113
114 // Display data
115 printf("TEMPERATURE: %.3f%cC\n", temp, 176);
116 // Acceleration is read as a multiple of g (gravitational acceleration on the Earth's
 surface)
117 printf("ACCELERATION VALUES: \n");
118 printf("X acceleration: %.3fg\n", x_accel);
119 printf("Y acceleration: %.3fg\n", y_accel);
120 printf("Z acceleration: %.3fg\n", z_accel);
121

Raspberry Pi Pico-series C/C++ SDK

Attaching a LIS3DH Nano Accelerometer via i2c. 560

122 sleep_ms(500);
123
124 // Clear terminal
125 printf("\033[1;1H\033[2J");
126 }
127 #endif
128 }

Bill of Materials

Table 45. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

LIS3DH board 1 https://www.adafruit.com/product/

2809

M/M Jumper wires 4 generic part

Attaching a MCP9808 digital temperature sensor via I2C

This example code shows how to interface the Raspberry Pi Pico to the MCP9808 digital temperature sensor board.

This example reads the ambient temperature value each second from the sensor and sets upper, lower and critical

limits for the temperature and checks if alerts need to be raised. The CONFIG register can also be used to check for an

alert if the critical temperature is surpassed.

Wiring information

Wiring up the device requires 4 jumpers, to connect VDD, GND, SDA and SCL. The example here uses I2C port 0, which is

assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the VSYS pin.

Figure 21. Wiring

Diagram for MCP9808.

Raspberry Pi Pico-series C/C++ SDK

Attaching a MCP9808 digital temperature sensor via I2C 561

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/2809
https://www.adafruit.com/product/2809

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mcp9808_i2c/CMakeLists.txt

 1 add_executable(mcp9808_i2c
 2 mcp9808_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(mcp9808_i2c pico_stdlib hardware_i2c)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(mcp9808_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(mcp9808_i2c)

mcp9808_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mcp9808_i2c/mcp9808_i2c.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "pico/binary_info.h"
 11 #include "hardware/i2c.h"
 12
 13 /* Example code to talk to a MCP9808 ±0.5°C Digital temperature Sensor
 14
 15 This reads and writes to registers on the board.
 16
 17 Connections on Raspberry Pi Pico board, other boards may vary.
 18
 19 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is GP4 (physical pin 6)) -> SDA on MCP9808
 board
 20 GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is GP5 (physical pin 7)) -> SCL on MCP9808
 board
 21 Vsys (physical pin 39) -> VDD on MCP9808 board
 22 GND (physical pin 38) -> GND on MCP9808 board
 23
 24 */
 25 //The bus address is determined by the state of pins A0, A1 and A2 on the MCP9808 board
 26 static uint8_t ADDRESS = 0x18;
 27
 28 //hardware registers
 29
 30 const uint8_t REG_POINTER = 0x00;
 31 const uint8_t REG_CONFIG = 0x01;
 32 const uint8_t REG_TEMP_UPPER = 0x02;
 33 const uint8_t REG_TEMP_LOWER = 0x03;

Raspberry Pi Pico-series C/C++ SDK

Attaching a MCP9808 digital temperature sensor via I2C 562

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mcp9808_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mcp9808_i2c/mcp9808_i2c.c

 34 const uint8_t REG_TEMP_CRIT = 0x04;
 35 const uint8_t REG_TEMP_AMB = 0x05;
 36 const uint8_t REG_RESOLUTION = 0x08;
 37
 38
 39 void mcp9808_check_limits(uint8_t upper_byte) {
 40
 41 // Check flags and raise alerts accordingly
 42 if ((upper_byte & 0x40) == 0x40) { //TA > TUPPER
 43 printf("Temperature is above the upper temperature limit.\n");
 44 }
 45 if ((upper_byte & 0x20) == 0x20) { //TA < TLOWER
 46 printf("Temperature is below the lower temperature limit.\n");
 47 }
 48 if ((upper_byte & 0x80) == 0x80) { //TA > TCRIT
 49 printf("Temperature is above the critical temperature limit.\n");
 50 }
 51 }
 52
 53 float mcp9808_convert_temp(uint8_t upper_byte, uint8_t lower_byte) {
 54
 55 float temperature;
 56
 57
 58 //Check if TA <= 0°C and convert to denary accordingly
 59 if ((upper_byte & 0x10) == 0x10) {
 60 upper_byte = upper_byte & 0x0F;
 61 temperature = 256 - (((float) upper_byte * 16) + ((float) lower_byte / 16));
 62 } else {
 63 temperature = (((float) upper_byte * 16) + ((float) lower_byte / 16));
 64
 65 }
 66 return temperature;
 67 }
 68
 69 #ifdef i2c_default
 70 void mcp9808_set_limits() {
 71
 72 //Set an upper limit of 30°C for the temperature
 73 uint8_t upper_temp_msb = 0x01;
 74 uint8_t upper_temp_lsb = 0xE0;
 75
 76 //Set a lower limit of 20°C for the temperature
 77 uint8_t lower_temp_msb = 0x01;
 78 uint8_t lower_temp_lsb = 0x40;
 79
 80 //Set a critical limit of 40°C for the temperature
 81 uint8_t crit_temp_msb = 0x02;
 82 uint8_t crit_temp_lsb = 0x80;
 83
 84 uint8_t buf[3];
 85 buf[0] = REG_TEMP_UPPER;
 86 buf[1] = upper_temp_msb;
 87 buf[2] = upper_temp_lsb;
 88 i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
 89
 90 buf[0] = REG_TEMP_LOWER;
 91 buf[1] = lower_temp_msb;
 92 buf[2] = lower_temp_lsb;
 93 i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
 94
 95 buf[0] = REG_TEMP_CRIT;
 96 buf[1] = crit_temp_msb;
 97 buf[2] = crit_temp_lsb;;

Raspberry Pi Pico-series C/C++ SDK

Attaching a MCP9808 digital temperature sensor via I2C 563

 98 i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
 99 }
100 #endif
101
102 int main() {
103
104 stdio_init_all();
105
106 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
107 #warning i2c/mcp9808_i2c example requires a board with I2C pins
108 puts("Default I2C pins were not defined");
109 #else
110 printf("Hello, MCP9808! Reading raw data from registers...\n");
111
112 // This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
113 i2c_init(i2c_default, 400 * 1000);
114 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
115 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
116 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
117 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
118 // Make the I2C pins available to picotool
119 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
120
121 mcp9808_set_limits();
122
123 uint8_t buf[2];
124 uint16_t upper_byte;
125 uint16_t lower_byte;
126
127 float temperature;
128
129 while (1) {
130 // Start reading ambient temperature register for 2 bytes
131 i2c_write_blocking(i2c_default, ADDRESS, ®_TEMP_AMB, 1, true);
132 i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);
133
134 upper_byte = buf[0];
135 lower_byte = buf[1];
136
137 //isolates limit flags in upper byte
138 mcp9808_check_limits(upper_byte & 0xE0);
139
140 //clears flag bits in upper byte
141 temperature = mcp9808_convert_temp(upper_byte & 0x1F, lower_byte);
142 printf("Ambient temperature: %.4f°C\n", temperature);
143
144 sleep_ms(1000);
145 }
146 #endif
147 }

Bill of Materials

Table 46. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico-series C/C++ SDK

Attaching a MCP9808 digital temperature sensor via I2C 564

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

MCP9808 board 1 https://www.adafruit.com/product/

1782

M/M Jumper wires 4 generic part

Attaching a MMA8451 3-axis digital accelerometer via I2C

This example code shows how to interface the Raspberry Pi Pico to the MMA8451 digital accelerometer sensor board.

This example reads and displays the acceleration values of the board in the 3 axis. It also allows the user to set the

trade-off between the range and precision based on the values they require. Values often have an offset which can be

accounted for by writing to the offset correction registers. The datasheet for the sensor can be found at https://cdn-

shop.adafruit.com/datasheets/MMA8451Q-1.pdf for additional information.

Wiring information

Wiring up the device requires 4 jumpers, to connect VIN, GND, SDA and SCL. The example here uses I2C port 0, which is

assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the VSYS pin.

Figure 22. Wiring

Diagram for

MMA8451.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mma8451_i2c/CMakeLists.txt

 1 add_executable(mma8451_i2c
 2 mma8451_i2c.c
 3)
 4 # pull in common dependencies and additional i2c hardware support
 5 target_link_libraries(mma8451_i2c pico_stdlib hardware_i2c)
 6

Raspberry Pi Pico-series C/C++ SDK

Attaching a MMA8451 3-axis digital accelerometer via I2C 565

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/1782
https://www.adafruit.com/product/1782
https://cdn-shop.adafruit.com/datasheets/MMA8451Q-1.pdf
https://cdn-shop.adafruit.com/datasheets/MMA8451Q-1.pdf
https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mma8451_i2c/CMakeLists.txt

 7 # create map/bin/hex file etc.
 8 pico_add_extra_outputs(mma8451_i2c)
 9
10 # add url via pico_set_program_url
11 example_auto_set_url(mma8451_i2c)

mma8451_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mma8451_i2c/mma8451_i2c.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "pico/binary_info.h"
 11 #include "hardware/i2c.h"
 12
 13 /* Example code to talk to a MMA8451 triple-axis accelerometer.
 14
 15 This reads and writes to registers on the board.
 16
 17 Connections on Raspberry Pi Pico board, other boards may vary.
 18
 19 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is GP4 (physical pin 6)) -> SDA on MMA8451
 board
 20 GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is GP5 (physical pin 7)) -> SCL on MMA8451
 board
 21 VSYS (physical pin 39) -> VDD on MMA8451 board
 22 GND (physical pin 38) -> GND on MMA8451 board
 23
 24 */
 25
 26 const uint8_t ADDRESS = 0x1D;
 27
 28 //hardware registers
 29
 30 const uint8_t REG_X_MSB = 0x01;
 31 const uint8_t REG_X_LSB = 0x02;
 32 const uint8_t REG_Y_MSB = 0x03;
 33 const uint8_t REG_Y_LSB = 0x04;
 34 const uint8_t REG_Z_MSB = 0x05;
 35 const uint8_t REG_Z_LSB = 0x06;
 36 const uint8_t REG_DATA_CFG = 0x0E;
 37 const uint8_t REG_CTRL_REG1 = 0x2A;
 38
 39 // Set the range and precision for the data
 40 const uint8_t range_config = 0x01; // 0x00 for ±2g, 0x01 for ±4g, 0x02 for ±8g
 41 const float count = 2048; // 4096 for ±2g, 2048 for ±4g, 1024 for ±8g
 42
 43 uint8_t buf[2];
 44
 45 float mma8451_convert_accel(uint16_t raw_accel) {
 46 float acceleration;
 47 // Acceleration is read as a multiple of g (gravitational acceleration on the Earth's
 surface)
 48 // Check if acceleration < 0 and convert to decimal accordingly

Raspberry Pi Pico-series C/C++ SDK

Attaching a MMA8451 3-axis digital accelerometer via I2C 566

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mma8451_i2c/mma8451_i2c.c

 49 if ((raw_accel & 0x2000) == 0x2000) {
 50 raw_accel &= 0x1FFF;
 51 acceleration = (-8192 + (float) raw_accel) / count;
 52 } else {
 53 acceleration = (float) raw_accel / count;
 54 }
 55 acceleration *= 9.81f;
 56 return acceleration;
 57 }
 58
 59 #ifdef i2c_default
 60 void mma8451_set_state(uint8_t state) {
 61 buf[0] = REG_CTRL_REG1;
 62 buf[1] = state; // Set RST bit to 1
 63 i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);
 64 }
 65 #endif
 66
 67 int main() {
 68 stdio_init_all();
 69
 70 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
 71 #warning i2c/mma8451_i2c example requires a board with I2C pins
 72 puts("Default I2C pins were not defined");
 73 #else
 74 printf("Hello, MMA8451! Reading raw data from registers...\n");
 75
 76 // This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
 77 i2c_init(i2c_default, 400 * 1000);
 78 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
 79 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
 80 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
 81 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
 82 // Make the I2C pins available to picotool
 83 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
 84
 85 float x_acceleration;
 86 float y_acceleration;
 87 float z_acceleration;
 88
 89 // Enable standby mode
 90 mma8451_set_state(0x00);
 91
 92 // Edit configuration while in standby mode
 93 buf[0] = REG_DATA_CFG;
 94 buf[1] = range_config;
 95 i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);
 96
 97 // Enable active mode
 98 mma8451_set_state(0x01);
 99
100 while (1) {
101
102 // Start reading acceleration registers for 2 bytes
103 i2c_write_blocking(i2c_default, ADDRESS, ®_X_MSB, 1, true);
104 i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);
105 x_acceleration = mma8451_convert_accel(buf[0] << 6 | buf[1] >> 2);
106
107 i2c_write_blocking(i2c_default, ADDRESS, ®_Y_MSB, 1, true);
108 i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);
109 y_acceleration = mma8451_convert_accel(buf[0] << 6 | buf[1] >> 2);
110

Raspberry Pi Pico-series C/C++ SDK

Attaching a MMA8451 3-axis digital accelerometer via I2C 567

111 i2c_write_blocking(i2c_default, ADDRESS, ®_Z_MSB, 1, true);
112 i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);
113 z_acceleration = mma8451_convert_accel(buf[0] << 6 | buf[1] >> 2);
114
115 // Display acceleration values
116 printf("ACCELERATION VALUES: \n");
117 printf("X acceleration: %.6fms^-2\n", x_acceleration);
118 printf("Y acceleration: %.6fms^-2\n", y_acceleration);
119 printf("Z acceleration: %.6fms^-2\n", z_acceleration);
120
121 sleep_ms(500);
122
123 // Clear terminal
124 printf("\033[1;1H\033[2J");
125 }
126
127 #endif
128 }

Bill of Materials

Table 47. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

MMA8451 board 1 https://www.adafruit.com/product/

2019

M/M Jumper wires 4 generic part

Attaching an MPL3115A2 altimeter via I2C

This example code shows how to interface the Raspberry Pi Pico to an MPL3115A2 altimeter via I2C. The MPL3115A2

has onboard pressure and temperature sensors which are used to estimate the altitude. In comparison to the BMP-

family of pressure and temperature sensors, the MPL3115A2 has two interrupt pins for ultra low power operation and

takes care of the sensor reading compensation on the board! It also has multiple modes of operation and impressive

operating conditions.

The board used in this example comes from Adafruit, but any MPL3115A2 breakouts should work similarly.

The MPL3115A2 makes available two ways of reading its temperature and pressure data. The first is known as polling,

where the Pico will continuously read data out of a set of auto-incrementing registers which are refreshed with new data

every so often. The second, which this example will demonstrate, uses a 160-byte first-in-first-out (FIFO) queue and

configurable interrupts to tell the Pico when to read data. More information regarding when the interrupts can be

triggered available in the datasheet. This example waits for the 32 sample FIFO to overflow, detects this via an interrupt

pin, and then averages the 32 samples taken. The sensor is configured to take a sample every second.

Bit math is used to convert the temperature and altitude data from the raw bits collected in the registers. Take the

temperature calculation as an example: it is a 12-bit signed number with 8 integer bits and 4 fractional bits. First, we

read the 2 8-bit registers and store them in a buffer. Then, we concatenate them into one unsigned 16-bit integer

starting with the OUT_T_MSB register, thus making sure that the last bit of this register is aligned with the MSB in our 16

bit unsigned integer so it is correctly interpreted as the signed bit when we later cast this to a signed 16-bit integer.

Finally, the entire number is converted to a float implicitly when we multiply it by 1/2^8 to shift it 8 bits to the right of the

decimal point. Though only the last 4 bits of the OUT_T_LSB register hold data, this does not matter as the remaining 4

Raspberry Pi Pico-series C/C++ SDK

Attaching an MPL3115A2 altimeter via I2C 568

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/2019
https://www.adafruit.com/product/2019
https://www.adafruit.com/product/1893
https://www.nxp.com/docs/en/data-sheet/MPL3115A2.pdf

are held at zero and "disappear" when we shift the decimal point left by 8. Similar logic is applied to the altitude

calculation.

 TIP

Choosing the right sensor for your project among so many choices can be hard! There are multiple factors you may

have to consider in addition to any constraints imposed on you. Cost, operating temperature, sensor resolution,

power consumption, ease of use, communication protocols and supply voltage are all but a few factors that can play

a role in sensor choice. For most hobbyist purposes though, the majority of sensors out there will do just fine!

Wiring information

Wiring up the device requires 5 jumpers, to connect VCC (3.3v), GND, INT1, SDA and SCL. The example here uses I2C

port 0, which is assigned to GPIO 4 (SDA) and GPIO 5 (SCL) by default. Power is supplied from the 3.3V pin.

 NOTE

The MPL3115A2 has a 1.6-3.6V voltage supply range. This means it can work with the Pico’s 3.3v pins out of the box

but our Adafruit breakout has an onboard voltage regulator for good measure. This may not always be true of other

sensors, though.

Figure 23. Wiring

Diagram for

MPL3115A2 altimeter.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mpl3115a2_i2c/CMakeLists.txt

 1 add_executable(mpl3115a2_i2c
 2 mpl3115a2_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(mpl3115a2_i2c pico_stdlib hardware_i2c)
 7

Raspberry Pi Pico-series C/C++ SDK

Attaching an MPL3115A2 altimeter via I2C 569

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mpl3115a2_i2c/CMakeLists.txt

 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(mpl3115a2_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(mpl3115a2_i2c)

mpl3115a2_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mpl3115a2_i2c/mpl3115a2_i2c.c

 1 /**
 2 * Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include "pico/stdlib.h"
 9 #include "pico/binary_info.h"
 10 #include "hardware/gpio.h"
 11 #include "hardware/i2c.h"
 12
 13 /* Example code to talk to an MPL3115A2 altimeter sensor via I2C
 14
 15 See accompanying documentation in README.adoc or the C++ SDK booklet.
 16
 17 Connections on Raspberry Pi Pico board, other boards may vary.
 18
 19 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is 4 (pin 6)) -> SDA on MPL3115A2 board
 20 GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is 5 (pin 7)) -> SCL on MPL3115A2 board
 21 GPIO 16 -> INT1 on MPL3115A2 board
 22 3.3v (pin 36) -> VCC on MPL3115A2 board
 23 GND (pin 38) -> GND on MPL3115A2 board
 24 */
 25
 26 // 7-bit address
 27 #define ADDR 0x60
 28 #define INT1_PIN _u(16)
 29
 30 // following definitions only valid for F_MODE > 0 (ie. if FIFO enabled)
 31 #define MPL3115A2_F_DATA _u(0x01)
 32 #define MPL3115A2_F_STATUS _u(0x00)
 33 #define MPL3115A2_F_SETUP _u(0x0F)
 34 #define MPL3115A2_INT_SOURCE _u(0x12)
 35 #define MPL3115A2_CTRLREG1 _u(0x26)
 36 #define MPL3115A2_CTRLREG2 _u(0x27)
 37 #define MPL3115A2_CTRLREG3 _u(0x28)
 38 #define MPL3115A2_CTRLREG4 _u(0x29)
 39 #define MPL3115A2_CTRLREG5 _u(0x2A)
 40 #define MPL3115A2_PT_DATA_CFG _u(0x13)
 41 #define MPL3115A2_OFF_P _u(0x2B)
 42 #define MPL3115A2_OFF_T _u(0x2C)
 43 #define MPL3115A2_OFF_H _u(0x2D)
 44
 45 #define MPL3115A2_FIFO_DISABLED _u(0x00)
 46 #define MPL3115A2_FIFO_STOP_ON_OVERFLOW _u(0x80)
 47 #define MPL3115A2_FIFO_SIZE 32
 48 #define MPL3115A2_DATA_BATCH_SIZE 5
 49 #define MPL3115A2_ALTITUDE_NUM_REGS 3
 50 #define MPL3115A2_ALTITUDE_INT_SIZE 20
 51 #define MPL3115A2_TEMPERATURE_INT_SIZE 12

Raspberry Pi Pico-series C/C++ SDK

Attaching an MPL3115A2 altimeter via I2C 570

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/mpl3115a2_i2c/mpl3115a2_i2c.c

 52 #define MPL3115A2_NUM_FRAC_BITS 4
 53
 54 #define PARAM_ASSERTIONS_ENABLE_I2C 1
 55
 56 volatile uint8_t fifo_data[MPL3115A2_FIFO_SIZE * MPL3115A2_DATA_BATCH_SIZE];
 57 volatile bool has_new_data = false;
 58
 59 struct mpl3115a2_data_t {
 60 // Q8.4 fixed point
 61 float temperature;
 62 // Q16.4 fixed-point
 63 float altitude;
 64 };
 65
 66 void copy_to_vbuf(uint8_t buf1[], volatile uint8_t buf2[], uint buflen) {
 67 for (size_t i = 0; i < buflen; i++) {
 68 buf2[i] = buf1[i];
 69 }
 70 }
 71
 72 #ifdef i2c_default
 73
 74 void mpl3115a2_read_fifo(volatile uint8_t fifo_buf[]) {
 75 // drains the 160 byte FIFO
 76 uint8_t reg = MPL3115A2_F_DATA;
 77 uint8_t buf[MPL3115A2_FIFO_SIZE * MPL3115A2_DATA_BATCH_SIZE];
 78 i2c_write_blocking(i2c_default, ADDR, ®, 1, true);
 79 // burst read 160 bytes from fifo
 80 i2c_read_blocking(i2c_default, ADDR, buf, MPL3115A2_FIFO_SIZE *
 MPL3115A2_DATA_BATCH_SIZE, false);
 81 copy_to_vbuf(buf, fifo_buf, MPL3115A2_FIFO_SIZE * MPL3115A2_DATA_BATCH_SIZE);
 82 }
 83
 84 uint8_t mpl3115a2_read_reg(uint8_t reg) {
 85 uint8_t read;
 86 i2c_write_blocking(i2c_default, ADDR, ®, 1, true); // keep control of bus
 87 i2c_read_blocking(i2c_default, ADDR, &read, 1, false);
 88 return read;
 89 }
 90
 91 void mpl3115a2_init() {
 92 // set as altimeter with oversampling ratio of 128
 93 uint8_t buf[] = {MPL3115A2_CTRLREG1, 0xB8};
 94 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
 95
 96 // set data refresh every 2 seconds, 0 next bits as we're not using those interrupts
 97 buf[0] = MPL3115A2_CTRLREG2, buf[1] = 0x00;
 98 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
 99
100 // set both interrupts pins to active low and enable internal pullups
101 buf[0] = MPL3115A2_CTRLREG3, buf[1] = 0x01;
102 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
103
104 // enable FIFO interrupt
105 buf[0] = MPL3115A2_CTRLREG4, buf[1] = 0x40;
106 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
107
108 // tie FIFO interrupt to pin INT1
109 buf[0] = MPL3115A2_CTRLREG5, buf[1] = 0x40;
110 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
111
112 // set p, t and h offsets here if needed
113 // eg. 2's complement number: 0xFF subtracts 1 meter
114 //buf[0] = MPL3115A2_OFF_H, buf[1] = 0xFF;

Raspberry Pi Pico-series C/C++ SDK

Attaching an MPL3115A2 altimeter via I2C 571

115 //i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
116
117 // do not accept more data on FIFO overflow
118 buf[0] = MPL3115A2_F_SETUP, buf[1] = MPL3115A2_FIFO_STOP_ON_OVERFLOW;
119 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
120
121 // set device active
122 buf[0] = MPL3115A2_CTRLREG1, buf[1] = 0xB9;
123 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);
124 }
125
126 void gpio_callback(uint gpio, __unused uint32_t events) {
127 // if we had enabled more than 2 interrupts on same pin, then we should read
128 // INT_SOURCE reg to find out which interrupt triggered
129
130 // we can filter by which GPIO was triggered
131 if (gpio == INT1_PIN) {
132 // FIFO overflow interrupt
133 // watermark bits set to 0 in F_SETUP reg, so only possible event is an overflow
134 // otherwise, we would read F_STATUS to confirm it was an overflow
135 printf("FIFO overflow!\n");
136 // drain the fifo
137 mpl3115a2_read_fifo(fifo_data);
138 // read status register to clear interrupt bit
139 mpl3115a2_read_reg(MPL3115A2_F_STATUS);
140 has_new_data = true;
141 }
142 }
143
144 #endif
145
146 void mpl3115a2_convert_fifo_batch(uint8_t start, volatile uint8_t buf[], struct
 mpl3115a2_data_t *data) {
147 // convert a batch of fifo data into temperature and altitude data
148
149 // 3 altitude registers: MSB (8 bits), CSB (8 bits) and LSB (4 bits, starting from MSB)
150 // first two are integer bits (2's complement) and LSB is fractional bits -> makes 20 bit
 signed integer
151 int32_t h = (int32_t) buf[start] << 24;
152 h |= (int32_t) buf[start + 1] << 16;
153 h |= (int32_t) buf[start + 2] << 8;
154 data->altitude = ((float)h) / 65536.f;
155
156 // 2 temperature registers: MSB (8 bits) and LSB (4 bits, starting from MSB)
157 // first 8 are integer bits with sign and LSB is fractional bits -> 12 bit signed integer
158 int16_t t = (int16_t) buf[start + 3] << 8;
159 t |= (int16_t) buf[start + 4];
160 data->temperature = ((float)t) / 256.f;
161 }
162
163 int main() {
164 stdio_init_all();
165 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
166 #warning i2c / mpl3115a2_i2c example requires a board with I2C pins
167 puts("Default I2C pins were not defined");
168 return 0;
169 #else
170 printf("Hello, MPL3115A2. Waiting for something to interrupt me!...\n");
171
172 // use default I2C0 at 400kHz, I2C is active low
173 i2c_init(i2c_default, 400 * 1000);
174 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
175 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

Raspberry Pi Pico-series C/C++ SDK

Attaching an MPL3115A2 altimeter via I2C 572

176 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
177 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
178
179 gpio_init(INT1_PIN);
180 gpio_pull_up(INT1_PIN); // pull it up even more!
181
182 // add program information for picotool
183 bi_decl(bi_program_name("Example in the pico-examples library for the MPL3115A2
 altimeter"));
184 bi_decl(bi_1pin_with_name(16, "Interrupt pin 1"));
185 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
186
187 mpl3115a2_init();
188
189 gpio_set_irq_enabled_with_callback(INT1_PIN, GPIO_IRQ_LEVEL_LOW, true, &gpio_callback);
190
191 while (1) {
192 // as interrupt data comes in, let's print the 32 sample average
193 if (has_new_data) {
194 float tsum = 0, hsum = 0;
195 struct mpl3115a2_data_t data;
196 for (int i = 0; i < MPL3115A2_FIFO_SIZE; i++) {
197 mpl3115a2_convert_fifo_batch(i * MPL3115A2_DATA_BATCH_SIZE, fifo_data, &
 data);
198 tsum += data.temperature;
199 hsum += data.altitude;
200 }
201 printf("%d sample average -> t: %.4f C, h: %.4f m\n", MPL3115A2_FIFO_SIZE, tsum
 / MPL3115A2_FIFO_SIZE,
202 hsum / MPL3115A2_FIFO_SIZE);
203 has_new_data = false;
204 }
205 sleep_ms(10);
206 };
207
208 #endif
209 }

Bill of Materials

Table 48. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

MPL3115A2 altimeter 1 Adafruit

M/M Jumper wires 5 generic part

Attaching an OLED display via I2C

This example code shows how to interface the Raspberry Pi Pico with an 128x32 OLED display board based on the

SSD1306 display driver, datasheet here.

