Raspberry Pi Microcontrollers

Raspberry Pi Pico-series
C/C++ SDK

Libraries and tools for

C/C++ development on
Raspberry P1 microcontrollers

Raspberry Pi Ltd

Raspberry Pi Pico-series C/C++ SDK

Colophon

Copyright © 2020-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

The documentation of the RP2350 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2024-08-21
build-version: 522d2d4-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be
found throughout this book. Source code included in the documentation is Copyright © 2023-2024
Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI LTD (“RPL") "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO
EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPL’s provision of the RESOURCES does not
expand or otherwise modify RPL's Standard Terms including but not limited to the disclaimers and warranties
expressed in them.

]
Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Raspberry Pi Pico-series C/C++ SDK

Table of contents

Colophon - oo 1
Legal disclaimer notice 1
T.About the SDK. .« ..o 8
T INtroduCtion « .. 8
1.2. Anatomy of a SDK Application 8
2.SDK architecture 11
2.1.The Build System 11
2.2. Every Library is an INTERFACE Library. 12
2.3.SDK Library Structure 13
2.3.1. Higher-level Libraries. 13
2.3.2. Runtime Support Libraries 13
2.3.3. Hardware Support Libraries 14
2.3.4. Hardware Structs Library 15
2.3.5. Hardware Registers Library 16
2.3.6. TiNYUSB POrt. . ..o 17
2.3.7.FreeRTOS POIS i 17
2.3.8. WIi-Fion PicO W .o 18
2.3.9.Bluetoothon PicoOW .. .o 18
2.4.Directory STrUCTUre i 19
2.4.1. Locations of Files. 19
2.5. Conventions for Library Functions 21
2.5.1. Function Naming Conventions. 21
2.5.2. Return Codes and Error Handling. 22
2.5.3.Useof Inline FUNCLIONS 23
2.5.4. Builder Pattern for Hardware Configuration APIs 23
2.6. Customisation and Configuration Using Preprocessor variables 24
2.6.1. Preprocessor Variables via Board Configuration File, 24
2.6.2. Preprocessor Variables Per Binary or Library viaCMake 25
2.7.SDKRUNTIME 25
2.7.1. Standard Input/Output (stdio) SUppOrt 25
2.7.2. Printf SUPPOIt . 26
2.7.3. Runtime Initialization and Linking 26
2.7.4. C-Library Integration 26
2.7.5. Floating-point SUPPOIt. 26
2.7.6. Hardware Divider 27
2.8. MUItI-COre SUPPOIt. « . .. 28
2.9.UsSINg CH+. oo 29
2.10. Supporting both RP2040 and RP2350 29
2.0 NeXt StePS . i 30
3.Using programmable 1/0 (P10). i 31
3.1. What is Programmable I/0 (PIO)?. 31
310 Background. 31
3.1.2.1/0 Using dedicated hardware onyour PC 31
3.1.3.1/0 Using dedicated hardware on your Raspberry Pi or microcontroller. 31
3.1.4.1/0 Using software control of GPIOs ("bit-banging”) 32
3.1.5. Programmable I/0 Hardware using FPGAs and CPLDs 33
3.1.6. Programmable I/0 Hardware using PIO 33
3.2. Getting started with P10 34
3.2.1. AFirst PIO Application 34
3.2.2. AReal Example: WS2812 LEDS 38
3.2.3.PI0and DMA (A Logic Analyser) 46
3.2.4. Further examples 50
3.3.Using PIOASM, the PIO Assembler. 51
3.3 T Usage oo 51
3.3.2. DireCtives .ol 52

Table of contents

Raspberry Pi Pico-series C/C++ SDK
]

3.3.3.Values . i 54
3.3 4 EXPressSiONS ... 54
3.3.5. COMMENTSo 54
3.3.6. Labels 55
3.3.7.InStructions.o 55
3.3.8. Pseudoinstructions 56
3.3.9. Output pass through 56
3.3.10. Language generators 56
3.4.PIO Instruction Set Reference 62
3.4.1. Encoding (version 0, RP2040) 62
3.4.2. Encoding (version 1, RP2350) 62
343 SUMMATY. . .o 63
B4 A IMP 63
B S WAL i 64
3.6, IN i 65
B4 7. OUT 66
348 PUSH i 67
3400 PULL .o 68
3.4.10. MOV (1O RX) - o oo 69
3471 MOV (from RX). .o 70
A2 MOV i 71
BABUIRQ . 72
B4 A, SET 73
4. Library documentation 75
A1 Hardware APIs. . 76
400 hardware_adC. 77
4.1.2. hardware_base. 82
4.1.3. hardware_claim 84
4.1.4. hardware_clocks 86
4.1.5. hardware_divider 101
4.1.6. hardware_dep €lvmilily oo 110
A1.7. hardware_dma 110
4.1.8. hardware_exception 132
4.1.9. hardware_flash. 135
A4.1.710. hardware_gpio 138
4.1.17. hardware_hazard3 ¢ 57EED 169
A.1.712. hardware_i2C 169
4113, hardware_interp. 178
AT 74 hardware_irg 187
47105, hardware_pio 200
4176, hardware_pll. .. 241
4.1.17. hardware_powman ¢ GEFEETD 242
4118, hardware_pWM ... 249
41719, hardware_resets 263
4.1.20. hardware_riscv (L7Ellily 268
4.1.21. hardware_riscv_platform_timer ¢ 5755000 0 268
4.1.22. hardware_rtc @GEALIID . 270
A.1.23. hardware_rcp (il 273
A.1.24. hardware_spi 273
4.1.25. hardware_sha256 €l 281
A4.1.26. hardware_SYNC. 285
4.1.27. hardware_ticks. 293
4.1.28. hardware_timer 295
A.1.29. hardware_uart 310
4.1.30. hardware_vreg 320
4.1.37. hardware_watchdog 320
4.1.32. hardWare_XOSC. 324
4.2 High Level APls . 324
4.2.1.pICO_@a0ONn_timer. 325
4.2.2. pico_asynC_CONteXt. 328

]
Table of contents 3

Raspberry Pi Pico-series C/C++ SDK
]

4.2.3. pico_bootsel_via_double_reset 339
424 pico_flash . . 339
4.2.5.picoi2c_slave 341
4.2.6. pico_multicore 343
A2.7.pico_rand ... 355
4.2.8.pico_sha256 Ll mililn 357
4.2.9.pico_stdlib . 361
42710, PICO_SYNC © oo 364
42717, PICO_tIME 378
4.2.12.pico_uniqueid. 400
427030 pico_Util « o 401
4.3. Third-party Libraries 405
4.3.7.tinyusb_device 405
4.3.2.tinyusb_host. ... 405
4.4 Networking Libraries 405
447, pico_btstack. 406
AA42.PICO_IWID. 408
A4.4.3.pico_CyWA3_driVer 410
A4.4.4. pico_cywaA3_arch 412
4.5. Runtime Infrastructure 450
4.5.1.boot_stage? 451
4.5.2.piCO_atomICl 451
4.5.3.pico_base . .. 451
4.5.4. pico_binary_info. 453
4.5.5.pico_bootrom 453
4.5.6. piCO_bIt_OpPS 458
4.5.7. PICO_CXX_OPTIONS o 459
4.5.8. pico_clib_interface. 459
4.59.pico_CrtO. . .. 459
4.5.10. pico_divider 459
4.5.17. pico_double . .. 467
4.512. pico_float 468
4513, PICO_INTOA_OPS. - . .. 468
4.5.14. pico_malloc 468
4.5.15. PICO_MEMU_OPS. . - - oo 469
4.5.16. pico_platform. 469

A 5.7, pico_printf. 477
4.5.18. piCo_runtimel 477
4.5.19. pico_runtime_init 478
4.5.20. pico_stdio. 479
4.5.21. pico_standard_binary_info 489
4.5.22. pico_standard_link. 490
4.6. External APl Headers 490
4.6.1. boot_picobin_headers. 490
4.6.2. boot_picoboot_headers 490
4.6.3. boot_uf2_headers 490
4.6.4. pico_usb_reset_interface_headers 491
5.SDK configuration 492
5.1. Full List of SDK Configuration Defines. 493
6. CMake build configuration 506
6.1. Full List of SDK Configuration Variables 506
6.2. Platform and Board Configuration 508
6.3. Compiler and Toolchain Configuration 509
6.3.1. Variables. . .. 509
6.4. Binary Type configuration 510
7.CMake build functions i 512
7.1. Control of picotool post-processing (not available on RP2040) 512
8. Board configuration. 513
8.1. The Configuration files. 513
8.2. Building applications with a custom board configuration. 515

]
Table of contents 4

Raspberry Pi Pico-series C/C++ SDK
]

8.3. Available configuration parameters 515
9. Embedded Binary Information 516
9.1. Basicinformation 516
0.2, PINS. 516
9.3. Full Information. 517
9.4. Including Binary Information 517
9.5. Setting Common Information from CMake 519
Appendix A: App NOTES . . . 521
Attachinga 7 segment LED via GPIO. 521
Wiring information 521
Listof Files 521
Bill of Materials. 523
DHT-11, DHT-22, and AM2302 SENSOIS.o 524
Wiring information 524
Listof Files . .. 525
Bill of Materials. 527
Attachinga 16x2 LCD via TTL 527
Wiring information 528
Listof Files . .. 528
Bill of Materials. 531
Attaching a microphone usingthe ADC. 532
Wiring information 532
Listof Files . . . 533
Bill of Materials. 534
Attaching a BME280 temperature/humidity/pressure sensorviaSPI. 535
Wiring information 535
Listof Files . . . 535
Bill of Materials. 540
Attaching a MPU9250 accelerometer/gyroscope via SPl. 540
Wiring information 540
Listof Files 541
Bill of Materials. 544
Attaching a MPU6050 accelerometer/gyroscope via I2C. 544
Wiring information 544
Listof Files . .. 545
Bill of Materials. 547
Attachinga 16x2 LCD via 12C 547
Wiring information 548
Listof Files . . . 548
Bill of Materials. 551
Attaching a BMP280 temp/pressure sensorvia 12C 552
Wiring information 552
Listof Files . .. 552
Bill of Materials. 557
Attaching a LIS3DH Nano Accelerometer viai2c. 557
Wiring information 558
Listof Files . . . 558
Bill of Materials. 561
Attaching a MCP9808 digital temperature sensorvial2C 561
Wiring information 561
Listof Files 562
Bill of Materials. 564
Attaching a MMAB8451 3-axis digital accelerometervial2C. 565
Wiring information 565
Listof Files . . . 565
Bill of Materials. 568
Attaching an MPL3115A2 altimeter via 12C 568
Wiring information 569
Listof Files . . . 569
Bill of Materials. 573

Table of contents 5

Raspberry Pi Pico-series C/C++ SDK
]

Attaching an OLED display via 12C 573
Wiring information 574
Listof Files . . 575
Bill of Materials. 585

Attaching a PA1010D Mini GPS module via 12C. 585
Wiring information 585
Listof Files . . . 586
Bill of Materials. 589

Attaching a PCF8523 Real Time Clock via 12C 589
Wiring information 589
Listof Files 590
Bill of Materials. 593

Interfacing 1-Wire devicestothe Pico. 593
Wiring information 594
Bill of materials. 594
Listof files. . . . 595

Communicating as master and slave via SPI. 602
Wiring information 602
OULPULS o oo 602
Listof Files . . 604
Bill of Materials. 608

Appendix B: Building the SDK APl documentation. 609
Appendix C: SDKrelease history 611

Release 1.0.0 (20/Jan/20271) 611

Release 1.0.1 (01/Feb/20271) .. . 611
Boot Stage 2o 611

Release 1.1.0 (05/Mar/20271) 611
Backwards incompatibility 612

Release 1.1.1 (01/APr/20271) .. . 612

Release 1.1.2 (07/APr/2021) .. 612

Release 1.2.0 (03/Jun/20271) 612
New/improved Board headers 612
Updated TinyUSB t0 0.10.T . . . oo 612
Added CMSIS core headers 613
APLIMProvements il 613
General code iMprovements. 615
SV D 615
PIOASIN . 615
RTOS interoperability 615
CMake build changes. 615
Boot Stage 2 il 615

Release 1.3.0 (02/NOV/20271) 615
Updated TinyUSB t0 0.12.0o 615
New Board SUPPOrt 616
Updated SVD, hardware_regs, hardware_structs 616
Behavioural Changes 617
Other Notable Improvements 617
CMake build 619
PIOASIMI. .« i 619
el Ut 619

Release 1.3.1 (18/May/2022). 619
New Board SUPPOIt 619
Notable Library Changes/Improvements 620
BUIld . 621
PIOASIN . 621
el Ul 621

Release 1.4.0 (30/JUn/2022) 621
New Board SUPpOIt - ... 621
Wireless SUPPOIt - . . . 621
Notable Library Changes/Improvements 622

]
Table of contents 6

Raspberry Pi Pico-series C/C++ SDK

BuUIld . oo 624
Release 1.5.0 (11/Feb/2023) 624
New Board SUPPOIt . . . 624
Library Changes/Improvements. 624
New Libraries 627
BUIld . 628
Bluetooth Support for Pico W (BETA) 628
Release 1.5.1 (14/Jun/2023) 629
Board SUPPOIt. . . . 629
Library Changes/Improvements. 629
New Librarieso 630
Miscellaneous. 631
BUII 631
Bluetooth Support for Pico W 631
Release 2.0.0 (08/AUQ/2024) 632
NOtiCES . i 632
Major New Features. i 632
Security and Code Signing 633
Board SUPPOIt. . . . 633
New Libraries 634
Library Changes / Improvements. o 637
pico_bt_stack 643
FreeRTOS integration. 647
Backwards Incompatibilities. 648
BUIld . . o 648
Building Documentation 649
Fixed ISSUBS 649
Appendix D: Documentation release history. 650

]
Table of contents 7

Raspberry Pi Pico-series C/C++ SDK

Chapter 1. About the SDK

1.1. Introduction

The SDK (Software Development Kit) provides the headers, libraries and build system necessary to write programs for
RP-series microcontroller-based devices such as Raspberry Pi Pico or Raspberry Pi Pico 2 in C, C++ or Arm assembly
language.

The SDK is designed to provide an APl and programming environment that is familiar both to non-embedded C
developers and embedded C developers alike. A single program runs on the device at a time with a conventional main()
method. Standard C/C++ libraries are supported along with APIs for accessing the RP-series microcontroller’s
hardware, including DMA, IRQs, and the wide variety fixed function peripherals and PIO (Programmable 10).

Additionally, the SDK provides higher level libraries for dealing with timers, synchronization, Wi-Fi and Bluetooth
networking, USB and multicore programming. These libraries should be comprehensive enough that your application
code rarely, if at all, needs to access hardware registers directly. However, if you do need or prefer to access the raw
hardware registers, you will also find complete and fully-commented register definition headers in the SDK. There’s no
need to look up addresses in the datasheet.

The SDK can be used to build anything from simple applications, fully-fledged runtime environments such as
MicroPython, to low level software such as the RP-series microcontroller's on-chip bootrom itself.

The design goal for entire SDK is to be simple but powerful.
Looking to get started?

This book documents the SDK APIs, explains the internals and overall design of the SDK, and explores
some deeper topics like using the PIO assembler to build new interfaces to external hardware. For a
quick start with setting up the SDK and writing SDK programs, Getting started with Raspberry Pi Pico-
series is the best place to start.

1.2. Anatomy of a SDK Application

Before going completely depth-first in our traversal of the SDK, it's worth getting a little breadth by looking at one of the
SDK examples covered in Getting started with Raspberry Pi Pico-series, in more detail.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c

1 /**

2 * Copyright (c) 2620 Raspberry Pi (Trading) Ltd.

3 *

4 * SPDX-License-Identifier: BSD-3-Clause

5 */

6

7 #include "pico/stdlib.h”

8

9 #ifndef LED_DELAY_MS

10 #define LED_DELAY_MS 256

11 #endif

12

13 // Initialize the GPIO for the LED

14 void pico_led_init(void) {

15 // A device like Pico that uses a GPIO for the LED will define PICO_DEFAULT_LED_PIN
16 // so we can use normal GPIO functionality to turn the led on and off

]
1.1. Introduction 8

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c

Raspberry Pi Pico-series C/C++ SDK
]

17 gpio_init(PICO_DEFAULT_LED_PIN);

18 gpio_set_dir(PICO_DEFAULT_LED_PIN, GPIO_OUT);
19 }

20

21 // Turn the LED on or off
22 void pico_set_led(bool led_on) {

23 // Just set the GPIO on or off
24 gpio_put(PICO_DEFAULT_LED_PIN, led_on);
25 }

26

27 int main() {

28 pico_led_init();

29 while (true) {

30 pico_set_led(true);

31 sleep_ms(LED_DELAY_MS) ;
32 pico_set_led(false);

33 sleep_ms(LED_DELAY_MS) ;
34 }

35 }

This program consists only of a single C file, with three functions. As with almost any C programming environment, the
function called main() is special, and is the point where the language runtime first hands over control to your program. In
the SDK the main() function does not take any arguments. It's quite common for the main() function not to return, as is
shown here.

© NoOTE

The return code of main() is ignored by the SDK runtime, and the default behaviour is to hang the processor on exit.

At the top of the C file, we include a header called pico/stdlib.h. This is an umbrella header that pulls in some other
commonly used headers. In particular, the ones needed here are hardware/gpio.h, which is used for accessing the general
purpose 10s on RP-series microcontrollers (the gpio_xxx functions here), and pico/time.h which contains, among other
things, the sleep_ms function. Broadly speaking, a library whose name starts with pico provides high level APIs and
concepts, or aggregates smaller interfaces; a name beginning with hardware indicates a thinner abstraction between your
code and the RP-series microcontroller on-chip hardware.

So, using mainly the hardware_gpio and pico_time libraries, this C program will blink an LED connected to the default LED
GPIO (which exact pin varies from one RP-series microcontroller board to another) on and off, twice per second, forever
(or at least until unplugged). In the directory containing the C file (you can click the link above the source listing to go
there), there is one other file which lives alongside it.

Directory listing of pico-examples/blink_simple

blink_simple
—— blink_simple.c
—— CMakelists.txt

0 directories, 2 files

The second file is a CMake file, which tells the SDK how to turn the C file into a binary application for an RP-series
microcontroller-based board. Later sections will detail exactly what CMake is, and why it is used, but we can look at the
contents of this file without getting mired in those details.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/CMakeLists.txt

1 add_executable(blink_simple
2 blink_simple.c
3)

]
1.2. Anatomy of a SDK Application 9

https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/CMakeLists.txt

Raspberry Pi Pico-series C/C++ SDK

4

5 # pull in common dependencies

6 target_link_libraries(blink_simple pico_stdlib)

7

8 # create map/bin/hex/uf2 file etc.

9 pico_add_extra_outputs(blink_simple)
10
11 # call pico_set_program_url to set path to example on github, so users can find the source

for an example via picotool

12 example_auto_set_url(blink_simple)

The standard CMake function add_executable in this file declares that a program called blink_simple should be built from
the C file shown earlier. This is also the "target" name in CMake, and is also used when building the program
individually. For example, in the pico-examples repository you can say make blink_simple in your build directory, and that
name comes from this line. You can have multiple executables in a single project, and the pico-examples repository is one
such project.

The target_link_libraries is pulling in the SDK functionality that our program needs. If you don’t ask for a library, it
doesn’t appear in your program binary. Just like pico/stdlib.h is an umbrella header that includes things like pico/time.h
and hardware/gpio.h, pico_stdlib is an umbrella library that makes libraries like pico_time and hardware_gpio available to
your build, so that those headers can be included in the first place, and the extra C source files are compiled and linked.
If you need less common functionality, not included with pico_stdlib, like accessing the DMA hardware, you should add
those dependencies here (e.g. listing hardware_dma before or after pico_stdlib).

We could end the CMake file here, and that would be enough to build the blink_simple program. By default, the build will
produce an ELF file (executable linkable format), containing all of your code and the SDK libraries it uses. You can load
an ELF into the RP-series microcontroller's RAM or external flash through the Serial Wire Debug port, with a debugger
setup like gdb and openocd, or via picotool. It's often easier to program your Raspberry Pi Pico 2 or other RP-series
microcontroller board directly over USB with BOOTSEL mode, and this requires a different type of file, called UF2, which
serves the same purpose here as an ELF file, but is constructed to survive the rigours of USB mass storage transfer
more easily. The pico_add_extra_outputs function declares that you want a UF2 file to be created, as well as some useful
extra build output like disassembly and map files.

O NoTE

The ELF file is converted to a UF2 using picotool.

The final example_auto_set_url function is used to embed a link back to the example soource code on github into the
output binary such that it can be displayed via picotool info blink_simple.elf. You'll see this on the pico-examples
applications, but it's not applicable to your own programs.

Finally, a brief note on the pico_stdlib library. Besides common hardware and high-level libraries like hardware_gpio and
pico_time, it also pulls in system components like pico-runtime, which is needed to set up the hardware and runtime
environment that lets you just implement main()" and pico_standard_link which configures the linking of your executable
whilst using a simple CMakeLists.txt. These are incredibly low-level components that most users will not need to worry
about. The reason they are mentioned is to point out that they are ultimately implicit dependencies of your program
because of your dependence on pico_stdlib; if you choose not depend on pico_stdlib and then you can pick just the
exact SDK libraries you want explcitly.

1.2. Anatomy of a SDK Application 10

Raspberry Pi Pico-series C/C++ SDK

Chapter 2. SDK architecture

RP-series microcontrollers are powerful chips, and in particular were designed with a disproportionate amount of
system RAM for their point in the microcontroller design space. However it is an embedded environment, so RAM, CPU
cycles and program space are still at a premium. As a result the trade-offs between performance and other factors (e.qg.
edge case error handling, runtime vs compile time configuration) are necessarily much more visible to the developer
than they might be on other, higher-level platforms.

The intention within the SDK has been for features to just work out of the box, with sensible defaults, but also to give the
developer as much control and power as possible (if they want it) to fine tune every aspect of the application they are
building and the libraries used.

The next few sections try to highlight some of the design decisions behind the SDK: the how and the why, as much as
the what.

© NoTE

Some parts of this overview are quite technical or deal with very low-level parts of the SDK and build system. You
might prefer to skim this section at first and then read it thoroughly at a later time, after writing a few SDK
applications.

2.1. The Build System

The SDK uses CMake to manage the build. CMake is widely supported by IDEs (Integrated Development Environments),
which can use a CMakelists.txt file to discover source files and generate code autocomplete suggestions. The same
CMakeLists.txt file provides a terse specification of how your application (or your project with many distinct applications)
should be built, which CMake uses to generate a robust build system used by make, ninja or other build tools. The build
system produced is customised for the platform (e.g. Windows, or a Linux distribution) and by any configuration
variables the developer chooses.

Section 2.6 shows how CMake can set configuration defines for a particular program, or based on which RP-series
microcontroller board you are building for, to configure things like default pin mappings and features of SDK libraries.
These defines are listed in Chapter 5, and Board Configuration files are covered in more detail in Chapter 8. Additionally
Chapter 6 describes CMake variables you can use to control the functionality of the build itself.

Apart from being a widely used build system for C/C++ development, CMake is fundamental to the way the SDK is
structured, and how applications are configured and built.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/CMakeLists. txt

add_executable(blink_simple
blink_simple.c

1

2

8

4

5 # pull in common dependencies

6 target_link_libraries(blink_simple pico_stdlib)

7

8 # create map/bin/hex/uf2 file etc.

9 pico_add_extra_outputs(blink_simple)

10

11 # call pico_set_program_url to set path to example on github, so users can find the source
for an example via picotool

12 example_auto_set_url(blink_simple)

Looking again at the blink_simple example, we are defining a new executable blink_simple with a single source file

]
2.1. The Build System 1

https://cmake.org
https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/CMakeLists.txt

Raspberry Pi Pico-series C/C++ SDK
]

blink_simple.c, with a single dependency pico_stdlib. We also are using a SDK provided function pico_add_extra_outputs to
ask additional files to be produced beyond the executable itself (.uf2, .hex, .bin, .map, .dis).

The SDK builds an executable which is "bare metal", i.e. it includes the entirety of the code needed to run on the device
(other than certain code contained in the bootrom within the RP-series microcontroller).

pico_stdlib is an INTERFACE library and provides all the rest of the code and configuration needed to compile and link the
blink application. You will notice if you watch a build of blink_simple (https://github.com/raspberrypi/pico-examples/
blob/master/blink_simple/blink_simple.c) that in addition to the single blink_simple.c file, the inclusion of pico_stdlib
causes dozens of other source files to be compiled to flesh out the blink_simple application such that it can be run on a
RP-series microcontroller.

2.2. Every Library is an INTERFACE Library

All libraries within the SDK are CMake INTERFACE libraries. (Note this does not include the C/C++ standard libraries
provided by the compiler). Conceptually, a CMake INTERFACE library is a collection of:

® Source files

® |nclude paths

® Compiler definitions (visible to code as #defines)
® Compile and link options

® Dependencies (on other INTERFACE libraries)

The INTERFACE libraries form a tree of dependencies, with each contributing source files, include paths, compiler
definitions and compile/link options to the build. These are collected based on the libraries you have listed in your
CMakelists.txt file, and the libraries depended on by those libraries, and so on recursively. To build the application, each
source file is compiled with the combined include paths, compiler definitions and options and linked into an executable
according to the provided link options.

When building an executable with the SDK, all of the code for one executable, including the SDK libraries, is (re)compiled
for that executable from source. Building in this way allows your build configuration to specify customised settings for
those libraries (e.g. enabling/disabling assertions, setting the sizes of static buffers), on a per-application basis, at
compile time. This allows for faster and smaller binaries, in addition of course to the ability to remove support for
unwanted features from your executable entirely.

In the example CMakeLists.txt we declare a dependency on the (INTERFACE) library pico_stdlib. This INTERFACE library itself
depends on other INTERFACE libraries (pico_runtime, hardware_gpio, hardware_uart and others). pico_stdlib provides all the
basic functionality needed to get a simple application running and toggling GPIOs and printing to a UART, and the linker
will garbage collect any functions you don't call, so this doesn’t bloat your binary. We can take a quick peek into the
directory structure of the hardware_gpio library, which our blink_simple example uses to turn the LED on and off:

hardware_gpio
—— CMakelists.txt
—— gpio.c
—— include
L—— hardware
L—— gpio.h

Depending on the hardware_gpio INTERFACE library in your application causes gpio.c to be compiled and linked into your
executable, and adds the include directory shown here to your search path, so that a #include "hardware/gpio.h" will pull
in the correct header in your code.

INTERFACE libraries also make it easy to aggregate functionality into readily consumable chunks (such as pico_stdlib),
which don’t directly contribute any code, but depend on a handful of lower-level libraries that do. Like a metapackage,
this lets you pull in a group of libraries related to a particular goal without listing them all by name.

]
2.2. Every Library is an INTERFACE Library 12

https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c
https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c

Raspberry Pi Pico-series C/C++ SDK

O IMPORTANT

SDK functionality is grouped into separate INTERFACE libraries, and each INTERFACE library contributes the code and
include paths for that library. Therefore, you must declare a dependency on the INTERFACE library you need directly (or
indirectly through another INTERFACE library) for the header files to be found during compilation of your source file (or
for code completion in your IDE).

O NoTE

As all libraries within the SDK are INTERFACE libraries, we will simply refer to them as libraries or SDK libraries from
now on.

2.3. SDK Library Structure

The full API listings are given in Chapter 4; this chapter gives an overview of how SDK libraries are organised, and the
relationships between them.

There are a number of layers of libraries within the SDK. This section starts with the highest-level libraries, which can be
used in C or C++ applications, and navigates all the way down to the hardware_regs library, which is a comprehensive set
of hardware definitions suitable for use in Arm assembly as well as C and C++, before concluding with a brief note on
how the TinyUSB stack can be used from within the SDK.

2.3.1. Higher-level Libraries

These libraries (pico_xxx) provide higher-level APIs, concepts and abstractions that are common to most RP-series
microcontroller-based applications. The APIs are listed in High Level APIs. These may be libraries that have cross-
cutting concerns between multiple pieces of hardware (for example the sleep_ functions in pico_time need to concern
themselves both with the RP-series microcontrollers' timer hardware and with how processors enter and exit low power
states), or they may be pure software infrastructure required for your program to run smoothly. This includes libraries
for things like:

® Alarms, timers and time functions
® Multi-core support and synchronization primitives
e Utility functions and data structures

These libraries are generally built upon one or more underlying hardware_ libraries, and often depend on each other.

© NOTE

More libraries are added over time. Certain additional libraries that are not fully supported/stable/documented (e.g. -
Audio support (via PIO), DPI/VGA/MIPI Video support (via PIO), file system support, SDIO support via (PIO)) are
included in the Pico Extras GitHub repository.

2.3.2. Runtime Support Libraries

These libraries provide basic application features required for a basic program.

® Runtime startup and initialization functions, e.g. performing minimal hardware initialisation (e.g. default PLL and
clock configuration), and calling functions with constructor attributes before entering main()

® Low level interfacing with the C/C++ runtime library
* Hardaware/bootrom accelerated single and double-precision floating point support.

]
2.3. SDK Library Structure 13

https://github.com/raspberrypi/pico-extras

Raspberry Pi Pico-series C/C++ SDK

® Compact printf support, and stdio support via UART, USB, semihosting and Segger RTT
® On RP2040, language level / and % support for fast division using RP2040 hardware dividers

® Standard runtime linking setup with default linker scripts

O NoOTE

There is more high-level discussion of the aggregate library pico_runtime in Section 2.7

2.3.3. Hardware Support Libraries

These are individual libraries (hardware_xxx) providing actual APIs for interacting with each piece of physical
hardware/peripheral. They are lightweight and provide only thin abstractions. The APIs are listed in Hardware APIs.

These libraries generally provide functions for configuring or interacting with the peripheral at a functional level, rather
than accessing registers directly, e.g.:

pio_sm_set_wrap(pio, sm, bottom, top);

rather than:

pio->sm[sm].execctrl =

(pio->sm[sm].execctrl & ~(PIO_SMO_EXECCTRL_WRAP_TOP_BITS |
PIO_SM@_EXECCTRL_WRAP_BOTTOM_BITS)) |

(bottom << PIO_SMO_EXECCTRL_WRAP_BOTTOM_LSB) |

(top << PIO_SM@_EXECCTRL_WRAP_TOP_LSB);

The hardware_ libraries are intended to have a very minimal runtime cost. They generally do not require any or much
RAM, and rarely rely on other runtime infrastructure. In general their only dependencies are the hardware_structs and
hardware_regs libraries that contain definitions of memory-mapped register layout on the RP-series microcontroller. As
such they can be used by low-level or other specialized applications that don’t want to use the rest of the SDK libraries
and runtime.

© NoOTE

void pio_sm_set_wrap(PIO pio, uint sm, uint bottom, uint top) {} is actually implemented as a static inline function
in https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h
directly as shown above.

Using static inline functions is common in SDK header files because such methods are often called with
parameters that have fixed known values at compile time. In such cases, the compiler is often able to fold the code
down to a single register write (or in this case a read, AND with a constant value, OR with a constant value, and a
write) with no function call overhead. This tends to produce much smaller and faster binaries.

2.3.3.1. Hardware Claiming

The hardware layer does provide one small abstraction which is the notion of claiming a piece of hardware. This
minimal system allows registration of peripherals or parts of peripherals (e.g. DMA channels) that are in use, and the
ability to atomically claim free ones at runtime. The common use of this system - in addition to allowing for safe
runtime allocation of resources - provides a better runtime experience for catching software misconfigurations or
accidental use of the same piece hardware by multiple independent libraries that would otherwise be very painful to
debug.

]
2.3. SDK Library Structure 14

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h#L1344-L1353

Raspberry Pi Pico-series C/C++ SDK

There are individual claiming/unclaiming methods in the respective hardware_ libraries.

2.3.4. Hardware Structs Library

The hardware_structs library provides a set of C structures which represent the memory mapped layout of the RP-series
microcontroller registers in the system address space. This allows you to replace something like the following (which
you'd write in C with the defines from the lower-level hardware_regs)

*(volatile uint32_t *)(PIOO_BASE + PIO_SM1_SHIFTCTRL_OFFSET) |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;
with something like this (where pio@ is a pointer to type pio_hw_t at address PIOO_BASE):
pio@->sm[1].shiftctrl |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

The structures and associated pointers to memory mapped register blocks hide the complexity and potential error-
prone-ness of dealing with individual memory locations, pointer casts and volatile access. As a bonus, the structs tend
to produce better code with older compilers, as they encourage the reuse of a base pointer with offset load/stores,
instead of producing a 32 bit literal for every register accessed.

The struct headers are named consistently with both the hardware_ libraries and the hardware_regs register headers. For
example, if you access the hardware_pio library’s functionality through hardware/pio.h, the hardware_structs library (a
dependee of hardware_pio) contains a header you can include as hardware/structs/pio.h if you need to access a register
directly, and this itself will pull in hardware/regs/pio.h for register field definitions. The PIO header is a bit lengthy to
include here. hardware/structs/pll.his a shorter example to give a feel for what these headers actually contain:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2350/hardware_structs/include/hardware/structs/pll.h Lines 27 - 74

27 typedef struct {

28 _REG_(PLL_CS_OFFSET) // PLL_CS

29 // Control and Status

30 // 6x80000000 [31] LOCK (8) PLL is locked

31 // 0x40000000 [30] LOCK_N (6) PLL is not locked +

32 // 0x00000100 [8] BYPASS (8) Passes the reference clock to the output instead of
the. ..

33 // 0x0000003f [5:0] REFDIV (6x01) Divides the PLL input reference clock

34 io_rw_32 cs;

B85

36 _REG_(PLL_PWR_OFFSET) // PLL_PWR

37 // Controls the PLL power modes

38 // 0x00000020 [5] VCOPD (1) PLL VCO powerdown +

39 // 6x00000008 [3] POSTDIVPD (1) PLL post divider powerdown +

40 // 6x00000004 [2] DSMPD (1) PLL DSM powerdown +

41 // 6x00000001 [0] PD (1) PLL powerdown +

42 io_rw_32 pwr;

43

44 _REG_(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT

45 // Feedback divisor

46 // 0x00000fff [11:0] FBDIV_INT (6x000) see ctrl reg description for constraints

47 io_rw_32 fbdiv_int;

48

49 _REG_(PLL_PRIM_OFFSET) // PLL_PRIM

50 // Controls the PLL post dividers for the primary output

51 // 0x00070000 [18:16] POSTDIV1 (6x7) divide by 1-7

52 // 6x00007000 [14:12] POSTDIV2 (0x7) divide by 1-7

58 io_rw_32 prim;

54

]
2.3. SDK Library Structure 15

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2350/hardware_structs/include/hardware/structs/pll.h#L27-L74

Raspberry Pi Pico-series C/C++ SDK
]

55 _REG_(PLL_INTR_OFFSET) // PLL_INTR

56 // Raw Interrupts

57 // 6x00000001 [0] LOCK_N_STICKY (8)
58 io_rw_32 intr;

59

60 _REG_(PLL_INTE_OFFSET) // PLL_INTE

61 // Interrupt Enable

62 // 6x00000001 [0] LOCK_N_STICKY (©)
63 io_rw_32 inte;

64

65 _REG_(PLL_INTF_OFFSET) // PLL_INTF

66 // Interrupt Force

67 // 6x00000001 [0] LOCK_N_STICKY (0)
68 io_rw_32 intf;

69

70 _REG_(PLL_INTS_OFFSET) // PLL_INTS

71 // Interrupt status after masking & forcing
72 // 6x00000001 [0] LOCK_N_STICKY (0)
73 io_ro_32 ints;

74 } pll_hw_t;

The structure contains the layout of the hardware registers in a block, and some defines bind that layout to the base
addresses of the instances of that peripheral in the RP-series microcontroller global address map.

Additionally, you can use one of the atomic set, clear, or xor address aliases of a piece of hardware to set, clear or toggle
respectively the specified bits in a hardware register (as opposed to having the CPU perform a read/modify/write); e.g.:

hw_set_alias(pio@)->sm[1].shiftctrl = PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

Or, equivalently:

hw_set_bits(&pioB->sm[1].shiftctrl, PIO_SM1_SHIFTCTRL_AUTOPULL_BITS);

© NoTE

The hardware atomic set/clear/XOR 10 aliases are used extensively in the SDK libraries, to avoid certain classes of
data race when two cores, or an IRQ and foreground code, are accessing registers concurrently.

© NoTE

On RP-series microcontrollers, the atomic register aliases are a native part of the peripheral, not a CPU function, so
the system DMA can also perform atomic set/clear/XOR operation on registers.

2.3.5. Hardware Registers Library

The hardware_regs library is a complete set of include files for all RP-series microcontroller registers, autogenerated from
the hardware itself. This is all you need if you want to peek or poke a memory-mapped register directly, however, higher-
level libraries provide more user-friendly ways of achieving what you want in C/C++.

For example, here is a snippet from hardware/regs/sio.h:

]
2.3. SDK Library Structure 16

Raspberry Pi Pico-series C/C++ SDK
]

// Description : Single-cycle IO block

// Provides core-local and inter-core hardware for the two
// processors, with single-cycle access.

)/ S===

#ifndef HARDWARE_REGS_SIO_DEFINED
#define HARDWARE_REGS_SIO_DEFINED

// ========z=z=====z==ssZSsSSSSSSSSSSSSSSSSSSSSSSSSSSSSssSsssSZsss

// Register : SIO_CPUID

// Description : Processor core identifier

// Value is @ when read from processor core 8, and 1 when read
// from processor core 1.

#define SIO_CPUID_OFFSET 0x00000000
#define SIO_CPUID_BITS Oxffffffff
#define SIO_CPUID_RESET "-"
#define SIO_CPUID_MSB 31

#define SIO_CPUID_LSB 0

#define SIO_CPUID_ACCESS "RO"

#endif

These header files are fairly heavily commented (the same information as is present in the datasheet register listings, or
the SVD files). They define the offset of every register, and the layout of the fields in those registers, as well as the
access type of the field, e.g. "RO" for read-only.

@ TIF

The headers in hardware_regs contain only comments and #define statements. This means they can be included from
assembly files (.S, so the C preprocessor can be used), as well as C and C++ files.

2.3.6. TinyUSB Port

In addition to the core SDK libraries, we provide a RP-series microcontroller port of TinyUSB as the standard device and
host USB support library within the SDK, and the SDK contains some build infrastructure for easily pulling this into your
application.

The tinyusb_dev or tinyusb_host libraries within the SDK can be included in your application dependencies in
CMakelists.txt to add device or host support to your application respectively. Additionally, the tinyusb_board library is
available to provide the additional "board support" code often used by TinyUSB demos. See the README in Pico
Examples for more information and example code for setting up a fully functional application.

O IMPORTANT

RP-series microcontroller USB hardware supports both Host and Device modes, but the two can not be used
concurrently. TinyUSB can however also provide support for USB implemented via P10, which is exposed, if available,

via tinyusb_pico_pio_usb.

2.3.7. FreeRTOS Ports

FreeRTOS ports are available for RP2040 and RP2350 (both under Arm and RISC-V) either on a single core or in dual-
core SMP mode.

The SDK does not directly depend on FreeRTOS, but does provide some libraries (particularly for networking) that are
designed to be used with FreeRTOS. The pico-examples repository contains examples that use FreeRTOS, and when
building you should set FREERTOS_KERNEL_PATH.

]
2.3. SDK Library Structure 17

https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-examples/blob/master/README.md

Raspberry Pi Pico-series C/C++ SDK

© NOTE

As of the time of press the latest FreeRTOS-Kernel change for SDK 2.0.0 and RP2350 have not been merged
upstream; they can be found here instead.

2.3.8. Wi-Fi on Pico W
The IP support within the Pico SDK is provided by IwIP. The IwIP raw API is always supported: the full API, including
blocking sockets, may be used under FreeRTOS.

There are a number of different library building blocks used within the IP and Wi-Fi support™: pico_lwip for IwlIP,
pico_cywd3_driver for the Wi-Fi chip driver, pico_async_context for accessing the non-thread-safe API (IwIP) in a consistent
way whether polling, using multiple cores, or running FreeRTOS.

O IMPORTANT

By default libcyw43 is licensed for non-commercial use, but users of Raspberry Pi Pico W, Pico WH, or anyone else
who builds their product around RP2040 and CYW43439, benefit from a free commercial-use licence.

These libraries can be composed individually by advanced users, but in most common cases they are rolled into a few
convenience libraries that you can add to your application’s dependencies in CMakeLists. txt:

® pico_cyw43_arch_Iwip_poll - For single-core, traditional polling-style access to IwIP on Pico W.

* pico_cyw43_arch_threadsafe_background - For single or multicore access to IwIP on Pico W, with IwIP callbacks
handled in a low-priority interrupt, so no polling is required.

® pico_cyw43_arch_lwip_sys_freertos - For full access to the IwIP APIs (N0_SYS=0) under FreeRTOS.

For fuller details see the pico_cyw43_arch header file. Many examples of using Wi-Fi and IwIP with the Pico SDK may be
found in the pico-examples repository.

2.3.9. Bluetooth on Pico W

The Bluetooth support within the Pico SDK is provided by BTstack. Documentation for BTstack can be found on
BlueKitchen's website.

O IMPORTANT

In addition to the standard BTstack licensing terms, a supplemental licence which covers commercial use of
BTstack with Raspberry Pi Pico W or Raspberry Pi Pico WH is provided.

See the pico-examples repository for Bluetooth examples including the examples from BTstack.
The Bluetooth support within the SDK is composed of multiple libraries:

The pico_btstack_ble library adds the support needed for Bluetooth Low Energy (BLE), and the pico_btstack_classic library
adds the support needed for Bluetooth Classic. You can link to either library individually, or to both libraries enabling the
dual-mode support provided by BTstack.

The pico_btstack_cyw43 library is required for Bluetooth use. It adds support for the Bluetooth hardware on the Pico W,
and integrates the BTstack run loop concept with the SDK'’s pico_async_context library allowing for running Bluetooth
either via polling or in the background, along with multicore and/or FreeRTOS support.

The following additional libraries are optional:
® pico_btstack_sbc_encoder - Adds Bluetooth Sub Band Coding (SBC) encoder support.
® pico_btstack_sbc_decoder - Adds Bluetooth Sub Band Coding (SBC) decoder support.

]
2.3. SDK Library Structure 18

https://github.com/raspberrypi/FreeRTOS-Kernel
https://savannah.nongnu.org/projects/lwip/
https://github.com/georgerobotics/cyw43-driver/blob/195dfcc10bb6f379e3dea45147590db2203d3c7b/LICENSE.RP
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h
https://github.com/raspberrypi/pico-examples/blob/master/README.md
https://github.com/bluekitchen/btstack/blob/master/README.md
https://bluekitchen-gmbh.com/btstack/
https://bluekitchen-gmbh.com/btstack/
https://github.com/bluekitchen/btstack/blob/master/LICENSE
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/LICENSE.RP
https://github.com/raspberrypi/pico-examples/blob/master/README.md
https://bluekitchen-gmbh.com/btstack/#examples/examples/

Raspberry Pi Pico-series C/C++ SDK

® pico_btstack_bnep_lwip - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using LwIP.

® pico_btstack_bnep_lwip_sys_freertos - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using
LwIP with FreeRTOS in NO_SYS=0 mode.

To use BTstack you must add pico_btstack_cyw43 and one or both of pico_btsack_ble and pico_sbtstack_classic to your
application dependencies in your CMakelLists.txt. Additionally, you need to provide a btstack_config.h file in your source
tree and add its location to your include path. For more details, see BlueKitchen's documentation on how to configure
BTstack and the relevant Bluetooth example code in the pico-examples repository.

The CMake function pico_btstack_make_gatt_header can be used to run the BTstack compile_gatt tool to make a GATT
header file from a BTstack GATT file.

2.4. Directory Structure

We have discussed libraries such as pico_stdlib and hardware_gpio above. Imagine you wanted to add some code using
the RP-series microcontrollers DMA controller to the hello_world example in pico-examples. To do this you need to add a
dependency on another library, hardware_dma, which is not included by default by pico_stdlib (unlike, say, hardware_uart).

You would change your CMakeLists.txt to list both pico_stdlib and hardware_dma as dependencies of the hello_world target
(executable). (Note the line breaks are not required)

target_link_libraries(hello_world
pico_stdlib
hardware_dma

In your source code, you would include the DMA hardware library header as such:
#include "hardware/dma.h"

Trying to include this header without listing hardware_dma as a dependency will fail, and this is due to how SDK files are
organised into logical functional units on disk, to make it easier to add functionality in the future.

As an aside, this correspondence of hardware_dma — hardware/dma.h is the convention for all toplevel SDK library headers.
The library is called foo_bar and the associated header is foo/bar.h. Some functions may be provided inline in the
headers, others may be compiled and linked from additional .c files belonging to the library. Both of these require the
relevant hardware_ library to be listed as a dependency, either directly or through some higher-level bundle like
pico_stdlib.

O NoTE

Some libraries have additional headers which are located — for the above example —in foo/bar/other.h

You may want to actually find the files in question (although most IDEs will do this for you). The on disk files are actually
split into multiple top-level directories. This is described in the next section.

2.4.1. Locations of Files

Whilst you may be focused on building a binary to run specifically on Raspberry Pi Pico 2, which uses a RP2040, the SDK
is structured in a more general way. This is for two reasons:
1. To support other future chips in the RP2 family

2.4. Directory Structure 19

https://bluekitchen-gmbh.com/btstack/develop/#how_to/
https://bluekitchen-gmbh.com/btstack/develop/#how_to/
https://github.com/raspberrypi/pico-examples/blob/master/README.md

Raspberry Pi Pico-series C/C++ SDK

Table 1. Top-level
directories

2. To support testing of your code off device (this is host mode)

The latter is useful for writing and running unit tests, but also as you develop your software, for example your debugging
code or work-in-progress software might be too big or use too much RAM to fit on the device, and much of the software
complexity may be non-hardware-specific.

The code is thus split into top-level directories as follows:

Path Description

src/rp2049/ This contains the hardware_regs and hardware_structs libraries mentioned earlier, along
with a handful of other low-level platform libraries, all of which are specific to the
RP2040.

src/rp2350/ This contains the hardware_regs and hardware_structs libraries mentioned earlier, along
with a handful of other low-level platform libraries, all of which are specific to the
RP2350.

src/rp2_common/ This contains the remaining hardware_ library implementations for individual hardware

components, and pico_ libraries or library implementations that are intended specifically
for RP-series microcontroller hardware. Libraries are included here even if they are
RP2040 or RP2350 specific, if they are considered part of the RP-series microcontroller
API proper.

src/common/ This is common code that is not specific to any hardware. This includes utilty code,
headers providing hardware abstractions for functionality which are simulated in host
mode (see below), along with some of the pico_ library implementations which, to the
extent they use hardware, do so only through the hardware_ abstractions.

src/host/ This is a basic set of stub SDK library implementations sufficient to get simple
Raspberry Pi Pico 2 applications running on your computer (Raspberry Pi OS, Linux,
macOS or Windows using Cygwin or Windows Subsystem for Linux) for testing
purposes. This is not intended to be a fully functional platform, however it is possible to
inject additional implementations of libraries to provide more complete functionality.

There is a CMake variable PICO_PLATFORM that controls the environment you are building for:

The value of PICO_PLATFORM determine which sets of library sources are compiled to build your program. When doing a
PICO_PLATFORM=rp2040 build, you get code from common, rp2_common and rp2040; when doing a host build (PIC0_PLATFROM=host),
you get code from common and host.

With the advent of RP2350, there are two additional supported PIC0O_PLATFORM values, rp350_arm_s for secure Arm code on
RP2350, and rp2350_riscv for RISC-V on RP2350. rp2350 can also be used as a shorthand, but is expanded based on the
value of PICO_DEFAULT_RP2350_PLATFORM.

@ TIF

Individual boards support only one of either RP2040 or RP2350. To avoid having to specify PICO_PLATFORM in addition
to PICO_BOARD (see Section 2.6.1), specifying the latter can now automatically set the former.

Within each top-level directory, the libraries have the following structure (reading foo_bar as something like hardware_uvart
or pico_time)

top-level_dir/

top-level_dir/foo_bar/include/foo/bar.h # header file
top-level_dir/foo_bar/CMakelLists.txt # build configuration
top-level_dir/foo_bar/bar.c # source file(s)

As a concrete example, we can list the hardware_vart directory under pico-sdk/rp2_common (you may also recall the
hardware_gpio library we looked at earlier):

2.4. Directory Structure 20

Raspberry Pi Pico-series C/C++ SDK
]

Table 2. SDK Suffixes
for (non-)blocking
functions and
timeouts.

hardware_uart
—— CMakelists.txt
F—— idinclude

| L—— hardware
\ L—— uart.h

L—— uart.c

vart.h contains function declarations and preprocessor defines for the hardware_uvart library, as well as some inline
functions that are expected to be particularly amenable to constant folding by the compiler. vart.c contains the
implementations of more complex functions, such as calculating and setting up the divisors for a given UART baud rate.

© NoTE

The directory top-level_dir/foo_bar/include is added as an include directory to the INTERFACE library foo_bar, which is
what allows you to include "foo/bar.h" in your application

2.5. Conventions for Library Functions

This section covers some common patterns you will see throughout the SDK libraries, such as conventions for function
names, how errors are reported, and the approach used to efficiently configure hardware with many register fields
without having unreadable numbers of function arguments.

2.5.1. Function Naming Conventions

SDK functions follow a common naming convention for consistency and to avoid name conflicts. Some names are
quite long, but that is deliberate to be as specific as possible about functionality, and of course because the SDK API is
a C API and does not support function overloading.

2.5.1.1. Name prefix

Functions are prefixed by the library/functional area they belong to; e.g. public functions in the hardware_dma library are
prefixed with dma_. Sometime the prefix refers to a sub group of library functionality (e.g. channel_config_)

2.5.1.2. Verb
A verb typically follows the prefix specifying that action performed by the function. set_ and get_ (or is_ for booleans)

are probably the most common and should always be present; i.e. a hypothetical method would be
oven_get_temperature() and food_add_salt(), rather than oven_temperature() and food_salt().

2.5.1.3. Suffixes

2.5.1.3.1. Blocking/Non-Blocking Functions and Timeouts
Suffix Param Description
(none) The method is non-blocking, i.e. it does not wait on any external
condition that could potentially take a long time.

2.5. Conventions for Library Functions 21

Raspberry Pi Pico-series C/C++ SDK

_blocking

The method is blocking, and may potentially block indefinitely
until some specific condition is met.

_blocking_until

absolute_time_t until

The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) if the until time is reached.

_timeout_ms uint32_t timeout_ms The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of milliseconds

_timeout_us uint64_t timeout_us The method is blocking until some specific condition is met,

however it will return early with a timeout condition (see Section
2.5.2) after the specified number of microseconds

2.5.2. Return Codes and Error Handling

As mentioned earlier, there is a decision to be made as to whether/which functions return error codes that can be
handled by the caller, and indeed whether the caller is likely to actually do something in response in an embedded
environment. Also note that very often return codes are there to handle parameter checking, e.g. when asked to do
something with the 27th DMA channel (when there are actually only 12).

In many cases checking for obviously invalid (likely program bug) parameters in (often inline) functions is prohibitively
expensive in speed and code size terms, and therefore we need to be able to configure it on/off, which precludes return

codes being returned for these exceptional cases.

The SDK follows two strategies:

1. Methods that can legitimately fail at runtime due to runtime conditions e.g. timeouts, dynamically allocated

resource, can return a status which is either

o Abool indicating success or not

o Aninteger value which, if negative, is standard SDK negative integer return code from the PIC0_ERROR_ family

(see pico_error_code values in pico_base) and if non-negative indicates a successful return. In the latter case
the value is either PIC0_0K (0) or any other positive value if the function actually needs to return something

2. Other issue like invalid parameters, or failure to allocate resources which are deemed program bugs (e.g. two
libraries trying to use the same statically assigned piece of hardware) do not affect a return code (usually the
functions return void) and must cause some sort of exceptional event.

As of right now the exceptional event is a C assert, so these checks are always disabled in release builds by
default. Additionally most of the calls to assert are disabled by default for code/size performance (even in debug
builds); You can set PARAM_ASSERTIONS_ENABLE_ALL=1 or PARAM_ASSERTIONS_DISABLE_ALL=1 in your build to change the
default across the entire SDK, or say PARAM_ASSERTIONS_ENABLED_12C=0/1 to explicitly specify the behaviour for the

hardware_i2c module

In the future we may support calling a custom function to throw an exception in C++ or other environments where
stack unwinding is possible.

. Obviously sometimes the calling code whether it be user code or another higher level function, may not want the
called function to assert on bad input, in which case it is the responsibility of the caller to check the validity (there
are a good number of API functions provided that help with this) of their arguments, and the caller can then choose
to provide a more flexible runtime error experience.

. Finally, some code may choose to "panic” directly if it detects an invalid state. A "panic” involves writing a message
to standard output and then halting (by executing a breakpoint instruction). Panicking is a good response when it
is undesirable to even attempt to continue given the current situation.

]
2.5. Conventions for Library Functions 22

Raspberry Pi Pico-series C/C++ SDK
]

2.5.3. Use of Inline Functions

SDK libraries often contain a mixture of static inline functions in header files, and non-static functions in C source files.
In particular, the hardware_ libraries are likely to contain a higher proportion of inline function definitions in their headers.
This is done for speed and code size.

The code space needed to setup parameters for a regular call to a small function in another compilation unit can be
substantially larger than the function implementation. Compilers have their own metrics to decide when to inline
function implementations at their call sites, but the use of static inline definitions gives the compiler more freedom to
do this.

This is particularly effective in the context of hardware register access because these functions often:
® Have relatively many parameters, which...
e _are immediately shifted and masked to combine with some register value, and...
e _.are often constants known at compile time

So if the implementation of a hardware access function is inlined, the compiler can propagate the constant parameters
through whatever bit manipulation and arithmetic that function may do, collapsing a complex function down to "please
write this constant value to this constant address". Again, we are not forcing the compiler to do this, but the SDK
consistently tries to give it freedom to do so.

The result is that there is generally no overhead using the lower-level hardware_ functions as compared with using
preprocessor macros with the hardware_regs definitions, and they tend to be much less error-prone.

2.5.4. Builder Pattern for Hardware Configuration APls

The SDK uses a builder pattern for the more complex configurations, which provides the following benefits:

1. Readability of code (avoid "death by parameters" where a configuration function takes a dozen integers and
booleans)

2. Tiny runtime code (thanks to the compiler)
3. Less brittle (the addition of another item to a hardware configuration will not break existing code)

Take the following hypothetical code example to (quite extensively) configure a DMA channel:

int dma_channel = 3;

dma_channel_config config = dma_get_default_channel_config(dma_channel);
channel_config_set_read_increment(&config, true);
channel_config_set_write_increment(&config, true);
channel_config_set_dreq(&config, DREQ_SPI@_RX);
channel_config_set_transfer_data_size(&config, DMA_SIZE_8);
dma_set_config(dma_channel, &config, false);

The value of dma_channel is known at compile time, so the compiler can replace dma_channel with 3 when generating code
(constant folding). The dma_ methods are static inline methods (from https://github.com/raspberrypi/pico-sdk/blob/
master/src/rp2_common/hardware_dma/include/hardware/dma.h) meaning the implementations can be folded into
your code by the compiler and, consequently, your constant parameters (like DREQ_SP10_RX) are propagated though this
local copy of the function implementation. The resulting code is usually smaller, and certainly faster, than the register
shuffling caused by setting up a function call.

The net effect is that the compiler actually reduces all of the above to the following code:

]
2.5. Conventions for Library Functions 23

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h

Raspberry Pi Pico-series C/C++ SDK
]

Effective code produced by the C compiler for the DMA configuration

*(volatile uint32_t *)(DMA_BASE + DMA_CH3_AL1_CTRL_OFFSET) = 0x008089831;

It may seem counterintuitive that building up the configuration by passing a struct around, and committing the final
result to the IO register, would be so much more compact than a series of direct register modifications using register
field accessors. This is because the compiler is customarily forbidden from eliminating 10 accesses (illustrated here
with a volatile keyword), with good reason. Consequently it's easy to unwittingly generate code that repeatedly puts a
value into a register and pulls it back out again, changing a few bits at a time, when we only care about the final value of
the register. The configuration pattern shown here avoids this common pitfall.

O NoTE

The SDK code is designed to make builder patterns efficient in both Release and Debug builds. Additionally, even if
not all values are known constant at compile time, the compiler can still produce the most efficient code possible
based on the values that are known.

2.6. Customisation and Configuration Using Preprocessor
variables

The SDK allows use of compile time definitions to customize the behavior/capabilities of libraries, and to specify
settings (e.g. physical pins) that are unlikely to be changed at runtime This allows for much smaller more efficient code,
and avoids additional runtime overheads and the inclusion of code for configurations you might choose at runtime even
though you actually don't (e.g. support PWM audio when you are only using 12S)!

Remember that because of the use of INTERFACE libraries, all the libraries your application(s) depend on are built from
source for each application in your build, so you can even build multiple variants of the same application with different
baked in behaviors.

Chapter 5 has more details and a comprehensive list of the available preprocessor defines, what they do, and what their
default values are.

Preprocessor variables may be specified in a number of ways, described in the following sections.

O NoOTE

Whether compile time configuration or runtime configuration or both is supported/required is dependent on the
particular library itself. The general philosophy however, is to allow sensible default behaviour without the user
specifying any settings (beyond those provided by the board configuration).

2.6.1. Preprocessor Variables via Board Configuration File

Many of the common configuration settings are actually related to the particular RP-series microcontroller board being
used and include default pin settings for various SDK libraries. The board being used is specified via the PIC0_BOARD
CMake variable which may be specified on the CMake command line or in the environment.

The board configuration provides a header file that specifies defaults if not otherwise specified; for example
https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h specifies

#ifndef PICO_DEFAULT_LED_PIN
#define PICO_DEFAULT_LED_PIN 25
#endif

]
2.6. Customisation and Configuration Using Preprocessor variables 24

https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h

Raspberry Pi Pico-series C/C++ SDK

The header my_board_name.h is included by all other SDK headers as a result of setting PIC0O_BOARD=my_board_name. You can
also create your own board headers.

See Section 6.2 for more full details on PIC0_BOARD and related CMake variables.

2.6.2. Preprocessor Variables Per Binary or Library via CMake

We could modify the https://github.com/raspberrypi/pico-examples/blob/master/hello_world/CMakeLists.txt with
target_compile_definitions to specify an alternate set of UART pins to use.

Modified hello_world CMakeLists.txt specifying different UART pins

add_executable(hello_world
hello_world.c

SPECIFY two preprocessor definitions for the target hello_world
target_compile_definitions(hello_world PRIVATE
PICO_DEFAULT_UART_TX_PIN=16
PICO_DEFAULT_UART_RX_PIN=17

Pull in our pico_stdlib which aggregates commonly used features
target_link_libraries(hello_world pico_stdlib)

create map/bin/hex/uf2 file etc.
pico_add_extra_outputs(hello_world)

The target_compile_definitions specifies preprocessor definitions that will be passed to the compiler for every source file
in the target hello_world (which as mentioned before includes all of the sources for all dependent INTERFACE libraries).
PRIVATE is required by CMake to specify the scope for the compile definitions. Note that all preprocessor definitions used
by the SDK have a P1c0_ prefix.

2.7. SDK Runtime

For those coming from non-embedded programming, or from other devices, this section will give you an idea of how
various C/C++ language level concepts are handled within the SDK

2.7.1. Standard Input/Output (stdio) Support
The SDK provides infrastructure for routing stdout and stdin to various hardware interfaces, which is provided by the
pico_stdio library.

* A UART interface specified by a board configuration header. The default for Raspberry Pi Pico 2 is 115200 baud on
GPIOO (TX) and GPIO1 (RX)

® A USB CDC ACM virtual serial port, using TinyUSB’s CDC support. The virtual serial device can be accessed
through the RP-series microcontrollers' dedicated USB hardware interface, in Device mode

* Minimal semihosting support to direct stdout to an external debug host connected via the Serial Wire Debug link on
the RP-series microcontroller

® Segger RTT

The support is used via the standard calls like printf, puts, getchar, found in the standard <stdio.h> header. By default,
stdout converts bare linefeed characters to carriage return plus linefeed, for better display in a terminal emulator. This

]
2.7. SDK Runtime 25

https://github.com/raspberrypi/pico-examples/blob/master/hello_world/CMakeLists.txt

Raspberry Pi Pico-series C/C++ SDK
]

can be disabled at runtime, at build time, or the CR-LF support can be completely removed.

stdout is broadcast to all interfaces that are enabled, and stdin is collected from all interfaces which are enabled and
support input. Since some of the interfaces, particularly USB, have heavy runtime and binary size cost, only the UART
interface is included by default. You can add/remove interfaces for a given program at build time with e.g.

pico_enable_stdio_usb(target_name, 1) # enable USB CDC stdio for TARGET target_name

2.7.2. Printf Support

The SDK runtime packages a lightweight printf library by Marco Paland, provided via the pico_printf library.

This is a small and largely feature complete implementation, however the C library version (or no printf support) can be
chosen instead via the CMake function pico_set_printf_implementation.

2.7.3. Runtime Initialization and Linking
Using the SDK you can simply write your simple C file with a main() method, and a small CMakeLists.txt and you can build
a binary that works on your RP-series microcontroller.
You can take as much control of this process as you want, but by default, the pico_runtime includes these libraries:
® pico_crt0 - the runtime entry point and default linker scripts which define memory layout
® pico_standard_link - configuration for link options and pulling in linker scripts

® pico_runtime_init - a default set of initializers to run before reaching main.

2.7.4. C-Library Integration

There are a variety of C libraries used by the compilers supported by the SDK. These currently include:
® newlib
® picolibe
® 1lvm-libc

These each have slightly different integration points for a bare-metal embedded applications, and the SDK runtime
takes care of these via the pico_clib_interface library.

2.7.5. Floating-point Support

The SDK provides a highly optimized single and double-precision floating point implementation. often significantly
faster than the equivalent C library versions. Both basic arithmetic, and scientific functions are provided.

On RP2040 the functions are actually implemented using support provided in the RP2040 bootrom. This means the
interface from your code to the ROM floating point library has very minimal impact on your program size, certainly using
dramatically less flash storage than including the standard floating point routines shipped with your compiler. The
physical ROM storage on the RP-series microcontroller has single-cycle access (with a dedicated arbiter on the RP-
series microcontroller busfabric), and accessing code stored here does not put pressure on the flash cache or take up
space in memory, so not only are the routines fast, the rest of your code will run faster due them being resident in ROM.

On RP2350 optimized Arm versions of the single-precision floating point functions are provided which use the
processors VFP floating point instructions. Optimized versions of the double-precision float point functions are
provided using the RP2350’s DCP (Double Coprocessor) instructions.

]
2.7. SDK Runtime 26

Raspberry Pi Pico-series C/C++ SDK

The SDK libraries pico_float and pico_double provide this support. This includes implementations for all the standard
functions from math.h as well as additional functions that can be found in pico/float.h and pico/double.h.

2.7.5.1. Configuration and Alternate Implementations

There are three different floating point implementations provided

Name Description

default The default; equivalent to pico

pico Use the fast/compact SDK/bootrom implementations

compiler Use the standard compiler provided soft floating point implementations

none Map all functions to a runtime assertion. You can use this when you know you don’t
want any floating point support to make sure it isn't accidentally pulled in by some
library.

These settings can be set independently for both "float" and "double":

For "float" you can call pico_set_float_implementation(TARGET NAME) in your CMakelLists.txt to choose a specific
implementation for a particular target, or set the CMake variable PICO_DEFAULT_FLOAT_IMPL to pico_float_NANME to set the
default.

For "double" you can call pico_set_double_implementation(TARGET NAME) in your CMakelists.txt to choose a specific
implementation for a particular target, or set the CMake variable PICO_DEFAULT_DOUBLE_IMPL to pico_double_NAME to set the
default.

@ TP

The pico floating point library adds very little to your binary size, however it must include implementations for any
used functions that are not present in V1 of the bootrom, which is present on early Raspberry Pi Pico 2 boards. If you
know that you are only using RP2040s with V2 of the bootrom, then you can specify defines
PICO_FLOAT_SUPPORT_ROM_V1=0" and PIC0_DOUBLE_SUPPORT_ROM_V1=0 so the extra code will not be included. Any use
of those functions on a RP2040 with a V1 bootrom will cause a panic at runtime. See the RP2040 Datasheet for
more specific details of the bootrom functions.

2.7.5.1.1. NaN Propagation

The SDK implementation by default treats input NaNs as infinites. If you require propagation of NaN inputs to outputs
and NaN outputs for domain errors, then you can set the compile definitions PICO_FLOAT_PROPAGATE_NANS and
PICO_DOUBLE_PROPAGATE_NANS to 1, at the cost of a small runtime overhead.

2.7.6. Hardware Divider

This section applies to RP2040 only.

The SDK includes optimized 32- and 64-bit division functions accelerated by the RP2040 hardware divider, which are
seamlessly integrated with the C / and % operators. The SDK also supplies a high-level APl which includes combined
quotient and remainder functions for 32- and 64-bit, also accelerated by the hardware divider.

See Figure 1 and Figure 2 for 32-bit and 64-bit integer divider comparison.

2.7. SDK Runtime 27

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK
]

Figure 1. 32-bit divides
by divider size using
GCC library (blue), or
the SDK library (red)
with the RP2040
hardware divider.

Figure 2. 64-bit divides
by divider size using
GCC library (blue), or
the SDK library (red)
with the RP2040
hardware divider.

1 ——
2 ——— == GCC
3 ———— — Pico
4 | ————
G —
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
0 50 100 150 200 250
T —
2 f—e — GCC
3 — P
H Pico
5
6
7
8
9
10
n
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/@
a2
a3
a4
a5
46
a7
a8
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
I T I I T 1
0 200 400 600 800 1000 1200

2.8. Multi-core support

Multi-core support should be familiar to those used to programming with threads in other environments. The second
core is just treated as a second thread within your application; initially the second core (core1 as it is usually referred to;
the main application thread runs on cored) is halted, however you can start it executing some function in parallel from
your main application thread.

Core 1 (the second core) is started by calling multicore_launch_corel(some_function_pointer); on core 0, which wakes the
core from its low-power sleep state and provides it with its entry point —some function you have provided which
hopefully has a descriptive name like void corel_main() { }. This function, as well as others such as pushing and
popping data through the inter-core mailbox FIFOs, is listed under pico_multicore.

Care should be taken with calling C library functions from both cores simultaneously as they are generally not designed

]
2.8. Multi-core support 28

Raspberry Pi Pico-series C/C++ SDK

to be thread safe. You can use the mutex_ API provided by the SDK in the pico_sync library (mutex) from within your own
code.

© NoTE

That the SDK version of printf is always safe to call from both cores. malloc, calloc and free are additionally wrapped
to make it thread safe when you include the pico_multicore as a convenience for C++ programming, where some
object allocations may not be obvious.

2.9. Using C++

The SDK has a C style API, however the SDK headers may be safely included from C++ code, and the functions called
(they are declared with C linkage).

C++ files are integrated into SDK projects in the same way as C files: listing them in your CMakeLists. txt file under either
the add_executable() entry, or a separate target_sources() entry to append them to your target.

To save space, exception handling is disabled by default; this can be overridden with the CMake environment variable
PICO_CXX_ENABLE_EXCEPTIONS=1. There are a handful of other C++ related PIC0_CXX vars listed in Chapter 6.

2.10. Supporting both RP2040 and RP2350

The RP2350 supports both Cortex-M33 (Arm) and Hazard3 (RISC-V) processors. As a result the SDK now supports
these processors as well as the Cortex-MO0 plus processors on the RP2040.

The majority of existing source code using the SDK should compile and run unmodified, even under RISC-V, with the
obvious exception of user Arm assembly code, or code interacting with the processor internals.

See Section 6.2 for details of configuring the SDK build for your particular board and RP-series microcontroller platform.

The SDK now supports the compilers listed below, although GCC is still the only officially supported compiler as of this
SDK 2.0.0.