The code displays a series of small demo graphics; tiny raspberries that scroll horizontally, some text, and some line

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 573

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/1893
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf

drawing, in the process showing you how to initialize the display, write to the entire display, write to only a portion of the

display, configure scrolling, invert the display etc.

The SSD1306 is operated via a list of versatile commands (see datasheet) that allows the user to access all the

capabilities of the driver. After sending a slave address, the data that follows can be either a command, flags to follow

up a command or data to be written directly into the display’s RAM. A control byte is required for each write after the

slave address so that the driver knows what type of data is being sent.

The example code supports displays of 32 pixel or 64 pixels high by 128 pixels wide by changing a define at the top of

the code.

In the 32 vertical pixels case, the display is partitioned into 4 pages, each 8 pixels in height. In RAM, this looks roughly

like:

 | COL0 | COL1 | COL2 | COL3 | ... | COL126 | COL127 |
 PAGE 0 | | | | | | | |
 PAGE 1 | | | | | | | |
 PAGE 2 | | | | | | | |
 PAGE 3 | | | | | | | |
 --

Within each page, we have:

 | COL0 | COL1 | COL2 | COL3 | ... | COL126 | COL127 |
 COM 0 | | | | | | | |
 COM 1 | | | | | | | |
 : | | | | | | | |
 COM 7 | | | | | | | |

 NOTE

There is a difference between columns in RAM and the actual segment pads that connect the driver to the display.

The RAM addresses COL0 - COL127 are mapped to these segment pins SEG0 - SEG127 by default. The distinction

between these two is important as we can for example, easily mirror contents of RAM without rewriting a buffer.

The driver has 3 modes of transferring the pixels in RAM to the display (provided that the driver is set to use its RAM

content to drive the display, ie. command 0xA4 is sent). We choose horizontal addressing mode which, after setting the

column address and page address registers to our desired start positions, will increment the column address register

until the OLED display width is reached (127 in our case) after which the column address register will reset to its

starting value and the page address is incremented. Once the page register reaches the end, it will wrap around as well.

Effectively, this scans across the display from top to bottom, left to right in blocks that are 8 pixels high. When a byte is

sent to be written into RAM, it sets all the rows for the current position of the column address register. So, if we send

10101010, and we are on PAGE 0 and COL1, COM0 is set to 1, COM1 is set to 0, COM2 is set to 1, and so on. Effectively,

the byte is "transposed" to fill a single page’s column. The datasheet has further information on this and the two other

modes.

Horizontal addressing mode has the key advantage that we can keep one single 512 byte buffer (128 columns x 4

pages and each byte fills a page’s rows) and write this in one go to the RAM (column address auto increments on writes

as well as reads) instead of working with 2D matrices of pixels and adding more overhead.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL and optionally a 5th jumper for the

driver RESET pin. The example here uses the default I2C port 0, which is assigned to GPIO 4 (SDA) and 5 (SCL) in

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 574

software. Power is supplied from the 3.3V pin from the Pico.

Figure 24. Wiring

Diagram for oled

display via I2C.

List of Files

CMakeLists.txt

CMake file to incorporate the example into the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/CMakeLists.txt

 1 add_executable(ssd1306_i2c
 2 ssd1306_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(ssd1306_i2c pico_stdlib hardware_i2c)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(ssd1306_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(ssd1306_i2c)

ssd1306_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/ssd1306_i2c.c

 1 /**
 2 * Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include <stdlib.h>

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 575

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/ssd1306_i2c.c

 10 #include <ctype.h>
 11 #include "pico/stdlib.h"
 12 #include "pico/binary_info.h"
 13 #include "hardware/i2c.h"
 14 #include "raspberry26x32.h"
 15 #include "ssd1306_font.h"
 16
 17 /* Example code to talk to an SSD1306-based OLED display
 18
 19 The SSD1306 is an OLED/PLED driver chip, capable of driving displays up to
 20 128x64 pixels.
 21
 22 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
 23 GPIO (and therefore I2C) cannot be used at 5v.
 24
 25 You will need to use a level shifter on the I2C lines if you want to run the
 26 board at 5v.
 27
 28 Connections on Raspberry Pi Pico board, other boards may vary.
 29
 30 GPIO PICO_DEFAULT_I2C_SDA_PIN (on Pico this is GP4 (pin 6)) -> SDA on display
 31 board
 32 GPIO PICO_DEFAULT_I2C_SCL_PIN (on Pico this is GP5 (pin 7)) -> SCL on
 33 display board
 34 3.3v (pin 36) -> VCC on display board
 35 GND (pin 38) -> GND on display board
 36 */
 37
 38 // Define the size of the display we have attached. This can vary, make sure you
 39 // have the right size defined or the output will look rather odd!
 40 // Code has been tested on 128x32 and 128x64 OLED displays
 41 #define SSD1306_HEIGHT 32
 42 #define SSD1306_WIDTH 128
 43
 44 #define SSD1306_I2C_ADDR _u(0x3C)
 45
 46 // 400 is usual, but often these can be overclocked to improve display response.
 47 // Tested at 1000 on both 32 and 84 pixel height devices and it worked.
 48 #define SSD1306_I2C_CLK 400
 49 //#define SSD1306_I2C_CLK 1000
 50
 51
 52 // commands (see datasheet)
 53 #define SSD1306_SET_MEM_MODE _u(0x20)
 54 #define SSD1306_SET_COL_ADDR _u(0x21)
 55 #define SSD1306_SET_PAGE_ADDR _u(0x22)
 56 #define SSD1306_SET_HORIZ_SCROLL _u(0x26)
 57 #define SSD1306_SET_SCROLL _u(0x2E)
 58
 59 #define SSD1306_SET_DISP_START_LINE _u(0x40)
 60
 61 #define SSD1306_SET_CONTRAST _u(0x81)
 62 #define SSD1306_SET_CHARGE_PUMP _u(0x8D)
 63
 64 #define SSD1306_SET_SEG_REMAP _u(0xA0)
 65 #define SSD1306_SET_ENTIRE_ON _u(0xA4)
 66 #define SSD1306_SET_ALL_ON _u(0xA5)
 67 #define SSD1306_SET_NORM_DISP _u(0xA6)
 68 #define SSD1306_SET_INV_DISP _u(0xA7)
 69 #define SSD1306_SET_MUX_RATIO _u(0xA8)
 70 #define SSD1306_SET_DISP _u(0xAE)
 71 #define SSD1306_SET_COM_OUT_DIR _u(0xC0)
 72 #define SSD1306_SET_COM_OUT_DIR_FLIP _u(0xC0)
 73

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 576

 74 #define SSD1306_SET_DISP_OFFSET _u(0xD3)
 75 #define SSD1306_SET_DISP_CLK_DIV _u(0xD5)
 76 #define SSD1306_SET_PRECHARGE _u(0xD9)
 77 #define SSD1306_SET_COM_PIN_CFG _u(0xDA)
 78 #define SSD1306_SET_VCOM_DESEL _u(0xDB)
 79
 80 #define SSD1306_PAGE_HEIGHT _u(8)
 81 #define SSD1306_NUM_PAGES (SSD1306_HEIGHT / SSD1306_PAGE_HEIGHT)
 82 #define SSD1306_BUF_LEN (SSD1306_NUM_PAGES * SSD1306_WIDTH)
 83
 84 #define SSD1306_WRITE_MODE _u(0xFE)
 85 #define SSD1306_READ_MODE _u(0xFF)
 86
 87
 88 struct render_area {
 89 uint8_t start_col;
 90 uint8_t end_col;
 91 uint8_t start_page;
 92 uint8_t end_page;
 93
 94 int buflen;
 95 };
 96
 97 void calc_render_area_buflen(struct render_area *area) {
 98 // calculate how long the flattened buffer will be for a render area
 99 area->buflen = (area->end_col - area->start_col + 1) * (area->end_page - area-
 >start_page + 1);
100 }
101
102 #ifdef i2c_default
103
104 void SSD1306_send_cmd(uint8_t cmd) {
105 // I2C write process expects a control byte followed by data
106 // this "data" can be a command or data to follow up a command
107 // Co = 1, D/C = 0 => the driver expects a command
108 uint8_t buf[2] = {0x80, cmd};
109 i2c_write_blocking(i2c_default, SSD1306_I2C_ADDR, buf, 2, false);
110 }
111
112 void SSD1306_send_cmd_list(uint8_t *buf, int num) {
113 for (int i=0;i<num;i++)
114 SSD1306_send_cmd(buf[i]);
115 }
116
117 void SSD1306_send_buf(uint8_t buf[], int buflen) {
118 // in horizontal addressing mode, the column address pointer auto-increments
119 // and then wraps around to the next page, so we can send the entire frame
120 // buffer in one gooooooo!
121
122 // copy our frame buffer into a new buffer because we need to add the control byte
123 // to the beginning
124
125 uint8_t *temp_buf = malloc(buflen + 1);
126
127 temp_buf[0] = 0x40;
128 memcpy(temp_buf+1, buf, buflen);
129
130 i2c_write_blocking(i2c_default, SSD1306_I2C_ADDR, temp_buf, buflen + 1, false);
131
132 free(temp_buf);
133 }
134
135 void SSD1306_init() {
136 // Some of these commands are not strictly necessary as the reset

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 577

137 // process defaults to some of these but they are shown here
138 // to demonstrate what the initialization sequence looks like
139 // Some configuration values are recommended by the board manufacturer
140
141 uint8_t cmds[] = {
142 SSD1306_SET_DISP, // set display off
143 /* memory mapping */
144 SSD1306_SET_MEM_MODE, // set memory address mode 0 = horizontal, 1 =
 vertical, 2 = page
145 0x00, // horizontal addressing mode
146 /* resolution and layout */
147 SSD1306_SET_DISP_START_LINE, // set display start line to 0
148 SSD1306_SET_SEG_REMAP | 0x01, // set segment re-map, column address 127 is mapped
 to SEG0
149 SSD1306_SET_MUX_RATIO, // set multiplex ratio
150 SSD1306_HEIGHT - 1, // Display height - 1
151 SSD1306_SET_COM_OUT_DIR | 0x08, // set COM (common) output scan direction. Scan from
 bottom up, COM[N-1] to COM0
152 SSD1306_SET_DISP_OFFSET, // set display offset
153 0x00, // no offset
154 SSD1306_SET_COM_PIN_CFG, // set COM (common) pins hardware configuration.
 Board specific magic number.
155 // 0x02 Works for 128x32, 0x12 Possibly works for
 128x64. Other options 0x22, 0x32
156 #if ((SSD1306_WIDTH == 128) && (SSD1306_HEIGHT == 32))
157 0x02,
158 #elif ((SSD1306_WIDTH == 128) && (SSD1306_HEIGHT == 64))
159 0x12,
160 #else
161 0x02,
162 #endif
163 /* timing and driving scheme */
164 SSD1306_SET_DISP_CLK_DIV, // set display clock divide ratio
165 0x80, // div ratio of 1, standard freq
166 SSD1306_SET_PRECHARGE, // set pre-charge period
167 0xF1, // Vcc internally generated on our board
168 SSD1306_SET_VCOM_DESEL, // set VCOMH deselect level
169 0x30, // 0.83xVcc
170 /* display */
171 SSD1306_SET_CONTRAST, // set contrast control
172 0xFF,
173 SSD1306_SET_ENTIRE_ON, // set entire display on to follow RAM content
174 SSD1306_SET_NORM_DISP, // set normal (not inverted) display
175 SSD1306_SET_CHARGE_PUMP, // set charge pump
176 0x14, // Vcc internally generated on our board
177 SSD1306_SET_SCROLL | 0x00, // deactivate horizontal scrolling if set. This is
 necessary as memory writes will corrupt if scrolling was enabled
178 SSD1306_SET_DISP | 0x01, // turn display on
179 };
180
181 SSD1306_send_cmd_list(cmds, count_of(cmds));
182 }
183
184 void SSD1306_scroll(bool on) {
185 // configure horizontal scrolling
186 uint8_t cmds[] = {
187 SSD1306_SET_HORIZ_SCROLL | 0x00,
188 0x00, // dummy byte
189 0x00, // start page 0
190 0x00, // time interval
191 0x03, // end page 3 SSD1306_NUM_PAGES ??
192 0x00, // dummy byte
193 0xFF, // dummy byte
194 SSD1306_SET_SCROLL | (on ? 0x01 : 0) // Start/stop scrolling

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 578

195 };
196
197 SSD1306_send_cmd_list(cmds, count_of(cmds));
198 }
199
200 void render(uint8_t *buf, struct render_area *area) {
201 // update a portion of the display with a render area
202 uint8_t cmds[] = {
203 SSD1306_SET_COL_ADDR,
204 area->start_col,
205 area->end_col,
206 SSD1306_SET_PAGE_ADDR,
207 area->start_page,
208 area->end_page
209 };
210
211 SSD1306_send_cmd_list(cmds, count_of(cmds));
212 SSD1306_send_buf(buf, area->buflen);
213 }
214
215 static void SetPixel(uint8_t *buf, int x,int y, bool on) {
216 assert(x >= 0 && x < SSD1306_WIDTH && y >=0 && y < SSD1306_HEIGHT);
217
218 // The calculation to determine the correct bit to set depends on which address
219 // mode we are in. This code assumes horizontal
220
221 // The video ram on the SSD1306 is split up in to 8 rows, one bit per pixel.
222 // Each row is 128 long by 8 pixels high, each byte vertically arranged, so byte 0 is x=0,
 y=0->7,
223 // byte 1 is x = 1, y=0->7 etc
224
225 // This code could be optimised, but is like this for clarity. The compiler
226 // should do a half decent job optimising it anyway.
227
228 const int BytesPerRow = SSD1306_WIDTH ; // x pixels, 1bpp, but each row is 8 pixel high,
 so (x / 8) * 8
229
230 int byte_idx = (y / 8) * BytesPerRow + x;
231 uint8_t byte = buf[byte_idx];
232
233 if (on)
234 byte |= 1 << (y % 8);
235 else
236 byte &= ~(1 << (y % 8));
237
238 buf[byte_idx] = byte;
239 }
240 // Basic Bresenhams.
241 static void DrawLine(uint8_t *buf, int x0, int y0, int x1, int y1, bool on) {
242
243 int dx = abs(x1-x0);
244 int sx = x0<x1 ? 1 : -1;
245 int dy = -abs(y1-y0);
246 int sy = y0<y1 ? 1 : -1;
247 int err = dx+dy;
248 int e2;
249
250 while (true) {
251 SetPixel(buf, x0, y0, on);
252 if (x0 == x1 && y0 == y1)
253 break;
254 e2 = 2*err;
255
256 if (e2 >= dy) {

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 579

257 err += dy;
258 x0 += sx;
259 }
260 if (e2 <= dx) {
261 err += dx;
262 y0 += sy;
263 }
264 }
265 }
266
267 static inline int GetFontIndex(uint8_t ch) {
268 if (ch >= 'A' && ch <='Z') {
269 return ch - 'A' + 1;
270 }
271 else if (ch >= '0' && ch <='9') {
272 return ch - '0' + 27;
273 }
274 else return 0; // Not got that char so space.
275 }
276
277 static void WriteChar(uint8_t *buf, int16_t x, int16_t y, uint8_t ch) {
278 if (x > SSD1306_WIDTH - 8 || y > SSD1306_HEIGHT - 8)
279 return;
280
281 // For the moment, only write on Y row boundaries (every 8 vertical pixels)
282 y = y/8;
283
284 ch = toupper(ch);
285 int idx = GetFontIndex(ch);
286 int fb_idx = y * 128 + x;
287
288 for (int i=0;i<8;i++) {
289 buf[fb_idx++] = font[idx * 8 + i];
290 }
291 }
292
293 static void WriteString(uint8_t *buf, int16_t x, int16_t y, char *str) {
294 // Cull out any string off the screen
295 if (x > SSD1306_WIDTH - 8 || y > SSD1306_HEIGHT - 8)
296 return;
297
298 while (*str) {
299 WriteChar(buf, x, y, *str++);
300 x+=8;
301 }
302 }
303
304
305
306 #endif
307
308 int main() {
309 stdio_init_all();
310
311 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
312 #warning i2c / SSD1306_i2d example requires a board with I2C pins
313 puts("Default I2C pins were not defined");
314 #else
315 // useful information for picotool
316 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
317 bi_decl(bi_program_description("SSD1306 OLED driver I2C example for the Raspberry Pi
 Pico"));

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 580

318
319 printf("Hello, SSD1306 OLED display! Look at my raspberries..\n");
320
321 // I2C is "open drain", pull ups to keep signal high when no data is being
322 // sent
323 i2c_init(i2c_default, SSD1306_I2C_CLK * 1000);
324 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
325 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
326 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
327 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
328
329 // run through the complete initialization process
330 SSD1306_init();
331
332 // Initialize render area for entire frame (SSD1306_WIDTH pixels by SSD1306_NUM_PAGES
 pages)
333 struct render_area frame_area = {
334 start_col: 0,
335 end_col : SSD1306_WIDTH - 1,
336 start_page : 0,
337 end_page : SSD1306_NUM_PAGES - 1
338 };
339
340 calc_render_area_buflen(&frame_area);
341
342 // zero the entire display
343 uint8_t buf[SSD1306_BUF_LEN];
344 memset(buf, 0, SSD1306_BUF_LEN);
345 render(buf, &frame_area);
346
347 // intro sequence: flash the screen 3 times
348 for (int i = 0; i < 3; i++) {
349 SSD1306_send_cmd(SSD1306_SET_ALL_ON); // Set all pixels on
350 sleep_ms(500);
351 SSD1306_send_cmd(SSD1306_SET_ENTIRE_ON); // go back to following RAM for pixel state
352 sleep_ms(500);
353 }
354
355 // render 3 cute little raspberries
356 struct render_area area = {
357 start_page : 0,
358 end_page : (IMG_HEIGHT / SSD1306_PAGE_HEIGHT) - 1
359 };
360
361 restart:
362
363 area.start_col = 0;
364 area.end_col = IMG_WIDTH - 1;
365
366 calc_render_area_buflen(&area);
367
368 uint8_t offset = 5 + IMG_WIDTH; // 5px padding
369
370 for (int i = 0; i < 3; i++) {
371 render(raspberry26x32, &area);
372 area.start_col += offset;
373 area.end_col += offset;
374 }
375
376 SSD1306_scroll(true);
377 sleep_ms(5000);
378 SSD1306_scroll(false);
379
380 char *text[] = {

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 581

381 "A long time ago",
382 " on an OLED ",
383 " display",
384 " far far away",
385 "Lived a small",
386 "red raspberry",
387 "by the name of",
388 " PICO"
389 };
390
391 int y = 0;
392 for (uint i = 0 ;i < count_of(text); i++) {
393 WriteString(buf, 5, y, text[i]);
394 y+=8;
395 }
396 render(buf, &frame_area);
397
398 // Test the display invert function
399 sleep_ms(3000);
400 SSD1306_send_cmd(SSD1306_SET_INV_DISP);
401 sleep_ms(3000);
402 SSD1306_send_cmd(SSD1306_SET_NORM_DISP);
403
404 bool pix = true;
405 for (int i = 0; i < 2;i++) {
406 for (int x = 0;x < SSD1306_WIDTH;x++) {
407 DrawLine(buf, x, 0, SSD1306_WIDTH - 1 - x, SSD1306_HEIGHT - 1, pix);
408 render(buf, &frame_area);
409 }
410
411 for (int y = SSD1306_HEIGHT-1; y >= 0 ;y--) {
412 DrawLine(buf, 0, y, SSD1306_WIDTH - 1, SSD1306_HEIGHT - 1 - y, pix);
413 render(buf, &frame_area);
414 }
415 pix = false;
416 }
417
418 goto restart;
419
420 #endif
421 return 0;
422 }

ssd1306_font.h

A simple font used in the example.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/ssd1306_font.h

 1 /**
 2 * Copyright (c) 2022 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 // Vertical bitmaps, A-Z, 0-9. Each is 8 pixels high and wide
 8 // These are defined vertically to make them quick to copy to FB
 9
10 static uint8_t font[] = {
11 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Nothing
12 0x78, 0x14, 0x12, 0x11, 0x12, 0x14, 0x78, 0x00, //A
13 0x7f, 0x49, 0x49, 0x49, 0x49, 0x49, 0x7f, 0x00, //B
14 0x7e, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x00, //C

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 582

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/ssd1306_font.h

15 0x7f, 0x41, 0x41, 0x41, 0x41, 0x41, 0x7e, 0x00, //D
16 0x7f, 0x49, 0x49, 0x49, 0x49, 0x49, 0x49, 0x00, //E
17 0x7f, 0x09, 0x09, 0x09, 0x09, 0x01, 0x01, 0x00, //F
18 0x7f, 0x41, 0x41, 0x41, 0x51, 0x51, 0x73, 0x00, //G
19 0x7f, 0x08, 0x08, 0x08, 0x08, 0x08, 0x7f, 0x00, //H
20 0x00, 0x00, 0x00, 0x7f, 0x00, 0x00, 0x00, 0x00, //I
21 0x21, 0x41, 0x41, 0x3f, 0x01, 0x01, 0x01, 0x00, //J
22 0x00, 0x7f, 0x08, 0x08, 0x14, 0x22, 0x41, 0x00, //K
23 0x7f, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x00, //L
24 0x7f, 0x02, 0x04, 0x08, 0x04, 0x02, 0x7f, 0x00, //M
25 0x7f, 0x02, 0x04, 0x08, 0x10, 0x20, 0x7f, 0x00, //N
26 0x3e, 0x41, 0x41, 0x41, 0x41, 0x41, 0x3e, 0x00, //O
27 0x7f, 0x11, 0x11, 0x11, 0x11, 0x11, 0x0e, 0x00, //P
28 0x3e, 0x41, 0x41, 0x49, 0x51, 0x61, 0x7e, 0x00, //Q
29 0x7f, 0x11, 0x11, 0x11, 0x31, 0x51, 0x0e, 0x00, //R
30 0x46, 0x49, 0x49, 0x49, 0x49, 0x30, 0x00, 0x00, //S
31 0x01, 0x01, 0x01, 0x7f, 0x01, 0x01, 0x01, 0x00, //T
32 0x3f, 0x40, 0x40, 0x40, 0x40, 0x40, 0x3f, 0x00, //U
33 0x0f, 0x10, 0x20, 0x40, 0x20, 0x10, 0x0f, 0x00, //V
34 0x7f, 0x20, 0x10, 0x08, 0x10, 0x20, 0x7f, 0x00, //W
35 0x00, 0x41, 0x22, 0x14, 0x14, 0x22, 0x41, 0x00, //X
36 0x01, 0x02, 0x04, 0x78, 0x04, 0x02, 0x01, 0x00, //Y
37 0x41, 0x61, 0x59, 0x45, 0x43, 0x41, 0x00, 0x00, //Z
38 0x3e, 0x41, 0x41, 0x49, 0x41, 0x41, 0x3e, 0x00, //0
39 0x00, 0x00, 0x42, 0x7f, 0x40, 0x00, 0x00, 0x00, //1
40 0x30, 0x49, 0x49, 0x49, 0x49, 0x46, 0x00, 0x00, //2
41 0x49, 0x49, 0x49, 0x49, 0x49, 0x49, 0x36, 0x00, //3
42 0x3f, 0x20, 0x20, 0x78, 0x20, 0x20, 0x00, 0x00, //4
43 0x4f, 0x49, 0x49, 0x49, 0x49, 0x30, 0x00, 0x00, //5
44 0x3f, 0x48, 0x48, 0x48, 0x48, 0x48, 0x30, 0x00, //6
45 0x01, 0x01, 0x01, 0x61, 0x31, 0x0d, 0x03, 0x00, //7
46 0x36, 0x49, 0x49, 0x49, 0x49, 0x49, 0x36, 0x00, //8
47 0x06, 0x09, 0x09, 0x09, 0x09, 0x09, 0x7f, 0x00, //9
48 };

img_to_array.py

A helper to convert an image file to an array that can be used in the example.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/img_to_array.py

 1 #!/usr/bin/env python3
 2
 3 # Converts a grayscale image into a format able to be
 4 # displayed by the SSD1306 driver in horizontal addressing mode
 5
 6 # usage: python3 img_to_array.py <logo.bmp>
 7
 8 # depends on the Pillow library
 9 # `python3 -m pip install --upgrade Pillow`
10
11 from PIL import Image
12 import sys
13 from pathlib import Path
14
15 OLED_HEIGHT = 32
16 OLED_WIDTH = 128
17 OLED_PAGE_HEIGHT = 8
18
19 if len(sys.argv) < 2:
20 print("No image path provided.")
21 sys.exit()
22

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 583

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/img_to_array.py

23 img_path = sys.argv[1]
24
25 try:
26 im = Image.open(img_path)
27 except OSError:
28 raise Exception("Oops! The image could not be opened.")
29
30 img_width = im.size[0]
31 img_height = im.size[1]
32
33 if img_width > OLED_WIDTH or img_height > OLED_HEIGHT:
34 print(f'Your image is f{img_width} pixels wide and {img_height} pixels high, but...')
35 raise Exception(f"OLED display only {OLED_WIDTH} pixels wide and {OLED_HEIGHT} pixels
 high!")
36
37 if not (im.mode == "1" or im.mode == "L"):
38 raise Exception("Image must be grayscale only")
39
40 # black or white
41 out = im.convert("1")
42
43 img_name = Path(im.filename).stem
44
45 # `pixels` is a flattened array with the top left pixel at index 0
46 # and bottom right pixel at the width*height-1
47 pixels = list(out.getdata())
48
49 # swap white for black and swap (255, 0) for (1, 0)
50 pixels = [0 if x == 255 else 1 for x in pixels]
51
52 # our goal is to divide the image into 8-pixel high pages
53 # and turn a pixel column into one byte, eg for one page:
54 # 0 1 0
55 # 1 0 0
56 # 1 1 1
57 # 0 0 1
58 # 1 1 0
59 # 0 1 0
60 # 1 1 1
61 # 0 0 1
62
63 # we get 0x6A, 0xAE, 0x33 ... and so on
64 # as `pixels` is flattened, each bit in a column is IMG_WIDTH apart from the next
65
66 buffer = []
67 for i in range(img_height // OLED_PAGE_HEIGHT):
68 start_index = i*img_width*OLED_PAGE_HEIGHT
69 for j in range(img_width):
70 out_byte = 0
71 for k in range(OLED_PAGE_HEIGHT):
72 out_byte |= pixels[k*img_width + start_index + j] << k
73 buffer.append(f'{out_byte:#04x}')
74
75 buffer = ", ".join(buffer)
76 buffer_hex = f'static uint8_t {img_name}[] = {{{buffer}}};\n'
77
78 with open(f'{img_name}.h', 'wt') as file:
79 file.write(f'#define IMG_WIDTH {img_width}\n')
80 file.write(f'#define IMG_HEIGHT {img_height}\n\n')
81 file.write(buffer_hex)

Raspberry Pi Pico-series C/C++ SDK

Attaching an OLED display via I2C 584

raspberry26x32.bmp

Example image file of a Raspberry.

raspberry26x32.h

The example image file converted to an C array.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/raspberry26x32.h

1 #define IMG_WIDTH 26
2 #define IMG_HEIGHT 32
3
4 static uint8_t raspberry26x32[] = { 0x0, 0x0, 0xe, 0x7e, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xfe, 0xfe, 0xfc, 0xf8, 0xfc, 0xfe, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x7e, 0x1e, 0x0,
 0x0, 0x0, 0x80, 0xe0, 0xf8, 0xfd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xf8, 0xe0, 0x80, 0x0, 0x0, 0x1e, 0x7f, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0x7f, 0x1e, 0x0, 0x0, 0x0, 0x3, 0x7, 0xf, 0x1f, 0x1f, 0x3f, 0x3f, 0x7f,
 0xff, 0xff, 0xff, 0xff, 0x7f, 0x7f, 0x3f, 0x3f, 0x1f, 0x1f, 0xf, 0x7, 0x3, 0x0, 0x0};

Bill of Materials

Table 49. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

SSD1306-based OLED display 1 Adafruit part

M/M Jumper wires 4 generic part

Attaching a PA1010D Mini GPS module via I2C

This example code shows how to interface the Raspberry Pi Pico to the PA1010D Mini GPS module

This allows you to read basic location and time data from the Recommended Minimum Specific GNSS Sentence

(GNRMC protocol) and displays it in a user-friendly format. The datasheet for the module can be found on https://cdn-

learn.adafruit.com/assets/assets/000/084/295/original/CD_PA1010D_Datasheet_v.03.pdf?1573833002. The output

sentence is read and parsed to split the data fields into a 2D character array, which are then individually printed out. The

commands to use different protocols and change settings are found on https://www.sparkfun.com/datasheets/GPS/

Modules/PMTK_Protocol.pdf. Additional protocols can be used by editing the init_command array.

 NOTE

Each command requires a checksum after the asterisk. The checksum can be calculated for your command using

the following website: https://nmeachecksum.eqth.net/.

The GPS needs to be used outdoors in open skies and requires about 15 seconds to acquire a satellite signal in

order to display valid data. When the signal is detected, the device will blink a green LED at 1 Hz.

Wiring information

Wiring up the device requires 4 jumpers, to connect VDD, GND, SDA and SCL. The example here uses I2C port 0, which is

assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3V pin.

Raspberry Pi Pico-series C/C++ SDK

Attaching a PA1010D Mini GPS module via I2C 585

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/ssd1306_i2c/raspberry26x32.h
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/4440
https://cdn-learn.adafruit.com/assets/assets/000/084/295/original/CD_PA1010D_Datasheet_v.03.pdf?1573833002
https://cdn-learn.adafruit.com/assets/assets/000/084/295/original/CD_PA1010D_Datasheet_v.03.pdf?1573833002
https://www.sparkfun.com/datasheets/GPS/Modules/PMTK_Protocol.pdf
https://www.sparkfun.com/datasheets/GPS/Modules/PMTK_Protocol.pdf
https://nmeachecksum.eqth.net/

Figure 25. Wiring

Diagram for PA1010D.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/pa1010d_i2c/CMakeLists.txt

 1 add_executable(pa1010d_i2c
 2 pa1010d_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(pa1010d_i2c pico_stdlib hardware_i2c)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(pa1010d_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(pa1010d_i2c)

pa1010d_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/pa1010d_i2c/pa1010d_i2c.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "pico/binary_info.h"
 11 #include "hardware/i2c.h"
 12 #include "string.h"
 13

Raspberry Pi Pico-series C/C++ SDK

Attaching a PA1010D Mini GPS module via I2C 586

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/pa1010d_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/i2c/pa1010d_i2c/pa1010d_i2c.c

 14 /* Example code to talk to a PA1010D Mini GPS module.
 15
 16 This example reads the Recommended Minimum Specific GNSS Sentence, which includes basic
 location and time data, each second, formats and displays it.
 17
 18 Connections on Raspberry Pi Pico board, other boards may vary.
 19
 20 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is 4 (physical pin 6)) -> SDA on PA1010D board
 21 GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is 5 (physical pin 7)) -> SCL on PA1010D board
 22 3.3v (physical pin 36) -> VCC on PA1010D board
 23 GND (physical pin 38) -> GND on PA1010D board
 24 */
 25
 26 const int addr = 0x10;
 27 #define MAX_READ 250
 28
 29 #ifdef i2c_default
 30
 31 void pa1010d_write_command(const char command[], int com_length) {
 32 // Convert character array to bytes for writing
 33 uint8_t int_command[com_length];
 34
 35 for (int i = 0; i < com_length; ++i) {
 36 int_command[i] = command[i];
 37 i2c_write_blocking(i2c_default, addr, &int_command[i], 1, true);
 38 }
 39 }
 40
 41 void pa1010d_parse_string(char output[], char protocol[]) {
 42 // Finds location of protocol message in output
 43 char *com_index = strstr(output, protocol);
 44 int p = com_index - output;
 45
 46 // Splits components of output sentence into array
 47 #define NO_OF_FIELDS 14
 48 #define MAX_LEN 15
 49
 50 int n = 0;
 51 int m = 0;
 52
 53 char gps_data[NO_OF_FIELDS][MAX_LEN];
 54 memset(gps_data, 0, sizeof(gps_data));
 55
 56 bool complete = false;
 57 while (output[p] != '$' && n < MAX_LEN && complete == false) {
 58 if (output[p] == ',' || output[p] == '*') {
 59 n += 1;
 60 m = 0;
 61 } else {
 62 gps_data[n][m] = output[p];
 63 // Checks if sentence is complete
 64 if (m < NO_OF_FIELDS) {
 65 m++;
 66 } else {
 67 complete = true;
 68 }
 69 }
 70 p++;
 71 }
 72
 73 // Displays GNRMC data
 74 // Similarly, additional if statements can be used to add more protocols
 75 if (strcmp(protocol, "GNRMC") == 0) {
 76 printf("Protocol:%s\n", gps_data[0]);

Raspberry Pi Pico-series C/C++ SDK

Attaching a PA1010D Mini GPS module via I2C 587

 77 printf("UTC Time: %s\n", gps_data[1]);
 78 printf("Status: %s\n", gps_data[2][0] == 'V' ? "Data invalid. GPS fix not found." :
 "Data Valid");
 79 printf("Latitude: %s\n", gps_data[3]);
 80 printf("N/S indicator: %s\n", gps_data[4]);
 81 printf("Longitude: %s\n", gps_data[5]);
 82 printf("E/W indicator: %s\n", gps_data[6]);
 83 printf("Speed over ground: %s\n", gps_data[7]);
 84 printf("Course over ground: %s\n", gps_data[8]);
 85 printf("Date: %c%c/%c%c/%c%c\n", gps_data[9][0], gps_data[9][1], gps_data[9][2],
 gps_data[9][3], gps_data[9][4],
 86 gps_data[9][5]);
 87 printf("Magnetic Variation: %s\n", gps_data[10]);
 88 printf("E/W degree indicator: %s\n", gps_data[11]);
 89 printf("Mode: %s\n", gps_data[12]);
 90 printf("Checksum: %c%c\n", gps_data[13][0], gps_data[13][1]);
 91 }
 92 }
 93
 94 void pa1010d_read_raw(char numcommand[]) {
 95 uint8_t buffer[MAX_READ];
 96
 97 int i = 0;
 98 bool complete = false;
 99
100 i2c_read_blocking(i2c_default, addr, buffer, MAX_READ, false);
101
102 // Convert bytes to characters
103 while (i < MAX_READ && complete == false) {
104 numcommand[i] = buffer[i];
105 // Stop converting at end of message
106 if (buffer[i] == 10 && buffer[i + 1] == 10) {
107 complete = true;
108 }
109 i++;
110 }
111 }
112
113 #endif
114
115 int main() {
116 stdio_init_all();
117 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
118 #warning i2c/mpu6050_i2c example requires a board with I2C pins
119 puts("Default I2C pins were not defined");
120 #else
121
122 char numcommand[MAX_READ];
123
124 // Decide which protocols you would like to retrieve data from
125 char init_command[] = "$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29\r\n";
126
127 // This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
128 i2c_init(i2c_default, 400 * 1000);
129 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
130 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
131 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
132 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
133
134 // Make the I2C pins available to picotool
135 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
136

Raspberry Pi Pico-series C/C++ SDK

Attaching a PA1010D Mini GPS module via I2C 588

137 printf("Hello, PA1010D! Reading raw data from module...\n");
138
139 pa1010d_write_command(init_command, sizeof(init_command));
140
141 while (1) {
142 // Clear array
143 memset(numcommand, 0, MAX_READ);
144 // Read and re-format
145 pa1010d_read_raw(numcommand);
146 pa1010d_parse_string(numcommand, "GNRMC");
147
148 // Wait for data to refresh
149 sleep_ms(1000);
150
151 // Clear terminal
152 printf("\033[1;1H\033[2J");
153 }
154 #endif
155 }

Bill of Materials

Table 50. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

PA1010D board 1 https://shop.pimoroni.com/products/

pa1010d-gps-breakout

M/M Jumper wires 4 generic part

Attaching a PCF8523 Real Time Clock via I2C

This example code shows how to interface the Raspberry Pi Pico to the PCF8523 Real Time Clock

This example allows you to initialise the current time and date and then displays it every half-second. Additionally it lets

you set an alarm for a particular time and date and raises an alert accordingly. More information about the module is

available at https://learn.adafruit.com/adafruit-pcf8523-real-time-clock.

Wiring information

Wiring up the device requires 4 jumpers, to connect VDD, GND, SDA and SCL. The example here uses I2C port 0, which is

assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 5V pin.

Raspberry Pi Pico-series C/C++ SDK

Attaching a PCF8523 Real Time Clock via I2C 589

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://shop.pimoroni.com/products/pa1010d-gps-breakout
https://shop.pimoroni.com/products/pa1010d-gps-breakout
https://learn.adafruit.com/adafruit-pcf8523-real-time-clock

Figure 26. Wiring

Diagram for PCF8523.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/pcf8523_i2c/CMakeLists.txt

 1 add_executable(pcf8523_i2c
 2 pcf8523_i2c.c
 3)
 4
 5 # pull in common dependencies and additional i2c hardware support
 6 target_link_libraries(pcf8523_i2c pico_stdlib hardware_i2c)
 7
 8 # create map/bin/hex file etc.
 9 pico_add_extra_outputs(pcf8523_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(pcf8523_i2c)

pcf8523_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/i2c/pcf8523_i2c/pcf8523_i2c.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include "pico/stdlib.h"
 10 #include "pico/binary_info.h"
 11 #include "hardware/i2c.h"
 12
 13 /* Example code to talk to a PCF8520 Real Time Clock module

Raspberry Pi Pico-series C/C++ SDK

Attaching a PCF8523 Real Time Clock via I2C 590

https://github.com/raspberrypi/pico-examples/blob/develop/i2c/pcf8523_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/i2c/pcf8523_i2c/pcf8523_i2c.c

 14
 15 Connections on Raspberry Pi Pico board, other boards may vary.
 16
 17 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is 4 (physical pin 6)) -> SDA on PCF8520 board
 18 GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is 5 (physical pin 7)) -> SCL on PCF8520 board
 19 5V (physical pin 40) -> VCC on PCF8520 board
 20 GND (physical pin 38) -> GND on PCF8520 board
 21 */
 22
 23 #ifdef i2c_default
 24
 25 // By default these devices are on bus address 0x68
 26 static int addr = 0x68;
 27
 28 static void pcf8520_reset() {
 29 // Two byte reset. First byte register, second byte data
 30 // There are a load more options to set up the device in different ways that could be
 added here
 31 uint8_t buf[] = {0x00, 0x58};
 32 i2c_write_blocking(i2c_default, addr, buf, 2, false);
 33 }
 34
 35 static void pcf820_write_current_time() {
 36 // buf[0] is the register to write to
 37 // buf[1] is the value that will be written to the register
 38 uint8_t buf[2];
 39
 40 //Write values for the current time in the array
 41 //index 0 -> second: bits 4-6 are responsible for the ten's digit and bits 0-3 for the
 unit's digit
 42 //index 1 -> minute: bits 4-6 are responsible for the ten's digit and bits 0-3 for the
 unit's digit
 43 //index 2 -> hour: bits 4-5 are responsible for the ten's digit and bits 0-3 for the
 unit's digit
 44 //index 3 -> day of the month: bits 4-5 are responsible for the ten's digit and bits 0-3
 for the unit's digit
 45 //index 4 -> day of the week: where Sunday = 0x00, Monday = 0x01, Tuesday... ...Saturday =
 0x06
 46 //index 5 -> month: bit 4 is responsible for the ten's digit and bits 0-3 for the unit's
 digit
 47 //index 6 -> year: bits 4-7 are responsible for the ten's digit and bits 0-3 for the
 unit's digit
 48
 49 //NOTE: if the value in the year register is a multiple for 4, it will be considered a
 leap year and hence will include the 29th of February
 50
 51 uint8_t current_val[7] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
 52
 53 for (int i = 3; i < 10; ++i) {
 54 buf[0] = i;
 55 buf[1] = current_val[i - 3];
 56 i2c_write_blocking(i2c_default, addr, buf, 2, false);
 57 }
 58 }
 59
 60 static void pcf8520_read_raw(uint8_t *buffer) {
 61 // For this particular device, we send the device the register we want to read
 62 // first, then subsequently read from the device. The register is auto incrementing
 63 // so we don't need to keep sending the register we want, just the first.
 64
 65 // Start reading acceleration registers from register 0x3B for 6 bytes
 66 uint8_t val = 0x03;
 67 i2c_write_blocking(i2c_default, addr, &val, 1, true); // true to keep master control of
 bus

Raspberry Pi Pico-series C/C++ SDK

Attaching a PCF8523 Real Time Clock via I2C 591

 68 i2c_read_blocking(i2c_default, addr, buffer, 7, false);
 69 }
 70
 71
 72 void pcf8520_set_alarm() {
 73 // buf[0] is the register to write to
 74 // buf[1] is the value that will be written to the register
 75 uint8_t buf[2];
 76
 77 // Default value of alarm register is 0x80
 78 // Set bit 8 of values to 0 to activate that particular alarm
 79 // Index 0 -> minute: bits 4-5 are responsible for the ten's digit and bits 0-3 for the
 unit's digit
 80 // Index 1 -> hour: bits 4-6 are responsible for the ten's digit and bits 0-3 for the
 unit's digit
 81 // Index 2 -> day of the month: bits 4-5 are responsible for the ten's digit and bits 0-3
 for the unit's digit
 82 // Index 3 -> day of the week: where Sunday = 0x00, Monday = 0x01, Tuesday... ...Saturday
 = 0x06
 83
 84 uint8_t alarm_val[4] = {0x01, 0x80, 0x80, 0x80};
 85 // Write alarm values to registers
 86 for (int i = 10; i < 14; ++i) {
 87 buf[0] = (uint8_t) i;
 88 buf[1] = alarm_val[i - 10];
 89 i2c_write_blocking(i2c_default, addr, buf, 2, false);
 90 }
 91 }
 92
 93 void pcf8520_check_alarm() {
 94 // Check bit 3 of control register 2 for alarm flags
 95 uint8_t status[1];
 96 uint8_t val = 0x01;
 97 i2c_write_blocking(i2c_default, addr, &val, 1, true); // true to keep master control of
 bus
 98 i2c_read_blocking(i2c_default, addr, status, 1, false);
 99
100 if ((status[0] & 0x08) == 0x08) {
101 printf("ALARM RINGING");
102 } else {
103 printf("Alarm not triggered yet");
104 }
105 }
106
107
108 void pcf8520_convert_time(int conv_time[7], const uint8_t raw_time[7]) {
109 // Convert raw data into time
110 conv_time[0] = (10 * (int) ((raw_time[0] & 0x70) >> 4)) + ((int) (raw_time[0] & 0x0F));
111 conv_time[1] = (10 * (int) ((raw_time[1] & 0x70) >> 4)) + ((int) (raw_time[1] & 0x0F));
112 conv_time[2] = (10 * (int) ((raw_time[2] & 0x30) >> 4)) + ((int) (raw_time[2] & 0x0F));
113 conv_time[3] = (10 * (int) ((raw_time[3] & 0x30) >> 4)) + ((int) (raw_time[3] & 0x0F));
114 conv_time[4] = (int) (raw_time[4] & 0x07);
115 conv_time[5] = (10 * (int) ((raw_time[5] & 0x10) >> 4)) + ((int) (raw_time[5] & 0x0F));
116 conv_time[6] = (10 * (int) ((raw_time[6] & 0xF0) >> 4)) + ((int) (raw_time[6] & 0x0F));
117 }
118 #endif
119
120 int main() {
121 stdio_init_all();
122 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
 !defined(PICO_DEFAULT_I2C_SCL_PIN)
123 #warning i2c/pcf8520_i2c example requires a board with I2C pins
124 puts("Default I2C pins were not defined");
125 #else

Raspberry Pi Pico-series C/C++ SDK

Attaching a PCF8523 Real Time Clock via I2C 592

126 printf("Hello, PCF8520! Reading raw data from registers...\n");
127
128 // This example will use I2C0 on the default SDA and SCL pins (4, 5 on a Pico)
129 i2c_init(i2c_default, 400 * 1000);
130 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
131 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
132 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
133 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
134 // Make the I2C pins available to picotool
135 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
 GPIO_FUNC_I2C));
136
137 pcf8520_reset();
138
139 pcf820_write_current_time();
140 pcf8520_set_alarm();
141 pcf8520_check_alarm();
142
143 uint8_t raw_time[7];
144 int real_time[7];
145 char days_of_week[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday"};
146
147 while (1) {
148
149 pcf8520_read_raw(raw_time);
150 pcf8520_convert_time(real_time, raw_time);
151
152 printf("Time: %02d : %02d : %02d\n", real_time[2], real_time[1], real_time[0]);
153 printf("Date: %s %02d / %02d / %02d\n", days_of_week[real_time[4]], real_time[3],
 real_time[5], real_time[6]);
154 pcf8520_check_alarm();
155
156 sleep_ms(500);
157
158 // Clear terminal
159 printf("\033[1;1H\033[2J");
160 }
161 #endif
162 }

Bill of Materials

Table 51. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

PCF8523 board 1 https://www.adafruit.com/product/

3295

M/M Jumper wires 4 generic part

Interfacing 1-Wire devices to the Pico

This example demonstrates how to use 1-Wire devices with the Raspberry Pi Pico (RP2040). 1-Wire is an interface that

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 593

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/3295
https://www.adafruit.com/product/3295
https://www.analog.com/en/technical-articles/guide-to-1wire-communication.html

enables a master to control several slave devices over a simple shared serial bus.

The example provides a 1-Wire library that is used to take readings from a set of connected DS18B20 1-Wire

temperature sensors. The results are sent to the default serial terminal connected via USB or UART as configured in the

SDK.

The library uses a driver based on the RP2040 PIO state machine to generate accurate bus timings and control the 1-

Wire bus via a GPIO pin.

1-Wire® is a registered trademark of Maxim Integrated Products, Inc.

Wiring information

Connect one or more DS18B20 sensors to the Pico as shown in the diagram and table below.

Connect GPIO 15 to 3V3(OUT) with a pull-up resistor of about 4k ohms.