@ TIF

If you have the correct compiler in your PATH, then compilation should just work based on your PICO_PLATFORM and
PICO_COMPILER value, however for more control you can set your PICO_TOOLCHAIN_PATH. See Section 6.3 for full details, on
configuring and finding toolchains

For Arm:

® GCC arm-none-eabi (PICO_COMPILER=pico_arm_gcc - the default for Arm)
o version 6 onwards for RP2040
o version 9 onwards for RP2350 since that is the first version that supports the Arm Cortex-M33

® || VM Embedded Toolchain For ARM (PICO_COMPILER=pico_arm_clang)
o version 14 onwards

® Pigweed LLVM. This is the vanilla build of LLVM with 11vn-1ibc used by PigWeed (PIC0_COMPILER=pico_arm_clang)
o clang_linux-x86_64 (sha256 e12ee@db92265b4a4400c5eb2c@f757d7056181b651622b5453acb00105Fd87)
o clang_win-x86_64 (sha256 8c41e8b507f4dfede8084298a716cac209552064088fa1b7f4c64ale547534)
o clang_mac-x86_64 (sha256 1d92f52609d3c1e958fd565e9a68ab99b2042ddcc6e90a5eb5009cF7ac4897d)

o clang_mac-aarch64 (sha256 53184680db7e0043a8fba1556¢7644b8f5e6c8cdffad436a92a8e8adbof45b8d)

]
2.9. Using C++ 29

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://pigweed.dev/
https://chrome-infra-packages.appspot.com/dl/fuchsia/third_party/clang/linux-amd64/+/git_revision:248c53429427034f45705af60d47f3b1090c4799
https://chrome-infra-packages.appspot.com/dl/fuchsia/third_party/clang/windows-amd64/+/git_revision:248c53429427034f45705af60d47f3b1090c4799
https://chrome-infra-packages.appspot.com/dl/fuchsia/third_party/clang/mac-amd64/+/git_revision:248c53429427034f45705af60d47f3b1090c4799
https://chrome-infra-packages.appspot.com/dl/fuchsia/third_party/clang/mac-arm64/+/git_revision:248c53429427034f45705af60d47f3b1090c4799

Raspberry Pi Pico-series C/C++ SDK
]

For RISC-V:
® GCC (PICO_COMPILER=pico_arm_gcc - the default for RISC-V)

Only very recent versions of GCC fully support the Hazard 3 RISC-V processors, so we recommend the compilers
listed below:

o CORE-V GCC top-of-tree compilers

o Building your own version of GCC 14 as an advanced option. For example. on current Ubuntu:

sudo apt-get install autoconf automake autotools-dev curl python3 python3-pip libmpc-
dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool
patchutils bc zlib1g-dev libexpat-dev ninja-build git cmake 1libglib2.@-dev libslirp-dev

sudo mkdir -p /opt/riscv/gcc14-rp2350-no-zcmp

sudo chown -R $(whoami) /opt/riscv/gccl14-rp23508-no-zcmp

git clone https://github.com/riscv/riscv-gnu-toolchain

cd riscv-gnu-toolchain

git clone https://github.com/gcc-mirror/gcc gcc-14 -b releases/gcc-14

./configure --prefix=/opt/riscv/gcc14-rp2350-no-zcmp --with
-arch=rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb --with-abi=ilp32 --with-multilib
-generator="rv32ima_zicsr_zifencei_zba_zbb_zbs_zbkb_zca_zcb-ilp32--

;rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb-ilp32--" --with-gcc-src="pwd /gcc-14

make -j$(nproc)

2.11. Next Steps

This has been quite a deep dive. If you've somehow made it through this chapter without building any software, now
would be a perfect time to divert to the Getting started with Raspberry Pi Pico-series book, which has detailed
instructions on connecting to your RP-series microcontroller board and loading an application built with the SDK.

Chapter 3 gives some background on RP-series microcontrollers' unique Programmable I/0 subsystem, and walks
through building some applications which use PIO to talk to external hardware.

Chapter 4 is a comprehensive listing of the SDK APIs. The APIs are listed according to groups of related functionality
(e.g. low-level hardware access).

|
2.11. Next Steps 30

https://www.embecosm.com/resources/tool-chain-downloads/#corev
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

Raspberry Pi Pico-series C/C++ SDK

Chapter 3. Using programmable I/O
(PIO)

3.1. What is Programmable 1/0 (P10)?

Programmable 1/0 (PIO) is a new piece of hardware developed for RP-series microcontrollers. It allows you to create
new types of (or additional) hardware interfaces on your RP-series microcontroller based device. If you've looked at
fixed peripherals on a microcontroller, and thought "l want to add 4 more UARTSs", or "I'd like to output DPI video", or
even "l need to communicate with this cursed serial device | found on AliExpress, but no machine has hardware
support", then you will have fun with this chapter.

PIO hardware is described extensively in chapter 11 of the RP2350 Datasheet. This is a companion to that text,
focussing on how, when and why to use PIO in your software. To start, we're going to spend a while discussing why 1/0
is hard, what the current options are, and what PIO does differently, before diving into some software tutorials. We will
also try to illuminate some of the more important parts of the hardware along the way, but will defer to the datasheet for
full explanations.

@ TP

You can skip to the first software tutorial if you'd prefer to dive straight in.

3.1.1. Background

Interfacing with other digital hardware components is hard. It often happens at very high frequencies (due to amounts
of data that need to be transferred), and has very exact timing requirements.

3.1.2. 1/0 Using dedicated hardware on your PC

Traditionally, on your desktop or laptop computer, you have one option for hardware interfacing. Your computer has
high speed USB ports, HDMI outputs, PCle slots, SATA drive controllers etc. to take care of the tricky and time sensitive
business of sending and receiving ones and zeros, and responding with minimal latency or interruption to the graphics
card, hard drive etc. on the other end of the hardware interface.

The custom hardware components take care of specific tasks that the more general multi-tasking CPU is not designed
for. The operating system drivers perform higher level management of what the hardware components do, and
coordinate data transfers via DMA to/from memory from the controller and receive IRQs when high level tasks need
attention. These interfaces are purpose-built, and if you have them, you should use them.

3.1.3. 1/0 Using dedicated hardware on your Raspberry Pi or microcontroller

Not so common on PCs: your Raspberry Pi or microcontroller is likely to have dedicated hardware on chip for managing
UART, 12C, SPI, PWM, 12S, CAN bus and more over general purpose I/0 pins (GPIOs). Like USB controllers (also found on
some microcontrollers, including the RP2350 on Raspberry Pi Pico 2), I2C and SPI are general purpose buses which
connect to a wide variety of external hardware, using the same piece of on-chip hardware. This includes sensors,
external flash, EEPROM and SRAM memories, GPIO expanders, and more, all of them widely and cheaply available. Even
HDMI uses 12C to communicate video timings between Source and Sink, and there is probably a microcontroller
embedded in your TV to handle this.

]
3.1. What is Programmable 1/0 (PIO)? 31

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK
]

Table 3. Types of
hardware

These protocols are simpler to integrate into very low-cost devices (i.e. not the host), due to their relative simplicity and
modest speed. This is important for chips with mostly analogue or high-power circuitry: the silicon fabrication
techniques used for these chips do not lend themselves to high speed or gate count, so if your switchmode power
supply controller has some serial configuration interface, it is likely to be something like I12C. The number of traces
routed on the circuit board, the number of pins required on the device package, and the PCB technology required to
maintain signal integrity are also factors in the choice of these protocols. A microcontroller needs to communicate with
these devices to be part of a larger embedded system.

This is all very well, but the area taken up by these individual serial peripherals, and the associated cost, often leaves
you with a limited menu. You may end up paying for a bunch of stuff you don't need, and find yourself without enough of
what you really want. Of course you are out of luck if your microcontroller does not have dedicated hardware for the
type of hardware device you want to attach (although in some cases you may be able to bridge over USB, 12C or SPI at
the cost of buying external hardware).

3.1.4.1/0 Using software control of GPIOs ("bit-banging")

The third option on your Raspberry Pi or microcontroller — any system with GPIOs which the processor(s) can access
easily —is to use the CPU to wiggle (and listen to) the GPIOs at dizzyingly high speeds, and hope to do so with
sufficiently correct timing that the external hardware still understands the signals.

As a bit of background it is worth thinking about types of hardware that you might want to interface, and the
approximate signalling speeds involved:

Interface Speed Interface

1-10Hz Push buttons, indicator LEDs
300Hz HDMI CEC

10-100kHz Temperature sensors (DHT11), one-wire serial
<100kHz 12C Standard mode
22-100+kHz PCM audio

300+kHz PWM audio

400-1200kHz WS2812 LED string
10-3000kHz UART serial

12MHz USB Full Speed

1-100MHz SPI

20-300MHz DPI/VGA video

480MHz USB High Speed
10-4000MHz Ethernet LAN

12-4000MHz SD card

250-20000MHz HDMI/DVI video

"Bit-Banging" (i.e. using the processor to hammer out the protocol via the GPIOs) is very hard. The processor isn't really
designed for this. It has other work to do... for slower protocols you might be able to use an IRQ to wake up the
processor from what it was doing fast enough (though latency here is a concern) to send the next bit(s). Indeed back in
the early days of PC sound it was not uncommon to set a hardware timer interrupt at 11kHz and write out one 8-bit PCM
sample every interrupt for some rather primitive sounding audio!

Doing that on a PC nowadays is laughed at, even though they are many order of magnitudes faster than they were back
then. As processors have become faster in terms of overwhelming number-crunching brute force, the layers of software
and hardware between the processor and the outside world have also grown in number and size. In response to the

]
3.1. What is Programmable 1/0 (PIO)? 32

Raspberry Pi Pico-series C/C++ SDK
]

growing distance between processors and memory, PC-class processors keep many hundreds of instructions in-flight
on a single core at once, which has drawbacks when trying to switch rapidly between hard real time tasks. However,
IRQ-based bitbanging can be an effective strategy on simpler embedded systems.

Above certain speeds — say a factor of 1000 below the processor clock speed — IRQs become impractical, in part due to
the timing uncertainty of actually entering an interrupt handler. The alternative when "bit-banging” is to sit the processor
in a carefully timed loop, often painstakingly written in assembly, trying to make sure the GPIO reading and writing
happens on the exact cycle required. This is really really hard work if indeed possible at all. Many heroic hours and likely
thousands of GitHub repositories are dedicated to the task of doing such things (a large proportion of them for LED
strings).

Additionally of course, your processor is now busy doing the "bit-banging”, and cannot be used for other tasks. If your
processor is interrupted even for a few microseconds to attend to one of the hard peripherals it is also responsible for,
this can be fatal to the timing of any bit-banged protocol. The greater the ratio between protocol speed and processor
speed, the more cycles your processor will spend uselessly idling in between GPIO accesses. Whilst it is eminently
possible to drive a 115200 baud UART output using only software, this has a cost of >10,000 cycles per byte if the
processor is running at 133MHz, which may be poor investment of those cycles.

Whilst dealing with something like an LED string is possible using "bit-banging", once your hardware protocol gets faster
to the point that it is of similar order of magnitude to your system clock speed, there is really not much you can hope to
do. The main case where software GPIO access is the best choice is LEDs and push buttons.

Therefore you're back to custom hardware for the protocols you know up front you are going to want (or more
accurately, the chip designer thinks you might need).

3.1.5. Programmable I/0 Hardware using FPGAs and CPLDs

A field-programmable gate array (FPGA), or its smaller cousin, the complex programmable logic device (CPLD), is in
many ways the perfect solution for tailor-made 1/0 requirements, whether that entails an unusual type or unusual
mixture of interfaces. FPGAs are chips with a configurable logic fabric — effectively a sea of gates and flipflops, some
other special digital function blocks, and a routing fabric to connect them — which offer the same level of design
flexibility available to chip designers. This brings with it all the advantages of dedicated 1/0 hardware:

* Absolute precision of protocol timing (within limitations of your clock source)
® Capable of very high 1/0 throughput
* Offload simple, repetitive calculations that are part of the I/0 standard (checksums)

® Present a simpler interface to host software; abstract away details of the protocol, and handle these details
internally.

The main drawback of FPGAs in embedded systems is their cost. They also present a very unfamiliar programming
model to those well-versed in embedded software: you are not programming at all, but rather designing digital
hardware. One you have your FPGA you will still need some other processing element in your system to run control
software, unless you are using an FPGA expensive enough to either fit a soft CPU core, or contain a hardened CPU core
alongside the FPGA fabric.

eFPGAs (embedded FPGAs) are available in some microcontrollers: a slice of FPGA logic fabric integrated into a more
conventional microcontroller, usually with access to some GPIOs, and accessible over the system bus. These are
attractive from a system integration point of view, but have a significant area overhead compared with the usual serial
peripherals found on a microcontroller, so either increase the cost and power dissipation, or are very limited in size. The
issue of programming complexity still remains in eFPGA-equipped systems.

3.1.6. Programmable 1/0 Hardware using PIO

The PIO subsystem on RP-series microcontrollers allows you to write small, simple programs for what are called PIO
state machines, of which RP2040 has eight split across two PIO instances, and RP2350 has twelve split across three
P10 instances. A state machine is responsible for setting and reading one or more GPIOs, buffering data to or from the

]
3.1. What is Programmable 1/0 (PIO)? 33

Raspberry Pi Pico-series C/C++ SDK
]

processor (or the RP-series microcontrollers' ultra-fast DMA subsystem), and notifying the processor, via IRQ or polling,
when data or attention is needed.

These programs operate with cycle accuracy at up to system clock speed (or the program clocks can be divided down
to run at slower speeds for less frisky protocols).

P10 state machines are much more compact than the general-purpose processors on RP2040 and RP2350. In fact, they
are similar in size (and therefore cost) to a standard SPI peripheral, such as the PL022 SPI also found on RP-series
microcontrollers, because much of their area is spent on components which are common to all serial peripherals, like
FIFOs, shift registers and clock dividers. The instruction set is small and regular, so not much silicon is spent on
decoding the instructions. There is no need to feel guilty about dedicating a state machine solely to a single 1/0 task,
since you have several!

In spite of this, a PIO state machine gets a lot more done in one cycle than a Cortex-M0+ when it comes to 1/0: for
example, sampling a GPIO value, toggling a clock signal and pushing to a FIFO all in one cycle, every cycle. The trade-off
is that a PIO state machine is not remotely capable of running general purpose software. As we shall see though,
programming a PIO state machine is quite familiar for anyone who has written assembly code before, and the small
instruction set should be fairly quick to pick up for those who haven't.

For simple hardware protocols - such as PWM or duplex SPI - a single PIO state machine can handle the task of
implementing the hardware interface all on its own. For more involved protocols such as SDIO or DPI video you may end
up using two or three.

@ TP

If you are ever tempted to "bit-bang" a protocol on a RP-series microcontroller, don't! Use the PIO instead. Frankly
this is true for anything that repeatedly reads or writes from GPIOs, but certainly anything which aims to transfer
data.

3.2. Getting started with PIO

It is possible to write PIO programs both within the C++ SDK and directly from MicroPython.

Additionally the future intent is to add APIs to trivially have new UARTs, PWM channels etc created for you, using a
menu of pre-written PIO programs, but for now you'll have to follow along with example code and do that yourself.

3.2.1. AFirst PIO Application
Before getting into all of the fine details of the PIO assembly language, we should take the time to look at a small but
complete application which:
1. Loads a program into a PIO’s instruction memory
2. Sets up a PIO state machine to run the program
3. Interacts with the state machine once it is running.
The main ingredients in this recipe are:
® A PIO program
® Some software, written in C, to run the whole show

® A CMake file describing how these two are combined into a program image to load onto a RP-series
microcontroller based development board

]
3.2. Getting started with PIO 34

Raspberry Pi Pico-series C/C++ SDK
]

@ TP

The code listings in this section are all part of a complete application on GitHub, which you can build and run. Just
click the link above each listing to go to the source. In this section we are looking at the pio/hello_pio example in
pico-examples. You might choose to build this application and run it, to see what it does, before reading through this
section.

O NoTE

The focus here is on the main moving parts required to use a PIO program, not so much on the PIO program itself.
This is a lot to take in, so we will stay high-level in this example, and dig in deeper on the next one.

3.2.1.1. PIO Program
This is our first PIO program listing. It's written in PIO assembly language.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio Lines 8 - 16

8 .program hello

9

10 ; Repeatedly get one word of data from the TX FIFO, stalling when the FIFO is
11 ; empty. Write the least significant bit to the OUT pin group.

12

13 loop:

14 pull

15 out pins, 1
16 jmp loop

The pull instruction takes one data item from the transmit FIFO buffer, and places it in the output shift register (OSR).
Data moves from the FIFO to the OSR one word (32 bits) at a time. The OSR is able to shift this data out, one or more
bits at a time, to further destinations, using an out instruction.

FIFOs?

FIFOs are data queues, implemented in hardware. Each state machine has two FIFOs, between the state
machine and the system bus, for data travelling out of (TX) and into (RX) the chip. Their name (first in,
first out) comes from the fact that data appears at the FIFO’s output in the same order as it was
presented to the FIFO's input.

The out instruction here takes one bit from the data we just pull-ed from the FIFO, and writes that data to some pins. We
will see later how to decide which pins these are.

The jmp instruction jumps back to the 1oop: label, so that the program repeats indefinitely. So, to sum up the function of
this program: repeatedly take one data item from a FIFO, take one bit from this data item, and write it to a pin.

Our .pio file also contains a helper function to set up a PIO state machine for correct execution of this program:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio Lines 19 - 34

19 static inline void hello_program_init(PIO pio, uint sm, uint offset, uint pin) {

20 pio_sm_config ¢ = hello_program_get_default_config(offset);

21

22 // Map the state machine's OUT pin group to one pin, namely the “pin’
23 // parameter to this function.

24 sm_config_set_out_pins(&c, pin, 1);

25 // Set this pin's GPIO function (connect PIO to the pad)

26 pio_gpio_init(pio, pin);

]
3.2. Getting started with PIO 35

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio#L8-L16
https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio#L19-L34

Raspberry Pi Pico-series C/C++ SDK
]

27 // Set the pin direction to output at the PIO

28 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

29

30 // Load our configuration, and jump to the start of the program
31 pio_sm_init(pio, sm, offset, &c);

32 // Set the state machine running

33 pio_sm_set_enabled(pio, sm, true);

34 }

Here the main thing to set up is the GPIO we intend to output our data to. There are three things to consider here:

1. The state machine needs to be told which GPIO or GPIOs to output to. There are four different pin groups which
are used by different instructions in different situations; here we are using the out pin group, because we are just
using an out instruction.

2. The GPIO also needs to be told that PIO is in control of it (GPIO function select)

3. If we are using the pin for output only, we need to make sure that PIO is driving the output enable line high. PIO can
drive this line up and down programmatically using e.g. an out pindirs instruction, but here we are setting it up
before starting the program.

3.2.1.2. C Program

PIO won't do anything until it's been configured properly, so we need some software to do that. The PIO file we just
looked at — hello.pio —is converted automatically (we will see later how) into a header containing our assembled PIO
program binary, any helper functions we included in the file, and some useful information about the program. We
include this as hello.pio.h.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.c

1 /**

2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause

5 */

6

7 #include <stdio.h>

8

9 #include "pico/stdlib.h”
10 #include "hardware/pio.h"
11 // Our assembled program:
12 #include "hello.pio.h”
13
14 // This example uses the default led pin
15 // You can change this by defining HELLO_PIO_LED_PIN to use a different gpio
16 #define HELLO_PIO_LED_PIN PICO_DEFAULT_LED_PIN
17
18 int main() {
19 #ifndef HELLO_PIO_LED_PIN
20 #warning pio/hello_pio example requires a board with a regular LED

21 #else

22 PIO pio;

23 uint sm;

24 uint offset;

25

26 setup_default_uart();

27

28 // This will find a free pio and state machine for our program and load it for us

29 // We use pio_claim_free_sm_and_add_program_for_gpio_range so we can address gpios >= 32 if
needed and supported by the hardware

30 bool success = pio_claim_free_sm_and_add_program_for_gpio_range(&hello_program, &pio, &

]
3.2. Getting started with PIO 36

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.c

Raspberry Pi Pico-series C/C++ SDK

sm, &offset, HELLO_PIO_LED_PIN, 1, true);

31 hard_assert(success);

32

88 // Configure it to run our program, and start it, using the
34 // helper function we included in our .pio file.

85 printf("Using gpio %d\n", HELLO_PIO_LED_PIN);

36 hello_program_init(pio, sm, offset, HELLO_PIO_LED_PIN);

37

38 // The state machine is now running. Any value we push to its TX FIFO will
39 // appear on the LED pin.

40 // press a key to exit

41 while (getchar_timeout_us(®) == PICO_ERROR_TIMEOUT) {

42 // Blink

43 pio_sm_put_blocking(pio, sm, 1);

44 sleep_ms(500);

45 // Blonk

46 pio_sm_put_blocking(pio, sm, 0);

47 sleep_ms(500) ;

48 }

49

50 // This will free resources and unload our program

51 pio_remove_program_and_unclaim_sm(&hello_program, pio, sm, offset);
52 #endif

53 }

You might recall that RP2040 has two PIO blocks, each of them with four state machines (the {chipname_rp2350 has
three PIO blocks each with four state machines). Each P10 block has a 32-slot instruction memory which is visible to the
four state machines in the block. We need to load our program into this instruction memory before any of our state
machines can run the program. The function pio_add_program() finds free space for our program in a given PIO’s
instruction memory, and loads it.

32 Instructions?

This may not sound like a lot, but the PIO instruction set can be very dense once you fully explore its
features. A perfectly serviceable UART transmit program can be implemented in four instructions, as
shown in the pio/uart_tx example in pico-examples. There are also a couple of ways for a state machine
to execute instructions from other sources — like directly from the FIFOs — which you can read all about
in the RP2350 Datasheet.

Once the program is loaded, we find a free state machine and tell it to run our program. There is nothing stopping us
from ordering multiple state machines to run the same program. Likewise, we could instruct each state machine to run
a different program, provided they all fit into the instruction memory at once.

We're configuring this state machine to output its data to the LED on your Raspberry Pi Pico 2 board. If you have already
built and run the program, you probably noticed this already!

At this point, the state machine is running autonomously. The state machine will immediately stall, because it is waiting
for data in the TX FIFO, and we haven’t provided any. The processor can push data directly into the state machine’s TX
FIFO using the pio_sm_put_blocking() function. (_blocking because this function stalls the processor when the TX FIFO is
full.) Writing a 1 will turn the LED on, and writing a 0 will turn the LED off.

3.2.1.3. CMake File

We have two lovely text files sat on our computer, with names ending with .pio and .c, but they aren’t doing us much
good there. A CMake file describes how these are built into a binary suitable for loading onto your Raspberry Pi Pico 2 or
other RP-series microcontroller based board.

3.2. Getting started with PIO 37

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/CMakeLists.txt

1 add_executable(hello_pio)

2

3 pico_generate_pio_header(hello_pio ${CMAKE_CURRENT_LIST_DIR}/hello.pio)
4

5 target_sources(hello_pio PRIVATE hello.c)

6

7 target_link_libraries(hello_pio PRIVATE

8 pico_stdlib

9 hardware_pio

10)

11

12 # Pass cmake -DHELLO_PIO_LED_PIN=x, where x is the pin you want to use
13 if(HELLO_PIO_LED_PIN)

14 target_compile_definitions(hello_pio PRIVATE
15 HELLO_PIO_LED_PIN=${HELLO_PIO_LED_PIN}
16)

17 endif()

18

19 pico_add_extra_outputs(hello_pio)
20
21 # add url via pico_set_program_url

N
N

example_auto_set_url(hello_pio)

add_executable(): Declare that we are building a program called hello_pio

pico_generate_pio_header(): Declare that we have a PIO program, hello.pio, which we want to be built into a C header
for use with our program

target_sources(): List the source code files for our hello_pio program. In this case, just one C file.

target_link_libraries(): Make sure that our program is built with the PIO hardware API, so we can call functions like
pio_add_program() in our C file.

pico_add_extra_outputs(): By default we just get an .elf file as the build output of our app. Here we declare we also
want extra build formats, like a .uf2 file which can be dragged and dropped directly onto a Raspberry Pi Pico 2
attached over USB.

Assuming you already have pico-examples and the SDK installed on your machine, you can run

$ mkdir build

S cd build

$ cmake ..

$ make hello_pio

To build this program.

3.2.2. A Real Example: WS2812 LEDs

The WS2812 LED (sometimes sold as NeoPixel) is an addressable RGB LED. In other words, it's an LED where the red,
green and blue components of the light can be individually controlled, and it can be connected in such a way that many
WS2812 LEDs can be controlled individually, with only a single control input. Each LED has a pair of power supply

terminals, a serial data input, and a serial data output.

When serial data is presented at the LED’s input, it takes the first three bytes for itself (red, green, blue) and the
remainder is passed along to its serial data output. Often these LEDs are connected in a single long chain, each LED
connected to a common power supply, and each LED’s data output connected through to the next LED’s input. A long

]
3.2. Getting started with PIO 38

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/CMakeLists.txt

Raspberry Pi Pico-series C/C++ SDK
]

burst of serial data to the first in the chain (the one with its data input unconnected) will deposit three bytes of RGB data
in each LED, so their colour and brightness can be individually programmed.
Figure 3. WS2812 line

format. Wide positive
pulse for 1, narrow

[tateh [J/]

Symbol

Output

positive pulse for 0,
very long negative

Unfortunately the LEDs receive and retransmit serial data in quite an unusual format. Each bit is transferred as a
pulse for latch enable

positive pulse, and the width of the pulse determines whether it is a 1 or a 8 bit. There is a family of WS2812-like LEDs
available, which often have slightly different timings, and demand precision. It is possible to bit-bang this protocol, or to
write canned bit patterns into some generic serial peripheral like SPI or I12S to get firmer guarantees on the timing, but
there is still some software complexity and cost associated with generating the bit patterns.

Ideally we would like to have all of our CPU cycles available to generate colour patterns to put on the lights, or to handle
any other responsibilities the processor may have in the embedded system the LEDs are connected to.

@ TP

Once more, this section is going to discuss a real, complete program, that you can build and run on your Raspberry
Pi Pico 2. Follow the links above the program listings if you'd prefer to build the program yourself and run it, before
going through it in detail. This section explores the pio/ws2812 example in pico-examples.

3.2.2.1. PIO Program

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 8 - 31

8 .program ws2812

9 .side_set 1

10

11 ; The following constants are selected for broad compatibility with WS2812,
12 ; WS2812B, and SK6812 LEDs. Other constants may support higher bandwidths for
13 ; specific LEDs, such as (7,10,8) for WS2812B LEDs.

14

15 .define public T1 3

16 .define public T2 3

17 .define public T3 4

18

19 .lang_opt python sideset_init = pico.PIO.OUT_HIGH

20 .lang_opt python out_init = pico.PIO.OUT_HIGH

21 .lang_opt python out_shiftdir = 1

22

23 .wrap_target

24 bitloop:

25 out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls
26 jmp !'x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
27 do_one:

28 jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

29 do_zero:

30 nop side @ [T2 - 1] ; Or drive low, for a short pulse

31 .wrap

The previous example was a bit of a whistle-stop tour of the anatomy of a PIO-based application. This time we will
dissect the code line-by-line. The first line tells the assembler that we are defining a program named ws2812:

.program ws2812

We can have multiple programs in one .pio file (and you will see this if you click the GitHub link above the main program

]
3.2. Getting started with PIO 39

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L8-L31

Raspberry Pi Pico-series C/C++ SDK
]

listing), and each of these will have its own .program directive with a different name. The assembler will go through each
program in turn, and all the assembled programs will appear in the output file.

Each PIO instruction is 16 bits in size. Generally, 5 of those bits in each instruction are used for the “delay” which is
usually 0 to 31 cycles (after the instruction completes and before moving to the next instruction). If you have read the
P10 chapter of the RP2350 Datasheet, you may have already know that these 5 bits can be used for a different purpose:

.side_set 1

This directive .side_set 1 says we're stealing one of those delay bits to use for "side-set". The state machine will use this
bit to drive the values of some pins, once per instruction, in addition to what the instructions are themselves doing. This
is very useful for high frequency use cases (e.g. pixel clocks for DPI panels), but also for shrinking program size, to fit
into the shared instruction memory.

Note that stealing one bit has left our delay range from 0-15 (4 bits), but that is quite natural because you rarely want to
mix side-set with lower frequency stuff. Because we didn't say .side_set 1 opt, which would mean the side-set is
optional (at the cost of another bit to say whether the instruction does a side-set), we have to specify a side-set value for
every instruction in the program. This is the side N you will see on each instruction in the listing.

.define public T1 2
.define public T2 5
.define public T3 3

.define lets you declare constants. The public keyword means that the assembler will also write out the value of the
define in the output file for use by other software: in the context of the SDK, this is a #define. We are going to use T1, T2
and T3 in calculating the delay cycles on each instruction.

.lang_opt python

This is used to specify some PIO hardware defaults as used by the MicroPython PIO library. We don't need to worry
about them in the context of SDK applications.

.wrap_target

We'll ignore this for now, and come back to it later, when we meet its friend .wrap.

bitloop:

This is a label. A label tells the assembler that this point in your code is interesting to you, and you want to refer to it
later by name. Labels are mainly used with jmp instructions.

out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls

Finally we reach a line with a PIO instruction. There is a lot to see here.

® This is an out instruction. out takes some bits from the output shift register (OSR), and writes them somewhere
else. In this case, the OSR will contain pixel data destined for our LEDs.

]
3.2. Getting started with PIO 40

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK
]

® [T3 - 1]is the number of delay cycles (T3 minus 1). T3 is a constant we defined earlier.

* x (one of two scratch registers; the other imaginatively called y) is the destination of the write data. State machines
use their scratch registers to hold and compare temporary data.

® side 0: Drive low () the pin configured for side-set.

® Everything after the ; character is a comment. Comments are ignored by the assembler: they are just notes for
humans to read.

Output Shift Register

The OSR is a staging area for data entering the state machine through the TX FIFO. Data is pulled from

the TX FIFO into the OSR one 32-bit chunk at a time. When an out instruction is executed, the OSR can

break this data into smaller pieces by shifting to the left or right, and sending the bits that drop off the
end to one of a handful of different destinations, such as the pins.

The amount of data to be shifted is encoded by the out instruction, and the direction of the shift (left or
right) is configured ahead of time. For full details and diagrams, see the RP2350 Datasheet.

So, the state machine will do the following operations when it executes this instruction:
1. Set 0 on the side-set pin (this happens even if the instruction stalls because no data is available in the OSR)
2. Shift one bit out of the OSR into the x register. The value of the x register will be either 0 or 1.

3. Wait 73 - 1 cycles after the instruction (I.e. the whole thing takes T3 cycles since the instruction itself took a cycle).
Note that when we say cycle, we mean state machine execution cycles: a state machine can be made to execute at
a slower rate than the system clock, by configuring its clock divider.

Let’s look at the next instruction in the program.

jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse

1. side 1 on the side-set pin (this is the leading edge of our pulse)
2. If x == 0 then go to the instruction labelled do_zero, otherwise continue on sequentially to the next instruction
3. We delay 1 - 1 after the instruction (whether the branch is taken or not)

Let's look at what our output pin has done so far in the program.

Figure 4. The state
T3 -« T

machine drives the

%

line low for time TT as GPIO

it shifts out one data
bit from the OSR, and

x:{;sifr’;;i;:;";z;z The pin has been low for time T3, and high for time T1. If the x register is 1 (remember this contains our 1 bit of pixel

thevalve of the pit. data) then we will fall through to the instruction labelled do_one:

do_one:
jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

On this side of the branch we do the following:
1. side 1 on the side-set pin (continue the pulse)

2. jmp unconditionally back to bitloop (the label we defined earlier, at the top of the program); the state machine is
done with this data bit, and will get another from its OSR

3. Delay for 72 - 1 cycles after the instruction

]
3.2. Getting started with PIO 41

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK

The waveform at our output pin now looks like this:

Figure 5. On a one

data bit, the line is :(— T3 —):(— T —):(— T2 ——
driven low for time T3, f 0 !

high for time T1, then GPl0 / !
high for an additional

time T2

This accounts for the case where we shifted a 1 data bit into the x register. For a @ bit, we will have jumped over the last
instruction we looked at, to the instruction labelled do_zero:

do_zero:
nop side @ [T2 - 1] ; Or drive low, for a short pulse

1. side 0 on the side-set pin (the trailing edge of our pulse)
2. nop means no operation. We don’t have anything else we particularly want to do, so waste a cycle
3. The instruction takes T2 cycles in total

For the x == 0 case, we get this on our output pin:

Figure 6. On a zero
data bit, the line is —— T3 ————— T1 —):(— T2 —»
1

1 1
driven low for time T3, i y
1

high for time T1, then GPIO \—

low again for time T1

The final line of our program is this:
.wrap

This matches with the .wrap_target directive at the top of the program. Wrapping is a hardware feature of the state
machine which behaves like a wormhole: you go in through the .wrap statement and appear at the .wrap_target zero
cycles later, unless the .wrap is preceded immediately by a jmp whose condition is true. This is important for getting
precise timing with programs that must run quickly, and often also saves you a slot in the instruction memory.

@ TIF

Often an explicit .wrap_target/.wrap pair is not necessary, because the default configuration produced by pioasn has
an implicit wrap from the end of the program back to the beginning, if you didn’t specify one.

NOPs

NOP, or no operation, means precisely that: do nothing! You may notice there is no nop instruction
defined in the instruction set reference: nop is really a synonym for mov y, yin PIO assembly.

Why did we insert a nop in this example when we could have jmp-ed? Good question! It's a dramatic
device we contrived so we could discuss nop and .wrap. Writing documentation is hard. In general,
though, nop is useful when you need to perform a side-set and have nothing else to do, or you need a
very slightly longer delay than is available on a single instruction.

It is hopefully becoming clear why our timings T1, T2, T3 are numbered this way, because what the LED string sees
really is one of these two cases:

]
3.2. Getting started with PIO 42

Raspberry Pi Pico-series C/C++ SDK

Figure 7. The line is
initially low in the idle
(latch) state, and the
LED is waiting for the
first rising edge. It
sees our pulse timings
in the order T1-T2-T3,
until the very last T3,
where it sees a much
longer negative period
once the state
machine runs out of
data.

T ————— P —— T2 —— P —— T3 —»
1

-

Data=0

LV

Data=1

This should look familiar if you refer back to Figure 3.

After thoroughly dissecting our program, and hopefully being satisfied that it will repeatedly send one well-formed data
bit to a string of WS2812 LEDs, we're left with a question: where is the data coming from? This is more thoroughly
explained in the RP2350 Datasheet, but the data that we are shifting out from the OSR came from the state machine’s
TX FIFO. The TX FIFO is a data buffer between the state machine and the rest of RP-series microcontroller, filled either
via direct poking from the CPU, or by the system DMA, which is much faster.

The out instruction shifts data out from the OSR, and zeroes are shifted in from the other end to fill the vacuum.
Because the OSR is 32 bits wide, you will start getting zeroes once you have shifted out a total of 32 bits. There is a pull
instruction which explicitly takes data from the TX FIFO and put it in the OSR (stalling the state machine if the FIFO is
empty).

However, in the majority of cases it is simpler to configure autopull, a mode where the state machine automatically
refills the OSR from the TX FIFO (an automatic pull) when a configured number of bits have been shifted out. Autopull
happens in the background, in parallel with whatever else the state machine may be up to (in other words it has a cost
of zero cycles). We'll see how this is configured in the next section.

3.2.2.2. State Machine Configuration

When we run pioasm on the .pio file we have been looking at, and ask it to spit out SDK code (which is the default), it will
create some static variables describing the program, and a method ws2812_default_program_config which configures a
PIO state machine based on user parameters, and the directives in the actual PIO program (namely the .side_set and
.wrap in this case).

Of course how you configure the PIO SM when using the program is very much related to the program you have written.
Rather than try to store a data representation off all that information, and parse it at runtime, for the use cases where
you'd like to encapsulate setup or other API functions with your PIO program, you can embed code within the .pio file.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 36 - 52

36 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

37

38 pio_gpio_init(pio, pin);

39 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

40

41 pio_sm_config ¢ = ws2812_program_get_default_config(offset);
42 sm_config_set_sideset_pins(&c, pin);

43 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);

44 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

45

46 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;

47 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
48 sm_config_set_clkdiv(&c, div);

49

50 pio_sm_init(pio, sm, offset, &c);

51 pio_sm_set_enabled(pio, sm, true);

52 }

In this case we are passing through code for the SDK, as requested by this line you will see if you click the link on the
above listing to see the context:

3.2. Getting started with PIO

43

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L36-L52

Raspberry Pi Pico-series C/C++ SDK
]

% c-sdk {

We have here a function ws2812_program_init which is provided to help the user to instantiate an instance of the LED
driver program, based on a handful of parameters:

pio

Which of the PIO instances we are dealing with

sm

Which state machine on that PIO we want to configure to run the WS2812 program
offset

Where the PIO program was loaded in PI0’s 5-bit program address space
pin

which GPIO pin our WS2812 LED chain is connected to
freq

The frequency (or rather baud rate) we want to output data at.
rgbw

True if we are using 4-colour LEDs (red, green, blue, white) rather than the usual 3.
Such that:

® pio_gpio_init(pio, pin); Configure a GPIO for use by PIO. (Set the GPIO function select.)

® pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true); Sets the PIO pin direction of 1 pin starting at pin number pin
to out

® pio_sm_config ¢ = ws2812_program_default_config(offset); Get the default configuration using the generated function
for this program (this includes things like the .wrap and .side_set configurations from the program). We'll modify
this configuration before loading it into the state machine.

® sm_config_set_sideset_pins(&c, pin); Sets the side-set to write to pins starting at pin pin (we say starting at because
if you had .side_set 3, then it would be outputting values on numbers pin, pin+1, pin+2)

® sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24); False for shift_to_right (i.e. we want to shift out MSB
first). True for autopull. 32 or 24 for the number of bits for the autopull threshold, i.e. the point at which the state
machine triggers a refill of the OSR, depending on whether the LEDs are RGB or RGBW.

® int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3; This is the total number of execution cycles to output a
single bit. Here we see the benefit of .define public; we can use the T1 - T3 values in our code.

® float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit); sm_config_clkdiv(&c, div); Slow the state machine’s
execution down, based on the system clock speed and the number of execution cycles required per WS2812 data
bit, so that we achieve the correct bit rate.

® pio_sm_init(pio, sm, offset, &c); Load our configuration into the state machine, and go to the start address (offset)
® pio_sm_set_enabled(pio, sm, true); And make it go now!

At this point the program will be stuck on the first out waiting for data. This is because we have autopull enabled, the
OSR is initially empty, and there is no data to be pulled. The state machine refuses to continue until the first piece of
data arrives in the FIFO.

As an aside, this last point sheds some light on the slightly cryptic comment at the start of the PIO program:

out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls

This comment is giving us an important piece of context. We stall on this instruction initially, before the first data is

]
3.2. Getting started with PIO 44

Raspberry Pi Pico-series C/C++ SDK
]

added, and also every time we finish sending the last piece of data at the end of a long serial burst. When a state
machine stalls, it does not continue to the next instruction, rather it will reattempt the current instruction on the next
divided clock cycle. However, side-set still takes place. This works in our favour here, because we consequently always
return the line to the idle (low) state when we stall.

3.2.2.3. C Program

The companion to the .pio file we've looked at is a .c file which drives some interesting colour patterns out onto a string
of LEDs. We'll just look at the parts that are directly relevant to PI1O.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 38 - 40

38 static inline void put_pixel(uint32_t pixel_grb) {
39 pio_sm_put_blocking(pio®, ©, pixel_grb << 8u);
40 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 42 - 47

42 static inline uint32_t urgb_u32(uint8_t r, uint8_t g, uint8_t b) {

43 return

44 ((uint32_t) (r) << 8) |
45 ((uint32_t) (g) << 16) |
46 (uint32_t) (b);

47 }

Here we are writing 32-bit values into the FIFO, one at a time, directly from the CPU. pio_sm_put_blocking is a helper
method that waits until there is room in the FIFO before pushing your data.

You'll notice the << 8 in put_pixel(): remember we are shifting out starting with the MSB, so we want the 24-bit colour
values at the top. This works fine for WGBR too, just that the W is always 0.

This program has a handful of colour patterns, which call our put_pixel helper above to output a sequence of pixel
values:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 71 - 76

71 void pattern_random(uint len, uint t) {

72 if (t % 8)

73 return;

74 for (uint i = @; i < len; ++1i)
75 put_pixel(rand());

76 }

The main function loads the program onto a PIO, configures a state machine for 800 kbaud WS2812 transmission, and
then starts cycling through the colour patterns randomly.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 105 - 129

105 int main() {

106 //set_sys_clock_48();

107 stdio_init_all();

108 printf("WS2812 Smoke Test, using pin %d", WS2812_PIN);
109

110 // todo get free sm

111 PIO pio = pio@;

112 int sm = 9;

]
3.2. Getting started with PIO 45

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L38-L40
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L42-L47
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L71-L76
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L105-L129

Raspberry Pi Pico-series C/C++ SDK
]

113 uint offset = pio_add_program(pio, &ws2812_program);
114

115 ws2812_program_init(pio, sm, offset, WS2812_PIN, 800000, IS_RGBW);
116

117 int t = 0;

118 while (1) {

119 int pat = rand() % count_of(pattern_table);

120 int dir = (rand() >> 30) & 1 ?2 1 : -1;

121 puts(pattern_table[pat].name);

122 puts(dir == 1 ? "(forward)" : "(backward)");

123 for (int i = @; i < 1000; ++i) {

124 pattern_table[pat].pat(NUM_PIXELS, t);

125 sleep_ms(10);

126 t += dir;

127 }

128 }

129 }

3.2.3. P10 and DMA (A Logic Analyser)

So far we have looked at writing data to PIO directly from the processor. This often leads to the processor spinning its
wheels waiting for room in a FIFO to make a data transfer, which is not a good investment of its time. It also limits the
total data throughput you can achieve.

RP-series microcontrollers are equipped with a powerful direct memory access unit (DMA), which can transfer data for
you in the background. Suitably programmed, the DMA can make quite long sequences of transfers without supervision.
Up to one word per system clock can be transferred to or from a PIO state machine, which is, to be quite technically
precise, more bandwidth than you can shake a stick at. The bandwidth is shared across all state machines, but you can
use the full amount on one state machine.

Let's take a look at the logic_analyser example, which uses PIO to sample some of the RP-series microcontroller’'s own
pins, and capture a logic trace of what is going on there, at full system speed.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 40 - 63

40 void logic_analyser_init(PIO pio, uint sm, uint pin_base, uint pin_count, float div) {

41 // Load a program to capture n pins. This is just a single ‘in pins, n’
42 // instruction with a wrap.

43 uint16_t capture_prog_instr = pio_encode_in(pio_pins, pin_count);

44 struct pio_program capture_prog = {

45 .instructions = &capture_prog_instr,

46 .length = 1,

47 .origin = -1

48 b

49 uint offset = pio_add_program(pio, &capture_prog);

50

51 // Configure state machine to loop over this ‘in’ instruction forever
52 // with autopush enabled.

53 pio_sm_config ¢ = pio_get_default_sm_config();

54 sm_config_set_in_pins(&c, pin_base);

55 sm_config_set_wrap(&c, offset, offset);

56 sm_config_set_clkdiv(&c, div);

57 // Note that we may push at a < 32 bit threshold if pin_count does not
58 // divide 32. We are using shift-to-right, so the sample data ends up
59 // left-justified in the FIFO in this case, with some zeroes at the LSBs.
60 sm_config_set_in_shift(&c, true, true, bits_packed_per_word(pin_count));
61 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);

62 pio_sm_init(pio, sm, offset, &c);

63 }

]
3.2. Getting started with PIO 46

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L40-L63

Raspberry Pi Pico-series C/C++ SDK

Our program consists only of a single in pins, <pin_count> instruction, with program wrapping and autopull enabled.
Because the amount of data to be shifted is only known at runtime, and because the program is so short, we are
generating the program dynamically here (using the pio_encode_ functions) instead of pushing it through pioasm. The
program is wrapped in a data structure stating how big the program is, and where it must be loaded — in this case origin
= -1 meaning "don't care".

Input Shift Register

The input shift register (ISR) is the mirror image of the OSR. Generally data flows through a state
machine in one of two directions: System — TX FIFO — OSR — Pins, or Pins — ISR — RX FIFO —
System. An in instruction shifts data into the ISR.

If you don't need the ISR’s shifting ability — for example, if your program is output-only — you can use the
ISR as a third scratch register. It's 32 bits in size, the same as X, Y and the OSR. The full details are in the
RP2350 Datasheet.

We load the program into the chosen PIO, and then configure the input pin mapping on the chosen state machine so
that its in pins instruction will see the pins we care about. For an in instruction we only need to worry about configuring
the base pin, i.e. the pin which is the least significant bit of the in instruction’s sample. The number of pins to be
sampled is determined by the bit count parameter of the in pins instruction — it will sample n pins starting at the base
we specified, and shift them into the ISR.

Pin Groups (Mapping)

We mentioned earlier that there are four pin groups to configure, to connect a state machine’s internal
data buses to the GPIOs it manipulates. A state machine accesses all pins within a group at once, and
pin groups can overlap. So far we have seen the out, side-set and in pin groups. The fourth is set.

The out group is the pins affected by shifting out data from the OSR, using out pins or out pindirs, up to
32 bits at a time. The set group is used with set pins and set pindirs instructions, up to 5 bits at a time,
with data that is encoded directly in the instruction. It's useful for toggling control signals. The side-set
group is similar to the set group, but runs simultaneously with another instruction. Note: mov pin uses
the in or out group, depending on direction.

Configuring the clock divider optionally slows down the state machine’s execution: a clock divisor of n means 1
instruction will be executed per n system clock cycles. The default system clock frequency for SDK is 125MHz.

sm_config_set_in_shift sets the shift direction to rightward, enables autopush, and sets the autopush threshold to 32.
The state machine keeps an eye on the total amount of data shifted into the ISR, and on the in which reaches or
breaches a total shift count of 32 (or whatever number you have configured), the ISR contents, along with the new data
from the in. goes straight to the RX FIFO. The ISR is cleared to zero in the same operation.

sm_config_set_fifo_join is used to manipulate the FIFOs so that the DMA can get more throughput. If we want to sample
every pin on every clock cycle, that’s a lot of bandwidth! We've finished describing how the state machine should be
configured, so we use pio_sm_init to load the configuration into the state machine, and get the state machine into a
clean initial state.

FIFO Joining

Each state machine is equipped with a FIFO going in each direction: the TX FIFO buffers data on its way
out of the system, and the RX FIFO does the same for data coming in. Each FIFO has four data slots,
each holding 32 bits of data. Generally you want FIFOs to be as deep as possible, so there is more slack
time between the timing-critical operation of a peripheral, and data transfers from system agents which
may be quite busy or have high access latency. However this comes with significant hardware cost.

If you are only using one of the two FIFOs — TX or RX — a state machine can pool its resources to
provide a single FIFO with double the depth. The RP2350 Datasheet goes into much more detail,
including how this mechanism actually works under the hood.

3.2. Getting started with PIO 47

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK
]

Our state machine is ready to sample some pins. Let’s take a look at how we hook up the DMA to our state machine,
and tell the state machine to start sampling once it sees some trigger condition.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 65 - 87

65 void logic_analyser_arm(PIO pio, uint sm, uint dma_chan, uint32_t *capture_buf, size_t
capture_size_words,

66 uint trigger_pin, bool trigger_level) {

67 pio_sm_set_enabled(pio, sm, false);

68 // Need to clear _input shift counter_, as well as FIFO, because there may be
69 // partial ISR contents left over from a previous run. sm_restart does this.
70 pio_sm_clear_fifos(pio, sm);

71 pio_sm_restart(pio, sm);

72

73 dma_channel_config ¢ = dma_channel_get_default_config(dma_chan);

74 channel_config_set_read_increment(&c, false);

75 channel_config_set_write_increment(&c, true);

76 channel_config_set_dreq(&c, pio_get_dreq(pio, sm, false));

77

78 dma_channel_configure(dma_chan, &c,

79 capture_buf, // Destination pointer

80 &pio->rxf[sm], // Source pointer

81 capture_size_words, // Number of transfers

82 true // Start immediately

83)i

84

85 pio_sm_exec(pio, sm, pio_encode_wait_gpio(trigger_level, trigger_pin));
86 pio_sm_set_enabled(pio, sm, true);

87 }

We want the DMA to read from the RX FIFO on our PIO state machine, so every DMA read is from the same address.
The write address, on the other hand, should increment after every DMA transfer so that the DMA gradually fills up our
capture buffer as data comes in. We need to specify a data request signal (DREQ) so that the DMA transfers data at the
proper rate.

Data request signals

The DMA can transfer data incredibly fast, and almost invariably this will be much faster than your PIO
program actually needs. The DMA paces itself based on a data request handshake with the state
machine, so there’s no worry about it overflowing or underflowing a FIFO, as long as you have selected
the correct DREQ signal. The state machine coordinates with the DMA to tell it when it has room
available in its TX FIFO, or data available in its RX FIFO.

We need to provide the DMA channel with an initial read address, an initial write address, and the total number of
reads/writes to be performed (not the total number of bytes). We start the DMA channel immediately — from this point
on, the DMA is poised, waiting for the state machine to produce data. As soon as data appears in the RX FIFO, the DMA
will pounce and whisk the data away to our capture buffer in system memory.

As things stand right now, the state machine will immediately go into a 1-cycle loop of in instructions once enabled.
Since the system memory available for capture is quite limited, it would be better for the state machine to wait for some
trigger before it starts sampling. Specifically, we are using await pin instruction to stall the state machine until a certain
pin goes high or low, and again we are using one of the pio_encode_ functions to encode this instruction on-the-fly.

pio_sm_exec tells the state machine to immediately execute some instruction you give it. This instruction never gets
written to the instruction memory, and if the instruction stalls (as it will in this case —a wait instruction’s job is to stall)
then the state machine will latch the instruction until it completes. With the state machine stalled on the wait instruction,
we can enable it without being immediately flooded by data.

At this point everything is armed and waiting for the trigger signal from the chosen GPIO. This will lead to the following
sequence of events:

]
3.2. Getting started with PIO 48

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L65-L87

Raspberry Pi Pico-series C/C++ SDK
]

1. The wait instruction will clear
2. On the very next cycle, state machine will start to execute in instructions from the program memory
3. As soon as data appears in the RX FIFO, the DMA will start to transfer it.

4. Once the requested amount of data has been transferred by the DMA, it'll automatically stop

State Machine EXEC Functionality

So far our state machines have executed instructions from the instruction memory, but there are other
options. One is the SMx_INSTR register (used by pio_sm_exec()): the state machine will immediately execute
whatever you write here, momentarily interrupting the current program it’s running if necessary. This is
useful for poking around inside the state machine from the system side, for initial setup.

The other two options, which use the same underlying hardware, are out exec (shift out an instruction

from the data being streamed through the OSR, and execute it) and mov exec (execute an instruction

stashed in e.g. a scratch register). Besides making people’s eyes bulge, these are really useful if you
want the state machine to perform some data-defined operation at a certain point in an output stream.

The example code provides this cute function for displaying the captured logic trace as ASCII art in a terminal:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 89 - 108

89 void print_capture_buf(const uint32_t *buf, uint pin_base, uint pin_count, uint32_t
n_samples) {

90 // Display the capture buffer in text form, like this:

91 N @os == == _==__==__==__==

92 7 @18 o _mmee mees_ ===s

93 printf("Capture:\n");

94 // Each FIFO record may be only partially filled with bits, depending on

95 // whether pin_count is a factor of 32.

96 uint record_size_bits = bits_packed_per_word(pin_count);

97 for (uint pin = @; pin < pin_count; ++pin) {

98 printf("%02d: ", pin + pin_base);

99 for (uint32_t sample = ©; sample < n_samples; ++sample) {

100 uint bit_index = pin + sample * pin_count;

101 uint word_index = bit_index / record_size_bits;

102 // Data is left-justified in each FIFO entry, hence the (32 - record_size_bits)
offset

103 uint word_mask = 1u << (bit_index % record_size_bits + 32 - record_size_bits);

104 printf(buf[word_index] & word_mask ? "-" : "_");

105 }

106 printf("\n");

107 }

108 }

We have everything we need now for a RP-series microcontroller to capture a logic trace of its own pins, whilst running
some other program. Here we're setting up a PWM slice to output at around 15MHz on two GPIOs, and attaching our
brand spanking new logic analyser to those same two GPIOs.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 110 - 159

118 int main() {

111 stdio_init_all();

112 printf("PIO logic analyser example\n");

113

114 // We're going to capture into a u32 buffer, for best DMA efficiency. Need
115 // to be careful of rounding in case the number of pins being sampled

116 // isn't a power of 2.

117 uint total_sample_bits = CAPTURE_N_SAMPLES * CAPTURE_PIN_COUNT;

]
3.2. Getting started with PIO 49

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L89-L108
https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L110-L159

Raspberry Pi Pico-series C/C++ SDK
]

118
119
120
121
122
123
124
125
126

total_sample_bits += bits_packed_per_word(CAPTURE_PIN_COUNT) - 1;

uint buf_size_words = total_sample_bits / bits_packed_per_word(CAPTURE_PIN_COUNT) ;
uint32_t *capture_buf = malloc(buf_size_words * sizeof(uint32_t));
hard_assert(capture_buf);

// Grant high bus priority to the DMA, so it can shove the processors out
// of the way. This should only be needed if you are pushing things up to
// >16bits/clk here, i.e. if you need to saturate the bus completely.
bus_ctrl_hw->priority = BUSCTRL_BUS_PRIORITY_DMA_W_BITS |

BUSCTRL_BUS_PRIORITY_DMA_R_BITS;

127
128
129
130
131
132
133
134
135

PIO pio = pio@;
uint sm = 0;
uint dma_chan = @;

logic_analyser_init(pio, sm, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, 1.f);

printf("Arming trigger\n");
logic_analyser_arm(pio, sm, dma_chan, capture_buf, buf_size_words, CAPTURE_PIN_BASE,

true);

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159 }

printf("Starting PWM example\n");
// PWM example: --—--—--—- -
gpio_set_function(CAPTURE_PIN_BASE, GPIO_FUNC_PWM);
gpio_set_function(CAPTURE_PIN_BASE + 1, GPIO_FUNC_PWM);
// Topmost value of 3: count from @ to 3 and then wrap, so period is 4 cycles
pwm_hw->slice[0].top = 3;
// Divide frequency by two to slow things down a little
pwm_hw->slice[0].div = 4 << PWM_CHO_DIV_INT_LSB;
// Set channel A to be high for 1 cycle each period (duty cycle 1/4) and
// channel B for 3 cycles (duty cycle 3/4)
pwm_hw->slice[0].cc =
(1 << PWM_CH@_CC_A_LSB) |
(3 << PWM_CH@_CC_B_LSB);
// Enable this PWM slice
pwm_hw->slice[0].csr = PWM_CHO_CSR_EN_BITS;
A e e e e

// The logic analyser should have started capturing as soon as it saw the
// first transition. Wait until the last sample comes in from the DMA.

dma_channel_wait_for_finish_blocking(dma_chan);

print_capture_buf(capture_buf, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, CAPTURE_N_SAMPLES);

The output of the program looks like this:

Starting PWM example

Capture:
108 ====
178 ===

3.2.4. Further examples

Hopefully what you have seen so far has given some idea of how PIO applications can be built with the SDK. The
RP2350 Datasheet contains many more documented examples, which highlight particular hardware features of PIO, or
show how particular hardware interfaces can be implemented.

]
3.2. Getting started with PIO 50

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK

You can also browse the pio/ directory in the Pico Examples repository.

3.3. Using PIOASM, the PIO Assembler

Up until now, we have glossed over the details of how the assembly program in our .pio file is translated into a binary
program, ready to be loaded into our PIO state machine. Programs that handle this task — translating assembly code
into binary —are generally referred to as assemblers, and PIO is no exception in this regard. The SDK includes an
assembler for PIO, called pioasm. The SDK handles the details of building this tool for you behind the scenes, and then
using it to build your PIO programs, for you to #include from your C or C++ program. pioasm can also be used directly, and
has a few features not used by the C++ SDK, such as generating programs suitable for use with the MicroPython PIO
library.

If you have built the pico-examples repository at any point, you will likely already have a pioasm binary in your build
directory, located under build/tools/pioasm/pioasm, which was bootstrapped for you before building any applications that
depend on it. If we want a standalone copy of pioasm, perhaps just to explore the available command-line options, we
can obtain it as follows (assuming the SDK is extracted at $P1C0O_SDK_PATH):

mkdir pioasm_build

cd pioasm_build

cmake SPICO_SDK_PATH/tools/pioasm
make

w v v v

And then invoke as:

$./pioasm

3.3.1. Usage

A description of the command line arguments can be obtained by running:

$ pioasm -?

giving:

usage: pioasm <options> <input> (<output>)

Assemble file of PIO program(s) for use in applications.
<input> the input filename
<output> the output filename (or filename prefix if the output
format produces multiple outputs).
if not specified, a single output will be written to stdout

options:
-0 <output_format> select output_format (default 'c-sdk'); available options are:
c-sdk
C header suitable for use with the Raspberry Pi Pico SDK
python

Python file suitable for use with MicroPython
hex
Raw hex output (only valid for single program inputs)

]
3.3. Using PIOASM, the PIO Assembler 51

https://github.com/raspberrypi/pico-examples

Raspberry Pi Pico-series C/C++ SDK

Table 4. alphabetical
list of pioasm
directives

-v <version> specify the default PIO version (0 or 1)
-p <output_param> add a parameter to be passed to the outputter
-?, --help print this help and exit

© NoTE

for you.

Within the SDK you do not need to invoke pioasm directly, as the CMake function pico_generate_pio_header (TARGET
PI0O_FILE) takes care of invoking pioasm and adding the generated header to the include path of the target TARGET

3.3.2. Directives

The following directives control the assembly of PIO programs:

.define (PUBLIC) <symbol> <value>

.clock_div <divider>

.fifo <fifo_config>

Define an integer symbol named <symbol> with the value <value> (see Section
3.3.3). If this .define appears before the first program in the input file, then this
define is global to all programs, otherwise it is local to the program in which it
occurs. If PUBLIC is specified the symbol will be emitted into the assembled
output for use by user code. For the SDK this takes the form of:

#tdefine <program_name>_<symbol> value for program symbols or #define <symbol>
value for global symbols

If this directive is present, <divider> is the state machine clock divider for the
program. Note, that divider is a floating point value, but may not currently use
arithmetic expressions or defined values. This directive affects the default
state machine configuration for a program. This directive is only valid within a
program before the first instruction

If this directive is present, it is used to specify the FIFO configuration for the
program. It affects the default state machine configuration for a program, but
also restricts what instructions may be used (for example PUSH makes no
sense if there is no IN FIFO configrued).

The following values are supported:

txrx: 4 FIFO entries for each of TX and RX; this is the default. tx - All 8 FIFO
entries for TX.

rx - All 8 FIFO entries for RX.

txput - 4 FIFO entries for TX, and 4 FIFO entries for mov rxfifo[index], isr aka
put. This value is not supported on PIO version 0.

txget - 4 FIFO entries for TX, and 4 FIFO entries for mov osr, rxfifo[index] aka
get. This value is not supported on PIO version 0.

putget - 4 FIFO entries for mov rxfifo[index], isr aka put, and 4 FIFO entries for
mov osr, rxfifo[index] aka get. This value is not supported on PIO version 0.

This directive is only valid within a program before the first instruction

]
3.3. Using PIOASM, the PIO Assembler

52

Raspberry Pi Pico-series C/C++ SDK

.mov_status rxfifo < <n>
.mov_status txfifo < <n>
.mov_status irq <(next|prev)> set <n>

.in <count> (left|right) (auto)
(<threshold>)

.program <name>

.origin <offset>

.out <count> (left[right) (auto)
(<threshold>)

.pio_version <version>

.set <count>

.side_set <count> (opt) (pindirs)

This directive configures the source for the mov , STATUS . One of the three
syntaxes can be used to set the status based on the RXFIFO level being below
avalue N, the TXFIFO level being below a value N, or an IRQ flag N being set
on this PIO instance (or the next higer numbered, or lowered numbered P10
instance if next or prev or specified). Note, that the IRQ option requires PIO
version 1.

This directive affects the default state machine configuration for a program.
This directive is only valid within a program before the first instruction

If this directive is present, <count> indicates the number of IN bits to be used.
'left’ or 'right' if specified, control the ISR shift direction; 'auto), if present,
enables "auto-push"; <threshold>, if present, specifies the "auto-push”
threshold. This directive affects the default state machine configuration for a
program. This directive is only valid within a program before the first
instruction

When assembling for PIO version 0, count must be 32.

Start a new program with the name <name>. Note that that name is used in
code so should be alphanumeric/underscore not starting with a digit. The
program lasts until another .program directive or the end of the source file. PIO
instructions are only allowed within a program

Optional directive to specify the PIO instruction memory offset at which the
program must load. Most commonly this is used for programs that must load
at offset 0, because they use data based JMPs with the (absolute) jmp target
being stored in only a few bits. This directive is invalid outside a program

If this directive is present, <count> indicates the number of OUT bits to be
used. 'left' or 'right' if specified control the OSR shift direction; 'auto), if present,
enables "auto-pull"; <threshold>, if present, specifies the "auto-pull" threshold.
This directive affects the default state machine configuration for a program.
This directive is only valid within a program before the first instruction

This directive sets the target PIO hardware version. The version for RP2350 is
1 0or RP2350, and is also the default version number. For backwards
compatibility with RP2040, 0 or RP2040 may be used.

If this directive appears before the first program in the input file, then this
define is the default for all programs, otherwise it specifies the version for the
program in which it occurs. If specified for a program, it must occur before the
first instruction.

If this directive is present, <count> indicates the number of SET bits to be
used. This directive affects the default state machine configuration for a
program. This directive is only valid within a program before the first
instruction

If this directive is present, <count> indicates the number of side-set bits to be
used. Additionally opt may be specified to indicate that a side <value>is
optional for instructions (note this requires stealing an extra bit — in addition
to the <count> bits — from those available for the instruction delay). Finally,
pindirs may be specified to indicate that the side set values should be applied
to the PINDIRs and not the PINs. This directive is only valid within a program
before the first instruction

3.3. Using PIOASM, the PIO Assembler

53

Raspberry Pi Pico-series C/C++ SDK

Table 5. Values in
pioasm, i.e. <value>

Table 6. Expressions
in pioasm i.e.
<expression>

.wrap_target

.wrap

.lang_opt <lang> <name> <option>

Place prior to an instruction, this directive specifies the instruction where
execution continues due to program wrapping. This directive is invalid outside
of a program, may only be used once within a program, and if not specified
defaults to the start of the program

Placed after an instruction, this directive specifies the instruction after which,
in normal control flow (i.e. jmp with false condition, or no jmp), the program
wraps (to .wrap_target instruction). This directive is invalid outside of a
program, may only be used once within a program, and if not specified
defaults to after the last program instruction.

Specifies an option for the program related to a particular language generator.
(See Section 3.3.10). This directive is invalid outside of a program

.word <value> Stores a raw 16-bit value as an instruction in the program. This directive is
invalid outside of a program.

3.3.3. Values
The following types of values can be used to define integer numbers or branch targets

integer An integer value e.g. 3 or -7

hex A hexadecimal value e.g. 0xf

binary A binary value e.g. 0b1001

symbol A value defined by a .define (see [pioasm_define])

<label> The instruction offset of the label within the program. This makes most sense when used with

a JMP instruction (see Section 3.4.4)
(<expression>) An expression to be evaluated; see expressions. Note that the parentheses are necessary.

3.3.4. Expressions

Expressions may be freely used within pioasm values.

<expression> + <expression>

The sum of two expressions

<expression> - <expression>

The difference of two expressions

<expression> * <expression>

The multiplication of two expressions

<expression> / <expression>

The integer division of two expressions

- <expression>

The negation of another expression

<expression> << <expression>

One expression shifted left by another expression

<expression> >> <expression>

One expression shifted right by another expression

:: <expression>

The bit reverse of another expression

<value>

Any value (see Section 3.3.3)

3.3.5. Comments

Line comments are supported with // or ;

3.3. Using PIOASM, the PIO Assembler

54

Raspberry Pi Pico-series C/C++ SDK
]

C-style block comments are supported via /* and */

3.3.6. Labels

Labels are of the form:

<symbol>:
or
PUBLIC <symbol>:

at the start of a line.

@ TP

A label is really just an automatic .define with a value set to the current program instruction offset. A PUBLIC label is
exposed to the user code in the same way as a PUBLIC .define.

3.3.7. Instructions

All pioasm instructions follow a common pattern:

<instruction> (side <side_set_value>) ([<delay_value>])

where:

<instruction>

<side_set_value>

<delay_value>

© NoOTE

Is an assembly instruction detailed in the following sections. (See Section 3.4)

Is a value (see Section 3.3.3) to apply to the side_set pins at the start of the instruction. Note that
the rules for a side-set value via side <side_set_value> are dependent on the .side_set (see
[pioasm_side_set]) directive for the program. If no .side_set is specified then the side
<side_set_value> is invalid, if an optional number of sideset pins is specified then side
<side_set_value> may be present, and if a non-optional number of sideset pins is specified, then
side <side_set_value> is required. The <side_set_value> must fit within the number of side-set bits
specified in the .side_set directive.

Specifies the number of cycles to delay after the instruction completes. The delay_value is
specified as a value (see Section 3.3.3), and in general is between 0 and 31 inclusive (a 5-bit
value), however the number of bits is reduced when sideset is enabled via the .side_set (see
[pioasm_side_set]) directive. If the <delay_value> is not present, then the instruction has no delay

pioasm instruction names, keywords and directives are case insensitive; lower case is used in the Assembly Syntax
sections below as this is the style used in the SDK.

© NOTE

Commas appear in some Assembly Syntax sections below, but are entirely optional, e.g. out pins, 3 may be written
out pins 3, and jmp x-- label may be written as jmp x--, label. The Assembly Syntax sections below uses the first
style in each case as this is the style used in the SDK.

]
3.3. Using PIOASM, the PIO Assembler

55

Raspberry Pi Pico-series C/C++ SDK
]

3.3.8. Pseudoinstructions

Currently pioasm provides one pseudoinstruction, as a convenience:

nop Assembles to mov y, y. "No operation’, has no particular side effect, but a useful vehicle for a side-set
operation or an extra delay.

3.3.9. Output pass through

Text in the PIO file may be passed, unmodified, to the output based on the language generator being used.

For example the following (comment and function) would be included in the generated header when the default c-sdk
language generator is used.

% c-sdk {

// an inline function (since this is going in a header file)
static inline int some_c_code() {
return 0;

}
%}

The general format is

% target {
pass through contents

%)

with targets being recognized by a particular language generator (see Section 3.3.10; note that target is usually the
language generator name e.g. c-sdk, but could potentially be some_language.some_group if the language generator supports
different classes of pass through with different output locations.

This facility allows you to encapsulate both the PIO program and the associated setup required in the same source file.
See Section 3.3.10 for a more complete example.

3.3.10. Language generators

The following example shows a multi program source file (with multiple programs) which we will use to highlight c-sdk
and python output features

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio

1
2 ; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
8

4 ; SPDX-License-Identifier: BSD-3-Clause

5

6 .pio_version @ // only requires PIO version ©

7
8

.program ws2812
9 .side_set 1

11 ; The following constants are selected for broad compatibility with WS2812,
12 ; WS2812B, and SK6812 LEDs. Other constants may support higher bandwidths for

]
3.3. Using PIOASM, the PIO Assembler 56

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio

Raspberry Pi Pico-series C/C++ SDK
]

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74

; specific LEDs, such as (7,10,8) for WS2812B LEDs.

.define public T1 3
.define public T2 3
.define public T3 4
.lang_opt python sideset_init
.lang_opt python out_init
.lang_opt python out_shiftdir
.wrap_target
bitloop:
out x, 1 side 0 [T3
jmp !'x do_zero side 1 [T1
do_one:

jmp bitloop side 1 [T2
do_zero:

nop side @ [T2
.wrap
% c-sdk {
#include "hardware/clocks.h"

static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,

bool rgbw) {

pio_gpio_init(pio, pin);

pico.PIO0.OUT_HIGH
pico.PIO.OUT_HIGH
1

1] ; Side-set still takes place when instruction stalls
1] ; Branch on the bit we shifted out. Positive pulse

1] ; Continue driving high, for a long pulse

1] ; Or drive low, for a short pulse

pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

pio_sm_config ¢ = ws2812_program_get_default_config(offset);
sm_config_set_sideset_pins(&c, pin);
sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
sm_config_set_clkdiv(&c, div);

pio_sm_init(pio, sm, offset, &c);
pio_sm_set_enabled(pio, sm, true);

}

%}

.program ws2812_parallel

.define public T1 3
.define public T2 3
.define public T3 4

.wrap_target
out x, 32
mov pins, !null [T1-1]
mov pins, x [T2-1]
mov pins, null [T3-2]
.wrap

% c-sdk {
#include "hardware/clocks.h"

static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint pin_base,

uint pin_count, float freq) {

for(uint i=pin_base; i<pin_base+pin_count; i++) {

pio_gpio_init(pio, 1i);

}

]
3.3. Using PIOASM, the PIO Assembler

57

Raspberry Pi Pico-series C/C++ SDK
]

75 pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
76

77 pio_sm_config ¢ = ws2812_parallel_program_get_default_config(offset);
78 sm_config_set_out_shift(&c, true, true, 32);

79 sm_config_set_out_pins(&c, pin_base, pin_count);

80 sm_config_set_set_pins(&c, pin_base, pin_count);

81 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

82

83 int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;
84 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);

85 sm_config_set_clkdiv(&c, div);

86

87 pio_sm_init(pio, sm, offset, &c);

88 pio_sm_set_enabled(pio, sm, true);

89 }

90 %}

3.3.10.1. c-sdk

The c-sdk language generator produces a single header file with all the programs in the P10 source file:
The pass through sections (% c-sdk {) are embedded in the output, and the PUBLIC defines are available via #define

@ TIP

pioasm creates a function for each program (e.g. ws2812_program_get_default_config()) returning a pio_sm_config based
on the .side_set, .wrap and .wrap_target settings of the program, which you can then use as a basis for configuration
the PIO state machine.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.pio.h

V [somomcecesosssssmrmrmsssessereoeEeEeOsEEOEEE DD DDDS //
2 // This file is autogenerated by pioasm; do not edit! //
8 [semcmoccococsonssososososososoEonoEoEonosasoononos //
4
5 #pragma once
6
7 #include "hardware/pio.h"
8
Q) ====== //
10 // ws2812 //
11 /) ====== //
12
13 #define ws2812_wrap_target 0
14 #define ws2812_wrap 3
15 #define ws2812_pio_version 0
16
17 #define ws2812_T1 2
18 #define ws2812_T2 5
19 #define ws2812_T3 3
20
21 static const uint16_t ws2812_program_instructions[] = {
22 // .wrap_target
23 0x6221, // 0: out x, 1 side 0 [2]
24 0x1123, // 1: jmp Ix, 3 side 1 [1]
25 ox14e0, // 2: jmp 0 side 1 [4]
26 Oxad442, // 3: nop side 0 [4]
27 // .wrap
28 };
29

]
3.3. Using PIOASM, the PIO Assembler 58

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.pio.h

Raspberry Pi Pico-series C/C++ SDK
]

30 static const struct pio_program ws2812_program = {

31 .instructions = ws2812_program_instructions,

32 .length = 4,

88 .origin = -1,

34 .pio_version = O,

35 .used_gpio_ranges = 0x0

36 #endif

37 };

38

39 static inline pio_sm_config ws2812_program_get_default_config(uint offset) {
40 pio_sm_config ¢ = pio_get_default_sm_config();

41 sm_config_set_wrap(&c, offset + ws2812_wrap_target, offset + ws2812_wrap);
42 sm_config_set_sideset(&c, 1, false, false);

43 return c;

44 }

45

46 #include "hardware/clocks.h"
47 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

48 pio_gpio_init(pio, pin);

49 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

50 pio_sm_config ¢ = ws2812_program_get_default_config(offset);
51 sm_config_set_sideset_pins(&c, pin);

52 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);

53 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

54 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;

515 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
56 sm_config_set_clkdiv(&c, div);

57 pio_sm_init(pio, sm, offset, &c);

58 pio_sm_set_enabled(pio, sm, true);

59 }

60

61

@R /) ===c==—=cs=sm=s //

63 // ws2812_parallel //

@} [socc=co=coscsss //

65

66 #define ws2812_parallel_wrap_target 6
67 #define ws2812_parallel_wrap 3

68 #define ws2812_parallel_pio_version 6
69

70 #define ws2812_parallel_T1 2

71 #define ws2812_parallel T2 5

72 #define ws2812_parallel_T3 3

73

74 static const uint16_t ws2812_parallel_program_instructions[] = {
75 // .wrap_target

76 0x6020, // 06: out X, 32

77 @xaleb, // 1: mov pins, !null [1]

78 0xa401, // 2: mov pins, x [4]

79 oxale3, // 3: mov pins, null [1]

80 // .wrap

81 };

82

83 static const struct pio_program ws2812_parallel_program = {
84 .instructions = ws2812_parallel_program_instructions,
85 .length = 4,

86 .origin = -1,

87 .pio_version = 0,

88 .used_gpio_ranges = 0x0

89 #endif

90 };

91

92 static inline pio_sm_config ws2812_parallel_program_get_default_config(uint offset) {

]
3.3. Using PIOASM, the PIO Assembler 59

Raspberry Pi Pico-series C/C++ SDK
]

93 pio_sm_config ¢ = pio_get_default_sm_config();

94 sm_config_set_wrap(&c, offset + ws2812_parallel_wrap_target, offset +
ws2812_parallel_wrap);

95 return c;

96 }

97

98 #include "hardware/clocks.h"
99 static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint
pin_base, uint pin_count, float freq) {

100 for(uint i=pin_base; i<pin_base+pin_count; i++) {
101 pio_gpio_init(pio, 1i);
102 }
103 pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
104 pio_sm_config ¢ = ws2812_parallel_program_get_default_config(offset);
105 sm_config_set_out_shift(&c, true, true, 32);
106 sm_config_set_out_pins(&c, pin_base, pin_count);
107 sm_config_set_set_pins(&c, pin_base, pin_count);
108 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
109 int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;
110 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
111 sm_config_set_clkdiv(&c, div);
112 pio_sm_init(pio, sm, offset, &c);
113 pio_sm_set_enabled(pio, sm, true);
114 }
3.3.10.2. python

The python language generator produces a single python file with all the programs in the P10 source file:

The pass through sections (% python {) would be embedded in the output, and the PUBLIC defines are available as python
variables.

Also note the use of .1ang_opt python to pass initializers for the @pico.asm_pio decorator

@ TIP

The python language output is provided as a utility. MicroPython supports programming with the PIO natively, so you
may only want to use pioasm when sharing PIO code between the SDK and MicroPython. No effort is currently made
to preserve label names, symbols or comments, as it is assumed you are either using the PIO file as a source or
python; not both. The python language output can of course be used to bootstrap your MicroPython PIO
development based on an existing PIO file.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.py

import rp2
from machine import Pin

0w N o g~ WN =

= =
- ® ©
R
1
1
1
1
1
1
H

ws2812_T1
ws2812_T2
ws2812_T3

g)

A WN
n [} 1l
A W W

-
(9]

@rp2.asm_pio(sideset_init=pico.PI0.OUT_HIGH, out_init=pico.PI0.OUT_HIGH, out_shiftdir=1)
def ws2812():

-
o

]
3.3. Using PIOASM, the PIO Assembler 60

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.py

Raspberry Pi Pico-series C/C++ SDK
]

17 wrap_target()

18 label("0")

19 out(x, 1) .side(@) [3] # @
20 jmp(not_x, "3") .side(1) [2] # 1
21 jmp("0") .side(1) [2] # 2
22 label("3")

23 nop() .side(@) [2] # 3
24 wrap()

25

26

27

28 # ——----——---———- #

29 # ws2812_parallel #

30 # ——---———---———- #

31

32 ws2812_parallel_T1 = 3

33 ws2812_parallel_T2 = 3

34 ws2812_parallel_T3 = 4

35
36 @rp2.asm_pio()
37 def ws2812_parallel():

38 wrap_target()
39 out(x, 32) # 0
40 mov(pins, invert(null)) [2] #1
41 mov(pins, x) [2] # 2
42 mov(pins, null) [2] # 3
43 wrap()

3.3.10.3. hex

The hex generator only supports a single input program, as it just dumps the raw instructions (one per line) as a 4-
character hexadecimal number.

Given:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio

1

2 ; Copyright (c) 206206 Raspberry Pi (Trading) Ltd.
3

4 ; SPDX-License-Identifier: BSD-3-Clause

5

6 .pio_version @ // only requires PIO version 0

7

8 .program squarewave

9 set pindirs, 1 ; Set pin to output

10 again:

11 set pins, 1 [1] ; Drive pin high and then delay for one cycle
12 set pins, 0 ; Drive pin low

13 jmp again ; Set PC to label ‘again’

The hex output produces:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave.hex

1 e081
2 el@01
3 €000

]
3.3. Using PIOASM, the PIO Assembler 61

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio
https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave.hex

Raspberry Pi Pico-series C/C++ SDK

4 0001

3.4. PIO Instruction Set Reference

© NoOTE

This section refers in places to concepts and pieces of hardware discussed in the RP2350 Datasheet. You are
encouraged to read the PIO chapter of the datasheet to get the full context for what these instructions do.

The following sections document instruction behaviour on both PIO version 0 (RP2040) and PIO version 1 (RP2350).
When no version restrictions are mentioned, this means the behaviour applies to both versions. PIO version 1 is strictly
additive over version 0, so some features may be indicated as version-1-only, but none are version-0-only.

For documentation specific to a particular PIO version, see the device datasheet for a device equipped with that version.

3.4.1. Encoding (version 0, RP2040)

P10 instructions are 16 bits long, and have the following encoding:

Table 7. P10 Bit: 15 | 14 | 13 | 12 | 11| 10| o 8 7 6 5 4 3 2 1 0
instruction encudmg
JMP 0 0 0 Delay/side-set Condition Address
WAIT| O 0 1 Delay/side-set Pol Source Index
IN 0 1 0 Delay/side-set Source Bit count
ouTt 0 1 1 Delay/side-set Destination Bit count
PUS 1 0 0 Delay/side-set 0 IfF | Blk 0 0 0 0 0
H
PULL| 1 0 0 Delay/side-set 1 IfE | Blk 0 0 0 0 0
MoV 1 0 1 Delay/side-set Destination Op Source
IRQ 1 1 0 Delay/side-set 0 Clr | Wait Index
SET 1 1 1 Delay/side-set Destination Data

3.4.2. Encoding (version 1, RP2350)

P10 instructions are 16 bits long, and have the following encoding:

Table8.PIO- Bit: 15| 14| 13| 12| 11| 10| 9| 8| 7|6 | 5| a/| 3| 2]|n1 0
instruction encoding
JMP 0 0 0 Delay/side-set Condition Address
WAIT 0 0 1 Delay/side-set Pol Source Index
IN 0 1 0 Delay/side-set Source Bit count
ouT 0 1 1 Delay/side-set Destination Bit count
PUSH 1 0 0 Delay/side-set 0 IfF | Blk 0 0 0 0 0
MoV 1 0 0 Delay/side-set 0 0 0 1 IdxI 0 Index
PULL 1 0 0 Delay/side-set 1 IfE | Blk | O 0 0 0 0

]
3.4. PIO Instruction Set Reference 62

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK
]

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1]
MOV 1 0 0 Delay/side-set 1 0 0 1 Idx| 0 Index
MOV 1 0 1 Delay/side-set Destination Op Source
IRQ 1 1 0 Delay/side-set 0 Clr | Wait | IdxMode Index
SET 1 1 1 Delay/side-set Destination Data

3.4.3. Summary

All PIO instructions execute in one clock cycle.

The Delay/side-set field is present in all instructions. Its exact use is configured for each state machine by
PINCTRL_SIDESET_COUNT:

® Up to 5 MSBs encode a side-set operation, which optionally asserts a constant value onto some GPIOs,
concurrently with main instruction execution logic

® Remaining LSBs (up to 5) encode the number of idle cycles inserted between this instruction and the next

3.4.4. JMP

3.4.4.1. Encoding

Bit:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Jnp

0 0 0 Delay/side-set Condition Address

3.4.4.2. Operation

Set program counter to Address if Condition is true, otherwise no operation.

Delay cycles on a JMP always take effect, whether Condition is true or false, and they take place after Condition is
evaluated and the program counter is updated.

® Condition:

o

000: (no condition): Always

001: !X: scratch X zero

010: X--: scratch X non-zero, prior to decrement
011: 'v: scratch Y zero

100: Y--: scratch Y non-zero, prior to decrement
101: X!=Y: scratch X not equal scratch Y

110: PIN: branch on input pin

111: 10SRE: output shift register not empty

® Address: Instruction address to jump to. In the instruction encoding this is an absolute address within the PIO

instruction memory.

JMP PIN branches on the GPIO selected by EXECCTRL_IMP_PIN, a configuration field which selects one out of the maximum
of 32 GPIO inputs visible to a state machine, independently of the state machine’s other input mapping. The branch is
taken if the GPIO is high.

]
3.4. PIO Instruction Set Reference 63

Raspberry Pi Pico-series C/C++ SDK

I0SRE compares the bits shifted out since the last PULL with the shift count threshold configured by SHIFTCTRL_PULL_THRESH.
This is the same threshold used by autopull.

JMP X-- and JMP Y-- always decrement scratch register X or Y, respectively. The decrement is not conditional on the
current value of the scratch register. The branch is conditioned on the initial value of the register, i.e. before the

decrement took place: if the register is initially nonzero, the branch is taken.

3.4.4.3. Assembler Syntax

jmp (<cond>) <target>

where:

<cond>

<target>

3.4.5

3.4.5.1. Encoding

Is an optional condition listed above (e.g. !x for scratch X zero). If a condition code is not specified,

the branch is always taken

Is a program label or value (see Section 3.3.3) representing instruction offset within the program (the
first instruction being offset 0). Note that because the PIO JMP instruction uses absolute addresses
in the P10 instruction memory, JMPs need to be adjusted based on the program load offset at

runtime. This is handled for you when loading a program with the SDK, but care should be taken when

encoding JMP instructions for use by 0UT EXEC

. WAIT

Bit:

15

14

13

12

11 10 9

6 5

WAIT

Delay/side-set

Pol

Source

Index

3.4.5.2. Operation

Stall until some condition is met.

Like all stalling instructions, delay cycles begin after the instruction completes. That is, if any delay cycles are present,

they do not begin counting until after the wait condition is met.

® Polarity:

® Source: what to wait on. Values are:

o 1:waitforai.

o 0:wait forao0.

o 00: GPIO0: System GPIO input selected by Index. This is an absolute GPIO index, and is not affected by the state

machine’s input 10 mapping.

o 071:PIN: Input pin selected by Index. This state machine’s input 10 mapping is applied first, and then Index
selects which of the mapped bits to wait on. In other words, the pin is selected by adding Index to the

PINCTRL_IN_BASE configuration, modulo 32.

o 10: IRQ: PIO IRQ flag selected by Index

o 11: (_version 1 and above_) JMPPIN: wait on the pin indexed by the PINCTRL_JMP_PIN configuration, plus an Index
in the range 0-3, all modulo 32. Other values of Index are reserved.

® |ndex: which pin or bit to check.

3.4. PIO Instruction Set Reference

64

Raspberry Pi Pico-series C/C++ SDK

WAIT x IRQ behaves slightly differently from other WAIT sources:
® |f Polarity is 1, the selected IRQ flag is cleared by the state machine upon the wait condition being met.

® The flag index is decoded in the same way as the IRQ index field, decoding down from the two MSBs (aligning with
the IRQ instruction IdxMode field):

o 00: the three LSBs are used directly to index the IRQ flags in this P10 block.

o 01 (_version 1 and above_) (PREV), the instruction references an IRQ from the next-lower-numbered PIO in the
system, wrapping to the highest-numbered PIO if this is P10O0.

o 10 (REL), the state machine ID (0...3) is added to the IRQ index, by way of modulo-4 addition on the two LSBs.
For example, state machine 2 with a flag value of '0x11" will wait on flag 3, and a flag value of '0x13" will wait
on flag 1. This allows multiple state machines running the same program to synchronise with each other.

o 11 (_version 1 and above_) (NEXT), the instruction references an IRQ from the next-higher-numbered PIO in the
system, wrapping to PIOO if this is the highest-numbered PIO.

A CAUTION

WAIT 1 IRQ x should not be used with IRQ flags presented to the interrupt controller, to avoid a race condition with a
system interrupt handler

3.4.5.3. Assembler Syntax
wait <polarity> gpio <gpio_num>
wait <polarity> pin <pin_num>

wait <polarity> irq <irqg_num> (rel’)

where:
<polarity> Is a value (see Section 3.3.3) specifying the polarity (either 0 or 1)
<pin_num> Is a value (see Section 3.3.3) specifying the input pin number (as mapped by the SM input pin
mapping)
<gpio_num> Is a value (see Section 3.3.3) specifying the actual GPIO pin number

<irg_num> (rel) Is a value (see Section 3.3.3) specifying The irqg number to wait on (0-7). If rel is present, then the
actual irg number used is calculating by replacing the low two bits of the irq number (irg_num,)
with the low two bits of the sum (irg_num;, + sm_num,;) where sm_num, is the state machine
number

3.4.6.IN

3.4.6.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7|6|5 4|3|2|1|0

N 0 1 0 Delay/side-set Source Bit count

3.4.6.2. Operation

Shift Bit count bits from Source into the Input Shift Register (ISR). Shift direction is configured for each state machine by
SHIFTCTRL_IN_SHIFTDIR. Additionally, increase the input shift count by Bit count, saturating at 32.

3.4. PIO Instruction Set Reference 65

Raspberry Pi Pico-series C/C++ SDK
]

® Source:
o 000: PINS
o 001: X (scratch register X)
o 010: Y (scratch register Y)
o 011:NULL (all zeroes)
o 100: Reserved
o 101: Reserved
o 110: ISR
o 111:0SR
® Bit count: How many bits to shift into the ISR. 1...32 bits, 32 is encoded as 00000.

If automatic push is enabled, IN will also push the ISR contents to the RX FIFO if the push threshold is reached
(SHIFTCTRL_PUSH_THRESH). IN still executes in one cycle, whether an automatic push takes place or not. The state machine
will stall if the RX FIFO is full when an automatic push occurs. An automatic push clears the ISR contents to all-zeroes,
and clears the input shift count.

IN always uses the least significant Bit count bits of the source data. For example, if PINCTRL_IN_BASE is set to 5, the
instruction IN PINS, 3 will take the values of pins 5, 6 and 7, and shift these into the ISR. First the ISR is shifted to the left
or right to make room for the new input data, then the input data is copied into the gap this leaves. The bit order of the
input data is not dependent on the shift direction.

NULL can be used for shifting the ISR’s contents. For example, UARTSs receive the LSB first, so must shift to the right.
After 8 IN PINS, 1 instructions, the input serial data will occupy bits 31...24 of the ISR. An IN NULL, 24 instruction will shift
in 24 zero bits, aligning the input data at ISR bits 7..0. Alternatively, the processor or DMA could perform a byte read
from FIFO address + 3, which would take bits 31...24 of the FIFO contents.

3.4.6.3. Assembler Syntax

in <source>, <bit_count>

where:

<source> Is one of the sources specified above.

<bit_count> Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)
3.4.7. 0UT

3.4.7.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7|6|5 4|3|2|1|0

ouT 0 1 1 Delay/side-set Destination Bit count

3.4.7.2. Operation

Shift Bit count bits out of the Output Shift Register (OSR), and write those bits to Destination. Additionally, increase the
output shift count by Bit count, saturating at 32.

® Destination:

]
3.4. PIO Instruction Set Reference 66

Raspberry Pi Pico-series C/C++ SDK
]

® Bit count: how many bits to shift out of the OSR. 1...32 bits, 32 is encoded as 00000.

o 000: PINS

o 001: X (scratch register X)

o 010: Y (scratch register Y)

o 0711:NULL (discard data)

o 100: PINDIRS

o 101:PC

o 110: ISR (also sets ISR shift counter to Bit count)

o 111: EXEC (Execute OSR shift data as instruction)

A 32-bit value is written to Destination: the lower Bit count bits come from the OSR, and the remainder are zeroes. This
value is the least significant Bit count bits of the OSR if SHIFTCTRL_OUT_SHIFTDIR is to the right, otherwise it is the most
significant bits.

PINS and PINDIRS use the 0UT pin mapping.

If automatic pull is enabled, the OSR is automatically refilled from the TX FIFO if the pull threshold, SHIFTCTRL_PULL_THRESH,
is reached. The output shift count is simultaneously cleared to 0. In this case, the 0UT will stall if the TX FIFO is empty,

but otherwise still executes in one cycle.

0UT EXEC allows instructions to be included inline in the FIFO datastream. The 0UT itself executes on one cycle, and the
instruction from the OSR is executed on the next cycle. There are no restrictions on the types of instructions which can
be executed by this mechanism. Delay cycles on the initial 0UT are ignored, but the executee may insert delay cycles as
normal.

0UT PC behaves as an unconditional jump to an address shifted out from the OSR.

3.4.7.3. Assembler Syntax

out <destination>, <bit_count>

where:

<destination>

<bit_count>

3.4.8. PUSH

3.4.8.1. Encoding

Is one of the destinations specified above.

Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)

Bit:

15

14

13

12

11

10

9

PUSH

Delay/side-set

IfF

Blk

3.4.8.2. Operation

Push the contents of the ISR into the RX FIFO, as a single 32-bit word. Clear ISR to all-zeroes.

e IfFull: If 1, do nothing unless the total input shift count has reached its threshold, SHIFTCTRL_PUSH_THRESH (the same

as for autopush).

3.4. PIO Instruction Set Reference

67

Raspberry Pi Pico-series C/C++ SDK
]

® Block: If 1, stall execution if RX FIFO is full.

PUSH IFFULL helps to make programs more compact, like autopush. It is useful in cases where the IN would stall at an
inappropriate time if autopush were enabled, e.g. if the state machine is asserting some external control signal at this
point.

The P10 assembler sets the Block bit by default. If the Block bit is not set, the PUSH does not stall on a full RX FIFO, instead
continuing immediately to the next instruction. The FIFO state and contents are unchanged when this happens. The ISR
is still cleared to all-zeroes, and the FDEBUG_RXSTALL flag is set (the same as a blocking PUSH or autopush to a full RX FIFO)
to indicate data was lost.

3.4.8.3. Assembler Syntax

push (iffull)
push (iffull’) block

push (iffull) noblock

where:

iffull Is equivalent to IfFull == 1 above. i.e. the default if this is not specified is IfFull ==

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified
noblock Is equivalent to Block == 0 above.

3.4.9. PULL

3.4.9.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PULL 1 0 0 Delay/side-set 1 IfE | Blk 0 0 0 0 0

3.4.9.2. Operation

Load a 32-bit word from the TX FIFO into the OSR.

e IfEmpty: If 1, do nothing unless the total output shift count has reached its threshold, SHIFTCTRL_PULL_THRESH (the
same as for autopull).

® Block: If 1, stall if TX FIFO is empty. If 0, pulling from an empty FIFO copies scratch X to OSR.

Some peripherals (UART, SPI...) should halt when no data is available, and pick it up as it comes in; others (12S) should
clock continuously, and it is better to output placeholder or repeated data than to stop clocking. This can be achieved
with the Block parameter.

A nonblocking PULL on an empty FIFO has the same effect as MOV 0SR, X. The program can either preload scratch register
X with a suitable default, or execute a MOV X, 0SR after each PULL NOBLOCK, so that the last valid FIFO word will be recycled
until new data is available.

PULL IFEMPTY is useful if an 0UT with autopull would stall in an inappropriate location when the TX FIFO is empty. For
example, a UART transmitter should not stall immediately after asserting the start bit. IfEmpty permits some of the same
program simplifications as autopull, but the stall occurs at a controlled point in the program.

]
3.4. PIO Instruction Set Reference 68

Raspberry Pi Pico-series C/C++ SDK

© NOTE

When autopull is enabled, any PULL instruction is a no-op when the OSR is full, so that the PULL instruction behaves as
a barrier. 0UT NULL, 32 can be used to explicitly discard the OSR contents. See the RP2350 Datasheet for more detail
on autopull.

3.4.9.3. Assembler Syntax

pull (ifempty)
pull (ifempty) block

pull (ifempty) noblock

where:

ifempty Is equivalent to IfEmpty == 1 above. i.e. the default if this is not specified is IfEmpty ==

block Is equivalent to Block == 1above. This is the default if neither block nor noblock are specified
noblock Is equivalent to Block == @ above.

3.4.10. MOV (to RX)

3.4.10.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MoV 1 0 0 Delay/side-set 0 0 0 1 IdxI Index

(_version 1 and above_)

3.4.10.2. Operation

Write the ISR to a selected RX FIFO entry. The state machine can write the RX FIFO entries in any order, indexed either
by the Y register, or an immediate Index in the instruction. Requires the SHIFTCTRL_FJOIN_RX_PUT configuration field to be
set, otherwise its operation is undefined. The FIFO configuration can be specified for the program via the .fifo directive
(see pioasm_fifo).

If IdxI (index by immediate) is set, the RX FIFQ's registers are indexed by the two least-significant bits of the Index
operand. Otherwise, they are indexed by the two least-significant bits of the Y register. When Idxl is clear, all nonzero
values of Index are reserved encodings, and their operation is undefined.

When only SHIFTCTRL_FJOIN_RX_PUT is set (in SMO_SHIFTCTRL through SM3_SHIFTCTRL), the system can also read the RX FIFO
registers with random access via RXF0_PUTGET@ through RXF@_PUTGET3 (where RXFx indicates which state machine’s FIFO is
being accessed). In this state, the FIFO register storage is repurposed as status registers, which the state machine can
update at any time and the system can read at any time. For example, a quadrature decoder program could maintain the
current step count in a status register at all times, rather than pushing to the RX FIFO and potentially blocking.

When both SHIFTCTRL_FJOIN_RX_PUT and SHIFTCTRL_FJOIN_RX_GET are set, the system can no longer access the RX FIFO
storage registers, but the state machine can now put/get the registers in arbitrary order, allowing them to be used as
additional scratch storage.

]
3.4. PIO Instruction Set Reference 69

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Raspberry Pi Pico-series C/C++ SDK

© NOTE

The RX FIFO storage registers have only a single read port and write port, and access through each port is assigned
to only one of (system, state machine) at any time.

3.4.10.3. Assembler Syntax

mov rxfifoly], isr

mov rxfifo[<index>], isr

where:
y Is the literal token "y", indicating the RX FIFO entry is indexed by the Y register
<index> Is a value (see Section 3.3.3) specifying the RX FIFO entry to write (valid range 0-3)

3.4.11. MOV (from RX)

3.4.11.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mov 1 0 0 Delay/side-set 1 0 0 1 Idx| Index

(_version 1 and above_)

3.4.11.2. Operation

Read the selected RX FIFO entry into the OSR. The PIO state machine can read the FIFO entries in any order, indexed
either by the Y register, or an immediate Index in the instruction. Requires the SHIFTCTRL_FJOIN_RX_GET configuration field
to be set, otherwise its operation is undefined.

If IdxI (index by immediate) is set, the RX FIFQ's registers are indexed by the two least-significant bits of the Index
operand. Otherwise, they are indexed by the two least-significant bits of the Y register. When Idx| is clear, all nonzero
values of Index are reserved encodings, and their operation is undefined.

When only SHIFTCTRL_FJOIN_RX_GET is set, the system can also write the RX FIFO registers with random access via
RXFO_PUTGET® through RXFo_PUTGET3 (where RXFx indicates which state machine’s FIFO is being accessed). In this state, the
RX FIFO register storage is repurposed as additional configuration registers, which the system can update at any time
and the state machine can read at any time. For example, a UART TX program might use these registers to configure
the number of data bits, or the presence of an additional stop bit.

When both SHIFTCTRL_FJOIN_RX_PUT and SHIFTCTRL_FJOIN_RX_GET are set, the system can no longer access the RX FIFO
storage registers, but the state machine can now put/get the registers in arbitrary order, allowing them to be used as
additional scratch storage.

]
3.4. PIO Instruction Set Reference 70

Raspberry Pi Pico-series C/C++ SDK

© NOTE

The RX FIFO storage registers have only a single read port and write port, and access through each port is assigned
to only one of (system, state machine) at any time.

3.4.11.3. Assembler Syntax

mov osr, rxfifo[y]

mov osr, rxfifo[<index>]

where:
y Is the literal token "y", indicating the RX FIFO entry is indexed by the Y register
<index> Is a value (see Section 3.3.3) specifying the RX FIFO entry to read (valid range 0-3)

3.4.12. MOV

3.4.12.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MoV 1 0 1 Delay/side-set Destination Op Source

3.4.12.2. Operation

Copy data from Source to Destination.
® Destination:
o 000: PINS (Uses same pin mapping as 0UT)
o 001: X (Scratch register X)
o 010: Y (Scratch register Y)
o 011: (Lversion 1 and above_) PINDIRS (Uses same pin mapping as 0UT)
o 100: EXEC (Execute data as instruction)
o 101:PC
o 110: ISR (Input shift counter is reset to 0 by this operation, i.e. empty)
o 111:0SR (Output shift counter is reset to 0 by this operation, i.e. full)
® QOperation:
o 00: None
o 01: Invert (bitwise complement)
o 10: Bit-reverse
o 11: Reserved
® Source:

o 000: PINS (Uses same pin mapping as IN)

]
3.4. PIO Instruction Set Reference 71

Raspberry Pi Pico-series C/C++ SDK

o 0071:X

o 010:Y

o 077:NULL

o 100: Reserved
o 107: STATUS

o 110: ISR

o 111:0SR

MOV PC causes an unconditional jump. MOV EXEC has the same behaviour as 0UT EXEC (Section 3.4.7), and allows register
contents to be executed as an instruction. The MOV itself executes in 1 cycle, and the instruction in Source on the next
cycle. Delay cycles on MOV EXEC are ignored, but the executee may insert delay cycles as normal.

The STATUS source has a value of all-ones or all-zeroes, depending on some state machine status such as FIFO
full/empty, configured by EXECCTRL_STATUS_SEL.

MOV can manipulate the transferred data in limited ways, specified by the Operation argument. Invert sets each bit in
Destination to the logical NOT of the corresponding bit in Source, i.e. 1 bits become 0 bits, and vice versa. Bit reverse sets
each bit nin Destination to bit 31 - n in Source, assuming the bits are numbered 0 to 31.

MOV dst, PINS reads pins using the IN pin mapping, and writes the full 32-bit value to the destination without masking.
The LSB of the read value is the pin indicated by PINCTRL_IN_BASE, and each successive bit comes from a higher-
numbered pin, wrapping after 31.

3.4.12.3. Assembler Syntax

mov <destination>, (op) <source>

where:
<destination> Is one of the destinations specified above.
<op> If present, is:
I or ~ for NOT (Note: this is always a bitwise NOT)
:: for bit reverse
<source> Is one of the sources specified above.

3.4.13.IRQ

3.4.13.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1RQ 1 1 0 Delay/side-set 0 Clr | Wait| IdxMode Index

3.4.13.2. Operation

Set or clear the IRQ flag selected by Index argument. * Clear: if 1, clear the flag selected by Index, instead of raising it. If
Clear is set, the Wait bit has no effect. * Wait: if 1, halt until the raised flag is lowered again, e.g. if a system interrupt
handler has acknowledged the flag. * Index: specifies an IRQ index from 0-7. This IRQ flag will be set/cleared depending

3.4. PIO Instruction Set Reference 72

Raspberry Pi Pico-series C/C++ SDK
]

on the Clear bit. * IdxMode: modify the behaviour if the Index field, either modifying the index, or indexing IRQ flags from
a different P10 block: 0e: the three LSBs are used directly to index the IRQ flags in this PIO block. 01 (_version 1 and
above_) (PREV): the instruction references an IRQ flag from the next-lower-numbered PIO in the system, wrapping to the
highest-numbered PIO if this is PIO0. 10 (REL): the state machine ID (0...3) is added to the IRQ flag index, by way of
modulo-4 addition on the two LSBs. For example, state machine 2 with a flag value of '0x11" will wait on flag 3, and a
flag value of '0x13" will wait on flag 1. This allows multiple state machines running the same program to synchronise
with each other. 11 (_version 1 and above_) (NEXT): the instruction references an IRQ flag from the next-higher-numbered
P10 in the system, wrapping to PIOQ if this is the highest-numbered PIO.

On PIO version 0, IRQ flags 4-7 are visible only to the state machines; IRQ flags 0-3 can be routed out to system level
interrupts, on either of the PIO’s two external interrupt request lines, configured by T1RQ@_INTE and IRQ1_INTE. PIO version 1
lifts this limitation and allows all eight flags to assert system interrupts.

The modulo addition mode allows relative addressing of 'IRQ" and 'WAIT" instructions, for synchronising state machines
which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

The modulo addition mode (REL) allows relative addressing of 'IRQ" and 'WAIT' instructions, for synchronising state
machines which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

The NEXT/PREV modes (_version 1 and above_) can be used to synchronise between state machines in different PIO
blocks. If these state machines' clocks are divided, their clock dividers must be the same, and must have been
synchronised by writing CTRL.NEXTPREV_CLKDIV_RESTART in addition to the relevant NEXT_PIO_MASK/PREV_PIO_MASK bits.
Note that the cross-PIO connection is severed between PIOs with different accessibility to Non-secure code, as per
ACCESSCTRL.

If wait is set, Delay cycles do not begin until after the wait period elapses.

3.4.13.3. Assembler Syntax

irq <irg_num> (rel)
irq set <irg_num> (rel)
irg nowait <irg_num> (rel)
irq wait <irg_num> (rel)
irq clear <irg_num> (rel)
where:
<irg_num> (rel) s avalue (see Section 3.3.3) specifying The irq number to wait on (0-7). If rel is present, then the

actual irg number used is calculating by replacing the low two bits of the irq number (irg_numj;)
with the low two bits of the sum (irg_num;, + sm_num,,) where sm_num, is the state machine

number
irq Means set the IRQ without waiting
irq set Also means set the IRQ without waiting
irg nowait Again, means set the IRQ without waiting
irg wait Means set the IRQ and wait for it to be cleared before proceeding
irq clear Means clear the IRQ

3.4.14. SET

]
3.4. PIO Instruction Set Reference 73

Raspberry Pi Pico-series C/C++ SDK

3.4.14.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7|6|5 4|3|2|1|0

SET 1 1 1 Delay/side-set Destination Data

3.4.14.2. Operation

Write immediate value Data to Destination.

® Destination:
o 000: PINS
o 001: X (scratch register X) 5 LSBs are set to Data, all others cleared to 0.
o 010: Y (scratch register Y) 5 LSBs are set to Data, all others cleared to 0.
o 011: Reserved
o 100: PINDIRS
o 101: Reserved
o 110: Reserved
o 111: Reserved

® Data: 5-bit immediate value to drive to pins or register.

This can be used to assert control signals such as a clock or chip select, or to initialise loop counters. As Data is 5 bits in
size, scratch registers can be SET to values from 0-31, which is sufficient for a 32-iteration loop.

The mapping of SET and 0UT onto pins is configured independently. They may be mapped to distinct locations, for
example if one pin is to be used as a clock signal, and another for data. They may also be overlapping ranges of pins: a
UART transmitter might use SET to assert start and stop bits, and 0UT instructions to shift out FIFO data to the same pins.

3.4.14.3. Assembler Syntax

set <destination>, <value>

where:
<destination> Is one of the destinations specified above.
<value> The value (see Section 3.3.3) to set (valid range 0-31)

3.4. PIO Instruction Set Reference 74

Raspberry Pi Pico-series C/C++ SDK

Chapter 4. Library documentation

Full library API documentation can also be found online at https://www.raspberrypi.com/documentation/pico-sdk/

Figure 8. The

Raspberry Pi
documentation site. eee @I+ < L) raspberrypi.com e N+ @
‘ Raspberry Pi
For home For industry Hardware Software Documentation News Forums Foundation

Raspberry Pi Documentation

The official documentation for
Raspberry Pi computers and microcontrollers

Computers Accessories Microcontrollers Pico C SDK
Release 1.5.0
Introduction Hardware APIs High Level APIs
An introduction to the Pico SDK This group of libraries provides a thin and efficient This group of libraries provide higher level
C API/ abstractions to access the RP2040 functionality that isrit hardware related or provides
hardware without having to read and write aricher set of functionality above the basic
hardware registers directly hardware interfaces

O NoOTE

You can also build the API documentation locally, see Appendix B.

Chapter 4. Library documentation 75

https://www.raspberrypi.com/documentation/pico-sdk/

Raspberry Pi Pico-series C/C++ SDK

4.1. Hardware APIs

This group of libraries provides a thin and efficient C APl / abstractions to access the RP-series microcontroller
hardware without having to read and write hardware registers directly.

hardware_adc

Analog to Digital Converter (ADC) API.

hardware_base

Low-level types and (atomic) accessors for memory-mapped hardware registers.

hardware_claim

Lightweight hardware resource management API.

hardware_clocks

Clock Management API.

hardware_divider

RP2040 Low Low-level hardware-divider API. Non-RP2040 platforms provide software
versions of all the functions.

hardware_dcp

Assembly macros for the Double Coprocessor. ¢ 77551

hardware_dma

DMA Controller API.

channel_config

DMA channel configuration .

hardware_exception

Methods for setting processor exception handlers.

hardware_flash

Low level flash programming and erase API.

hardware_gpio

General Purpose Input/Output (GPIO) API.

hardware_hazard3

Accessors for Hazard3-specific RISC-V CSRs, and intrinsics for Hazard3 custom instructions.

[RP2350 J

hardware_i2c

12C Controller API.

hardware_interp

Hardware Interpolator API.

interp_config

Interpolator configuration .

hardware_irq

Hardware interrupt handling API.

hardware_pio

Programmable I/0 (PIO) API.

sm_config

P10 state machine configuration .

pio_instructions

P10 instruction encoding .

hardware_pll

Phase Locked Loop control APIs.

hardware_powman

Power Management API. ¢ :7EET

hardware_pwm

Hardware Pulse Width Modulation (PWM) API.

hardware_resets

Hardware Reset API.

hardware_riscv

Accessors for standard RISC-V hardware (mainly CSRs) ¢ 77250

hardware_riscv_platfo
rm_timer

Accessors for standard RISC-V platform timer (mtime/mtimecmp), available on Raspberry Pi
microcontrollers with RISC-V processors. ¢ ::7EET)

hardware_rtc

Hardware Real Time Clock API.

hardware_rcp

Inline functions and assembly macros for the Redundancy Coprocessor. ¢ 725

hardware_spi

Hardware SPI API.

hardware_sha256

Hardware SHA-256 Accelerator API. (77550

hardware_sync

Low level hardware spin locks, barrier and processor event APlIs.

hardware_ticks

Hardware Tick API.

hardware_timer

Low-level hardware timer API.

4.1. Hardware APIs

76

Raspberry Pi Pico-series C/C++ SDK
]

hardware_uart Hardware UART API.

hardware_vreg Voltage Regulation API.

hardware_watchdog | Hardware Watchdog Timer API.

hardware_xosc Crystal Oscillator (XOSC) API.

4.1.1. hardware_adc

Analog to Digital Converter (ADC) API.

4.1.1.1. Detailed Description

RP-series microcontrollers have an internal analogue-digital converter (ADC) with the following features:
e SARADC
® 500 kS/s (Using an independent 48MHz clock)
® 12 bit (RP2040 8.7 ENOB, RP2350 9.2 ENOB)
® RP2040 5 input mux:
o 4 inputs that are available on package pins shared with GP10[29:26]
o 1inputis dedicated to the internal temperature sensor

o 4 element receive sample FIFO
® RP2350 5 or 9 input mux:

o 4 inputs available on QFN-60 package pins shared with GPI0[29:26]
o 8inputs available on QFN-80 package pins shared with GPI0[47:40]

o 8 element receive sample FIFO
® One input dedicated to the internal temperature sensor (see Section 12.4.6)

® Interrupt generation

* DMA interface
Although there is only one ADC you can specify the input to it using the adc_select_input() function. In round robin mode
(adc_set_round_robin()), the ADC will use that input and move to the next one after a read.

RP2040, RP2350 QFN-60: User ADC inputs are on 0-3 (GPIO 26-29), the temperature sensor is on input 4. RP2350 QFN-
80 : User ADC inputs are on 0-7 (GPIO 40-47), the temperature sensor is on input 8.

Temperature sensor values can be approximated in centigrade as:

T =27-(ADC_Voltage - 0.706)/0.001721

4.1.1.1.1. Example

#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "hardware/adc.h"

int main() {
stdio_init_all();
printf("ADC Example, measuring GPI026\n");

0w N O g~ WDN =

]
4.1. Hardware APIs 77

Raspberry Pi Pico-series C/C++ SDK
]

9
10 adc_init();
11
12 // Make sure GPIO is high-impedance, no pullups etc
13 adc_gpio_init(26);
14 // Select ADC input @ (GPI026)
15 adc_select_input(0);
16
17 while (1) {
18 // 12-bit conversion, assume max value == ADC_VREF == 3.3 V
19 const float conversion_factor = 3.3f / (1 << 12);
20 uint16_t result = adc_read();
21 printf("Raw value: 0x%03x, voltage: %f V\n", result, result * conversion_factor);
22 sleep_ms(500) ;
23 }
24 }

4.1.1.2. Functions

void adc_init (void)
Initialise the ADC HW.

static void adc_gpio_init (uint gpio)
Initialise the gpio for use as an ADC pin.

static void adc_select_input (uint input)
ADC input select.

static uint adc_get_selected_input (void)

Get the currently selected ADC input channel.

static void adc_set_round_robin (uint input_mask)

Round Robin sampling selector.

static void adc_set_temp_sensor_enabled (bool enable)
Enable the onboard temperature sensor.

static uint16_t adc_read (void)
Perform a single conversion.

static void adc_run (bool run)

Enable or disable free-running sampling mode.

static void adc_set_clkdiv (float clkdiv)

Set the ADC Clock divisor.

static void adc_fifo_setup (bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift)
Setup the ADC FIFO.

static bool adc_fifo_is_empty (void)
Check FIFO empty state.

static uint8_t adc_fifo_get_level (void)
Get number of entries in the ADC FIFO.

static uint16_t adc_fifo_get (void)

Get ADC result from FIFO.

]
4.1. Hardware APIs 78

Raspberry Pi Pico-series C/C++ SDK
]

static uint16_t adc_fifo_get_blocking (void)
Wait for the ADC FIFO to have data.

static void adc_fifo_drain (void)

Drain the ADC FIFO.

static void adc_irq_set_enabled (bool enabled)

Enable/Disable ADC interrupts.

4.1.1.3. Function Documentation

4.1.1.3.1. adc_fifo_drain
static void adec_fifo_drain (void) [inline], [static]
Drain the ADC FIFO.

Will wait for any conversion to complete then drain the FIFO, discarding any results.

4.1.1.3.2. adc_fifo_get
static uint16_t adc_fifo_get (void) [inline], [static]
Get ADC result from FIFO.

Pops the latest result from the ADC FIFO.

4.1.1.3.3. adc_fifo_get_blocking
static uint16_t adc_fifo_get_blocking (void) [inline], [static]
Wait for the ADC FIFO to have data.

Blocks until data is present in the FIFO

4.1.1.3.4. adc_fifo_get_level

static uint8_t adc_fifo_get_level (void) [inline], [static]

Get number of entries in the ADC FIFO.

On RP2040 the FIFO is 4 samples long. On RP2350 the FIFO is 8 samples long.

This function will return how many samples are currently present.

4.1.1.3.5. adc_fifo_is_empty

static bool adc_fifo_is_empty (void) [inline], [static]
Check FIFO empty state.

Returns

Returns true if the FIFO is empty

]
4.1. Hardware APIs 79

Raspberry Pi Pico-series C/C++ SDK

4.1.1.3.6. adc_fifo_setup

static void adc_fifo_setup (bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift) [inline]
[static]

Setup the ADC FIFO.
On RP2040 the FIFO is 4 samples long.
On RP2350 the FIFO is 8 samples long.

If a conversion is completed and the FIFO is full, the result is dropped.

Parameters
en Enables write each conversion result to the FIFO
dreq_en Enable DMA requests when FIFO contains data

dreq_thresh Threshold for DMA requests/FIFO IRQ if enabled.
err_in_fifo If enabled, bit 15 of the FIFO contains error flag for each sample

byte_shift Shift FIFO contents to be one byte in size (for byte DMA) - enables DMA to byte buffers.

4.1.1.3.7. adc_get_selected_input

static uint adc_get_selected_input (void) [inline], [static]

Get the currently selected ADC input channel.

Returns

The currently selected input channel.

On RP02040 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor.

On RP2350A 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor. On RP2350B 0...7 are GPIOs
40...47 respectively. Input 8 is the onboard temperature sensor.

4.1.1.3.8. adc_gpio_init

static void adc_gpio_init (uint gpio) [inline], [static]

Initialise the gpio for use as an ADC pin.

Prepare a GPIO for use with ADC by disabling all digital functions.
Parameters

gpio The GPIO number to use. Allowable GPIO numbers are 26 to 29 inclusive on RP2040 or RP2350A, 40-48
inclusive on RP2350B

4.1.1.3.9. adc_init

void adc_init (void)

Initialise the ADC HW.

4.1.1.3.10. adc_irq_set_enabled
static void adc_irq_set_enabled (bool enabled) [inline], [static]

Enable/Disable ADC interrupts.

4.1. Hardware APIs 80

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

enabled Set to true to enable the ADC interrupts, false to disable

4.1.1.3.11. adc_read

static uint16_t adc_read (void) [inline], [static]

Perform a single conversion.

Performs an ADC conversion, waits for the result, and then returns it.
Returns

Result of the conversion.

4.1.1.3.12. adc_run

static void adc_run (bool run) [inline], [static]
Enable or disable free-running sampling mode.
Parameters

run false to disable, true to enable free running conversion mode.

4.1.1.3.13. adc_select_input
static void adc_select_input (uint input) [inline], [static]
ADC input select.

Select an ADC input On RP02040 0..3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor. On
RP2350A 0..3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor. On RP2350B 0...7 are GPIOs
40...47 respectively. Input 8 is the onboard temperature sensor.

Parameters

input Input to select.

4.1.1.3.14. adc_set_clkdiv

static void adc_set_clkdiv (float clkdiv) [inline], [static]

Set the ADC Clock divisor.

Period of samples will be (1 + div) cycles on average. Note it takes 96 cycles to perform a conversion, so any period less
than that will be clamped to 96.

Parameters

clkdiv If non-zero, conversion will be started at intervals rather than back to back.

4.1.1.3.15. adc_set_round_robin

static void adc_set_round_robin (uint input_mask) [inline], [static]
Round Robin sampling selector.

This function sets which inputs are to be run through in round robin mode. RP2040, RP2350 QFN-60: Value between 0
and 0x1f (bit 0 to bit 4 for GPIO 26 to 29 and temperature sensor input respectively) RP2350 QFN-80: Value between 0
and Oxff (bit 0 to bit 7 for GPIO 40 to 47 and temperature sensor input respectively)

]
4.1. Hardware APIs 81

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

input_mask A bit pattern indicating which of the 5/8 inputs are to be sampled. Write a value of 0 to disable
round robin sampling.

4.1.1.3.16. adc_set_temp_sensor_enabled

static void adc_set_temp_sensor_enabled (bool enable) [inline], [static]
Enable the onboard temperature sensor.
Parameters

enable Set true to power on the onboard temperature sensor, false to power off.

4.1.2. hardware_base

Low-level types and (atomic) accessors for memory-mapped hardware registers.

4.1.2.1. Detailed Description

hardware_base defines the low level types and access functions for memory mapped hardware registers. It is included by
default by all other hardware libraries.

The following register access typedefs codify the access type (read/write) and the bus size (8/16/32) of the hardware
register. The register type names are formed by concatenating one from each of the 3 parts A, B, C

A B C Meaning

io_ A Memory mapped 10
register

ro_ read-only access

rw_ read-write access

wo_ write-only access (can’t
actually be enforced via C
API)

8 8-bit wide access

16 16-bit wide access

32 32-bit wide access

When dealing with these types, you will always use a pointer, i.e. io_rw_32 *some_reg is @ pointer to a read/write 32 bit
register that you can write with *some_reg = value, or read with value = *some_reg.

RP-series hardware is also aliased to provide atomic setting, clear or flipping of a subset of the bits within a hardware
register so that concurrent access by two cores is always consistent with one atomic operation being performed first,
followed by the second.

See hw_set_bits(), hw_clear_bits() and hw_xor_bits() provide for atomic access via a pointer to a 32 bit register

Additionally given a pointer to a structure representing a piece of hardware (e.g. dna_hw_t *dma_hw for the DMA controller),
you can get an alias to the entire structure such that writing any member (register) within the structure is equivalent to
an atomic operation via hw_set_alias(), hw_clear_alias() or hw_xor_alias()...

For example hw_set_alias(dma_hw)->inte1l = 0x80; will set bit 7 of the INTE1 register of the DMA controller, leaving the

other bits unchanged.

]
4.1. Hardware APIs 82

Raspberry Pi Pico-series C/C++ SDK
]

4.1.2.2. Functions

static __force_inline void hw_set_bits (io_rw_32 *addr, uint32_t mask)

Atomically set the specified bits to 1 in a HW register.

static __force_inline void hw_clear_bits (io_rw_32 *addr, uint32_t mask)

Atomically clear the specified bits to 0 in a HW register.

static __force_inline void hw_xor_bits (io_rw_32 *addr, uint32_t mask)

Atomically flip the specified bits in a HW register.

static __force_inline void hw_write_masked (io_rw_32 *addr, uint32_t values, uint32_t write_mask)

Set new values for a sub-set of the bits in a HW register.

4.1.2.3. Function Documentation

4.1.2.3.1. hw_clear_bits
static __force_inline void hw_clear_bits (io_rw_32 * addr, uint32_t mask) [static]
Atomically clear the specified bits to 0 in a HW register.
Parameters
addr Address of writable register

mask Bit-mask specifying bits to clear

4.1.2.3.2. hw_set_bits

static __force_inline void hw_set_bits (io_rw_32 * addr, uint32_t mask) [static]
Atomically set the specified bits to 1 in a HW register.
Parameters

addr Address of writable register

mask Bit-mask specifying bits to set

4.1.2.3.3. hw_write_masked

static __force_inline void hw_write_masked (io_rw_32 * addr, uint32_t values, uint32_t write_mask) [static]
Set new values for a sub-set of the bits in a HW register.
Sets destination bits to values specified in values, if and only if corresponding bit in write_mask is set

Note: this method allows safe concurrent modification of different bits of a register, but multiple concurrent access to
the same bits is still unsafe.

Parameters
addr Address of writable register
values Bits values
write_mask Mask of bits to change

]
4.1. Hardware APIs 83

Raspberry Pi Pico-series C/C++ SDK
]

4.1.2.3.4. hw_xor_bits

static __force_inline void hw_xor_bits (io_rw_32 * addr, uint32_t mask) [static]

Atomically flip the specified bits in a HW register.

Parameters
addr Address of writable register
mask Bit-mask specifying bits to invert

4.1.3. hardware_claim

Lightweight hardware resource management API.

4.1.3.1. Detailed Description

hardware_claim provides a simple API for management of hardware resources at runtime.

This API is usually called by other hardware specific claiming APls and provides simple multi-core safe methods to
manipulate compact bit-sets representing hardware resources.

This API allows any other library to cooperatively participate in a scheme by which both compile time and runtime
allocation of resources can co-exist, and conflicts can be avoided or detected (depending on the use case) without the
libraries having any other knowledge of each other.

Facilities are providing for:
1. Claiming resources (and asserting if they are already claimed)
2. Freeing (unclaiming) resources

3. Finding unused resources

4.1.3.2. Functions

void hw_claim_or_assert (uint8_t *bits, uint bit_index, const char *message)

Atomically claim a resource, panicking if it is already in use.

int hw_claim_unused_from_range (uint8_t *bits, bool required, uint bit_lsb, uint bit_msb, const char *message)

Atomically claim one resource out of a range of resources, optionally asserting if none are free.

bool hw_is_claimed (const uint8_t *bits, uint bit_index)

Determine if a resource is claimed at the time of the call.

void hw_claim_clear (uint8_t *bits, uint bit_index)

Atomically unclaim a resource.

uint32_t hw_claim_lock (void)

Acquire the runtime mutual exclusion lock provided by the hardware_claim library.

void hw_claim_unlock (uint32_t token)

Release the runtime mutual exclusion lock provided by the hardware_claim library.

4.1.3.3. Function Documentation

]
4.1. Hardware APIs 84

Raspberry Pi Pico-series C/C++ SDK
]

4.1.3.3.1. hw_claim_clear
void hw_claim_clear (uint8_t * bits, uint bit_index)
Atomically unclaim a resource.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters
bits pointer to an array of bits (8 bits per byte)
bit_index resource to unclaim (bit index into array of bits)
4.1.3.3.2. hw_claim_lock

uint32_t hw_claim_lock (void)
Acquire the runtime mutual exclusion lock provided by the hardware_claim library.

This method is called automatically by the other hw_claim_ methods, however it is provided as a convenience to code
that might want to protect other hardware initialization code from concurrent use.

O NoTE

hw_claim_lock() uses a spin lock internally, so disables interrupts on the calling core, and will deadlock if the calling
core already owns the lock.

Returns

a token to pass to hw_claim_unlock()

4.1.3.3.3. hw_claim_or_assert
void hw_claim_or_assert (uint8_t * bits, uint bit_index, const char * message)
Atomically claim a resource, panicking if it is already in use.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters
bits pointer to an array of bits (8 bits per byte)
bit_index resource to claim (bit index into array of bits)
message string to display if the bit cannot be claimed; note this may have a single printf format "%d" for the
bit
4.1.3.3.4. hw_claim_unlock

void hw_claim_unlock (uint32_t token)

Release the runtime mutual exclusion lock provided by the hardware_claim library.

]
4.1. Hardware APIs 85

Raspberry Pi Pico-series C/C++ SDK

© NOTE

This method MUST be called from the same core that call hw_claim_lock()

Parameters
token the token returned by the corresponding call to hw_claim_lock()
4.1.3.3.5. hw_claim_unused_from_range

int hw_claim_unused_from_range (uint8_t * bits, bool required, uint bit_lsb, uint bit_msb, const char * message)

Atomically claim one resource out of a range of resources, optionally asserting if none are free.

Parameters
bits pointer to an array of bits (8 bits per byte)
required true if this method should panic if the resource is not free
bit_lsb the lower bound (inclusive) of the resource range to claim from
bit_msb the upper bound (inclusive) of the resource range to claim from
message string to display if the bit cannot be claimed

Returns

the bit index representing the claimed or -1 if none are available in the range, and required = false

4.1.3.3.6. hw_is_claimed
bool hw_is_claimed (const uint8_t * bits, uint bit_index) [inline]
Determine if a resource is claimed at the time of the call.

The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters
bits pointer to an array of bits (8 bits per byte)
bit_index resource to check (bit index into array of bits)
Returns

true if the resource is claimed

4.1.4. hardware_clocks

Clock Management API.

4.1.4.1. Detailed Description

This API provides a high level interface to the clock functions.

The clocks block provides independent clocks to on-chip and external components. It takes inputs from a variety of
clock sources allowing the user to trade off performance against cost, board area and power consumption. From these
sources it uses multiple clock generators to provide the required clocks. This architecture allows the user flexibility to
start and stop clocks independently and to vary some clock frequencies whilst maintaining others at their optimum
frequencies

]
4.1. Hardware APIs 86

Raspberry Pi Pico-series C/C++ SDK

Please refer to the appropriate datasheet for more details on the RP-series clocks.

The clock source depends on which clock you are attempting to configure. The first table below shows main clock
sources. If you are not setting the Reference clock or the System clock, or you are specifying that one of those two will
be using an auxiliary clock source, then you will need to use one of the entries from the subsequent tables.

® On RP2040 the clock sources are:

Main Clock Sources

Source

Reference Clock

System Clock

ROSC

CLOCKS_CLK_REF_CTRL_SRC_VALUE
ROSC_CLKSRC_PH

Auxiliary

CLOCKS_CLK_REF_CTRL_SRC_VALUE
_CLKSRC_CLK_REF_AUX

CLOCKS_CLK_SYS_CTRL_SRC_VALUE
_CLKSRC_CLK_SYS_AUX

X0SC

_XOSC_CLKSRC

CLOCKS_CLK_REF_CTRL_SRC_VALUE

Reference

CLOCKS_CLK_SYS_CTRL_SRC_VALUE
_CLK_REF

Auxiliary Clock Sources

The auxiliary clock sources available for use in the configure function depend on which clock is being configured. The
following table describes the available values that can be used. Note that for clk_gpout[x], x can be 0-3.

Aux Source

clk_gpoutx]

clk_ref

clk_sys

System PLL

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_PLL_SYS

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_SYS

GPIOiInO

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_GPINO

CLOCKS_CLK_REF_CTRL_A
UXSRC_VALUE_CLKSRC_GP
INO

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_GP
INO

GPIOin 1

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_GPIN1

CLOCKS_CLK_REF_CTRL_A
UXSRC_VALUE_CLKSRC_GP
IN1

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_GP
IN1

USB PLL

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_PLL_USB

CLOCKS_CLK_REF_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

ROSC

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_ROSC_C
LKSRC

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_ROSC_CLKS
RC

X0SC

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_XOSC_C
LKSRC

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_XOSC_CLKS
RC

System clock

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_SY
S

USB Clock

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_US
B

4.1. Hardware APIs

87

Raspberry Pi Pico-series C/C++ SDK

UXSRC_VALUE_XOSC_CLKS
RC

UXSRC_VALUE_XOSC_CLKS
RC

Aux Source clk_gpout|x] clk_ref clk_sys

ADC clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_AD
C

RTC Clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_RT
C

Ref clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_RE
F

Aux Source clk_peri clk_usb clk_adc

System PLL CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A | CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_PL [UXSRC_VALUE_CLKSRC_PL | UXSRC_VALUE_CLKSRC_PL
L_SYS L_SYS L_SYS

GPIOinO CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A |CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP
INO INO INO

GPIOin 1 CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A | CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP
IN1 IN1 IN1

USB PLL CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A |CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_PL [UXSRC_VALUE_CLKSRC_PL | UXSRC_VALUE_CLKSRC_PL
L_USB L_USB L_USB

ROSC CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A | CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_ROSC_CLKS [UXSRC_VALUE_ROSC_CLKS | UXSRC_VALUE_ROSC_CLKS
RC_PH RC_PH RC_PH

X0SC CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A | CLOCKS_CLK_ADC_CTRL_A

UXSRC_VALUE_XOSC_CLKS
RC

System clock

CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_CLK_SYS

c

Aux Source clk_rtc

System PLL CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_
SYS

GPIOinO CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN
0

GPIOin 1 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN
1

USB PLL CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_
USB

ROSC CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_ROSC_CLKSR
C_PH

X0SC CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_XOSC_CLKSR

4.1. Hardware APIs

88

Raspberry Pi Pico-series C/C++ SDK

On RP2350 the clock sources are:

® Main Clock Sources

Source Reference Clock System Clock
ROSC CLOCKS_CLK_REF_CTRL_SRC_VALUE
_ROSC_CLKSRC_PH
Auxiliary CLOCKS_CLK_REF_CTRL_SRC_VALUE | CLOCKS_CLK_SYS_CTRL_SRC_VALUE
_CLKSRC_CLK_REF_AUX _CLKSRC_CLK_SYS_AUX
X0SC CLOCKS_CLK_REF_CTRL_SRC_VALUE
_XOSC_CLKSRC
LPOSC CLOCKS_CLK_REF_CTRL_SRC_VALUE
_LPOSC_CLKSRC
Reference CLOCKS_CLK_SYS_CTRL_SRC_VALUE
_CLK_REF

Auxiliary Clock Sources

The auxiliary clock sources available for use in the configure function depend on which clock is being configured. The

following table describes the available values that can be used. Note that for clk_gpout[x], x can be 0-3.

Aux Source clk_gpout|x] clk_ref clk_sys

System PLL CLOCKS_CLK_GPOUTx_CTR CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_CLKSRC UXSRC_VALUE_CLKSRC_PL
_PLL_SYS L_SYS

GPIOinO CLOCKS_CLK_GPOUTX_CTR | CLOCKS_CLK_REF_CTRL_A | CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_CLKSRC | UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP
_GPINO INO INO

GPIOin 1 CLOCKS_CLK_GPOUTx_CTR | CLOCKS_CLK_REF_CTRL_A | CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_CLKSRC | UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP
_GPIN1 IN1 IN1

USB PLL CLOCKS_CLK_GPOUTX_CTR | CLOCKS_CLK_REF_CTRL_A | CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_CLKSRC [UXSRC_VALUE_CLKSRC_PL | UXSRC_VALUE_CLKSRC_PL
_PLL_USB L_USB L_USB

ROSC CLOCKS_CLK_GPOUTx_CTR CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_ROSC_C UXSRC_VALUE_ROSC_CLKS
LKSRC RC

X0SC CLOCKS_CLK_GPOUTx_CTR CLOCKS_CLK_SYS_CTRL_A
L_AUXSRC_VALUE_XOSC_C UXSRC_VALUE_XOSC_CLKS
LKSRC RC

LPOSC CLOCKS_CLK_GPOUTx_CTR | CLOCKS_CLK_REF_CTRL_A
L_AUXSRC_VALUE_LPOSC_ | UXSRC_VALUE_LPOSC_CLK
CLKSRC SRC

System clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_SY
S

USB Clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_US
B

4.1. Hardware APIs

89

Raspberry Pi Pico-series C/C++ SDK
]

Aux Source clk_gpout|x] clk_ref clk_sys
ADC clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_AD
C
REF clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_RE
F
PERI clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_PE
RI
HSTX clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_PE
RI
Aux Source clk_peri clk_hstx clk_usb clk_adc
System PLL CLOCKS_CLK_PERI_C | CLOCKS_CLK_HSTX_ | CLOCKS_CLK_USB_C |CLOCKS_CLK_ADC_C
TRL_AUXSRC_VALUE_ | CTRL_LAUXSRC_VALU | TRL_LAUXSRC_VALUE_| TRL_AUXSRC_VALUE_
CLKSRC_PLL_SYS E_CLKSRC_PLL_SYS |CLKSRC_PLL_SYS CLKSRC_PLL_SYS
GPIOinO CLOCKS_CLK_PERI_C CLOCKS_CLK_USB_C |CLOCKS_CLK_ADC_C
TRL_AUXSRC_VALUE_ TRL_AUXSRC_VALUE_| TRL_AUXSRC_VALUE_
CLKSRC_GPINO CLKSRC_GPINO CLKSRC_GPINO
GPIOin 1 CLOCKS_CLK_PERI_C CLOCKS_CLK_USB_C | CLOCKS_CLK_ADC_C
TRL_AUXSRC_VALUE_ TRL_AUXSRC_VALUE_ | TRL_AUXSRC_VALUE_
CLKSRC_GPINT1 CLKSRC_GPINT1 CLKSRC_GPINT1
USB PLL CLOCKS_CLK_PERI_C | CLOCKS_CLK_HSTX_ |CLOCKS_CLK_USB_C |CLOCKS_CLK_ADC_C
TRL_AUXSRC_VALUE_ | CTRL_AUXSRC_VALU | TRL_AUXSRC_VALUE_| TRL_AUXSRC_VALUE_
CLKSRC_PLL_USB E_CLKSRC_PLL_USB |CLKSRC_PLL_USB CLKSRC_PLL_USB
ROSC CLOCKS_CLK_PERI_C CLOCKS_CLK_USB_C | CLOCKS_CLK_ADC_C
TRL_AUXSRC_VALUE_ TRL_AUXSRC_VALUE_ | TRL_AUXSRC_VALUE_
ROSC_CLKSRC_PH ROSC_CLKSRC_PH ROSC_CLKSRC_PH
X0SC CLOCKS_CLK_PERI_C CLOCKS_CLK_USB_C |CLOCKS_CLK_ADC_C
TRL_AUXSRC_VALUE_ TRL_AUXSRC_VALUE_ | TRL_AUXSRC_VALUE_
XOSC_CLKSRC XOSC_CLKSRC XOSC_CLKSRC
System clock CLOCKS_CLK_PERI_C | CLOCKS_CLK_HSTX_
TRL_AUXSRC_VALUE_ | CTRL_AUXSRC_VALU
CLK_SYS E_CLK_SYS
4.1.4.1.1. Example
1 #include <stdio.h>
2 #include "pico/stdlib.h"
3 #include "hardware/pll.h"
4 #include "hardware/clocks.h"
5 #include "hardware/structs/pll.h"
6 #include "hardware/structs/clocks.h"
7
8 void measure_fregs(void) {
9 uint f_pll_sys = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_PLL_SYS_CLKSRC_PRIMARY);

]
4.1. Hardware APIs 20

Raspberry Pi Pico-series C/C++ SDK
]

10 uint f_pll_usb = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_PLL_USB_CLKSRC_PRIMARY);
11 uint f_rosc = frequency_count_khz(CLOCKS_FCB_SRC_VALUE_ROSC_CLKSRC) ;
12 uint f_clk_sys = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_SYS);
13 uint f_clk_peri = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_PERI);
14 uint f_clk_usb = frequency_count_khz(CLOCKS_FC8_SRC_VALUE_CLK_USB);
15 uint f_clk_adc = frequency_count_khz(CLOCKS_FC@_SRC_VALUE_CLK_ADC) ;
16 #ifdef CLOCKS_FCO_SRC_VALUE_CLK_RTC

17 uint f_clk_rtc = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_RTC) ;
18 #endif

19

20 printf("pll_sys = %dkHz\n", f_pll_sys);

21 printf("pll_usb = %dkHz\n", f_pll_usb);

22 printf("rosc = %dkHz\n", f_rosc);

23 printf("clk_sys = %dkHz\n", f_clk_sys);

24 printf("clk_peri = %dkHz\n", f_clk_peri);

25 printf("clk_usb = %dkHz\n", f_clk_usb);

26 printf(“clk_adc = %dkHz\n", f_clk_adc);

27 #ifdef CLOCKS_FCO_SRC_VALUE_CLK_RTC

28 printf(“clk_rtc = %dkHz\n", f_clk_rtc);

29 #endif

30

31 // Can't measure clk_ref / xosc as it is the ref

32 }

88

34 int main() {

85! stdio_init_all();

36

37 printf("Hello, world!\n");

38

39 measure_freqs() ;

40

41 // Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB
42 // which has a source frequency of 48MHz

43 clock_configure(clk_sys,

44 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
45 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,

46 48 * MHZ,

47 48 * MHZ);

48

49 // Turn off PLL sys for good measure

50 pll_deinit(pll_sys);

51

52 // CLK peri is clocked from clk_sys so need to change clk_peri's freq
53 clock_configure(clk_peri,

54 9,

55! CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,

56 48 * MHZ,

57 48 * MHZ);

58

59 // Re init uart now that clk_peri has changed

60 stdio_init_all();

61

62 measure_freqs() ;

63 printf("Hello, 48MHz");

64

65 return 0;

66 }

]
4.1. Hardware APIs 91

Raspberry Pi Pico-series C/C++ SDK

4.1.4.2. Typedefs

typedef enum clock_num_rp2040 clock_num_t @;Lz40L0)

Clock numbers on RP2040 (used as typedef clock_num_t)

typedef enum clock_dest_num_rp2040 clock_dest_num_t

Clock destination numbers on RP2040 (used as typedef clock_dest_num_t)

typedef enum clock_num_rp2350 clock_num_t @GZEED
Clock numbers on RP2350 (used as typedef clock_num_t)

typedef enum clock_dest_num_rp2350 clock_dest_num_t @IZEED

Clock destination numbers on RP2350 (used as typedef clock_dest_num_t)

typedef void(* resus_callback_t)(void)

Resus callback function type.