Figure 27. Wiring

diagram

Table 52. Connections

table
Pico pin DS18B20 pin / sensor wire

GND 38 or equivalent GND 1 / Black

GPIO 15 20 DQ 2 / Yellow

3V3(OUT) 36 VDD 3 / Red

Bill of materials

Table 53. A list of

materials for the

example circuit

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

DS18B20 3 chip or wired sensor

3900 ohm resistor 1 generic part

M/M jumper wire 13 generic part

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 594

https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

List of files

CMakeLists.txt

CMake file to incorporate the example in the build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/CMakeLists.txt

 1 add_executable(pio_onewire)
 2
 3 target_sources(pio_onewire PRIVATE onewire.c)
 4
 5 add_subdirectory(onewire_library)
 6
 7 target_link_libraries(pio_onewire PRIVATE
 8 pico_stdlib
 9 hardware_pio
10 onewire_library)
11
12 pico_add_extra_outputs(pio_onewire)
13
14 # add url via pico_set_program_url
15 example_auto_set_url(pio_onewire)

onewire.c

Source code for the example program.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire.c

 1 /**
 2 * Copyright (c) 2023 mjcross
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 **/
 6
 7 #include <stdio.h>
 8 #include "pico/stdlib.h"
 9 #include "pico/binary_info.h"
10
11 #include "onewire_library.h" // onewire library functions
12 #include "ow_rom.h" // onewire ROM command codes
13 #include "ds18b20.h" // ds18b20 function codes
14
15 // Demonstrates the PIO onewire driver by taking readings from a set of
16 // ds18b20 1-wire temperature sensors.
17
18 int main() {
19 stdio_init_all();
20
21 PIO pio = pio0;
22 uint gpio = 15;
23
24 OW ow;
25 uint offset;
26 // add the program to the PIO shared address space
27 if (pio_can_add_program (pio, &onewire_program)) {
28 offset = pio_add_program (pio, &onewire_program);
29
30 // claim a state machine and initialise a driver instance
31 if (ow_init (&ow, pio, offset, gpio)) {
32

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 595

https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire.c

33 // find and display 64-bit device addresses
34 int maxdevs = 10;
35 uint64_t romcode[maxdevs];
36 int num_devs = ow_romsearch (&ow, romcode, maxdevs, OW_SEARCH_ROM);
37
38 printf("Found %d devices\n", num_devs);
39 for (int i = 0; i < num_devs; i += 1) {
40 printf("\t%d: 0x%llx\n", i, romcode[i]);
41 }
42 putchar ('\n');
43
44 while (num_devs > 0) {
45 // start temperature conversion in parallel on all devices
46 // (see ds18b20 datasheet)
47 ow_reset (&ow);
48 ow_send (&ow, OW_SKIP_ROM);
49 ow_send (&ow, DS18B20_CONVERT_T);
50
51 // wait for the conversions to finish
52 while (ow_read(&ow) == 0);
53
54 // read the result from each device
55 for (int i = 0; i < num_devs; i += 1) {
56 ow_reset (&ow);
57 ow_send (&ow, OW_MATCH_ROM);
58 for (int b = 0; b < 64; b += 8) {
59 ow_send (&ow, romcode[i] >> b);
60 }
61 ow_send (&ow, DS18B20_READ_SCRATCHPAD);
62 int16_t temp = 0;
63 temp = ow_read (&ow) | (ow_read (&ow) << 8);
64 printf ("\t%d: %f", i, temp / 16.0);
65 }
66 putchar ('\n');
67 }
68
69 } else {
70 puts ("could not initialise the driver");
71 }
72 } else {
73 puts ("could not add the program");
74 }
75
76 while(true);
77 }

ow_rom.h

Header file with generic ROM command codes for 1-Wire devices.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/ow_rom.h

1 // Generic ROM commands for 1-Wire devices
2 // https://www.analog.com/en/technical-articles/guide-to-1wire-communication.html
3 //
4 #define OW_READ_ROM 0x33
5 #define OW_MATCH_ROM 0x55
6 #define OW_SKIP_ROM 0xCC
7 #define OW_ALARM_SEARCH 0xEC
8 #define OW_SEARCH_ROM 0xF0

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 596

https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/ow_rom.h

ds18b20.h

Header file with function command codes for the DS18B20 device.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/ds18b20.h

1 // Function commands for d218b20 1-Wire temperature sensor
2 // https://www.analog.com/en/products/ds18b20.html
3 //
4 #define DS18B20_CONVERT_T 0x44
5 #define DS18B20_WRITE_SCRATCHPAD 0x4e
6 #define DS18B20_READ_SCRATCHPAD 0xbe
7 #define DS18B20_COPY_SCRATCHPAD 0x48
8 #define DS18B20_RECALL_EE 0xb8
9 #define DS18B20_READ_POWER_SUPPLY 0xb4

onewire_library/

Subdirectory containing the 1-Wire library and driver.

onewire_library/CMakeLists.txt

CMake file to build the 1-Wire library and driver.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire_library/CMakeLists.txt

 1 add_library(onewire_library INTERFACE)
 2 target_sources(onewire_library INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}/onewire_library.c)
 3
 4 # invoke pio_asm to assemble the state machine programs
 5 #
 6 pico_generate_pio_header(onewire_library ${CMAKE_CURRENT_LIST_DIR}/onewire_library.pio)
 7
 8 target_link_libraries(onewire_library INTERFACE
 9 pico_stdlib
10 hardware_pio
11)
12
13 # add the `binary` directory so that the generated headers are included in the project
14 #
15 target_include_directories(onewire_library INTERFACE
16 ${CMAKE_CURRENT_SOURCE_DIR}
17 ${CMAKE_CURRENT_BINARY_DIR}
18)

onewire_library/onewire_library.c

Source code for the 1-Wire user functions.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire_library/onewire_library.c

 1 /**
 2 * Copyright (c) 2023 mjcross
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 **/
 6
 7 #include "pico/stdlib.h"
 8 #include "hardware/gpio.h"
 9 #include "hardware/pio.h"
 10
 11 #include "onewire_library.h"
 12

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 597

https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/ds18b20.h
https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire_library/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire_library/onewire_library.c

 13
 14 // Create a driver instance and populate the provided OW structure.
 15 // Returns: True on success.
 16 // ow: A pointer to a blank OW structure to hold the driver parameters.
 17 // pio: The PIO hardware instance to use.
 18 // offset: The location of the onewire program in the PIO shared address space.
 19 // gpio: The pin to use for the bus (NB: see the README).
 20 bool ow_init (OW *ow, PIO pio, uint offset, uint gpio) {
 21 int sm = pio_claim_unused_sm (pio, false);
 22 if (sm == -1) {
 23 return false;
 24 }
 25 gpio_init (gpio); // enable the gpio and clear any output value
 26 pio_gpio_init (pio, gpio); // set the function to PIO output
 27 ow->gpio = gpio;
 28 ow->pio = pio;
 29 ow->offset = offset;
 30 ow->sm = (uint)sm;
 31 ow->jmp_reset = onewire_reset_instr (ow->offset); // assemble the bus reset instruction
 32 onewire_sm_init (ow->pio, ow->sm, ow->offset, ow->gpio, 8); // set 8 bits per word
 33 return true;
 34 }
 35
 36
 37 // Send a binary word on the bus (LSB first).
 38 // ow: A pointer to an OW driver struct.
 39 // data: The word to be sent.
 40 void ow_send (OW *ow, uint data) {
 41 pio_sm_put_blocking (ow->pio, ow->sm, (uint32_t)data);
 42 pio_sm_get_blocking (ow->pio, ow->sm); // discard the response
 43 }
 44
 45
 46 // Read a binary word from the bus.
 47 // Returns: the word read (LSB first).
 48 // ow: pointer to an OW driver struct
 49 uint8_t ow_read (OW *ow) {
 50 pio_sm_put_blocking (ow->pio, ow->sm, 0xff); // generate read slots
 51 return (uint8_t)(pio_sm_get_blocking (ow->pio, ow->sm) >> 24); // shift response into
 bits 0..7
 52 }
 53
 54
 55 // Reset the bus and detect any connected slaves.
 56 // Returns: true if any slaves responded.
 57 // ow: pointer to an OW driver struct
 58 bool ow_reset (OW *ow) {
 59 pio_sm_exec_wait_blocking (ow->pio, ow->sm, ow->jmp_reset);
 60 if ((pio_sm_get_blocking (ow->pio, ow->sm) & 1) == 0) { // apply pin mask (see pio
 program)
 61 return true; // a slave pulled the bus low
 62 }
 63 return false;
 64 }
 65
 66
 67 // Find ROM codes (64-bit hardware addresses) of all connected devices.
 68 // See https://www.analog.com/en/app-notes/1wire-search-algorithm.html
 69 // Returns: the number of devices found (up to maxdevs) or -1 if an error occurrred.
 70 // ow: pointer to an OW driver struct
 71 // romcodes: location at which store the addresses (NULL means don't store)
 72 // maxdevs: maximum number of devices to find (0 means no limit)
 73 // command: 1-Wire search command (e.g. OW_SEARCHROM or OW_ALARM_SEARCH)
 74 int ow_romsearch (OW *ow, uint64_t *romcodes, int maxdevs, uint command) {

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 598

 75 int index;
 76 uint64_t romcode = 0ull;
 77 int branch_point;
 78 int next_branch_point = -1;
 79 int num_found = 0;
 80 bool finished = false;
 81
 82 onewire_sm_init (ow->pio, ow->sm, ow->offset, ow->gpio, 1); // set driver to 1-bit mode
 83
 84 while (finished == false && (maxdevs == 0 || num_found < maxdevs)) {
 85 finished = true;
 86 branch_point = next_branch_point;
 87 if (ow_reset (ow) == false) {
 88 num_found = 0; // no slaves present
 89 finished = true;
 90 break;
 91 }
 92 for (int i = 0; i < 8; i += 1) { // send search command as single bits
 93 ow_send (ow, command >> i);
 94 }
 95 for (index = 0; index < 64; index += 1) { // determine romcode bits 0..63 (see ref)
 96 uint a = ow_read (ow);
 97 uint b = ow_read (ow);
 98 if (a == 0 && b == 0) { // (a, b) = (0, 0)
 99 if (index == branch_point) {
100 ow_send (ow, 1);
101 romcode |= (1ull << index);
102 } else {
103 if (index > branch_point || (romcode & (1ull << index)) == 0) {
104 ow_send(ow, 0);
105 finished = false;
106 romcode &= ~(1ull << index);
107 next_branch_point = index;
108 } else { // index < branch_point or romcode[index] = 1
109 ow_send (ow, 1);
110 }
111 }
112 } else if (a != 0 && b != 0) { // (a, b) = (1, 1) error (e.g. device
 disconnected)
113 num_found = -2; // function will return -1
114 finished = true;
115 break; // terminate for loop
116 } else {
117 if (a == 0) { // (a, b) = (0, 1) or (1, 0)
118 ow_send (ow, 0);
119 romcode &= ~(1ull << index);
120 } else {
121 ow_send (ow, 1);
122 romcode |= (1ull << index);
123 }
124 }
125 } // end of for loop
126
127 if (romcodes != NULL) {
128 romcodes[num_found] = romcode; // store the romcode
129 }
130 num_found += 1;
131 } // end of while loop
132
133 onewire_sm_init (ow->pio, ow->sm, ow->offset, ow->gpio, 8); // restore 8-bit mode
134 return num_found;
135 }

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 599

onewire_library/onewire_library.h

Header file for the 1-Wire user functions and types.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire_library/onewire_library.h

 1 #include "hardware/pio.h"
 2 #include "hardware/clocks.h" // for clock_get_hz() in generated header
 3 #include "onewire_library.pio.h" // generated by pioasm
 4
 5 typedef struct {
 6 PIO pio;
 7 uint sm;
 8 uint jmp_reset;
 9 int offset;
10 int gpio;
11 } OW;
12
13 bool ow_init (OW *ow, PIO pio, uint offset, uint gpio);
14 void ow_send (OW *ow, uint data);
15 uint8_t ow_read (OW *ow);
16 bool ow_reset (OW *ow);
17 int ow_romsearch (OW *ow, uint64_t *romcodes, int maxdevs, uint command);

onewire_library/onewire_library.pio

PIO assembly code for the 1-Wire driver.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire_library/onewire_library.pio

 1 ;
 2 ; Copyright (c) 2023 mjcross
 3 ;
 4 ; SPDX-License-Identifier: BSD-3-Clause
 5 ;
 6
 7 ; Implements a Maxim 1-Wire bus with a GPIO pin.
 8 ;
 9 ; Place data words to be transmitted in the TX FIFO and read the results from the
10 ; RX FIFO. To reset the bus execute a jump to 'reset_bus' using the opcode from
11 ; the provided function.
12 ;
13 ; At 1us per cycle as initialised below the timings are those recommended by:
14 ; https://www.analog.com/en/technical-articles/1wire-communication-through-software.html
15 ;
16 ; Notes:
17 ; (1) The code will stall with the bus in a safe state if the FIFOs are empty/full.
18 ; (2) The bus must be pulled up with an external pull-up resistor of about 4k.
19 ; The internal GPIO resistors are too high (~50k) to work reliably for this.
20 ; (3) Do not connect the GPIO pin directly to a bus powered at more than 3.3V.
21
22 .program onewire
23 .side_set 1 pindirs
24
25 PUBLIC reset_bus:
26 set x, 28 side 1 [15] ; pull bus low 16
27 loop_a: jmp x-- loop_a side 1 [15] ; 29 x 16
28 set x, 8 side 0 [6] ; release bus 7
29 loop_b: jmp x-- loop_b side 0 [6] ; 9 x 7
30
31 mov isr, pins side 0 ; read all pins to ISR (avoids autopush) 1
32 push side 0 ; push result manually 1
33 set x, 24 side 0 [7] ; 8

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 600

https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire_library/onewire_library.h
https://github.com/raspberrypi/pico-examples/blob/develop/pio/onewire/onewire_library/onewire_library.pio

34 loop_c: jmp x-- loop_c side 0 [15] ; 25 x 16
35
36 .wrap_target
37 PUBLIC fetch_bit:
38 out x, 1 side 0 ; shift next bit from OSR (autopull) 1
39 jmp !x send_0 side 1 [5] ; pull bus low, branch if sending '0' 6
40
41 send_1: ; send a '1' bit
42 set x, 2 side 0 [8] ; release bus, wait for slave response 9
43 in pins, 1 side 0 [4] ; read bus, shift bit to ISR (autopush) 5
44 loop_e: jmp x-- loop_e side 0 [15] ; 3 x 16
45 jmp fetch_bit side 0 ; 1
46
47 send_0: ; send a '0' bit
48 set x, 2 side 1 [5] ; continue pulling bus low 6
49 loop_d: jmp x-- loop_d side 1 [15] ; 3 x 16
50 in null, 1 side 0 [8] ; release bus, shift 0 to ISR (autopush) 9
51 .wrap
52 ;; (17 instructions)
53
54
55 % c-sdk {
56 static inline void onewire_sm_init (PIO pio, uint sm, uint offset, uint pin_num, uint
 bits_per_word) {
57
58 // create a new state machine configuration
59 pio_sm_config c = onewire_program_get_default_config (offset);
60
61 // Input Shift Register configuration settings
62 sm_config_set_in_shift (
63 &c,
64 true, // shift direction: right
65 true, // autopush: enabled
66 bits_per_word // autopush threshold
67);
68
69 // Output Shift Register configuration settings
70 sm_config_set_out_shift (
71 &c,
72 true, // shift direction: right
73 true, // autopull: enabled
74 bits_per_word // autopull threshold
75);
76
77 // configure the input and sideset pin groups to start at `pin_num`
78 sm_config_set_in_pins (&c, pin_num);
79 sm_config_set_sideset_pins (&c, pin_num);
80
81 // configure the clock divider for 1 usec per instruction
82 float div = clock_get_hz (clk_sys) * 1e-6;
83 sm_config_set_clkdiv (&c, div);
84
85 // apply the configuration and initialise the program counter
86 pio_sm_init (pio, sm, offset + onewire_offset_fetch_bit, &c);
87
88 // enable the state machine
89 pio_sm_set_enabled (pio, sm, true);
90 }
91
92 static inline uint onewire_reset_instr (uint offset) {
93 // encode a "jmp reset_bus side 0" instruction for the state machine
94 return pio_encode_jmp (offset + onewire_offset_reset_bus) | pio_encode_sideset (1, 0);
95 }

Raspberry Pi Pico-series C/C++ SDK

Interfacing 1-Wire devices to the Pico 601

96 %}

Communicating as master and slave via SPI

This example code shows how to interface two RP2040 microcontrollers to each other using SPI.

Wiring information

Function Master (RP2040) Slave (RP2040) Master (Pico) Slave (Pico)

MOSI DO0 DI0 25 21

SCLK SCK0 SCK0 24 24

GND GND GND 23 23

CS CS0 CS0 22 22

MISO DI0 DO0 21 25

Figure 28. Wiring

Diagram for SPI

Master and Slave.

At least one of the boards should be powered, and will share power to the other.

If the master is not connected properly to a slave, the master will report reading all zeroes.

If the slave is not connected properly to a master, it will initialize but never transmit nor receive, because it’s waiting for

clock signal from the master.

Outputs

Both master and slave boards will give output to stdio.

With master and slave properly connected, the master should output something like this:

SPI master example
SPI master says: The following buffer will be written to MOSI endlessly:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f
80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f

Raspberry Pi Pico-series C/C++ SDK

Communicating as master and slave via SPI 602

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df
e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff
SPI master says: read page 0 from the MISO line:
ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0
ef ee ed ec eb ea e9 e8 e7 e6 e5 e4 e3 e2 e1 e0
df de dd dc db da d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
cf ce cd cc cb ca c9 c8 c7 c6 c5 c4 c3 c2 c1 c0
bf be bd bc bb ba b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
af ae ad ac ab aa a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
9f 9e 9d 9c 9b 9a 99 98 97 96 95 94 93 92 91 90
8f 8e 8d 8c 8b 8a 89 88 87 86 85 84 83 82 81 80
7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

The slave should output something like this:

SPI slave example
SPI slave says: When reading from MOSI, the following buffer will be written to MISO:
ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0
ef ee ed ec eb ea e9 e8 e7 e6 e5 e4 e3 e2 e1 e0
df de dd dc db da d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
cf ce cd cc cb ca c9 c8 c7 c6 c5 c4 c3 c2 c1 c0
bf be bd bc bb ba b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
af ae ad ac ab aa a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
9f 9e 9d 9c 9b 9a 99 98 97 96 95 94 93 92 91 90
8f 8e 8d 8c 8b 8a 89 88 87 86 85 84 83 82 81 80
7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
SPI slave says: read page 0 from the MOSI line:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f
80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf
d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df
e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

Raspberry Pi Pico-series C/C++ SDK

Communicating as master and slave via SPI 603

If you look at the communication with a logic analyzer, you should see this:

Figure 29. Data

capture as seen in

Saleae Logic.

List of Files

CMakeLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/spi/spi_master_slave/CMakeLists.txt

1 add_subdirectory_exclude_platforms(spi_master)
2 add_subdirectory_exclude_platforms(spi_slave)

spi_master/spi_master.c

The example code for SPI master.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/spi/spi_master_slave/spi_master/spi_master.c

 1 // Copyright (c) 2021 Michael Stoops. All rights reserved.
 2 // Portions copyright (c) 2021 Raspberry Pi (Trading) Ltd.
 3 //
 4 // Redistribution and use in source and binary forms, with or without modification, are
 permitted provided that the
 5 // following conditions are met:
 6 //
 7 // 1. Redistributions of source code must retain the above copyright notice, this list of
 conditions and the following
 8 // disclaimer.
 9 // 2. Redistributions in binary form must reproduce the above copyright notice, this list of
 conditions and the
10 // following disclaimer in the documentation and/or other materials provided with the
 distribution.
11 // 3. Neither the name of the copyright holder nor the names of its contributors may be used to
 endorse or promote
12 // products derived from this software without specific prior written permission.
13 //
14 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
 OR IMPLIED WARRANTIES,
15 // INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE
16 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 INDIRECT, INCIDENTAL,
17 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 SUBSTITUTE GOODS OR
18 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY,
19 // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

Raspberry Pi Pico-series C/C++ SDK

Communicating as master and slave via SPI 604

https://github.com/raspberrypi/pico-examples/blob/develop/spi/spi_master_slave/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/develop/spi/spi_master_slave/spi_master/spi_master.c

 IN ANY WAY OUT OF THE
20 // USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
21 //
22 // SPDX-License-Identifier: BSD-3-Clause
23 //
24 // Example of an SPI bus master using the PL022 SPI interface
25
26 #include <stdio.h>
27 #include "pico/stdlib.h"
28 #include "pico/binary_info.h"
29 #include "hardware/spi.h"
30
31 #define BUF_LEN 0x100
32
33 void printbuf(uint8_t buf[], size_t len) {
34 size_t i;
35 for (i = 0; i < len; ++i) {
36 if (i % 16 == 15)
37 printf("%02x\n", buf[i]);
38 else
39 printf("%02x ", buf[i]);
40 }
41
42 // append trailing newline if there isn't one
43 if (i % 16) {
44 putchar('\n');
45 }
46 }
47
48 int main() {
49 // Enable UART so we can print
50 stdio_init_all();
51 #if !defined(spi_default) || !defined(PICO_DEFAULT_SPI_SCK_PIN) ||
!defined(PICO_DEFAULT_SPI_TX_PIN) || !defined(PICO_DEFAULT_SPI_RX_PIN) ||
!defined(PICO_DEFAULT_SPI_CSN_PIN)
52 #warning spi/spi_master example requires a board with SPI pins
53 puts("Default SPI pins were not defined");
54 #else
55
56 printf("SPI master example\n");
57
58 // Enable SPI 0 at 1 MHz and connect to GPIOs
59 spi_init(spi_default, 1000 * 1000);
60 gpio_set_function(PICO_DEFAULT_SPI_RX_PIN, GPIO_FUNC_SPI);
61 gpio_set_function(PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI);
62 gpio_set_function(PICO_DEFAULT_SPI_TX_PIN, GPIO_FUNC_SPI);
63 gpio_set_function(PICO_DEFAULT_SPI_CSN_PIN, GPIO_FUNC_SPI);
64 // Make the SPI pins available to picotool
65 bi_decl(bi_4pins_with_func(PICO_DEFAULT_SPI_RX_PIN, PICO_DEFAULT_SPI_TX_PIN,
PICO_DEFAULT_SPI_SCK_PIN, PICO_DEFAULT_SPI_CSN_PIN, GPIO_FUNC_SPI));
66
67 uint8_t out_buf[BUF_LEN], in_buf[BUF_LEN];
68
69 // Initialize output buffer
70 for (size_t i = 0; i < BUF_LEN; ++i) {
71 out_buf[i] = i;
72 }
73
74 printf("SPI master says: The following buffer will be written to MOSI endlessly:\n");
75 printbuf(out_buf, BUF_LEN);
76
77 for (size_t i = 0; ; ++i) {
78 // Write the output buffer to MOSI, and at the same time read from MISO.
79 spi_write_read_blocking(spi_default, out_buf, in_buf, BUF_LEN);

Raspberry Pi Pico-series C/C++ SDK

Communicating as master and slave via SPI 605

80
81 // Write to stdio whatever came in on the MISO line.
82 printf("SPI master says: read page %d from the MISO line:\n", i);
83 printbuf(in_buf, BUF_LEN);
84
85 // Sleep for ten seconds so you get a chance to read the output.
86 sleep_ms(10 * 1000);
87 }
88 #endif
89 }

spi_slave/spi_slave.c

The example code for SPI slave.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/develop/spi/spi_master_slave/spi_slave/spi_slave.c

 1 // Copyright (c) 2021 Michael Stoops. All rights reserved.
 2 // Portions copyright (c) 2021 Raspberry Pi (Trading) Ltd.
 3 //
 4 // Redistribution and use in source and binary forms, with or without modification, are
 permitted provided that the
 5 // following conditions are met:
 6 //
 7 // 1. Redistributions of source code must retain the above copyright notice, this list of
 conditions and the following
 8 // disclaimer.
 9 // 2. Redistributions in binary form must reproduce the above copyright notice, this list of
 conditions and the
10 // following disclaimer in the documentation and/or other materials provided with the
 distribution.
11 // 3. Neither the name of the copyright holder nor the names of its contributors may be used to
 endorse or promote
12 // products derived from this software without specific prior written permission.
13 //
14 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
 OR IMPLIED WARRANTIES,
15 // INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE ARE
16 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 INDIRECT, INCIDENTAL,
17 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 SUBSTITUTE GOODS OR
18 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY,
19 // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 IN ANY WAY OUT OF THE
20 // USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
21 //
22 // SPDX-License-Identifier: BSD-3-Clause
23 //
24 // Example of an SPI bus slave using the PL022 SPI interface
25
26 #include <stdio.h>
27 #include <string.h>
28 #include "pico/stdlib.h"
29 #include "pico/binary_info.h"
30 #include "hardware/spi.h"
31
32 #define BUF_LEN 0x100
33
34 void printbuf(uint8_t buf[], size_t len) {
35 size_t i;

Raspberry Pi Pico-series C/C++ SDK

Communicating as master and slave via SPI 606

https://github.com/raspberrypi/pico-examples/blob/develop/spi/spi_master_slave/spi_slave/spi_slave.c

36 for (i = 0; i < len; ++i) {
37 if (i % 16 == 15)
38 printf("%02x\n", buf[i]);
39 else
40 printf("%02x ", buf[i]);
41 }
42
43 // append trailing newline if there isn't one
44 if (i % 16) {
45 putchar('\n');
46 }
47 }
48
49
50 int main() {
51 // Enable UART so we can print
52 stdio_init_all();
53 #if !defined(spi_default) || !defined(PICO_DEFAULT_SPI_SCK_PIN) ||
 !defined(PICO_DEFAULT_SPI_TX_PIN) || !defined(PICO_DEFAULT_SPI_RX_PIN) ||
 !defined(PICO_DEFAULT_SPI_CSN_PIN)
54 #warning spi/spi_slave example requires a board with SPI pins
55 puts("Default SPI pins were not defined");
56 #else
57
58 printf("SPI slave example\n");
59
60 // Enable SPI 0 at 1 MHz and connect to GPIOs
61 spi_init(spi_default, 1000 * 1000);
62 spi_set_slave(spi_default, true);
63 gpio_set_function(PICO_DEFAULT_SPI_RX_PIN, GPIO_FUNC_SPI);
64 gpio_set_function(PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI);
65 gpio_set_function(PICO_DEFAULT_SPI_TX_PIN, GPIO_FUNC_SPI);
66 gpio_set_function(PICO_DEFAULT_SPI_CSN_PIN, GPIO_FUNC_SPI);
67 // Make the SPI pins available to picotool
68 bi_decl(bi_4pins_with_func(PICO_DEFAULT_SPI_RX_PIN, PICO_DEFAULT_SPI_TX_PIN,
 PICO_DEFAULT_SPI_SCK_PIN, PICO_DEFAULT_SPI_CSN_PIN, GPIO_FUNC_SPI));
69
70 uint8_t out_buf[BUF_LEN], in_buf[BUF_LEN];
71
72 // Initialize output buffer
73 for (size_t i = 0; i < BUF_LEN; ++i) {
74 // bit-inverted from i. The values should be: {0xff, 0xfe, 0xfd...}
75 out_buf[i] = ~i;
76 }
77
78 printf("SPI slave says: When reading from MOSI, the following buffer will be written to
 MISO:\n");
79 printbuf(out_buf, BUF_LEN);
80
81 for (size_t i = 0; ; ++i) {
82 // Write the output buffer to MISO, and at the same time read from MOSI.
83 spi_write_read_blocking(spi_default, out_buf, in_buf, BUF_LEN);
84
85 // Write to stdio whatever came in on the MOSI line.
86 printf("SPI slave says: read page %d from the MOSI line:\n", i);
87 printbuf(in_buf, BUF_LEN);
88 }
89 #endif
90 }

Raspberry Pi Pico-series C/C++ SDK

Communicating as master and slave via SPI 607

Bill of Materials

Table 54. A list of

materials required for

the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 2 https://www.raspberrypi.com/

products/raspberry-pi-pico/

M/M Jumper wires 8 generic part

Raspberry Pi Pico-series C/C++ SDK

Communicating as master and slave via SPI 608

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

Appendix B: Building the SDK API
documentation
The SDK documentation can be viewed online, but is also part of the SDK itself and can be built directly from the

command line. If you haven’t already checked out the SDK repository you should do so,

$ cd ~/
$ mkdir pico
$ cd pico
$ git clone https://github.com/raspberrypi/pico-sdk.git --branch master
$ cd pico-sdk
$ git submodule update --init
$ cd ..
$ git clone https://github.com/raspberrypi/pico-examples.git --branch master

Install doxygen if you don’t already have it,

$ sudo apt install doxygen

Then afterwards you can go ahead and build the documentation for all platforms:

$ cd pico-sdk
$ mkdir build
$ cd build
$ cmake -DPICO_EXAMPLES_PATH=../../pico-examples -DPICO_PLATFORM=combined-docs ..
$ make docs

The API documentation will be built and can be found in the pico-sdk/build/docs/doxygen/html directory, see Figure 30.

 TIP

If you prefer to build documentation for a single platform only, then replace -DPICO_PLATFORM=combined-docs with

-DPICO_PLATFORM=rp2040 or -DPICO_PLATFORM=rp2350 in the above, using a fresh build directory.