4.1.4.3. Enumerations

enum clock_num_rp2040 { clk_gpout@® = @, clk_gpout1 = 1, clk_gpout2 = 2, clk_gpout3 = 3, clk_ref = 4, clk_sys = 5,
clk_peri = 6, clk_usb = 7, clk_ade = 8, clk_rtc = 9, CLK_COUNT } @I

Clock numbers on RP2040 (used as typedef clock_num_t)

enum clock_dest_num_rp2040 { CLK_DEST_SYS_CLOCKS = @, CLK_DEST_ADC_ADC = 1, CLK_DEST_SYS_ADC = 2, CLK_DEST_SYS_BUSCTRL =
3, CLK_DEST_SYS_BUSFABRIC = 4, CLK_DEST_SYS_DMA = 5, CLK_DEST_SYS_I2C@ = 6, CLK_DEST_SYS_I2C1 = 7, CLK_DEST_SVS_IO = 8,
CLK_DEST_SYS_JTAG = 9, CLK_DEST_SYS_VREG_AND_CHIP_RESET = 10, CLK_DEST_SYS_PADS = 11, CLK_DEST_SYS_PI0O = 12,
CLK_DEST_SYS_PIOT = 13, CLK_DEST_SYS_PLL_SYS = 14, CLK_DEST_SYS_PLL_USB = 15, CLK_DEST_SYS_PSM = 16, CLK_DEST_SYS_PWM =
17, CLK_DEST_SYS_RESETS = 18, CLK_DEST_SYS_ROM = 19, CLK_DEST_SYS_ROSC = 28, CLK_DEST_RTC_RTC = 21, CLK_DEST_SYS_RTC =
22, CLK_DEST_SYS_SIO = 23, CLK_DEST_PERI_SPIO = 24, CLK_DEST_SYS_SPIO = 25, CLK_DEST_PERI_SPI1 = 26, CLK_DEST_SYS_SPI1 =
27, CLK_DEST_SYS_SRAM@ = 28, CLK_DEST_SYS_SRAM1 = 29, CLK_DEST_SYS_SRAM2 = 3@, CLK_DEST_SYS_SRAM3 = 31,
CLK_DEST_SYS_SRAM4 = 32, CLK_DEST_SYS_SRAM5 = 33, CLK_DEST_SYS_SYSCFG = 34, CLK_DEST_SYS_SYSINFO = 35, CLK_DEST_SYS_TBMAN
= 36, CLK_DEST_SYS_TIMER = 37, CLK_DEST_PERI_UART® = 38, CLK_DEST_SYS_UARTO = 39, CLK_DEST_PERI_UART1 = 40,
CLK_DEST_SYS_UART1 = 41, CLK_DEST_SYS_USBCTRL = 42, CLK_DEST_USB_USBCTRL = 43, CLK_DEST_SYS_WATCHDOG = 44,
CLK_DEST_SYS_XIP = 45, CLK_DEST_SYS_XOSC = 46, NUM_CLOCK_DESTINATIONS } @D

Clock destination numbers on RP2040 (used as typedef clock_dest_num_t)

enum clock_num_rp2350 { clk_gpout® = @, clk_gpoutl = 1, clk_gpout2 = 2, clk_gpout3 = 3, clk_ref = 4, clk_sys = 5,
clk_peri = 6, clk_hstx = 7, clk_usb = 8, clk_adc = 9, CLK_COUNT } @ZEED

Clock numbers on RP2350 (used as typedef clock_num_t)

enum clock_dest_num_rp2350 { CLK_DEST_SYS_CLOCKS = @, CLK_DEST_SYS_ACCESSCTRL = 1, CLK_DEST_ADC = 2, CLK_DEST_SYS_ADC =
3, CLK_DEST_SYS_BOOTRAM = 4, CLK_DEST_SYS_BUSCTRL = 5, CLK_DEST_SYS_BUSFABRIC = 6, CLK_DEST_SYS_DMA = 7,
CLK_DEST_SYS_GLITCH_DETECTOR = 8, CLK_DEST_HSTX = 9, CLK_DEST_SYS_HSTX = 18, CLK_DEST_SYS_I2C@ = 11, CLK_DEST_SYS_I2C1 =
12, CLK_DEST_SYS_IO = 13, CLK_DEST_SYS_JTAG = 14, CLK_DEST_REF_OTP = 15, CLK_DEST_SYS_OTP = 16, CLK_DEST_SYS_PADS = 17,
CLK_DEST_SYS_PI0® = 18, CLK_DEST_SYS_PIO1 = 19, CLK_DEST_SYS_PI02 = 20, CLK_DEST_SYS_PLL_SYS = 21, CLK_DEST_SYS_PLL_USB =
22, CLK_DEST_REF_POWMAN = 23, CLK_DEST_SYS_POWMAN = 24, CLK_DEST_SYS_PWM = 25, CLK_DEST_SYS_RESETS = 26, CLK_DEST_SYS_ROM
= 27, CLK_DEST_SYS_ROSC = 28, CLK_DEST_SYS_PSM = 29, CLK_DEST_SYS_SHA256 = 3@, CLK_DEST_SYS_SIO = 31, CLK_DEST_PERI_SPIO
= 32, CLK_DEST_SYS_SPI® = 33, CLK_DEST_PERI_SPI1 = 34, CLK_DEST_SVS_SPI1 = 35, CLK_DEST_SYS_SRAM@ = 36,
CLK_DEST_SYS_SRAMT = 37, CLK_DEST_SYS_SRAM2 = 38, CLK_DEST_SYS_SRAM3 = 39, CLK_DEST_SYS_SRAMA = 48, CLK_DEST_SYS_SRAM5 =
41, CLK_DEST_SYS_SRAM6 = 42, CLK_DEST_SYS_SRAM7 = 43, CLK_DEST_SYS_SRAMS = 44, CLK_DEST_SYS_SRAM = 45,
CLK_DEST_SYS_SYSCFG = 46, CLK_DEST_SYS_SYSINFO = 47, CLK_DEST_SYS_TBMAN = 48, CLK_DEST_REF_TICKS = 49, CLK_DEST_SVS_TICKS
= 5, CLK_DEST_SYS_TIMER® = 51, CLK_DEST_SYS_TIMER1 = 52, CLK_DEST_SYS_TRNG = 53, CLK_DEST_PERI_UARTO = 54,
CLK_DEST_SYS_UART@ = 55, CLK_DEST_PERI_UART1 = 56, CLK_DEST_SYS_UART1 = 57, CLK_DEST_SVS_USBCTRL = 58, CLK_DEST_USB = 59,
CLK_DEST_SYS_WATCHDOG = 60, CLK_DEST_SYS_XIP = 61, CLK_DEST_SYS_X0SC = 62, NUM_CLOCK_DESTINATIONS } @:ZEED

Clock destination numbers on RP2350 (used as typedef clock_dest_num_t)

4.1. Hardware APIs 92

Raspberry Pi Pico-series C/C++ SDK
]

4.1.4.4. Functions

bool clock_configure (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq)

Configure the specified clock.

void clock_configure_undivided (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq)

Configure the specified clock to use the undividded input source.

void clock_configure_int_divider (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t

int_divider)

Configure the specified clock to use the undividded input source.

void clock_stop (clock_handle_t clock)

Stop the specified clock.

uint32_t clock_get_hz (clock_handle_t clock)

Get the current frequency of the specified clock.

uint32_t frequency_count_khz (uint src)

Measure a clocks frequency using the Frequency counter.

void clock_set_reported_hz (clock_handle_t clock, uint hz)

Set the "current frequency" of the clock as reported by clock_get_hz without actually changing the clock.

void clocks_enable_resus (resus_callback_t resus_callback)

Enable the resus function. Restarts clk_sys if it is accidentally stopped.

void clock_gpio_init_int_frac (uint gpio, uint src, uint32_t div_int, uint8_t div_frac)

Output an optionally divided clock to the specified gpio pin.

static void clock_gpio_init (uint gpio, uint src, float div)

Output an optionally divided clock to the specified gpio pin.

bool clock_configure_gpin (clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq)

Configure a clock to come from a gpio input.

4.1.4.5. Typedef Documentation

4.1.4.5.1. clock_num_t

typedef enum clock_num_rp2040 clock_num_t

Clock numbers on RP2040 (used as typedef clock_num_t)

4.1.4.5.2. clock_dest_num_t

typedef enum clock_dest_num_rp2040 clock_dest_num_t

Clock destination numbers on RP2040 (used as typedef clock_dest_num_t)

4.1.4.5.3. clock_num_t

typedef enum clock_num_rp2350 clock_num_t

Clock numbers on RP2350 (used as typedef clock_num_t)

]
4.1. Hardware APIs 93

Raspberry Pi Pico-series C/C++ SDK

4.1.4.5.4. clock_dest_num_t ¢::7250

typedef enum clock_dest_num_rp2350 clock_dest_num_t

Clock destination numbers on RP2350 (used as typedef clock_dest_num_t)

4.1.4.5.5. resus_callback_t

typedef void(* resus_callback_t) (void)
Resus callback function type.

User provided callback for a resus event (when clk_sys is stopped by the programmer and is restarted for them).

4.1.4.6. Enumeration Type Documentation

4.1.4.6.1. clock_num_rp2040

enum clock_num_rp2040

Clock numbers on RP2040 (used as typedef clock_num_t)

Tableg‘Enumerator -

4.1.4.6.2. clock_dest_num_rp2040

Select CLK_GPOUTO as clock source.

Select CLK_GPOUT1 as clock source.

Select CLK_GPOUT?2 as clock source.

Select CLK_GPOUTS3 as clock source.

Select CLK_REF as clock source.

Select CLK_SYS as clock source.

Select CLK_PERI as clock source.

Select CLK_USB as clock source.

Select CLK_ADC as clock source.

Select CLK_RTC as clock source.

enum clock_dest_num_rp2040

Clock destination numbers on RP2040 (used as typedef clock_dest_num_t)

i -

.
4.1. Hardware APIs 94

Select SYS_CLOCKS as clock destination.

Select ADC_ADC as clock destination.

Select SYS_ADC as clock destination.

Select SYS_BUSCTRL as clock destination.

Select SYS_BUSFABRIC as clock destination.

Select SYS_DMA as clock destination.

Select SYS_I2CO0 as clock destination.

Select SYS_I2C1 as clock destination.

Raspberry Pi Pico-series C/C++ SDK
]

Select SYS_IO as clock destination.

Select SYS_JTAG as clock destination.

Select SYS_VREG_AND_CHIP_RESET as clock destination.

Select SYS_PADS as clock destination.

Select SYS_PIOO0 as clock destination.

Select SYS_PIO1 as clock destination.

Select SYS_PLL_SYS as clock destination.

Select SYS_PLL_USB as clock destination.

Select SYS_PSM as clock destination.

Select SYS_PWM as clock destination.

Select SYS_RESETS as clock destination.

Select SYS_ROM as clock destination.

Select SYS_ROSC as clock destination.

Select RTC_RTC as clock destination.

Select SYS_RTC as clock destination.

Select SYS_SIO as clock destination.

Select PERI_SPIO as clock destination.

Select SYS_SPIO as clock destination.

Select PERI_SPI1 as clock destination.

Select SYS_SPI1 as clock destination.

Select SYS_SRAMO as clock destination.

Select SYS_SRAM1 as clock destination.

Select SYS_SRAM2 as clock destination.

Select SYS_SRAM3 as clock destination.

Select SYS_SRAM4 as clock destination.

Select SYS_SRAMS as clock destination.

Select SYS_SYSCFG as clock destination.

Select SYS_SYSINFO as clock destination.

Select SYS_TBMAN as clock destination.

Select SYS_TIMER as clock destination.

Select PERI_UARTO as clock destination.

Select SYS_UARTO as clock destination.

Select PERI_UART1 as clock destination.

Select SYS_UART1 as clock destination.

Select SYS_USBCTRL as clock destination.

Select USB_USBCTRL as clock destination.

Select SYS_WATCHDOG as clock destination.

.
4.1. Hardware APIs 95

Raspberry Pi Pico-series C/C++ SDK

Select SYS_XIP as clock destination.

Select SYS_XOSC as clock destination.

4.1.4.6.3. clock_num_rp2350 ;725

enum clock_num_rp2350

Clock numbers on RP2350 (used as typedef clock_num_t)

Table 11. Enumerator

Select CLK_GPOUTO as clock source.

Select CLK_GPOUT?1 as clock source.

Select CLK_GPOUT?2 as clock source.

Select CLK_GPOUTS3 as clock source.

Select CLK_REF as clock source.

Select CLK_SYS as clock source.

Select CLK_PERI as clock source.

Select CLK_HSTX as clock source.

Select CLK_USB as clock source.

Select CLK_ADC as clock source.

4.1.4.6.4. clock_dest_num_rp2350 ¢ 7:50

enum clock_dest_num_rp2350

Clock destination numbers on RP2350 (used as typedef clock_dest_num_t)

Table 12. Enumerator

Select SYS_CLOCKS as clock destination.

Select SYS_ACCESSCTRL as clock destination.

Select ADC as clock destination.

Select SYS_ADC as clock destination.

Select SYS_BOOTRAM as clock destination.

Select SYS_BUSCTRL as clock destination.

Select SYS_BUSFABRIC as clock destination.

Select SYS_DMA as clock destination.

Select SYS_GLITCH_DETECTOR as clock destination.

Select HSTX as clock destination.

Select SYS_HSTX as clock destination.

Select SYS_I2CO0 as clock destination.

Select SYS_I2C1 as clock destination.

Select SYS_IO as clock destination.

Select SYS_JTAG as clock destination.

Select REF_OTP as clock destination.

4.1. Hardware APIs 96

Raspberry Pi Pico-series C/C++ SDK
]

Select SYS_OTP as clock destination.

Select SYS_PADS as clock destination.

Select SYS_PIOO0 as clock destination.

Select SYS_PIO1 as clock destination.

Select SYS_PIO2 as clock destination.

Select SYS_PLL_SYS as clock destination.

Select SYS_PLL_USB as clock destination.

Select REF_POWMAN as clock destination.

Select SYS_POWMAN as clock destination.

Select SYS_PWM as clock destination.

Select SYS_RESETS as clock destination.

Select SYS_ROM as clock destination.

Select SYS_ROSC as clock destination.

Select SYS_PSM as clock destination.

Select SYS_SHA256 as clock destination.

Select SYS_SIO as clock destination.

Select PERI_SPIO as clock destination.

Select SYS_SPIO as clock destination.

Select PERI_SPI1 as clock destination.

Select SYS_SPI1 as clock destination.

Select SYS_SRAMO as clock destination.

Select SYS_SRAM1 as clock destination.

Select SYS_SRAM2 as clock destination.

Select SYS_SRAM3 as clock destination.

Select SYS_SRAM4 as clock destination.

Select SYS_SRAMS as clock destination.

Select SYS_SRAMBG as clock destination.

Select SYS_SRAM7 as clock destination.

Select SYS_SRAMS as clock destination.

Select SYS_SRAMO as clock destination.

Select SYS_SYSCFG as clock destination.

Select SYS_SYSINFO as clock destination.

Select SYS_TBMAN as clock destination.

Select REF_TICKS as clock destination.

Select SYS_TICKS as clock destination.

Select SYS_TIMERO as clock destination.

Select SYS_TIMERT as clock destination.

.
4.1. Hardware APIs 97

Raspberry Pi Pico-series C/C++ SDK

CLK_DEST_SYS_TRNG Select SYS_TRNG as clock destination.
CLK_DEST_PERI_UARTO Select PERI_UARTO as clock destination.
CLK_DEST_SYS_UARTO Select SYS_UARTO as clock destination.
CLK_DEST_PERI_UART1 Select PERI_UART1 as clock destination.
CLK_DEST_SYS_UART1 Select SYS_UART1 as clock destination.
CLK_DEST_SYS_USBCTRL Select SYS_USBCTRL as clock destination.
CLK_DEST_USB Select USB as clock destination.
CLK_DEST_SYS_WATCHDOG Select SYS_WATCHDOG as clock destination.
CLK_DEST_SYS_XIP Select SYS_XIP as clock destination.
CLK_DEST_SYS_XOSC Select SYS_XOSC as clock destination.

4.1.4.7. Function Documentation

4.1.4.7.1. clock_configure

bool clock_configure (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq)
Configure the specified clock.

See the tables in the description for details on the possible values for clock sources.

Parameters
clock The clock to configure
sre The main clock source, can be 0.
auxsre The auxiliary clock source, which depends on which clock is being set. Can be 0
src_freq Frequency of the input clock source
freq Requested frequency

4.1.4.7.2. clock_configure_gpin

bool clock_configure_gpin (clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq)

Configure a clock to come from a gpio input.

Parameters
clock The clock to configure
gpio The GPIO pin to run the clock from. Valid GPIOs are: 20 and 22.
src_freq Frequency of the input clock source
freq Requested frequency
4.1.4.7.3. clock_configure_int_divider

void clock_configure_int_divider (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t
int_divider)

Configure the specified clock to use the undividded input source.

4.1. Hardware APIs 98

Raspberry Pi Pico-series C/C++ SDK

See the tables in the description for details on the possible values for clock sources.

Parameters
clock The clock to configure
sre The main clock source, can be 0.
auxsre The auxiliary clock source, which depends on which clock is being set. Can be 0
src_freq Frequency of the input clock source
int_divider an integer divider
4.1.4.7.4. clock_configure_undivided

void clock_configure_undivided (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq)

Configure the specified clock to use the undividded input source.

See the tables in the description for details on the possible values for clock sources.

Parameters
clock The clock to configure
sre The main clock source, can be 0.
auxsre The auxiliary clock source, which depends on which clock is being set. Can be 0
src_freq Frequency of the input clock source
4.1.4.7.5. clock_get_hz

uint32_t clock_get_hz (clock_handle_t clock)
Get the current frequency of the specified clock.
Parameters
clock Clock
Returns

Clock frequency in Hz

4.1.4.7.6. clock_gpio_init

static void clock_gpio_init (uint gpio, uint src, float div) [inline], [static]
Output an optionally divided clock to the specified gpio pin.
Parameters

gpio The GPIO pin to output the clock to. Valid GPIOs are: 21, 23, 24, 25. These GPIOs are connected to the
GPOUTO-3 clock generators.

sre The source clock. See the register field CLOCKS_CLK_GPOUTO_CTRL_AUXSRC for a full list. The list is
the same for each GPOUT clock generator.

div The float amount to divide the source clock by. This is useful to not overwhelm the GPIO pin with a fast
clock.

4.1. Hardware APIs 99

Raspberry Pi Pico-series C/C++ SDK

4.1.4.7.7. clock_gpio_init_int_frac

void clock_gpio_init_int_frac (uint gpio, uint src, uint32_t div_int, uint8_t div_frac)

Output an optionally divided clock to the specified gpio pin.

Parameters
gpio The GPIO pin to output the clock to. Valid GPIOs are: 21, 23, 24, 25. These GPIOs are connected to
the GPOUTO-3 clock generators.
src The source clock. See the register field CLOCKS_CLK_GPOUTO_CTRL_AUXSRC for a full list. The list
is the same for each GPOUT clock generator.
div_int The integer part of the value to divide the source clock by. This is useful to not overwhelm the GPIO

pin with a fast clock. this is in range of 1..2*24-1.

div_frac The fractional part of the value to divide the source clock by. This is in range of 0..255 (/256).

4.1.4.7.8. clock_set_reported_hz

void clock_set_reported_hz (clock_handle_t clock, uint hz)

Set the "current frequency" of the clock as reported by clock_get_hz without actually changing the clock.
See also

clock_get_hz()

4.1.4.7.9. clock_stop

void clock_stop (clock_handle_t clock)
Stop the specified clock.

Parameters

clock The clock to stop

4.1.4.7.10. clocks_enable_resus
void clocks_enable_resus (resus_callback_t resus_callback)
Enable the resus function. Restarts clk_sys if it is accidentally stopped.

The resuscitate function will restart the system clock if it falls below a certain speed (or stops). This could happen if the
clock source the system clock is running from stops. For example if a PLL is stopped.

Parameters

resus_callback a function pointer provided by the user to call if a resus event happens.

4.1.4.7.11. frequency_count_khz
uint32_t frequency_count_khz (uint src)
Measure a clocks frequency using the Frequency counter.

Uses the inbuilt frequency counter to measure the specified clocks frequency. Currently, this function is accurate to +-
T1KHz. See the datasheet for more details.

4.1. Hardware APIs 100

Raspberry Pi Pico-series C/C++ SDK
]

4.1.5. hardware_divider

RP2040 Low Low-level hardware-divider API. Non-RP2040 platforms provide software versions of all the functions.

4.1.5.1. Detailed Description

The SIO contains an 8-cycle signed/unsigned divide/modulo circuit, per core. Calculation is started by writing a dividend
and divisor to the two argument registers, DIVIDEND and DIVISOR. The divider calculates the quotient / and remainder %
of this division over the next 8 cycles, and on the 9th cycle the results can be read from the two result registers
DIV_QUOTIENT and DIV_REMAINDER. A 'ready' bit in register DIV_CSR can be polled to wait for the calculation to
complete, or software can insert a fixed 8-cycle delay

This header provides low level macros and inline functions for accessing the hardware dividers directly, and perhaps

most usefully performing asynchronous divides. These functions however do not follow the regular SDK conventions for
saving/restoring the divider state, so are not generally safe to call from interrupt handlers

The pico_divider library provides a more user friendly set of APIs over the divider (and support for 64 bit divides), and of

course by default regular C language integer divisions are redirected through that library, meaning you can just use C
level / and % operators and gain the benefits of the fast hardware divider.

On RP2350 there is no hardware divider, and the functions are implemented in software

See also

pico_divider

4.1.5.1.1. Example

1 #include <stdio.h>
2 #include "pico/stdlib.h”
3 #include "hardware/divider.h"

4

5 int main() {

6
7
8
9
10
11
12
13
14

stdio_init_all();
printf("Hello, divider!\n");

// This is the basic hardware divider function

int32_t dividend = 123456;

int32_t divisor = -321;

divmod_result_t result = hw_divider_divmod_s32(dividend, divisor);

printf("%d/%d = %d remainder %d\n", dividend, divisor, to_quotient_s32(result),

to_remainder_s32(result));

15
16
17
18
19
20
21
22
23
24
25
26

// Is it right?

printf("Working backwards! Result %d should equal %d!\n\n",
to_quotient_s32(result) * divisor + to_remainder_s32(result), dividend);

// This is the recommended unsigned fast divider for general use.
int32_t udividend = 123456;

int32_t udivisor = 321;

divmod_result_t uresult = hw_divider_divmod_u32(udividend, udivisor);

printf("%d/%d = %d remainder %d\n", udividend, udivisor, to_quotient_u32(uresult),

to_remainder_u32(uresult));

27
28
29

// Is it right?

4.1. Hardware APIs

101

Raspberry Pi Pico-series C/C++ SDK
]

30 printf("Working backwards! Result %d should equal %d!\n\n"

31 to_quotient_u32(result) * divisor + to_remainder_u32(result), dividend);

32

33 // You can also do divides asynchronously. Divides will be complete after 8 cycles.

34

35 hw_divider_divmod_s32_start(dividend, divisor);

36

37 // Do something for 8 cycles!

38

39 // In this example, our results function will wait for completion.

40 // Use hw_divider_result_nowait() if you don't want to wait, but are sure you have delayed
at least 8 cycles

41

42 result = hw_divider_result_wait();

43

44 printf("Async result %d/%d = %d remainder %d\n", dividend, divisor, to_quotient_s32
(result),

45 to_remainder_s32(result));

46

47 // For a really fast divide, you can use the inlined versions... the / involves a function
call as / always does

48 // when using the ARM AEABI, so if you really want the best performance use the inlined
versions.

49 // Note that the / operator function DOES use the hardware divider by default, although you
can change

50 // that behavior by calling pico_set_divider_implementation in the cmake build for your
target.

51 printf("%d / %d = (by operator %d) (inlined %d)\n", dividend, divisor,

52 dividend / divisor, hw_divider_s32_quotient_inlined(dividend, divisor));

53

54 // Note however you must manually save/restore the divider state if you call the inlined
methods from within an IRQ

55 // handler.

56 hw_divider_state_t state;

57 hw_divider_divmod_s32_start(dividend, divisor);

58 hw_divider_save_state(&state);

59

60 hw_divider_divmod_s32_start(123, 7);

61 printf("inner %d / %d = %d\n", 123, 7, hw_divider_s32_quotient_wait());

62

63 hw_divider_restore_state(&state);

64 int32_t tmp = hw_divider_s32_quotient_wait();

65 printf("outer divide %d / %d = %d\n", dividend, divisor, tmp);

66 return 0;

67 }

4.1.5.2. Functions

static divmod_result_t hw_divider_divmod_s32 (int32_t a, int32_t b)
Do a signed HW divide and wait for result.

static divmod_result_t hw_divider_divmod_u32 (uint32_t a, uint32_t b)
Do an unsigned HW divide and wait for result.

static void hw_divider_divmod_s32_start (int32_t a, int32_t b)
Start a signed asynchronous divide.

static void hw_divider_divmod_u32_start (uint32_t a, uint32_t b)

Start an unsigned asynchronous divide.

]
4.1. Hardware APIs 102

Raspberry Pi Pico-series C/C++ SDK
]

static void hw_divider_wait_ready (void)
Wait for a divide to complete.
static divmod_result_t hw_divider_result_nowait (void)

Return result of HW divide, nowait.

static divmod_result_t hw_divider_result_wait (void)

Return result of last asynchronous HW divide.

static uint32_t to_quotient_u32 (divmod_result_t r)

Efficient extraction of unsigned quotient from 32p32 fixed point.

static int32_t to_quotient_s32 (divmod_result_t r)

Efficient extraction of signed quotient from 32p32 fixed point.
static uint32_t to_remainder_u32 (divmod_result_t r)

Efficient extraction of unsigned remainder from 32p32 fixed point.
static int32_t to_remainder_s32 (divmod_result_t r)

Efficient extraction of signed remainder from 32p32 fixed point.
static vint32_t hw_divider_u32_quotient_wait (void)

Return result of last asynchronous HW divide, unsigned quotient only.
static int32_t hw_divider_s32_quotient_wait (void)

Return result of last asynchronous HW divide, signed quotient only.
static uint32_t hw_divider_u32_remainder_wait (void)

Return result of last asynchronous HW divide, unsigned remainder only.
static int32_t hw_divider_s32_remainder_wait (void)

Return result of last asynchronous HW divide, signed remainder only.

static vint32_t hw_divider_u32_quotient (uint32_t a, uint32_t b)

Do an unsigned HW divide, wait for result, return quotient.

static uint32_t hw_divider_u32_remainder (uint32_t a, uint32_t b)
Do an unsigned HW divide, wait for result, return remainder.
static int32_t hw_divider_quotient_s32 (int32_t a, int32_t b)
Do a signed HW divide, wait for result, return quotient.
static int32_t hw_divider_remainder_s32 (int32_t a, int32_t b)
Do a signed HW divide, wait for result, return remainder.
static void hw_divider_pause (void)
Pause for exact amount of time needed for a asynchronous divide to complete.
static vint32_t hw_divider_u32_quotient_inlined (uint32_t a, uint32_t b)
Do a hardware unsigned HW divide, wait for result, return quotient.
static uint32_t hw_divider_u32_remainder_inlined (uint32_t a, uint32_t b)
Do a hardware unsigned HW divide, wait for result, return remainder.
static int32_t hw_divider_s32_quotient_inlined (int32_t a, int32_t b)
Do a hardware signed HW divide, wait for result, return quotient.
static int32_t hw_divider_s32_remainder_inlined (int32_t a, int32_t b)

Do a hardware signed HW divide, wait for result, return remainder.

]
4.1. Hardware APIs 103

Raspberry Pi Pico-series C/C++ SDK
]

static void hw_divider_save_state (hw_divider_state_t *dest)

Save the calling cores hardware divider state.

static void hw_divider_restore_state (hw_divider_state_t *src)

Load a saved hardware divider state into the current core’s hardware divider.

4.1.5.3. Function Documentation

4.1.5.3.1. hw_divider_divmod_s32
static divmod_result_t hw_divider_divmod_s32 (int32_t a, int32_t b) [inline], [static]
Do a signed HW divide and wait for result.
Divide a by b, wait for calculation to complete, return result as a pair of 32-bit quotient/remainder values.
Parameters
a The dividend
b The divisor
Returns

Results of divide as a pair of 32-bit quotient/remainder values.

4.1.5.3.2. hw_divider_divmod_s32_start
static void hw_divider_divmod_s32_start (int32_t a, int32_t b) [inline], [static]
Start a signed asynchronous divide.

Start a divide of the specified signed parameters. You should wait for 8 cycles (__div_pause()) or wait for the ready bit to
be set (hw_divider_wait_ready()) prior to reading the results.

Parameters
a The dividend

b The divisor

4.1.5.3.3. hw_divider_divmod_u32
static divmod_result_t hw_divider_divmod_u32 (uint32_t a, uint32_t b) [inline], [static]
Do an unsigned HW divide and wait for result.
Divide a by b, wait for calculation to complete, return result as a pair of 32-bit quotient/remainder values.
Parameters
a The dividend
b The divisor
Returns

Results of divide as a pair of 32-bit quotient/remainder values.

]
4.1. Hardware APIs 104

Raspberry Pi Pico-series C/C++ SDK
]

4.1.5.3.4. hw_divider_divmod_u32_start
static void hw_divider_divmod_u32_start (uint32_t a, uint32_t b) [inline], [static]
Start an unsigned asynchronous divide.

Start a divide of the specified unsigned parameters. You should wait for 8 cycles (__div_pause()) or wait for the ready bit
to be set (hw_divider_wait_ready()) prior to reading the results.

Parameters
a The dividend

b The divisor

4.1.5.3.5. hw_divider_pause

static void hw_divider_pause (void) [inline], [static]

Pause for exact amount of time needed for a asynchronous divide to complete.

4.1.5.3.6. hw_divider_quotient_s32
static int32_t hw_divider_quotient_s32 (int32_t a, int32_t b) [inline], [static]
Do a signed HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters
a The dividend
b The divisor
Returns

Quotient results of the divide

4.1.5.3.7. hw_divider_remainder_s32
static int32_t hw_divider_remainder_s32 (int32_t a, int32_t b) [inline], [static]
Do a signed HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters
a The dividend
b The divisor
Returns

Remainder results of the divide

4.1.5.3.8. hw_divider_restore_state

static void hw_divider_restore_state (hw_divider_state_t * src) [inline], [static]
Load a saved hardware divider state into the current core’s hardware divider.

Copy the passed hardware divider state into the hardware divider.

]
4.1. Hardware APIs 105

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

src the location to load the divider state from

4.1.5.3.9. hw_divider_result_nowait

static divmod_result_t hw_divider_result_nowait (void) [inline], [static]

Return result of HW divide, nowait.

O NoTE

This is UNSAFE in that the calculation may not have been completed.

Returns

Current result. Most significant 32 bits are the remainder, lower 32 bits are the quotient.

4.1.5.3.10. hw_divider_result_wait

static divmod_result_t hw_divider_result_wait (void) [inline], [static]

Return result of last asynchronous HW divide.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current result. Most significant 32 bits are the remainder, lower 32 bits are the quotient.

4.1.5.3.11. hw_divider_s32_quotient_inlined
static int32_t hw_divider_s32_quotient_inlined (int32_t a, int32_t b) [inline], [static]
Do a hardware signed HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters
a The dividend
b The divisor
Returns

Quotient result of the divide

4.1.5.3.12. hw_divider_s32_quotient_wait

static int32_t hw_divider_s32_quotient_wait (void) [inline], [static]

Return result of last asynchronous HW divide, signed quotient only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current signed quotient result.

]
4.1. Hardware APIs 106

Raspberry Pi Pico-series C/C++ SDK
]

4.1.5.3.13. hw_divider_s32_remainder_inlined
static int32_t hw_divider_s32_remainder_inlined (int32_t a, int32_t b) [inline], [static]
Do a hardware signed HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters
a The dividend
b The divisor
Returns

Remainder result of the divide

4.1.5.3.14. hw_divider_s32_remainder_wait

static int32_t hw_divider_s32_remainder_wait (void) [inline], [static]

Return result of last asynchronous HW divide, signed remainder only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current remainder results.

4.1.5.3.15. hw_divider_save_state
static void hw_divider_save_state (hw_divider_state_t * dest) [inline], [static]
Save the calling cores hardware divider state.

Copy the current core’s hardware divider state into the provided structure. This method waits for the divider results to
be stable, then copies them to memory. They can be restored via hw_divider_restore_state()

Parameters

dest the location to store the divider state

4.1.5.3.16. hw_divider_u32_quotient
static uint32_t hw_divider_u32_quotient (uint32_t a, uint32_t b) [inline], [static]
Do an unsigned HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters
a The dividend
b The divisor
Returns

Quotient results of the divide

4.1.5.3.17. hw_divider_u32_quotient_inlined

static uint32_t hw_divider_u32_quotient_inlined (uint32_t a, uint32_t b) [inline], [static]

]
4.1. Hardware APIs 107

Raspberry Pi Pico-series C/C++ SDK
]

Do a hardware unsigned HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters

a The dividend

b The divisor
Returns

Quotient result of the divide

4.1.5.3.18. hw_divider_u32_quotient_wait

static uint32_t hw_divider_u32_quotient_wait (void) [inline], [static]

Return result of last asynchronous HW divide, unsigned quotient only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current unsigned quotient result.

4.1.5.3.19. hw_divider_u32_remainder
static uint32_t hw_divider_u32_remainder (uint32_t a, uint32_t b) [inline], [static]
Do an unsigned HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters
a The dividend
b The divisor
Returns

Remainder results of the divide

4.1.5.3.20. hw_divider_u32_remainder_inlined
static uint32_t hw_divider_u32_remainder_inlined (uint32_t a, uint32_t b) [inline], [static]
Do a hardware unsigned HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters
a The dividend
b The divisor
Returns

Remainder result of the divide

4.1.5.3.21. hw_divider_u32_remainder_wait

static uint32_t hw_divider_u32_remainder_wait (void) [inline], [static]

]
4.1. Hardware APIs 108

Raspberry Pi Pico-series C/C++ SDK

Return result of last asynchronous HW divide, unsigned remainder only.
This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

Current unsigned remainder result.

4.1.5.3.22. hw_divider_wait_ready
static void hw_divider_wait_ready (void) [inline], [static]
Wait for a divide to complete.

Wait for a divide to complete

4.1.5.3.23. to_quotient_s32
static int32_t to_quotient_s32 (divmod_result_t r) [inline], [static]
Efficient extraction of signed quotient from 32p32 fixed point.
Parameters

r A pair of 32-bit quotient/remainder values.
Returns

Unsigned quotient

4.1.5.3.24. to_quotient_u32
static uint32_t to_quotient_u32 (divmod_result_t r) [inline], [static]
Efficient extraction of unsigned quotient from 32p32 fixed point.
Parameters

r A pair of 32-bit quotient/remainder values.
Returns

Unsigned quotient

4.1.5.3.25. to_remainder_s32
static int32_t to_remainder_s32 (divmod_result_t r) [inline], [static]
Efficient extraction of signed remainder from 32p32 fixed point.
Parameters

r A pair of 32-bit quotient/remainder values.
Returns

Signed remainder

4.1. Hardware APIs 109

Raspberry Pi Pico-series C/C++ SDK

© NOTE

On arm this is just a 32 bit register move or a nop

4.1.5.3.26. to_remainder_u32
static uint32_t to_remainder_u32 (divmod_result_t r) [inline], [static]
Efficient extraction of unsigned remainder from 32p32 fixed point.
Parameters

r A pair of 32-bit quotient/remainder values.
Returns

Unsigned remainder

O NoOTE

On Arm this is just a 32 bit register move or a nop

4.1.6. hardware_dcp

Assembly macros for the Double Coprocessor.

4.1.7. hardware_dma

DMA Controller API.

4.1.7.1. Detailed Description

The RP-series microcontroller Direct Memory Access (DMA) master performs bulk data transfers on a processor’s
behalf. This leaves processors free to attend to other tasks, or enter low-power sleep states. The data throughput of the
DMA is also significantly higher than one of RP-series microcontroller's processors.

The DMA can perform one read access and one write access, up to 32 bits in size, every clock cycle. There are 12
independent channels, which each supervise a sequence of bus transfers, usually in one of the following scenarios:

® Memory to peripheral
® Peripheral to memory
®* Memory to memory

4.1.7.2. Modules

channel_config

DMA channel configuration .

4.1.7.3. Macros

® f#define DMA_IRQ_NUM(irq_index)

]
4.1. Hardware APIs 110

Raspberry Pi Pico-series C/C++ SDK

4.1.7.4. Typedefs

typedef enum dreq_num_rp2350 dreq_num_t @ZEED

DREQ numbers for DMA pacing on RP2350 (used as typedef dreq_num_t)

typedef enum dreq_num_rp2040 dreq_num_t
DREQ numbers for DMA pacing on RP2040 (used as typedef dreq_num_t)

4.1.7.5. Enumerations

enum dreq_num_rp2350 { DREQ_PI00_TX0 = @, DREQ_PI08_TX1 = 1, DREQ_PIO@_TX2 = 2, DREQ_PI0O_TX3 = 3, DREQ_PIOO_RXO = 4,
DREQ_PIOO_RX1 = 5, DREQ_PIO0_RX2 = 6, DREQ_PIO@_RX3 = 7, DREQ_PIO1_TX@ = 8, DREQ_PIO1_TX1 = 9, DREQ_PIO1_TX2 = 10,
DREQ_PIO1_TX3 = 11, DREQ_PIO1_RX@ = 12, DREQ_PIOT_RX1 = 13, DREQ_PIO1_RX2 = 14, DREQ_PIO1_RX3 = 15, DREQ_PI02_TX0 = 16,
DREQ_PI02_TX1 = 17, DREQ_PI02_TX2 = 18, DREQ_PI02_TX3 = 19, DREQ_PIO2_RX@ = 20, DREQ_PI0O2_RX1 = 21, DREQ_PI02_RX2 = 22,
DREQ_PI02_RX3 = 23, DREQ_SPIO_TX = 24, DREQ_SPIO_RX = 25, DREQ_SPI1_TX = 26, DREQ_SPIT_RX = 27, DREQ_UARTO_TX = 28,
DREQ_UART@_RX = 29, DREQ_UART1_TX = 30, DREQ_UART1_RX = 31, DREQ_PWM_WRAP@ = 32, DREQ_PWM_WRAP1 = 33, DREQ_PWM_WRAP2 =
34, DREQ_PWM_WRAP3 = 35, DREQ_PWM_WRAP4 = 36, DREQ_PWM_WRAP5 = 37, DREQ_PWM_WRAP6 = 38, DREQ_PWM_WRAP7 = 39,
DREQ_PWM_WRAPS = 4@, DREQ_PWM_WRAP9 = 41, DREQ_PWM_WRAP10 = 42, DREQ_PWM_WRAP11 = 43, DREQ_I2CO_TX = 44, DREQ_I2C@_RX =
45, DREQ_I2CT_TX = 46, DREQ_I2C1_RX = 47, DREQ_ADC = 48, DREQ_XIP_STREAM = 49, DREQ_XIP_QMITX = 5@, DREQ_XIP_QMIRX = 51,
DREQ_HSTX = 52, DREQ_CORESIGHT = 53, DREQ_SHA256 = 54, DREQ_DMA_TIMER® = 59, DREQ_DMA_TIMER1 = 6@, DREQ_DMA_TIMER2 = 61,
DREQ_DMA_TIMER3 = 62, DREQ_FORCE = 63, DREQ_COUNT } @ZEED

DREQ numbers for DMA pacing on RP2350 (used as typedef dreq_num_t)

enum dreq_num_rp2040 { DREQ_PI00_TX0 = @, DREQ_PIO8_TX1 = 1, DREQ_PIO@_TX2 = 2, DREQ_PI0O_TX3 = 3, DREQ_PIO0_RXO = 4,
DREQ_PIO@_RX1 = 5, DREQ_PIO0_RX2 = 6, DREQ_PIO@_RX3 = 7, DREQ_PIO1_TX@ = 8, DREQ_PIO1_TX1 = 9, DREQ_PIO1_TX2 = 10,
DREQ_PIO1_TX3 = 11, DREQ_PIO1_RX0 = 12, DREQ_PIOT_RX1 = 13, DREQ_PIO1_RX2 = 14, DREQ_PIO1_RX3 = 15, DREQ_SPIO_TX = 16,
DREQ_SPIO_RX = 17, DREQ_SPI1_TX = 18, DREQ_SPI1_RX = 19, DREQ_UART@_TX = 20, DREQ_UART@_RX = 21, DREQ_UART1_TX = 22,
DREQ_UART1_RX = 23, DREQ_PWM_WRAP@ = 24, DREQ_PWM_WRAP1 = 25, DREQ_PWM_WRAP2 = 26, DREQ_PWM_WRAP3 = 27, DREQ_PWM_WRAP4 =
28, DREQ_PWM_WRAP5 = 29, DREQ_PWM_WRAP6 = 30, DREQ_PWM_WRAP7 = 31, DREQ_I2C0_TX = 32, DREQ_I2CO_RX = 33, DREQ_I2C1_TX =
34, DREQ_I2C1_RX = 35, DREQ_ADC = 36, DREQ_XIP_STREAM = 37, DREQ_XIP_SSITX = 38, DREQ_XIP_SSIRX = 39, DREQ_DMA_TIMER® =
59, DREQ_DMA_TIMER1 = 60, DREQ_DMA_TIMER2 = 61, DREQ_DMA_TIMER3 = 62, DREQ_FORCE = 63, DREQ_COUNT } @TZIXTD

DREQ numbers for DMA pacing on RP2040 (used as typedef dreq_num_t)

enum dma_channel_transfer_size { DMA_SIZE_8 = @, DMA_SIZE_16 = 1, DMA_SIZE 32 = 2 }

Enumeration of available DMA channel transfer sizes.

4.1.7.6. Functions

void dma_channel_claim (uint channel)

Mark a dma channel as used.

void dma_claim_mask (uint32_t channel_mask)
Mark multiple dma channels as used.

void dma_channel_unclaim (uint channel)
Mark a dma channel as no longer used.

void dma_unclaim_mask (uint32_t channel_mask)

Mark multiple dma channels as no longer used.

int dma_claim_unused_channel (bool required)

Claim a free dma channel.

bool dma_channel_is_claimed (uint channel)

Determine if a dma channel is claimed.

]
4.1. Hardware APIs 111

Raspberry Pi Pico-series C/C++ SDK
]

static void dma_channel_set_config (uint channel, const dma_channel_config *config, bool trigger)

Set a channel configuration.
static void dma_channel_set_read_addr (uint channel, const volatile void *read_addr, bool trigger)

Set the DMA initial read address.

static void dma_channel_set_write_addr (uint channel, volatile void *write_addr, bool trigger)

Set the DMA initial write address.

static void dma_channel_set_trans_count (uint channel, uint32_t trans_count, bool trigger)

Set the number of bus transfers the channel will do.
static void dma_channel_configure (uint channel, const dma_channel_config *config, volatile void *write_addr, const
volatile void *read_addr, uint transfer_count, bool trigger)

Configure all DMA parameters and optionally start transfer.

static void dma_channel_transfer_from_buffer_now (uint channel, const volatile void *read_addr, uint32_t transfer_count)

Start a DMA transfer from a buffer immediately.

static void dma_channel_transfer_to_buffer_now (uint channel, volatile void *write_addr, uint32_t transfer_count)
Start a DMA transfer to a buffer immediately.

static void dma_start_channel_mask (uint32_t chan_mask)
Start one or more channels simultaneously.

static void dma_channel_start (uint channel)
Start a single DMA channel.

static void dma_channel_abort (uint channel)

Stop a DMA transfer.

static void dma_channel_set_irq@_enabled (uint channel, bool enabled)

Enable single DMA channel’s interrupt via DMA_IRQ_0.

static void dma_set_irq@_channel_mask_enabled (uint32_t channel_mask, bool enabled)

Enable multiple DMA channels' interrupts via DMA_IRQ_0.

static void dma_channel_set_irql1_enabled (uint channel, bool enabled)

Enable single DMA channel’s interrupt via DMA_IRQ_1.

static void dma_set_irq1_channel_mask_enabled (uint32_t channel_mask, bool enabled)
Enable multiple DMA channels' interrupts via DMA_IRQ_T.
static void dma_irqn_set_channel_enabled (uint irq_index, uint channel, bool enabled)

Enable single DMA channel interrupt on either DMA_IRQ_0 or DMA_IRQ_1.

static void dma_irqn_set_channel_mask_enabled (uint irq_index, uint32_t channel_mask, bool enabled)
Enable multiple DMA channels' interrupt via either DMA_IRQ_0 or DMA_IRQ_1.

static bool dma_channel_get_irq@_status (uint channel)
Determine if a particular channel is a cause of DMA_IRQ_O.

static bool dma_channel_get_irql1_status (uint channel)

Determine if a particular channel is a cause of DMA_IRQ_1.

static bool dma_irqn_get_channel_status (uint irq_index, uint channel)

Determine if a particular channel is a cause of DMA_IRQ_N.

static void dma_channel_acknowledge_irq@ (uint channel)

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_O0.

]
4.1. Hardware APIs 112

Raspberry Pi Pico-series C/C++ SDK
]

static void dma_channel_acknowledge_irq1l (uint channel)
Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_1.
static void dma_irqn_acknowledge_channel (uint irq_index, uint channel)
Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_N.
static bool dma_channel_is_busy (uint channel)
Check if DMA channel is busy.
static void dma_channel_wait_for_finish_blocking (uint channel)
Wait for a DMA channel transfer to complete.
static void dma_sniffer_enable (uint channel, uint mode, bool force_channel_enable)
Enable the DMA sniffing targeting the specified channel.
static void dma_sniffer_set_byte_swap_enabled (bool swap)
Enable the Sniffer byte swap function.
static void dma_sniffer_set_output_invert_enabled (bool invert)

Enable the Sniffer output invert function.

static void dma_sniffer_set_output_reverse_enabled (bool reverse)

Enable the Sniffer output bit reversal function.

static void dma_sniffer_disable (void)

Disable the DMA sniffer.

static void dma_sniffer_set_data_accumulator (uint32_t seed_value)

Set the sniffer's data accumulator with initial value.

static uint32_t dma_sniffer_get_data_accumulator (void)

Get the sniffer's data accumulator value.

void dma_timer_claim (uint timer)

Mark a dma timer as used.

void dma_timer_unclaim (uint timer)
Mark a dma timer as no longer used.
int dma_claim_unused_timer (bool required)

Claim a free dma timer.

bool dma_timer_is_claimed (uint timer)

Determine if a dma timer is claimed.

static void dma_timer_set_fraction (uint timer, uint16_t numerator, uint16_t denominator)
Set the multiplier for the given DMA timer.
static vint dma_get_timer_dreq (uint timer_num)

Return the DREQ number for a given DMA timer.

static int dma_get_irq_num (uint irq_index)

Return DMA_IRQ_<irgn>

void dma_channel_cleanup (uint channel)

Performs DMA channel cleanup after use.

]
4.1. Hardware APIs 113

Raspberry Pi Pico-series C/C++ SDK
]

4.1.7.7. Macro Definition Documentation

4.1.7.7.1. DMA_IRQ_NUM

#define DMA_IRQ_NUM(irq_index)
Returns the irg_num_t for the nth DMA interrupt.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.7.8. Typedef Documentation

4.1.7.8.1. dreq_num_t ¢:72500

typedef enum dreq_num_rp2350 dreq_num_t

DREQ numbers for DMA pacing on RP2350 (used as typedef dreq_num_t)

4.1.7.8.2. dreq_num_t

typedef enum dreq_num_rp2040 dreq_num_t

DREQ numbers for DMA pacing on RP2040 (used as typedef dreq_num_t)

4.1.7.9. Enumeration Type Documentation

4.1.7.9.1. dreq_num_rp2350 720

enum dreq_num_rp2350

DREQ numbers for DMA pacing on RP2350 (used as typedef dreq_num_t)

Table 13. Enumerator

Select PI00’s TX FIFO 0 as DREQ.

Select PIO0’s TX FIFO 1 as DREQ.

Select PIO0's TX FIFO 2 as DREQ.

Select PIO0’s TX FIFO 3 as DREQ.

Select PIO0’s RX FIFO 0 as DREQ.

Select PIO0’s RX FIFO 1 as DREQ.

Select PIO0’s RX FIFO 2 as DREQ.

Select PIO0’s RX FIFO 3 as DREQ.

Select PIO1’s TX FIFO 0 as DREQ.

Select PIO1's TX FIFO 1 as DREQ.

Select PIO1's TX FIFO 2 as DREQ.

Select PIO1’'s TX FIFO 3 as DREQ.

Select PIO1’s RX FIFO 0 as DREQ.

Select PIO1's RX FIFO 1 as DREQ.

|
4.1. Hardware APIs 114

Raspberry Pi Pico-series C/C++ SDK
]

Select PIO1's RX FIFO 2 as DREQ.

Select PIO1’s RX FIFO 3 as DREQ.

Select PI02's TX FIFO 0 as DREQ.

Select PIO2's TX FIFO 1 as DREQ.

Select PIO2's TX FIFO 2 as DREQ.

Select PI02’'s TX FIFO 3 as DREQ.

Select PIO2's RX FIFO 0 as DREQ.

Select PI02's RX FIFO 1 as DREQ.

Select PI02's RX FIFO 2 as DREQ.

Select PI02’'s RX FIFO 3 as DREQ.

Select SPI0’s TX FIFO as DREQ.

Select SPI0’s RX FIFO as DREQ.

Select SPI1's TX FIFO as DREQ.

Select SPI1’s RX FIFO as DREQ.

Select UARTO’s TX FIFO as DREQ.

Select UARTO’s RX FIFO as DREQ.

Select UART1's TX FIFO as DREQ.

Select UART1’'s RX FIFO as DREQ.

Select PWM Counter 0's Wrap Value as DREQ.

Select PWM Counter 1's Wrap Value as DREQ.

Select PWM Counter 2's Wrap Value as DREQ.

Select PWM Counter 3's Wrap Value as DREQ.

Select PWM Counter 4’s Wrap Value as DREQ.

Select PWM Counter 5's Wrap Value as DREQ.

Select PWM Counter 6's Wrap Value as DREQ.

Select PWM Counter 7's Wrap Value as DREQ.

Select PWM Counter 8’s Wrap Value as DREQ.

Select PWM Counter 9's Wrap Value as DREQ.

Select PWM Counter 0's Wrap Value as DREQ.

Select PWM Counter 1's Wrap Value as DREQ.

Select 12C0’s TX FIFO as DREQ.

Select 12C0’s RX FIFO as DREQ.

Select 12C1's TX FIFO as DREQ.

Select 12C1’s RX FIFO as DREQ.

Select the ADC as DREQ.

Select the XIP Streaming FIFO as DREQ.

Select XIP_QMITX as DREQ.

|
4.1. Hardware APIs 115

Raspberry Pi Pico-series C/C++ SDK
]

Select XIP_QMIRX as DREQ.

Select HSTX as DREQ.

Select CORESIGHT as DREQ.

Select SHA256 as DREQ.

Select DMA_TIMERO as DREQ.

Select DMA_TIMERO as DREQ.

Select DMA_TIMERT1 as DREQ.

Select DMA_TIMERS as DREQ.

Select FORCE as DREQ.

4.1.7.9.2. dreq_num_rp2040

enum dreq_num_rp2040

DREQ numbers for DMA pacing on RP2040 (used as typedef dreq_num_t)

Select PIO0's TX FIFO 0 as DREQ.

Select PIO0’s TX FIFO 1 as DREQ.

Select PIO0’s TX FIFO 2 as DREQ.

Select PIO0’s TX FIFO 3 as DREQ.

Select PIO0’s RX FIFO 0 as DREQ.

Select PIO0’s RX FIFO 1 as DREQ.

Select PIO0’s RX FIFO 2 as DREQ.

Select PIO0’'s RX FIFO 3 as DREQ.

Select PIO1's TX FIFO 0 as DREQ.

Select PIO1’s TX FIFO 1 as DREQ.

Select PIO1’s TX FIFO 2 as DREQ.

Select PIO1's TX FIFO 3 as DREQ.

Select PIO1's RX FIFO 0 as DREQ.

Select PIO1's RX FIFO 1 as DREQ.

Select PIO1’s RX FIFO 2 as DREQ.

Select PIO1's RX FIFO 3 as DREQ.

Select SPI0’s TX FIFO as DREQ.

Select SPI0’s RX FIFO as DREQ.

Select SPI1’s TX FIFO as DREQ.

Select SPI1’'s RX FIFO as DREQ.

Select UARTOQ's TX FIFO as DREQ.

Select UARTO's RX FIFO as DREQ.

| I

Select UART1’s TX FIFO as DREQ.

4.1. Hardware APIs

116

Raspberry Pi Pico-series C/C++ SDK
]

Select UART1’s RX FIFO as DREQ.

Select PWM Counter 0's Wrap Value as DREQ.

Select PWM Counter 1's Wrap Value as DREQ.

Select PWM Counter 2's Wrap Value as DREQ.

Select PWM Counter 3's Wrap Value as DREQ.

Select PWM Counter 4's Wrap Value as DREQ.

Select PWM Counter 5's Wrap Value as DREQ.

Select PWM Counter 6’s Wrap Value as DREQ.

Select PWM Counter 7’s Wrap Value as DREQ.

Select 12C0’s TX FIFO as DREQ.

Select 12C0’s RX FIFO as DREQ.

Select [2C1's TX FIFO as DREQ.

Select 12C1’s RX FIFO as DREQ.

Select the ADC as DREQ.

Select the XIP Streaming FIFO as DREQ.

Select the XIP SSI TX FIFO as DREQ.

Select the XIP SSI RX FIFO as DREQ.

Select DMA_TIMERO as DREQ.

Select DMA_TIMERQ as DREQ.

Select DMA_TIMERT1 as DREQ.

Select DMA_TIMERS3 as DREQ.

Select FORCE as DREQ.

4.1.7.9.3. dma_channel_transfer_size

enum dma_channel_transfer_size
Enumeration of available DMA channel transfer sizes.

Names indicate the number of bits.

o _

4.1.7.10. Function Documentation

Byte transfer (8 bits)

Half word transfer (16 bits)

Word transfer (32 bits)

4.1.7.10.1. dma_channel_abort

static void dma_channel_abort (uint channel) [inline], [static]

Stop a DMA transfer.

|
4.1. Hardware APIs 117

Raspberry Pi Pico-series C/C++ SDK
]

Function will only return once the DMA has stopped.

RP2040 only: Note that due to errata RP2040-E13, aborting a channel which has transfers in-flight (i.e. an individual read
has taken place but the corresponding write has not), the ABORT status bit will clear prematurely, and subsequently the
in-flight transfers will trigger a completion interrupt once they complete.

The effect of this is that you may see a spurious completion interrupt on the channel as a result of calling this method.

The calling code should be sure to ignore a completion IRQ as a result of this method. This may not require any
additional work, as aborting a channel which may be about to complete, when you have a completion IRQ handler
registered, is inherently race-prone, and so code is likely needed to disambiguate the two occurrences.

If that is not the case, but you do have a channel completion IRQ handler registered, you can simply disable/re-enable
the IRQ around the call to this method as shown by this code fragment (using DMA IRQO).

// disable the channel on IRQ@
dma_channel_set_irqg@_enabled(channel, false);
// abort the channel
dma_channel_abort(channel);

// clear the spurious IRQ (if there was one)
dma_channel_acknowledge_irqg@(channel);

// re-enable the channel on IRQO
dma_channel_set_irqg@_enabled(channel, true);

0 N O U WN =

RP2350 only: Due to errata RP12350-E5 (see the RP2350 datasheet for further detail), it is necessary to clear the enable
bit of the aborted channel and any chained channels prior to the abort to prevent re-triggering.

Parameters

channel DMA channel

4.1.7.10.2. dma_channel_acknowledge_irq0

static void dma_channel_acknowledge_irq@ (uint channel) [inline], [static]
Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_Q.
Parameters

channel DMA channel

4.1.7.10.3. dma_channel_acknowledge_irq1

static void dma_channel_acknowledge_irq1 (uint channel) [inline], [static]
Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_1.
Parameters

channel DMA channel

4.1.7.10.4. dma_channel_claim
void dma_channel_claim (uint channel)
Mark a dma channel as used.

Method for cooperative claiming of hardware. Will cause a panic if the channel is already claimed. Use of this method
by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

]
4.1. Hardware APIs 118

Raspberry Pi Pico-series C/C++ SDK

channel the dma channel

4.1.7.10.5. dma_channel_cleanup

void dma_channel_cleanup (uint channel)

Performs DMA channel cleanup after use.

This can be used to cleanup dma channels when they're no longer needed, such that they are in a clean state for reuse.
IRQ’s for the channel are disabled, any in flight-transfer is aborted and any outstanding interrupts are cleared. The
channel is then clear to be reused for other purposes.

1 if (dma_channel >= 0) {

2 dma_channel_cleanup(dma_channel);
3 dma_channel_unclaim(dma_channel);
4 dma_channel = -1;
5

Parameters

channel DMA channel

4.1.7.10.6. dma_channel_configure

static void dma_channel_configure (uint channel, const dma_channel_config * config, volatile void * write_addr, const
volatile void * read_addr, uint transfer_count, bool trigger) [inline], [static]

Configure all DMA parameters and optionally start transfer.

Parameters
channel DMA channel
config Pointer to DMA config structure
write_addr Initial write address
read_addr Initial read address
transfer_count Number of transfers to perform
trigger True to start the transfer immediately

4.1.7.10.7. dma_channel_get_irq0_status
static bool dma_channel_get_irq@_status (uint channel) [inline], [static]
Determine if a particular channel is a cause of DMA_IRQ_O0.
Parameters
channel DMA channel
Returns

true if the channel is a cause of DMA_IRQ_O, false otherwise

4.1.7.10.8. dma_channel_get_irq1_status

static bool dma_channel_get_irql1_status (uint channel) [inline], [static]

4.1. Hardware APIs 119

Raspberry Pi Pico-series C/C++ SDK
]

Determine if a particular channel is a cause of DMA_IRQ_1.
Parameters

channel DMA channel
Returns

true if the channel is a cause of DMA_IRQ_1, false otherwise

4.1.7.10.9. dma_channel_is_busy
static bool dma_channel_is_busy (uint channel) [inline], [static]
Check if DMA channel is busy.
Parameters
channel DMA channel
Returns

true if the channel is currently busy

4.1.7.10.10. dma_channel_is_claimed
bool dma_channel_is_claimed (uint channel)
Determine if a dma channel is claimed.
Parameters

channel the dma channel
Returns
true if the channel is claimed, false otherwise
See also
dma_channel_claim

dma_channel_claim_mask

4.1.7.10.11. dma_channel_set_config

static void dma_channel_set_config (uint channel, const dma_channel_config * config, bool trigger) [inline], [static]

Set a channel configuration.

Parameters
channel DMA channel
config Pointer to a config structure with required configuration
trigger True to trigger the transfer immediately

4.1.7.10.12. dma_channel_set_irq0_enabled

static void dma_channel_set_irq@_enabled (uint channel, bool enabled) [inline], [static]
Enable single DMA channel’s interrupt via DMA_IRQ_0.

Parameters

]
4.1. Hardware APIs 120

Raspberry Pi Pico-series C/C++ SDK

channel DMA channel

enabled true to enable interrupt 0 on specified channel, false to disable.

4.1.7.10.13. dma_channel_set_irq1_enabled

static void dma_channel_set_irq1_enabled (uint channel, bool enabled) [inline], [static]

Enable single DMA channel’s interrupt via DMA_IRQ_T.

Parameters
channel DMA channel
enabled true to enable interrupt 1 on specified channel, false to disable.

4.1.7.10.14. dma_channel_set_read_addr

static void dma_channel_set_read_addr (uint channel, const volatile void * read_addr, bool trigger) [inline], [static]

Set the DMA initial read address.

Parameters
channel DMA channel
read_addr Initial read address of transfer.
trigger True to start the transfer immediately

4.1.7.10.15. dma_channel_set_trans_count

static void dma_channel_set_trans_count (uint channel, uint32_t trans_count, bool trigger) [inline], [static]

Set the number of bus transfers the channel will do.

Parameters
channel DMA channel
trans_count The number of transfers (not NOT bytes, see channel_config_set_transfer_data_size)
trigger True to start the transfer immediately

4.1.7.10.16. dma_channel_set_write_addr

static void dma_channel_set_write_addr (uint channel, volatile void * write_addr, bool trigger) [inline], [static]

Set the DMA initial write address.

Parameters
channel DMA channel
write_addr Initial write address of transfer.
trigger True to start the transfer immediately

4.1.7.10.17. dma_channel_start

static void dma_channel_start (uint channel) [inline], [static]

Start a single DMA channel.

4.1. Hardware APIs 121

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

channel DMA channel

4.1.7.10.18. dma_channel_transfer_from_buffer_now

static void dma_channel_transfer_from_buffer_now (uint channel, const volatile void * read_addr, uint32_t transfer_count)
[inline], [static]

Start a DMA transfer from a buffer immediately.

Parameters
channel DMA channel
read_addr Sets the initial read address
transfer_count Number of transfers to make. Not bytes, but the number of transfers of

channel_config_set_transfer_data_size() to be sent.

4.1.7.10.19. dma_channel_transfer_to_buffer_now

static void dma_channel_transfer_to_buffer_now (uint channel, volatile void * write_addr, uint32_t transfer_count)
[inline], [static]

Start a DMA transfer to a buffer immediately.

Parameters
channel DMA channel
write_addr Sets the initial write address
transfer_count Number of transfers to make. Not bytes, but the number of transfers of

channel_config_set_transfer_data_size() to be sent.

4.1.7.10.20. dma_channel_unclaim
void dma_channel_unclaim (uint channel)
Mark a dma channel as no longer used.
Parameters

channel the dma channel to release

4.1.7.10.21. dma_channel_wait_for_finish_blocking

static void dma_channel_wait_for_finish_blocking (uint channel) [inline], [static]
Wait for a DMA channel transfer to complete.

Parameters

channel DMA channel

4.1.7.10.22. dma_claim_mask

void dma_claim_mask (uint32_t channel_mask)

Mark multiple dma channels as used.

]
4.1. Hardware APIs 122

Raspberry Pi Pico-series C/C++ SDK
]

Method for cooperative claiming of hardware. Will cause a panic if any of the channels are already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

channel_mask Bitfield of all required channels to claim (bit 0 == channel 0, bit 1 == channel 1 etc)

4.1.7.10.23. dma_claim_unused_channel
int dma_claim_unused_channel (bool required)
Claim a free dma channel.
Parameters
required if true the function will panic if none are available
Returns

the dma channel number or -1 if required was false, and none were free

4.1.7.10.24. dma_claim_unused_timer
int dma_claim_unused_timer (bool required)
Claim a free dma timer.
Parameters
required if true the function will panic if none are available
Returns

the dma timer number or -1 if required was false, and none were free

4.1.7.10.25. dma_get_irg_num
static int dma_get_irq_num (uint irq_index) [inline], [static]
Return DMA_IRQ_<irgn>
Parameters
irq_index 0 the DMA irq index
Returns

The irg_num_to use for DMA

4.1.7.10.26. dma_get_timer_dreq

static uint dma_get_timer_dreq (uint timer_num) [inline], [static]
Return the DREQ number for a given DMA timer.
Parameters

timer_num DMA timer number 0-3

4.1.7.10.27. dma_irqn_acknowledge_channel

static void dma_irqn_acknowledge_channel (uint irq_index, uint channel) [inline], [static]

]
4.1. Hardware APIs 123

Raspberry Pi Pico-series C/C++ SDK

Acknowledge a channel IRQ, resetting it as the cause of DMA_IRQ_N.
Parameters
irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1

channel DMA channel

4.1.7.10.28. dma_irqn_get_channel_status
static bool dma_irqn_get_channel_status (uint irq_index, uint channel) [inline], [static]
Determine if a particular channel is a cause of DMA_IRQ_N.
Parameters
irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1
channel DMA channel
Returns

true if the channel is a cause of the DMA_IRQ_N, false otherwise

4.1.7.10.29. dma_irqn_set_channel_enabled
static void dma_irqn_set_channel_enabled (uint irq_index, uint channel, bool enabled) [inline], [static]
Enable single DMA channel interrupt on either DMA_IRQ_0 or DMA_IRQ_T.
Parameters
irq_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1
channel DMA channel

enabled true to enable interrupt via irq_index for specified channel, false to disable.

4.1.7.10.30. dma_irqn_set_channel_mask_enabled

static void dma_irqn_set_channel_mask_enabled (uint irq_index, uint32_t channel_mask, bool enabled) [inline], [static]

Enable multiple DMA channels' interrupt via either DMA_IRQ_0 or DMA_IRQ_1.

Parameters
irg_index the IRQ index; either 0 or 1 for DMA_IRQ_0 or DMA_IRQ_1
channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified

in the mask.

4.1.7.10.31. dma_set_irq0_channel_mask_enabled

static void dma_set_irq@_channel_mask_enabled (uint32_t channel_mask, bool enabled) [inline], [static]

Enable multiple DMA channels' interrupts via DMA_IRQ_O.

Parameters
channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified

in the mask.

4.1. Hardware APIs 124

Raspberry Pi Pico-series C/C++ SDK

4.1.7.10.32. dma_set_irq1_channel_mask_enabled

static void dma_set_irql_channel_mask_enabled (uint32_t channel_mask, bool enabled) [inline], [static]

Enable multiple DMA channels' interrupts via DMA_IRQ_1.

Parameters
channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified

in the mask.

4.1.7.10.33. dma_sniffer_disable

static void dma_sniffer_disable (void) [inline], [static]

Disable the DMA sniffer.

4.1.7.10.34. dma_sniffer_enable
static void dma_sniffer_enable (uint channel, uint mode, bool force_channel_enable) [inline], [static]
Enable the DMA sniffing targeting the specified channel.

The mode can be one of the following:

Mode Function

0x0 Calculate a CRC-32 (IEEE802.3 polynomial)

0x1 Calculate a CRC-32 (IEEE802.3 polynomial) with bit
reversed data

0x2 Calculate a CRC-16-CCITT

0x3 Calculate a CRC-16-CCITT with bit reversed data

Oxe XOR reduction over all data. == 1 if the total 1 population
count is odd.

Oxf Calculate a simple 32-bit checksum (addition with a 32 bit

accumulator)

Parameters
channel DMA channel
mode See description
force_channel_enable Set true to also turn on sniffing in the channel configuration (this is usually what you

want, but sometimes you might have a chain DMA with only certain segments of the
chain sniffed, in which case you might pass false).

4.1.7.10.35. dma_sniffer_get_data_accumulator
static uint32_t dma_sniffer_get_data_accumulator (void) [inline], [static]
Get the sniffer’s data accumulator value.

Read value calculated by the hardware from sniffing the DMA stream

4.1. Hardware APIs 125

Raspberry Pi Pico-series C/C++ SDK
]

4.1.7.10.36. dma_sniffer_set_byte_swap_enabled

static void dma_sniffer_set_byte_swap_enabled (bool swap) [inline], [static]
Enable the Sniffer byte swap function.

Locally perform a byte reverse on the sniffed data, before feeding into checksum.

Note that the sniff hardware is downstream of the DMA channel byteswap performed in the read master: if
channel_config_set_bswap() and dma_sniffer_set_byte_swap_enabled() are both enabled, their effects cancel from the
sniffer's point of view.

Parameters

swap Set true to enable byte swapping

4.1.7.10.37. dma_sniffer_set_data_accumulator
static void dma_sniffer_set_data_accumulator (uint32_t seed_value) [inline], [static]
Set the sniffer’'s data accumulator with initial value.

Generally, CRC algorithms are used with the data accumulator initially seeded with OxFFFF or OXFFFFFFFF (for crc16
and crc32 algorithms)

Parameters

seed_value value to set data accumulator

4.1.7.10.38. dma_sniffer_set_output_invert_enabled

static void dma_sniffer_set_output_invert_enabled (bool invert) [inline], [static]

Enable the Sniffer output invert function.

If enabled, the sniff data result appears bit-inverted when read. This does not affect the way the checksum is calculated.
Parameters

invert Set true to enable output bit inversion

4.1.7.10.39. dma_sniffer_set_output_reverse_enabled
static void dma_sniffer_set_output_reverse_enabled (bool reverse) [inline], [static]
Enable the Sniffer output bit reversal function.

If enabled, the sniff data result appears bit-reversed when read. This does not affect the way the checksum is
calculated.

Parameters

reverse Set true to enable output bit reversal

4.1.7.10.40. dma_start_channel_mask

static void dma_start_channel_mask (uint32_t chan_mask) [inline], [static]
Start one or more channels simultaneously.

Parameters

chan_mask Bitmask of all the channels requiring starting. Channel 0 = bit 0, channel 1 = bit 1 etc.

]
4.1. Hardware APIs 126

Raspberry Pi Pico-series C/C++ SDK

4.1.7.10.41. dma_timer_claim
void dma_timer_claim (uint timer)
Mark a dma timer as used.

Method for cooperative claiming of hardware. Will cause a panic if the timer is already claimed. Use of this method by
libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

timer the dma timer

4.1.7.10.42. dma_timer_is_claimed
bool dma_timer_is_claimed (uint timer)
Determine if a dma timer is claimed.
Parameters

timer the dma timer
Returns
true if the timer is claimed, false otherwise
See also

dma_timer_claim

4.1.7.10.43. dma_timer_set_fraction
static void dma_timer_set_fraction (uint timer, uint16_t numerator, uint16_t denominator) [inline], [static]
Set the multiplier for the given DMA timer.

The timer will run at the system_clock_freq * numerator / denominator, so this is the speed that data elements will be
transferred at via a DMA channel using this timer as a DREQ. The multiplier must be less than or equal to one.

Parameters
timer the dma timer
numerator the fraction’s numerator
denominator the fraction’s denominator

4.1.7.10.44. dma_timer_unclaim

void dma_timer_unclaim (uint timer)

Mark a dma timer as no longer used.

Method for cooperative claiming of hardware.
Parameters

timer the dma timer to release

4.1.7.10.45. dma_unclaim_mask

void dma_unclaim_mask (uint32_t channel_mask)

Mark multiple dma channels as no longer used.

4.1. Hardware APIs 127

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

channel_mask Bitfield of all channels to unclaim (bit 0 == channel 0, bit 1 == channel 1 etc)

4.1.7.11. channel_config

DMA channel configuration .