Raspberry Pi Pico-series C/C++ SDK

Appendix B: Building the SDK API documentation 609

https://www.raspberrypi.com/documentation/pico-sdk/

Figure 30. The SDK

API documentation

Raspberry Pi Pico-series C/C++ SDK

Appendix B: Building the SDK API documentation 610

Appendix C: SDK release history

Release 1.0.0 (20/Jan/2021)

Initial release

Release 1.0.1 (01/Feb/2021)

• add pico_get_unique_id method to return a unique identifier for a Pico board using the identifier of the external flash

• exposed all 4 pacing timers on the DMA peripheral (previously only 2 were exposed)

• fixed ninja build (i.e. cmake -G ninja .. ; ninja)

• minor other improvements and bug fixes

Boot Stage 2

Additionally, a low level change was made to the way flash binaries start executing after boot_stage2. This was at the

request of folks implementing other language runtimes. It is not generally of concern to end users, however it did

require a change to the linker scripts so if you have cloned those to make modifications then you need to port across

the relevant changes. If you are porting a different language runtime using the SDK boot_stage2 implementations then

you should be aware that you should now have a vector table (rather than executable code) - at 0x10000100.

Release 1.1.0 (05/Mar/2021)

• Added board headers for Adafruit, Pimoroni & SparkFun boards

◦ new values for PICO_BOARD are adafruit_feather_rp2040, adafruit_itsybitsy_rp2040, adafruit_qtpy_rp2040,

pimoroni_keybow2040, pimoroni_picosystem, pimoroni_tiny2040, sparkfun_micromod, sparkfun_promicro,

sparkfun_thingplus, in addition to the existing pico and vgaboard.

◦ Added additional definitions for a default SPI, I2C pins as well as the existing ones for UART

◦ Allow default pins to be undefined (not all boards have UART for example), and SDK will compile but warn as

needed in the absence of default.

◦ Added additional definition for a default WS2812 compatible pin (currently unused).

• New reset options

◦ Added pico_bootsel_via_double_reset library to allow reset to BOOTSEL mode via double press of a RESET button

◦ When using pico_stdio_usb i.e. stdio connected via USB CDC to host, setting baud rate to 1200 (by default) can

optionally be used to reset into BOOTSEL mode.

◦ When using pico-stdio_usb i.e. stdio connected via USB CDC to host, an additional interface may be added to

give picotool control over resetting the device.

• Build improvement for non-SDK or existing library builds

◦ Removed additional compiler warnings (register headers now use _u(x) macro for unsigned values though).

◦ Made build more clang friendly.

Raspberry Pi Pico-series C/C++ SDK

Release 1.0.0 (20/Jan/2021) 611

This release also contains many bug fixes, documentation updates and minor improvements.

Backwards incompatibility

There are some nominally backwards incompatible changes not worthy of a major version bump:

• PICO_DEFAULT_UART_ defines now default to undefined if there is no default rather than -1 previously

• The broken multicore_sleep_core1() API has been removed; multicore_reset_core1 is already available to put core 1

into a deep sleep.

Release 1.1.1 (01/Apr/2021)

This fixes a number of bugs, and additionally adds support for a board configuration header to choose the boot_stage2

Release 1.1.2 (07/Apr/2021)

Fixes issues with boot_stage2 selection

Release 1.2.0 (03/Jun/2021)

This release contains numerous bug fixes and documentation improvements. Additionally it contains the following

improvements/notable changes:

 CAUTION

The lib/tinyusb submodule has been updated from 0.8.0 and now tracks upstream https://github.com/hathach/

tinyusb.git. It is worth making sure you do a

$ git submodule sync
$ git submodule update

to make sure you are correctly tracking upstream TinyUSB if you are not checking out a clean pico-sdk repository.

Moving from TinyUSB 0.8.0 to TinyUSB 0.10.1 may require some minor changes to your USB code.

New/improved Board headers

• New board headers support for PICO_BOARDs arduino_nano_rp240_connect, pimoroni_picolipo_4mb and

pimoroni_picolipo_16mb

• Missing/new #defines for default SPI and I2C pins have been added

Updated TinyUSB to 0.10.1

The lib/tinyusb submodule has been updated from 0.8.0 and now tracks upstream https://github.com/hathach/

tinyusb.git

Raspberry Pi Pico-series C/C++ SDK

Release 1.1.1 (01/Apr/2021) 612

https://github.com/hathach/tinyusb.git
https://github.com/hathach/tinyusb.git
https://github.com/hathach/tinyusb.git
https://github.com/hathach/tinyusb.git

Added CMSIS core headers

CMSIS core headers (e.g. core_cm0plus.h and RP2040.h) are made available via cmsis_core INTERFACE library. Additionally,

CMSIS standard exception naming is available via PICO_CMSIS_RENAME_EXCEPTIONS=1

API improvements

pico_sync

• Added support for recursive mutexes via recursive_mutex_init() and auto_init_recursive_mutex()

• Added mutex_enter_timeout_us()

• Added critical_section_deinit()

• Added sem_acquire_timeout_ms() and sem_acquire_block_until()

hardware_adc

• Added adc_get_selected_input()

hardware_clocks

• clock_get_hz() now returns actual achieved frequency rather than desired frequency

hardware_dma

• Added dma_channel_is_claimed()

• Added new methods for configuring/acknowledging DMA IRQs. dma_irqn_set_channel_enabled(),

dma_irqn_set_channel_mask_enabled(), dma_irqn_get_channel_status(), dma_irqn_acknowledge_channel() etc.

hardware_exception

New library for setting ARM exception handlers:

• Added exception_set_exclusive_handler(), exception_restore_handler(), exception_get_vtable_handler()

hardware_flash

• Exposed previously private function flash_do_cmd() for low level flash command execution

hardware_gpio

• Added gpio_set_input_hysteresis_enabled(), gpio_is_input_hysteresis_enabled(), gpio_set_slew_rate(),

gpio_get_slew_rate(), gpio_set_drive_strength(), gpio_get_drive_strength(), gpio_get_out_level(), gpio_set_irqover()

hardware_i2c

• Corrected a number of incorrect hardware register definitions

• A number of edge cases in the i2c code fixed

Raspberry Pi Pico-series C/C++ SDK

Release 1.2.0 (03/Jun/2021) 613

hardware_interp

• Added interp_lane_is_claimed(), interp_unclaim_lane_mask()

hardware_irq

• Notably fixed the PICO_LOWEST/HIGHEST_IRQ_PRIORITY values which were backwards!

hardware_pio

• Added new methods for configuring/acknowledging PIO interrupts (pio_set_irqn_source_enabled(),

pio_set_irqn_source_mask_enabled(), pio_interrupt_get(), pio_interrupt_clear() etc.)

• Added pio_sm_is_claimed()

hardware_spi

• Added spi_get_baudrate()

• Changed spi_init() to return the set/achieved baud rate rather than void

• Changed spi_is_writable() to return bool not size_t (it was always 1/0)

hardware_sync

• Notable documentation improvements for spin lock functions

• Added spin_lock_is_claimed()

hardware_timer

• Added busy_wait_ms() to match busy_wait_us()

• Added hardware_alarm_is_claimed()

pico_float/pico_double

• Correctly save/restore divider state if floating point is used from interrupts

pico_int64_ops

• Added PICO_INT64_OPS_IN_RAM flag to move code into RAM to avoid veneers when calling code is in RAM

pico_runtime

• Added ability to override panic function by setting PICO_PANIC_FUNCTION=foo to then use foo as the implementation, or

setting PICO_PANIC_FUNCITON= to simply breakpoint, saving some code space

pico_unique_id

• Added pico_get_unique_board_id_string().

Raspberry Pi Pico-series C/C++ SDK

Release 1.2.0 (03/Jun/2021) 614

General code improvements

• Removed additional classes of compiler warnings

• Added some missing const to method parameters

SVD

• USB DPRAM for device mode is now included

pioasm

• Added #pragma once to C/C++ output

RTOS interoperability

Improvements designed to make porting RTOSes either based on the SDK or supporting SDK code easier.

• Added PICO_DIVIDER_DISABLE_INTERRUPTS flag to optionally configure all uses of the hardware divider to be guarded by

disabling interrupts, rather than requiring on the RTOS to save/restore the divider state on context switch

• Added new abstractions to pico/lock_core.h to allow an RTOS to inject replacement code for SDK based low level

wait, notify and sleep/timeouts used by synchronization primitives in pico_sync and for sleep_ methods. If an RTOS

implements these few simple methods, then all SDK semaphore, mutex, queue, sleep methods can be safely used

both within/to/from RTOS tasks, but also to communicate with non-RTOS task aware code, whether it be existing

libraries and IRQ handlers or code running perhaps (though not necessarily) on the other core

CMake build changes

Substantive changes have been made to the CMake build, so if you are using a hand crafted non-CMake build, you will

need to update your compile/link flags. Additionally changed some possibly confusing status messages from CMake

build generation to be debug only

Boot Stage 2

• New boot stage 2 for AT25SF128A

Release 1.3.0 (02/Nov/2021)

This release contains numerous bug fixes and documentation improvements. Additionally, it contains the following

notable changes/improvements:

Updated TinyUSB to 0.12.0

• The lib/tinyusb submodule has been updated from 0.10.1 to 0.12.0. See https://github.com/hathach/tinyusb/

releases/tag/0.11.0 and https://github.com/hathach/tinyusb/releases/tag/0.12.0 for release notes.

• Improvements have been made for projects that include TinyUSB and also compile with enhanced warning levels

and -Werror. Warnings have been fixed in RP2040 specific TinyUSB code, and in TinyUSB headers, and a new

cmake function suppress_tinyusb_warnings() has been added, that you may call from your CMakeLists.txt to suppress

warnings in other TinyUSB C files.

Raspberry Pi Pico-series C/C++ SDK

Release 1.3.0 (02/Nov/2021) 615

https://github.com/hathach/tinyusb/releases/tag/0.11.0
https://github.com/hathach/tinyusb/releases/tag/0.11.0
https://github.com/hathach/tinyusb/releases/tag/0.12.0

New Board Support

The following boards have been added and may be specified via PICO_BOARD:

• adafruit_trinkey_qt2040

• melopero_shake_rp2040

• pimoroni_interstate75

• pimoroni_plasma2040

• pybstick26_rp2040

• waveshare_rp2040_lcd_0.96

• waveshare_rp2040_plus_4mb

• waveshare_rp2040_plus_16mb

• waveshare_rp2040_zero

Updated SVD, hardware_regs, hardware_structs

The RP2040 SVD has been updated, fixing some register access types and adding new documentation.

The hardware_regs headers have been updated accordingly.

The hardware_structs headers which were previously hand coded, are now generated from the SVD, and retain select

documentation from the SVD, including register descriptions and register bit-field tables.

e.g. what was once

typedef struct {
 io_rw_32 ctrl;
 io_ro_32 fstat;
 ...

becomes:

// Reference to datasheet: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#tab-
registerlist_pio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using
the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION

typedef struct {
 REG(PIO_CTRL_OFFSET) // PIO_CTRL
 // PIO control register
 // 0x00000f00 [11:8] : CLKDIV_RESTART (0): Restart a state machine's clock divider from an
initial phase of 0
 // 0x000000f0 [7:4] : SM_RESTART (0): Write 1 to instantly clear internal SM state which may
be otherwise difficult...
 // 0x0000000f [3:0] : SM_ENABLE (0): Enable/disable each of the four state machines by
writing 1/0 to each of these four bits
 io_rw_32 ctrl;

 REG(PIO_FSTAT_OFFSET) // PIO_FSTAT

Raspberry Pi Pico-series C/C++ SDK

Release 1.3.0 (02/Nov/2021) 616

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_regs/RP2040.svd

 // FIFO status register
 // 0x0f000000 [27:24] : TXEMPTY (0xf): State machine TX FIFO is empty
 // 0x000f0000 [19:16] : TXFULL (0): State machine TX FIFO is full
 // 0x00000f00 [11:8] : RXEMPTY (0xf): State machine RX FIFO is empty
 // 0x0000000f [3:0] : RXFULL (0): State machine RX FIFO is full
 io_ro_32 fstat;
 ...

Behavioural Changes

There were some behavioural changes in this release:

pico_sync

SDK 1.2.0 previously added recursive mutex support using the existing (previously non-recursive) mutex_ functions. This

caused a performance regression, and the only clean way to fix the problem was to return the mutex_ functions to their

pre-SDK 1.2.0 behaviour, and split the recursive mutex functionality out into separate recursive_mutex_ functions with a

separate recursive_mutex_ type.

Code using the SDK 1.2.0 recursive mutex functionality will need to be changed to use the new type and functions,

however as a convenience, the pre-processor define PICO_MUTEX_ENABLE_SDK120_COMPATIBILITY may be set to 1 to retain the

SDK 1.2.0 behaviour at the cost of an additional performance penalty. The ability to use this pre-processor define will be

removed in a subsequent SDK version.

pico_platform

• pico.h and its dependencies have been slightly refactored so it can be included by assembler code as well as C/C

code. This ensures that assembler code and C/C code follow the same board configuration/override order and see

the same configuration defines. This should not break any existing code, but is notable enough to mention.

• pico/platform.h is now fully documented.

pico_standard_link

-Wl,max-page-size=4096 is now passed to the linker, which is beneficial to certain users and should have no discernible

impact on the rest.

Other Notable Improvements

hardware_base

• Added xip_noalloc_alias(addr), xip_nocache_alias(addr), xip_nocache_noalloc_alias(addr) macros for converting a flash

address between XIP aliases (similar to the hw_xxx_alias(addr) macros).

hardware_dma

• Added dma_timer_claim(), dma_timer_unclaim(), dma_claim_unused_timer() and dma_timer_is_claimed() to manage

ownership of DMA timers.

• Added dma_timer_set_fraction() and dma_get_timer_dreq() to facilitate pacing DMA transfers using DMA timers.

Raspberry Pi Pico-series C/C++ SDK

Release 1.3.0 (02/Nov/2021) 617

hardware_i2c

• Added i2c_get_dreq() function to facilitate configuring DMA transfers to/from an I2C instance.

hardware_irq

• Added irq_get_priority().

• Fixed implementation when PICO_DISABLE_SHARED_IRQ_HANDLERS=1 is specified, and allowed irq_add_shared_handler to be

used in this case (as long as there is only one handler - i.e. it behaves exactly like irq_set_exclusive_handler).

• Sped up IRQ priority initialization which was slowing down per core initialization.

hardware_pio

• pio_encode_ functions in hardware/pico_instructions.h are now documented.

hardware_pwm

• Added pwm_get_dreq() function to facilitate configuring DMA transfers to a PWM slice.

hardware_spi

• Added spi_get_dreq() function to facilitate configuring DMA transfers to/from an SPI instance.

hardware_uart

• Added uart_get_dreq() function to facilitate configuring DMA transfers to/from a UART instance.

hardware_watchdog

• Added watchdog_enable_caused_reboot() to distinguish a watchdog reboot caused by a watchdog timeout after calling

watchdog_enable() from other watchdog reboots (e.g. that are performed when a UF2 is dragged onto a device in

BOOTSEL mode).

pico_bootrom

• Added new constants and function signature typedefs to pico/bootrom.h to facilitate calling bootrom functions

directly.

pico_multicore

• Improved documentation in pico/multicore.h; particularly, multicore_lockout_ functions are newly documented.

pico_platform

• PICO_RP2040 is now defined to 1 in PICO_PLATFORM=rp2040 (i.e. normal) builds.

pico_stdio

• Added puts_raw() and putchar_raw() to skip CR/LF translation if enabled.

Raspberry Pi Pico-series C/C++ SDK

Release 1.3.0 (02/Nov/2021) 618

• Added stdio_usb_connected() to detect CDC connection when using stdio_usb.

• Added PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS define that can be set to wait for a CDC connection to be established

during initialization of stdio_usb. Note: value -1 means indefinite. This can be used to prevent initial program output

being lost, at the cost of requiring an active CDC connection.

• Fixed semihosting_putc which was completely broken.

pico_usb_reset_interface

• This new library contains pico/usb_reset_interface.h split out from stdio_usb to facilitate inclusion in external

projects.

CMake build

• OUTPUT_NAME target property is now respected when generating supplemental files (.BIN, .HEX, .MAP, .UF2)

pioasm

• Operator precedence of *, /, -, + have been fixed

• Incorrect MicroPython output has been fixed.

elf2uf2

• A bug causing an error with binaries produced by certain other languages has been fixed.

Release 1.3.1 (18/May/2022)

This release contains numerous bug fixes and documentation improvements which are not all listed here; you can see

the full list of individual commits here.

New Board Support

The following boards have been added and may be specified via PICO_BOARD:

• adafruit_kb2040

• adafruit_macropad_rp2040

• eetree_gamekit_rp2040

• garatronic_pybstick26_rp2040 (renamed from pybstick26_rp2040)

• pimoroni_badger2040

• pimoroni_motor2040

• pimoroni_servo2040

• pimoroni_tiny2040_2mb

• seeed_xiao_rp2040

• solderparty_rp2040_stamp_carrier

• solderparty_rp2040_stamp

Raspberry Pi Pico-series C/C++ SDK

Release 1.3.1 (18/May/2022) 619

https://github.com/raspberrypi/pico-sdk/pulls?q=is%3Apr+milestone%3A1.3.1++is%3Amerged

• wiznet_w5100s_evb_pico

Notable Library Changes/Improvements

hardware_dma

• New documentation has been added to the dma_channel_abort() function describing errata RP2040-E13, and how to

work around it.

hardware_irq

• Fixed a bug related to removing and then re-adding shared IRQ handlers. It is now possible to add/remove handlers

as documented.

• Added new documentation clarifying the fact the shared IRQ handler ordering "priorities" have values that increase

with higher priority vs. Cortex M0+ IRQ priorites which have values that decrease with priority!

hardware_pwm

• Added a pwm_config_set_clkdiv_int_frac() method to complement pwm_config_set_clkdiv_int() and

pwm_config_set_clkdiv().

hardware_pio

• Fixed the pio_set_irqn_source_mask_enabled() method which previously affected the wrong IRQ.

hardware_rtc

• Added clarification to rtc_set_datetime() documentation that the new value may not be visible to a

rtc_get_datetime() very soon after, due to crossing of clock domains.

pico_platform

• Added a busy_wait_at_least_cycles() method as a convenience method for a short tight-loop counter-based delay.

pico_stdio

• Fixed a bug related to removing stdio "drivers". stdio_set_driver_enabled() can now be used freely to dynamically

enable and disable drivers during runtime.

pico_time

• Added an is_at_the_end_of_time() method to check if a given time matches the SDK’s maximum time value.

Runtime

A bug in __ctzdi2() aka __builtin_ctz(uint64_t) was fixed.

Raspberry Pi Pico-series C/C++ SDK

Release 1.3.1 (18/May/2022) 620

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e13

Build

• Compilation with GCC 11 is now supported.

• PIOASM_EXTRA_SOURCE_FILES is now actually respected.

pioasm

• Input files with Windows (CRLF) line endings are now accepted.

• A bug in the python output was fixed.

elf2uf2

• Extra padding was added to the UF2 output of misaligned or non-contiguous binaries to work around errata

RP2040-E14.

 NOTE

The 1.3.0 release of the SDK incorrectly squashed the history of the changes. A new merge commit has been added

to restore the full history, and the 1.3.0 tag has been updated

Release 1.4.0 (30/Jun/2022)

This release adds wireless support for the Raspberry Pi Pico W, adds support for other new boards, and contains

various bug fixes, documentation improvements, and minor improvements/added functionality. You can see the full list

of individual commits here.

New Board Support

The following boards have been added and may be specified via PICO_BOARD:

• pico_w

• datanoisetv_rp2040_dsp

• solderparty_rp2040_stamp_round_carrier

Wireless Support

• Support for the Raspberry Pi Pico W is now included with the SDK (PICO_BOARD=pico_w). The Pico W uses a driver for

the wireless chip called cyw43_driver which is included as a submodule of the SDK. You need to initialize this

submodule for Pico W wireless support to be available. Note that the LED on the Pico W board is only accessible

via the wireless chip, and can be accessed via cyw43_arch_gpio_put() and cyw43_arch_gpio_get() (part of the

pico_cyw43_arch library described below). As a result of the LED being on the wireless chip, there is no

PICO_DEFAULT_LED_PIN setting and the default LED based examples in pico-examples do not work with the Pico W.

• IP support is provided by lwIP which is also included as a submodule which you should initialize if you want to use

it.

The following libraries exposing lwIP functionality are provided by the SDK:

◦ pico_lwip_core (included in pico_lwip)

◦ pico_lwip_core4 (included in pico_lwip)

Raspberry Pi Pico-series C/C++ SDK

Release 1.4.0 (30/Jun/2022) 621

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e14
https://github.com/raspberrypi/pico-sdk/tree/1.3.0
https://github.com/raspberrypi/pico-sdk/pulls?q=is%3Apr+milestone%3A1.4.0++is%3Amerged
https://github.com/raspberrypi/pico-examples
https://savannah.nongnu.org/projects/lwip/lwIP

◦ pico_lwip_core6 (included in pico_lwip)

◦ pico_lwip_netif (included in pico_lwip)

◦ pico_lwip_sixlowpan (included in pico_lwip)

◦ pico_lwip_ppp (included in pico_lwip)

◦ pico_lwip_api (this is a blocking API that may be used with FreeRTOS and is not included in pico_lwip)

As referenced above, the SDK provides a pico_lwip which aggregates all of the commonly needed lwIP

functionality. You are of course free to use the substituent libraries explicitly instead.

The following libraries are provided that contain the equivalent lwIP application support:

◦ pico_lwip_snmp

◦ pico_lwip_http

◦ pico_lwip_makefsdata

◦ pico_lwip_iperf

◦ pico_lwip_smtp

◦ pico_lwip_sntp

◦ pico_lwip_mdns

◦ pico_lwip_netbios

◦ pico_lwip_tftp

◦ pico_lwip_mbedtls

• Integration of the IP stack and the cyw43_driver network driver into the user’s code is handled by pico_cyw43_arch.

Both the IP stack and the driver need to do work in response to network traffic, and pico_cyw43_arch provides a

variety of strategies for servicing that work. Four architecture variants are currently provided as libraries:

◦ pico_cyw43_arch_lwip_poll - For using the RAW lwIP API (NO_SYS=1 mode) with polling. With this architecture the

user code must periodically poll via cyw43_arch_poll() to perform background work. This architecture matches

the common use of lwIP on microcontrollers, and provides no multicore safety

◦ pico_cyw43_arch_lwip_threadsafe_background - For using the RAW lwIP API (NO_SYS=1 mode) with multicore safety,

and automatic servicing of the cyw43_driver and lwIP in the background. User polling is not required with this

architecture, but care should be taken as lwIP callbacks happen in an IRQ context.

◦ pico_cyw43_arch_lwip_sys_freertos - For using the full lwIP API including blocking sockets in OS mode (NO_SYS=0),

along with multicore/task safety, and automatic servicing of the cyw43_driver and the lwIP stack in a separate

task. This powerful architecture works with both SMP and non-SMP variants of the RP2040 port of FreeRTOS-

Kernel. Note you must set FREERTOS_KERNEL_PATH in your build to use this variant.

◦ pico_cyw43_arch_none - If you do not need the TCP/IP stack but wish to use the on-board LED or other wireless

chip connected GPIOs.

See the library documentation or the pico/cyw43_arch.h header for more details.

Notable Library Changes/Improvements

hardware_dma

• Added dma_unclaim_mask() function for un-claiming multiple DMA channels at once.

• Added channel_config_set_high_priority() function to set the channel priority via a channel config object.

Raspberry Pi Pico-series C/C++ SDK

Release 1.4.0 (30/Jun/2022) 622

hardware_gpio

• Improved the documentation for the pre-existing gpio IRQ functions which use the "one callback per core" callback

mechanism, and added a gpio_set_irq_callback() function to explicitly set the callback independently of enabling

per pin GPIO IRQs.

• Reduced the latency of calling the existing "one callback per core" GPIO IRQ callback.

• Added new support for the user to add their own shared GPIO IRQ handler independent of the pre-existing "one

callback per core" callback mechanism, allowing for independent usage of GPIO IRQs without having to share one

handler.

See the documentation in hardware/irq.h for full details of the functions added:

◦ gpio_add_raw_irq_handler()

◦ gpio_add_raw_irq_handler_masked()

◦ gpio_add_raw_irq_handler_with_order_priority()

◦ gpio_add_raw_irq_handler_with_order_priority_masked()

◦ gpio_remove_raw_irq_handler()

◦ gpio_remove_raw_irq_handler_masked()

• Added a gpio_get_irq_event_mask() utility function for use by the new "raw" IRQ handlers.

hardware_irq

• Added user_irq_claim(), user_irq_unclaim(), user_irq_claim_unused() and user_irq_is_claimed() functions for claiming

ownership of the user IRQs (the ones numbered 26-31 and not connected to any hardware). Uses of the user IRQs

have been updated to use these functions. For stdio_usb, the PICO_STDIO_USB_LOW_PRIORITY_IRQ define is still respected

if specified, but otherwise an unclaimed one is chosen.

• Added an irq_is_shared_handler() function to determine if a particular IRQ uses a shared handler.

pico_sync

• Added a sem_try_acquire() function, for non-blocking acquisition of a semaphore.

pico_stdio

• stderr is now supported and goes to the same destination as stdout.

• Zero timeouts for getchar_timeout_us() are now correctly honored (previously they were a 1μs minimum).

stdio_usb

• The use of a 1ms timer to handle background TinyUSB work has been replaced with use of a more interrupt driven

approach using a user IRQ for better performance. Note this new feature is disabled if shared IRQ handlers are

disabled via PICO_DISABLE_SHARED_IRQ_HANDLERS=1

Miscellaneous

• get_core_num() has been moved to pico/platform.h from hardware/sync.h.

• The C library function realloc() is now multicore safe too.