4.1.7.11.1. Detailed Description

A DMA channel needs to be configured, these functions provide handy helpers to set up configuration structures. See
dma_channel_config

4.1.7.11.2. Functions
static void channel_config_set_read_increment (dma_channel_config *c, bool incr)
Set DMA channel read increment in a channel configuration object.

static void channel_config_set_write_increment (dma_channel_config *c, bool incr)

Set DMA channel write increment in a channel configuration object.

static void channel_config_set_dreq (dma_channel_config *c, uint dreq)

Select a transfer request signal in a channel configuration object.

static void channel_config_set_chain_to (dma_channel_config *c, uint chain_to)
Set DMA channel chain_to channel in a channel configuration object.

static void channel_config_set_transfer_data_size (dma_channel_config *c, enum dma_channel_transfer_size size)
Set the size of each DMA bus transfer in a channel configuration object.

static void channel_config_set_ring (dma_channel_config *c, bool write, uint size_bits)

Set address wrapping parameters in a channel configuration object.

static void channel_config_set_bswap (dma_channel_config *c, bool bswap)

Set DMA byte swapping config in a channel configuration object.

static void channel_config_set_irq_quiet (dma_channel_config *c, bool irq_quiet)

Set IRQ quiet mode in a channel configuration object.

static void channel_config_set_high_priority (dma_channel_config *c, bool high_priority)
Set the channel priority in a channel configuration object.
static void channel_config_set_enable (dma_channel_config *c, bool enable)

Enable/Disable the DMA channel in a channel configuration object.

static void channel_config_set_sniff_enable (dma_channel_config *c, bool sniff_enable)

Enable access to channel by sniff hardware in a channel configuration object.

static dma_channel_config dma_channel_get_default_config (uint channel)
Get the default channel configuration for a given channel.
static dma_channel_config dma_get_channel_config (uint channel)
Get the current configuration for the specified channel.
static uint32_t channel_config_get_ctrl_value (const dma_channel_config *config)

Get the raw configuration register from a channel configuration.

]
4.1. Hardware APIs 128

Raspberry Pi Pico-series C/C++ SDK
]

4.1.7.11.3. Function Documentation

channel_config_get_ctrl_value
static uint32_t channel_config_get_ctrl_value (const dma_channel_config * config) [inline], [static]
Get the raw configuration register from a channel configuration.
Parameters
config Pointer to a config structure.
Returns
Register content
channel_config_set_bswap
static void channel_config_set_bswap (dma_channel_config * c, bool bswap) [inline], [static]
Set DMA byte swapping config in a channel configuration object.

No effect for byte data, for halfword data, the two bytes of each halfword are swapped. For word data, the four bytes of
each word are swapped to reverse their order.

Parameters
c Pointer to channel configuration object
bswap True to enable byte swapping

channel_config_set_chain_to
static void channel_config_set_chain_to (dma_channel_config * ¢, uint chain_to) [inline], [static]
Set DMA channel chain_to channel in a channel configuration object.

When this channel completes, it will trigger the channel indicated by chain_to. Disable by setting chain_to to itself (the
same channel)

Parameters
c Pointer to channel configuration object
chain_to Channel to trigger when this channel completes.

channel_config_set_dreq

static void channel_config_set_dreq (dma_channel_config * c, uint dreq) [inline], [static]
Select a transfer request signal in a channel configuration object.

The channel uses the transfer request signal to pace its data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the system). 0x0 to 0x3a -> select DREQ n as TREQ 0x3b -> Select
Timer 0 as TREQ 0x3c -> Select Timer 1 as TREQ 0x3d -> Select Timer 2 as TREQ (Optional) 0x3e -> Select Timer 3 as
TREQ (Optional) 0x3f -> Permanent request, for unpaced transfers.

Parameters
c Pointer to channel configuration data
dreq Source (see description)

channel_config_set_enable
static void channel_config_set_enable (dma_channel_config * ¢, bool enable) [inline], [static]
Enable/Disable the DMA channel in a channel configuration object.

When false, the channel will ignore triggers, stop issuing transfers, and pause the current transfer sequence (i.e. BUSY
will remain high if already high)

Parameters

]
4.1. Hardware APIs 129

Raspberry Pi Pico-series C/C++ SDK
]

c Pointer to channel configuration object

enable True to enable the DMA channel. When enabled, the channel will respond to triggering events, and start
transferring data.

channel_config_set_high_priority
static void channel_config_set_high_priority (dma_channel_config * ¢, bool high_priority) [inline], [static]
Set the channel priority in a channel configuration object.

When true, gives a channel preferential treatment in issue scheduling: in each scheduling round, all high priority
channels are considered first, and then only a single low priority channel, before returning to the high priority channels.

This only affects the order in which the DMA schedules channels. The DMA'’s bus priority is not changed. If the DMA is
not saturated then a low priority channel will see no loss of throughput.

Parameters
c Pointer to channel configuration object
high_priority True to enable high priority
channel_config_set_irq_quiet
static void channel_config_set_irq_quiet (dma_channel_config * ¢, bool irq_quiet) [inline], [static]
Set IRQ quiet mode in a channel configuration object.

In QUIET mode, the channel does not generate IRQs at the end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a control block chain.

Parameters
c Pointer to channel configuration object
irq_quiet True to enable quiet mode, false to disable.

channel_config_set_read_increment
static void channel_config_set_read_increment (dma_channel_config * ¢, bool incr) [inline], [static]

Set DMA channel read increment in a channel configuration object.

Parameters
c Pointer to channel configuration object
iner True to enable read address increments, if false, each read will be from the same address Usually

disabled for peripheral to memory transfers
channel_config_set_ring
static void channel_config_set_ring (dma_channel_config * ¢, bool write, uint size_bits) [inline], [static]
Set address wrapping parameters in a channel configuration object.

Size of address wrap region. If 0, don’t wrap. For values n > 0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating access to naturally-aligned ring buffers. Ring sizes between 2
and 32768 bytes are possible (size_bits from 1 - 15)

0x0 -> No wrapping.

Parameters
c Pointer to channel configuration object
write True to apply to write addresses, false to apply to read addresses
size_bits 0 to disable wrapping. Otherwise the size in bits of the changing part of the address. Effectively

wraps the address on a (1 << size_bits) byte boundary.

]
4.1. Hardware APIs 130

Raspberry Pi Pico-series C/C++ SDK
]

channel_config_set_sniff_enable
static void channel_config_set_sniff_enable (dma_channel_config * ¢, bool sniff_enable) [inline], [static]
Enable access to channel by sniff hardware in a channel configuration object.

Sniff HW must be enabled and have this channel selected.

Parameters
c Pointer to channel configuration object
sniff_enable True to enable the Sniff HW access to this DMA channel.

channel_config_set_transfer_data_size

static void channel_config_set_transfer_data_size (dma_channel_config * c¢, enum dma_channel_transfer_size size) [inline],
[static]

Set the size of each DMA bus transfer in a channel configuration object.

Set the size of each bus transfer (byte/halfword/word). The read and write addresses advance by the specific amount
(1/2/4 bytes) with each transfer.

Parameters
c Pointer to channel configuration object
size See enum for possible values.

channel_config_set_write_increment

static void channel_config_set_write_increment (dma_channel_config * ¢, bool incr) [inline], [static]

Set DMA channel write increment in a channel configuration object.

Parameters
c Pointer to channel configuration object
iner True to enable write address increments, if false, each write will be to the same address Usually disabled

for memory to peripheral transfers
dma_channel_get_default_config

static dma_channel_config dma_channel_get_default_config (uint channel) [inline], [static]

Get the default channel configuration for a given channel.

Setting Default

Read Increment true

Write Increment false

DReq DREQ_FORCE
Chain to self

Data size DMA_SIZE_32
Ring write=false, size=0 (i.e. off)
Byte Swap false

Quiet IRQs false

High Priority false

Channel Enable true

Sniff Enable false

]
4.1. Hardware APIs 131

Raspberry Pi Pico-series C/C++ SDK
]

Parameters
channel DMA channel
Returns
the default configuration which can then be modified.
dma_get_channel_config
static dma_channel_config dma_get_channel_config (uint channel) [inline], [static]
Get the current configuration for the specified channel.
Parameters
channel DMA channel
Returns

The current configuration as read from the HW register (not cached)

4.1.8. hardware_exception

Methods for setting processor exception handlers.

4.1.8.1. Detailed Description

Exceptions are identified by a exception_number which is a number from -15 to -1; these are the numbers relative to the
index of the first IRQ vector in the vector table. (i.e. vector table index is exception_num plus 16)

There is one set of exception handlers per core, so the exception handlers for each core as set by these methods are
independent.

© NoOTE

That all exception APIs affect the executing core only (i.e. the core calling the function).

4.1.8.2. Typedefs

typedef void(* exception_handler_t)(void)

Exception handler function type.

4.1.8.3. Enumerations

enum exception_number { MIN_EXCEPTION_NUM = 2, NMI_EXCEPTION = 2, HARDFAULT_EXCEPTION = 3, SVCALL_EXCEPTION = 11,
PENDSV_EXCEPTION = 14, SYSTICK_EXCEPTION = 15, MAX_EXCEPTION_NUM = 15 }

Exception number definitions.

4.1.8.4. Functions
exception_handler_t exception_set_exclusive_handler (enum exception_number num, exception_handler_t handler)
Set the exception handler for an exception on the executing core.

void exception_restore_handler (enum exception_number num, exception_handler_t original_handler)

Restore the original exception handler for an exception on this core.

]
4.1. Hardware APIs 132

Raspberry Pi Pico-series C/C++ SDK

exception_handler_t exception_get_vtable_handler (enum exception_number num)

Get the current exception handler for the specified exception from the currently installed vector table of the
execution core.

bool exception_set_priority (uint num, uint8_t hardware_priority)

Set specified exception’s priority.

uint exception_get_priority (uint num)

Get specified exception’s priority.

4.1.8.5. Typedef Documentation

4.1.8.5.1. exception_handler_t

typedef void(* exception_handler_t) (void)
Exception handler function type.

All exception handlers should be of this type, and follow normal ARM EABI register saving conventions

4.1.8.6. Enumeration Type Documentation

4.1.8.6.1. exception_number
enum exception_number
Exception number definitions.

On Arm these are vector table indices:

Name Value Exception
NMI_EXCEPTION 2 Non Maskable Interrupt
HARDFAULT_EXCEPTION 3 HardFault
SVCALL_EXCEPTION 11 SV Call
PENDSV_EXCEPTION 14 Pend SV
SYSTICK_EXCEPTION 15 System Tick

On RISC-V these are exception cause numbers:

Name Value Exception
INSTR_ALIGN_EXCEPTION 0 Instruction fetch misaligned
INSTR_FAULT_EXCEPTION 1 Instruction fetch bus fault
INSTR_ILLEGAL_EXCEPTION 2 Invalid or illegal instruction
EBREAK_EXCEPTION 3 ebreak was not caught by an ex
LOAD_ALIGN_EXCEPTION 4 Load address not naturally ali
LOAD_FAULT_EXCEPTION 5 Load bus fault
STORE_ALIGN_EXCEPTION 6 Store or AMO address not natur
STORE_FAULT_EXCEPTION 7 Store or AMO bus fault

4.1. Hardware APIs 133

Raspberry Pi Pico-series C/C++ SDK
]

Name Value Exception

ECALL_UMODE_EXCEPTION 8 ecall was executed in U-mode

ECALL_SMODE_EXCEPTION 9 ecall was executed in S-mode

ECALL_MMODE_EXCEPTION 11 ecall was executed in M-mode
Table 16. Enumerator | Ny EXCEPTION Non Maskable Interrupt.

HARDFAULT_EXCEPTION HardFault Interrupt.

SVCALL_EXCEPTION SV Call Interrupt.

PENDSV_EXCEPTION Pend SV Interrupt.

SYSTICK_EXCEPTION System Tick Interrupt.

4.1.8.7. Function Documentation

4.1.8.7.1. exception_get_priority
uint exception_get_priority (uint num)
Get specified exception’s priority.

Numerically-lower values indicate a higher priority. Hardware priorities range from 0 (highest priority) to 255 (lowest
priority).

Only the top 2 bits are significant on ARM Cortex-M0+ on RP2040.

Only the top 4 bits are significant on ARM Cortex-M33 on RP2350, and exception priorities are not supported on RISC-V

Parameters
num Exception number exception_number
Returns

the exception priority

4.1.8.7.2. exception_get_vtable_handler

exception_handler_t exception_get_vtable_handler (enum exception_number num)

Get the current exception handler for the specified exception from the currently installed vector table of the execution

core.
Parameters

num Exception number
Returns

the address stored in the VTABLE for the given exception number

4.1.8.7.3. exception_restore_handler

void exception_restore_handler (enum exception_number num, exception_handler_t original_handler)
Restore the original exception handler for an exception on this core.

This method may be used to restore the exception handler for an exception on this core to the state prior to the call to

]
4.1. Hardware APIs 134

Raspberry Pi Pico-series C/C++ SDK
]

exception_set_exclusive_handler(), so that exception_set_exclusive_handler() may be called again in the future.

Parameters

num Exception number exception_number

original_handler The original handler returned from exception_set_exclusive_handler
See also

exception_set_exclusive_handler()

4.1.8.7.4. exception_set_exclusive_handler
exception_handler_t exception_set_exclusive_handler (enum exception_number num, exception_handler_t handler)
Set the exception handler for an exception on the executing core.

This method will assert if an exception handler has been set for this exception number on this core via this method,
without an intervening restore via exception_restore_handler.

O NoOTE

this method may not be used to override an exception handler that was specified at link time by providing a strong
replacement for the weakly defined stub exception handlers. It will assert in this case too.

Parameters
num Exception number
handler The handler to set
See also

exception_number

4.1.8.7.5. exception_set_priority

bool exception_set_priority (uint num, uint8_t hardware_priority)

Set specified exception’s priority.

Parameters
num Exception number exception_number
hardware_priority Priority to set.

Numerically-lower values indicate a higher priority. Hardware priorities range from 0 (highest priority) to 255 (lowest
priority).

Only the top 2 bits are significant on ARM Cortex-M0+ on RP2040.

Only the top 4 bits are significant on ARM Cortex-M33 on RP2350, and exception priorities are not supported on RISC-V

4.1.9. hardware_flash

Low level flash programming and erase API.

]
4.1. Hardware APIs 135

Raspberry Pi Pico-series C/C++ SDK
]

4.1.9.1. Detailed Description

Note these functions are unsafe if you are using both cores, and the other is executing from flash concurrently with the
operation. In this could be the case, you must perform your own synchronisation to make sure that no XIP accesses
take place during flash programming. One option is to use the lockout functions.

Likewise they are unsafe if you have interrupt handlers or an interrupt vector table in flash, so you must disable
interrupts before calling in this case.

If PICO_NO_FLASH=1 is not defined (i.e. if the program is built to run from flash) then these functions will make a static
copy of the second stage bootloader in SRAM, and use this to reenter execute-in-place mode after programming or
erasing flash, so that they can safely be called from flash-resident code.

4.1.9.1.1. Example
1 #include <stdio.h>
2 #include <stdlib.h>
8
4 #include "pico/stdlib.h"
5 #include "hardware/flash.h"
6
7 // We're going to erase and reprogram a region 256k from the start of flash.
8 // Once done, we can access this at XIP_BASE + 256k.
9 #define FLASH_TARGET_OFFSET (256 * 1024)
10
11 const uint8_t *flash_target_contents = (const uint8_t *) (XIP_BASE + FLASH_TARGET_OFFSET);
12
13 void print_buf(const uint8_t *buf, size_t len) {
14 for (size_t i = 0; i < len; ++i) {
15 printf("%02x", buf[i]);
16 if (i % 16 == 15)
17 printf("\n");
18 else
19 printf(" ");
20 }
21 }
22
23 int main() {
24 stdio_init_all();
25 uint8_t random_data[FLASH_PAGE_SIZE];
26 for (uint i = @; i < FLASH_PAGE_SIZE; ++i)
27 random_data[i] = rand() >> 16;
28
29 printf("Generated random data:\n");
30 print_buf(random_data, FLASH_PAGE_SIZE);
&l
32 // Note that a whole number of sectors must be erased at a time.
33 printf("\nErasing target region...\n");
34 flash_range_erase(FLASH_TARGET_OFFSET, FLASH_SECTOR_SIZE);
35 printf("Done. Read back target region:\n");
36 print_buf(flash_target_contents, FLASH_PAGE_SIZE);
37
38 printf("\nProgramming target region...\n");
39 flash_range_program(FLASH_TARGET_OFFSET, random_data, FLASH_PAGE_SIZE);
40 printf("Done. Read back target region:\n");
41 print_buf(flash_target_contents, FLASH_PAGE_SIZE);
42
43 bool mismatch = false;
44 for (uint i = @; i < FLASH_PAGE_SIZE; ++i) {
45 if (random_data[i] != flash_target_contents[i])

]
4.1. Hardware APIs 136

Raspberry Pi Pico-series C/C++ SDK

46 mismatch = true;

47 }

48 if (mismatch)

49 printf("Programming failed!\n");

50 else

51 printf("Programming successful!\n");
52 }

4.1.9.2. Functions

void flash_range_erase (uint32_t flash_offs, size_t count)

Erase areas of flash.

void flash_range_program (uint32_t flash_offs, const uint8_t *data, size_t count)
Program flash.

void flash_get_unique_id (uint8_t *id_out)
Get flash unique 64 bit identifier.

void flash_do_cmd (const uint8_t *txbuf, uint8_t *rxbuf, size_t count)

Execute bidirectional flash command.

4.1.9.3. Function Documentation

4.1.9.3.1. flash_do_cmd

void flash_do_cmd (const uint8_t * txbuf, uint8_t * rxbuf, size_t count)
Execute bidirectional flash command.

Low-level function to execute a serial command on a flash device attached to the QSPI interface. Bytes are
simultaneously transmitted and received from txbuf and to rxbuf. Therefore, both buffers must be the same length,
count, which is the length of the overall transaction. This is useful for reading metadata from the flash chip, such as
device ID or SFDP parameters.

The XIP cache is flushed following each command, in case flash state has been modified. Like other hardware_flash
functions, the flash is not accessible for execute-in-place transfers whilst the command is in progress, so entering a
flash-resident interrupt handler or executing flash code on the second core concurrently will be fatal. To avoid these
pitfalls it is recommended that this function only be used to extract flash metadata during startup, before the main
application begins to run: see the implementation of pico_get_unique_id() for an example of this.

Parameters
txbuf Pointer to a byte buffer which will be transmitted to the flash
rxbuf Pointer to a byte buffer where data received from the flash will be written. txbuf and rxbuf may be the

same buffer.

count Length in bytes of txbuf and of rxbuf

4.1.9.3.2. flash_get_unique_id

void flash_get_unique_id (uint8_t * id_out)
Get flash unique 64 bit identifier.

Use a standard 4Bh RUID instruction to retrieve the 64 bit unique identifier from a flash device attached to the QSPI

4.1. Hardware APIs 137

Raspberry Pi Pico-series C/C++ SDK

interface. Since there is a 1:1 association between the MCU and this flash, this also serves as a unique identifier for the
board.

Parameters

id_out Pointer to an 8-byte buffer to which the ID will be written

4.1.9.3.3. flash_range_erase

void flash_range_erase (uint32_t flash_offs, size_t count)

Erase areas of flash.

Parameters
flash_offs Offset into flash, in bytes, to start the erase. Must be aligned to a 4096-byte flash sector.
count Number of bytes to be erased. Must be a multiple of 4096 bytes (one sector).

© NoTE

Erasing a flash sector sets all the bits in all the pages in that sector to one. You can then "program"” flash pages in
the sector to turn some of the bits to zero. Once a bit is set to zero it can only be changed back to one by erasing the
whole sector again.

4.1.9.3.4. flash_range_program

void flash_range_program (uint32_t flash_offs, const uint8_t * data, size_t count)
Program flash.

Parameters

flash_offs Flash address of the first byte to be programmed. Must be aligned to a 256-byte flash page.

data Pointer to the data to program into flash
count Number of bytes to program. Must be a multiple of 256 bytes (one page).
© NoTE

: Programming a flash page effectively changes some of the bits from one to zero. The only way to change a zero bit
back to one is to "erase" the whole sector that the page resides in. So you may need to make sure you have called
flash_range_erase before calling flash_range_program.

4.1.10. hardware_gpio

General Purpose Input/Output (GPIO) API.

4.1.10.1. Detailed Description

RP-series microcontrollers have two banks of General Purpose Input / Output (GPIO) pins, which are assigned as
follows:

All GPIOs support digital input and output, but a subset can also be used as inputs to the chip’s Analogue to Digital
Converter (ADC). The allocation of GPIO pins to the ADC depends on the packaging.

RP2040 and RP2350 QFN-60 GPIO, ADC pins are 26-29. RP2350 QFN-80, ADC pins are 40-47.
Each GPIO can be controlled directly by software running on the processors, or by a number of other functional blocks.

4.1. Hardware APIs 138

Raspberry Pi Pico-series C/C++ SDK

The function allocated to each GPIO is selected by calling the gpio_set_function function.

O NOTE

Not all functions are available on all pins.

Each GPIO can have one function selected at a time. Likewise, each peripheral input (e.g. UARTO RX) should only be
selected on one GPIO at a time. If the same peripheral input is connected to multiple GPIOs, the peripheral sees the

logical OR of these GPIO inputs. Please refer to the datasheet for more information on GPIO function select.

4.1.10.1.1. Function Select Table

On RP2040 the function selects are:

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9
0 SPI0O RX UARTO TX | I12C0 SDA |PWMO A |SIO PIO0 PIO1 USB
OVCUR
DET
1 SPI0O CSn | UARTORX |12CO SCL |PWMOB |SIO PIO0 P1O1 USB VBUS
DET
2 SPI0O SCK | UARTO 12C1 SDA |PWMTA |SIO PIO0 P101 USB VBUS
CTS EN
3 SPI0O TX UARTO 12C1SCL |PWM1B |[SIO PIO0 PIO1 USB
RTS OVCUR
DET
4 SPI0 RX UART1 TX | 12C0 SDA |PWM2 A |SIO PIO0 PIO1 USB VBUS
DET
5 SPI0O CSn | UART1 RX |12C0 SCL |PWM2B |[SIO PIO0 P101 USB VBUS
EN
6 SPI0O SCK | UART1 12C1 SDA |PWM3 A |SIO PIOO P101 USB
CTS OVCUR
DET
7 SPI0O TX UART1 12C1SCL |PWM3B |[SIO PIO0 PIO1 USB VBUS
RTS DET
8 SPIT RX UART1 TX | 12C0 SDA |PWM4 A |SIO PIO0 PIO1 USB VBUS
EN
9 SPIT CSn |UART1RX|12CO0SCL |PWM4B |[SIO PIO0 PIO1 USB
OVCUR
DET
10 SPI1 SCK | UART1 12C1 SDA |PWM5A |SIO PIO0 P1O1 USB VBUS
CTS DET
11 SPIT TX UART1 12C1SCL |PWM5B |[SIO PIOO PIO1 USB VBUS
RTS EN
12 SPIT RX UARTO TX | I12C0 SDA |PWM6 A |SIO PIO0 PIO1 USB
OVCUR
DET
13 SPIT1 CSn |UARTORX|12CO0SCL |PWM6B |SIO PIO0 PIO1 USB VBUS
DET

4.1. Hardware APIs

139

Raspberry Pi Pico-series C/C++ SDK
]

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9
14 SPI1 SCK | UARTO 12C1 SDA |PWM7 A |SIO PIOO PIO1 USB VBUS
CTS EN
15 SPIT TX UARTO 12C1SCL |PWM7B |SIO PIOO PIO1 uUsB
RTS OVCUR
DET
16 SPIO RX UARTO TX | I2CO SDA |PWMO A |SIO PI0O0 PIO1 USB VBUS
DET
17 SPIO CSn | UARTORX |12C0SCL |PWMOB |SIO PI00 PIO1 USB VBUS
EN
18 SPIO SCK | UARTO 12C1 SDA |PWM1A |SIO PI00 PIO1 USB
CTS OVCUR
DET
19 SPIOTX | UARTO I2C1SCL |[PWM1B |SIO PI00 PIO1 USB VBUS
RTS DET
20 SPI0 RX UART1 TX | 12C0 SDA [PWM2 A |[SIO PIOO PIO1 CLOCK USB VBUS
GPINO EN
21 SPIO CSn |UART1RX|12COSCL |[PWM2B |[SIO PIOO PIO1 CLOCK UsSB
GPOUTO |OVCUR
DET
22 SPI0 SCK [UART1 12C1 SDA |PWM3 A |SIO PIOO PIO1 CLOCK USB VBUS
CTS GPIN1 DET
23 SPIO TX UART1 12C1SCL |PWM3B |SIO PIOO PIO1 CLOCK USB VBUS
RTS GPOUT1 EN
24 SPIT1 RX UART1 TX | 12C0 SDA [PWM4 A |[SIO PIOO PIO1 CLOCK uUsB
GPOUT2 |OVCUR
DET
25 SPIT CSn |UART1RX |12C0SCL |PWM4B |SIO PI00 PIO1 CLOCK USB VBUS
GPOUT3 | DET
26 SPIT SCK | UART1 12C1 SDA |PWM5A |SIO PI00 PIO1 USB VBUS
CTS EN
27 SPIT TX UART1 12C1 SCL |PWM5B |SIO PI00 PIO1 USB
RTS OVCUR
DET
28 SPITRX | UARTO TX |12C0 SDA [PWM6 A |SIO PI00 PIO1 USB VBUS
DET
29 SPI1 CSn |UARTORX |I12COSCL |[PWM6B |[SIO PIOO PIO1 USB VBUS
EN
On RP2350 the function selects are:
GPIO FO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
0 SPIO UARTO |12C0 PWMO |SIO P100 PIO1 P102 XIP_CS | USB
RX TX SDA A n OVCUR
DET

4.1. Hardware APIs

140

Raspberry Pi Pico-series C/C++ SDK
]

GPIO FO F1 F2 E3 F4 FS F6 77/ F8 F9 F10 F11
1 SPI0 UARTO |12C0 PWMO |SIO PI100 PIO1 P102 TRACE |USB
CSn RX SCL B CLK VBUS
DET
2 SPIO UARTO |I2C1 PWM1 |SIO P100 PI1O1 P102 TRACE |USB UARTO
SCK CTS SDA A DATAO |VBUS |[TX
EN
3 SPIO UARTO |12C1 PWM1 |SIO PI100 PIO1 P102 TRACE |USB UARTO
X RTS SCL B DATAT | OVCUR |RX
DET
4 SPIO UART1 |12C0 PWM2 | SIO P100 PI1O1 P102 TRACE | USB
RX X SDA A DATA2 | VBUS
DET
5 SPIO UART1 |12C0O PWM2 | SIO P100 PI101 P102 TRACE |USB
CSn RX SCL B DATA3 | VBUS
EN
6 SPIO UART1 |I12C1 PWM3 | SIO P100 PI1O1 P102 USB UART1
SCK CTS SDA A OVCUR | TX
DET
7 SPIO UART1 |I12C1 PWM3 | SIO P100 PI101 P102 USB UART1
X RTS SCL B VBUS |RX
DET
8 SPI1 UART1 |12CO PWM4 | SIO P100 PIO1 P102 XIP_CS | USB
RX X SDA A n VBUS
EN
9 SPI1 UART1 |12CO PWM4 | SIO P100 PI1O1 P102 USB
CSn RX SCL B OVCUR
DET
10 SPI1 UART1 |I12C1 PWM5 | SIO PI00 PIO1 P102 usB UART1
SCK CTS SDA A VBUS |TX
DET
11 SPI1 UART1 |I12C1 PWM5 | SIO P100 PI1O1 P102 USB UART1
X RTS SCL B VBUS |RX
EN
12 HSTX | SPI1 UARTO |12C0 PWMé6 | SIO P100 PIO1 P102 CLOCK |USB
RX X SDA A GPINO | OVCUR
DET
13 HSTX | SPI1 UARTO |12C0O PWM6 | SIO P100 PI101 P102 CLOCK |USB
CSn RX SCL B GPOUT | VBUS
0 DET
14 HSTX | SPI1 UARTO |I12C1 PWM7 | SIO PI100 PIO1 P102 CLOCK |USB UARTO
SCK CTS SDA A GPIN1T |VBUS |TX
EN
15 HSTX | SPI1 UARTO |I12C1 PWM7 | SIO P100 PI1O1 P102 CLOCK |USB UARTO
X RTS SCL B GPOUT | OVCUR | RX
1 DET

4.1. Hardware APIs

141

Raspberry Pi Pico-series C/C++ SDK
]

GPIO FO F1 F2 E3 F4 FS F6 77/ F8 F9 F10 F11
16 HSTX | SPIO UARTO |12C0 PWMO |SIO PI100 PIO1 P102 usB
RX TX SDA A VBUS
DET
17 HSTX | SPIO UARTO |12C0 PWMO |SIO P100 PI1O1 P102 USB
CSn RX SCL B VBUS
EN
18 HSTX | SPIO UARTO |12C1 PWM1 |SIO PI100 PIO1 P102 usB UARTO
SCK CTS SDA A OVCUR | TX
DET
19 HSTX | SPIO UARTO |I2C1 PWM1 |SIO P100 PI1O1 P102 XIP_CS | USB UARTO
X RTS SCL B n VBUS |RX
DET
20 SPIO UART1 |12C0O PWM2 | SIO P100 PI101 P102 CLOCK |USB
RX X SDA A GPINO |VBUS
EN
21 SPIO UART1 |12C0 PWM2 | SIO P100 PI1O1 P102 CLOCK |USB
CSn RX SCL B GPOUT | OVCUR
0 DET
22 SPIO UART1 |I12C1 PWM3 | SIO P100 PI101 P102 CLOCK |USB UART1
SCK CTS SDA A GPINT |VBUS |TX
DET
23 SPIO UART1 |I12C1 PWM3 | SIO P100 PIO1 P102 CLOCK |USB UART1
X RTS SCL B GPOUT | VBUS |RX
1 EN
24 SPI1 UART1 |12CO PWM4 | SIO P100 PI1O1 P102 CLOCK |USB
RX X SDA A GPOUT | OVCUR
2 DET
25 SPI1 UART1 |12C0 PWM4 | SIO PI00 PIO1 P102 CLOCK |USB
CSn RX SCL B GPOUT | VBUS
3 DET
26 SPI1 UART1 |I12C1 PWM5 | SIO P100 PI1O1 P102 USB UART1
SCK CTS SDA A VBUS |[TX
EN
27 SPI1 UART1 |I12C1 PWM5 | SIO P100 PIO1 P102 usB UART1
X RTS SCL B OVCUR | RX
DET
28 SPI1 UARTO |12C0O PWM6 | SIO P100 PI101 P102 USB
RX X SDA A VBUS
DET
29 SPI1 UARTO |12C0 PWMé6 | SIO PI100 PIO1 P102 usB
CSn RX SCL B VBUS
EN

GPI0s 30 through 47 are QFN-80 only:

4.1. Hardware APIs

142

Raspberry Pi Pico-series C/C++ SDK
]

GPIO FO F1 F2 E3 F4 FS F6 77/ F8 F9 F10 F11
30 SPI1 UARTO |I12C1 PWM7 |SIO PI100 PIO1 P102 usB UARTO
SCK CTS SDA A OVCUR | TX
DET
31 SPI1 UARTO |I2C1 PWM7 | SIO P100 PI1O1 P102 USB UARTO
X RTS SCL B VBUS |RX
DET
32 SPIO UARTO |12C0 PWM8 | SIO PI100 PIO1 P102 usB
RX TX SDA A VBUS
EN
33 SPIO UARTO |12C0 PWMS8 | SIO P100 PI1O1 P102 USB
CSn RX SCL B OVCUR
DET
34 SPIO UARTO |I12C1 PWM9 |SIO P100 PI101 P102 USB UARTO
SCK CTS SDA A VBUS |[TX
DET
35 SPIO UARTO |I12C1 PWM9 |SIO P100 PI1O1 P102 USB UARTO
X RTS SCL B VBUS |RX
EN
36 SPIO UART1 |12C0O PWM1 | SIO P100 PI101 P102 USB
RX X SDA 0A OVCUR
DET
37 SPIO UART1 |12CO PWM1 |SIO P100 PIO1 P102 USB
CSn RX SCL 0B VBUS
DET
38 SPIO UART1 |I12C1 PWM1 |SIO P100 PI1O1 P102 USB UART1
SCK CTS SDA TA VBUS |[TX
EN
39 SPIO UART1 |I12C1 PWM1 |SIO PI00 PIO1 P102 usB UART1
X RTS SCL 1B OVCUR | RX
DET
40 SPI1 UART1 |12C0O PWM8 | SIO P100 PI1O1 P102 USB
RX X SDA A VBUS
DET
41 SPI1 UART1 |12C0 PWM8 | SIO P100 PIO1 P102 usB
CSn RX SCL B VBUS
EN
42 SPI1 UART1 |12C1 PWM9 |SIO P100 PI101 P102 USB UART1
SCK CTS SDA A OVCUR | TX
DET
43 SPI1 UART1 |I12C1 PWM9 |SIO PI100 PIO1 P102 usB UART1
X RTS SCL B VBUS |RX
DET
44 SPI1 UARTO |12C0 PWM1 |SIO P100 PI1O1 P102 USB
RX X SDA 0A VBUS
EN

]
4.1. Hardware APIs 143

Raspberry Pi Pico-series C/C++ SDK
]

GPIO | FO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
45 SPI1 | UARTO |I12C0 |PWM1 |SIO PIOO |PIOT |PIO2 USB
csn |RX scL |0B OVCUR
DET
46 SPIT |UARTO |I12C1 |PWM1 [SIO PIO0 |PIOT |PIO2 USB | UARTO
SCK |CTS |SDA |1A VBUS |TX
DET
47 SPI1 | UARTO |12C1 |PWM1 |SIO PIOO |PIOT |PIO2 |XIP_CS |USB |UARTO
X RTS |SCL |1B n VBUS |RX
EN
4.1.10.2. Typedefs

typedef enum gpio_function_rp2040 gpio_function_t @zZ{iL0)
GPIO pin function selectors on RP2040 (used as typedef gpio_function_t)

typedef enum gpio_function_rp2350 gpio_function_t

GPIO pin function selectors on RP2350 (used as typedef gpio_function_t)

typedef void(* gpio_irq_callback_t)(uint gpio, uint32_t event_mask)

4.1.10.3. Enumerations

enum gpio_function_rp2040 { GPIO_FUNC_XIP = @, GPIO_FUNC_SPI = 1, GPIO_FUNC_UART = 2, GPIO_FUNC_I2C = 3, GPIO_FUNC_PWM =
4, GPIO_FUNC_SIO = 5, GPIO_FUNC_PIO@ = 6, GPIO_FUNC_PIO1 = 7, GPIO_FUNC_GPCK = 8, GPIO_FUNC_USB = 9, GPIO_FUNC_NULL =

UL RP2040

GPIO pin function selectors on RP2040 (used as typedef gpio_function_t)

enum gpio_function_rp2350 { GPIO_FUNC_HSTX = @, GPIO_FUNC_SPI = 1, GPIO_FUNC_UART = 2, GPIO_FUNC_I2C = 3, GPIO_FUNC_PWM
4, GPIO_FUNC_SIO = 5, GPIO_FUNC_PIO@ = 6, GPIO_FUNC_PIO1 = 7, GPIO_FUNC_PIO2 = 8, GPIO_FUNC_GPCK = 9, GPIO_FUNC_XIP_CS1
9, GPIO_FUNC_CORESIGHT_TRACE = 9, GPIO_FUNC_USB = 10, GPIO_FUNC_UART_AUX = 11, GPIO_FUNC_NULL = Ox1f }

GPIO pin function selectors on RP2350 (used as typedef gpio_function_t)

enum gpio_irq_level { GPIO_IRQ_LEVEL_LOW = @x1u, GPIO_IRQ_LEVEL_HIGH = @x2u, GPIO_IRQ_EDGE_FALL = 0x4u,
GPIO_IRQ_EDGE_RISE = 0x8u }

GPIO Interrupt level definitions (GPIO events)

enum gpio_slew_rate { GPIO_SLEW_RATE_SLOW = @, GPIO_SLEW_RATE_FAST = 1 }

Slew rate limiting levels for GPIO outputs.

enum gpio_drive_strength { GPIO_DRIVE_STRENGTH_2MA = @, GPIO_DRIVE_STRENGTH_4MA = 1, GPIO_DRIVE_STRENGTH_8MA = 2,
GPIO_DRIVE_STRENGTH_12MA = 3 }

Drive strength levels for GPIO outputs.

4.1.10.4. Functions
void gpio_set_function (uint gpio, gpio_function_t fn)
Select GPIO function.
void gpio_set_function_masked (uint32_t gpio_mask, gpio_function_t fn)

Select the function for multiple GPIOs.

]
4.1. Hardware APIs 144

Raspberry Pi Pico-series C/C++ SDK

void gpio_set_function_masked64 (uint64_t gpio_mask, gpio_function_t fn)
Select the function for multiple GPIOs.
gpio_function_t gpio_get_function (uint gpio)
Determine current GPIO function.
void gpio_set_pulls (uint gpio, bool up, bool down)
Select up and down pulls on specific GPIO.
static void gpio_pull_up (uint gpio)
Set specified GPIO to be pulled up.
static bool gpio_is_pulled_up (uint gpio)
Determine if the specified GPIO is pulled up.
static void gpio_pull_down (uint gpio)
Set specified GPIO to be pulled down.
static bool gpio_is_pulled_down (uint gpio)
Determine if the specified GPIO is pulled down.
static void gpio_disable_pulls (uint gpio)
Disable pulls on specified GPIO.
void gpio_set_irqover (uint gpio, uint value)
Set GPIO IRQ override.
void gpio_set_outover (uint gpio, uint value)
Set GPIO output override.
void gpio_set_inover (uint gpio, uint value)
Select GPIO input override.
void gpio_set_oeover (uint gpio, uint value)
Select GPIO output enable override.
void gpio_set_input_enabled (uint gpio, bool enabled)
Enable GPIO input.
void gpio_set_input_hysteresis_enabled (uint gpio, bool enabled)
Enable/disable GPIO input hysteresis (Schmitt trigger)
bool gpio_is_input_hysteresis_enabled (uint gpio)
Determine whether input hysteresis is enabled on a specified GPIO.
void gpio_set_slew_rate (uint gpio, enum gpio_slew_rate slew)
Set slew rate for a specified GPIO.
enum gpio_slew_rate gpio_get_slew_rate (uint gpio)
Determine current slew rate for a specified GPIO.
void gpio_set_drive_strength (uint gpio, enum gpio_drive_strength drive)
Set drive strength for a specified GPIO.
enum gpio_drive_strength gpio_get_drive_strength (uint gpio)
Determine current drive strength for a specified GPIO.
void gpio_set_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)

Enable or disable specific interrupt events for specified GPIO.

]
4.1. Hardware APIs 145

Raspberry Pi Pico-series C/C++ SDK
]

void gpio_set_irq_callback (gpio_irq_callback_t callback)

Set the generic callback used for GPIO IRQ events for the current core.

void gpio_set_irq_enabled_with_callback (uint gpio, uint32_t event_mask, bool enabled, gpio_irq_callback_t callback)

Convenience function which performs multiple GPIO IRQ related initializations.

void gpio_set_dormant_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)

Enable dormant wake up interrupt for specified GPIO and events.

static uint32_t gpio_get_irq_event_mask (uint gpio)

Return the current interrupt status (pending events) for the given GPIO.

void gpio_acknowledge_irq (uint gpio, uint32_t event_mask)

Acknowledge a GPIO interrupt for the specified events on the calling core.
void gpio_add_raw_irq_handler_with_order_priority_masked (uint32_t gpio_mask, irq_handler_t handler, uint8_t
order_priority)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.
void gpio_add_raw_irq_handler_with_order_priority_masked64 (uint64_t gpio_mask, irq_handler_t handler, uint8_t
order_priority)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.
static void gpio_add_raw_irq_handler_with_order_priority (uint gpio, irq_handler_t handler, uint8_t order_priority)
Adds a raw GPIO IRQ handler for a specific GPIO on the current core.
void gpio_add_raw_irq_handler_masked (uint32_t gpio_mask, irq_handler_t handler)
Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.
void gpio_add_raw_irq_handler_masked64 (uint64_t gpio_mask, irq_handler_t handler)
Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.
static void gpio_add_raw_irq_handler (uint gpio, irq_handler_t handler)
Adds a raw GPIO IRQ handler for a specific GPIO on the current core.
void gpio_remove_raw_irq_handler_masked (uint32_t gpio_mask, irq_handler_t handler)
Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

void gpio_remove_raw_irq_handler_masked64 (uint64_t gpio_mask, irq_handler_t handler)

Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

static void gpio_remove_raw_irq_handler (uint gpio, irq_handler_t handler)
Removes a raw GPIO IRQ handler for the specified GPIO on the current core.
void gpio_init (uint gpio)
Initialise a GPIO for (enabled 1/0 and set func to GPIO_FUNC_SIO)
void gpio_deinit (uint gpio)
Resets a GPIO back to the NULL function, i.e. disables it.
void gpio_init_mask (uint gpio_mask)
Initialise multiple GPIOs (enabled I/0 and set func to GPIO_FUNC_SIO)
static bool gpio_get (uint gpio)
Get state of a single specified GPIO.
static uint32_t gpio_get_all (void)
Get raw value of all GPIOs.
static uint64_t gpio_get_all64 (void)
Get raw value of all GPIOs.

]
4.1. Hardware APIs 146

Raspberry Pi Pico-series C/C++ SDK
]

static void gpio_set_mask (uint32_t mask)
Drive high every GPIO appearing in mask.
static void gpio_set_mask64 (uint64_t mask)
Drive high every GPIO appearing in mask.
static void gpio_set_mask_n (uint n, uint32_t mask)
Drive high every GPIO appearing in mask.
static void gpio_clr_mask (uint32_t mask)
Drive low every GPIO appearing in mask.
static void gpio_clr_mask64 (uint64_t mask)
Drive low every GPIO appearing in mask.
static void gpio_clr_mask_n (uint n, uint32_t mask)
Drive low every GPIO appearing in mask.
static void gpio_xor_mask (uint32_t mask)
Toggle every GPIO appearing in mask.
static void gpio_xor_mask64 (uint64_t mask)
Toggle every GPIO appearing in mask.
static void gpio_xor_mask_n (uint n, uint32_t mask)
Toggle every GPIO appearing in mask.
static void gpio_put_masked (uint32_t mask, uint32_t value)
Drive GPIOs high/low depending on parameters.
static void gpio_put_masked64 (uint64_t mask, uint64_t value)
Drive GPI0s high/low depending on parameters.
static void gpio_put_masked_n (uint n, uint32_t mask, uint32_t value)
Drive GPIOs high/low depending on parameters.
static void gpio_put_all (uint32_t value)
Drive all pins simultaneously.
static void gpio_put_all64 (uint64_t value)
Drive all pins simultaneously.
static void gpio_put (uint gpio, bool value)
Drive a single GPIO high/low.
static bool gpio_get_out_level (uint gpio)
Determine whether a GPIO is currently driven high or low.
static void gpio_set_dir_out_masked (uint32_t mask)
Set a number of GPIOs to output.
static void gpio_set_dir_out_masked64 (uint64_t mask)
Set a number of GPIOs to output.
static void gpio_set_dir_in_masked (uint32_t mask)
Set a number of GPIOs to input.
static void gpio_set_dir_in_masked64 (uint64_t mask)

Set a number of GPIOs to input.

]
4.1. Hardware APIs 147

Raspberry Pi Pico-series C/C++ SDK
]

static void gpio_set_dir_masked (uint32_t mask, uint32_t value)

Set multiple GPIO directions.

static void gpio_set_dir_masked64 (uint64_t mask, uint64_t value)
Set multiple GPIO directions.

static void gpio_set_dir_all_bits (uint32_t values)

Set direction of all pins simultaneously.

static void gpio_set_dir_all_bits64 (uint64_t values)

Set direction of all pins simultaneously.

static void gpio_set_dir (uint gpio, bool out)

Set a single GPIO direction.

static bool gpio_is_dir_out (uint gpio)
Check if a specific GPIO direction is OUT.

static uint gpio_get_dir (uint gpio)

Get a specific GPIO direction.

4.1.10.5. Typedef Documentation

4.1.10.5.1. gpio_function_t

typedef enum gpio_function_rp2040 gpio_function_t

GPIO pin function selectors on RP2040 (used as typedef gpio_function_t)

4.1.10.5.2. gpio_function_t

typedef enum gpio_function_rp2350 gpio_function_t

GPIO pin function selectors on RP2350 (used as typedef gpio_function_t)

4.1.10.5.3. gpio_irg_callback_t

typedef void(* gpio_irq_callback_t) (uint gpio, uint32_t event_mask)

Callback function type for GPIO events

Parameters

gpio Which GPIO caused this interrupt

event_mask Which events caused this interrupt. See gpio_irg_level for details.
See also

gpio_set_irq_enabled_with_callback()

gpio_set_irg_callback()

4.1.10.6. Enumeration Type Documentation

]
4.1. Hardware APIs 148

Raspberry Pi Pico-series C/C++ SDK

4.1.10.6.1. gpio_function_rp2040

enum gpio_function_rp2040

GPIO pin function selectors on RP2040 (used as typedef gpio_function_t)

Table”‘Enumerator .

4.1.10.6.2. gpio_function_rp2350 720

Select XIP as GPIO pin function.

Select SPI as GPIO pin function.

Select UART as GPIO pin function.

Select 12C as GPIO pin function.

Select PWM as GPIO pin function.

Select SIO as GPIO pin function.

Select PIO0 as GPIO pin function.

Select PIO1 as GPIO pin function.

Select GPCK as GPIO pin function.

Select USB as GPIO pin function.

Select NULL as GPIO pin function.

enum gpio_function_rp2350

GPIO pin function selectors on RP2350 (used as typedef gpio_function_t)

Tab,ew'Enumemmr .

4.1.10.6.3. gpio_irq_level

Select HSTX as GPIO pin function.

Select SPI as GPIO pin function.

Select UART as GPIO pin function.

Select 12C as GPIO pin function.

Select PWM as GPIO pin function.

Select SIO as GPIO pin function.

Select PIO0 as GPIO pin function.

Select PIO1 as GPIO pin function.

Select PIO2 as GPIO pin function.

Select GPCK as GPIO pin function.

Select XIP CS1 as GPIO pin function.

Select CORESIGHT TRACE as GPIO pin function.

Select USB as GPIO pin function.

Select UART_AUX as GPIO pin function.

Select NULL as GPIO pin function.

enum gpio_irq_level

|
4.1. Hardware APIs 149

Raspberry Pi Pico-series C/C++ SDK

GPIO Interrupt level definitions (GPIO events)
GPIO Interrupt levels
An interrupt can be generated for every GPIO pin in 4 scenarios:
® Level High: the GPIO pin is a logical 1
® | evel Low: the GPIO pin is a logical 0
® Edge High: the GPIO has transitioned from a logical 0 to a logical 1

® Edge Low: the GPIO has transitioned from a logical 1 to a logical 0
The level interrupts are not latched. This means that if the pin is a logical 1 and the level high interrupt is active, it will
become inactive as soon as the pin changes to a logical 0. The edge interrupts are stored in the INTR register and can
be cleared by writing to the INTR register.

Table 19. Enumerator | Gpjo |RQ_LEVEL_LOW IRQ when the GPIO pin is a logical 1.
GPIO_IRQ_LEVEL_HIGH IRQ when the GPIO pin is a logical 0.
GPIO_IRQ_EDGE_FALL IRQ when the GPIO has transitioned from a logical 0 to a

logical 1.
GPIO_IRQ_EDGE_RISE IRQ when the GPIO has transitioned from a logical 1 to a
logical 0.

4.1.10.6.4. gpio_slew_rate
enum gpio_slew_rate
Slew rate limiting levels for GPIO outputs.

Slew rate limiting increases the minimum rise/fall time when a GPIO output is lightly loaded, which can help to reduce
electromagnetic emissions.

See also

gpio_set_slew_rate

Table 20. Enumerator | Gpyo_gLEW_RATE_SLOW Slew rate limiting enabled.

GPIO_SLEW_RATE_FAST Slew rate limiting disabled.

4.1.10.6.5. gpio_drive_strength
enum gpio_drive_strength

Drive strength levels for GPIO outputs.
Drive strength levels for GPIO outputs.
See also

gpio_set_drive_strength

Table 21. Enumerator | gpjo DRIVE_STRENGTH_2MA 2 mA nominal drive strength
GPIO_DRIVE_STRENGTH_4MA 4 mA nominal drive strength
GPIO_DRIVE_STRENGTH_8MA 8 mA nominal drive strength
GPIO_DRIVE_STRENGTH_12MA 12 mA nominal drive strength

4.1. Hardware APIs 150

Raspberry Pi Pico-series C/C++ SDK

4.1.10.7. Function Documentation

4.1.10.7.1. gpio_acknowledge_irq

void gpio_acknowledge_irq (uint gpio, uint32_t event_mask)

Acknowledge a GPIO interrupt for the specified events on the calling core.

O NoTE

This may be called with a mask of any of valid bits specified in gpio_irg_level, however it has no effect on level
sensitive interrupts which remain pending while the GPIO is at the specified level. When handling level sensitive
interrupts, you should generally disable the interrupt (see gpio_set_irq_enabled) and then set it up again later once
the GPIO level has changed (or to catch the opposite level).

Parameters

gpio GPIO number

© NOTE

For callbacks set with gpio_set_irq_enabled_with_callback, or gpio_set_irq_callback, this function is called
automatically.

Parameters

event_mask Bitmask of events to clear. See gpio_irg_level for details.

4.1.10.7.2. gpio_add_raw_irq_handler
static void gpio_add_raw_irq_handler (uint gpio, irq_handler_t handler) [inline], [static]
Adds a raw GPIO IRQ handler for a specific GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method adds such a callback, and disables the "default" callback for the specified GPIO.

© NoOTE

Multiple raw handlers should not be added for the same GPIO, and this method will assert if you attempt to.
Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers
(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irq_handler(void) {
2 if (gpio_get_irqg_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
4 // handle the IRQ
5 }
6 }
Parameters

4.1. Hardware APIs 151

Raspberry Pi Pico-series C/C++ SDK
]

gpio the GPIO number that will no longer be passed to the default callback for this core

handler the handler to add to the list of GPIO IRQ handlers for this core

4.1.10.7.3. gpio_add_raw_irq_handler_masked
void gpio_add_raw_irq_handler_masked (uint32_t gpio_mask, irq_handler_t handler)
Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method adds such a callback, and disables the "default" callback for the specified GPIOs.

O NoOTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.
Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers
(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irq_handler(void) {
2 if (gpio_get_irqg_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
4 // handle the IRQ
5 }
6 if (gpio_get_irq_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
8 // handle the IRQ
9 }
10 }
Parameters
gpio_mask a bit mask of the GPIO numbers that will no longer be passed to the default callback for this core
handler the handler to add to the list of GPIO IRQ handlers for this core

4.1.10.7.4. gpio_add_raw_irq_handler_masked64
void gpio_add_raw_irq_handler_masked64 (uint64_t gpio_mask, irq_handler_t handler)
Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irg_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method adds such a callback, and disables the "default" callback for the specified GPIOs.

]
4.1. Hardware APIs 152

Raspberry Pi Pico-series C/C++ SDK

O NoTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.
Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers
(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irqg_handler(void) {
2 if (gpio_get_irqg_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
4 // handle the IRQ
5 }
6 if (gpio_get_irq_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
8 // handle the IRQ
9 }
10 }
Parameters
gpio_mask a 64 bit mask of the GPIO numbers that will no longer be passed to the default callback for this core
handler the handler to add to the list of GPIO IRQ handlers for this core

4.1.10.7.5. gpio_add_raw_irq_handler_with_order_priority

static void gpio_add_raw_irq_handler_with_order_priority (uint gpio, irq_handler_t handler, uint8_t order_priority)
[inline], [static]

Adds a raw GPIO IRQ handler for a specific GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default callback. The order relative to the
default callback can be controlled via the order_priority parameter(the default callback has the priority
GPIO_IRQ_CALLBACK_ORDER_PRIORITY which defaults to the lowest priority with the intention of it running last).

This method adds such a callback, and disables the "default" callback for the specified GPIO.

© NoTE

Multiple raw handlers should not be added for the same GPIO, and this method will assert if you attempt to.
Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers
(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irqg_handler(void) {

2 if (gpio_get_irg_event_mask(my_gpio_num) & my_gpio_event_mask) {
3 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask) ;

4 // handle the IRQ

5 }

6 }

4.1. Hardware APIs 153

Raspberry Pi Pico-series C/C++ SDK
]

Parameters
gpio the GPIO number that will no longer be passed to the default callback for this core
handler the handler to add to the list of GPIO IRQ handlers for this core
order_priority the priority order to determine the relative position of the handler in the list of GPIO IRQ

handlers for this core.

4.1.10.7.6. gpio_add_raw_irq_handler_with_order_priority_masked

void gpio_add_raw_irq_handler_with_order_priority_masked (uint32_t gpio_mask, irq_handler_t handler, uint8_t
order_priority)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default callback. The order relative to the
default callback can be controlled via the order_priority parameter (the default callback has the priority
GPIO_IRQ_CALLBACK_ORDER_PRIORITY which defaults to the lowest priority with the intention of it running last).

This method adds such an explicit GPIO IRQ handler, and disables the "default” callback for the specified GPIOs.

© NoTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.
Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers
(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

void my_irq_handler(void) {
if (gpio_get_irq_event_mask(my_gpio_num) & my_gpio_event_mask) {
gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
// handle the IRQ

1
2
3
4
5 ¥

6 if (gpio_get_irqg_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);

8 // handle the IRQ

9

0

10 }

Parameters

gpio_mask a bit mask of the GPIO numbers that will no longer be passed to the default callback for this
core

handler the handler to add to the list of GPIO IRQ handlers for this core

order_priority the priority order to determine the relative position of the handler in the list of GPIO IRQ
handlers for this core.

4.1.10.7.7. gpio_add_raw_irq_handler_with_order_priority_masked64

void gpio_add_raw_irq_handler_with_order_priority_masked64 (uint64_t gpio_mask, irq_handler_t handler, uint8_t
order_priority)

Adds a raw GPIO IRQ handler for the specified GPIOs on the current core.

]
4.1. Hardware APIs 154

Raspberry Pi Pico-series C/C++ SDK

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default callback. The order relative to the
default callback can be controlled via the order_priority parameter (the default callback has the priority
GPIO_IRQ_CALLBACK_ORDER_PRIORITY which defaults to the lowest priority with the intention of it running last).

This method adds such an explicit GPIO IRQ handler, and disables the "default” callback for the specified GPIOs.

© NoTE

Multiple raw handlers should not be added for the same GPIOs, and this method will assert if you attempt to.
Internally, this function calls irq_add_shared_handler, which will assert if the maximum number of shared handlers
(configurable via PICO_MAX_IRQ_SHARED_HANDLERS) would be exceeded.

A raw handler should check for whichever GPIOs and events it handles, and acknowledge them itself; it might look
something like:

1 void my_irqg_handler(void) {
2 if (gpio_get_irqg_event_mask(my_gpio_num) & my_gpio_event_mask) {
8 gpio_acknowledge_irq(my_gpio_num, my_gpio_event_mask);
4 // handle the IRQ
5 ¥
6 if (gpio_get_irqg_event_mask(my_gpio_num2) & my_gpio_event_mask2) {
7 gpio_acknowledge_irq(my_gpio_num2, my_gpio_event_mask2);
8 // handle the IRQ
9 }
10 }
Parameters
gpio_mask a bit mask of the GPIO numbers that will no longer be passed to the default callback for this
core
handler the handler to add to the list of GPIO IRQ handlers for this core
order_priority the priority order to determine the relative position of the handler in the list of GPIO IRQ

handlers for this core.

4.1.10.7.8. gpio_clr_mask

static void gpio_clr_mask (uint32_t mask) [inline], [static]
Drive low every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to clear

4.1.10.7.9. gpio_clr_mask64

static void gpio_clr_mask64 (uint64_t mask) [inline], [static]
Drive low every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to clear

]
4.1. Hardware APIs 155

Raspberry Pi Pico-series C/C++ SDK
]

4.1.10.7.10. gpio_clr_mask_n

static void gpio_clr_mask_n (uint n, uint32_t mask) [inline], [static]

Drive low every GPIO appearing in mask.

Parameters
n the base GPIO index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.
mask Bitmask of 32 GPIO values to clear

4.1.10.7.11. gpio_deinit

void gpio_deinit (uint gpio)

Resets a GPIO back to the NULL function, i.e. disables it.
Parameters

gpio GPIO number

4.1.10.7.12. gpio_disable_pulls

static void gpio_disable_pulls (uint gpio) [inline], [static]
Disable pulls on specified GPIO.

Parameters

gpio GPIO number

4.1.10.7.13. gpio_get
static bool gpio_get (uint gpio) [inline], [static]
Get state of a single specified GPIO.
Parameters
gpio GPIO number
Returns

Current state of the GPIO. 0 for low, non-zero for high

4.1.10.7.14. gpio_get_all

static uint32_t gpio_get_all (void) [inline], [static]
Get raw value of all GPIOs.

Returns

Bitmask of raw GPIO values

4.1.10.7.15. gpio_get_all64
static uintb4_t gpio_get_all64 (void) [inline], [static]
Get raw value of all GPIOs.

Returns

]
4.1. Hardware APIs 156

Raspberry Pi Pico-series C/C++ SDK
]

Bitmask of raw GPIO values

4.1.10.7.16. gpio_get_dir
static uint gpio_get_dir (uint gpio) [inline], [static]
Get a specific GPIO direction.
Parameters
gpio GPIO number
Returns

1 for out, 0 for in

4.1.10.7.17. gpio_get_drive_strength
enum gpio_drive_strength gpio_get_drive_strength (uint gpio)
Determine current drive strength for a specified GPIO.
See also
gpio_set_drive_strength
Parameters
gpio GPIO number
Returns

Current drive strength of that GPIO

4.1.10.7.18. gpio_get_function
gpio_function_t gpio_get_function (uint gpio)
Determine current GPIO function.
Parameters

gpio GPIO number
Returns

Which GPIO function is currently selected from list gpio_function

4.1.10.7.19. gpio_get_irq_event_mask
static uint32_t gpio_get_irq_event_mask (uint gpio) [inline], [static]
Return the current interrupt status (pending events) for the given GPIO.
Parameters
gpio GPIO number
Returns
Bitmask of events that are currently pending for the GPIO. See gpio_irq_level for details.
See also

gpio_acknowledge_irq

]
4.1. Hardware APIs 157

Raspberry Pi Pico-series C/C++ SDK
]

4.1.10.7.20. gpio_get_out_level
static bool gpio_get_out_level (uint gpio) [inline], [static]
Determine whether a GPIO is currently driven high or low.

This function returns the high/low output level most recently assigned to a GPIO via gpio_put() or similar. This is the
value that is presented outward to the 10 muxing, not the input level back from the pad (which can be read using
gpio_get()).

To avoid races, this function must not be used for read-modify-write sequences when driving GPIOs - instead functions
like gpio_put() should be used to atomically update GPIOs. This accessor is intended for debug use only.

Parameters
gpio GPIO number
Returns

true if the GPIO output level is high, false if low.

4.1.10.7.21. gpio_get_slew_rate
enum gpio_slew_rate gpio_get_slew_rate (uint gpio)
Determine current slew rate for a specified GPIO.
See also
gpio_set_slew_rate
Parameters
gpio GPIO number
Returns

Current slew rate of that GPIO

4.1.10.7.22. gpio_init

void gpio_init (uint gpio)

Initialise a GPIO for (enabled 1/0 and set func to GPIO_FUNC_SIO)
Clear the output enable (i.e. set to input). Clear any output value.
Parameters

gpio GPIO number

4.1.10.7.23. gpio_init_mask

void gpio_init_mask (uint gpio_mask)

Initialise multiple GP10s (enabled 1/0 and set func to GPIO_FUNC_SIO)
Clear the output enable (i.e. set to input). Clear any output value.
Parameters

gpio_mask Mask with 1 bit per GPIO number to initialize

]
4.1. Hardware APIs 158

Raspberry Pi Pico-series C/C++ SDK
]

4.1.10.7.24. gpio_is_dir_out
static bool gpio_is_dir_out (uint gpio) [inline], [static]
Check if a specific GPIO direction is OUT.
Parameters
gpio GPIO number
Returns

true if the direction for the pin is OUT

4.1.10.7.25. gpio_is_input_hysteresis_enabled

bool gpio_is_input_hysteresis_enabled (uint gpio)

Determine whether input hysteresis is enabled on a specified GPIO.
See also

gpio_set_input_hysteresis_enabled

Parameters

gpio GPIO number

4.1.10.7.26. gpio_is_pulled_down
static bool gpio_is_pulled_down (uint gpio) [inline], [static]
Determine if the specified GPIO is pulled down.
Parameters
gpio GPIO number
Returns

true if the GPIO is pulled down

4.1.10.7.27. gpio_is_pulled_up
static bool gpio_is_pulled_up (uint gpio) [inline], [static]
Determine if the specified GPIO is pulled up.
Parameters
gpio GPIO number
Returns

true if the GPIO is pulled up

4.1.10.7.28. gpio_pull_down
static void gpio_pull_down (uint gpio) [inline], [static]
Set specified GPIO to be pulled down.
Parameters
gpio GPIO number

]
4.1. Hardware APIs 159

Raspberry Pi Pico-series C/C++ SDK

4.1.10.7.29. gpio_pull_up

static void gpio_pull_up (uint gpio) [inline], [static]
Set specified GPIO to be pulled up.
Parameters

gpio GPIO number

4.1.10.7.30. gpio_put

static void gpio_put (uint gpio, bool value) [inline], [static]

Drive a single GPIO high/low.

Parameters
gpio GPIO number
value If false clear the GPIO, otherwise set it.

4.1.10.7.31. gpio_put_all

static void gpio_put_all (uint32_t value) [inline], [static]
Drive all pins simultaneously.

Parameters

value Bitmask of GPIO values to change

4.1.10.7.32. gpio_put_all64

static void gpio_put_all6é4 (uint64_t value) [inline], [static]
Drive all pins simultaneously.
Parameters

value Bitmask of GPIO values to change

4.1.10.7.33. gpio_put_masked

static void gpio_put_masked (uint32_t mask, uint32_t value) [inline], [static]

Drive GPIOs high/low depending on parameters.

Parameters
mask Bitmask of GPIO values to change
value Value to set

For each 1 bit in mask, drive that pin to the value given by corresponding bit in value, leaving other pins unchanged. Since
this uses the TOGL alias, it is concurrency-safe with e.g. an IRQ bashing different pins from the same core.

4.1.10.7.34. gpio_put_masked64

static void gpio_put_masked64 (uint64_t mask, uint64_t value) [inline], [static]

Drive GPIOs high/low depending on parameters.

4.1. Hardware APIs 160

Raspberry Pi Pico-series C/C++ SDK
]

Parameters
mask Bitmask of GPIO values to change
value Value to set

For each 1 bit in mask, drive that pin to the value given by corresponding bit in value, leaving other pins unchanged. Since
this uses the TOGL alias, it is concurrency-safe with e.g. an IRQ bashing different pins from the same core.

4.1.10.7.35. gpio_put_masked_n

static void gpio_put_masked_n (uint n, uint32_t mask, uint32_t value) [inline], [static]

Drive GPIOs high/low depending on parameters.

Parameters
n the base GPIO index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.
mask Bitmask of GPIO values to change
value Value to set

For each 1 bit in mask, drive that pin to the value given by corresponding bit in value, leaving other pins unchanged. Since
this uses the TOGL alias, it is concurrency-safe with e.g. an IRQ bashing different pins from the same core.

4.1.10.7.36. gpio_remove_raw_irq_handler
static void gpio_remove_raw_irq_handler (uint gpio, irq_handler_t handler) [inline], [static]
Removes a raw GPIO IRQ handler for the specified GPIO on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irq_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method removes such a callback, and enables the "default” callback for the specified GPIO.

Parameters
gpio the GPIO number that will now be passed to the default callback for this core
handler the handler to remove from the list of GPIO IRQ handlers for this core

4.1.10.7.37. gpio_remove_raw_irq_handler_masked
void gpio_remove_raw_irq_handler_masked (uint32_t gpio_mask, irq_handler_t handler)
Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irg_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method removes such a callback, and enables the "default” callback for the specified GPIOs.

Parameters
gpio_mask a bit mask of the GPIO numbers that will now be passed to the default callback for this core
handler the handler to remove from the list of GPIO IRQ handlers for this core

4.1.10.7.38. gpio_remove_raw_irq_handler_masked64

void gpio_remove_raw_irq_handler_masked64 (uint64_t gpio_mask, irq_handler_t handler)

]
4.1. Hardware APIs 161

Raspberry Pi Pico-series C/C++ SDK
]

Removes a raw GPIO IRQ handler for the specified GPIOs on the current core.

In addition to the default mechanism of a single GPIO IRQ event callback per core (see gpio_set_irg_callback), it is
possible to add explicit GPIO IRQ handlers which are called independent of the default event callback.

This method removes such a callback, and enables the "default" callback for the specified GPIOs.

Parameters
gpio_mask a bit mask of the GP10 numbers that will now be passed to the default callback for this core
handler the handler to remove from the list of GPIO IRQ handlers for this core

4.1.10.7.39. gpio_set_dir
static void gpio_set_dir (uint gpio, bool out) [inline], [static]
Set a single GPIO direction.
Parameters
gpio GPIO number

out true for out, false for in

4.1.10.7.40. gpio_set_dir_all_bits

static void gpio_set_dir_all_bits (uint32_t values) [inline], [static]
Set direction of all pins simultaneously.

Parameters

values individual settings for each gpio; for GPIO N, bit N is 1 for out, 0 for in

4.1.10.7.41. gpio_set_dir_all_bits64

static void gpio_set_dir_all_bits64 (uint64_t values) [inline], [static]
Set direction of all pins simultaneously.

Parameters

values individual settings for each gpio; for GPIO N, bit N is 1 for out, 0 for in

4.1.10.7.42. gpio_set_dir_in_masked

static void gpio_set_dir_in_masked (uint32_t mask) [inline], [static]
Set a number of GPIOs to input.

Parameters

mask Bitmask of GPIO to set to input

4.1.10.7.43. gpio_set_dir_in_masked64
static void gpio_set_dir_in_masked64 (uint64_t mask) [inline], [static]
Set a number of GPIOs to input.

Parameters

]
4.1. Hardware APIs 162

Raspberry Pi Pico-series C/C++ SDK
]

mask Bitmask of GPIO to set to input

4.1.10.7.44. gpio_set_dir_masked

static void gpio_set_dir_masked (uint32_t mask, uint32_t value) [inline], [static]

Set multiple GPIO directions.

Parameters
mask Bitmask of GPIO to set to input, as bits 0-29
value Values to set

For each 1 bit in "mask", switch that pin to the direction given by corresponding bit in "value’, leaving other pins
unchanged. E.g. gpio_set_dir_masked(0x3, 0x2); -> set pin 0 to input, pin 1 to output, simultaneously.

4.1.10.7.45. gpio_set_dir_masked64

static void gpio_set_dir_masked64 (uint64_t mask, uint64_t value) [inline], [static]

Set multiple GPIO directions.

Parameters
mask Bitmask of GPIO to set to input, as bits 0-29
value Values to set

For each 1 bit in "mask", switch that pin to the direction given by corresponding bit in "value", leaving other pins
unchanged. E.g. gpio_set_dir_masked(0x3, 0x2); -> set pin 0 to input, pin 1 to output, simultaneously.

4.1.10.7.46. gpio_set_dir_out_masked

static void gpio_set_dir_out_masked (uint32_t mask) [inline], [static]
Set a number of GPIOs to output.

Switch all GPIOs in "mask" to output

Parameters

mask Bitmask of GPIO to set to output

4.1.10.7.47. gpio_set_dir_out_masked64

static void gpio_set_dir_out_masked64 (uint64_t mask) [inline], [static]
Set a number of GPIOs to output.

Switch all GPIOs in "mask" to output

Parameters

mask Bitmask of GPIO to set to output

4.1.10.7.48. gpio_set_dormant_irq_enabled

void gpio_set_dormant_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)
Enable dormant wake up interrupt for specified GPIO and events.
This configures IRQs to restart the XOSC or ROSC when they are disabled in dormant mode

]
4.1. Hardware APIs 163

Raspberry Pi Pico-series C/C++ SDK
]

Parameters
gpio GPIO number
event_mask Which events will cause an interrupt. See gpio_irq_level for details.
enabled Enable/disable flag

4.1.10.7.49. gpio_set_drive_strength
void gpio_set_drive_strength (uint gpio, enum gpio_drive_strength drive)
Set drive strength for a specified GPIO.
See also
gpio_get_drive_strength
Parameters
gpio GPIO number

drive GPIO output drive strength

4.1.10.7.50. gpio_set_function
void gpio_set_function (uint gpio, gpio_function_t fn)
Select GPIO function.
Parameters
gpio GPIO number

fn Which GPIO function select to use from list gpio_function

4.1.10.7.51. gpio_set_function_masked
void gpio_set_function_masked (uint32_t gpio_mask, gpio_function_t fn)
Select the function for multiple GPIOs.
See also
gpio_set_function
Parameters
gpio_mask Mask with 1 bit per GPIO number to set the function for

fn Which GPIO function select to use from list gpio_function

4.1.10.7.52. gpio_set_function_masked64

void gpio_set_function_masked64 (uint64_t gpio_mask, gpio_function_t fn)
Select the function for multiple GPIOs.

See also

gpio_set_function

Parameters

gpio_mask Mask with 1 bit per GPIO number to set the function for

]
4.1. Hardware APIs 164

Raspberry Pi Pico-series C/C++ SDK
]

fn Which GPIO function select to use from list gpio_function

4.1.10.7.53. gpio_set_inover

void gpio_set_inover (uint gpio, uint value)

Select GPIO input override.

Parameters
gpio GPIO number
value See gpio_override

4.1.10.7.54. gpio_set_input_enabled

void gpio_set_input_enabled (uint gpio, bool enabled)

Enable GPIO input.

Parameters
gpio GPIO number
enabled true to enable input on specified GPIO

4.1.10.7.55. gpio_set_input_hysteresis_enabled
void gpio_set_input_hysteresis_enabled (uint gpio, bool enabled)
Enable/disable GPIO input hysteresis (Schmitt trigger)

Enable or disable the Schmitt trigger hysteresis on a given GPIO. This is enabled on all GPIOs by default. Disabling input
hysteresis can lead to inconsistent readings when the input signal has very long rise or fall times, but slightly reduces
the GPIO’s input delay.

See also

gpio_is_input_hysteresis_enabled

Parameters
gpio GPIO number
enabled true to enable input hysteresis on specified GPIO

4.1.10.7.56. gpio_set_irq_callback
void gpio_set_irq_callback (gpio_irq_callback_t callback)
Set the generic callback used for GPIO IRQ events for the current core.

This function sets the callback used for all GPIO IRQs on the current core that are not explicitly hooked via
gpio_add_raw_irg_handler or other gpio_add_raw_irq_handler_ functions.

This function is called with the GPIO number and event mask for each of the (not explicitly hooked) GPIOs that have
events enabled and that are pending (see gpio_get_irq_event_mask).

]
4.1. Hardware APIs 165

Raspberry Pi Pico-series C/C++ SDK

© NOTE

The 10 IRQs are independent per-processor. This function affects the processor that calls the function.

Parameters

callback default user function to call on GPIO irq. Note only one of these can be set per processor.

4.1.10.7.57. gpio_set_irq_enabled

void gpio_set_irq_enabled (uint gpio, uint32_t event_mask, bool enabled)
Enable or disable specific interrupt events for specified GPIO.

This function sets which GPIO events cause a GPIO interrupt on the calling core. See gpio_set_irg_callback,
gpio_set_irg_enabled_with_callback and gpio_add_raw_irg_handler to set up a GPIO interrupt handler to handle the
events.

© NoTE

The 10 IRQs are independent per-processor. This configures the interrupt events for the processor that calls the

function.
Parameters
gpio GPIO number
event_mask Which events will cause an interrupt
enabled Enable or disable flag

Events is a bitmask of the following gpio_irg_level values:

bit constant interrupt

0 GPIO_IRQ_LEVEL_LOW Continuously while level is low

1 GPIO_IRQ_LEVEL_HIGH Continuously while level is high

2 GPIO_IRQ_EDGE_FALL On each transition from high to low
3 GPIO_IRQ_EDGE_RISE On each transition from low to high

which are specified in gpio_irq_level

4.1.10.7.58. gpio_set_irq_enabled_with_callback

void gpio_set_irq_enabled_with_callback (uint gpio, uint32_t event_mask, bool enabled, gpio_irq_callback_t callback)
Convenience function which performs multiple GPIO IRQ related initializations.
This method is a slightly eclectic mix of initialization, that:

* Updates whether the specified events for the specified GPIO causes an interrupt on the calling core based on the
enable flag.

® Sets the callback handler for the calling core to callback (or clears the handler if the callback is NULL).

® Enables GPIO IRQs on the current core if enabled is true.
This method is commonly used to perform a one time setup, and following that any additional IRQs/events are enabled
via gpio_set_irg_enabled. All GPIOs/events added in this way on the same core share the same callback; for multiple
independent handlers for different GPIOs you should use gpio_add_raw_irq_handler and related functions.

4.1. Hardware APIs 166

Raspberry Pi Pico-series C/C++ SDK
]

This method is equivalent to:

1 gpio_set_irq_enabled(gpio, event_mask, enabled);
2 gpio_set_irqg_callback(callback);
3 if (enabled) irqg_set_enabled(IO_IRQ_BANK@, true);

© NoOTE

The 10 IRQs are independent per-processor. This method affects only the processor that calls the function.

Parameters
gpio GPIO number
event_mask Which events will cause an interrupt. See gpio_irq_level for details.
enabled Enable or disable flag
callback user function to call on GPIO irq. if NULL, the callback is removed

4.1.10.7.59. gpio_set_irqover

void gpio_set_irqover (uint gpio, uint value)
Set GPIO IRQ override.

Optionally invert a GPIO IRQ signal, or drive it high or low

Parameters
gpio GPIO number
value See gpio_override

4.1.10.7.60. gpio_set_mask

static void gpio_set_mask (uint32_t mask) [inline], [static]
Drive high every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to set

4.1.10.7.61. gpio_set_mask64

static void gpio_set_mask64 (uint64_t mask) [inline], [static]
Drive high every GPIO appearing in mask.
Parameters

mask Bitmask of GPIO values to set

4.1.10.7.62. gpio_set_mask_n

static void gpio_set_mask_n (uint n, uint32_t mask) [inline], [static]

Drive high every GPIO appearing in mask.

]
4.1. Hardware APIs 167

Raspberry Pi Pico-series C/C++ SDK
]

Parameters
n the base GPIO index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.

mask Bitmask of 32 GPIO values to set

4.1.10.7.63. gpio_set_oeover

void gpio_set_oeover (uint gpio, uint value)

Select GPIO output enable override.

Parameters
gpio GPIO number
value See gpio_override

4.1.10.7.64. gpio_set_outover

void gpio_set_outover (uint gpio, uint value)

Set GPIO output override.

Parameters
gpio GPIO number
value See gpio_override

4.1.10.7.65. gpio_set_pulls

void gpio_set_pulls (uint gpio, bool up, bool down)
Select up and down pulls on specific GPIO.
Parameters

gpio GPIO number

up If true set a pull up on the GPIO
down If true set a pull down on the GPIO
© NOTE

On the RP2040, setting both pulls enables a "bus keep" function, i.e. a weak pull to whatever is current high/low state
of GPIO.

4.1.10.7.66. gpio_set_slew_rate
void gpio_set_slew_rate (uint gpio, enum gpio_slew_rate slew)
Set slew rate for a specified GPIO.
See also
gpio_get_slew_rate
Parameters
gpio GPIO number

slew GPIO output slew rate

]
4.1. Hardware APIs 168

Raspberry Pi Pico-series C/C++ SDK
]

4.1.10.7.67. gpio_xor_mask

static void gpio_xor_mask (uint32_t mask) [inline], [static]
Toggle every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to toggle

4.1.10.7.68. gpio_xor_mask64

static void gpio_xor_mask64 (uint64_t mask) [inline], [static]
Toggle every GPIO appearing in mask.

Parameters

mask Bitmask of GPIO values to toggle

4.1.10.7.69. gpio_xor_mask_n
static void gpio_xor_mask_n (uint n, uint32_t mask) [inline], [static]
Toggle every GPIO appearing in mask.
Parameters
n the base GPIO index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.

mask Bitmask of 32 GPIO values to toggle

4.1.11. hardware_hazard3

Accessors for Hazard3-specific RISC-V CSRs, and intrinsics for Hazard3 custom instructions.

4.1.12. hardware_i2c

12C Controller API.

4.1.12.1. Detailed Description

The 12C bus is a two-wire serial interface, consisting of a serial data line SDA and a serial clock SCL. These wires carry
information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can
operate as either a “transmitter” or “receiver”, depending on the function of the device. Devices can also be considered
as masters or slaves when performing data transfers. A master is a device that initiates a data transfer on the bus and
generates the clock signals to permit that transfer. The first byte in the data transfer always contains the 7-bit address
and a read/write bit in the LSB position. This API takes care of toggling the read/write bit. After this, any device
addressed is considered a slave.

This API allows the controller to be set up as a master or a slave using the i2c_set_slave_mode function.

The external pins of each controller are connected to GPIO pins as defined in the GPIO muxing table in the datasheet.
The muxing options give some |0 flexibility, but each controller external pin should be connected to only one GPIO.

Note that the controller does NOT support High speed mode or Ultra-fast speed mode, the fastest operation being fast
mode plus at up to 1000Kb/s.

See the datasheet for more information on the 12C controller and its usage.

]
4.1. Hardware APIs 169

Raspberry Pi Pico-series C/C++ SDK
]

4.1.12.1.1. Example

1 // Sweep through all 7-bit I2C addresses, to see if any slaves are present on
2 // the I2C bus. Print out a table that looks like this:
3 //
4 // I2C Bus Scan
57// 0123456789 ABCDEF
6 // 00
7// 16 . . @.
8//20
9//30.
10 // 46 .
11 // 56 .
12 // 60 .
183 //70
14 // E.g. if addresses 0x12 and 0x34 were acknowledged.
15
16 #include <stdio.h>
17 #include "pico/stdlib.h"
18 #include "pico/binary_info.h"
19 #include "hardware/i2c.h"
20
21 // I2C reserves some addresses for special purposes. We exclude these from the scan.

N
N

// These are any addresses of the form 060 6xxx or 111 T1xxx

23 bool reserved_addr(uint8_t addr) {

24 return (addr & 6x78) == 0 || (addr & @x78) == 0x78;

25 }

26

27 int main() {

28 // Enable UART so we can print status output

29 stdio_init_all();

30 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||

I'defined(PICO_DEFAULT_I2C_SCL_PIN)
31 #warning i2c/bus_scan example requires a board with I2C pins

32 puts("Default I2C pins were not defined");

33 #else

34 // This example will use I2C@ on the default SDA and SCL pins (GP4, GP5 on a Pico)

35 i2c_init(i2c_default, 1060 * 1000);

36 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

37 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

38 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

39 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

40 // Make the I2C pins available to picotool

41 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));

42

43 printf("\nI2C Bus Scan\n");

44 printf(" e 1 2 3 4 5 6 7 8 9 A B C D E F\n");

45

46 for (int addr = 0; addr < (1 << 7); ++addr) {

47 if (addr % 16 == @) {

48 printf("%02x ", addr);

49 }

50

51 // Perform a 1-byte dummy read from the probe address. If a slave

52 // acknowledges this address, the function returns the number of bytes

53 // transferred. If the address byte is ignored, the function returns

54 // -1.

55

56 // Skip over any reserved addresses.

57 int ret;

58 uint8_t rxdata;

]
4.1. Hardware APIs 170

Raspberry Pi Pico-series C/C++ SDK

i2c_read_blocking(i2c_default, addr, &rxdata, 1, false);

59 if (reserved_addr(addr))

60 ret = PICO_ERROR_GENERIC;
61 else

62 ret =

63

64 printf(ret <@ 2 "." : "@");
65 printf(addr % 16 == 15 2 "\n" : " ");
66 }

67 printf("Done.\n");

68 return 0;

69 #endif

70 }

4.1.12.2. Macros

® j#define I2C_NUM(i2c)

® ftdefine I2C_INSTANCE(num)

® fidefine I2C_DREQ_NUM(i2c, is_tx)

4.1.12.3. Functions

uint i2c_init (i2c_inst_t *i2c, uint baudrate)

Initialise the 12C HW block.

void i2c_deinit (i2c_inst_t *i2c)

Disable the 12C HW block.

uint i2c_set_baudrate (i2c_inst_t *i2c¢, uint baudrate)

Set 12C baudrate.

void i2c_set_slave_mode (i2c_inst_t *i2c, bool slave, uint8_t addr)

Set 12C port to slave mode.

static uint i2c_get_index (i2c_inst_t *i2c)

Convert I12C instance to hardware instance number.

static i2c_hw_t * i2c_get_hw (i2c_inst_t *i2c)

Return pointer to structure containing i2c hardware registers.

static i2c_inst_t * i2c_get_instance (uint num)

Convert 12C hardware instance number to 12C instance.

int i2c_write_blocking_until (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, absolute_time_t

until)

Attempt to write specified number of bytes to address, blocking until the specified absolute time is reached.

int i2c_read_blocking_until (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, absolute_time_t until)

Attempt to read specified number of bytes from address, blocking until the specified absolute time is reached.

static int i2c_write_timeout_us (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, uint

timeout_us)

Attempt to write specified number of bytes to address, with timeout.

static int i2c_read_timeout_us (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, uint timeout_us)

Attempt to read specified number of bytes from address, with timeout.

4.1. Hardware APIs

171

Raspberry Pi Pico-series C/C++ SDK
]

int i2c_write_blocking (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop)

Attempt to write specified number of bytes to address, blocking.

int i2c_read_blocking (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop)

Attempt to read specified number of bytes from address, blocking.

static size_t i2c_get_write_available (i2c_inst_t *i2c)

Determine non-blocking write space available.

static size_t i2c_get_read_available (i2c_inst_t *i2c)

Determine number of bytes received.

static void i2c_write_raw_blocking (i2c_inst_t *i2c, const uint8_t *src, size_t len)

Write direct to TX FIFO.

static void i2c_read_raw_blocking (i2c_inst_t *i2c, uint8_t *dst, size_t len)

Read direct from RX FIFO.

static uint8_t i2c_read_byte_raw (i2c_inst_t *i2c)

Pop a byte from 12C Rx FIFO.

static void i2c_write_byte_raw (i2c_inst_t *i2c, uint8_t value)

Push a byte into I2C Tx FIFO.

static vint i2c_get_dreq (i2c_inst_t *i2c, bool is_tx)

Return the DREQ to use for pacing transfers to/from a particular I12C instance.

4.1.12.3.1. i2c0_inst

i2c_inst_t i2c@_inst
The 12C identifiers for use in 12C functions.

e.g. i2c_init(i2c0, 48000)

4.1.12.4. Macro Definition Documentation

4.1.12.4.1. 12C_NUM

#define I2C_NUM(i2c)

Returns the I12C number for a 12C instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.12.4.2. 12C_INSTANCE

#define I2C_INSTANCE(num)
Returns the 12C instance with the given 12C number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.12.4.3. 12C_DREQ_NUM

#define I2C_DREQ_NUM(i2c, is_tx)

]
4.1. Hardware APIs 172

Raspberry Pi Pico-series C/C++ SDK
]

Returns the dreq_num_t used for pacing DMA transfers to or from this 12C instance. If is_tx is true, then it is for transfers
to the I2C instance else for transfers from the 12C instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.12.5. Function Documentation

4.1.12.5.1. i2c_deinit
void i2c_deinit (i2c_inst_t * i2c)
Disable the 12C HW block.
Parameters

i2c Either i2c0 ori2c1

Disable the 12C again if it is no longer used. Must be reinitialised before being used again.

4.1.12.5.2. i2c_get_dreq

static uint i2c_get_dreq (i2c_inst_t * i2c, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular I12C instance.

Parameters
i2c Either i2c0 ori2c1
is_tx true for sending data to the 12C instance, false for receiving data from the 12C instance

4.1.12.5.3. i2c_get_hw
static i2c_hw_t * i2c_get_hw (i2c_inst_t * i2c) [inline], [static]
Return pointer to structure containing i2c hardware registers.
Parameters

i2c I12C instance
Returns

pointer to i2c_hw_t

4.1.12.5.4. i2c_get_index

static uint i2c_get_index (i2c_inst_t * i2c) [inline], [static]
Convert 12C instance to hardware instance number.
Parameters

i2c I12C instance
Returns

Number of 12C, 0 or 1.

]
4.1. Hardware APIs 173

Raspberry Pi Pico-series C/C++ SDK
]

4.1.12.5.5. i2c_get_instance
static i2c_inst_t * i2c_get_instance (uint num) [inline], [static]
Convert 12C hardware instance number to 12C instance.
Parameters

num Number of 12C, 0 or 1
Returns

12C hardware instance

4.1.12.5.6. i2c_get_read_available
static size_t i2c_get_read_available (i2c_inst_t * i2c) [inline], [static]
Determine number of bytes received.
Parameters
i2c Either i2c0 ori2c1
Returns

0 if no data available, if return is nonzero at least that many bytes can be read without blocking.

4.1.12.5.7. i2c_get_write_available
static size_t i2c_get_write_available (i2c_inst_t * i2c¢) [inline], [static]
Determine non-blocking write space available.
Parameters
i2c Either i2c0 ori2c1
Returns

0 if no space is available in the 12C to write more data. If return is nonzero, at least that many bytes can be written
without blocking.

4.1.12.5.8. i2c_init
uint i2c_init (i2c_inst_t * i2c, uint baudrate)
Initialise the 12C HW block.

Put the 12C hardware into a known state, and enable it. Must be called before other functions. By default, the 12C is
configured to operate as a master.

The 12C bus frequency is set as close as possible to requested, and the actual rate set is returned
Parameters

i2c Either i2c0 or i2c1

baudrate Baudrate in Hz (e.g. 100kHz is 100000)
Returns

Actual set baudrate

]
4.1. Hardware APIs 174

Raspberry Pi Pico-series C/C++ SDK
]

4.1.12.5.9. i2c_read_blocking

int i2c_read_blocking (i2c_inst_t * i2c, uint8_t addr, uint8_t * dst, size_t len, bool nostop)

Attempt to read specified number of bytes from address, blocking.

Parameters
i2c Either i2c0 or i2c1
addr 7-bit address of device to read from
dst Pointer to buffer to receive data
len Length of data in bytes to receive
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged or no device present.

4.1.12.5.10. i2c_read_blocking_until

int i2c_read_blocking_until (i2c_inst_t * i2c, uint8_t addr, uint8_t * dst, size_t len, bool nostop, absolute_time_t
until)

Attempt to read specified number of bytes from address, blocking until the specified absolute time is reached.

Parameters
i2c Either i2c0 ori2c1
addr 7-bit address of device to read from
dst Pointer to buffer to receive data
len Length of data in bytes to receive
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
until The absolute time that the block will wait until the entire transaction is complete.
Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.12.5.11. i2c_read_byte_raw
static uint8_t i2c_read_byte_raw (i2c_inst_t * i2c) [inline], [static]
Pop a byte from 12C Rx FIFO.
This function is non-blocking and assumes the Rx FIFO isn't empty.
Parameters

i2c 12C instance.
Returns

uint8_t Byte value.

]
4.1. Hardware APIs 175

Raspberry Pi Pico-series C/C++ SDK
]

4.1.12.5.12. i2c_read_raw_blocking
static void i2c_read_raw_blocking (i2c_inst_t * i2c, uint8_t * dst, size_t len) [inline], [static]
Read direct from RX FIFO.
Parameters
i2c Either i2c0 ori2c1
dst Buffer to accept data
len Number of bytes to read

Reads directly from the 12C RX FIFO which is mainly useful for slave-mode operation.

4.1.12.5.13. i2c_read_timeout_us

static int i2c_read_timeout_us (i2c_inst_t * i2c¢, uint8_t addr, uint8_t * dst, size_t len, bool nostop, uint timeout_us)
[inline], [static]

Attempt to read specified number of bytes from address, with timeout.

Parameters
i2c Either i2c0 or i2c1
addr 7-bit address of device to read from
dst Pointer to buffer to receive data
len Length of data in bytes to receive
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
timeout_us The time that the function will wait for the entire transaction to complete
Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.12.5.14. i2c_set_baudrate
uint i2c_set_baudrate (i2c_inst_t * i2c, uint baudrate)
Set 12C baudrate.

Set 12C bus frequency as close as possible to requested, and return actual rate set. Baudrate may not be as exactly
requested due to clocking limitations.

Parameters

i2c Either i2c0 or i2c1

baudrate Baudrate in Hz (e.g. 100kHz is 100000)
Returns

Actual set baudrate

4.1.12.5.15. i2c_set_slave_mode
void i2c_set_slave_mode (i2c_inst_t * i2c, bool slave, uint8_t addr)
Set 12C port to slave mode.

]
4.1. Hardware APIs 176

Raspberry Pi Pico-series C/C++ SDK
]

Parameters
i2c Either i2¢c0 ori2c1
slave true to use slave mode, false to use master mode
addr If slave is true, set the slave address to this value

4.1.12.5.16. i2c_write_blocking

int i2c_write_blocking (i2c_inst_t * i2c, uint8_t addr, const uint8_t * src, size_t len, bool nostop)

Attempt to write specified number of bytes to address, blocking.

Parameters
i2c Either i2c0 ori2c1
addr 7-bit address of device to write to
sre Pointer to data to send
len Length of data in bytes to send
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present.

4.1.12.5.17. i2c_write_blocking_until

int i2c_write_blocking_until (i2c_inst_t * i2c, wuint8_t addr, const wuint8_t * src, size_t 1len, bool nostop,
absolute_time_t until)

Attempt to write specified number of bytes to address, blocking until the specified absolute time is reached.

Parameters
i2c Either i2c0 ori2c1
addr 7-bit address of device to write to
sre Pointer to data to send
len Length of data in bytes to send
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
until The absolute time that the block will wait until the entire transaction is complete. Note, an individual
timeout of this value divided by the length of data is applied for each byte transfer, so if the first or
subsequent bytes fails to transfer within that sub timeout, the function will return with an error.
Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.12.5.18. i2c_write_byte_raw

static void i2c_write_byte_raw (i2c_inst_t * i2c, uint8_t value) [inline], [static]

Push a byte into 12C Tx FIFO.

]
4.1. Hardware APIs 177

Raspberry Pi Pico-series C/C++ SDK
]

This function is non-blocking and assumes the Tx FIFO isn't full.

Parameters
i2c 12C instance.
value Byte value.

4.1.12.5.19. i2c_write_raw_blocking
static void i2c_write_raw_blocking (i2c_inst_t * i2c, const uint8_t * src, size_t len) [inline], [static]
Write direct to TX FIFO.
Parameters
i2c Either i2c0 or i2c1
sre Data to send
len Number of bytes to send

Writes directly to the 12C TX FIFO which is mainly useful for slave-mode operation.

4.1.12.5.20. i2c_write_timeout_us

static int i2c_write_timeout_us (i2c_inst_t * i2c¢, uint8_t addr, const uint8_t * src, size_t len, bool nostop, uint
timeout_us) [inline], [static]

Attempt to write specified number of bytes to address, with timeout.

Parameters
i2c Either i2c0 or i2c1
addr 7-bit address of device to write to
sre Pointer to data to send
len Length of data in bytes to send
nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next
transfer will begin with a Restart rather than a Start.
timeout_us The time that the function will wait for the entire transaction to complete. Note, an individual
timeout of this value divided by the length of data is applied for each byte transfer, so if the first or
subsequent bytes fails to transfer within that sub timeout, the function will return with an error.
Returns

Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.13. hardware_interp

Hardware Interpolator API.

4.1.13.1. Detailed Description

Each core is equipped with two interpolators (INTERPO and INTERP1) which can be used to accelerate tasks by
combining certain pre-configured simple operations into a single processor cycle. Intended for cases where the pre-
configured operation is repeated a large number of times, this results in code which uses both fewer CPU cycles and

]
4.1. Hardware APIs 178

Raspberry Pi Pico-series C/C++ SDK
]

fewer CPU registers in the time critical sections of the code.

The interpolators are used heavily to accelerate audio operations within the SDK, but their flexible configuration make it
possible to optimise many other tasks such as quantization and dithering, table lookup address generation, affine
texture mapping, decompression and linear feedback.

Please refer to the appropriate RP-series microcontroller datasheet for more information on the HW interpolators and
how they work.

4.1.13.2. Modules

interp_config

Interpolator configuration .

4.1.13.3. Functions

void interp_claim_lane (interp_hw_t *interp, uint lane)
Claim the interpolator lane specified.

void interp_claim_lane_mask (interp_hw_t *interp, uint lane_mask)
Claim the interpolator lanes specified in the mask.

void interp_unclaim_lane (interp_hw_t *interp, uint lane)
Release a previously claimed interpolator lane.

bool interp_lane_is_claimed (interp_hw_t *interp, uint lane)
Determine if an interpolator lane is claimed.

void interp_unclaim_lane_mask (interp_hw_t *interp, uint lane_mask)
Release previously claimed interpolator lanes.

static void interp_set_force_bits (interp_hw_t *interp, uint lane, uint bits)
Directly set the force bits on a specified lane.

void interp_save (interp_hw_t *interp, interp_hw_save_t *saver)
Save the specified interpolator state.

void interp_restore (interp_hw_t *interp, interp_hw_save_t *saver)
Restore an interpolator state.

static void interp_set_base (interp_hw_t *interp, uint lane, uint32_t val)

Sets the interpolator base register by lane.

static uint32_t interp_get_base (interp_hw_t *interp, uint lane)
Gets the content of interpolator base register by lane.
static void interp_set_base_both (interp_hw_t *interp, uint32_t val)
Sets the interpolator base registers simultaneously.
static void interp_set_accumulator (interp_hw_t *interp, uint lane, uint32_t val)
Sets the interpolator accumulator register by lane.
static uint32_t interp_get_accumulator (interp_hw_t *interp, uint lane)
Gets the content of the interpolator accumulator register by lane.
static uint32_t interp_pop_lane_result (interp_hw_t *interp, uint lane)

Read lane result, and write lane results to both accumulators to update the interpolator.

]
4.1. Hardware APIs 179

Raspberry Pi Pico-series C/C++ SDK
]

static uint32_t interp_peek_lane_result (interp_hw_t *interp, uint lane)

Read lane result.

static uint32_t interp_pop_full_result (interp_hw_t *interp)

Read lane result, and write lane results to both accumulators to update the interpolator.

static vint32_t interp_peek_full_result (interp_hw_t *interp)

Read lane result.

static void interp_add_accumulater (interp_hw_t *interp, uint lane, uint32_t val)

Add to accumulator.

static uint32_t interp_get_raw (interp_hw_t *interp, uint lane)

Get raw lane value.

4.1.13.4. Function Documentation

4.1.13.4.1. interp_add_accumulater

static void interp_add_accumulater (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Add to accumulator.

Atomically add the specified value to the accumulator on the specified lane

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1
val Value to add

4.1.13.4.2. interp_claim_lane

void interp_claim_lane (interp_hw_t * interp, uint lane)

Claim the interpolator lane specified.

Use this function to claim exclusive access to the specified interpolator lane.

This function will panic if the lane is already claimed.

Parameters
interp Interpolator on which to claim a lane. interp0 or interp1
lane The lane number, 0 or 1.

4.1.13.4.3. interp_claim_lane_mask

void interp_claim_lane_mask (interp_hw_t * interp, uint lane_mask)

Claim the interpolator lanes specified in the mask.

Parameters
interp Interpolator on which to claim lanes. interp0 or interp1
lane_mask Bit pattern of lanes to claim (only bits 0 and 1 are valid)

]
4.1. Hardware APIs 180

Raspberry Pi Pico-series C/C++ SDK
]

4.1.13.4.4. interp_get_accumulator

static uint32_t interp_get_accumulator (interp_hw_t * interp, uint lane) [inline], [static]

Gets the content of the interpolator accumulator register by lane.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1

Returns

The current content of the register

4.1.13.4.5. interp_get_base

static uint32_t interp_get_base (interp_hw_t * interp, uint lane) [inline], [static]

Gets the content of interpolator base register by lane.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1 or 2

Returns

The current content of the lane base register

4.1.13.4.6. interp_get_raw
static uint32_t interp_get_raw (interp_hw_t * interp, uint lane) [inline], [static]
Get raw lane value.

Returns the raw shift and mask value from the specified lane, BASEQ is NOT added

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1

Returns

The raw shift/mask value

4.1.13.4.7. interp_lane_is_claimed

bool interp_lane_is_claimed (interp_hw_t * interp, uint lane)

Determine if an interpolator lane is claimed.

Parameters
interp Interpolator whose lane to check
lane The lane number, 0 or 1

Returns

true if claimed, false otherwise

See also

]
4.1. Hardware APIs 181

Raspberry Pi Pico-series C/C++ SDK
]

interp_claim_lane

interp_claim_lane_mask

4.1.13.4.8. interp_peek_full_result
static uint32_t interp_peek_full_result (interp_hw_t * interp) [inline], [static]
Read lane result.
Parameters
interp Interpolator instance, interp0 or interp1.
Returns

The content of the FULL register

4.1.13.4.9. interp_peek_lane_result

static uint32_t interp_peek_lane_result (interp_hw_t * interp, uint lane) [inline], [static]

Read lane result.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1

Returns

The content of the lane result register

4.1.13.4.10. interp_pop_full_result
static uint32_t interp_pop_full_result (interp_hw_t * interp) [inline], [static]
Read lane result, and write lane results to both accumulators to update the interpolator.
Parameters
interp Interpolator instance, interp0 or interp1.
Returns

The content of the FULL register

4.1.13.4.11. interp_pop_lane_result

static uint32_t interp_pop_lane_result (interp_hw_t * interp, uint lane) [inline], [static]

Read lane result, and write lane results to both accumulators to update the interpolator.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1

Returns

The content of the lane result register

]
4.1. Hardware APIs 182

Raspberry Pi Pico-series C/C++ SDK

4.1.13.4.12. interp_restore

void interp_restore (interp_hw_t * interp, interp_hw_save_t * saver)

Restore an interpolator state.

Parameters
interp Interpolator instance, interp0 or interp1.
saver Pointer to save structure to reapply to the specified interpolator

4.1.13.4.13. interp_save
void interp_save (interp_hw_t * interp, interp_hw_save_t * saver)
Save the specified interpolator state.

Can be used to save state if you need an interpolator for another purpose, state can then be recovered afterwards and
continue from that point

Parameters
interp Interpolator instance, interp0 or interp1.
saver Pointer to the save structure to fill in

4.1.13.4.14. interp_set_accumulator

static void interp_set_accumulator (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Sets the interpolator accumulator register by lane.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1
val The value to apply to the register

4.1.13.4.15. interp_set_base

static void interp_set_base (interp_hw_t * interp, uint lane, uint32_t val) [inline], [static]

Sets the interpolator base register by lane.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane number, 0 or 1 or 2
val The value to apply to the register

4.1.13.4.16. interp_set_base_both
static void interp_set_base_both (interp_hw_t * interp, uint32_t val) [inline], [static]
Sets the interpolator base registers simultaneously.

The lower 16 bits go to BASEOQ, upper bits to BASE1 simultaneously. Each half is sign-extended to 32 bits if that lane’s
SIGNED flag is set.

Parameters

4.1. Hardware APIs 183

Raspberry Pi Pico-series C/C++ SDK

interp Interpolator instance, interp0 or interp1.

val The value to apply to the register

4.1.13.4.17. interp_set_force_bits
static void interp_set_force_bits (interp_hw_t * interp, uint lane, uint bits) [inline], [static]
Directly set the force bits on a specified lane.

These bits are ORed into bits 29:28 of the lane result presented to the processor on the bus. There is no effect on the
internal 32-bit datapath.

Useful for using a lane to generate sequence of pointers into flash or SRAM, saving a subsequent OR or add operation.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane to set
bits The bits to set (bits 0 and 1, value range 0-3)

4.1.13.4.18. interp_unclaim_lane

void interp_unclaim_lane (interp_hw_t * interp, uint lane)

Release a previously claimed interpolator lane.

Parameters
interp Interpolator on which to release a lane. interp0 or interp1
lane The lane number, 0 or 1

4.1.13.4.19. interp_unclaim_lane_mask

void interp_unclaim_lane_mask (interp_hw_t * interp, uint lane_mask)
Release previously claimed interpolator lanes.

See also

interp_claim_lane_mask

Parameters
interp Interpolator on which to release lanes. interpO or interp1
1lane_mask Bit pattern of lanes to unclaim (only bits 0 and 1 are valid)

4.1.13.5. interp_config

Interpolator configuration .

4.1.13.5.1. Detailed Description

Each interpolator needs to be configured, these functions provide handy helpers to set up configuration structures.

4.1. Hardware APIs 184

Raspberry Pi Pico-series C/C++ SDK
]

4.1.13.5.2. Functions
static void interp_config_set_shift (interp_config *c, uint shift)
Set the interpolator shift value.

static void interp_config_set_mask (interp_config *c, uint mask_lsb, uint mask_msb)

Set the interpolator mask range.

static void interp_config_set_cross_input (interp_config *c, bool cross_input)

Enable cross input.

static void interp_config_set_cross_result (interp_config *c, bool cross_result)

Enable cross results.

static void interp_config_set_signed (interp_config *c, bool _signed)

Set sign extension.

static void interp_config_set_add_raw (interp_config *c, bool add_raw)

Set raw add option.

static void interp_config_set_blend (interp_config *c, bool blend)

Set blend mode.

static void interp_config_set_clamp (interp_config *c, bool clamp)

Set interpolator clamp mode (Interpolator 1 only)

static void interp_config_set_force_bits (interp_config *c, uint bits)

Set interpolator Force bits.

static interp_config interp_default_config (void)

Get a default configuration.

static void interp_set_config (interp_hw_t *interp, uint lane, interp_config *config)

Send configuration to a lane.

4.1.13.5.3. Function Documentation

interp_config_set_add_raw

static void interp_config_set_add_raw (interp_config * ¢, bool add_raw) [inline], [static]
Set raw add option.

When enabled, mask + shift is bypassed for LANEO result. This does not affect the FULL result.

Parameters
c Pointer to interpolation config
add_raw If true, enable raw add option.

interp_config_set_blend
static void interp_config_set_blend (interp_config * ¢, bool blend) [inline], [static]
Set blend mode.

If enabled, LANE1 result is a linear interpolation between BASEQ and BASE1, controlled by the 8 LSBs of lane 1 shift and
mask value (a fractional number between 0 and 255/256ths)

LANEQO result does not have BASEQ added (yields only the 8 LSBs of lane 1 shift+mask value)
FULL result does not have lane 1 shift+mask value added (BASE2 + lane 0 shift+mask)
LANET SIGNED flag controls whether the interpolation is signed or unsig

]
4.1. Hardware APIs 185

Raspberry Pi Pico-series C/C++ SDK
]

Parameters
c Pointer to interpolation config
blend Set true to enable blend mode.

interp_config_set_clamp

static void interp_config_set_clamp (interp_config * ¢, bool clamp) [inline], [static]
Set interpolator clamp mode (Interpolator 1 only)

Only present on INTERP1 on each core. If CLAMP mode is enabled:

® | ANEO result is a shifted and masked ACCUMO, clamped by a lower bound of BASEQ and an upper bound of
BASET.

® Signedness of these comparisons is determined by LANEO_CTRL_SIGNED

Parameters
c Pointer to interpolation config
clamp Set true to enable clamp mode

interp_config_set_cross_input
static void interp_config_set_cross_input (interp_config * ¢, bool cross_input) [inline], [static]
Enable cross input.

Allows feeding of the accumulator content from the other lane back in to this lanes shift+mask hardware. This will take
effect even if the interp_config_set_add_raw option is set as the cross input mux is before the shift+mask bypass

Parameters
c Pointer to interpolation config
cross_input If true, enable the cross input.

interp_config_set_cross_result
static void interp_config_set_cross_result (interp_config * ¢, bool cross_result) [inline], [static]
Enable cross results.

Allows feeding of the other lane’s result into this lane’s accumulator on a POP operation.

Parameters
c Pointer to interpolation config
cross_result If true, enables the cross result

interp_config_set_force_bits
static void interp_config_set_force_bits (interp_config * ¢, uint bits) [inline], [static]
Set interpolator Force bits.
ORed into bits 29:28 of the lane result presented to the processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate sequence of pointers into flash or SRAM
Parameters
c Pointer to interpolation config
bits Sets the force bits to that specified. Range 0-3 (two bits)
interp_config_set_mask
static void interp_config_set_mask (interp_config * ¢, uint mask_lsb, uint mask_msb) [inline], [static]

Set the interpolator mask range.

]
4.1. Hardware APIs 186

Raspberry Pi Pico-series C/C++ SDK
]

Sets the range of bits (least to most) that are allowed to pass through the interpolator

Parameters
c Pointer to interpolation config
mask_lsb The least significant bit allowed to pass
mask_msb The most significant bit allowed to pass

interp_config_set_shift
static void interp_config_set_shift (interp_config * ¢, uint shift) [inline], [static]
Set the interpolator shift value.
Sets the number of bits the accumulator is shifted before masking, on each iteration.
Parameters

c Pointer to an interpolator config

shift Number of bits
interp_config_set_signed
static void interp_config_set_signed (interp_config * ¢, bool _signed) [inline], [static]
Set sign extension.

Enables signed mode, where the shifted and masked accumulator value is sign-extended to 32 bits before adding to
BASE1, and LANET PEEK/POP results appear extended to 32 bits when read by processor.

Parameters

c Pointer to interpolation config

_signed If true, enables sign extension
interp_default_config
static interp_config interp_default_config (void) [inline], [static]
Get a default configuration.
Returns
A default interpolation configuration
interp_set_config
static void interp_set_config (interp_hw_t * interp, uint lane, interp_config * config) [inline], [static]
Send configuration to a lane.

If an invalid configuration is specified (ie a lane specific item is set on wrong lane), depending on setup this function

can panic.

Parameters
interp Interpolator instance, interp0 or interp1.
lane The lane to set
config Pointer to interpolation config

4.1.14. hardware_irq

Hardware interrupt handling API.

]
4.1. Hardware APIs 187

Raspberry Pi Pico-series C/C++ SDK
]

4.1.14.1. Detailed Description

The RP2040 uses the standard ARM nested vectored interrupt controller (NVIC).
Interrupts are identified by a number from 0 to 31.
On the RP2040, only the lower 26 IRQ signals are connected on the NVIC; IRQs 26 to 31 are tied to zero (never firing).

There is one NVIC per core, and each core’s NVIC has the same hardware interrupt lines routed to it, with the exception
of the 10 interrupts where there is one |0 interrupt per bank, per core. These are completely independent, so, for
example, processor 0 can be interrupted by GPIO 0 in bank 0, and processor 1 by GPIO 1 in the same bank.

O NoOTE

That all IRQ APIs affect the executing core only (i.e. the core calling the function).

You should not enable the same (shared) IRQ number on both cores, as this will lead to race conditions or starvation
of one of the cores. Additionally, don’t forget that disabling interrupts on one core does not disable interrupts on the
other core.

There are three different ways to set handlers for an IRQ:

e Calling irq_add_shared_handler() at runtime to add a handler for a multiplexed interrupt (e.g. GPIO bank) on the
current core. Each handler, should check and clear the relevant hardware interrupt source

® Calling irq_set_exclusive_handler() at runtime to install a single handler for the interrupt on the current core

® Defining the interrupt handler explicitly in your application (e.g. by defining void isr_dma_o will make that function
the handler for the DMA_IRQ_0 on core 0, and you will not be able to change it using the above APIs at runtime).
Using this method can cause link conflicts at runtime, and offers no runtime performance benefit (i.e, it should not
generally be used).

© NOTE

If an IRQ is enabled and fires with no handler installed, a breakpoint will be hit and the IRQ number will be in register
r0.

4.1.14.1.1. Interrupt Numbers

A set of defines is available (intctrl.h) with these names to avoid using the numbers directly.

On RP2040 the interrupt numbers are as follows:

IRQ Interrupt Source
0 TIMER_IRQ_0
1 TIMER_IRQ_1
2 TIMER_IRQ_2
3 TIMER_IRQ_3
4 PWM_IRQ_WRAP
5 USBCTRL_IRQ
6 XIP_IRQ

7 PIO0_IRQ_0

8 PIO0_IRQ_1

9 PIO1_IRQ_0
10 PIOT_IRQ_1

]
4.1. Hardware APIs 188

Raspberry Pi Pico-series C/C++ SDK

11 DMA_IRQ_0

12 DMA_IRQ_1

13 10_IRQ_BANKO
14 10_IRQ_QSPI

15 SIO_IRQ_PROCO
16 SIO_IRQ_PROC1
17 CLOCKS_IRQ
18 SPIO_IRQ

19 SPIT_IRQ

20 UARTO_IRQ

21 UART1_IRQ

22 ADCO_IRQ_FIFO
23 12C0_IRQ

24 12C1_IRQ

25 RTC_IRQ

On RP2350 the interrupt numbers are as follows:

0 TIMERO_IRQ_0

1 TIMERO_IRQ_1

2 TIMERO_IRQ_2

3 TIMERO_IRQ_3

4 TIMER1_IRQ_0

5 TIMERT_IRQ_1

6 TIMER1_IRQ_2

7 TIMER1_IRQ_3

8 PWM_IRQ_WRAP_0
9 PWM_IRQ_WRAP_1
10 DMA_IRQ_0

11 DMA_IRQ_1

12 DMA_IRQ_2

13 DMA_IRQ_3

14 USBCTRL_IRQ

15 PIO0_IRQ_0

16 PI00_IRQ_1

17 PIO1_IRQ_0

|
4.1. Hardware APIs 189

Raspberry Pi Pico-series C/C++ SDK
]

IRQ Interrupt Source

18 PIO1_IRQ_1

19 P102_IRQ_0

20 PI02_IRQ_1

21 10_IRQ_BANKO

22 10_IRQ_BANKO_NS
23 10_IRQ_QSPI

24 10_IRQ_QSPI_NS
25 SIO_IRQ_FIFO

26 SIO_IRQ_BELL

27 SIO_IRQ_FIFO_NS
28 SIO_IRQ_BELL_NS
29 SIO_IRQ_MTIMECMP
30 CLOCKS_IRQ

31 SPIO_IRQ

32 SPIT1_IRQ

33 UARTO_IRQ

34 UART1_IRQ

35 ADC_IRQ_FIFO

36 12C0_IRQ

37 12C1_IRQ

38 OTP_IRQ

39 TRNG_IRQ

40 PROCO_IRQ_CTI

41 PROC1_IRQ_CTI
42 PLL_SYS_IRQ

43 PLL_USB_IRQ

44 POWMAN_IRQ_POW
45 POWMAN_IRQ_TIMER
46 SPAREIRQ_IRQ_0
47 SPAREIRQ_IRQ_1
48 SPAREIRQ_IRQ_2
49 SPAREIRQ_IRQ_3
50 SPAREIRQ_IRQ_4
51 SPAREIRQ_IRQ_5

|
4.1. Hardware APIs 190

Raspberry Pi Pico-series C/C++ SDK

4.1.14.2. Typedefs

typedef enum irq_num_rp2350 irq_num_t

Interrupt numbers on RP2350 (used as typedef irq_num_t)

typedef enum irq_num_rp2040 irq_num_t @750

Interrupt numbers on RP2040 (used as typedef irq_num_t)

typedef void(* irq_handler_t)(void)

Interrupt handler function type.

4.1.14.3. Enumerations

enum irq_num_rp2350 { TIMERG_IRQ_® = @, TIMERO_IRQ_1 = 1, TIMER®_IRQ_2 = 2, TIMERO_IRQ_3 = 3, TIMER1_IRQ_O = 4,
TIMER1_IRQ_1 = 5, TIMER1_IRQ_2 = 6, TIMER1_IRQ_3 = 7, PWM_IRQ_WRAP_O = 8, PWM_IRQ_WRAP_1 = 9, DMA_IRQ @ = 10, DMA_IRQ_1 =
11, DMA_IRQ_2 = 12, DMA_IRQ_3 = 13, USBCTRL_IRQ = 14, PI00_IRQ_@ = 15, PI0O_IRQ_1 = 16, PIO1_IRQ_0 = 17, PI0T_IRQ_1 = 18,
PI02_IRQ_O = 19, PI02_IRQ_1 = 20, I0_IRQ_BANK® = 21, I0_IRQ_BANKO_NS = 22, I0_IRQ_QSPI = 23, I0_IRQ_QSPI_NS = 24,
SIO_IRQ_FIFO = 25, SIO_IRQ_BELL = 26, SIO_IRQ_FIFO_NS = 27, SIO_IRQ_BELL_NS = 28, SIO_IRQ_MTIMECHP = 29, CLOCKS_IRQ = 30,
SPI0_IRQ = 31, SPI1_IRQ = 32, UARTO_IRQ = 33, UART1_IRQ = 34, ADC_IRQ_FIFO = 35, I2€0_IRQ = 36, I2¢1_IRQ = 37, OTP_IRQ =
38, TRNG_IRQ = 39, PROCO_IRQ_CTI = 4@, PROC1_IRQ_CTI = 41, PLL_SYS_IRQ = 42, PLL_USB_IRQ = 43, POWMAN_IRQ_POW = 44,
POWMAN_IRQ_TIMER = 45, SPARE_IRQ_O = 46, SPARE_IRQ_1 = 47, SPARE_IRQ_2 = 48, SPARE_IRQ_3 = 49, SPARE_IRQ 4 = 50,
SPARE_IRQ_5 = 51, IRQ_COUNT }

Interrupt numbers on RP2350 (used as typedef irq_num_t)
enum irq_num_rp2040 { TIMER_IRQ_@ = @, TIMER_IRQ_1 = 1, TIMER_IRQ_2 = 2, TIMER_IRQ_3 = 3, PWM_IRQ_WRAP = 4, USBCTRL_IRQ =
5, XIP_IRQ = 6, PI00_IRQ_© = 7, PIO@_IRQ_1 = 8, PIOT_IRQ_@ = 9, PIO1_IRQ_1 = 10, DMA_IRQ_O = 11, DMA_IRQ_1 = 12,
10_IRQ_BANK® = 13, I0_IRQ_QSPI = 14, SIO_IRQ_PROC@ = 15, SIO_IRQ_PROC1 = 16, CLOCKS_IRQ = 17, SPI@_IRQ = 18, SPI1_IRQ =
19, UART@_IRQ = 20, UART1_IRQ = 21, ADC_IRQ_FIFO = 22, I2C0_IRQ = 23, I2C1_IRQ = 24, RTC_IRQ = 25, IRQ_COUNT } @ZYID

Interrupt numbers on RP2040 (used as typedef irq_num_t)

4.1.14.4. Functions

void irq_set_priority (uint num, uint8_t hardware_priority)
Set specified interrupt’s priority.
uint irq_get_priority (uint num)
Get specified interrupt's priority.
void irq_set_enabled (uint num, bool enabled)
Enable or disable a specific interrupt on the executing core.
bool irq_is_enabled (uint num)
Determine if a specific interrupt is enabled on the executing core.
void irq_set_mask_enabled (uint32_t mask, bool enabled)
Enable/disable multiple interrupts on the executing core.
void irq_set_mask_n_enabled (uint n, uint32_t mask, bool enabled)
Enable/disable multiple interrupts on the executing core.
void irq_set_exclusive_handler (uint num, irq_handler_t handler)

Set an exclusive interrupt handler for an interrupt on the executing core.

irq_handler_t irq_get_exclusive_handler (uint num)

Get the exclusive interrupt handler for an interrupt on the executing core.

]
4.1. Hardware APIs 191

Raspberry Pi Pico-series C/C++ SDK
]

void irq_add_shared_handler (uint num, irq_handler_t handler, uint8_t order_priority)

Add a shared interrupt handler for an interrupt on the executing core.

void irq_remove_handler (uint num, irq_handler_t handler)

Remove a specific interrupt handler for the given irq number on the executing core.

bool irq_has_shared_handler (uint num)

Determine if the current handler for the given number is shared.

irq_handler_t irq_get_vtable_handler (uint num)

Get the current IRQ handler for the specified IRQ from the currently installed hardware vector table (VTOR) of the
execution core.

static void irq_clear (uint int_num)

Clear a specific interrupt on the executing core.

void irq_set_pending (uint num)

Force an interrupt to be pending on the executing core.

void user_irq_claim (uint irq_num)

Claim ownership of a user IRQ on the calling core.

void user_irq_unclaim (uint irq_num)

Mark a user IRQ as no longer used on the calling core.

int user_irq_claim_unused (bool required)

Claim ownership of a free user IRQ on the calling core.

4.1.14.5. Typedef Documentation

4.1.14.5.1. irg_num_t

typedef enum irq_num_rp2350 irq_num_t

Interrupt numbers on RP2350 (used as typedef irq_num_t)

4.1.14.5.2. irq_num_t

typedef enum irq_num_rp2040 irq_num_t

Interrupt numbers on RP2040 (used as typedef irg_num_t)

4.1.14.5.3. irg_handler_t

typedef void(* irq_handler_t) (void)
Interrupt handler function type.

All interrupts handlers should be of this type, and follow normal ARM EABI register saving conventions

4.1.14.6. Enumeration Type Documentation

]
4.1. Hardware APIs 192

Raspberry Pi Pico-series C/C++ SDK

4.1.14.6.1. irg_num_rp2350 725

enum irq_num_rp2350

Interrupt numbers on RP2350 (used as typedef irq_num_t)

Table 22. Enumerator

Select TIMERO's IRQ 0 output.

Select TIMERO's IRQ 1 output.

Select TIMEROQ's IRQ 2 output.

Select TIMEROQ's IRQ 3 output.

Select TIMER1's IRQ 0 output.

Select TIMER1's IRQ 1 output.

Select TIMER1's IRQ 2 output.

Select TIMER1's IRQ 3 output.

Select PWM’s IRQ_WRAP 0 output.

Select PWM's IRQ_WRAP 1 output.

Select DMA'’s IRQ 0 output.

Select DMA’s IRQ 1 output.

Select DMA’s IRQ 2 output.

Select DMA's IRQ 3 output.

Select USBCTRL's IRQ output.

Select PIO0’s IRQ 0 output.

Select PIO0’s IRQ 1 output.

Select PIO1's IRQ 0 output.

Select PIO1's IRQ 1 output.

Select PIO2’s IRQ 0 output.

Select PIO2’s IRQ 1 output.

Select IO_BANKO's IRQ output.

Select IO_BANKO_NS's IRQ output.

Select I0_QSPI's IRQ output.

Select I0_QSPI_NS's IRQ output.

Select SIO’s IRQ_FIFO output.

Select SIO’s IRQ_BELL output.

Select SIO_NS's IRQ_FIFO output.

Select SIO_NS's IRQ_BELL output.

Select SIO_IRQ_MTIMECMP’s IRQ output.

Select CLOCKS's IRQ output.

Select SPI0’s IRQ output.

Select SPI1's IRQ output.

Select UARTO's IRQ output.

|
4.1. Hardware APIs 193

Raspberry Pi Pico-series C/C++ SDK
]

Select UART1's IRQ output.

Select ADC’s IRQ_FIFO output.

Select 12C0’s IRQ output.

Select 12C1’s IRQ output.

Select OTP’s IRQ output.

Select TRNG's IRQ output.

Select PROCO’s IRQ_CTI output.

Select PROC1’s IRQ_CTI output.

Select PLL_SYS's IRQ output.

Select PLL_USB’s IRQ output.

Select POWMAN'’s IRQ_POW output.

Select POWMAN's IRQ_TIMER output.

Select SPARE IRQ 0.

Select SPARE IRQ 1.

Select SPARE IRQ 2.

Select SPARE IRQ 3.

Select SPARE IRQ 4.

Select SPARE IRQ 5.

4.1.14.6.2. irg_num_rp2040

enum irq_num_rp2040

Interrupt numbers on RP2040 (used as typedef irq_num_t)

Tablezs,Enumemm’ .

|
4.1. Hardware APIs 194

Select TIMER's IRQ 0 output.

Select TIMER's IRQ 1 output.

Select TIMER's IRQ 2 output.

Select TIMER's IRQ 3 output.

Select PWM'’s IRQ_WRAP output.

Select USBCTRL's IRQ output.

Select XIP’s IRQ output.

Select PIO0’s IRQ 0 output.

Select PIO0’s IRQ 1 output.

Select PIO1’s IRQ 0 output.

Select PIOT's IRQ 1 output.

Select DMA's IRQ 0 output.

Select DMA'’s IRQ 1 output.

Select I0_BANKO's IRQ output.

Raspberry Pi Pico-series C/C++ SDK

10_IRQ_QSPI Select I0_QSPI's IRQ output.
SI0_IRQ_PROCO Select SI0O_PROCO’s IRQ output.
SIO_IRQ_PROC1 Select SI0O_PROC1’s IRQ output.
CLOCKS_IRQ Select CLOCKS's IRQ output.
SPIO_IRQ Select SPI0’s IRQ output.
SPI1_IRQ Select SPI1’s IRQ output.
UARTO_IRQ Select UARTO’s IRQ output.
UART1_IRQ Select UART1’s IRQ output.
ADC_IRQ_FIFO Select ADC’s IRQ_FIFO output.
12C0_IRQ Select 12C0’s IRQ output.
12C1_IRQ Select 12C1’s IRQ output.
RTC_IRQ Select RTC’s IRQ output.

4.1.14.7. Function Documentation

4.1.14.7.1. irq_add_shared_handler

void irq_add_shared_handler (uint num, irq_handler_t handler, uint8_t order_priority)

Add a shared interrupt handler for an interrupt on the executing core.

Use this method to add a handler on an irq number shared between multiple distinct hardware sources (e.g. GPIO, DMA
or PIO IRQs). Handlers added by this method will all be called in sequence from highest order_priority to lowest. The
irq_set_exclusive_handler() method should be used instead if you know there will or should only ever be one handler for

the interrupt.

This method will assert if there is an exclusive interrupt handler set for this irqg number on this core, or if the (total
across all IRQs on both cores) maximum (configurable via PICO_MAX_SHARED_IRQ_HANDLERS) number of shared

handlers would be exceeded.

Parameters
num
handler

order_priority

I
195

4.1. Hardware APIs

Interrupt number Interrupt Numbers
The handler to set. See irg_handler_t

The order priority controls the order that handlers for the same IRQ number on the core are
called. The shared irq handlers for an interrupt are all called when an IRQ fires, however the
order of the calls is based on the order_priority (higher priorities are called first, identical
priorities are called in undefined order). A good rule of thumb is to use
PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY if you don’t much care, as it is in
the middle of the priority range by default.

Raspberry Pi Pico-series C/C++ SDK

© NOTE

The order_priority uses higher values for higher priorities which is the opposite of the CPU interrupt priorities passed
to irq_set_priority() which use lower values for higher priorities.

See also

irg_set_exclusive_handler()

4.1.14.7.2. irg_clear

static void irq_clear (uint int_num) [inline], [static]
Clear a specific interrupt on the executing core.

This method is only useful for "software" IRQs that are not connected to hardware (e.g. IRQs 26-31 on RP2040) as the
the NVIC always reflects the current state of the IRQ state of the hardware for hardware IRQs, and clearing of the IRQ
state of the hardware is performed via the hardware’s registers instead.

Parameters

int_num Interrupt number Interrupt Numbers

4.1.14.7.3. irq_get_exclusive_handler
irq_handler_t irq_get_exclusive_handler (uint num)
Get the exclusive interrupt handler for an interrupt on the executing core.
This method will return an exclusive IRQ handler set on this core by irq_set_exclusive_handler if there is one.
Parameters
num Interrupt number Interrupt Numbers
See also
irg_set_exclusive_handler()
Returns

handler The handler if an exclusive handler is set for the IRQ, NULL if no handler is set or shared/shareable handlers are
installed

4.1.14.7.4. irq_get_priority
uint irq_get_priority (uint num)
Get specified interrupt’s priority.

Numerically-lower values indicate a higher priority. Hardware priorities range from 0 (highest priority) to 255 (lowest
priority). To make it easier to specify higher or lower priorities than the default, all IRQ priorities are initialized to
PICO_DEFAULT_IRQ_PRIORITY by the SDK runtime at startup. PICO_DEFAULT_IRQ_PRIORITY defaults to 0x80

Only the top 2 bits are significant on ARM Cortex-M0+ on RP2040.

Only the top 4 bits are significant on ARM Cortex-M33 or Hazard3 (RISC-V) on RP2350. Note that this API uses the same
(inverted) ordering as ARM on RISC-V

Parameters
num Interrupt number Interrupt Numbers
Returns

]
4.1. Hardware APIs 196

Raspberry Pi Pico-series C/C++ SDK
]

the IRQ priority

4.1.14.7.5. irq_get_vtable_handler

irq_handler_t irq_get_vtable_handler (uint num)

Get the current IRQ handler for the specified IRQ from the currently installed hardware vector table (VTOR) of the
execution core.

Parameters
num Interrupt number Interrupt Numbers
Returns

the address stored in the VTABLE for the given irqg number

4.1.14.7.6. irq_has_shared_handler

bool irq_has_shared_handler (uint num)
Determine if the current handler for the given number is shared.
Parameters
num Interrupt number Interrupt Numbers
Returns

true if the specified IRQ has a shared handler

4.1.14.7.7. irq_is_enabled

bool irq_is_enabled (uint num)
Determine if a specific interrupt is enabled on the executing core.
Parameters
num Interrupt number Interrupt Numbers
Returns

true if the interrupt is enabled

4.1.14.7.8. irqg_remove_handler
void irq_remove_handler (uint num, irq_handler_t handler)
Remove a specific interrupt handler for the given irg number on the executing core.

This method may be used to remove an irq set via either irq_set_exclusive_handler() or irq_add_shared_handler(), and
will assert if the handler is not currently installed for the given IRQ number

]
4.1. Hardware APIs 197

Raspberry Pi Pico-series C/C++ SDK

© NOTE

This method may only be called from user (non IRQ code) or from within the handler itself (i.e. an IRQ handler may
remove itself as part of handling the IRQ). Attempts to call from another IRQ will cause an assertion.

Parameters
num Interrupt number Interrupt Numbers
handler The handler to removed.

See also

irg_set_exclusive_handler()

irg_add_shared_handler()

4.1.14.7.9. irqg_set_enabled

void irq_set_enabled (uint num, bool enabled)

Enable or disable a specific interrupt on the executing core.

Parameters
num Interrupt number Interrupt Numbers
enabled true to enable the interrupt, false to disable

4.1.14.7.10. irg_set_exclusive_handler
void irq_set_exclusive_handler (uint num, irq_handler_t handler)
Set an exclusive interrupt handler for an interrupt on the executing core.

Use this method to set a handler for single IRQ source interrupts, or when your code, use case or performance
requirements dictate that there should no other handlers for the interrupt.

This method will assert if there is already any sort of interrupt handler installed for the specified irqg number.
Parameters

num Interrupt number Interrupt Numbers

handler The handler to set. See irg_handler_t
See also

irq_add_shared_handler()

4.1.14.7.11. irqg_set_mask_enabled

void irq_set_mask_enabled (uint32_t mask, bool enabled)

Enable/disable multiple interrupts on the executing core.

Parameters
mask 32-bit mask with one bits set for the interrupts to enable/disable Interrupt Numbers
enabled true to enable the interrupts, false to disable them.

]
4.1. Hardware APIs 198

Raspberry Pi Pico-series C/C++ SDK

4.1.14.7.12. irg_set_mask_n_enabled

void irq_set_mask_n_enabled (uint n, uint32_t mask, bool enabled)

Enable/disable multiple interrupts on the executing core.

Parameters
n the index of the mask to update. n == 0 means 0->31, n == 1 mean 32->63 etc.
mask 32-bit mask with one bits set for the interrupts to enable/disable Interrupt Numbers
enabled true to enable the interrupts, false to disable them.

4.1.14.7.13. irq_set_pending

void irq_set_pending (uint num)

Force an interrupt to be pending on the executing core.

This should generally not be used for IRQs connected to hardware.
Parameters

num Interrupt number Interrupt Numbers

4.1.14.7.14. irq_set_priority

void irq_set_priority (uint num, uint8_t hardware_priority)

Set specified interrupt’s priority.

Parameters
num Interrupt number Interrupt Numbers
hardware_priority Priority to set. Numerically-lower values indicate a higher priority. Hardware priorities range

from 0 (highest priority) to 255 (lowest priority). To make it easier to specify higher or lower
priorities than the default, all IRQ priorities are initialized to PICO_DEFAULT_IRQ_PRIORITY
by the SDK runtime at startup. PICO_DEFAULT_IRQ_PRIORITY defaults to 0x80

Only the top 2 bits are significant on ARM Cortex-M0+ on RP2040.

Only the top 4 bits are significant on ARM Cortex-M33 or Hazard3 (RISC-V) on RP2350. Note that this API uses the same
(inverted) ordering as ARM on RISC-V

4.1.14.7.15. user_irq_claim

void user_irq_claim (uint irq_num)

Claim ownership of a user IRQ on the calling core.

User IRQs starting from FIRST_USER_IRQ are not connected to any hardware, but can be triggered by irq_set_pending.

© NoTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therefore all functions
dealing with Uer IRQs affect only the calling core

This method explicitly claims ownership of a user IRQ, so other code can know it is being used.
Parameters
irq_num the user IRQ to claim

4.1. Hardware APIs 199

Raspberry Pi Pico-series C/C++ SDK

4.1.14.7.16. user_irq_claim_unused
int user_irq_claim_unused (bool required)
Claim ownership of a free user IRQ on the calling core.

User IRQs starting from FIRST_USER_IRQ are not connected to any hardware, but can be triggered by irq_set_pending.

© NoOTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therefore all functions
dealing with Uer IRQs affect only the calling core

This method explicitly claims ownership of an unused user IRQ if there is one, so other code can know it is being used.
Parameters

required if true the function will panic if none are available
Returns

the user IRQ number or -1 if required was false, and none were free

4.1.14.7.17. user_irq_unclaim
void user_irq_unclaim (uint irq_num)
Mark a user IRQ as no longer used on the calling core.

User IRQs starting from FIRST_USER_IRQ are not connected to any hardware, but can be triggered by irq_set_pending.

© NOTE

User IRQs are a core local feature; they cannot be used to communicate between cores. Therefore all functions
dealing with Uer IRQs affect only the calling core

This method explicitly releases ownership of a user IRQ, so other code can know it is free to use.

© NoOTE

it is customary to have disabled the irq and removed the handler prior to calling this method.

Parameters

irg_num the irg irg_num to unclaim

4.1.15. hardware_pio

Programmable I/0 (PIO) API.

4.1.15.1. Detailed Description

A programmable input/output block (PIO) is a versatile hardware interface which can support a number of different 10
standards.

There are two P10 blocks in the RP2040.
There are three PIO blocks in the RP2350
Each PIO is programmable in the same sense as a processor: the four state machines independently execute short,

]
4.1. Hardware APIs 200

Raspberry Pi Pico-series C/C++ SDK
]

sequential programs, to manipulate GPIOs and transfer data. Unlike a general purpose processor, PIO state machines
are highly specialised for 10, with a focus on determinism, precise timing, and close integration with fixed-function
hardware. Each state machine is equipped with:

* Two 32-bit shift registers — either direction, any shift count

® Two 32-bit scratch registers

® 4x32 bit bus FIFO in each direction (TX/RX), reconfigurable as 8x32 in a single direction
® Fractional clock divider (16 integer, 8 fractional bits)

® Flexible GPIO mapping

* DMA interface, sustained throughput up to 1 word per clock from system DMA

* |IRQ flag set/clear/status
Full details of the PIO can be found in the appropriate RP-series datasheet. Note that there are additional features in the
RP2350 PIO implementation that mean care should be taken when writing PIO code that needs to run on both the
RP2040 and the RP2350.

4.1.15.2. Modules

sm_config

P10 state machine configuration .

pio_instructions

PIO instruction encoding .

4.1.15.3. Macros

® f#define piod piod_hw

® #define piol piol_hw

® jfidefine PIO_NUM(pio)

® ftdefine PIO_INSTANCE(instance)

® jftdefine PIO_FUNCSEL_NUM(pio, gpio)

® fidefine PIO_DREQ_NUM(pio, sm, is_tx)

® fdefine PIO_IRQ_NUM(pio, irgn)

4.1.15.4. Typedefs

typedef enum pio_interrupt_source pio_interrupt_source_t

PIO interrupt source numbers for pio related IRQs.

4.1.15.5. Enumerations
enum pio_fifo_join { PIO_FIFO_JOIN_NONE = @, PIO_FIFO_JOIN_TX = 1, PIO_FIFO_JOIN_RX = 2 }
FIFO join states.

enum pio_mov_status_type { STATUS_TX_LESSTHAN = @, STATUS_RX_LESSTHAN = 1 }

MOV status types.

]
4.1. Hardware APIs 201

Raspberry Pi Pico-series C/C++ SDK
]

enum pio_interrupt_source { pis_interrupt® = PIO_INTR_SM@_LSB, pis_interrupt1 = PIO_INTR_SM1_LSB, pis_interrupt2 =
PIO_INTR_SM2_LSB, pis_interrupt3 = PIO_INTR_SM3_LSB, pis_smd_tx_fifo_not_full = PIO_INTR_SMO_TXNFULL_LSB,
pis_sm1_tx_fifo_not_full = PIO_INTR_SM1_TXNFULL_LSB, pis_sm2_tx_fifo_not_full = PIO_INTR_SM2_TXNFULL_LSB,
pis_sm3_tx_fifo_not_full = PIO_INTR_SM3_TXNFULL_LSB, pis_sm0_rx_fifo_not_empty = PIO_INTR_SM@_RXNEMPTY_LSB,
pis_sm1_rx_fifo_not_empty = PIO_INTR_SM1_RXNEMPTY_LSB, pis_sm2_rx_fifo_not_empty = PIO_INTR_SM2_RXNEMPTY_LSB,
pis_sm3_rx_fifo_not_empty = PIO_INTR_SM3_RXNEMPTY_LSB }

P10 interrupt source numbers for pio related IRQs.

4.1.15.6. Functions

static vint pio_get_gpio_base (PIO pio)
Return the base GPIO base for the PIO instance.
static int pio_sm_set_config (PIO pio, uint sm, const pio_sm_config *config)
Apply a state machine configuration to a state machine.
static uvint pio_get_index (PIO pio)
Return the instance number of a PIO instance.
static uint pio_get_funcsel (PIO pio)
Return the funcsel number of a PIO instance.
static PIO pio_get_instance (uint instance)
Convert PIO instance to hardware instance.
static void pio_gpio_init (PIO pio, uint pin)
Setup the function select for a GPIO to use output from the given PIO instance.
static uvint pio_get_dreq (PIO pio, uint sm, bool is_tx)
Return the DREQ to use for pacing transfers to/from a particular state machine FIFO.
int pio_set_gpio_base (PIO pio, uint gpio_base)
Set the base GPIO base for the PIO instance.
bool pio_can_add_program (PIO pio, const pio_program_t *program)
Determine whether the given program can (at the time of the call) be loaded onto the PIO instance.
bool pio_can_add_program_at_offset (PIO pio, const pio_program_t *program, uint offset)
Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at a
particular location.
int pio_add_program (PIO pio, const pio_program_t *program)
Attempt to load the program.
int pio_add_program_at_offset (PIO pio, const pio_program_t *program, uint offset)
Attempt to load the program at the specified instruction memory offset.
void pio_remove_program (PIO pio, const pio_program_t *program, uint loaded_offset)
Remove a program from a PIO instance’s instruction memory.
void pio_clear_instruction_memory (PIO pio)
Clears all of a PIO instance’s instruction memory.
static void pio_sm_set_enabled (PIO pio, uint sm, bool enabled)

Enable or disable a PIO state machine.

static void pio_set_sm_mask_enabled (PIO pio, uint32_t mask, bool enabled)

Enable or disable multiple PIO state machines.

]
4.1. Hardware APIs 202

Raspberry Pi Pico-series C/C++ SDK
]

static void pio_sm_restart (PIO pio, uint sm)

Restart a state machine with a known state.
static void pio_restart_sm_mask (PIO pio, uint32_t mask)

Restart multiple state machine with a known state.
static void pio_sm_clkdiv_restart (PIO pio, uint sm)

Restart a state machine’s clock divider from a phase of 0.
static void pio_clkdiv_restart_sm_mask (PIO pio, uint32_t mask)

Restart multiple state machines' clock dividers from a phase of 0.
static void pio_enable_sm_mask_in_sync (PIO pio, uint32_t mask)

Enable multiple PIO state machines synchronizing their clock dividers.
static void pio_set_irq@_source_enabled (PIO pio, pio_interrupt_source_t source, bool enabled)

Enable/Disable a single source on a PIO’s IRQ 0.

static void pio_set_irql_source_enabled (PIO pio, pio_interrupt_source_t source, bool enabled)

Enable/Disable a single source on a PIO’s IRQ 1.

static void pio_set_irq@_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled)

Enable/Disable multiple sources on a PIO’s IRQ 0.

static void pio_set_irql_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled)
Enable/Disable multiple sources on a PIO’s IRQ 1.
static void pio_set_irqn_source_enabled (PIO pio, uint irq_index, pio_interrupt_source_t source, bool enabled)
Enable/Disable a single source on a PI0’s specified (0/1) IRQ index.
static void pio_set_irqn_source_mask_enabled (PIO pio, uint irq_index, uint32_t source_mask, bool enabled)
Enable/Disable multiple sources on a PI0’s specified (0/1) IRQ index.
static bool pio_interrupt_get (PIO pio, uint pio_interrupt_num)
Determine if a particular PIO interrupt is set.
static void pio_interrupt_clear (PIO pio, uint pio_interrupt_num)
Clear a particular PIO interrupt.
static uint8_t pio_sm_get_pc (PIO pio, uint sm)
Return the current program counter for a state machine.
static void pio_sm_exec (PIO pio, uint sm, uint instr)
Immediately execute an instruction on a state machine.
static bool pio_sm_is_exec_stalled (PIO pio, uint sm)
Determine if an instruction set by pio_sm_exec() is stalled executing.
static void pio_sm_exec_wait_blocking (PIO pio, uint sm, uint instr)
Immediately execute an instruction on a state machine and wait for it to complete.
static void pio_sm_set_wrap (PIO pio, uint sm, uint wrap_target, uint wrap)
Set the current wrap configuration for a state machine.
static void pio_sm_set_out_pins (PIO pio, uint sm, uint out_base, uint out_count)
Set the current 'out’ pins for a state machine.
static void pio_sm_set_set_pins (PIO pio, uint sm, uint set_base, uint set_count)

Set the current 'set’ pins for a state machine.