• The minimum PLL frequency has been increased from 400Mhz to 750Mhz to improve stability across operating

Raspberry Pi Pico-series C/C++ SDK

Release 1.4.0 (30/Jun/2022) 623

conditions. This should not affect the majority of users in any way, but may impact those trying to set particularly

low clock frequencies. If you do wish to return to the previous minimum, you can set PICO_PLL_VCO_MIN_FREQ_MHZ back

to 400. There is also a new PICO_PLL_VCO_MAX_FREQ_MHZ which defaults to 1600.

Build

• Compilation with GCC 12 is now supported.

Release 1.5.0 (11/Feb/2023)

This release contains new libraries and functionality, along with numerous bug fixes and documentation improvements.

Highlights are listed below, or you can see the full list of individual commits here, and the full list of resolved issues

here.

New Board Support

The following boards have been added and may be specified via PICO_BOARD:

• nullbits_bit_c_pro

• waveshare_rp2040_lcd_1.28

• waveshare_rp2040_one

Library Changes/Improvements

hardware_clocks

• clock_gpio_init() now takes a float for the clock divider value, rather than an int.

• Added clock_gpio_init_int_frac() function to allow initialization of integer and fractional part of the clock divider

value, without using float.

• Added --ref-min option to vcocalc.py to override the minimum reference frequency allowed.

• vcocalc.py now additionally considers reference frequency dividers greater than 1.

hardware_divider

• Improved the performance of hw_divider_ functions.

hardware_dma

• Added dma_sniffer_set_output_invert_enabled() and dma_sniffer_set_output_reverse_enabled() functions to configure

the DMA sniffer.

• Added dma_sniffer_set_data_accumulator() and dma_sniffer_get_data_accumulator() functions to access the DMA

sniffer accumulator.

Raspberry Pi Pico-series C/C++ SDK

Release 1.5.0 (11/Feb/2023) 624

https://github.com/raspberrypi/pico-sdk/pulls?q=is%3Apr+milestone%3A1.5.0+is%3Amerged
https://github.com/raspberrypi/pico-sdk/issues?q=is%3Aissue+milestone%3A1.5.0+is%3Aclosed

hardware_i2c

• Added i2c_get_instance() function for consistency with other hardware_ libraries.

• Added i2c_read_byte_raw(), i2c_write_byte_raw() functions to directly read and write the I2C data register for an I2C

instance.

hardware_timer

• Added hardware_alarm_claim_unused() function to claim an unused hardware timer.

pico_cyw43_arch

• Added cyw43_arch_wifi_connect_bssid_ variants of cyw43_arch_wifi_connect_ functions to allow connection to a

specific access point.

• Blocking cyw43_arch_wifi_connect_ functions now continue trying to connect rather than failing immediately if the

network is not found.

• cyw43_arch_wifi_connect_ functions now return consistent return codes (PICO_OK, or PICO_ERROR_XXX).

• The pico_cyw43_arch library has been completely rewritten on top of the new pico_async_context library that

generically abstracts the different types of asynchronous operation (poll, threadsafe_background and freertos)

previously handled in a bespoke fashion by pico_cyw43_arch. Many edge case bugs have been fixed as a result of

this. Note that this change should be entirely backwards compatible from the user point of view.

• cyw43_arch_init() and cyw43_arch_deinit() functions are now very thin layers which handle async_context life-cycles,

along with adding support for the cyw43_driver, lwIP, BTstack etc. to that async_context. Currently, these

mechanisms remain the preferred documented way to initialize Pico W networking, however you are free to do

similar initialization/de-initialization yourself.

• Added cyw43_arch_set_async_context() function to specify a custom async_context prior to calling cyw43_arch_init*()

• Added cyw43_arch_async_context() function to get the async_context used by the CYW43 architecture support.

• Added cyw43_arch_init_default_async_context() function to return the async_context that cyw43_arch_init*() would

initialize if one has not been set by the user.

• Added cyw43_arch_wait_for_work_until() function to block until there is networking work to be done. This is most

useful for poll style applications that have no other work to do and wish to sleep until cyw43_arch_poll() needs to be

called again.

pico_cyw43_driver

• The functionality has been clarified into 3 separate libraries:

◦ cyw43_driver - the raw cyw43_driver code.

◦ cyw43_driver_picow - additional support for communication with the Wi-Fi chip over SPI on Pico W.

◦ pico_cyw43_driver - integration of the cyw43_driver with the pico-sdk via async_context

• Added CYW43_WIFI_NVRAM_INCLUDE_FILE define to allow user to override the NVRAM file.

pico_divider

• Improved the performance of 64-bit divider functions.

Raspberry Pi Pico-series C/C++ SDK

Release 1.5.0 (11/Feb/2023) 625

pico_platform

• Add panic_compact() function that discards the message to save space in non-debug (NEBUG defined) builds.

pico_runtime

• Added proper implementation of certain missing newlib system APIs: _gettimeofday(), _times(), _isatty(), _getpid().

• The above changes enable certain additional C/C++ library functionality such as gettimeofday(), times() and

std::chrono.

• Added settimeofday() implementation such that gettimeofday() can be meaningfully used.

• Added default (return -1) implementations of the remaining newlib system APIs: _open(), _close(), _lseek(), _fstat(),

_isatty(), _kill(), to prevent warnings on GCC 12.

• Made all newlib system API implementations weak so the user can override them.

pico_stdio

• pico_stdio allows for outputting from within an IRQ handler that creates the potential for deadlocks (especially with

pico_stdio_usb), and the intention is to not deadlock but instead discard output in any cases where a deadlock

would otherwise occur. The code has been revamped to avoid more deadlock cases, and a new define

PICO_STDIO_DEADLOCK_TIMEOUT_MS has been added to catch remaining cases that might be caused by user level locking.

• Added stdio_set_chars_available_callback() function to set a callback to be called when input is available. See also

the new PICO_STDIO_USB_SUPPORT_CHARS_AVAILABLE_CALLBACK and PICO_STDIO_UART_SUPPORT_CHARS_AVAILABLE_CALLBACK defines

which both default to 1 and control the availability of this new feature for USB and UART stdio respectively (at the

cost of a little more code).

• Improved performance of stdio_semihosting.

• Give the user more control over the USB descriptors of stdio_usb via USBD_VID, USBD_PID, USBD_PRODUCT,

PICO_STDIO_USB_CONNECTION_WITHOUT_DTR and PICO_STDIO_USB_DEVICE_SELF_POWERED

pico_sync

• Added critical_section_is_initialized() function to test if a critical section has been initialized.

• Added mutex_try_enter_block_until() function to wait only up to a certain time to acquire a mutex.

pico_time

• Added from_us_since_boot() function to convert a uint64_t timestamp to an absolute_time_t.

• Added absolute_time_min() function to return the earlier of two absolute_time_t values.

• Added alarm_pool_create_with_unused_hardware_alarm() function to create an alarm pool using a hardware alarm

number claimed using hardware_alarm_claim().

• Added alarm_pool_core_num() function to determine what core an alarm pool runs on.

• Added alarm_pool_add_alarm_at_force_in_context() function to add an alarm, and have it always run in the IRQ

context even if the target time is in the past, or during the call. This may be simpler in some cases than dealing

with the fire_if_past parameters to existing functions, and avoids some callbacks happening from non-IRQ

context.

Raspberry Pi Pico-series C/C++ SDK

Release 1.5.0 (11/Feb/2023) 626

pico_lwip

• Added pico_lwip_mqtt library to expose the MQTT app functionality in lwIP.

• Added pico_lwip_mdns library to expose the MDNS app functionality in lwIP.

• Added pico_lwip_freertos library for NO_SYS=0 with FreeRTOS as a complement to pico_lwip_nosys for NO_SYS=1.

TinyUSB

• TinyUSB has upgraded from 0.12.0 to 0.15.0. See TinyUSB release notes here for details.

• Particularly host support should be massively improved.

• Defaulted new TinyUSB dcd_rp2040 driver’s TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX variable to 1 as a workaround for

errata RP2040-E15. This fix is required for correctness, but comes at the cost of some performance, so

applications that won’t ever be plugged into a Pi 4 or Pi 400 can optionally disable this by setting the value of

TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX to 0 either via target_compile_definitions in their CMakeLists.txt or in their

tusb_config.h.

New Libraries

pico_async_context

• Provides support for asynchronous events (timers/IRQ notifications) to be handled in a safe context without

concurrent execution (as required by many asynchronous 3rd party libraries).

• Provides implementations matching those previously implemented in pico_cyw43_arch:

◦ poll - Not thread-safe; the user must call async_context_poll() periodically from their main loop, but can call

async_context_wait_for_work_until() to block until work is required.

◦ threadsafe_background - No polling is required; instead asynchronous work is performed in a low priority IRQ.

Locking is provided such that IRQ/non-IRQ or multiple cores can interact safely.

◦ freertos - Asynchronous work is performed in a separate FreeRTOS task.

• async_context guarantees all callbacks happen on a single core.

• async_context supports multiple instances for providing independent context which can execute concurrently with

respect to each other.

pico_i2c_slave

• A (slightly modified) pico_i2c_slave library from https://github.com/vmilea/pico_i2c_slave

• Adds a callback style event API for handling I2C slave requests.

pico_mbedtls

• Added pico_mbedtls library to provide MBed TLS support. You can depend on both pico_lwip_mbedtls and pico_mbedtls

to use MBed TLS and lwIP together. See the tls_client example in pico-examples for more details.

pico_rand

• Implements a new Random Number Generator API.

Raspberry Pi Pico-series C/C++ SDK

Release 1.5.0 (11/Feb/2023) 627

https://github.com/hathach/tinyusb/releases
https://github.com/vmilea/pico_i2c_slave
https://github.com/raspberrypi/pico-examples/tree/master/pico_w/wifi/tls_client.c

• pico_rand generates random numbers at runtime utilizing a number of possible entropy sources, and uses those

sources to modify the state of a 128-bit 'Pseudo Random Number Generator' implemented in software.

• Adds get_rand_32(), get_rand_64() and get_rand_128() functions to return largely unpredictable random numbers

(which should be different on each board/run for example).

Miscellaneous

• Added a new header hardware/structs/nvic.h with a struct for the Arm Cortex M0+ NVIC available via the nvic_hw

pointer.

• Added new PICO_CXX_DISABLE_ALLOCATION_OVERRIDES which can be set to 1 if you do not want pico_standard_link to

include non-exceptional overrides of std::new, std::new[], std::delete and std::delete[] when exceptions are

disabled.

• elf2uf2 now correctly uses LMA instead of VMA of the entry point to determine binary type (flash/RAM). This is

required to support some exotic binaries correctly.

Build

• The build will now check for a functional compiler via the standard CMake mechanism.

• The build will pick up pre-installed elf2uf2 and pioasm if found via an installed pico-sdk-tools CMake package. If it can

do so, then no native compiler is required for the build!

• It is now possible to switch the board type PICO_BOARD in an existing CMake build directory.

• ARCHIVE_OUTPUT_DIRECTORY is now respected in build for UF2 output files.

• Spaces are now supported in the path to the pico-sdk

• All libraries xxx in the pico-sdk now support a xxx_headers variant that just pulls in the libraries' headers. These

xxx_headers libraries correctly mirror the dependencies of the xxx libraries, so you can use xxx_headers instead of xxx

as your dependency if you do not want to pull in any implementation files (perhaps if you are making a STATIC

library). Actually the "all" is not quite true, non-code libraries such as pico_standard_link and pico_cxx_options are an

exception.

Bluetooth Support for Pico W (BETA)

The support is currently available as a beta. More details will be forthcoming with the actual release. In the meantime,

there are examples in pico-examples.

Key changes:

• The Bluetooth API is provided by BTstack.

• The following new libraries are provided that expose core BTstack functionality:

◦ pico_btstack_ble - Adds Bluetooth Low Energy (LE) support.

◦ pico_btstack_classic - Adds Bluetooth Classic support.

◦ pico_btstack_sbc_encoder - Adds Bluetooth Sub Band Coding (SBC) encoder support.

◦ pico_btstack_sbc_decoder - Adds Bluetooth Sub Band Coding (SBC) decoder support.

◦ pico_btstack_bnep_lwip - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using LwIP.

◦ pico_btstack_bnep_lwip_sys_freertos - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using

LwIP with FreeRTOS for NO_SYS=0.

• The following integration libraries are also provided:

Raspberry Pi Pico-series C/C++ SDK

Release 1.5.0 (11/Feb/2023) 628

https://github.com/raspberrypi/pico-examples#pico-w-bluetooth
https://github.com/bluekitchen/btstack

◦ pico_btstack_run_loop_async_context - provides a common async_context backed implementation of a BTstack

"run loop" that can be used for all BTstack use with the pico-sdk.

◦ pico_btstack_flash_bank - provides a sample implementation for storing required Bluetooth state in flash.

◦ pico_btstack_cyw43 - integrates BTstack with the CYW43 driver.

• Added CMake function pico_btstack_make_gatt_header that can be used to run the BTstack compile_gatt tool to make a

GATT header file from a BTstack GATT file.

• Updated pico_cyw43_driver and cyw43_driver to support HCI communication for Bluetooth.

• Updated cyw43_driver_picow to support Pico W specific HCI communication for Bluetooth over SPI.

• Updated cyw43_arch_init() and cyw43_arch_deinit() to additionally handle Bluetooth support if CYW43_ENABLE_BLUETOOTH

is 1 (as it will be automatically if you depend on pico_btstack_cyw43).

Release 1.5.1 (14/Jun/2023)

This release is largely a bug fix release, however it also makes Bluetooth support official and adds some new libraries

and functionality.

Highlights are listed below, or you can see the full list of individual commits here, and the full list of resolved issues

here.

Board Support

The following board has been added and may be specified via PICO_BOARD:

• pololu_3pi_2040_robot

The following board configurations have been modified:

• adafruit_itsybitsy_rp2040 - corrected the mismatched PICO_DEFAULT_I2C bus number (favors the breadboard pins not

the stemma connector).

• sparkfun_thingplus - added WS2812 pin config.

Library Changes/Improvements

hardware_dma

• Added dma_channel_cleanup() function that can be used to clean up a dynamically claimed DMA channel after use,

such that it won’t be in a surprising state for the next user, making sure that any in-flight transfer is aborted, and no

interrupts are left pending.

hardware_spi

• The spi_set_format, spi_set_slave, spi_set_baudrate functions that modify the configuration of an SPI instance, now

disable the SPI while changing the configuration as specified in the data sheet.

pico_async_context

• Added user_data member to async_when_pending_worker_t to match async_at_time_worker_t.

Raspberry Pi Pico-series C/C++ SDK

Release 1.5.1 (14/Jun/2023) 629

https://github.com/raspberrypi/pico-sdk/pulls?q=is%3Apr+milestone%3A1.5.1+is%3Amerged
https://github.com/raspberrypi/pico-sdk/issues?q=is%3Aissue+milestone%3A1.5.1+is%3Aclosed

pico_cyw43_arch

• Added cyw43_arch_disable_sta_mode() function to complement cyw43_arch_enable_sta_mode().

• Added cyw43_arch_disable_ap_mode() function to complement cyw43_arch_enable_ap_mode().

pico_stdio_usb

• The 20-character limit for descriptor strings USBD_PRODUCT and USBD_MANUFACTURER can now be extended by defining

USBD_DESC_STR_MAX.

• PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS is now supported in the build as well as compiler definitions; if it is set in the

build, it is added to the compile definitions.

pico_rand

• Fixed poor randomness when PICO_RAND_ENTROPY_SRC_BUS_PERF_COUNTER=1.

PLL and Clocks

• The set_sys_clock_pll and set_sys_clock_khz methods now reference a pre-processor define

PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK. If set to 1, the peripheral clock is updated to match the new system

clock, otherwise the preexisting behavior (of setting the peripheral clock to a safe 48Mhz) is preserved.

• Support for non-standard crystal frequencies, and compile-time custom clock configurations:

◦ The new define XOSC_KHZ is used in preference to the preexisting XOSC_MHZ to define the crystal oscillator

frequency. This value is now also correctly plumbed through the various clock setup functions, such that they

behave correctly with a crystal frequency other than 12Mhz. XOSC_MHZ will be automatically defined for

backwards compatibility if XOSC_KHZ is an exact multiple of 1000 Khz. Note that either XOSC_MHZ or XOSC_KHZ may

be specified by the user, but not both.

◦ The new define PLL_COMMON_REFDIV can be specified to override the default reference divider of 1.

◦ The new defines PLL_SYS_VCO_FREQ_KHZ, PLL_SYS_POSTDIV1 and PLL_SYS_POSTDIV2 are used to configure the system

clock PLL during runtime initialization. These are defaulted for you if SYS_CLK_KHZ=125000, XOSC_KHZ=12000 and

PLL_COMMON_REFDIV=1. You can modify these values in your CMakeLists.txt if you want to configure a different

system clock during runtime initialization, or are using a non-standard crystal.

◦ The new defines PLL_USB_VCO_FREQ_KHZ, PLL_USB_POSTDIV1 and PLL_USB_POSTDIV2 are used to configure the USB

clock PLL during runtime initialization. These are defaulted for you if USB_CLK_KHZ=48000, XOSC_KHZ=12000 and

PLL_COMMON_REFDIV=1. You can modify these values in your CMakeLists.txt if you want to configure a different

USB clock if you are using a non-standard crystal.

◦ The new define PICO_PLL_VCO_MIN_FREQ_KHZ is used in preference to the pre-existing PICO_PLL_VCO_MIN_FREQ_MHZ,

though specifying either is supported.

◦ The new define PICO_PLL_VCO_MAX_FREQ_KHZ is used in preference to the pre-existing PICO_PLL_VCO_MAX_FREQ_MHZ,

though specifying either is supported.

New Libraries

pico_flash

• This is a new higher level library than hardware_flash. It provides helper functions to facilitate getting into a state

where it is safe to write to flash (the default implementation disables interrupts on the current core, and if

necessary, makes sure the other core is running from RAM, and has interrupts disabled).

Raspberry Pi Pico-series C/C++ SDK

Release 1.5.1 (14/Jun/2023) 630

• Adds a flash_safe_execute() function to execute a callback function while in the "safe" state.

• Adds a flash_safe_execute_core_init() function which must be called from the "other core" when using

pico_multicore to enable the cooperative support for entering a "safe" state.

• Supports user override of the mechanism by overriding the get_flash_safety_helper() function.

Miscellaneous

• All assembly (including inline) in the SDK now uses the unified syntax.

◦ New C macros pico_default_asm(…) and pico_default_asm_volatile(…) are provided that are equivalent to

asm andasm volatile blocks, but with a .syntax unified at the beginning.

• A new assembler macro pico_default_asm_setup is provided to configure the correct CPU and dialect.

• Some code cleanup to make the SDK code at least compile cleanly on Clang and IAR.

Build

• PICO_BOARD and PICO_BOARD_HEADER_DIRS now correctly use the latest environment variable value if present.

• A CMake performance regression due to repeated calls to find_package has been fixed.

• Experimental support is provided for compiling with Clang. As an example, you can build with the LLVM Embedded

Toolchain for Arm, noting however that currently only version 14.0.0 works, as later versions use picolib rather

than newlib.

◦ Note that if you are using TinyUSB you need to use the latest master to compile with Clang.

$ mkdir clang_build
$ cd clang_build
$ cmake -DPICO_COMPILER=pico_arm_clang -DPICO_TOOLCHAIN_PATH=/path/to/arm-embedded-llvm
-14.0.0 ..
$ make

Bluetooth Support for Pico W

The support is now official. Please find examples in pico-examples.

• The Bluetooth API is provided by BTstack.

• The following libraries are provided that expose core BTstack functionality:

◦ pico_btstack_ble - Adds Bluetooth Low Energy (LE) support.

◦ pico_btstack_classic - Adds Bluetooth Classic support.

◦ pico_btstack_sbc_encoder - Adds Bluetooth Sub Band Coding (SBC) encoder support.

◦ pico_btstack_sbc_decoder - Adds Bluetooth Sub Band Coding (SBC) decoder support.

◦ pico_btstack_bnep_lwip - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using LwIP.

◦ pico_btstack_bnep_lwip_sys_freertos - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using

LwIP with FreeRTOS for NO_SYS=0.

• The following integration libraries are also provided:

◦ pico_btstack_run_loop_async_context - provides a common async_context backed implementation of a BTstack

"run loop" that can be used for all BTstack use with the pico-sdk.

Raspberry Pi Pico-series C/C++ SDK

Release 1.5.1 (14/Jun/2023) 631

https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://github.com/raspberrypi/pico-examples#pico-w-bluetooth
https://github.com/bluekitchen/btstack

◦ pico_btstack_flash_bank - provides a sample implementation for storing required Bluetooth state in flash.

◦ pico_btstack_cyw43 - integrates BTstack with the CYW43 driver.

• The CMake function pico_btstack_make_gatt_header can be used to run the BTstack compile_gatt tool to make a GATT

header file from a BTstack GATT file.

• pico_cyw43_driver and cyw43_driver now support HCI communication for Bluetooth.

• cyw43_driver_picow now supports Pico W specific HCI communication for Bluetooth over SPI.

• cyw43_arch_init() and cyw43_arch_deinit() automatically handle Bluetooth support if CYW43_ENABLE_BLUETOOTH is 1 (as it

will be automatically if you depend on pico_btstack_cyw43).

Key changes since 1.5.0:

• Added Raspberry Pi specific BTstack license.

• The storage offset in flash for pico_btstack_flash_bank can be specified at runtime by defining

pico_flash_bank_get_storage_offset_func to your own function to return the offset within flash.

• pico_btstack_flash_bank is now safe for multicore / FreeRTOS SMP use, as it uses the new pico_flash library to make

sure the other core is not accessing flash during flash updates. If you are using pico_multicore you must have

called flash_safe_execute_core_init from the "other" core (to the one Bluetooth is running on).

• Automatically set Bluetooth MAC address to the correct MAC address (Wi-Fi MAC address + 1), as some devices

do not have it set in OTP and were using the same default MAC from the Bluetooth chip causing collisions.

• Various bug-fixes and stability improvements (especially with concurrent Wi-Fi), including updating cyw43_driver

and btstack to the newest versions.

Release 2.0.0 (08/Aug/2024)

This is a major release which adds support for the new RP2350 and for compiling RISC-V code in addition to Arm.

• There is a lot of new functionality in the RP2350 microcontroller, it is recommended that you read the RP2350

Datasheet

• There is a lot of new functionality in the SDK, it is also worth reading the Raspberry Pi Pico-series C/C++ SDK book.

This also includes documentation for RP2040 and RP2350 APIs, along with much more complete documentation

of SDK #defines and CMake build variables.

Notices

• You should delete/recreate all build directories when upgrading from previous versions of the Raspberry Pi Pico

SDK

Major New Features

Support for RP2350

Many programs you have written for RP2040 (say a Raspberry Pi Pico) should work unmodified on RP2350 (say a

Raspberry Pi Pico 2) even when compiled for RISC-V.

• You can now specify rp2350-arm-s (Arm Secure) or rp2350-riscv (RISC-V) as well as the previous rp2040 (default) and

host.

• Setting PICO_BOARD=some_board will now set PICO_PLATFORM if one is specified in some_board.h since most boards either

use exclusively RP2040 or RP2350.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 632

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/LICENSE.RP
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

• PICO_PLATFORM also supports rp2350 but this gets replaced with the value PICO_DEFAULT_RP2350_PLATFORM which you can

set in your environment or CMakeLists.txt. Many of the boards for RP2350 - including pico2- select rp2350 as the

PICO_BOARD to honour your preference.

• NOTE: This release of the SDK does not support writing Arm Non-Secure binaries to run under the wing of an Arm

Secure binary. This support will be added in a subsequent release.

Security and Code Signing

• The RP2350 bootrom contains support for signed images and a variety of other security features. The SDK

supports building signed images etc. as part of the CMake build. For further information, please read RP2350

Datasheet "Bootrom Concepts" section, and also the Raspberry Pi Pico-series C/C++ SDK book for details on

configuring your build to sign code. Note that signed code is only applicable to chips that have been locked down

for security, but you can also hash your image for integrity checking.

Board Support

The following boards have been added and may be specified via PICO_BOARD:

• defcon32_badge

• gen4_rp2350_24

• gen4_rp2350_24ct

• gen4_rp2350_24t

• gen4_rp2350_28

• gen4_rp2350_28ct

• gen4_rp2350_28t

• gen4_rp2350_32

• gen4_rp2350_32ct

• gen4_rp2350_32t

• gen4_rp2350_35

• gen4_rp2350_35ct

• gen4_rp2350_35t

• hellbender_2350A_devboard

• ilabs_challenger_rp2350_bconnect

• ilabs_challenger_rp2350_wifi_ble

• melopero_perpetuo_rp2350_lora

• phyx_rick_tny_rp2350

• pico2

• pimoroni_pga2350

• pimoroni_pico_plus2_rp2350

• pimoroni_plasma2350

• pimoroni_tiny2350

• seeed_xiao_rp2350

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 633

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

• solderparty_rp2350_stamp

• solderparty_rp2350_stamp_xl

• sparkfun_promicro_rp2350

• switchscience_picossci2_conta_base

• switchscience_picossci2_dev_board

• switchscience_picossci2_micro

• switchscience_picossci2_rp2350_breakout

• switchscience_picossci2_tiny

• tinycircuits_thumby_color_rp2350

New Libraries

hardware_boot_lock (RP2350)

• New library for accessing the BOOT locks from secure code.

hardware_dcp (RP2350 Arm)

• Contains assembler macros for individual DCP (Double Co-Processor) instructions

• Contains assembler macros for canned instruction sequences for higher-level operations

• HAS_DOUBLE_COPROCESSOR define indicates hardware support

hardware_hazard3 (RP2350 RISC-V)

• Assembler macros and inline functions for accessing Hazard3 extensions

hardware_powman (RP2350)

• Hardware APIs for the Power Management hardware.