]
4.1. Hardware APIs 203

Raspberry Pi Pico-series C/C++ SDK
]

static void pio_sm_set_in_pins (PIO pio, uint sm, uint in_base)
Set the current 'in’ pins for a state machine.
static void pio_sm_set_sideset_pins (PIO pio, uint sm, uint sideset_base)
Set the current 'sideset’ pins for a state machine.
static void pio_sm_set_jmp_pin (PIO pio, uint sm, uint pin)
Set the 'jmp' pin for a state machine.
static void pio_sm_put (PIO pio, uint sm, uint32_t data)
Write a word of data to a state machine’s TX FIFO.
static uint32_t pio_sm_get (PIO pio, uint sm)
Read a word of data from a state machine’s RX FIFO.
static bool pio_sm_is_rx_fifo_full (PIO pio, uint sm)
Determine if a state machine’s RX FIFO is full.
static bool pio_sm_is_rx_fifo_empty (PIO pio, uint sm)
Determine if a state machine’s RX FIFO is empty.
static vint pio_sm_get_rx_fifo_level (PIO pio, uint sm)
Return the number of elements currently in a state machine’s RX FIFO.
static bool pio_sm_is_tx_fifo_full (PIO pio, uint sm)
Determine if a state machine’s TX FIFO is full.
static bool pio_sm_is_tx_fifo_empty (PIO pio, uint sm)
Determine if a state machine’s TX FIFO is empty.
static uint pio_sm_get_tx_fifo_level (PIO pio, uint sm)
Return the number of elements currently in a state machine’s TX FIFO.
static void pio_sm_put_blocking (PIO pio, uint sm, uint32_t data)
Write a word of data to a state machine’s TX FIFO, blocking if the FIFO is full.
static uint32_t pio_sm_get_blocking (PIO pio, uint sm)
Read a word of data from a state machine’s RX FIFO, blocking if the FIFO is empty.
void pio_sm_drain_tx_fifo (PIO pio, uint sm)
Empty out a state machine’s TX FIFO.
static void pio_sm_set_clkdiv_int_frac (PIO pio, uint sm, uint16_t div_int, uint8_t div_frac)
set the current clock divider for a state machine using a 16:8 fraction
static void pio_sm_set_clkdiv (PIO pio, uint sm, float div)
set the current clock divider for a state machine
static void pio_sm_clear_fifos (PIO pio, uint sm)
Clear a state machine’s TX and RX FIFOs.
void pio_sm_set_pins (PIO pio, uint sm, uint32_t pin_values)
Use a state machine to set a value on all pins for the PIO instance.
void pio_sm_set_pins_with_mask (PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask)
Use a state machine to set a value on multiple pins for the PIO instance.
void pio_sm_set_pindirs_with_mask (PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_mask)

Use a state machine to set the pin directions for multiple pins for the PIO instance.

]
4.1. Hardware APIs 204

Raspberry Pi Pico-series C/C++ SDK
]

int pio_sm_set_consecutive_pindirs (PIO pio, uint sm, uint pins_base, uint pin_count, bool is_out)

Use a state machine to set the same pin direction for multiple consecutive pins for the PIO instance.

void pio_sm_claim (PI0 pio, uint sm)

Mark a state machine as used.

void pio_claim_sm_mask (PIO pio, uint sm_mask)

Mark multiple state machines as used.

void pio_sm_unclaim (PIO pio, uint sm)

Mark a state machine as no longer used.

int pio_claim_unused_sm (PIO pio, bool required)

Claim a free state machine on a PIO instance.

bool pio_sm_is_claimed (PIO pio, uint sm)

Determine if a PIO state machine is claimed.

bool pio_claim_free_sm_and_add_program (const pio_program_t *program, PIO *pio, uint *sm, uint *offset)

Finds a PIO and statemachine and adds a program into PIO memory.

bool pio_claim_free_sm_and_add_program_for_gpio_range (const pio_program_t *program, PIO *pio, uint *sm, uint *offset,

uint gpio_base, uint gpio_count, bool set_gpio_base)

Finds a PIO and statemachine and adds a program into PIO memory.

void pio_remove_program_and_unclaim_sm (const pio_program_t *program, PIO pio, uint sm, uint offset)

Removes a program from PIO memory and unclaims the state machine.

static int pio_get_irq_num (PIO pio, uint irqn)

Return an IRQ for a PIO hardware instance.

static pio_interrupt_source_t pio_get_tx_fifo_not_full_interrupt_source (uint sm)

Return the interrupt source for a state machines TX FIFO not full interrupt.

static pio_interrupt_source_t pio_get_rx_fifo_not_empty_interrupt_source (uint sm)

Return the interrupt source for a state machines RX FIFO not empty interrupt.

4.1.15.7. Macro Definition Documentation

4.1.15.7.1. pio0
#define pio@ piod_hw
Identifier for the first (P10 0) hardware PIO instance (for use in PIO functions).

e.g. pio_gpio_init(pio0, 5)

4.1.15.7.2. pio1
#define piol piol_hw
Identifier for the second (P10 1) hardware PIO instance (for use in PIO functions).

e.g. pio_gpio_init(pio1, 5)

]
4.1. Hardware APIs 205

Raspberry Pi Pico-series C/C++ SDK
]

4.1.15.7.3. PIO_NUM

#define PIO_NUM(pio)
Returns the PIO number for a PIO instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.7.4. PIO_INSTANCE

#define PIO_INSTANCE(instance)
Returns the PIO instance with the given PIO number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.7.5. PIO_FUNCSEL_NUM

#define PIO_FUNCSEL_NUM(pio, gpio)
Returns gpio_function_t needed to select the PIO function for the given PIO instance on the given GPIO.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.7.6. PIO_DREQ_NUM

#define PIO_DREQ_NUM(pio, sm, is_tx)

Returns the dreq_num_t used for pacing DMA transfers to or from a given state machine’s FIFOs on this PIO instance. If
is_tx is true, then it is for transfers to the PIO state machine TX FIFO else for transfers from the PIO state machine RX
FIFO.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.7.7. PIO_IRQ_NUM

#define PIO_IRQ_NUM(pio, irgn)
Returns the irg_num_t for processor interrupts from the given PIO instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.15.8. Typedef Documentation

4.1.15.8.1. pio_interrupt_source_t

typedef enum pio_interrupt_source pio_interrupt_source_t

P10 interrupt source numbers for pio related IRQs.

4.1.15.9. Enumeration Type Documentation

4.1.15.9.1. pio_fifo_join

enum pio_fifo_join

]
4.1. Hardware APIs 206

Raspberry Pi Pico-series C/C++ SDK
]

FIFO join states.

. -

4.1.15.9.2. pio_mov_status_type

TX FIFO length=4 is used for transmit, RX FIFO length=4 is
used for receive.

TX FIFO length=8 is used for transmit, RX FIFO is disabled.

RX FIFO length=8 is used for receive, TX FIFO is disabled.

enum pio_mov_status_type

MOV status types.

4.1.15.9.3. pio_interrupt_source

enum pio_interrupt_source

P10 interrupt source numbers for pio related IRQs.

Table 25. Enumerator . . .
PIO interrupt 0 is raised.

P10 interrupt 1 is raised.

P10 interrupt 2 is raised.

PIO interrupt 3 is raised.

State machine 0 TX FIFO is not full.

State machine 1 TX FIFO is not full.

State machine 2 TX FIFO is not full.

State machine 3 TX FIFO is not full.

State machine 0 RX FIFO is not empty.

State machine 1 RX FIFO is not empty.

State machine 2 RX FIFO is not empty.

State machine 3 RX FIFO is not empty.

4.1.15.10. Function Documentation

4.1.15.10.1. pio_add_program

int pio_add_program (PIO pio, const pio_program_t * program)
Attempt to load the program.

See also

pio_can_add_program() if you need to check whether the program can be loaded

Parameters
pio The PIO instance; e.g. pio0 or pio1
program the program definition

Returns

|
4.1. Hardware APIs 207

Raspberry Pi Pico-series C/C++ SDK
]

the instruction memory offset the program is loaded at, or negative for error (for backwards compatibility with prior SDK
the error value is -1 i.e. PICO_ERROR_GENERIC)

4.1.15.10.2. pio_add_program_at_offset

int pio_add_program_at_offset (PIO pio, const pio_program_t * program, uint offset)
Attempt to load the program at the specified instruction memory offset.

See also

pio_can_add_program_at_offset() if you need to check whether the program can be loaded

Parameters

pio The PIO instance; e.g. pio0 or pio1

program the program definition

offset the instruction memory offset wanted for the start of the program
Returns

the instruction memory offset the program is loaded at, or negative for error (for backwards compatibility with prior SDK
the error value is -1 i.e. PICO_ERROR_GENERIC)

4.1.15.10.3. pio_can_add_program

bool pio_can_add_program (PIO pio, const pio_program_t * program)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance.

Parameters
pio The P10 instance; e.g. pio0 or piol
program the program definition

Returns

true if the program can be loaded; false if there is not suitable space in the instruction memory

4.1.15.10.4. pio_can_add_program_at_offset

bool pio_can_add_program_at_offset (PIO pio, const pio_program_t * program, uint offset)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at a
particular location.

Parameters

pio The PIO instance; e.g. pio0 or pio1

program the program definition

offset the instruction memory offset wanted for the start of the program
Returns

true if the program can be loaded at that location; false if there is not space in the instruction memory

4.1.15.10.5. pio_claim_free_sm_and_add_program

bool pio_claim_free_sm_and_add_program (const pio_program_t * program, PIO * pio, uint * sm, uint * offset)

]
4.1. Hardware APIs 208

Raspberry Pi Pico-series C/C++ SDK
]

Finds a PIO and statemachine and adds a program into PIO memory.
Parameters

program PIO program to add

pio Returns the P10 hardware instance or NULL if no PIO is available

sm Returns the index of the PIO state machine that was claimed

offset Returns the instruction memory offset of the start of the program
Returns

true on success, false otherwise
See also

pio_remove_program_unclaim_sm

4.1.15.10.6. pio_claim_free_sm_and_add_program_for_gpio_range

bool pio_claim_free_sm_and_add_program_for_gpio_range (const pio_program_t * program, PI0O * pio, uint * sm, uint *
offset, uint gpio_base, uint gpio_count, bool set_gpio_base)

Finds a PIO and statemachine and adds a program into PIO memory.

This variation of pio_claim_free_sm_and_add_program is useful on RP2350 QFN80 where the "GPIO Base" must be set
per PIO instance to either address the 32 GPIOs (0->31) or the 32 GPIOS (16-47). No single PIO instance can interact
with both pins 0->15 or 32->47 at the same time.

This method takes additional information about the GPIO pins needed (via gpi_base and gpio_count), and optionally will
set the GPIO base (

See also

pio_set_gpio_base) of an unused PIO instance if necessary

Parameters
program PIO program to add
pio Returns the P10 hardware instance or NULL if no PIO is available
sm Returns the index of the PIO state machine that was claimed
offset Returns the instruction memory offset of the start of the program
gpio_base the lowest GPIO number required
gpio_count the count of GPIOs required
set_gpio_base if there is no free SM on a PIO instance with the right GPIO base, and there IS an unused PIO
instance, then that PIO will be reconfigured so that this method can succeed
Returns

true on success, false otherwise
See also

pio_remove_program_unclaim_sm

4.1.15.10.7. pio_claim_sm_mask

void pio_claim_sm_mask (PIO pio, uint sm_mask)

Mark multiple state machines as used.

]
4.1. Hardware APIs 209

Raspberry Pi Pico-series C/C++ SDK
]

Method for cooperative claiming of hardware. Will cause a panic if any of the state machines are already claimed. Use
of this method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters
pio The PIO instance; e.g. pio0 or pioT
sm_mask Mask of state machine indexes

4.1.15.10.8. pio_claim_unused_sm

int pio_claim_unused_sm (PIO pio, bool required)

Claim a free state machine on a PIO instance.

Parameters

pio The PIO instance; e.g. pio0 or pio1

required if true the function will panic if none are available
Returns

the state machine index or negative if required was false, and none were free (for backwards compatibility with prior
SDK the error value is -1 i.e. PICO_ERROR_GENERIC)

4.1.15.10.9. pio_clear_instruction_memory

void pio_clear_instruction_memory (PIO pio)
Clears all of a PIO instance’s instruction memory.
Parameters

pio The PIO instance; e.g. pio0 or pio1

4.1.15.10.10. pio_clkdiv_restart_sm_mask

static void pio_clkdiv_restart_sm_mask (PIO pio, uint32_t mask) [inline], [static]
Restart multiple state machines' clock dividers from a phase of 0.

Each state machine’s clock divider is a free-running piece of hardware, that generates a pattern of clock enable pulses
for the state machine, based only on the configured integer/fractional divisor. The pattern of running/halted cycles
slows the state machine’s execution to some controlled rate.

This function simultaneously clears the integer and fractional phase accumulators of multiple state machines' clock
dividers. If these state machines all have the same integer and fractional divisors configured, their clock dividers will run
in precise deterministic lockstep from this point.

With their execution clocks synchronised in this way, it is then safe to e.g. have multiple state machines performing a
'wait irq' on the same flag, and all clear it on the same cycle.

Also note that this function can be called whilst state machines are running (e.g. if you have just changed the clock
divisors of some state machines and wish to resynchronise them), and that disabling a state machine does not halt its
clock divider: that is, if multiple state machines have their clocks synchronised, you can safely disable and re-enable one
of the state machines without losing synchronisation.

Parameters
pio The PIO instance; e.g. pio0 or pio1
mask bit mask of state machine indexes to modify the enabled state of

]
4.1. Hardware APIs 210

Raspberry Pi Pico-series C/C++ SDK

4.1.15.10.11. pio_enable_sm_mask_in_sync
static void pio_enable_sm_mask_in_sync (PIO pio, uint32_t mask) [inline], [static]
Enable multiple PIO state machines synchronizing their clock dividers.

This is equivalent to calling both pio_set_sm_mask_enabled() and pio_clkdiv_restart_sm_mask() on the same clock
cycle. All state machines specified by 'mask’ are started simultaneously and, assuming they have the same clock
divisors, their divided clocks will stay precisely synchronised.

Parameters
pio The PIO instance; e.g. pio0 or pio1
mask bit mask of state machine indexes to modify the enabled state of

4.1.15.10.12. pio_get_dreq

static uint pio_get_dreq (PIO pio, uint sm, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular state machine FIFO.

Parameters
pio The PIO instance; e.g. pio0 or pioT
sm State machine index (0..3)
is_tx true for sending data to the state machine, false for receiving data from the state machine

4.1.15.10.13. pio_get_funcsel
static uint pio_get_funcsel (PIO pio) [inline], [static]
Return the funcsel number of a PIO instance.
Parameters
pio The PIO instance; e.g. pio0 or pio1
Returns
the PIO instance number (0, 1, ...)
See also

gpio_function

4.1.15.10.14. pio_get_gpio_base
static uint pio_get_gpio_base (PIO pio) [inline], [static]
Return the base GPIO base for the PIO instance.
This method always return 0 in RP2040
Parameters
pio The PIO instance; e.g. pio0 or pio1
Returns

the current GPIO base for the PIO instance

4.1. Hardware APIs 211

Raspberry Pi Pico-series C/C++ SDK
]

4.1.15.10.15. pio_get_index
static uint pio_get_index (PIO pio) [inline], [static]
Return the instance number of a PIO instance.
Parameters

pio The PIO instance; e.g. pio0 or pio1
Returns

the PIO instance number (0, 1, ...)

4.1.15.10.16. pio_get_instance
static PIO pio_get_instance (uint instance) [inline], [static]
Convert PIO instance to hardware instance.
Parameters
instance Instance of PIO, 0 or 1
Returns

the PIO hardware instance

4.1.15.10.17. pio_get_irg_num
static int pio_get_irq_num (PIO pio, uint irgn) [inline], [static]
Return an IRQ for a PIO hardware instance.
Parameters
pio P10 hardware instance
irgn 0 for PIOX_IRQ_0 or 1 for PIOx_IRQ_1 etc where x is the PIO number
Returns

The IRQ number to use for the PIO

4.1.15.10.18. pio_get_rx_fifo_not_empty_interrupt_source

static pio_interrupt_source_t pio_get_rx_fifo_not_empty_interrupt_source (uint sm) [inline], [static]

Return the interrupt source for a state machines RX FIFO not empty interrupt.

Parameters
sm State machine index (0..3)
Returns

The interrupt source number for use in pio_set_irgn_source_enabled or similar functions

4.1.15.10.19. pio_get_tx_fifo_not_full_interrupt_source

static pio_interrupt_source_t pio_get_tx_fifo_not_full_interrupt_source (uint sm) [inline], [static]
Return the interrupt source for a state machines TX FIFO not full interrupt.

Parameters

]
4.1. Hardware APIs 212

Raspberry Pi Pico-series C/C++ SDK
]

sm State machine index (0..3)
Returns

The interrupt source number for use in pio_set_irgn_source_enabled or similar functions

4.1.15.10.20. pio_gpio_init
static void pio_gpio_init (PIO pio, uint pin) [inline], [static]
Setup the function select for a GPIO to use output from the given PIO instance.

PIO appears as an alternate function in the GPIO muxing, just like an SPI or UART. This function configures that
multiplexing to connect a given PIO instance to a GPIO. Note that this is not necessary for a state machine to be able to
read the input value from a GPIO, but only for it to set the output value or output enable.

Parameters
pio The P10 instance; e.g. pio0 or pioT

pin the GPIO pin whose function select to set

4.1.15.10.21. pio_interrupt_clear

static void pio_interrupt_clear (PIO pio, uint pio_interrupt_num) [inline], [static]

Clear a particular PIO interrupt.

Parameters
pio The PIO instance; e.g. pio0 or pio1
pio_interrupt_num the P10 interrupt number 0-7

4.1.15.10.22. pio_interrupt_get

static bool pio_interrupt_get (PIO pio, uint pio_interrupt_num) [inline], [static]

Determine if a particular PIO interrupt is set.

Parameters
pio The PIO instance; e.g. pio0 or pio1
pio_interrupt_num the PIO interrupt number 0-7
Returns

true if corresponding PIO interrupt is currently set

4.1.15.10.23. pio_remove_program

void pio_remove_program (PIO pio, const pio_program_t * program, uint loaded_offset)

Remove a program from a PIO instance’s instruction memory.

Parameters
pio The P10 instance; e.g. pio0 or pio1
program the program definition
loaded_offset the loaded offset returned when the program was added

]
4.1. Hardware APIs 213

Raspberry Pi Pico-series C/C++ SDK

4.1.15.10.24. pio_remove_program_and_unclaim_sm

void pio_remove_program_and_unclaim_sm (const pio_program_t * program, PI0 pio, uint sm, uint offset)

Removes a program from PIO memory and unclaims the state machine.

Parameters
program P10 program to remove from memory
pio PIO hardware instance being used
sm P10 state machine that was claimed
offset offset of the program in PIO memory
See also

pio_claim_free_sm_and_add_program

4.1.15.10.25. pio_restart_sm_mask
static void pio_restart_sm_mask (PIO pio, uint32_t mask) [inline], [static]
Restart multiple state machine with a known state.

This method clears the ISR, shift counters, clock divider counter pin write flags, delay counter, latched EXEC instruction,
and IRQ wait condition.

Parameters
pio The PIO instance; e.g. pio0 or pio1l
mask bit mask of state machine indexes to modify the enabled state of

4.1.15.10.26. pio_set_gpio_base
int pio_set_gpio_base (PIO pio, uint gpio_base)
Set the base GPIO base for the PIO instance.

Since an individual PIO accesses only 32 pins, to be able to access more pins, the PIO instance must specify a base
GPIO where the instance’s "pin 0" maps. For RP2350 the valid values are 0 and 16, indicating the PIO instance has
access to pins 0-31, or 16-47 respectively.

Parameters
pio The PIO instance; e.g. pio0 or pio1
gpio_base the GPIO base (either 0 or 16)
Returns

PICO_OK (0) on success, error code otherwise

4.1.15.10.27. pio_set_irq0_source_enabled

static void pio_set_irq@_source_enabled (PIO pio, pio_interrupt_source_t source, bool enabled) [inline], [static]

Enable/Disable a single source on a PIO’s IRQ 0.

Parameters
pio The PIO instance; e.g. pio0 or pio1
source the source number (see pio_interrupt_source)

4.1. Hardware APIs 214

Raspberry Pi Pico-series C/C++ SDK

enabled true to enable IRQ 0 for the source, false to disable.

4.1.15.10.28. pio_set_irq0_source_mask_enabled

static void pio_set_irq@_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled) [inline], [static]

Enable/Disable multiple sources on a PIO’s IRQ 0.

Parameters
pio The PIO instance; e.g. pio0 or pioT
source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect
enabled true to enable all the sources specified in the mask on IRQ 0, false to disable all the sources

specified in the mask on IRQ 0

4.1.15.10.29. pio_set_irq1_source_enabled

static void pio_set_irql_source_enabled (PIO pio, pio_interrupt_source_t source, bool enabled) [inline], [static]

Enable/Disable a single source on a PIO’s IRQ 1.

Parameters
pio The PIO instance; e.g. pio0 or pio1
source the source number (see pio_interrupt_source)
enabled true to enable IRQ 0 for the source, false to disable.

4.1.15.10.30. pio_set_irq1_source_mask_enabled

static void pio_set_irql_source_mask_enabled (PIO pio, uint32_t source_mask, bool enabled) [inline], [static]

Enable/Disable multiple sources on a PIO’s IRQ 1.

Parameters
pio The PIO instance; e.g. pio0 or pio1
source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect
enabled true to enable all the sources specified in the mask on IRQ 1, false to disable all the source

specified in the mask on IRQ 1

4.1.15.10.31. pio_set_irqn_source_enabled

static void pio_set_irgn_source_enabled (PIO pio, uint irq_index, pio_interrupt_source t source, bool enabled) [inline],
[static]

Enable/Disable a single source on a PI0’s specified (0/1) IRQ index.
Parameters

pio The PIO instance; e.g. pio0 or pio1

irq_index the IRQ index; either 0 or 1

source the source number (see pio_interrupt_source)

enabled true to enable the source on the specified IRQ, false to disable.

4.1. Hardware APIs 215

Raspberry Pi Pico-series C/C++ SDK

4.1.15.10.32. pio_set_irqn_source_mask_enabled

static void pio_set_irqn_source_mask_enabled (PIO pio, uint dirq_index, uint32_t source_mask, bool enabled) [inline],
[static]

Enable/Disable multiple sources on a PIO’s specified (0/1) IRQ index.

Parameters
pio The PIO instance; e.g. pio0 or pioT
irq_index the IRQ index; either 0 or 1
source_mask Mask of bits, one for each source number (see pio_interrupt_source) to affect
enabled true to enable all the sources specified in the mask on the specified IRQ, false to disable all the

sources specified in the mask on the specified IRQ

4.1.15.10.33. pio_set_sm_mask_enabled
static void pio_set_sm_mask_enabled (PIO pio, uint32_t mask, bool enabled) [inline], [static]
Enable or disable multiple PIO state machines.

Note that this method just sets the enabled state of the state machine; if now enabled they continue exactly from where
they left off.

See also

pio_enable_sm_mask_in_sync() if you wish to enable multiple state machines and ensure their clock dividers are in

sync.

Parameters
pio The PIO instance; e.g. pio0 or pio1
mask bit mask of state machine indexes to modify the enabled state of
enabled true to enable the state machines; false to disable

4.1.15.10.34. pio_sm_claim
void pio_sm_claim (PIO pio, uint sm)
Mark a state machine as used.

Method for cooperative claiming of hardware. Will cause a panic if the state machine is already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters
pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.10.35. pio_sm_clear_fifos
static void pio_sm_clear_fifos (PIO pio, uint sm) [inline], [static]
Clear a state machine’s TX and RX FIFOs.
Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)

4.1. Hardware APIs 216

Raspberry Pi Pico-series C/C++ SDK
]

4.1.15.10.36. pio_sm_clkdiv_restart
static void pio_sm_clkdiv_restart (PIO pio, uint sm) [inline], [static]
Restart a state machine’s clock divider from a phase of 0.

Each state machine’s clock divider is a free-running piece of hardware, that generates a pattern of clock enable pulses
for the state machine, based only on the configured integer/fractional divisor. The pattern of running/halted cycles
slows the state machine’s execution to some controlled rate.

This function clears the divider's integer and fractional phase accumulators so that it restarts this pattern from the
beginning. It is called automatically by pio_sm_init() but can also be called at a later time, when you enable the state
machine, to ensure precisely consistent timing each time you load and run a given PIO program.

More commonly this hardware mechanism is used to synchronise the execution clocks of multiple state machines -
see pio_clkdiv_restart_sm_mask().

Parameters
pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.10.37. pio_sm_drain_tx_fifo
void pio_sm_drain_tx_fifo (PI0 pio, uint sm)
Empty out a state machine’s TX FIFO.

This method executes pull instructions on the state machine until the TX FIFO is empty. This disturbs the contents of
the OSR, so see also pio_sm_clear_fifos() which clears both FIFOs but leaves the state machine’s internal state
undisturbed.

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)

See also

pio_sm_clear_fifos()

4.1.15.10.38. pio_sm_exec
static void pio_sm_exec (PIO pio, uint sm, uint instr) [inline], [static]
Immediately execute an instruction on a state machine.

This instruction is executed instead of the next instruction in the normal control flow on the state machine. Subsequent
calls to this method replace the previous executed instruction if it is still running.

See also

pio_sm_is_exec_stalled() to see if an executed instruction is still running (i.e. it is stalled on some condition)

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
instr the encoded PIO instruction

]
4.1. Hardware APIs 217

Raspberry Pi Pico-series C/C++ SDK

4.1.15.10.39. pio_sm_exec_wait_blocking
static void pio_sm_exec_wait_blocking (PIO pio, uint sm, uint instr) [inline], [static]
Immediately execute an instruction on a state machine and wait for it to complete.

This instruction is executed instead of the next instruction in the normal control flow on the state machine. Subsequent
calls to this method replace the previous executed instruction if it is still running.

See also

pio_sm_is_exec_stalled() to see if an executed instruction is still running (i.e. it is stalled on some condition)

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
instr the encoded PIO instruction

4.1.15.10.40. pio_sm_get
static uint32_t pio_sm_get (PIO pio, uint sm) [inline], [static]
Read a word of data from a state machine’s RX FIFO.

This is a raw FIFO access that does not check for emptiness. If the FIFO is empty, the hardware ignores the attempt to
read from the FIFO (the FIFO remains in an empty state following the read) and the sticky RXUNDER flag for this FIFO is
set in FDEBUG to indicate that the system tried to read from this FIFO when empty. The data returned by this function is
undefined when the FIFO is empty.

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)

See also

pio_sm_get_blocking()

4.1.15.10.41. pio_sm_get_blocking
static uint32_t pio_sm_get_blocking (PIO pio, uint sm) [inline], [static]
Read a word of data from a state machine’s RX FIFO, blocking if the FIFO is empty.
Parameters
pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.10.42. pio_sm_get_pc
static uint8_t pio_sm_get_pc (PIO pio, uint sm) [inline], [static]
Return the current program counter for a state machine.
Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)
Returns

4.1. Hardware APIs 218

Raspberry Pi Pico-series C/C++ SDK
]

the program counter

4.1.15.10.43. pio_sm_get_rx_fifo_level
static uint pio_sm_get_rx_fifo_level (PIO pio, uint sm) [inline], [static]
Return the number of elements currently in a state machine’s RX FIFO.
Parameters

pio The PIO instance; e.g. pio0 or pioT

sm State machine index (0..3)
Returns

the number of elements in the RX FIFO

4.1.15.10.44. pio_sm_get_tx_fifo_level
static uint pio_sm_get_tx_fifo_level (PIO pio, uint sm) [inline], [static]
Return the number of elements currently in a state machine’s TX FIFO.
Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)
Returns

the number of elements in the TX FIFO

4.1.15.10.45. pio_sm_is_claimed
bool pio_sm_is_claimed (PIO pio, uint sm)
Determine if a PIO state machine is claimed.
Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
Returns
true if claimed, false otherwise
See also
pio_sm_claim

pio_claim_sm_mask

4.1.15.10.46. pio_sm_is_exec_stalled
static bool pio_sm_is_exec_stalled (PIO pio, uint sm) [inline], [static]
Determine if an instruction set by pio_sm_exec() is stalled executing.
Parameters

pio The PIO instance; e.g. pio0 or pio1

]
4.1. Hardware APIs 219

Raspberry Pi Pico-series C/C++ SDK
]

sm State machine index (0..3)
Returns

true if the executed instruction is still running (stalled)

4.1.15.10.47. pio_sm_is_rx_fifo_empty
static bool pio_sm_is_rx_fifo_empty (PIO pio, uint sm) [inline], [static]
Determine if a state machine’s RX FIFO is empty.
Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
Returns

true if the RX FIFO is empty

4.1.15.10.48. pio_sm_is_rx_fifo_full
static bool pio_sm_is_rx_fifo_full (PIO pio, uint sm) [inline], [static]
Determine if a state machine’s RX FIFO is full.
Parameters
pio The PIO instance; e.g. pio0 or piol
sm State machine index (0..3)
Returns

true if the RX FIFO is full

4.1.15.10.49. pio_sm_is_tx_fifo_empty
static bool pio_sm_is_tx_fifo_empty (PIO pio, uint sm) [inline], [static]
Determine if a state machine’s TX FIFO is empty.
Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
Returns

true if the TX FIFO is empty

4.1.15.10.50. pio_sm_is_tx_fifo_full
static bool pio_sm_is_tx_fifo_full (PIO pio, uint sm) [inline], [static]
Determine if a state machine’s TX FIFO is full.
Parameters
pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

]
4.1. Hardware APIs 220

Raspberry Pi Pico-series C/C++ SDK
]

Returns

true if the TX FIFO is full

4.1.15.10.51. pio_sm_put

static void pio_sm_put (PIO pio, uint sm, uint32_t data) [inline], [static]
Write a word of data to a state machine’s TX FIFO.

This is a raw FIFO access that does not check for fullness. If the FIFO is full, the FIFO contents and state are not
affected by the write attempt. Hardware sets the TXOVER sticky flag for this FIFO in FDEBUG, to indicate that the
system attempted to write to a full FIFO.

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)

data the 32 bit data value
See also

pio_sm_put_blocking()

4.1.15.10.52. pio_sm_put_blocking

static void pio_sm_put_blocking (PIO pio, uint sm, uint32_t data) [inline], [static]

Write a word of data to a state machine’s TX FIFO, blocking if the FIFO is full.

Parameters
pio The PIO instance; e.g. pio0 or pio1l
sm State machine index (0..3)

data the 32 bit data value

4.1.15.10.53. pio_sm_restart
static void pio_sm_restart (PIO pio, uint sm) [inline], [static]
Restart a state machine with a known state.

This method clears the ISR, shift counters, clock divider counter pin write flags, delay counter, latched EXEC instruction,
and IRQ wait condition.

Parameters
pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.10.54. pio_sm_set_clkdiv
static void pio_sm_set_clkdiv (PIO pio, uint sm, float div) [inline], [static]
set the current clock divider for a state machine
Parameters
pio The PIO instance; e.g. pio0 or pio1

]
4.1. Hardware APIs 221

Raspberry Pi Pico-series C/C++ SDK
]

sm State machine index (0..3)

div the floating point clock divider

4.1.15.10.55. pio_sm_set_clkdiv_int_frac

static void pio_sm_set_clkdiv_int_frac (PIO pio, uint sm, uint16_t div_int, uint8_t div_frac) [inline], [static]

set the current clock divider for a state machine using a 16:8 fraction

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
div_int the integer part of the clock divider

div_frac the fractional part of the clock divider in 1/256s

4.1.15.10.56. pio_sm_set_config

static int pio_sm_set_config (PIO pio, uint sm, const pio_sm_config * config) [inline], [static]

Apply a state machine configuration to a state machine.

Parameters
pio Handle to PIO instance; e.g. pio0 or pioT
sm State machine index (0..3)
config the configuration to apply

Returns

PICO_OK (0) on success, negative error code otherwise

4.1.15.10.57. pio_sm_set_consecutive_pindirs
int pio_sm_set_consecutive_pindirs (PIO pio, uint sm, uint pins_base, uint pin_count, bool is_out)
Use a state machine to set the same pin direction for multiple consecutive pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
the pin direction on consecutive pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin directions, and should not be used against a state machine
that is enabled.

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3) to use
pins_base the first pin to set a direction for
pin_count the count of consecutive pins to set the direction for
is_out the direction to set; true = out, false = in
Returns

PICO_OK (0) on success, error code otherwise

]
4.1. Hardware APIs 222

Raspberry Pi Pico-series C/C++ SDK

4.1.15.10.58. pio_sm_set_enabled

static void pio_sm_set_enabled (PIO pio, uint sm, bool enabled) [inline], [static]

Enable or disable a PIO state machine.

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
enabled true to enable the state machine; false to disable

4.1.15.10.59. pio_sm_set_in_pins
static void pio_sm_set_in_pins (PIO pio, uint sm, uint in_base) [inline], [static]
Set the current 'in’' pins for a state machine.

'in' pins can overlap with the 'out’, 'set' and 'sideset’ pins

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
in_base 0-31 First pin to use as input

4.1.15.10.60. pio_sm_set_jmp_pin
static void pio_sm_set_jmp_pin (PIO pio, uint sm, uint pin) [inline], [static]
Set the jmp' pin for a state machine.
Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)

pin The raw GPIO pin number to use as the source for a jmp pin instruction

4.1.15.10.61. pio_sm_set_out_pins

static void pio_sm_set_out_pins (PIO pio, uint sm, uint out_base, uint out_count) [inline], [static]

Set the current 'out’ pins for a state machine.

‘out’ pins can overlap with the 'in’, 'set' and 'sideset’ pins

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
out_base 0-31 First pin to set as output
out_count 0-32 Number of pins to set.

4.1.15.10.62. pio_sm_set_pindirs_with_mask

void pio_sm_set_pindirs_with_mask (PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_mask)

4.1. Hardware APIs 223

Raspberry Pi Pico-series C/C++ SDK
]

Use a state machine to set the pin directions for multiple pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
pin directions on up to 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin directions, and should not be used against a state machine
that is enabled.

Parameters
pio The PIO instance; e.g. pio0 or pio’
sm State machine index (0..3) to use
pin_dirs the pin directions to set - 1 = out, 0 = in (if the corresponding bit in pin_mask is set)
pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied.

4.1.15.10.63. pio_sm_set_pins
void pio_sm_set_pins (PIO pio, uint sm, uint32_t pin_values)
Use a state machine to set a value on all pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
values on all 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin states, and should not be used against a state machine that

is enabled.

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3) to use
pin_values the pin values to set

4.1.15.10.64. pio_sm_set_pins_with_mask
void pio_sm_set_pins_with_mask (PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask)
Use a state machine to set a value on multiple pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
values on up to 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin states, and should not be used against a state machine that

is enabled.
Parameters
pio The PIO instance; e.g. pio0 or pio’
sm State machine index (0..3) to use
pin_values the pin values to set (if the corresponding bit in pin_mask is set)
pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied.

4.1.15.10.65. pio_sm_set_set_pins

static void pio_sm_set_set_pins (PIO pio, uint sm, uint set_base, uint set_count) [inline], [static]

Set the current 'set’ pins for a state machine.

]
4.1. Hardware APIs 224

Raspberry Pi Pico-series C/C++ SDK

'set’ pins can overlap with the 'in', 'out’ and 'sideset’ pins

Parameters
pio The PIO instance; e.g. pio0 or pio1
sm State machine index (0..3)
set_base 0-31 First pin to set as
set_count 0-5 Number of pins to set.

4.1.15.10.66. pio_sm_set_sideset_pins

static void pio_sm_set_sideset_pins (PIO pio, uint sm, uint sideset_base) [inline], [static]
Set the current 'sideset’ pins for a state machine.

'sideset’ pins can overlap with the 'in’, 'out’ and 'set' pins

Parameters
pio The PIO instance; e.g. pio0 or pioT
sm State machine index (0..3)
sideset_base 0-31 base pin for 'side set'

4.1.15.10.67. pio_sm_set_wrap

static void pio_sm_set_wrap (PIO pio, uint sm, uint wrap_target, uint wrap) [inline], [static]

Set the current wrap configuration for a state machine.

Parameters
pio The PIO instance; e.g. pio0 or pio1l
sm State machine index (0..3)
wrap_target the instruction memory address to wrap to
wrap the instruction memory address after which to set the program counter to wrap_target if the

instruction does not itself update the program_counter

4.1.15.10.68. pio_sm_unclaim
void pio_sm_unclaim (PIO pio, uint sm)
Mark a state machine as no longer used.
Method for cooperative claiming of hardware.
Parameters

pio The PIO instance; e.g. pio0 or pio1

sm State machine index (0..3)

4.1.15.11. sm_config

P10 state machine configuration .

4.1. Hardware APIs 225

Raspberry Pi Pico-series C/C++ SDK
]

4.1.15.11.1. Detailed Description

A PIO block needs to be configured, these functions provide helpers to set up configuration structures. See
pio_sm_set_config

4.1.15.11.2. Functions
static void sm_config_set_out_pin_base (pio_sm_config *c, uint out_base)
Set the base of the 'out' pins in a state machine configuration.
static void sm_config_set_out_pin_count (pio_sm_config *c, uint out_count)
Set the number of 'out’ pins in a state machine configuration.
static void sm_config_set_out_pins (pio_sm_config *c, uint out_base, uint out_count)
Set the 'out’ pins in a state machine configuration.
static void sm_config_set_set_pin_base (pio_sm_config *c, uint set_base)
Set the base of the 'set’ pins in a state machine configuration.
static void sm_config_set_set_pin_count (pio_sm_config *c, uint set_count)
Set the count of 'set’ pins in a state machine configuration.
static void sm_config_set_set_pins (pio_sm_config *c, uint set_base, uint set_count)
Set the 'set’ pins in a state machine configuration.
static void sm_config_set_in_pin_base (pio_sm_config *c, uint in_base)
Set the base of the 'in' pins in a state machine configuration.
static void sm_config_set_in_pins (pio_sm_config *c, uint in_base)
Set the base fpr the 'in’ pins in a state machine configuration.
static void sm_config_set_sideset_pin_base (pio_sm_config *c, uint sideset_base)
Set the base of the 'sideset' pins in a state machine configuration.
static void sm_config_set_sideset_pins (pio_sm_config *c, uint sideset_base)
Set the 'sideset’ pins in a state machine configuration.
static void sm_config_set_sideset (pio_sm_config *c, uint bit_count, bool optional, bool pindirs)
Set the 'sideset’ options in a state machine configuration.
static void sm_config_set_clkdiv_int_frac (pio_sm_config *c, uint16_t div_int, uint8_t div_frac)
Set the state machine clock divider (from integer and fractional parts - 16:8) in a state machine configuration.
static void sm_config_set_clkdiv (pio_sm_config *c, float div)
Set the state machine clock divider (from a floating point value) in a state machine configuration.
static void sm_config_set_wrap (pio_sm_config *c, uint wrap_target, uint wrap)
Set the wrap addresses in a state machine configuration.
static void sm_config_set_jmp_pin (pio_sm_config *c, uint pin)
Set the 'jmp' pin in a state machine configuration.
static void sm_config_set_in_shift (pio_sm_config *c, bool shift_right, bool autopush, uint push_threshold)

Setup 'in’ shifting parameters in a state machine configuration.

static void sm_config_set_out_shift (pio_sm_config *c, bool shift_right, bool autopull, uint pull_threshold)
Setup 'out’ shifting parameters in a state machine configuration.

static void sm_config_set_fifo_join (pio_sm_config *c, enum pio_fifo_join join)
Setup the FIFO joining in a state machine configuration.

]
4.1. Hardware APIs 226

Raspberry Pi Pico-series C/C++ SDK
]

static void sm_config_set_out_special (pio_sm_config *c, bool sticky, bool has_enable_pin, uint enable_pin_index)

Set special 'out' operations in a state machine configuration.

static void sm_config_set_mov_status (pio_sm_config *c, enum pio_mov_status_type status_sel, uint status_n)

Set source for 'mov status' in a state machine configuration.

static pio_sm_config pio_get_default_sm_config (void)

Get the default state machine configuration.

4.1.15.11.3. Function Documentation

pio_get_default_sm_config
static pio_sm_config pio_get_default_sm_config (void) [inline], [static]

Get the default state machine configuration.

Setting Default

Out Pins 32 starting at 0

Set Pins 0 starting at 0

In Pins (base) 0

Side Set Pins (base) 0

Side Set disabled

Wrap wrap=31, wrap_to=0

In Shift shift_direction=right, autopush=false, push_threshold=32
Out Shift shift_direction=right, autopull=false, pull_threshold=32
Jmp Pin 0

Out Special sticky=false, has_enable_pin=false, enable_pin_index=0
Mov Status status_sel=STATUS_TX_LESSTHAN, n=0
Returns

the default state machine configuration which can then be modified.

sm_config_set_clkdiv

static void sm_config_set_clkdiv (pio_sm_config * ¢, float div) [inline], [static]

Set the state machine clock divider (from a floating point value) in a state machine configuration.

The clock divider slows the state machine’s execution by masking the system clock on some cycles, in a repeating
pattern, so that the state machine does not advance. Effectively this produces a slower clock for the state machine to
run from, which can be used to generate e.g. a particular UART baud rate. See the datasheet for further detail.

Parameters
c Pointer to the configuration structure to modify
div The fractional divisor to be set. 1 for full speed. An integer clock divisor of n will cause the state machine

torun 1 cycle in every n. Note that for small n, the jitter introduced by a fractional divider (e.g. 2.5) may be
unacceptable although it will depend on the use case.

sm_config_set_clkdiv_int_frac
static void sm_config_set_clkdiv_int_frac (pio_sm_config * ¢, uint16_t div_int, uint8_t div_frac) [inline], [static]

Set the state machine clock divider (from integer and fractional parts - 16:8) in a state machine configuration.

]
4.1. Hardware APIs 227

Raspberry Pi Pico-series C/C++ SDK
]

The clock divider can slow the state machine’s execution to some rate below the system clock frequency, by enabling
the state machine on some cycles but not on others, in a regular pattern. This can be used to generate e.g. a given
UART baud rate. See the datasheet for further detail.

Parameters
c Pointer to the configuration structure to modify
div_int Integer part of the divisor

div_frac Fractional part in 1/256ths
See also
sm_config_set_clkdiv()
sm_config_set_fifo_join
static void sm_config_set_fifo_join (pio_sm_config * ¢, enum pio_fifo_join join) [inline], [static]
Setup the FIFO joining in a state machine configuration.
Parameters
c Pointer to the configuration structure to modify
join Specifies the join type.
See also
enum pio_fifo_join
sm_config_set_in_pin_base
static void sm_config_set_in_pin_base (pio_sm_config * ¢, uint in_base) [inline], [static]
Set the base of the 'in’ pins in a state machine configuration.

'in' pins can overlap with the 'out’, 'set’ and 'sideset’ pins

Parameters
c Pointer to the configuration structure to modify
in_base 0-31 First pin to use as input

sm_config_set_in_pins
static void sm_config_set_in_pins (pio_sm_config * ¢, uint in_base) [inline], [static]
Set the base fpr the 'in’ pins in a state machine configuration.

'in' pins can overlap with the 'out’, 'set’ and 'sideset’ pins

Parameters
c Pointer to the configuration structure to modify
in_base 0-31 First pin to use as input

sm_config_set_in_shift

static void sm_config_set_in_shift (pio_sm_config * ¢, bool shift_right, bool autopush, uint push_threshold) [inline]
[static]

Setup 'in’ shifting parameters in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
shift_right true to shift ISR to right, false to shift ISR to left

]
4.1. Hardware APIs 228

Raspberry Pi Pico-series C/C++ SDK
]

autopush whether autopush is enabled

push_threshold threshold in bits to shift in before auto/conditional re-pushing of the ISR
sm_config_set_jmp_pin
static void sm_config_set_jmp_pin (pio_sm_config * ¢, vint pin) [inline], [static]

Set the 'jmp' pin in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
pin The raw GPIO pin number to use as the source for a jmp pininstruction

sm_config_set_mov_status

static void sm_config_set_mov_status (pio_sm_config * c, enum pio_mov_status_type status_sel, uint status_n) [inline]
[static]

Set source for 'mov status' in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
status_sel the status operation selector.

See also

enum pio_mov_status_type
Parameters

status_n parameter for the mov status operation (currently a bit count)
sm_config_set_out_pin_base
static void sm_config_set_out_pin_base (pio_sm_config * ¢, uint out_base) [inline], [static]
Set the base of the 'out' pins in a state machine configuration.

‘out’ pins can overlap with the 'in’, 'set' and 'sideset’ pins

Parameters
c Pointer to the configuration structure to modify
out_base 0-31 First pin to set as output

sm_config_set_out_pin_count
static void sm_config_set_out_pin_count (pio_sm_config * ¢, uint out_count) [inline], [static]
Set the number of 'out' pins in a state machine configuration.

‘out’ pins can overlap with the 'in’, 'set’ and 'sideset’ pins

Parameters
c Pointer to the configuration structure to modify
out_count 0-32 Number of pins to set.

sm_config_set_out_pins

static void sm_config_set_out_pins (pio_sm_config * c, uint out_base, uint out_count) [inline], [static]
Set the 'out’ pins in a state machine configuration.

‘out’ pins can overlap with the 'in’, 'set' and 'sideset’ pins

Parameters

]
4.1. Hardware APIs 229

Raspberry Pi Pico-series C/C++ SDK
]

c Pointer to the configuration structure to modify
out_base 0-31 First pin to set as output
out_count 0-32 Number of pins to set.

sm_config_set_out_shift

static void sm_config_set_out_shift (pio_sm_config * ¢, bool shift_right, bool autopull, uint pull_threshold) [inline],
[static]

Setup 'out’ shifting parameters in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
shift_right true to shift OSR to right, false to shift OSR to left
autopull whether autopull is enabled

pull_threshold threshold in bits to shift out before auto/conditional re-pulling of the OSR
sm_config_set_out_special

static void sm_config_set_out_special (pio_sm_config * ¢, bool sticky, bool has_enable_pin, uint enable_pin_index)
[inline], [static]

Set special 'out' operations in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
sticky to enable 'sticky' output (i.e. re-asserting most recent OUT/SET pin values on subsequent
cycles)
has_enable_pin true to enable auxiliary OUT enable pin
enable_pin_index pin index for auxiliary OUT enable

sm_config_set_set_pin_base
static void sm_config_set_set_pin_base (pio_sm_config * c, uint set_base) [inline], [static]
Set the base of the 'set' pins in a state machine configuration.

'set’ pins can overlap with the 'in', 'out’ and 'sideset’ pins

Parameters
c Pointer to the configuration structure to modify
set_base 0-31 First pin to set as

sm_config_set_set_pin_count
static void sm_config_set_set_pin_count (pio_sm_config * ¢, uint set_count) [inline], [static]
Set the count of 'set' pins in a state machine configuration.

'set’ pins can overlap with the 'in', 'out’ and 'sideset’ pins

Parameters
c Pointer to the configuration structure to modify
set_count 0-5 Number of pins to set.

sm_config_set_set_pins
static void sm_config_set_set_pins (pio_sm_config * c, uint set_base, uint set_count) [inline], [static]

Set the 'set' pins in a state machine configuration.

]
4.1. Hardware APIs 230

Raspberry Pi Pico-series C/C++ SDK
]

'set’ pins can overlap with the 'in', 'out’ and 'sideset’ pins

Parameters
c Pointer to the configuration structure to modify
set_base 0-31 First pin to set as
set_count 0-5 Number of pins to set.

sm_config_set_sideset
static void sm_config_set_sideset (pio_sm_config * ¢, uint bit_count, bool optional, bool pindirs) [inline], [static]

Set the 'sideset’ options in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
bit_count Number of bits to steal from delay field in the instruction for use of side set (max 5)
optional True if the topmost side set bit is used as a flag for whether to apply side set on that instruction
pindirs True if the side set affects pin directions rather than values

sm_config_set_sideset_pin_base
static void sm_config_set_sideset_pin_base (pio_sm_config * ¢, uint sideset_base) [inline], [static]
Set the base of the 'sideset' pins in a state machine configuration.

'sideset’ pins can overlap with the 'in’, 'out’ and 'set' pins

Parameters
c Pointer to the configuration structure to modify
sideset_base 0-31 base pin for 'side set'

sm_config_set_sideset_pins

static void sm_config_set_sideset_pins (pio_sm_config * ¢, uint sideset_base) [inline], [static]

Set the 'sideset’ pins in a state machine configuration.

This method is identical to sm_config_set_sideset_pin_base, and is provided for backwards compatibility

'sideset’ pins can overlap with the 'in’, 'out’ and 'set' pins

Parameters
c Pointer to the configuration structure to modify
sideset_base 0-31 base pin for 'side set'

sm_config_set_wrap
static void sm_config_set_wrap (pio_sm_config * c, uint wrap_target, uint wrap) [inline], [static]

Set the wrap addresses in a state machine configuration.

Parameters
c Pointer to the configuration structure to modify
wrap_target the instruction memory address to wrap to
wrap the instruction memory address after which to set the program counter to wrap_target if the

instruction does not itself update the program_counter

]
4.1. Hardware APIs 231

Raspberry Pi Pico-series C/C++ SDK
]

4.1.15.12. pio_instructions

P10 instruction encoding .

4.1.15.12.1. Detailed Description

Functions for generating PIO instruction encodings programmatically. In debug builds
PARAM_ASSERTIONS_ENABLED_PIO_INSTRUCTIONS can be set to 1 to enable validation of encoding function parameters.

For fuller descriptions of the instructions in question see the "RP2040 Datasheet"

4.1.15.12.2. Enumerations

enum pio_src_dest { pio_pins = Qu, pio_x = Tu, pio_y = 2u, pio_null = 3u | 0x20u | @x80u, pio_pindirs = 4u | @x@8u |
0x40u | 0x80u, pio_exec_mov = 4u | 0x08u | Ox10u | 0x20u | @x40u, pio_status = 5u | 0x08u | 0x10u | Ox20u | 0x80u, pio_pc
= 5u | @x08u | @x20u | Ox40u, pio_isr = 6u | @x20u, pio_osr = 7u | @x10u | 0x20u, pio_exec_out = 7u | 0x08u | Ox20u |
0x40u | 0x80u }

Enumeration of values to pass for source/destination args for instruction encoding functions.

4.1.15.12.3. Functions
static uint pio_encode_delay (uint cycles)
Encode just the delay slot bits of an instruction.

static vint pio_encode_sideset (uint sideset_bit_count, uint value)

Encode just the side set bits of an instruction (in non optional side set mode)
static vint pio_encode_sideset_opt (uint sideset_bit_count, uint value)

Encode just the side set bits of an instruction (in optional -opt side set mode)
static uvint pio_encode_jmp (uint addr)

Encode an unconditional JMP instruction.
static uint pio_encode_jmp_not_x (uint addr)

Encode a conditional JMP if scratch X zero instruction.
static uint pio_encode_jmp_x_dec (uint addr)

Encode a conditional JMP if scratch X non-zero (and post-decrement X) instruction.
static uint pio_encode_jmp_not_y (uint addr)

Encode a conditional JMP if scratch Y zero instruction.
static vint pio_encode_jmp_y_dec (uint addr)

Encode a conditional JMP if scratch Y non-zero (and post-decrement Y) instruction.
static uvint pio_encode_jmp_x_ne_y (uint addr)

Encode a conditional JMP if scratch X not equal scratch Y instruction.
static uint pio_encode_jmp_pin (uint addr)

Encode a conditional JMP if input pin high instruction.
static uint pio_encode_jmp_not_osre (uint addr)

Encode a conditional JMP if output shift register not empty instruction.
static uint pio_encode_wait_gpio (bool polarity, uint gpio)

Encode a WAIT for GPIO pin instruction.

]
4.1. Hardware APIs 232

Raspberry Pi Pico-series C/C++ SDK
]

static uvint pio_encode_wait_pin (bool polarity, uint pin)

Encode a WAIT for pin instruction.

static uint pio_encode_wait_irq (bool polarity, bool relative, uint irq)

Encode a WAIT for IRQ instruction.

static vint pio_encode_in (enum pio_src_dest src, uint count)

Encode an IN instruction.

static uvint pio_encode_out (enum pio_src_dest dest, uint count)

Encode an OUT instruction.

static uvint pio_encode_push (bool if_full, bool block)

Encode a PUSH instruction.

static uint pio_encode_pull (bool if_empty, bool block)

Encode a PULL instruction.

static uint pio_encode_mov (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction.

static vint pio_encode_mov_not (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction with bit invert.

static uint pio_encode_mov_reverse (enum pio_src_dest dest, enum pio_src_dest src)

Encode a MOV instruction with bit reverse.

static uint pio_encode_irq_set (bool relative, uint irq)

Encode a IRQ SET instruction.

static uint pio_encode_irq_wait (bool relative, uint irq)

Encode a IRQ WAIT instruction.

static vint pio_encode_irq_clear (bool relative, uint irq)

Encode a IRQ CLEAR instruction.

static uint pio_encode_set (enum pio_src_dest dest, uint value)

Encode a SET instruction.

static uint pio_encode_nop (void)

Encode a NOP instruction.

4.1.15.12.4. Enumeration Type Documentation

pio_src_dest
enum pio_src_dest

Enumeration of values to pass for source/destination args for instruction encoding functions.

O NoOTE

Not all values are suitable for all functions. Validity is only checked in debug mode when
PARAM_ASSERTIONS_ENABLED_PIO_INSTRUCTIONS is 1

4.1.15.12.5. Function Documentation

pio_encode_delay

]
4.1. Hardware APIs 233

Raspberry Pi Pico-series C/C++ SDK

static uint pio_encode_delay (uint cycles) [inline], [static]

Encode just the delay slot bits of an instruction.

© NOTE

This function does not return a valid instruction encoding; instead it returns an encoding of the delay slot suitable for
"OR’ing with the result of an encoding function for an actual instruction. Care should be taken when combining the
results of this function with the results of pio_encode_sideset and pio_encode_sideset_opt as they share the same
bits within the instruction encoding.

Parameters

cycles the number of cycles 0-31 (or less if side set is being used)
Returns
the delay slot bits to be ORed with an instruction encoding
pio_encode_in
static uint pio_encode_in (enum pio_src_dest src, uint count) [inline], [static]
Encode an IN instruction.

This is the equivalent of IN <src>, <count>

Parameters
sre The source to take data from
count The number of bits 1-32
Returns

The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_irq_clear
static uint pio_encode_irq_clear (bool relative, uint irq) [inline], [static]
Encode a IRQ CLEAR instruction.
This is the equivalent of IRQ CLEAR <irg> <relative>
Parameters
relative true for a IRQ CLEAR <irg> REL, false for regular IRQ CLEAR <irg>
irq the irg number 0-7
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_irq_set
static uint pio_encode_irq_set (bool relative, uint irq) [inline], [static]
Encode a IRQ SET instruction.
This is the equivalent of IRQ SET <irq> <relative>

Parameters

]
4.1. Hardware APIs 234

Raspberry Pi Pico-series C/C++ SDK
]

relative true for a IRQ SET <irq> REL, false for regular IRQ SET <irg>
irq the irg number 0-7
Returns

The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_irq_wait
static uint pio_encode_irq_wait (bool relative, uint irq) [inline], [static]
Encode a IRQ WAIT instruction.
This is the equivalent of IRQ WAIT <irg> <relative>
Parameters
relative true for a IRQ WAIT <irg> REL, false for regular IRQ WAIT <irg>
irq the irg number 0-7
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp
static uint pio_encode_jmp (uint addr) [inline], [static]
Encode an unconditional JMP instruction.
This is the equivalent of JHP <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_not_osre
static uint pio_encode_jmp_not_osre (uint addr) [inline], [static]
Encode a conditional JMP if output shift register not empty instruction.
This is the equivalent of JMP !0SRE <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_not_x

]
4.1. Hardware APIs 235

Raspberry Pi Pico-series C/C++ SDK
]

static uint pio_encode_jmp_not_x (uint addr) [inline], [static]
Encode a conditional JMP if scratch X zero instruction.
This is the equivalent of JMP !X <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_not_y
static uint pio_encode_jmp_not_y (uint addr) [inline], [static]
Encode a conditional JMP if scratch Y zero instruction.
This is the equivalent of JMP 'Y <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_pin
static uint pio_encode_jmp_pin (uint addr) [inline], [static]
Encode a conditional JMP if input pin high instruction.
This is the equivalent of JMP PIN <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_x_dec
static uint pio_encode_jmp_x_dec (uint addr) [inline], [static]
Encode a conditional JMP if scratch X non-zero (and post-decrement X) instruction.
This is the equivalent of JMP X-- <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value

See also

]
4.1. Hardware APIs 236

Raspberry Pi Pico-series C/C++ SDK
]

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_x_ne_y
static uint pio_encode_jmp_x_ne_y (uint addr) [inline], [static]
Encode a conditional JMP if scratch X not equal scratch Y instruction.
This is the equivalent of JMP X!=Y <addr>
Parameters
addr The target address 0-31 (an absolute address within the PIO instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_jmp_y_dec
static uint pio_encode_jmp_y_dec (uint addr) [inline], [static]
Encode a conditional JMP if scratch Y non-zero (and post-decrement Y) instruction.
This is the equivalent of JUP Y-- <addr>
Parameters
addr The target address 0-31 (an absolute address within the P10 instruction memory)
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_mov
static uint pio_encode_mov (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]
Encode a MOV instruction.

This is the equivalent of MOV <dest>, <src>

Parameters
dest The destination to write data to
sre The source to take data from
Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_mov_not

static uint pio_encode_mov_not (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]
Encode a MOV instruction with bit invert.

This is the equivalent of MOV <dest>, ~<src>

Parameters

]
4.1. Hardware APIs 237

Raspberry Pi Pico-series C/C++ SDK
]

dest The destination to write inverted data to
src The source to take data from
Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

pio_encode_mov_reverse

static uint pio_encode_mov_reverse (enum pio_src_dest dest, enum pio_src_dest src) [inline], [static]
Encode a MOV instruction with bit reverse.

This is the equivalent of MOV <dest>, ::<src>

Parameters
dest The destination to write bit reversed data to
sre The source to take data from

Returns

The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_nop
static uint pio_encode_nop (void) [inline], [static]
Encode a NOP instruction.
This is the equivalent of NOP which is itself encoded as MOV vy, y
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_out
static uint pio_encode_out (enum pio_src_dest dest, uint count) [inline], [static]
Encode an OUT instruction.
This is the equivalent of 0UT <src>, <count>
Parameters
dest The destination to write data to
count The number of bits 1-32
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_pull
static uint pio_encode_pull (bool if_empty, bool block) [inline], [static]

]
4.1. Hardware APIs 238

Raspberry Pi Pico-series C/C++ SDK
]

Encode a PULL instruction.
This is the equivalent of PULL <if_empty>, <block>
Parameters
if_empty true for PULL IF_EMPTY -, false for PULL -
block true for PULL -+ BLOCK, false for PULL -
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_push
static uint pio_encode_push (bool if_full, bool block) [inline], [static]
Encode a PUSH instruction.
This is the equivalent of PUSH <if_full>, <block>
Parameters
if_full true for PUSH IF_FULL -, false for PUSH -
block true for PUSH -+ BLOCK, false for PUSH -
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_set
static uint pio_encode_set (enum pio_src_dest dest, uint value) [inline], [static]
Encode a SET instruction.

This is the equivalent of SET <dest>, <value>

Parameters
dest The destination to apply the value to
value The value 0-31

Returns

The instruction encoding with 0 delay and no side set value

See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_sideset

static uint pio_encode_sideset (uint sideset_bit_count, uint value) [inline], [static]

Encode just the side set bits of an instruction (in non optional side set mode)

]
4.1. Hardware APIs 239

Raspberry Pi Pico-series C/C++ SDK

© NOTE

This function does not return a valid instruction encoding; instead it returns an encoding of the side set bits suitable
for "OR’ing with the result of an encoding function for an actual instruction. Care should be taken when combining
the results of this function with the results of pio_encode_delay as they share the same bits within the instruction

encoding.
Parameters
sideset_bit_count number of side set bits as would be specified via .sideset in pioasm
value the value to sideset on the pins
Returns

the side set bits to be ORed with an instruction encoding
pio_encode_sideset_opt
static uint pio_encode_sideset_opt (uint sideset_bit_count, uint value) [inline], [static]

Encode just the side set bits of an instruction (in optional -opt side set mode)

©® NoOTE

This function does not return a valid instruction encoding; instead it returns an encoding of the side set bits suitable
for "OR’ing with the result of an encoding function for an actual instruction. Care should be taken when combining
the results of this function with the results of pio_encode_delay as they share the same bits within the instruction

encoding.
Parameters
sideset_bit_count number of side set bits as would be specified via .sideset <n> opt in pioasm
value the value to sideset on the pins
Returns

the side set bits to be ORed with an instruction encoding
pio_encode_wait_gpio
static uint pio_encode_wait_gpio (bool polarity, uint gpio) [inline], [static]
Encode a WAIT for GPIO pin instruction.
This is the equivalent of WAIT <polarity> GPIO <gpio>
Parameters
polarity true for WAIT 1, false for WAIT @
gpio The real GPIO number 0-31
Returns
The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_wait_irq
static uint pio_encode_wait_irq (bool polarity, bool relative, uint irq) [inline], [static]
Encode a WAIT for IRQ instruction.
This is the equivalent of WAIT <polarity> IRQ <irq> <relative>

]
4.1. Hardware APIs 240

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

polarity true for WAIT 1, false for WAIT 0

relative true for a WAIT IRQ <irq> REL, false for regular WAIT IRQ <irq>
irq the irg number 0-7
Returns

The instruction encoding with 0 delay and no side set value
See also
pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt
pio_encode_wait_pin
static uint pio_encode_wait_pin (bool polarity, uint pin) [inline], [static]
Encode a WAIT for pin instruction.
This is the equivalent of WAIT <polarity> PIN <pin>
Parameters
polarity true for WAIT 1, false for WAIT @
pin The pin number 0-31 relative to the executing SM'’s input pin mapping
Returns
The instruction encoding with 0 delay and no side set value
See also

pio_encode_delay, pio_encode_sideset, pio_encode_sideset_opt

4.1.16. hardware_pl|

Phase Locked Loop control APIs.

4.1.16.1. Detailed Description

There are two PLLs in RP2040. They are:
® pli_sys - Used to generate up to a 133MHz system clock

® pll_usb - Used to generate a 48MHz USB reference clock
For details on how the PLLs are calculated, please refer to the RP2040 datasheet.

4.1.16.2. Macros

® ftdefine PLL_RESET_NUM(p1l)

4.1.16.3. Functions

void pll_init (PLL pll, uint ref_div, uint vco_freq, uint post_div1, uint post_div2)
Initialise specified PLL.
void pll_deinit (PLL p1l)

Release/uninitialise specified PLL.

]
4.1. Hardware APIs 241

Raspberry Pi Pico-series C/C++ SDK
]

4.1.16.4. Macro Definition Documentation

4.1.16.4.1. PLL_RESET_NUM
#define PLL_RESET_NUM(p1l)
Returns the reset_num_t used to reset a given PLL instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.16.5. Function Documentation

4.1.16.5.1. pll_deinit
void pll_deinit (PLL pll)
Release/uninitialise specified PLL.

This will turn off the power to the specified PLL. Note this function does not currently check if the PLL is in use before
powering it off so should be used with care.

Parameters

pll pli_sys or pll_usb

4.1.16.5.2. pll_init

void pll_init (PLL pl1, uint ref_div, uint vco_freq, uint post_div1, uint post_div2)

Initialise specified PLL.

Parameters
pll pli_sys or pll_usb
ref_div Input clock divider.
veo_freq Requested output from the VCO (voltage controlled oscillator)
post_div1 Post Divider 1 - range 1-7. Must be >= post_div2

post_div2 Post Divider 2 - range 1-7

4.1.17. hardware_powman

Power Management API.

4.1.17.1. Enumerations

enum powman_power_domains { POWMAN_POWER_DOMAIN_SRAM_BANK1 = @, POWMAN_POWER_DOMAIN_SRAM_BANKO = 1,
POWMAN_POWER_DOMAIN_XIP_CACHE = 2, POWMAN_POWER_DOMAIN_SWITCHED_CORE = 3, POWMAN_POWER_DOMAIN_COUNT = 4 }

Power domains of powman.

]
4.1. Hardware APIs 242

Raspberry Pi Pico-series C/C++ SDK
]

4.1.17.2. Functions

void powman_timer_set_Tkhz_tick_source_lposc (void)
Use the ~32KHz low power oscillator as the powman timer source.
void powman_timer_set_Tkhz_tick_source_lposc_with_hz (uint32_t 1lposc_freq_hz)
Use the low power oscillator (specifying frequency) as the powman timer source.
void powman_timer_set_Tkhz_tick_source_xosc (void)
Use the crystal oscillator as the powman timer source.
void powman_timer_set_Tkhz_tick_source_xosc_with_hz (uint32_t xosc_freq_hz)
Use the crystal oscillator as the powman timer source.
void powman_timer_set_Tkhz_tick_source_gpio (uint32_t gpio)
Use a 1KHz external tick as the powman timer source.
void powman_timer_enable_gpio_Thz_sync (uint32_t gpio)
Use a 1Hz external signal as the powman timer source for seconds only.
void powman_timer_disable_gpio_1hz_sync (void)
Stop using THz external signal as the powman timer source for seconds.
uint64_t powman_timer_get_ms (void)
Returns current time in ms.
void powman_timer_set_ms (uint64_t time_ms)
Set current time in ms.

void powman_timer_enable_alarm_at_ms (uint64_t alarm_time_ms)

Set an alarm at an absolute time in ms.

void powman_timer_disable_alarm (void)

Disable the alarm.

static void powman_set_bits (volatile uint32_t *reg, uint32_t bits)
hw_set_bits helper function
static void powman_clear_bits (volatile uint32_t *reg, uint32_t bits)
hw_clear_bits helper function
static bool powman_timer_is_running (void)
Determine if the powman timer is running.
static void powman_timer_stop (void)
Stop the powman timer.
static void powman_timer_start (void)
Start the powman timer.
static void powman_clear_alarm (void)
Clears the powman alarm.
powman_power_state powman_get_power_state (void)
Get the current power state.
int powman_set_power_state (powman_power_state state)

Set the power state.

static powman_power_state powman_power_state_with_domain_on (powman_power_state orig, enum powman_power_domains domain)

Helper function modify a powman_power_state to turn a domain on.

]
4.1. Hardware APIs 243

Raspberry Pi Pico-series C/C++ SDK
]

static powman_power_state powman_power_state_with_domain_off (powman_power_state orig, enum powman_power_domains domain)

Helper function modify a powman_power_state to turn a domain off.

static bool powman_power_state_is_domain_on (powman_power_state state, enum powman_power_domains domain)

Helper function to check if a domain is on in a given powman_power_state.

void powman_enable_alarm_wakeup_at_ms (uint64_t alarm_time_ms)

Wake up from an alarm at a given time.

void powman_enable_gpio_wakeup (uint gpio_wakeup_num, uint32_t gpio, bool edge, bool high)

Wake up from a gpio.

void powman_disable_alarm_wakeup (void)

Disable waking up from alarm.

void powman_disable_gpio_wakeup (uint gpio_wakeup_num)

Disable wake up from a gpio.

void powman_disable_all_wakeups (void)

Disable all wakeup sources.

bool powman_configure_wakeup_state (powman_power_state sleep_state, powman_power_state wakeup_state)

Configure sleep state and wakeup state.

static void powman_set_debug_power_request_ignored (bool ignored)

Ignore wake up when the debugger is attached.