• HAS_POWMAN_TIMER define indicates hardware support.

hardware_rcp (RP2350 Arm)

• Contains inline functions and assembler macros for the RCP (Redundancy Co-Processor) instructions.

• HAS_REDUNDANCY_COPROCESSOR define indicates hardware support.

hardware_riscv_platform_timer (RP2350)

• Hardware APIs for the RISC-V Platform Timer (which is also made available on Arm).

hardware_sha256 (RP2350)

• Hardware APIs for the SHA256 hashing hardware.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 634

hardware_ticks

• Hardware APIs for the RP2350 tick generators.

• On RP2040 the same API is used, but only one tick generator TICK_WATCHDOG is used, which is backed by the

hardware in the RP2040 WatchDog hardware.

pico_aon_timer

• Abstraction for a hardware timer that is "Always-On", and can wake the processor up even from a low power state

at a given time.

◦ On RP2040 this uses the RTC.

◦ On RP2350 this uses the Powman Timer.

pico_atomic

• Additional support for C11 atomic functions using spin lock number PICO_SPINLOCK_ID_ATOMIC.

◦ On RP2040, all functions are implemented via spinlock.

◦ On RP2350, only 64-bit or arbitrary-sized atomics are implemented via spin lock; the rest use processor

exclusive/atomic instructions.

▪ Note ACTLR.EXTEXCLALL must be set to 1 on each processor for the exclusive instructions to work. This is

done automatically in the SDK by one of the per-core initializers in pico_runtime_init.

• Included by pico_runtime by default.

pico_boot_lock (RP2350)

• Support for acquiring and releasing locks to prevent concurrent use of hardware resources used by bootrom

functions.

• Enabled via PICO_BOOTROM_LOCKING_ENABLED which defaults to 1 on RP2350.

• Some bootrom functions use shared resources such as the single SHA256 or put hardware such as the OTP or XIP

interface into a state that cannot execute concurrently with certain other code. The bootrom supports checking

that the resource is owned, and this library turns that checking on.

• The bootrom function wrappers in pico_bootrom call the functions in pico_boot_lock around affected bootrom

functions, and thus will take and release locks if PICO_BOOTROM_LOCKING_ENABLED=1.

• NUM_BOOT_LOCKS define indicates the number of boot locks (8 on 'RP2350', 0 on 'RP2040').

pico_clib_interface

• New library to encapsulate the interface between the SDK and the C library.

• Supports

◦ newlib (full).

◦ picolibc (preview).

◦ llvm-libc(preview).

• Included by pico_runtime by default.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 635

pico_crt0

• New library split out of pico_standard_link to encapsulate the earliest startup code before the runtime initialisation,

and shutdown code after the runtime.

• Repository for the default RP2040 and RP2350 linker scripts.

◦ The flash size specified in the board header is now used when linking which is handy if you have >2MB of

flash and >2MB of code/data.

◦ Note: The linker scripts have changed since the previous release of the SDK. If you have custom linker scripts,

it is recommended that you update them to match.

▪ In particular the new linker scripts include an "embedded block" which is required for a binary to boot on

RP2350.

▪ __HeapLimit is now defined to be the end of RAM rather than the end of a PICO_HEAP_SIZE chunk, to better

match the standard behaviour. PICO_HEAP_SIZE is the minimum heap size required, and space is required

for it at link time. sbrk in the previous SDK ignored it anyway and used the end of RAM so there is no

functional change there.

• Included by pico_runtime by default

pico_cxx_options

• New library split out of pico_standard_link to configure C++ options.

• Included by pico_standard_link by default.

pico_platform_compiler

• New library split out of pico_platform with the functions/macros related to the compiler.

• Included by pico_platform by default.

pico_platform_panic

• New library split out of pico_platform with the panic function implementation.

• Included by pico_platform by default.

pico_platform_sections

• New library split out of pico_platform with the section macros such as __not_in_flash_func.

• Included by pico_platform by default.

pico_runtime_init

• Contains the standard initialisers that should get run before main, or per core.

• Unlike in the previous SDK version where runtime_init() was a monolithic function which also called some

__preinit_array initialisers, the new runtime_init library:

◦ Separates each initialiser out individually, for say initialiser "foo".

▪ Defines PICO_RUNTIME_INIT_FOO which is a "12345" line number ordering of the initialiser with respect to

others.

▪ Declares runtime_init_foo() which is the actual initialiser.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 636

▪ If PICO_RUNTIME_SKIP_INIT_FOO is not set, it adds the initialiser entry to call runtime_init_foo() before main (or

per core initialisation).

▪ If PICO_RUNTIME_NO_INIT_FOO is not set, it adds the (weak) implementation of runtime_init_foo().

▪ This gives the user full control to customise runtime initialisation, either skipping or replacing parts.

• Included by pico_runtime by default.

pico_sha256

• High level APIs for generating SHA256 hashes both synchronously and asynchronously

pico_standard_binary_info

• New library split out of pico_standard_link that adds the "common" binary info items to the binary.

• Included by pico_standard_link by default.

Library Changes / Improvements

Note that all hardware libraries now support the increased number of GPIOs on RP2350B in APIs that take a GPIO

number; this is not noted for every library.

pico_base

• More error return codes were added to pico/error.h, mostly because these are the same values returned by RP2350

bootrom API functions, but also a number of new SDK APIs also return meaningful errors.

• In pico/types.h, by popular demand, absolute_time_t now always defaults to uint64_t regardless of the type of build.

You can set PICO_OPAQUE_ABSOLUTE_TIME_T=1 to make it a struct in all build types.

pico_binary_info

• Now supports > 32 GPIO pins when PICO_BINARY_INFO_USE_PINS_64=1 - this is defaulted for you based on the number

of GPIOs on the board.

hardware_adc

• PARAM_ASSERTIONS_ENABLED_ADC is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_ADC - the old define is still supported as

a fallback.

• ADC_TEMPERATURE_CHANNEL_NUM added since this value varies between RP2040 and RP2350.

hardware_clocks

• set_sys_clock_ functions are now in hardware/clocks.h.

• Clock configuration.

◦ PLL_COMMON_REFDIV is deprecated in favour of PLL_SYS_REFDIV and PLL_USB_REFDIV.

◦ PLL_SYS_VCO_FREQ_HZ is new and preferred over PLL_SYS_VCO_FREQ_KHZ.

◦ PLL_USB_VCO_FREQ_HZ is new and preferred over PLL_USB_VCO_FREQ_KHZ.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 637

◦ XOSC_HZ, SYS_CLK_HZ, USB_CLK_HZ now added, and take preference over the still supported XOSC_KHZ, SYS_CLK_KHZ, and

USB_CLK_KHZ.

◦ set_sys_clock_hz() and check_sys_clock_hz() added.

◦ clock_configure_undivided() and clock_configure_int_divider() for no divisor or a whole integer divider as the

code doesn’t require 64-bit arithmetic and thus saves space.

◦ The enum clock_index no longer exists and has been replaced with clock_num_t. However, all clock functions

now take clock_handle_t to allow for future enhancement. This is currently just an alias for clock_num_t

◦ vcocalc.py can now be used to generate the CMake configuration for a particular clock setting.

◦ The default system clock on RP2350 is 150Mhz.

hardware_divider

• Since the RP2350 processors have efficient divider instructions, RP2350 has no SIO HW Divider. Software versions

of the hardware_divider functions are provided for RP2350.

• HAS_SIO_DIVIDER define is now provided for you.

hardware_dma

• PARAM_ASSERTIONS_ENABLED_DMA is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_DMA - the old define is still supported as

a fallback.

• Added dma_get_irq_num()`function and `DMA_IRQ_NUM() macro to return the process IRQ Number for the n th DMA IRQ.

• NUM_DMA_IRQS define is provided for you.

◦ it is 2 on RP2040 and 4 on RP2350.

hardware_exception

• PARAM_ASSERTIONS_ENABLED_EXCEPTION is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_EXCEPTION - the old define is still

supported as a fallback.

• Added RISC-V support.

◦ exception numbers are processor exception cause numbers.

• exeception_[get|set]_priority() are added for Arm.

hardware_flash

• PARAM_ASSERTIONS_ENABLED_FLASH is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_FLASH - the old define is still

supported as a fallback.

• flash_flush_cache() is added.

hardware_gpio

• PARAM_ASSERTIONS_ENABLED_GPIO is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_GPIO - the old define is still supported

as a fallback.

• The enum gpio_function no longer exists and has been replaced with gpio_function_t.

• gpio_xxx_masked() functions now have a gpio_xxx_masked64() variant that takes a 64-bit mask of GPIO indexes.

• gpio_xxx_mask() functions now have a gpio_xxx_mask64() variant that takes a 64-bit mask of GPIO indexes.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 638

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/scripts/vcocalc.py

• gpio_get_all64() added to read the state of >32 pins.

• gpio_put_all64() added to write the state of >32 pins.

• On Arm RP2350 GPIO Co-Processor instructions are used by default. This is controlled via

PICO_USE_GPIO_COPROCESSOR.

• HAS_GPIO_COPROCESSOR define indicates hardware support.

hardware_i2c

• PARAM_ASSERTIONS_ENABLED_I2C is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_I2C - the old define is still supported as

a fallback.

• PICO_DEFAULT_I2C_INSTANCE() macro added which is equivalent to the pre-existing i2c_default

• Added I2C_NUM(), I2C_INSTANCE(), I2C_DREQ_NUM() macros to abstract differences between platforms.

• Fixed per-character timeouts.

hardware_interp

• PARAM_ASSERTIONS_ENABLED_INTERP is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_INTERP - the old define is still

supported as a fallback.

hardware_irq

• PARAM_ASSERTIONS_ENABLED_IRQ is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_IRQ - the old define is still supported as

a fallback.

• irq_xxx_mask_xxx() functions now have a gpio_xxx_mask_n_xxx() variant that affects the n th set of 32 IRQs

• Expose runtime_init_per_core_irq_priorities() function

• Added irq_set_riscv_vector_handler() function to replace code entries in the machine vector table.

hardware_pio

• PARAM_ASSERTIONS_ENABLED_PIO is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_PIO - the old define is still supported as

a fallback.

• PICO_PIO_VERSION is used to determine whether new RP2350 functionality (PICO_PIO_VERSION=1) is supported. This is

defaulted based on the platform.

• PICO_PIO_USE_GPIO_BASE is used to determine whether support is enabled for GPIOs above 32. TThe default value is

set based on the chip package.

• Added pio_sm_set_jmp_pin().

• Added pio_claim_free_sm_and_add_program(), pio_claim_free_sm_and_add_program_for_gpio_range() and

`pio_remove_program_and_unclaim_sm() to simplify finding and claiming a free PIO instance and state machine

and installing programs.

• Added `pio_get_irq_num()`function to return the process IRQ Number for the n th PIO IRQ for a PIO instance.

• Added PIO_NUM(), PIO_INSTANCE(), PIO_IRQ_NUM(), PIO_DREQ_NUM() and PIO_FUNCSEL_NUM() macros to abstract differences

between platforms.

• Added sm_config_set_out_pin_base() and sm_config_set_out_pin_count().

• Added sm_config_set_in_pin_base() and sm_config_set_in_pin_count(). Note the latter is only meaningful on

PICO_PIO_VERSION=1 which supports a limit.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 639

• Added sm_config_set_set_pin_base() and sm_config_set_set_pin_count().

• Added sm_config_set_sideset_pin_base() and sm_config_set_sideset_pin_count().

• For PICO_PICO_VERSION=1 i.e. RP2350:

◦ Added pio_set_gpio_base() and pio_get_gpio_base() to assign the PIO instance to pins 0-31 or 16-47.

◦ Added pio_set_sm_multi_mask_enabled().

◦ Added pio_clkdiv_restart_sm_multi_mask().

◦ Added pio_enable_sm_multi_mask_in_sync().

• NUM_PIO_IRQS define is now provided for you (2 on both RP2040 and RP2350).

hardware_pll

• PICO_PLL_VCO_MIN_FREQ_HZ is new and now preferred to PICO_PLL_VCO_MIN_FREQ_KHZ or PICO_PLL_VCO_MIN_FREQ_MHZ.

• PICO_PLL_VCO_MAX_FREQ_HZ is new and now preferred to PICO_PLL_VCO_MAX_FREQ_KHZ or PICO_PLL_VCO_MAX_FREQ_MHZ.

• PLL_RESET_NUM() macro added to abstract differences between platforms.

hardware_pwm

• PARAM_ASSERTIONS_ENABLED_PWM is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM - the old define is still supported as

a fallback.

• PICO_DEFAULT_PWM_INSTANCE() macro added which is equivalent to the pre-existing pwm_default.

• Added PWM_SLICE_NUM() and PWM_DREQ_NUM() macros to abstract differences between platforms.

• Added PWM_DEFAULT_IRQ_NUM() since RP2350 supports 2 PWM IRQs to indicate which IRQ the pre-existing RP2040

functions use.

• Added pwm_set_irq0_enabled(), pwm_set_irq1_enabled() and pwm_irqn_set_slice_enabled() to differentiate between the

IRQs.

• Added pwm_set_irq0_mask_enabled(), pwm_set_irq1_mask_enabled() and pwm_irqn_set_mask_enabled() to differentiate

between the IRQs.

• Added pwm_get_irq0_status_mask(), pwm_get_irq1_status_mask() and pwm_irqn_get_status_mask() to differentiate between

the IRQs.

• Added pwm_pwm_force_irq0(), pwm_force_irq1() and pwm_irqn_force() to differentiate between the IRQs.

hardware_resets

• PARAM_ASSERTIONS_ENABLED_RESETS is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_RESETS - the old define is still

supported as a fallback.

• reset_block() is renamed to reset_block_mask() but the old name is still supported.

• unreset_block() is renamed to unreset_block_mask() but the old name is still supported.

• unreset_block_wait() is renamed to unreset_block_mask_wait_blocking() but the old name is still supported.

• reset_block_num(), unreset_block_num(), unreset_block_num_wait_blocking() and reset_unreset_block_num_wait_blocking()

added to reset or unreset a single block by reset_num_t index.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 640

hardware_rtc

• Note this library is only available on RP2040, since the RP2350 lacks the RTC hardware.

• There is a similar always-on timer in hardware_powman.

• A common API for both RP2040 and RP2350 is provided in pico_aon_timer.

• HAS_RP2040_RTC define is now provided for you.

hardware_spi

• PARAM_ASSERTIONS_ENABLED_SPI is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_SPI - the old define is still supported as

a fallback.

• PICO_DEFAULT_SPI_INSTANCE() macro added which is equivalent to the pre-existing spi_default.

• Added SPI_NUM(), SPI_INSTANCE(), SPI_DREQ_NUM() macros to abstract differences between platforms.

• Fixed per-character timeouts.

hardware_sync

• restore_interrupts_from_disabled() is added as a variant for restore_interrupts() which must be paired with a

matching save_and_disable_interrupts(). This is the common usage and produces smaller/faster code on RISC-V.

• Spinlock functionality has been delegated to a separate hardware_sync_spinlock library, which is included for you.

• hardware_sync_spin_lock.

◦ Whilst RP2350 has the same SIO spin locks as RP2040, due to Errata RP2350-E2, these are not used by

default.

◦ Instead, a software implementation using atomic instructions is used.

◦ You can set PICO_USE_SW_SPIN_LOCKS=0 to disable this if you know you aren’t affected by RP2350-E2 and want to

use the h/w spin locks instead.

◦ Added spin_try_lock_unsafe() function.

hardware_timer

• PARAM_ASSERTIONS_ENABLED_TIMER is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_TIMER - the old define is still

supported as a fallback.

• RP2350 supports two timer instances.

◦ PICO_DEFAULT_TIMER_INSTANCE() macro added based on PICO_DEFAULT_TIMER (0 on RP2040, 0/1 on RP2350).

◦ Added TIMER_NUM(), TIMER_INSTANCE(), TIMER_ALARM_NUM_FROM_IRQ() and TIMER_ALARM_NUM_FROM_IRQ() macros to

abstract differences between platforms

◦ Added hardware_alarm_get_irq_num() to get the processor IRQ number for a particular alarm on a timer.

◦ New versions of all functions added with a timer_ prefix and a timer instance passed as the first argument.

The pre-existing functions call these with the default timer instance.

• NUM_TIMERS has been renamed to NUM_ALARMS as that’s what it was (4).

• NUM_GENERIC_TIMERS has been added which is 1 on RP2040 and 2 on RP2350.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 641

hardware_uart

• PARAM_ASSERTIONS_ENABLED_UART is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_UART - the old define is still supported

as a fallback.

• PICO_DEFAULT_UART_INSTANCE() macro added which is equivalent to the pre-existing uart_default.

• Added UART_NUM(), UART_INSTANCE(), UART_DREQ_NUM(), UART_IRQ_NUM(), UART_CLOCK_NUM(), UART_RESET_NUM(),

UART_FUNCSEL_NUM() macros to abstract differences between platforms.

• uart_set_irq_enables() is renamed to uart_set_irqs_enabled() but the old name is still supported.

• uart_get_dreq() is renamed to uart_get_dreq_num() but the old name is still supported.

• uart_get_reset_num() is added.

• Incorrect baud setting for certain frequencies was fixed.

hardware_vreg

• vreg_disable_voltage_limit() added to allow full range of DVDD voltage selection on RP2350

hardware_watchdog

• PARAM_ASSERTIONS_ENABLED_WATCHDOG is renamed to PARAM_ASSERTIONS_ENABLED_HARDWARE_WATCHDOG - the old define is still

supported as a fallback.

• Added watchdog_disable().

• watchdog_get_count() is renamed to watchdog_get_time_remaining_ms() but the old name is still supported. =====

hardware_xosc

• XOSC_HZ is new and now preferred to XOSC_KHZ.

hardware_regs

• enum irq_num_[rp2040|rp2350] (typedef-ed as irq_num_t) added with the constants from inctrl.h. Note these remain

as #defines when included from assembly.

• enum dreq_num_[rp2040|rp2350] (typedef-ed as dreq_num_t) added with the constants from dreq.h. Note these remain

as #defines when included from assembly.

hardware_structs

• enum bus_ctrl_perf_counter_[rp2040|rp2350] (typedef-ed as bus_ctrl_perf_counter_t) added.

◦ Note enum bus_ctrl_per_counter no longer exists.

• enum clock_num_[rp2040|rp2350] (typedef-ed as clock_num_t) added.

◦ Note enum clock_index no longer exists.

• enum clock_dest_num_[rp2040|rp2350] (typedef-ed as clock_dest_num_t) added.

• enum gpio_function_[rp2040|rp2350] (typedef-ed as gpio_function_t) added.

◦ Note enum gpio_function no longer exists.

• enum gpio_function1_[rp2040|rp2350] (typedef-ed as gpio_function1_t) added (for QSPI bank).

• enum reset_num_[rp2040|rp2350] (typedef-ed as reset_num_t) added.

• enum tick_gen_num_rp2350 (typedef-ed as reset_num_t) added.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 642

• Various naming consistencies have been fixed.

◦ iobank0.h → io_bank00.h, iobank0_hw → io_bank0_hw - shims are provided for the old versions.

◦ ioqspi.h → io_qspi0.h, ioqspi_hw → io_qspi_hw - shims are provided for the old versions.

◦ padsbank0.h → pads_bank0.h, padsbank0_hw → pads_bank0_hw - shims are provided for the old versions.

◦ padsqspi.h → pads_qspi.h, padsqspi_hw → pads_qspi_hw - shims are provided for the old versions.

◦ bus_ctrl.h → busctrl.h, bus_ctrl_hw → busctrl_hw (don’t ask! but hardware_struct headers now match

hardware_regs names at least!).

boot_stage2

• There are now separate implementations for RP2040 and RP2350.

• A boot_stage2 is not needed on RP2350, but one can be included via the define PICO_EMBED_XIP_SETUP=1.

cmsis

• CMSIS headers are updated to CMSIS 6.1

• Device headers RP2040.h and RP2350.h are generated, and now include basic hardware structures as per the latest

SVDConv defaults.

pico_bootrom

• New RP2350 bootrom APIs added.

• rom_xxx() inline function wrappers added for all xxx() ROM functions.

• Additional rom_get_boot_random() and rom_add_flash_runtime_partition() for RP2350 which use underlying bootrom

functionality but aren’t just wrapper functions.

pico_bt_stack

• BTStack updated to 1.6.1 from 1.5.6

◦ Lots of additions, fixes and changes, for the full list see the change log

pico_cyw43_arch

• PARAM_ASSERTIONS_ENABLED_CYW43_ARCH is renamed to PARAM_ASSERTIONS_ENABLED_PICO_CYW43_ARCH - the old define is still

supported as a fallback.

• lib/cyw43-driver has been updated to the latest version

◦ Mostly bug fixes.

◦ Adds WPA3 support for Pico W. To use this, use CYW43_AUTH_WPA3_SAE_AES_PSK or

CYW43_AUTH_WPA3_WPA2_AES_PSK instead of CYW43_AUTH_WPA2_AES_PSK when connecting to wifi

with cyw43_arch_wifi_connect_timeout_ms or cyw43_arch_enable_ap_mode.

pico_cyw43_driver

• cyw43_driver updated to commit faf36381.

• Added support for changing the clock speed of the SPI connection to the Wi-Fi chip. See CYW43_PIO_CLOCK_DIV_INT,

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 643

https://github.com/bluekitchen/btstack/blob/master/CHANGELOG.md

CYW43_PIO_CLOCK_DIV_FRAC and CYW43_PIO_CLOCK_DIV_DYNAMIC.

pico_divider

• Functions that returned a quotient and divider in a uint64_t or int64_t now return a divmod_result_t - the signed-ness

of the value before was meaningless anyway, and the compiler will still return it as a 64-bit value.

• Extra functions in pico/divider.h now implemented for pico_set_divider_implemtation(compiler) as well as for

RP2350 which has no RP2040 hardware divider.

pico_double

• pico_set_double_implementation(pico) (the default) now uses the Double Co-Processor (DCP) for double-precision

floating-point arithmetic on Arm RP2350, and highly optimised Arm VFP implementations of the double-precision

scientific functions, for much improved performance over the C library versions.

• Extra functions exposed from pico implementation

◦ int2double()

◦ uint2double()

◦ int642double()

◦ uint642double()

◦ double2uint()

◦ double2uint64()

• Extra functions exposed from pico implementation for Arm RP2350 only

◦ ddiv_fast()

◦ sqrt_fast()

◦ mla()

pico_float

• pico_set_float_implementation(pico) (the default) now uses the compiler for single-precision floating point arithmetic

on Arm RP2350 since the processor has VFP instructions, but includes custom optimised scientific functions also

using the VFP.

• pico_set_diouble_implementation(pico_dcp) uses the Double Co-Processor (DCP) for single-precision floating point

arithmetic on Arm RP2350, and highly optimised Arm M33 implementations of the single-precision scientific

functions, for much improved performance over the C library versions. This library is intended for those situations

where you cannot (or don’t want to) use the VFP instructions.

• Extra functions exposed from pico implementation.

◦ int2float()

◦ uint2float()

◦ int642float()

◦ uint642float()

◦ float2uint()

◦ float2uint64()

◦ float2uint_z()

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 644

◦ float2uint64_z()

• Extra functions exposed from pico implementation for Arm R2350 only.

◦ float2fix64_z()

◦ fdiv_fast()

◦ fsqrt_fast()

pico_lwip

• Update lib/lwip to 2.2.0

◦ There have been some bugs fixed, and some new features were added (most notably full Address Conflict

Detection support).

pico_mbedtls

• Update to lib/mbedtls to 2.28.8 from 2.28.1

◦ This release of Mbed TLS provides bug fixes and minor enhancements. This release includes fixes for

security issues.

• Added support for hardware SHA256 calculation on RP2350

◦ To use this in mbedtls you need to define MBEDTLS_SHA256_ALT in your mbedtls_config.h. Use

LIB_PICO_SHA256 to check if hardware SHA256 is supported and fallback to defining MBEDTLS_SHA256_C

for the software SHA256 calculation.

pico_multicore

• Added SIO_FIFO_IRQ_NUM() to get the IRQ number for the FIFO IRQ on a particular core, since RP2040 and RP2350

are different.

◦ note that RP2350 uses the same IRQ number on both cores, so if you have IRQ handlers for both cores, you

should share the same function and check the core number in the IRQ handler. This strategy of course works

on RP2040 too.

• Added multicore_fifo_push_blocking_inline() and multicore_fifo_pop_blocking_inline().

• Added multicore_doorbell_ functions for the new intercore Doorbells on RP2350.

◦ NUM_DOORBELLS is provided which is 8 on RP2350, 0 on RP2040.

pico_rand

• Added the hardware TRNG as an additional entropy source on RP2350.

◦ HAS_RP2350_TRNG indicates hardware support.

• Many, but not all, of the pre-existing entropy sources are disabled on RP2350 in favour of using the TRNG.

pico_runtime

• A shadow of its former self, it now just:

◦ aggregates other default libraries required for getting to main() and having the C runtime work.

◦ provides low level runtime_run_initializers() and runtime_run_per_core_initializers() which run initializers from

the __preinit_array.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 645

• The runtime_init() entrypoint has moved to pico_clib_interface.

pico_standard_link

• Much previously included functionality has been split out into pico_crt0, pico_cxx_options and

pico_standard_binary_info.

• What remains is entirely focused on setting up the linker configuration.

• Finally fixed a bug where changes to the linker script did not cause a relink.

pico_stdio

• Some internal reorganisation to separate functionality between here and pico_clib_interface.

• Added PICO_STDIO_SHORT_CIRCUIT_CLIB_FUNCS to control whether printf, vprintf, puts, putchar and getchar go thru the C

library (thus usually pulling in all the FILE handling APIs resulting in huge bloat - but more sensible behaviour when

mixing say printf with fprintf(stdout etc.) This defaults to 0, i.e. "do short-circuit the c lib" which was the behaviour

in the previous SDK version.

• Add support for Segger RTT stdio.

• Implemented stdio_flush() for UART and USB CDC.

• Added stdio_deinit_all() and individual stdio_deinit_xxx functions.

pico_stdio_usb

• Now supports MS OS2 descriptors by default. See PICO_STDIO_USB_RESET_INTERFACE_SUPPORT_MS_OS_20_DESCRIPTOR.

• PICO_STDIO_USB_ENABLE_RESET_VIA_VENDOR_INTERFACE and PICO_STDIO_USB_ENABLE_RESET_VIA_BAUD_RATE are now both

supported even if the user is using tinyusb_device directly themselves.

• Bug that could cause deadlock with FreeRTOS SMP and printing from IRQs fixed.

pico_stdlib

• pico/stdlib.h no longer declares set_sys_clock_ functions. You must include hardware/clocks.h explicitly.

pico_time

• remaining_alarm_time_ms(), remaining_alarm_time_us(), alarm_pool_remaining_alarm_time_ms() and

alarm_pool_remaining_alarm_time_us() were added.

• Implementation of alarm pools completely rewritten for much lower overhead, jitter and higher throughput in the

majority of cases. The pairing heap has been replaced with a linked list which is faster and uses less memory in

most normal use cases too.

• NOTE fire_if_past now always fires asynchronously in the same way as a normal timeout (rather than being called

synchronously during the call). Thus alarm_pool_add_alarm_at_force_in_context is now no different to

alarm_pool_add_alarm_at.

• New pico_timer_adapter abstraction added so pico_time could be backed by other types of timer hardware in the

future, and so pico_time no longer depends directly on a hardware_timer abstraction which simplifies

PICO_PLATFORM=host.

• Support for two hardware timer blocks on RP2350.

◦ alarm_pool_timer_t abstraction added to represent the time "counter" backing the alarm pool.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 646

◦ alarm_pool_t now has an associated alarm_pool_timer_t instance.

◦ alarm_pool_create_on_timer() is added to create an alarm pool on a specific alarm pool timer.

◦ alarm_pool_get_default_timer() is added which is used when not explicitly passing an alarm pool timer.

PICO_DEFAULT_TIMER selects which timer instance is the default (0 on RP2040, 0/1 on RP2350).

• PARAM_ASSERTIONS_ENABLED_TIME is renamed to PARAM_ASSERTIONS_ENABLED_PICO_TIME - the old define is still supported as a

fallback.

• check_timeout_fn now takes two parameters. This was likely unused outside the pico_time implementation anyway.

• Expose runtime_init_default_alarm_pool() function.

pico_util

• time_to_datetime(), datetime_to_time() and datetime_to_str() functions relating to hardware_rtc are now guarded by

PICO_INCLUDE_RTC_DATETIME which defaults to 0 on RP2350, since RP2350 does not include the RP2040 RTC

hardware.

• timespec_to_ms(), timespec_to_us(), ms_to_timespec(), and ms_to_timespec() added to convert between C-library high-

resolution time offset and millisecond or microsecond precision offsets.

• queue_try_remove(), queue_remove_blocking() and queue_peek_blocking() now support passing NULL as the element out

pointer if the caller doesn’t care.

tinyusb

• TinyUSB moved from release 0.15.0 to commit 42326428 (0.17.0 WIP)

• Note that bsp/board.h has been renamed by TinyUSB to bsp/board_api.h the SDK adds a re-director header for you for

now.

• Support added for RP2350. Requires a custom memcpy implementation in the rp2040 tinusb driver, as unaligned

32 bit access to device memory causes a hard fault on the Cortex M33.

• See the TinyUSB changelog for full details.

pioasm

• pioasm now supports the full RP2350 PIO (PICO_PIO_VERSION=1) instruction set

• Additionally, it supports many new directives. See the RP2350 Datasheet for full details.

• Note that currently not all output formats support PICO_PIO_VERSION=1 as they are community provided.

FreeRTOS integration

• You should use this repo for the current FreeRTOS-Kernel supporting RP2040 and RP2350: https://github.com/

raspberrypi/FreeRTOS-Kernel

• Dropped legacy support for configNUM_CORES for the correct configNUMBER_OF_CORES, which is 2 for SMP support and 1

for non-SMP support.

• RP2350_ARM_NTZ (non-trust-zone), and RP2350_RISC-V are available as well as an updated RP2040 version; the

former two basically give you the same "single privilege/security domain" experience as on RP2040.

• SMP and non-SMP support (along with running FreeRTOS on either core) are available for all.

• A nasty, but rare pre-existing RP2040 deadlock (especially with TinyUSB printf from IRQs) has been fixed on all

three versions; If you were setting configSUPPORT_PICO_SYNC_INTEROP=0 as a workaround, you should no

longer do so. Generally, if you are using printf (or anything else using SDK locking primitives) then you do really

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 647

https://github.com/hathach/tinyusb/blob/master/docs/info/changelog.rst
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://github.com/raspberrypi/FreeRTOS-Kernel
https://github.com/raspberrypi/FreeRTOS-Kernel

want configSUPPORT_PICO_SYNC_INTEROP=1 for the best concurrency

• FreeRTOS on RISC-V does not currently support IRQ preemption (which is a Hazard3 only feature anyway).

Backwards Incompatibilities

There are a handful of minor backwards incompatibilities, that hopefully should affect very few people.

• boot_picobin library is now called boot_picobin_headers.

• boot picoboot library is now called boot_picoboot_headers.

• boot_uf2 library is now called boot_uf2_headers.

• pico_base library is now called pico_base_headers.

◦ pico/error.h - PICO_ERROR_GENERIC is now -1 because there were pre-existing APIs that returned -1 for any error.

PICO_ERROR_TIMEOUT is now -2 (they are swapped from their previous values).

• pico_stdlib

◦ pico/stdlib.h no longer declares set_sys_clock_ functions. You must include hardware/clocks.h explicitly.

• pico_time

◦ check_timeout_fn now takes two parameters. This was likely unused outside the pico_time implementation

anyway.

◦ fire_if_past now always fires asynchronously in the same way as a normal timeout (rather than being called

synchronously during the call). Thus alarm_pool_add_alarm_at_force_in_context is now no different to

alarm_pool_add_alarm_at.

• hardware_clocks

◦ The enum clock_index no longer exists and has been replaced with clock_num_t. However, all clock functions

now take clock_handle_t to allow for future enhancement. This is currently just an alias for clock_num_t.

• hardware_structs

◦ enum bus_ctrl_perf_counter_[rp2040|rp2350] (typedef-ed as bus_ctrl_perf_counter_t) added.

◦ Note enum bus_ctrl_per_counter no longer exists.

◦ enum clock_num_[rp2040|rp2350] (typedef-ed as clock_num_t) added.

◦ Note enum clock_index no longer exists.

◦ enum clock_dest_num_[rp2040|rp2350] (typedef-ed as clock_dest_num_t) added.

◦ enum gpio_function_[rp2040|rp2350] (typedef-ed as gpio_function_t) added.

◦ Note enum gpio_function no longer exists.

• hardware_timer

• NUM_TIMERS has been renamed to NUM_ALARMS as that’s what it was (4).

Build

• There are major CMake build changes. If you are maintaining your own non-CMake build, you will have to make

extensive changes by looking at the differences yourself.

• All SDK headers are now "system" includes.

• You can now specify rp2350-arm-s (Arm Secure) and rp2350-riscv (RISC-V) as well as the previous rp2040 (default)

and host.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 648

• Setting PICO_BOARD=some_board will now set PICO_PLATFORM if one is specified in some_board.h since most boards either

use exclusively RP2040 or RP2350.

• PICO_PLATFORM also supports rp2350 but this gets replaced with the value PICO_DEFAULT_RP2350_PLATFORM which you can

set in your environment or CMakeLists.txt. Many of the boards for RP2350 - including pico2- select rp2350 as the

PICO_BOARD to honour your preference.

• PICO_PLATFORM, PICO_BOARD and other variables will be taken from your environment if not otherwise defined now

retain their value after the first CMake invocation. i.e. a pre-existing CMake build configuration directory will not

change based on your environment if you re-run cmake.

• PICO_BOARD=pico_w is no longer an odd child out requiring a CMake board file; support for CYW43 Wi-Fi can now be

specified in the board header.

• ELF2UF2 is now replaced by use of picotool which will be built as part of your build if not installed on the system. See

the picotool GitHub repository for more details on building and installing it locally.

• PICO_GCC_TRIPLE can now be a ';' separated list as well as a single value.

• NOTE: This release of the SDK does not support writing Arm Non-Secure binaries to run under the wing of an Arm

Secure binary. This support will be added in a subsequent release.

• Compiler support is widening - we always recommend a recent version.)

• All recent GCCs are supported on Arm. (GCC 14 has not yet been tested for full support though).

◦ Very recent GCCs are required on RISC-V due to the bleeding-edge nature of some of the processor

instructions.

◦ Recent LLVM Embedded Toolchain for ArmRM versions are supported on Arm.

◦ Pigweed LLVM is supported for Arm.

◦ For further details see the Raspberry Pi Pico-series C/C++ SDK book.

• Bazel may be used to build the SDK on Arm. See the README. Note that the Bazel build is community-provided and

maintained.

Building Documentation

• The docs build target to build the HTML code documentation now builds a set of documentation peculiar to your

particular PICO_PLATFORM setting.

• PICO_PLATFORM=combined-docs can be used (just for building docs) to build the combined documentation for both

RP2040 and RP2350.

Fixed Issues

You can see a list of individual commits here, and a list of resolved issues here.

Note these only include public changes made since version 1.5.1. The majority of new code and collateral fixes for the

previously unannounced RP2350 were developed and committed in private and delivered as a single "squashed"

commit.

Raspberry Pi Pico-series C/C++ SDK

Release 2.0.0 (08/Aug/2024) 649

https://github.com/raspberrypi/picotool
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://github.com/raspberrypi/pico-sdk/blob/master/bazel/README.md
https://github.com/raspberrypi/pico-sdk/pulls?q=is%3Apr+milestone%3A2.0.0+is%3Amerged
https://github.com/raspberrypi/pico-sdk/issues?q=is%3Aissue+milestone%3A2.0.0+is%3Aclosed

Appendix D: Documentation release
history

Table 55.

Documentation

release history

Release Date Description

1.0 21 Jan 2021 • Initial release

1.1 26 Jan 2021 • Minor corrections

• Extra information about using DMA with ADC

• Clarified M0+ and SIO CPUID registers

• Added more discussion of Timers

• Update Windows and macOS build instructions

• Renamed books and optimised size of output PDFs

1.2 01 Feb 2021 • Minor corrections

• Small improvements to PIO documentation

• Added missing TIMER2 and TIMER3 registers to DMA

• Explained how to get MicroPython REPL on UART

• To accompany the V1.0.1 release of the C SDK

1.3 23 Feb 2021 • Minor corrections

• Changed font

• Additional documentation on sink/source limits for RP2040

• Major improvements to SWD documentation

• Updated MicroPython build instructions

• MicroPython UART example code

• Updated Thonny instructions

• Updated Project Generator instructions

• Added a FAQ document

• Added errata E7, E8 and E9

1.3.1 05 Mar 2021 • Minor corrections

• To accompany the V1.1.0 release of the C SDK

• Improved MicroPython UART example

• Improved Pinout diagram

1.4 07 Apr 2021 • Minor corrections

• Added errata E10

• Note about how to update the C SDK from Github

• To accompany the V1.1.2 release of the C SDK

Raspberry Pi Pico-series C/C++ SDK

Appendix D: Documentation release history 650

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e7
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e8
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e9
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e10

Release Date Description

1.4.1 13 Apr 2021 • Minor corrections

• Clarified that all source code in the documentation is under the

3-Clause BSD license.

1.5 07 Jun 2021 • Minor updates and corrections

• Updated FAQ

• Added SDK release history

• To accompany the V1.2.0 release of the C SDK

1.6 23 Jun 2021 • Minor updates and corrections

• ADC information updated

• Added errata E11

1.6.1 30 Sep 2021 • Minor updates and corrections

• Information about B2 release

• Updated errata for B2 release

1.7 03 Nov 2021 • Minor updates and corrections

• Fixed some register access types and descriptions

• Added core 1 launch sequence info

• Described SDK "panic" handling

• Updated picotool documentation

• Additional examples added to Appendix A: App Notes appendix

in the Raspberry Pi Pico-series C/C++ SDK book

• To accompany the V1.3.0 release of the C SDK

1.7.1 04 Nov 2021 • Minor updates and corrections

• Better documentation of USB double buffering

• Picoprobe branch changes

• Updated links to documentation

1.8 17 Jun 2022 • Minor updates and corrections

• Updated setup instructions for Windows in Getting started with

Raspberry Pi Pico-series

• Additional explanation of SDK configuration

• RP2350 now qualified to -40°C, minimum operating temperature

changed from -20°C to -40°C

• Increased PLL min VCO from 400MHz to 750MHz for improved

stability across operating conditions

• Added reflow-soldering temperature profile

• Added errata E12, E13 and E14

• To accompany the V1.3.1 release of the C SDK

Raspberry Pi Pico-series C/C++ SDK

Appendix D: Documentation release history 651

https://opensource.org/licenses/BSD-3-Clause
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e11
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e12
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e13
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e14

Release Date Description

1.9 30 Jun 2022 • Minor updates and corrections

• Update to VGA board hardware description for launch of

Raspberry Pi Pico W

• To accompany the V1.4.0 release of the C SDK

Pico and Pico W databooks combined into a unified release history

2.0 01 Dec 2022 • Minor updates and corrections

• Added RP2040 availability information

• Added RP2040 storage conditions and thermal characteristics

• Replace SDK library documentation with links to the online

version

• Updated Picoprobe build and usage instructions

2.1 03 Mar 2023 • A large number of minor updates and corrections

• SMT footprint of Pico W corrected

• Updated for the 1.5.0 release of the Raspberry Pi Pico C SDK

• Added errata E15

• Added documentation around the new Pico Windows Installer

• Added documentation around the Pico-W-Go extension for

Python development

• Added a wireless networking example to the Python

documentation

• Added package marking specifications

• Added RP2040 baseline power consumption figures

• Added antenna keep out diagram to Pico W datasheet

2.2 14 Jun 2023 • Minor updates and corrections

• Updated for the 1.5.1 release of the Raspberry Pi Pico C SDK

• Documentation around Bluetooth support for Pico W

2.3 02 Feb 2024 • Numerous minor updates and corrections

• Update ROSC register information

• Updated getting started documentation for MS Windows and

Apple macOS

• Updates arising from the release of Raspberry Pi 5

• Reintroduced updated SDK library documentation (was

withdrawn in 2.0 due to XML conflicts)

• Updated to include the new recommended part number for

crystals used with RP2040

• Added new paste stencil information for Pico and Pico W

• Other updates to supporting documentation

Raspberry Pi Pico-series C/C++ SDK

Appendix D: Documentation release history 652

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e15
https://github.com/raspberrypi/pico-setup-windows
https://marketplace.visualstudio.com/items?itemName=paulober.pico-w-go

Release Date Description

2.4 02 May 2024 • Numerous minor updates and corrections

• Formatting fixes for Pico C SDK API level documentation

• Renamed picoprobe firmware to debugprobe

• Clarified that CMake build configuration uses cache variables,

not configuration variables

• Fixed incorrect parameter names used in the @asm_pio decorator

and StateMachine initialiser examples

• Expanded MicroPython rshell examples to include a complete

guide on loading and running programs on your device

• Added an example that demonstrates how to reset a Pico from

the command line using OpenOCD

• Enhanced VS Code MicroPico plugin documentation to reflect

the plugin’s new name, removal of the built-in FTP server, and

some additional usage instruction

• Added documentation on the official Raspberry Pi Pico VS Code

extension.

3.0 07 Jul 2024 • Added support for RP2350 and Pico 2

The latest release can be found at https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf.

Raspberry Pi Pico-series C/C++ SDK

Appendix D: Documentation release history 653

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

	Raspberry Pi Pico-series C/C++ SDK
	Colophon
	Legal disclaimer notice
	Table of contents

	Chapter 1. About the SDK
	1.1. Introduction
	1.2. Anatomy of a SDK Application

	Chapter 2. SDK architecture
	2.1. The Build System
	2.2. Every Library is an INTERFACE Library
	2.3. SDK Library Structure
	2.3.1. Higher-level Libraries
	2.3.2. Runtime Support Libraries
	2.3.3. Hardware Support Libraries
	2.3.4. Hardware Structs Library
	2.3.5. Hardware Registers Library
	2.3.6. TinyUSB Port
	2.3.7. FreeRTOS Ports
	2.3.8. Wi-Fi on Pico W
	2.3.9. Bluetooth on Pico W

	2.4. Directory Structure
	2.4.1. Locations of Files

	2.5. Conventions for Library Functions
	2.5.1. Function Naming Conventions
	2.5.2. Return Codes and Error Handling
	2.5.3. Use of Inline Functions
	2.5.4. Builder Pattern for Hardware Configuration APIs

	2.6. Customisation and Configuration Using Preprocessor variables
	2.6.1. Preprocessor Variables via Board Configuration File
	2.6.2. Preprocessor Variables Per Binary or Library via CMake

	2.7. SDK Runtime
	2.7.1. Standard Input/Output (stdio) Support
	2.7.2. Printf Support
	2.7.3. Runtime Initialization and Linking
	2.7.4. C-Library Integration
	2.7.5. Floating-point Support
	2.7.6. Hardware Divider

	2.8. Multi-core support
	2.9. Using C++
	2.10. Supporting both RP2040 and RP2350
	2.11. Next Steps

	Chapter 3. Using programmable I/O (PIO)
	3.1. What is Programmable I/O (PIO)?
	3.1.1. Background
	3.1.2. I/O Using dedicated hardware on your PC
	3.1.3. I/O Using dedicated hardware on your Raspberry Pi or microcontroller
	3.1.4. I/O Using software control of GPIOs ("bit-banging")
	3.1.5. Programmable I/O Hardware using FPGAs and CPLDs
	3.1.6. Programmable I/O Hardware using PIO

	3.2. Getting started with PIO
	3.2.1. A First PIO Application
	3.2.2. A Real Example: WS2812 LEDs
	3.2.3. PIO and DMA (A Logic Analyser)
	3.2.4. Further examples

	3.3. Using PIOASM, the PIO Assembler
	3.3.1. Usage
	3.3.2. Directives
	3.3.3. Values
	3.3.4. Expressions
	3.3.5. Comments
	3.3.6. Labels
	3.3.7. Instructions
	3.3.8. Pseudoinstructions
	3.3.9. Output pass through
	3.3.10. Language generators

	3.4. PIO Instruction Set Reference
	3.4.1. Encoding (version 0, RP2040)
	3.4.2. Encoding (version 1, RP2350)
	3.4.3. Summary
	3.4.4. JMP
	3.4.5. WAIT
	3.4.6. IN
	3.4.7. OUT
	3.4.8. PUSH
	3.4.9. PULL
	3.4.10. MOV (to RX)
	3.4.11. MOV (from RX)
	3.4.12. MOV
	3.4.13. IRQ
	3.4.14. SET

	Chapter 4. Library documentation
	4.1. Hardware APIs
	4.1.1. hardware_adc
	4.1.2. hardware_base
	4.1.3. hardware_claim
	4.1.4. hardware_clocks
	4.1.5. hardware_divider
	4.1.6. hardware_dcp
	4.1.7. hardware_dma
	4.1.8. hardware_exception
	4.1.9. hardware_flash
	4.1.10. hardware_gpio
	4.1.11. hardware_hazard3
	4.1.12. hardware_i2c
	4.1.13. hardware_interp
	4.1.14. hardware_irq
	4.1.15. hardware_pio
	4.1.16. hardware_pll
	4.1.17. hardware_powman
	4.1.18. hardware_pwm
	4.1.19. hardware_resets
	4.1.20. hardware_riscv
	4.1.21. hardware_riscv_platform_timer
	4.1.22. hardware_rtc
	4.1.23. hardware_rcp
	4.1.24. hardware_spi
	4.1.25. hardware_sha256
	4.1.26. hardware_sync
	4.1.27. hardware_ticks
	4.1.28. hardware_timer
	4.1.29. hardware_uart
	4.1.30. hardware_vreg
	4.1.31. hardware_watchdog
	4.1.32. hardware_xosc

	4.2. High Level APIs
	4.2.1. pico_aon_timer
	4.2.2. pico_async_context
	4.2.3. pico_bootsel_via_double_reset
	4.2.4. pico_flash
	4.2.5. pico_i2c_slave
	4.2.6. pico_multicore
	4.2.7. pico_rand
	4.2.8. pico_sha256
	4.2.9. pico_stdlib
	4.2.10. pico_sync
	4.2.11. pico_time
	4.2.12. pico_unique_id
	4.2.13. pico_util

	4.3. Third-party Libraries
	4.3.1. tinyusb_device
	4.3.2. tinyusb_host

	4.4. Networking Libraries
	4.4.1. pico_btstack
	4.4.2. pico_lwip
	4.4.3. pico_cyw43_driver
	4.4.4. pico_cyw43_arch

	4.5. Runtime Infrastructure
	4.5.1. boot_stage2
	4.5.2. pico_atomic
	4.5.3. pico_base
	4.5.4. pico_binary_info
	4.5.5. pico_bootrom
	4.5.6. pico_bit_ops
	4.5.7. pico_cxx_options
	4.5.8. pico_clib_interface
	4.5.9. pico_crt0
	4.5.10. pico_divider
	4.5.11. pico_double
	4.5.12. pico_float
	4.5.13. pico_int64_ops
	4.5.14. pico_malloc
	4.5.15. pico_mem_ops
	4.5.16. pico_platform
	4.5.17. pico_printf
	4.5.18. pico_runtime
	4.5.19. pico_runtime_init
	4.5.20. pico_stdio
	4.5.21. pico_standard_binary_info
	4.5.22. pico_standard_link

	4.6. External API Headers
	4.6.1. boot_picobin_headers
	4.6.2. boot_picoboot_headers
	4.6.3. boot_uf2_headers
	4.6.4. pico_usb_reset_interface_headers

	Chapter 5. SDK configuration
	5.1. Full List of SDK Configuration Defines

	Chapter 6. CMake build configuration
	6.1. Full List of SDK Configuration Variables
	6.2. Platform and Board Configuration
	6.3. Compiler and Toolchain Configuration
	6.3.1. Variables

	6.4. Binary Type configuration

	Chapter 7. CMake build functions
	7.1. Control of picotool post-processing (not available on RP2040)

	Chapter 8. Board configuration
	8.1. The Configuration files
	8.2. Building applications with a custom board configuration
	8.3. Available configuration parameters

	Chapter 9. Embedded Binary Information
	9.1. Basic information
	9.2. Pins
	9.3. Full Information
	9.4. Including Binary Information
	9.5. Setting Common Information from CMake

	Appendix A: App Notes
	Attaching a 7 segment LED via GPIO
	Wiring information
	List of Files
	Bill of Materials

	DHT-11, DHT-22, and AM2302 Sensors
	Wiring information
	List of Files
	Bill of Materials

	Attaching a 16x2 LCD via TTL
	Wiring information
	List of Files
	Bill of Materials

	Attaching a microphone using the ADC
	Wiring information
	List of Files
	Bill of Materials

	Attaching a BME280 temperature/humidity/pressure sensor via SPI
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MPU9250 accelerometer/gyroscope via SPI
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MPU6050 accelerometer/gyroscope via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a 16x2 LCD via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a BMP280 temp/pressure sensor via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a LIS3DH Nano Accelerometer via i2c.
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MCP9808 digital temperature sensor via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MMA8451 3-axis digital accelerometer via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching an MPL3115A2 altimeter via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching an OLED display via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a PA1010D Mini GPS module via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a PCF8523 Real Time Clock via I2C
	Wiring information
	List of Files
	Bill of Materials

	Interfacing 1-Wire devices to the Pico
	Wiring information
	Bill of materials
	List of files

	Communicating as master and slave via SPI
	Wiring information
	Outputs
	List of Files
	Bill of Materials

	Appendix B: Building the SDK API documentation
	Appendix C: SDK release history
	Release 1.0.0 (20/Jan/2021)
	Release 1.0.1 (01/Feb/2021)
	Boot Stage 2

	Release 1.1.0 (05/Mar/2021)
	Backwards incompatibility

	Release 1.1.1 (01/Apr/2021)
	Release 1.1.2 (07/Apr/2021)
	Release 1.2.0 (03/Jun/2021)
	New/improved Board headers
	Updated TinyUSB to 0.10.1
	Added CMSIS core headers
	API improvements
	General code improvements
	SVD
	pioasm
	RTOS interoperability
	CMake build changes
	Boot Stage 2

	Release 1.3.0 (02/Nov/2021)
	Updated TinyUSB to 0.12.0
	New Board Support
	Updated SVD, hardware_regs, hardware_structs
	Behavioural Changes
	Other Notable Improvements
	CMake build
	pioasm
	elf2uf2

	Release 1.3.1 (18/May/2022)
	New Board Support
	Notable Library Changes/Improvements
	Build
	pioasm
	elf2uf2

	Release 1.4.0 (30/Jun/2022)
	New Board Support
	Wireless Support
	Notable Library Changes/Improvements
	Build

	Release 1.5.0 (11/Feb/2023)
	New Board Support
	Library Changes/Improvements
	New Libraries
	Build
	Bluetooth Support for Pico W (BETA)

	Release 1.5.1 (14/Jun/2023)
	Board Support
	Library Changes/Improvements
	New Libraries
	Miscellaneous
	Build
	Bluetooth Support for Pico W

	Release 2.0.0 (08/Aug/2024)
	Notices
	Major New Features
	Security and Code Signing
	Board Support
	New Libraries
	Library Changes / Improvements
	pico_bt_stack
	FreeRTOS integration
	Backwards Incompatibilities
	Build
	Building Documentation
	Fixed Issues

	Appendix D: Documentation release history