4.1.17.3. Enumeration Type Documentation

4.1.17.3.1. powman_power_domains

enum powman_power _domains

Power domains of powman.

Table 26. Enumerator

POWMAN_POWER_DOMAIN_SRAM_BANK1 bank1 includes the top 256K of sram plus sram 8 and 9
(scratch x and scratch y)

POWMAN_POWER_DOMAIN_SRAM_BANKO bankO0 is bottom 256K of sSSRAM
POWMAN_POWER_DOMAIN_XIP_CACHE XIP cache is 2x8K instances.
POWMAN_POWER_DOMAIN_SWITCHED_CORE Switched core logic (processors, busfabric, peris etc)

4.1.17.4. Function Documentation

4.1.17.4.1. powman_clear_alarm
static void powman_clear_alarm (void) [inline], [static]
Clears the powman alarm.

Note, the alarm must be disabled (see powman_timer_disable_alarm) before clearing the alarm, as the alarm fires if the
time is greater than equal to the target, so once the time has passed the alarm will always fire while enabled.

]
4.1. Hardware APIs 244

Raspberry Pi Pico-series C/C++ SDK
]

4.1.17.4.2. powman_clear_bits
static void powman_clear_bits (volatile uint32_t * reg, uint32_t bits) [inline], [static]
hw_clear_bits helper function

Powman needs a password for writes, to prevent accidentally writing to it. This function implements hw_clear_bits with
an appropriate password.

Parameters
reg register to clear
bits bits of register to clear

4.1.17.4.3. powman_configure_wakeup_state

bool powman_configure_wakeup_state (powman_power_state sleep_state, powman_power_state wakeup_state)

Configure sleep state and wakeup state.

Parameters
sleep_state power state powman will go to when sleeping, used to validate the wakeup state
wakeup_state power state powman will go to when waking up. Note switched core and xip always power up.
SRAM bank0 and bank1 can be left powered off
Returns

true if the state is valid, false if not

4.1.17.4.4. powman_disable_alarm_wakeup

void powman_disable_alarm_wakeup (void)

Disable waking up from alarm.

4.1.17.4.5. powman_disable_all_wakeups

void powman_disable_all_wakeups (void)

Disable all wakeup sources.

4.1.17.4.6. powman_disable_gpio_wakeup

void powman_disable_gpio_wakeup (uint gpio_wakeup_num)
Disable wake up from a gpio.

Parameters

gpio_wakeup_num hardware wakeup instance to use (0-3)

4.1.17.4.7. powman_enable_alarm_wakeup_at_ms
void powman_enable_alarm_wakeup_at_ms (uint64_t alarm_time_ms)
Wake up from an alarm at a given time.

Parameters

]
4.1. Hardware APIs 245

Raspberry Pi Pico-series C/C++ SDK
]

alarm_time_ms time to wake up in ms

4.1.17.4.8. powman_enable_gpio_wakeup

void powman_enable_gpio_wakeup (uint gpio_wakeup_num, uint32_t gpio, bool edge, bool high)

Wake up from a gpio.

Parameters
gpio_wakeup_num hardware wakeup instance to use (0-3)
gpio gpio to wake up from (0-47)
edge true for edge sensitive, false for level sensitive
high true for active high, false active low

4.1.17.4.9. powman_get_power_state

powman_power_state powman_get_power_state (void)

Get the current power state.

4.1.17.4.10. powman_power_state_is_domain_on

static bool powman_power_state_is_domain_on (powman_power_state state, enum powman_power_domains domain) [inline],
[static]

Helper function to check if a domain is on in a given powman_power_state.

Parameters
state powman_power_state
domain domain to check is on

4.1.17.4.11. powman_power_state_with_domain_off

static powman_power_state powman_power_state_with_domain_off (powman_power_state orig, enum powman_power_domains domain)
[inline], [static]

Helper function modify a powman_power_state to turn a domain off.

Parameters
orig original state
domain domain to turn off

4.1.17.4.12. powman_power_state_with_domain_on

static powman_power_state powman_power_state_with_domain_on (powman_power_state orig, enum powman_power_domains domain)
[inline], [static]

Helper function modify a powman_power_state to turn a domain on.

Parameters
orig original state
domain domain to turn on

]
4.1. Hardware APIs 246

Raspberry Pi Pico-series C/C++ SDK
]

4.1.17.4.13. powman_set_bits

static void powman_set_bits (volatile uint32_t * reg, uint32_t bits) [inline], [static]

hw_set_bits helper function

Parameters
reg register to set
bits bits of register to set Powman needs a password for writes, to prevent accidentally writing to it. This

function implements hw_set_bits with an appropriate password.

4.1.17.4.14. powman_set_debug_power_request_ignored
static void powman_set_debug_power_request_ignored (bool ignored) [inline], [static]
Ignore wake up when the debugger is attached.

Typically, when a debugger is attached it will assert the pwrupreq signal. OpenOCD does not clear this signal, even when
you quit. This means once you have attached a debugger powman will never go to sleep. This function lets you ignore
the debugger pwrupreq which means you can go to sleep with a debugger attached. The debugger will error out if you
go to turn off the switch core with it attached, as the processors have been powered off.

Parameters

ignored should the debugger power up request be ignored

4.1.17.4.15. powman_set_power_state

int powman_set_power_state (powman_power_state state)

Set the power state.

Check the desired state is valid. Powman will go to the state if it is valid and there are no pending power up requests.

Note that if you are turning off the switched core then this function will never return as the processor will have been
turned off at the end.

Parameters
state the power state to go to
Returns

PICO_OK if the state is valid. Misc PICO_ERRORSs are returned if not

4.1.17.4.16. powman_timer_disable_alarm
void powman_timer_disable_alarm (void)
Disable the alarm.

Once an alarm has fired it must be disabled to stop firing as the alarm comparison is alarm = alarm_time >=
current_time

4.1.17.4.17. powman_timer_disable_gpio_1hz_sync

void powman_timer_disable_gpio_1hz_sync (void)

Stop using 1Hz external signal as the powman timer source for seconds.

]
4.1. Hardware APIs 247

Raspberry Pi Pico-series C/C++ SDK
]

4.1.17.4.18. powman_timer_enable_alarm_at_ms
void powman_timer_enable_alarm_at_ms (uint64_t alarm_time_ms)
Set an alarm at an absolute time in ms.

Note, the timer is stopped and then restarted as part of this function. This only controls the alarm if you want to use the
alarm to wake up powman then you should use powman_enable_alarm_wakeup_at_ms

Parameters

alarm_time_ms time at which the alarm will fire

4.1.17.4.19. powman_timer_enable_gpio_1hz_sync
void powman_timer_enable_gpio_Thz_sync (uint32_t gpio)
Use a THz external signal as the powman timer source for seconds only.

Use a Thz sync signal, such as from a gps for the seconds component of the timer. The milliseconds will still come from
another configured source such as xosc or Iposc

Parameters

gpio the gpio to use. must be 12, 14, 20, 22

4.1.17.4.20. powman_timer_get_ms

uint64_t powman_timer_get_ms (void)

Returns current time in ms.

4.1.17.4.21. powman_timer_is_running

static bool powman_timer_is_running (void) [inline], [static]

Determine if the powman timer is running.

4.1.17.4.22. powman_timer_set_1khz_tick_source_gpio

void powman_timer_set_Tkhz_tick_source_gpio (uint32_t gpio)
Use a TKHz external tick as the powman timer source.
Parameters

gpio the gpio to use. must be 12, 14, 20, 22

4.1.17.4.23. powman_timer_set_1khz_tick_source_lposc

void powman_timer_set_1khz_tick_source_lposc (void)

Use the ~32KHz low power oscillator as the powman timer source.

4.1.17.4.24. powman_timer_set_1khz_tick_source_lposc_with_hz

void powman_timer_set_1khz_tick_source_lposc_with_hz (uint32_t lposc_freq_hz)

Use the low power oscillator (specifying frequency) as the powman timer source.

]
4.1. Hardware APIs 248

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

1posc_freq_hz specify an exact Iposc freq to trim it

4.1.17.4.25. powman_timer_set_1khz_tick_source_xosc

void powman_timer_set_1khz_tick_source_xosc (void)

Use the crystal oscillator as the powman timer source.

4.1.17.4.26. powman_timer_set_1khz_tick_source_xosc_with_hz
void powman_timer_set_1khz_tick_source_xosc_with_hz (uint32_t xosc_freq_hz)
Use the crystal oscillator as the powman timer source.

Parameters

xosc_freq_hz specify a crystal frequency

4.1.17.4.27. powman_timer_set_ms

void powman_timer_set_ms (uint64_t time_ms)
Set current time in ms.
Parameters

time_ms Current time in ms

4.1.17.4.28. powman_timer_start

static void powman_timer_start (void) [inline], [static]

Start the powman timer.

4.1.17.4.29. powman_timer_stop

static void powman_timer_stop (void) [inline], [static]

Stop the powman timer.

4.1.18. hardware_pwm

Hardware Pulse Width Modulation (PWM) API.

4.1.18.1. Detailed Description

The RP2040 PWM block has 8 identical slices, the RP2350 has 12. Each slice can drive two PWM output signals, or
measure the frequency or duty cycle of an input signal. This gives a total of up to 16/24 controllable PWM outputs. All
30 GPIOs can be driven by the PWM block.

The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a
toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of
time spent at the high signal level is known as the duty cycle of the signal.

]
4.1. Hardware APIs 249

Raspberry Pi Pico-series C/C++ SDK
]

The default behaviour of a PWM slice is to count upward until the wrap value (pwm_config_set_wrap) is reached, and
then immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward
after reaching TOP, until it reaches 0 again.

4.1.18.1.1. Example

1 // Output PWM signals on pins @ and 1
2

3 #include "pico/stdlib.h”

4 #include "hardware/pwm.h"

5]

6 int main() {

7

8 // Tell GPIO @ and 1 they are allocated to the PWM

9 gpio_set_function(@, GPIO_FUNC_PWM) ;

10 gpio_set_function(1, GPIO_FUNC_PWM);

11

12 // Find out which PWM slice is connected to GPIO 6 (it's slice 0)
13 uint slice_num = pwm_gpio_to_slice_num(®);

14

15 // Set period of 4 cycles (6 to 3 inclusive)

16 pwm_set_wrap(slice_num, 3);

17 // Set channel A output high for one cycle before dropping

18 pwm_set_chan_level(slice_num, PWM_CHAN_A, 1);

19 // Set initial B output high for three cycles before dropping
20 pwm_set_chan_level(slice_num, PWM_CHAN_B, 3);
21 // Set the PWM running
22 pwm_set_enabled(slice_num, true);
23
24 // Note we could also use pwm_set_gpio_level(gpio, x) which looks up the
25 // correct slice and channel for a given GPIO.
26 }

4.1.18.2. Macros

® ftdefine PWM_DREQ_NUM(slice_num)
® fdefine PWM_GPTO_SLICE_NUM(gpio)

® #define PWM_DEFAULT_IRQ_NUM()

4.1.18.3. Enumerations

enum pwm_clkdiv_mode { PWM_DIV_FREE_RUNNING = @, PWM_DIV_B_HIGH = 1, PWM_DIV_B_RISING = 2, PWM_DIV_B_FALLING = 3 }

PWM Divider mode settings.

4.1.18.4. Functions
static uint pum_gpio_to_slice_num (uint gpio)
Determine the PWM slice that is attached to the specified GPIO.

static vint pwm_gpio_to_channel (uint gpio)

Determine the PWM channel that is attached to the specified GPIO.

]
4.1. Hardware APIs 250

Raspberry Pi Pico-series C/C++ SDK
]

static void pwm_config_set_phase_correct (pwm_config *c, bool phase_correct)

Set phase correction in a PWM configuration.
static void pwm_config_set_clkdiv (pwm_config *c, float div)
Set PWM clock divider in a PWM configuration.
static void pwm_config_set_clkdiv_int_frac (pwm_config *c, uint8_t integer, uint8_t fract)
Set PWM clock divider in a PWM configuration using an 8:4 fractional value.
static void pwm_config_set_clkdiv_int (pwm_config *c, uint div)
Set PWM clock divider in a PWM configuration.
static void pwm_config_set_clkdiv_mode (pwm_config *c, enum pwm_clkdiv_mode mode)
Set PWM counting mode in a PWM configuration.
static void pwm_config_set_output_polarity (pwm_config *c, bool a, bool b)
Set output polarity in a PWM configuration.
static void pwm_config_set_wrap (pwm_config *c, uint16_t wrap)
Set PWM counter wrap value in a PWM configuration.
static void pwm_init (uint slice_num, pwm_config *c, bool start)
Initialise a PWM with settings from a configuration object.
static pwm_config pwm_get_default_config (void)
Get a set of default values for PWM configuration.
static void pwm_set_wrap (uint slice_num, uint16_t wrap)
Set the current PWM counter wrap value.
static void pwm_set_chan_level (uint slice_num, uint chan, uint16_t level)

Set the current PWM counter compare value for one channel.

static void pwm_set_both_levels (uint slice_num, uint16_t level_a, uint16_t level_b)

Set PWM counter compare values.
static void pwm_set_gpio_level (uint gpio, uint16_t level)

Helper function to set the PWM level for the slice and channel associated with a GPIO.
static uint16_t pwm_get_counter (uint slice_num)

Get PWM counter.

static void pwm_set_counter (uint slice_num, uint16_t c)

Set PWM counter.

static void pwm_advance_count (uint slice_num)

Advance PWM count.

static void pwm_retard_count (uint slice_num)
Retard PWM count.

static void pwm_set_clkdiv_int_frac (uint slice_num, uint8_t integer, uint8_t fract)
Set PWM clock divider using an 8:4 fractional value.

static void pwm_set_clkdiv (uint slice_num, float divider)

Set PWM clock divider.

static void pwm_set_output_polarity (uint slice_num, bool a, bool b)

Set PWM output polarity.

]
4.1. Hardware APIs 251

Raspberry Pi Pico-series C/C++ SDK
]

static void pwm_set_clkdiv_mode (uint slice_num, enum pwm_clkdiv_mode mode)

Set PWM divider mode.

static void pwm_set_phase_correct (uint slice_num, bool phase_correct)

Set PWM phase correct on/off.

static void pwm_set_enabled (uint slice_num, bool enabled)

Enable/Disable PWM.

static void pwm_set_mask_enabled (uint32_t mask)

Enable/Disable multiple PWM slices simultaneously.

static void pwm_set_irq_enabled (uint slice_num, bool enabled)

Enable PWM instance interrupt via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

static void pwm_set_irq0_enabled (uint slice_num, bool enabled)

Enable PWM instance interrupt via PWM_IRQ_WRAP_O0.

static void pwm_irqn_set_slice_enabled (uint irq_index, uint slice_num, bool enabled)

Enable PWM instance interrupt via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

static void pwm_set_irq_mask_enabled (uint32_t slice_mask, bool enabled)

Enable multiple PWM instance interrupts via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

static void pwm_set_irq@_mask_enabled (uint32_t slice_mask, bool enabled)

Enable multiple PWM instance interrupts via PWM_IRQ_WRAP_O0.

static void pwm_irqn_set_slice_mask_enabled (uint irq_index, uint slice_mask, bool enabled)

Enable PWM instance interrupts via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

static void pwm_clear_irq (uint slice_num)

Clear a single PWM channel interrupt.

static uint32_t pwm_get_irq_status_mask (void)

Get PWM interrupt status, raw for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

static uint32_t pwm_get_irq@_status_mask (void)
Get PWM interrupt status, raw for the PWM_IRQ_WRAP_O0.

static uint32_t pwm_irqn_get_status_mask (uint irq_index)

Get PWM interrupt status, raw for either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

static void pwm_force_irq (uint slice_num)

Force PWM interrupt for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)

static void pwm_force_irq@ (uint slice_num)

Force PWM interrupt via PWM_IRQ_WRAP_0.

static void pwm_irqn_force (uint irq_index, uint slice_num)

Force PWM interrupt via PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

static uvint pwm_get_dreq (uint slice_num)

Return the DREQ to use for pacing transfers to a particular PWM slice.

4.1.18.5. Macro Definition Documentation

]
4.1. Hardware APIs 252

Raspberry Pi Pico-series C/C++ SDK

4.1.18.5.1. PWM_DREQ_NUM

#define PWM_DREQ_NUM(slice_num)
Returns the dreq_num_t used for pacing DMA transfers for a given PWM slice.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.18.5.2. PWM_GPIO_SLICE_NUM

#tdefine PWM_GPIO_SLICE_NUM(gpio)

Returns the PWM slice number for a given GPIO number.

4.1.18.5.3. PWM_DEFAULT_IRQ_NUM

#define PWM_DEFAULT_IRQ_NUM()

Returns the irg_num_t for the default PWM IRQ.

On RP2040, there is only one PWM irq: PWM_IRQ_WRAP
On RP2350 this returns to PWM_IRQ_WRAPO

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.18.6. Enumeration Type Documentation

4.1.18.6.1. pwm_clkdiv_mode

enum pwm_clkdiv_mode

PWM Divider mode settings.

Table 27. Enumerator | p\m_ply_FREE_RUNNING Free-running counting at rate dictated by fractional divider.
PWM_DIV_B_HIGH Fractional divider is gated by the PWM B pin.
PWM_DIV_B_RISING Fractional divider advances with each rising edge of the

PWM B pin.
PWM_DIV_B_FALLING Fractional divider advances with each falling edge of the
PWM B pin.

4.1.18.7. Function Documentation

4.1.18.7.1. pwm_advance_count

static void pwm_advance_count (uint slice_num) [inline], [static]
Advance PWM count.

Advance the phase of a running the counter by 1 count.

This function will return once the increment is complete.
Parameters

slice_num PWM slice number

4.1. Hardware APIs 253

Raspberry Pi Pico-series C/C++ SDK
]

4.1.18.7.2. pwm_clear_irq

static void pwm_clear_irq (uint slice_num) [inline], [static]
Clear a single PWM channel interrupt.
Parameters

slice_num PWM slice number

4.1.18.7.3. pwm_config_set_clkdiv

static void pwm_config_set_clkdiv (pwm_config * ¢, float div) [inline], [static]

Set PWM clock divider in a PWM configuration.

Parameters
c PWM configuration struct to modify
div Value to divide counting rate by. Must be greater than or equal to 1.

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of
events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.18.7.4. pwm_config_set_clkdiv_int

static void pwm_config_set_clkdiv_int (pwm_config * c, uint div) [inline], [static]

Set PWM clock divider in a PWM configuration.

Parameters
c PWM configuration struct to modify
div Integer value to reduce counting rate by. Must be greater than or equal to 1.

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of
events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.18.7.5. pwm_config_set_clkdiv_int_frac

static void pwm_config_set_clkdiv_int_frac (pwm_config * ¢, uint8_t integer, uint8_t fract) [inline], [static]

Set PWM clock divider in a PWM configuration using an 8:4 fractional value.

Parameters
c PWM configuration struct to modify
integer 8 bit integer part of the clock divider. Must be greater than or equal to 1.
fract 4 bit fractional part of the clock divider

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of
events seen on the B pin input (level or edge) before passing them on to the PWM counter.

4.1.18.7.6. pwm_config_set_clkdiv_mode

static void pwm_config_set_clkdiv_mode (pwm_config * c, enum pwm_clkdiv_mode mode) [inline], [static]
Set PWM counting mode in a PWM configuration.

Parameters

]
4.1. Hardware APIs 254

Raspberry Pi Pico-series C/C++ SDK
]

c PWM configuration struct to modify
mode PWM divide/count mode

Configure which event gates the operation of the fractional divider. The default is always-on (free-running PWM). Can
also be configured to count on high level, rising edge or falling edge of the B pin input.

4.1.18.7.7. pwm_config_set_output_polarity

static void pwm_config_set_output_polarity (pwm_config * ¢, bool a, bool b) [inline], [static]

Set output polarity in a PWM configuration.

Parameters
c PWM configuration struct to modify
a true to invert output A
b true to invert output B

4.1.18.7.8. pwm_config_set_phase_correct

static void pwm_config_set_phase_correct (pwm_config * c, bool phase_correct) [inline], [static]

Set phase correction in a PWM configuration.

Parameters
c PWM configuration struct to modify
phase_correct true to set phase correct modulation, false to set trailing edge

Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, the PWM
starts counting back down. The output frequency is halved when phase-correct mode is enabled.

4.1.18.7.9. pwm_config_set_wrap
static void pwm_config_set_wrap (pwm_config * ¢, uint16_t wrap) [inline], [static]
Set PWM counter wrap value in a PWM configuration.

Set the highest value the counter will reach before returning to 0. Also known as TOP.

Parameters
c PWM configuration struct to modify
wrap Value to set wrap to

4.1.18.7.10. pwm_force_irq

static void pwm_force_irq (uint slice_num) [inline], [static]

Force PWM interrupt for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)
Parameters

slice_num PWM slice number

]
4.1. Hardware APIs 255

Raspberry Pi Pico-series C/C++ SDK
]

4.1.18.7.11. pwm_force_irq0

static void pwm_force_irq@ (uint slice_num) [inline], [static]
Force PWM interrupt via PWM_IRQ_WRAP_0.

Parameters

slice_num PWM slice number

4.1.18.7.12. pwm_get_counter
static uint16_t pwm_get_counter (uint slice_num) [inline], [static]
Get PWM counter.
Get current value of PWM counter
Parameters
slice_num PWM slice number
Returns

Current value of the PWM counter

4.1.18.7.13. pwm_get_default_config
static pwm_config pwm_get_default_config (void) [inline], [static]
Get a set of default values for PWM configuration.

PWM config is free-running at system clock speed, no phase correction, wrapping at 0xffff, with standard polarities for
channels A and B.

Returns

Set of default values.

4.1.18.7.14. pwm_get_dreq

static uint pwm_get_dreq (uint slice_num) [inline], [static]
Return the DREQ to use for pacing transfers to a particular PWM slice.
Parameters

slice_num PWM slice number

4.1.18.7.15. pwm_get_irq0_status_mask

static uint32_t pwm_get_irq@_status_mask (void) [inline], [static]
Get PWM interrupt status, raw for the PWM_IRQ_WRAP_Q.
Returns

Bitmask of all PWM interrupts currently set

4.1.18.7.16. pwm_get_irg_status_mask

static uint32_t pwm_get_irq_status_mask (void) [inline], [static]

]
4.1. Hardware APIs 256

Raspberry Pi Pico-series C/C++ SDK
]

Get PWM interrupt status, raw for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)
Returns

Bitmask of all PWM interrupts currently set

4.1.18.7.17. pwm_gpio_to_channel

static uint pwm_gpio_to_channel (uint gpio) [inline], [static]
Determine the PWM channel that is attached to the specified GPIO.
Each slice 0 to 7 has two channels, A and B.

Returns

The PWM channel that controls the specified GPIO.

4.1.18.7.18. pwm_gpio_to_slice_num

static uint pwm_gpio_to_slice_num (uint gpio) [inline], [static]
Determine the PWM slice that is attached to the specified GPIO.
Returns

The PWM slice number that controls the specified GPIO.

4.1.18.7.19. pwm_init
static void pwm_init (uint slice_num, pwm_config * c, bool start) [inline], [static]
Initialise a PWM with settings from a configuration object.

Use the pwm_get_default_config() function to initialise a config structure, make changes as needed using the
pwm_config_* functions, then call this function to set up the PWM.

Parameters
slice_num PWM slice number
c The configuration to use
start If true the PWM will be started running once configured. If false you will need to start manually

using pwm_set_enabled() or pwm_set_mask_enabled()

4.1.18.7.20. pwm_irqn_force
static void pwm_irqn_force (uint irq_index, uint slice_num) [inline], [static]
Force PWM interrupt via PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.
Parameters
irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1

slice_num PWM slice number

4.1.18.7.21. pwm_irqn_get_status_mask

static uint32_t pwm_irqn_get_status_mask (uint irq_index) [inline], [static]
Get PWM interrupt status, raw for either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_T1.

]
4.1. Hardware APIs 257

Raspberry Pi Pico-series C/C++ SDK

Parameters
irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
Returns

Bitmask of all PWM interrupts currently set

4.1.18.7.22. pwm_irqn_set_slice_enabled
static void pwm_irqn_set_slice_enabled (uint irq_index, uint slice_num, bool enabled) [inline], [static]
Enable PWM instance interrupt via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.
Used to enable a single PWM instance interrupt.
Note there is only one PWM_IRQ_WRAP on RP2040.
Parameters
irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
slice_num PWM block to enable/disable

enabled true to enable, false to disable

4.1.18.7.23. pwm_irqn_set_slice_mask_enabled

static void pwm_irgn_set_slice_mask_enabled (uint irq_index, uint slice_mask, bool enabled) [inline], [static]
Enable PWM instance interrupts via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1.

Used to enable a single PWM instance interrupt.

Note there is only one PWM_IRQ_WRAP on RP2040.

Parameters
irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
enabled true to enable, false to disable

4.1.18.7.24. pwm_retard_count

static void pwm_retard_count (uint slice_num) [inline], [static]
Retard PWM count.

Retard the phase of a running counter by 1 count

This function will return once the retardation is complete.
Parameters

slice_num PWM slice number

4.1.18.7.25. pwm_set_both_levels

static void pwm_set_both_levels (uint slice_num, uint16_t level_a, uint16_t level_b) [inline], [static]

Set PWM counter compare values.

Set the value of the PWM counter compare values, A and B.

4.1. Hardware APIs 258

Raspberry Pi Pico-series C/C++ SDK

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the
counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the
next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters
slice_num PWM slice number
level_a Value to set compare A to. When the counter reaches this value the A output is deasserted
level_b Value to set compare B to. When the counter reaches this value the B output is deasserted

4.1.18.7.26. pwm_set_chan_level

static void pwm_set_chan_level (uint slice_num, uint chan, uint16_t level) [inline], [static]
Set the current PWM counter compare value for one channel.

Set the value of the PWM counter compare value, for either channel A or channel B.

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the
counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the
next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters
slice_num PWM slice number
chan Which channel to update. 0 for A, 1 for B.
level new level for the selected output

4.1.18.7.27. pwm_set_clkdiv

static void pwm_set_clkdiv (uint slice_num, float divider) [inline], [static]
Set PWM clock divider.

Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating.

Parameters
slice_num PWM slice number
divider Floating point clock divider, 1.f < value < 256.f

4.1.18.7.28. pwm_set_clkdiv_int_frac
static void pwm_set_clkdiv_int_frac (uint slice_num, uint8_t integer, uint8_t fract) [inline], [static]
Set PWM clock divider using an 8:4 fractional value.

Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating.

Parameters
slice_num PWM slice number
integer 8 bit integer part of the clock divider
fract 4 bit fractional part of the clock divider

4.1. Hardware APIs 259

Raspberry Pi Pico-series C/C++ SDK
]

4.1.18.7.29. pwm_set_clkdiv_mode

static void pwm_set_clkdiv_mode (uint slice_num, enum pwm_clkdiv_mode mode) [inline], [static]

Set PWM divider mode.

Parameters
slice_num PWM slice number
mode Required divider mode

4.1.18.7.30. pwm_set_counter

static void pwm_set_counter (uint slice_num, uint16_t c) [inline], [static]
Set PWM counter.

Set the value of the PWM counter

Parameters
slice_num PWM slice number
c Value to set the PWM counter to

4.1.18.7.31. pwm_set_enabled

static void pwm_set_enabled (uint slice_num, bool enabled) [inline], [static]
Enable/Disable PWM.

When a PWM is disabled, it halts its counter, and the output pins are left high or low depending on exactly when the
counter is halted. When re-enabled the PWM resumes immediately from where it left off.

If the PWM'’s output pins need to be low when halted:

® The counter compare can be set to zero whilst the PWM is enabled, and then the PWM disabled once both pins are
seen to be low

® The GPIO output overrides can be used to force the actual pins low

® The PWM can be run for one cycle (i.e. enabled then immediately disabled) with a TOP of 0, count of 0 and counter
compare of 0, to force the pins low when the PWM has already been halted. The same method can be used with a
counter compare value of 1 to force a pin high.
Note that, when disabled, the PWM can still be advanced one count at a time by pulsing the PH_ADV bit in its CSR. The
output pins transition as though the PWM were enabled.

Parameters
slice_num PWM slice number
enabled true to enable the specified PWM, false to disable.

4.1.18.7.32. pwm_set_gpio_level
static void pwm_set_gpio_level (uint gpio, uint16_t level) [inline], [static]
Helper function to set the PWM level for the slice and channel associated with a GPIO.

Look up the correct slice (0 to 7) and channel (A or B) for a given GPIO, and update the corresponding counter compare
field.

This PWM slice should already have been configured and set running. Also be careful of multiple GPIOs mapping to the
same slice and channel (if GPIOs have a difference of 16).

]
4.1. Hardware APIs 260

Raspberry Pi Pico-series C/C++ SDK

The counter compare register is double-buffered in hardware. This means that, when the PWM is running, a write to the
counter compare values does not take effect until the next time the PWM slice wraps (or, in phase-correct mode, the
next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters
gpio GPIO to set level of

level PWM level for this GPIO

4.1.18.7.33. pwm_set_irq0_enabled
static void pwm_set_irq@_enabled (uint slice_num, bool enabled) [inline], [static]
Enable PWM instance interrupt via PWM_IRQ_WRAP_O0.
Used to enable a single PWM instance interrupt.
Parameters
slice_num PWM block to enable/disable

enabled true to enable, false to disable

4.1.18.7.34. pwm_set_irq0_mask_enabled

static void pwm_set_irq@_mask_enabled (uint32_t slice_mask, bool enabled) [inline], [static]
Enable multiple PWM instance interrupts via PWM_IRQ_WRAP_O0.

Use this to enable multiple PWM interrupts at once.

Parameters
slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
enabled true to enable, false to disable

4.1.18.7.35. pwm_set_irq_enabled
static void pwm_set_irq_enabled (uint slice_num, bool enabled) [inline], [static]
Enable PWM instance interrupt via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)
Used to enable a single PWM instance interrupt.
Note there is only one PWM_IRQ_WRAP on RP2040.
Parameters
slice_num PWM block to enable/disable

enabled true to enable, false to disable

4.1.18.7.36. pwm_set_irq_mask_enabled

static void pwm_set_irq_mask_enabled (uint32_t slice_mask, bool enabled) [inline], [static]

Enable multiple PWM instance interrupts via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)
Use this to enable multiple PWM interrupts at once.

Note there is only one PWM_IRQ_WRAP on RP2040.

Parameters

4.1. Hardware APIs 261

Raspberry Pi Pico-series C/C++ SDK

slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

enabled true to enable, false to disable

4.1.18.7.37. pwm_set_mask_enabled

static void pwm_set_mask_enabled (uint32_t mask) [inline], [static]
Enable/Disable multiple PWM slices simultaneously.
Parameters

mask Bitmap of PWMs to enable/disable. Bits 0 to 7 enable slices 0-7 respectively

4.1.18.7.38. pwm_set_output_polarity

static void pwm_set_output_polarity (uint slice_num, bool a, bool b) [inline], [static]

Set PWM output polarity.

Parameters
slice_num PWM slice number
a true to invert output A
b true to invert output B

4.1.18.7.39. pwm_set_phase_correct

static void pwm_set_phase_correct (uint slice_num, bool phase_correct) [inline], [static]

Set PWM phase correct on/off.

Parameters
slice_num PWM slice number
phase_correct true to set phase correct modulation, false to set trailing edge

Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, the PWM
starts counting back down. The output frequency is halved when phase-correct mode is enabled.

4.1.18.7.40. pwm_set_wrap

static void pwm_set_wrap (uint slice_num, uint16_t wrap) [inline], [static]

Set the current PWM counter wrap value.

Set the highest value the counter will reach before returning to 0. Also known as TOP.

The counter wrap value is double-buffered in hardware. This means that, when the PWM is running, a write to the
counter wrap value does not take effect until after the next time the PWM slice wraps (or, in phase-correct mode, the
next time the slice reaches 0). If the PWM is not running, the write is latched in immediately.

Parameters
slice_num PWM slice number
wrap Value to set wrap to

4.1. Hardware APIs 262

Raspberry Pi Pico-series C/C++ SDK
]

4.1.19. hardware_resets

Hardware Reset API.

4.1.19.1. Detailed Description

The reset controller allows software control of the resets to all of the peripherals that are not critical to boot the
processor in the RP-series microcontroller.

4.1.19.1.1. reset_bitmask

Multiple blocks are referred to using a bitmask as follows:

Block to reset Bit
usB 24
UART 1 23
UART 0 22
Timer 21
TB Manager 20
Sysinfo 19
System Config 18
SPI'1 17
SPI0 16
RTC 15
PWM 14
PLL USB 13
PLL System 12
PIO 1 11
PIO0O 10
Pads - QSPI 9
Pads - bank 0 8
JTAG 7
10 Bank 1 6
10 Bank 0 5
12C1 4
12C0 3
DMA 2
Bus Control 1
ADCO 0

|
4.1. Hardware APIs 263

Raspberry Pi Pico-series C/C++ SDK
]

4.1.19.1.2. Example

1 #include <stdio.h>
2 #include "pico/stdlib.h"
3 #include "hardware/resets.h"

4
5 int main() {
6 stdio_init_all();
7
8 printf("Hello, reset!\n");
9
10 // Put the PWM block into reset
11 reset_block_num(RESET_PWM) ;
12
13 // And bring it out
14 unreset_block_num_wait_blocking(RESET_PWM) ;
15
16 // Put the PWM and ADC block into reset
17 reset_block_mask((1u << RESET_PWM) | (71u << RESET_ADC));
18
19 // Wait for both to come out of reset
20 unreset_block_mask_wait_blocking((1u << RESET_PWM) | (1u << RESET_ADC));
21
22 return 0;
23 }
4.1.19.2. Typedefs

typedef enum reset_num_rp2040 reset_num_t @Z0L0)

Resettable component numbers on RP2040 (used as typedef reset_num_t)

typedef enum reset_num_rp2350 reset_num_t

Resettable component numbers on RP2350 (used as typedef reset_num_t)

4.1.19.3. Enumerations

enum reset_num_rp2040 { RESET_ADC = @, RESET_BUSCTRL = 1, RESET_DMA = 2, RESET_I2C@ = 3, RESET_I2C1 = 4, RESET_IO_BANKO =
5, RESET_IO_QSPI = 6, RESET_JTAG = 7, RESET_PADS_BANK@ = 8, RESET_PADS_QSPI = 9, RESET_PI0O0 = 10, RESET_PIO1 = 11,
RESET_PLL_SYS = 12, RESET_PLL_USB = 13, RESET_PWM = 14, RESET_RTC = 15, RESET_SPI@ = 16, RESET_SPI1 = 17, RESET_SYSCFG =
18, RESET_SYSINFO = 19, RESET_TBMAN = 20, RESET_TIMER = 21, RESET_UART@ = 22, RESET_UART1 = 23, RESET_USBCTRL = 24,

RESET_COUNT } @iz740L0)

Resettable component numbers on RP2040 (used as typedef reset_num_t)

enum reset_num_rp2350 { RESET_ADC = @, RESET_BUSCTRL = 1, RESET_DMA = 2, RESET_HSTX = 3, RESET_I2C@ = 4, RESET_I2C1 =5,
RESET_IO_BANK@ = 6, RESET_IO_QSPI = 7, RESET_JTAG = 8, RESET_PADS_BANK@ = 9, RESET_PADS_QSPI = 10, RESET_PIO0@ = 11,
RESET_PIO1 = 12, RESET_PI0O2 = 13, RESET_PLL_SYS = 14, RESET_PLL_USB = 15, RESET_PWM = 16, RESET_SHA256 = 17, RESET_SPIO =
18, RESET_SPI1 = 19, RESET_SYSCFG = 20, RESET_SYSINFO = 21, RESET_TBMAN = 22, RESET_TIMER® = 23, RESET_TIMER1 = 24,
RESET_TRNG = 25, RESET_UART@ = 26, RESET_UART1 = 27, RESET_USBCTRL = 28, RESET_COUNT }

Resettable component numbers on RP2350 (used as typedef reset_num_t)

4.1.19.4. Functions

]
4.1. Hardware APIs 264

Raspberry Pi Pico-series C/C++ SDK
]

Table 28. Enumerator

static __force_inline void reset_block_mask (uint32_t bits)

Reset the specified HW blocks.

static __force_inline void unreset_block_mask (uint32_t bits)

bring specified HW blocks out of reset

static __force_inline void unreset_block_mask_wait_blocking (uint32_t bits)

Bring specified HW blocks out of reset and wait for completion.

static void reset_block_num (uint32_t block_num)

Reset the specified HW block.

static void unreset_block_num (uint block_num)

bring specified HW block out of reset

static void unreset_block_num_wait_blocking (uint block_num)

Bring specified HW block out of reset and wait for completion.

static void reset_unreset_block_num_wait_blocking (uint block_num)

Reset the specified HW block, and then bring at back out of reset and wait for completion.

4.1.19.5. Typedef Documentation

4.1.19.5.1. reset_num_t

typedef enum reset_num_rp2040 reset_num_t

Resettable component numbers on RP2040 (used as typedef reset_num_t)

4.1.19.5.2. reset_num_t

typedef enum reset_num_rp2350 reset_num_t

Resettable component numbers on RP2350 (used as typedef reset_num_t)

4.1.19.6. Enumeration Type Documentation

4.1.19.6.1. reset_num_rp2040

enum reset_num_rp2040

Resettable component numbers on RP2040 (used as typedef reset_num_t)

RESET_ADC Select ADC to be reset.
RESET_BUSCTRL Select BUSCTRL to be reset.
RESET_DMA Select DMA to be reset.
RESET_I2C0 Select 12C0 to be reset.
RESET_I2C1 Select 12C1 to be reset.
RESET_IO_BANKO Select I0_BANKO to be reset.
RESET_I0_QSPI Select I0O_QSPI to be reset.
RESET_JTAG Select JTAG to be reset.

]
4.1. Hardware APIs 265

Raspberry Pi Pico-series C/C++ SDK
]

Select PADS_BANKO to be reset.

Select PADS_QSPI to be reset.

Select PIOO to be reset.

Select PIO1 to be reset.

Select PLL_SYS to be reset.

Select PLL_USB to be reset.

Select PWM to be reset.

Select RTC to be reset.

Select SPIO to be reset.

Select SPI1 to be reset.

Select SYSCFG to be reset.

Select SYSINFO to be reset.

Select TBMAN to be reset.

Select TIMER to be reset.

Select UARTO to be reset.

Select UART1 to be reset.

Select USBCTRL to be reset.

4.1.19.6.2. reset_num_rp2350

enum reset_num_rp2350

Resettable component numbers on RP2350 (used as typedef reset_num_t)

Tablezg‘Enumerator .

|
4.1. Hardware APIs 266

Select ADC to be reset.

Select BUSCTRL to be reset.

Select DMA to be reset.

Select HSTX to be reset.

Select 12C0 to be reset.

Select 12C1 to be reset.

Select I0_BANKO to be reset.

Select I0_QSPI to be reset.

Select JTAG to be reset.

Select PADS_BANKO to be reset.

Select PADS_QSPI to be reset.

Select PIOO to be reset.

Select PIO1 to be reset.

Select PIO2 to be reset.

Select PLL_SYS to be reset.

Raspberry Pi Pico-series C/C++ SDK
]

Select PLL_USB to be reset.

Select PWM to be reset.

Select SHA256 to be reset.

Select SPIO0 to be reset.

Select SPI1 to be reset.

Select SYSCFG to be reset.

Select SYSINFO to be reset.

Select TBMAN to be reset.

Select TIMERO to be reset.

Select TIMER1 to be reset.

Select TRNG to be reset.

Select UARTO to be reset.

Select UART1 to be reset.

Select USBCTRL to be reset.

4.1.19.7. Function Documentation

4.1.19.7.1. reset_block_mask

static __force_inline void reset_block_mask (uint32_t bits) [static]

Reset the specified HW blocks.
Parameters

bits Bit pattern indicating blocks to reset. See reset_bitmask

4.1.19.7.2. reset_block_num

static void reset_block_num (uint32_t block_num) [inline], [static]
Reset the specified HW block.

Parameters

block_num the block number

4.1.19.7.3. reset_unreset_block_num_wait_blocking

static void reset_unreset_block_num_wait_blocking (uint block_num) [inline], [static]
Reset the specified HW block, and then bring at back out of reset and wait for completion.
Parameters

block_num the block number

|
4.1. Hardware APIs 267

Raspberry Pi Pico-series C/C++ SDK
]

4.1.19.7.4. unreset_block_mask

static __force_inline void unreset_block_mask (uint32_t bits) [static]
bring specified HW blocks out of reset
Parameters

bits Bit pattern indicating blocks to unreset. See reset_bitmask

4.1.19.7.5. unreset_block_mask_wait_blocking

static __force_inline void unreset_block_mask_wait_blocking (uint32_t bits) [static]
Bring specified HW blocks out of reset and wait for completion.
Parameters

bits Bit pattern indicating blocks to unreset. See reset_bitmask

4.1.19.7.6. unreset_block_num

static void unreset_block_num (uint block_num) [inline], [static]
bring specified HW block out of reset
Parameters

block_num the block number

4.1.19.7.7. unreset_block_num_wait_blocking

static void unreset_block_num_wait_blocking (uint block_num) [inline], [static]
Bring specified HW block out of reset and wait for completion.
Parameters

block_num the block number

4.1.20. hardware_riscv

Accessors for standard RISC-V hardware (mainly CSRs)

4.1.21. hardware_riscv_platform_timer

Accessors for standard RISC-V platform timer (mtime/mtimecmp), available on Raspberry Pi microcontrollers with
RISC-V processors.

4.1.21.1. Detailed Description

Note this header can be used by Arm as well as RISC-V processors, as the timer is a memory-mapped peripheral
external to the processors. The name refers to this timer being a standard RISC-V peripheral.

]
4.1. Hardware APIs 268

Raspberry Pi Pico-series C/C++ SDK
]

4.1.21.2. Functions

static void riscv_timer_set_enabled (bool enabled)

Enable or disable the RISC-V platform timer.

static void riscv_timer_set_fullspeed (bool fullspeed)

Configure the RISC-V platform timer to run at full system clock speed.

static vint64_t riscv_timer_get_mtime (void)

Read the RISC-V platform timer.

static void riscv_timer_set_mtime (uint64_t mtime)

Update the RISC-V platform timer.

static uint64_t riscv_timer_get_mtimecmp (void)

Get the current RISC-V platform timer mtimecmp value for this core.

static void riscv_timer_set_mtimecmp (uint64_t mtimecmp)

Set a new RISC-V platform timer interrupt comparison value (mtimecmp) for this core.

4.1.21.3. Function Documentation

4.1.21.3.1. riscv_timer_get_mtime

static uintb4_t riscv_timer_get_mtime (void) [inline], [static]
Read the RISC-V platform timer.

Returns

Current 64-bit mtime value

4.1.21.3.2. riscv_timer_get_mtimecmp
static uintb4_t riscv_timer_get_mtimecmp (void) [inline], [static]
Get the current RISC-V platform timer mtimecmp value for this core.

Get the current mtimecmp value for the calling core. This function is interrupt-safe as long as timer interrupts only
increase the value of mtimecmp. Otherwise, it must be called with timer interrupts disabled.

Returns

Current value of mtimecmp

4.1.21.3.3. riscv_timer_set_enabled
static void riscv_timer_set_enabled (bool enabled) [inline], [static]
Enable or disable the RISC-V platform timer.

This enables and disables the counting of the RISC-V platform timer. It does not enable or disable the interrupts, which
are asserted unconditionally when a given core’s mtimecmp/mtimecmph registers are greater than the current 64-bit
value of the mtime/mtimeh registers.

Parameters

enabled Pass true to enable, false to disable

]
4.1. Hardware APIs 269

Raspberry Pi Pico-series C/C++ SDK
]

4.1.21.3.4. riscv_timer_set_fullspeed

static void riscv_timer_set_fullspeed (bool fullspeed) [inline], [static]
Configure the RISC-V platform timer to run at full system clock speed.
Parameters

fullspeed Pass true to increment at system clock speed, false to increment at the frequency defined by the
system tick generator (the ticks block)

4.1.21.3.5. riscv_timer_set_mtime
static void riscv_timer_set_mtime (uint64_t mtime) [inline], [static]
Update the RISC-V platform timer.

This function should only be called when the timer is disabled via riscv_timer_set_enabled(). Note also that unlike the
mtimecmp comparison values, mtime is not core-local, so updates on one core will be visible to the other core.

Parameters

mtime New value to set the RISC-V platform timer to

4.1.21.3.6. riscv_timer_set_mtimecmp
static void riscv_timer_set_mtimecmp (uint64_t mtimecmp) [inline], [static]
Set a new RISC-V platform timer interrupt comparison value (mtimecmp) for this core.

This function updates the mtimecmp value for the current core. The calling core’s RISC-V platform timer interrupt is
asserted whenever the 64-bit mtime value (stored in 32-bit mtime/mtimeh registers) is greater than or equal to this
core’s current mtime/mtimecmph value.

Parameters

mtime New value to set the RISC-V platform timer to

4.1.22. hardware_rtc

Hardware Real Time Clock API.

4.1.22.1. Detailed Description

The RTC keeps track of time in human readable format and generates events when the time is equal to a preset value.
Think of a digital clock, not epoch time used by most computers. There are seven fields, one each for year (12 bit),
month (4 bit), day (5 bit), day of the week (3 bit), hour (5 bit) minute (6 bit) and second (6 bit), storing the data in binary
format.

See also

datetime_t

4.1.22.1.1. Example

]
4.1. Hardware APIs 270

Raspberry Pi Pico-series C/C++ SDK
]

1 #include <stdio.h>

2 #include "hardware/rtc.h”

3 #include "pico/stdlib.h”

4 #include "pico/util/datetime.h”

5
6 int main() {
7 stdio_init_all();
8 printf("Hello RTC!\n");
9
10 char datetime_buf[256];
11 char *datetime_str = &datetime_buf[0];
12
13 // Start on Friday 5th of June 2620 15:45:00
14 datetime_t t = {
15 .year = 2020,
16 .month = 06,
17 .day = 05,
18 .dotw =5, // @ is Sunday, so 5 is Friday
19 .hour = 15,
20 .min = 45,
21 .sec = 00
22 +
23
24 // Start the RTC
25 rtc_init();
26 rtc_set_datetime(&t);
27
28 // clk_sys is >2000x faster than clk_rtc, so datetime is not updated immediately when
rtc_get_datetime() is called.
29 // The delay is up to 3 RTC clock cycles (which is 64us with the default clock settings)
30 sleep_us(64);
31
32 // Print the time
88 while (true) {
34 rtc_get_datetime(&t);
35 datetime_to_str(datetime_str, sizeof(datetime_buf), &t);
36 printf("\r%s ", datetime_str);
37 sleep_ms(100);
38 }
39 }
4.1.22.2. Typedefs

typedef void(* rtc_callback_t)(void)

4.1.22.3. Functions

void rtc_init (void)
Initialise the RTC system.

bool rtc_set_datetime (const datetime_t *t)
Set the RTC to the specified time.

bool rtc_get_datetime (datetime_t *t)

Get the current time from the RTC.

]
4.1. Hardware APIs 271

Raspberry Pi Pico-series C/C++ SDK
]

bool rtc_running (void)

Is the RTC running?

void rtc_set_alarm (const datetime_t *t, rtc_callback_t user_callback)

Set a time in the future for the RTC to call a user provided callback.

void rtc_enable_alarm (void)

Enable the RTC alarm (if inactive)

void rtc_disable_alarm (void)

Disable the RTC alarm (if active)

4.1.22.4. Typedef Documentation

4.1.22.4.1. rtc_callback_t

typedef void(* rtc_callback_t) (void)
Callback function type for RTC alarms
See also

rtc_set_alarm()

4.1.22.5. Function Documentation

4.1.22.5.1. rtc_disable_alarm

void rtc_disable_alarm (void)

Disable the RTC alarm (if active)

4.1.22.5.2. rtc_enable_alarm

void rtc_enable_alarm (void)

Enable the RTC alarm (if inactive)

4.1.22.5.3. rtc_get_datetime
bool rtc_get_datetime (datetime_t * t)
Get the current time from the RTC.
Parameters
t Pointer to a datetime_t structure to receive the current RTC time
Returns

true if datetime is valid, false if the RTC is not running.

4.1.22.5.4. rtc_init

void rtec_init (void)

]
4.1. Hardware APIs 272

Raspberry Pi Pico-series C/C++ SDK
]

Initialise the RTC system.

4.1.22.5.5. rtc_running

bool rtc_running (void)

Is the RTC running?

4.1.22.5.6. rtc_set_alarm

void rtc_set_alarm (const datetime_t * t, rtc_callback_t user_callback)

Set a time in the future for the RTC to call a user provided callback.

Parameters
t Pointer to a datetime_t structure containing a time in the future to fire the alarm. Any values set
to -1 will not be matched on.
user_callback pointer to a rtc_callback_t to call when the alarm fires

4.1.22.5.7. rtc_set_datetime

bool rtc_set_datetime (const datetime_t * t)

Set the RTC to the specified time.

© NOTE

Note that after setting the RTC date and time, a subsequent read of the values (e.g. via ric_get_datetime()) may not
reflect the new setting until up to three cycles of the potentially-much-slower RTC clock domain have passed. This
represents a period of 64 microseconds with the default RTC clock configuration.

Parameters
t Pointer to a datetime_t structure contains time to set
Returns

true if set, false if the passed in datetime was invalid.

4.1.23. hardware_rcp

Inline functions and assembly macros for the Redundancy Coprocessor.

4.1.24. hardware_spi

Hardware SPI API.

4.1.24.1. Detailed Description

RP-series microcontrollers have 2 identical instances of the Serial Peripheral Interface (SPI) controller.

The PrimeCell SSP is a master or slave interface for synchronous serial communication with peripheral devices that
have Motorola SPI, National Semiconductor Microwire, or Texas Instruments synchronous serial interfaces.

]
4.1. Hardware APIs 273

Raspberry Pi Pico-series C/C++ SDK
]

Controller can be defined as master or slave using the spi_set_slave function.

Each controller can be connected to a number of GPIO pins, see the datasheet GPIO function selection table for more
information.

4.1.24.2. Macros

® ftdefine spi@ ((spi_inst_t *)spi@_hw)
® fidefine spil ((spi_inst_t *)spil_hw)
® f#define SPI_NUM(spi)

® ftdefine SPI_INSTANCE(num)

® jfidefine SPI_DREQ_NUM(spi, is_tx)

4.1.24.3. Enumerations

enum spi_cpha_t { SPI_CPHA_@ = @, SPI_CPHA_1 =1 }
Enumeration of SPI CPHA (clock phase) values.

enum spi_cpol_t { SPI_CPOL_@ = @, SPI_CPOL_1 =1 }
Enumeration of SPI CPOL (clock polarity) values.

enum spi_order_t { SPI_LSB_FIRST = @, SPI_MSB_FIRST = 1 }

Enumeration of SPI bit-order values.

4.1.24.4. Functions

uint spi_init (spi_inst_t *spi, uint baudrate)
Initialise SPI instances.
void spi_deinit (spi_inst_t *spi)
Deinitialise SPI instances.
uint spi_set_baudrate (spi_inst_t *spi, uint baudrate)
Set SPI baudrate.
uint spi_get_baudrate (const spi_inst_t *spi)
Get SPI baudrate.
static uint spi_get_index (const spi_inst_t *spi)
Convert SPI instance to hardware instance number.
static void spi_set_format (spi_inst_t *spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t cpha, __unused spi_order_t
order)
Configure SPI.
static void spi_set_slave (spi_inst_t *spi, bool slave)
Set SPI master/slave.
static bool spi_is_writable (const spi_inst_t *spi)
Check whether a write can be done on SPI device.
static bool spi_is_readable (const spi_inst_t *spi)

Check whether a read can be done on SPI device.

]
4.1. Hardware APIs 274

Raspberry Pi Pico-series C/C++ SDK
]

static bool spi_is_busy (const spi_inst_t *spi)

Check whether SPI is busy.

int spi_write_read_blocking (spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t len)

Write/Read to/from an SPI device.

=3

int spi_write_blocking (spi_inst_t *spi, const uint8_t *src, size_t len)

Write to an SPI device, blocking.

int spi_read_blocking (spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t len)
Read from an SPI device.

int spi_write16_read16_blocking (spi_inst_t *spi, const uint16_t *src, uint16_t *dst, size_t len)
Write/Read half words to/from an SPI device.

int spi_write16_blocking (spi_inst_t *spi, const uint16_t *src, size_t len)
Write to an SPI device.

int spi_read16_blocking (spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst, size_t 1len)

Read from an SPI device.

static vint spi_get_dreq (spi_inst_t *spi, bool is_tx)

Return the DREQ to use for pacing transfers to/from a particular SPI instance.

4.1.24.5. Macro Definition Documentation

4.1.24.5.1. spi0
#define spi@ ((spi_inst_t *)spi@_hw)
Identifier for the first (SPI 0) hardware SPI instance (for use in SPI functions).

e.g. spi_init(spi0, 48000)

4.1.24.5.2. spi1l

#define spi1 ((spi_inst_t *)spil_hw)
Identifier for the second (SPI 1) hardware SPI instance (for use in SPI functions).

e.g. spi_init(spi1, 48000)

4.1.24.5.3. SPI_NUM

#define SPI_NUM(spi)
Returns the SPI number for a SPI instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.24.5.4. SPI_INSTANCE
#define SPI_INSTANCE(num)
Returns the SPI instance with the given SPI number.

Note this macro is intended to resolve at compile time, and does no parameter checking

]
4.1. Hardware APIs 275

Raspberry Pi Pico-series C/C++ SDK
]

4.1.24.5.5. SPI_DREQ_NUM

#define SPI_DREQ_NUM(spi, is_tx)

Returns the dreq_num_t used for pacing DMA transfers to or from this SPI instance. If is_tx is true, then it is for transfers
to the SPI else for transfers from the SPI.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.24.6. Enumeration Type Documentation

4.1.24.6.1. spi_cpha_t

enum spi_cpha_t

Enumeration of SPI CPHA (clock phase) values.

4.1.24.6.2. spi_cpol_t

enum spi_cpol_t

Enumeration of SPI CPOL (clock polarity) values.

4.1.24.6.3. spi_order_t

enum spi_order_t

Enumeration of SPI bit-order values.

4.1.24.7. Function Documentation

4.1.24.7.1. spi_deinit

void spi_deinit (spi_inst_t * spi)

Deinitialise SPI instances.

Puts the SPI into a disabled state. Init will need to be called to re-enable the device functions.
Parameters

spi SPI instance specifier, either spi0 or spi1

4.1.24.7.2. spi_get_baudrate
uint spi_get_baudrate (const spi_inst_t * spi)
Get SPI baudrate.
Get SPI baudrate which was set by
See also
spi_set_baudrate
Parameters
spi SPIl instance specifier, either spi0 or spil

]
4.1. Hardware APIs 276

Raspberry Pi Pico-series C/C++ SDK
]

Returns

The actual baudrate set

4.1.24.7.3. spi_get_dreq

static uint spi_get_dreq (spi_inst_t * spi, bool is_tx) [inline], [static]

Return the DREQ to use for pacing transfers to/from a particular SPI instance.

Parameters
spi SPI instance specifier, either spi0 or spi1
is_tx true for sending data to the SPI instance, false for receiving data from the SPI instance

4.1.24.7.4. spi_get_index

static uint spi_get_index (const spi_inst_t * spi) [inline], [static]

Convert SPI instance to hardware instance number.

Parameters
spi SPl instance
Returns

Number of SPI, 0 or 1.

4.1.24.7.5. spi_init
vint spi_init (spi_inst_t * spi, uint baudrate)
Initialise SPI instances.

Puts the SPI into a known state, and enable it. Must be called before other functions.

© NoTE

There is no guarantee that the baudrate requested can be achieved exactly; the nearest will be chosen and returned

Parameters
spi SPI instance specifier, either spi0 or spil
baudrate Baudrate requested in Hz

Returns

the actual baud rate set

4.1.24.7.6. spi_is_busy

static bool spi_is_busy (const spi_inst_t * spi) [inline], [static]

Check whether SPI is busy.

Parameters
spi SPI instance specifier, either spi0 or spi
Returns

]
4.1. Hardware APIs 277

Raspberry Pi Pico-series C/C++ SDK

true if SPI is busy

4.1.24.7.7. spi_is_readable

static bool spi_is_readable (const spi_inst_t * spi) [inline], [static]

Check whether a read can be done on SPI device.

Parameters
spi SPI instance specifier, either spi0 or spi
Returns

true if a read is possible i.e. data is present

4.1.24.7.8. spi_is_writable

static bool spi_is_writable (const spi_inst_t * spi) [inline], [static]

Check whether a write can be done on SPI device.

Parameters
spi SPI instance specifier, either spi0 or spi
Returns

false if no space is available to write. True if a write is possible

4.1.24.7.9. spi_read16_blocking

int spi_read16_blocking (spi_inst_t * spi, uint16_t repeated_tx_data, uint16_t * dst, size_t len)
Read from an SPI device.

Read 1en halfwords from SPI to dst. Blocks until all data is transferred. No timeout, as SPI hardware always transfers at
a known data rate. repeated_tx_data is output repeatedly on TX as data is read in from RX. Generally this can be 0, but
some devices require a specific value here, e.g. SD cards expect 0xff

© NOTE
SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only read 8
data_bits.
Parameters
spi SPI instance specifier, either spi0 or spi1
repeated_tx_data Buffer of data to write
dst Buffer for read data
len Length of buffer dst in halfwords
Returns

Number of halfwords written/read

4.1.24.7.10. spi_read_blocking

int spi_read_blocking (spi_inst_t * spi, uint8_t repeated_tx_data, uint8_t * dst, size_t len)

4.1. Hardware APIs 278

Raspberry Pi Pico-series C/C++ SDK
]

Read from an SPI device.

Read 1en bytes from SPI to dst. Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a
known data rate. repeated_tx_data is output repeatedly on TX as data is read in from RX. Generally this can be 0, but
some devices require a specific value here, e.g. SD cards expect 0xff

Parameters
spi SPI instance specifier, either spi0 or spi1
repeated_tx_data Buffer of data to write
dst Buffer for read data
len Length of buffer dst
Returns

Number of bytes written/read

4.1.24.7.11. spi_set_baudrate

uint spi_set_baudrate (spi_inst_t * spi, uint baudrate)
Set SPI baudrate.

Set SPI frequency as close as possible to baudrate, and return the actual achieved rate.

Parameters
spi SPI instance specifier, either spi0 or spi1
baudrate Baudrate required in Hz, should be capable of a bitrate of at least 2Mbps, or higher, depending on
system clock settings.
Returns

The actual baudrate set

4.1.24.7.12. spi_set_format

static void spi_set_format (spi_inst_t * spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t cpha unused spi_order_t

J—

order) [inline], [static]
Configure SPI.

Configure how the SPI serialises and deserialises data on the wire

Parameters
spi SPI instance specifier, either spi0 or spi1
data_bits Number of data bits per transfer. Valid values 4..16.
cpol SSPCLKOUT polarity, applicable to Motorola SPI frame format only.
cpha SSPCLKOUT phase, applicable to Motorola SPI frame format only
order Must be SPI_MSB_FIRST, no other values supported on the PL022

4.1.24.7.13. spi_set_slave

static void spi_set_slave (spi_inst_t * spi, bool slave) [inline], [static]

Set SPI master/slave.

Configure the SPI for master- or slave-mode operation. By default, spi_init() sets master-mode.

]
4.1. Hardware APIs 279

Raspberry Pi Pico-series C/C++ SDK
]

Parameters
spi SPI instance specifier, either spi0 or spi’
slave true to set SPI device as a slave device, false for master.

4.1.24.7.14. spi_write16_blocking
int spi_writel6_blocking (spi_inst_t * spi, const uint16_t * src, size_t len)
Write to an SPI device.

Write 1en halfwords from src to SPI. Discard any data received back. Blocks until all data is transferred. No timeout, as
SPI hardware always transfers at a known data rate.

O NoOTE

SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only write 8
data_bits.

Parameters
spi SPI instance specifier, either spi0 or spil
sre Buffer of data to write
len Length of buffers

Returns

Number of halfwords written/read

4.1.24.7.15. spi_write16_read16_blocking
int spi_writel6_read16_blocking (spi_inst_t * spi, const uint16_t * src, vint16_t * dst, size_t len)
Write/Read half words to/from an SPI device.

Write len halfwords from src to SPI. Simultaneously read len halfwords from SPI to dst. Blocks until all data is
transferred. No timeout, as SPI hardware always transfers at a known data rate.

© NoOTE

SPI should be initialised with 16 data_bits using spi_set_format first, otherwise this function will only read/write 8
data_bits.

Parameters
spi SPI instance specifier, either spi0 or spil
sre Buffer of data to write
dst Buffer for read data
len Length of BOTH buffers in halfwords
Returns

Number of halfwords written/read

]
4.1. Hardware APIs 280

Raspberry Pi Pico-series C/C++ SDK
]

4.1.24.7.16. spi_write_blocking
int spi_write_blocking (spi_inst_t * spi, const uint8_t * src, size_t len)
Write to an SPI device, blocking.

Write len bytes from src to SPI, and discard any data received back Blocks until all data is transferred. No timeout, as
SPI hardware always transfers at a known data rate.

Parameters
spi SPI instance specifier, either spi0 or spi
src Buffer of data to write

len Length of src
Returns

Number of bytes written/read

4.1.24.7.17. spi_write_read_blocking
int spi_write_read_blocking (spi_inst_t * spi, const uint8_t * src, uint8_t * dst, size_t len)
Write/Read to/from an SPI device.

Write 1len bytes from src to SPI. Simultaneously read 1en bytes from SPI to dst. Blocks until all data is transferred. No
timeout, as SPI hardware always transfers at a known data rate.

Parameters
spi SPI instance specifier, either spi0 or spi1
sre Buffer of data to write
dst Buffer for read data

len Length of BOTH buffers
Returns

Number of bytes written/read

4.1.25. hardware_sha256

Hardware SHA-256 Accelerator API.

4.1.25.1. Detailed Description

RP2350 is equipped with an implementation of the SHA-256 hash algorithm. The hardware should first be configured by
calling the sha256_set_dma_size and sha256_set_bswap functions. To generate a new hash the hardware should first
be initialised by calling sha256_start. The hardware is ready to accept data when sha256_is_ready returns true, at which
point the data to be hashed can be written to the address returned by sha256_get_write_addr. The hardware requires 64
bytes to be written in one go or else sha256_err_not_ready will indicate an error and the hashing process must be
restarted. sha256_is_sum_valid will return true when there is a valid checksum result which can be retrieved by calling
sha256_get_result.

4.1.25.2. Macros

]
4.1. Hardware APIs 281

Raspberry Pi Pico-series C/C++ SDK
]

® #define SHA256_RESULT_BYTES 32

4.1.25.3. Enumerations

enum sha256_endianness { SHA256_LITTLE_ENDIAN, SHA256_BIG_ENDIAN }
SHA-256 endianness definition used in the API.

4.1.25.4. Functions

static void sha256_set_dma_size (uint size_in_bytes)

Configure the correct DMA data size.

static void sha256_set_bswap (bool swap)
Enable or disable byte swapping of 32-bit values.

static void sha256_start (void)

Prepare the hardware for a new checksum.

static bool sha256_is_sum_valid (void)

Check if a valid checksum has been calculated.

static bool sha256_is_ready (void)

Check if a the hardware is ready to accept more data.

static void sha256_wait_valid_blocking (void)

Wait until the checksum is valid.

static void sha256_wait_ready_blocking (void)

Wait until the hardware is ready to accept more data.

void sha256_get_result (sha256_result_t *out, enum sha256_endianness endianness)

Get the checksum result.

static bool sha256_err_not_ready (void)

Check if data was written before the hardware was ready.

static void sha256_err_not_ready_clear (void)

Clear the "not ready" error condition.

static volatile void * sha256_get_write_addr (void)

Address to write the data to be hashed.

static void sha256_put_word (uint32_t word)

Write one 32bit word of data to the SHA-256 hardware.

static void sha256_put_byte (uint8_t b)
Write one byte of data to the SHA-256 hardware.

4.1.25.5. Macro Definition Documentation

4.1.25.5.1. SHA256_RESULT_BYTES

#idefine SHA256_RESULT_BYTES 32

Size of a sha256 result in bytes.

]
4.1. Hardware APIs 282

Raspberry Pi Pico-series C/C++ SDK
]

4.1.25.6. Enumeration Type Documentation

4.1.25.6.1. sha256_endianness

enum sha256_endianness

SHA-256 endianness definition used in the API.

Table 30. Enumerator

SHA256_LITTLE_ENDIAN Little Endian.

SHA256_BIG_ENDIAN Big Endian.

4.1.25.7. Function Documentation

4.1.25.7.1. sha256_err_not_ready

static bool sha256_err_not_ready (void) [inline], [static]

Check if data was written before the hardware was ready.

Indicates if an error has occurred due to data being written when the hardware is not ready.
Returns

True if data was written before the hardware was ready

4.1.25.7.2. sha256_err_not_ready_clear
static void sha256_err_not_ready_clear (void) [inline], [static]
Clear the "not ready" error condition.

Resets the hardware if a "not ready" error condition is indicated.

4.1.25.7.3. sha256_get_result
void sha256_get_result (sha256_result_t * out, enum sha256_endianness endianness)
Get the checksum result.
Read the 32 byte result calculated by the hardware. Only valid if sha256_is_sum_valid is True
Parameters
out The checksum result
Copyright (c) 2024 Raspberry Pi (Trading) Ltd.

SPDX-License-ldentifier: BSD-3-Clause

4.1.25.7.4. sha256_get_write_addr

static volatile void * sha256_get_write_addr (void) [inline], [static]
Address to write the data to be hashed.

Returns the hardware address where data to be hashed should be written
Returns

Address to write data to be hashed

]
4.1. Hardware APIs 283

Raspberry Pi Pico-series C/C++ SDK
]

4.1.25.7.5. sha256_is_ready

static bool sha256_is_ready (void) [inline], [static]
Check if a the hardware is ready to accept more data.

After writing 64 bytes of data to the hardware, it will be unable to accept more data for a time. Call this to check if the
hardware is ready for more data to be written.

See also
sha256_err_not_ready
Returns

True if the hardware is ready to receive more data

4.1.25.7.6. sha256_is_sum_valid
static bool sha256_is_sum_valid (void) [inline], [static]
Check if a valid checksum has been calculated.

The checksum result will be invalid when data is first written to the hardware, and then once 64 bytes of data has been
written it may take some time to complete the digest of the current block. This function can be used to determine when
the checksum is valid.

Returns

True if sha256_get_result would return a valid result

4.1.25.7.7. sha256_put_byte

static void sha256_put_byte (uint8_t b) [inline], [static]
Write one byte of data to the SHA-256 hardware.
Parameters

b data to write

4.1.25.7.8. sha256_put_word

static void sha256_put_word (uint32_t word) [inline], [static]
Write one 32bit word of data to the SHA-256 hardware.
Parameters

word data to write

4.1.25.7.9. sha256_set_bswap

static void sha256_set_bswap (bool swap) [inline], [static]
Enable or disable byte swapping of 32-bit values.

The SHA256 algorithm expects bytes in big endian order, but the system bus deals with little endian data, so control is
provided to convert little endian bus data to big endian internal data. This defaults to true

Parameters

swap false to disable byte swapping

]
4.1. Hardware APIs 284

Raspberry Pi Pico-series C/C++ SDK
]

4.1.25.7.10. sha256_set_dma_size
static void sha256_set_dma_size (uint size_in_bytes) [inline], [static]
Configure the correct DMA data size.

This must be configured before the DMA channel is triggered and ensures the correct number of transfers is requested
per block.

Parameters

size_in_bytes Size of DMA transfers, either 1, 2 or 4 bytes only.

4.1.25.7.11. sha256_start

static void sha2h6_start (void) [inline], [static]
Prepare the hardware for a new checksum.

Called to initialise the hardware before starting the checksum calculation

4.1.25.7.12. sha256_wait_ready_blocking

static void sha256_wait_ready_blocking (void) [inline], [static]
Wait until the hardware is ready to accept more data.

Before writing to the hardware, it's necessary to check it is ready to accept more data. This function waits until the
hardware is ready to accept more data

4.1.25.7.13. sha256_wait_valid_blocking

static void sha256_wait_valid_blocking (void) [inline], [static]
Wait until the checksum is valid.

When a multiple of 64 bytes of data has been written to the hardware, the checksum will be valid once the digest of the
current block is complete. This function waits until when the checksum result is valid.

4.1.26. hardware_sync

Low level hardware spin locks, barrier and processor event APIs.

4.1.26.1. Detailed Description

4.1.26.1.1. Spin Locks

The RP-series microcontrollers provide 32 hardware spin locks, which can be used to manage mutually-exclusive
access to shared software and hardware resources.

Generally each spin lock itself is a shared resource, i.e. the same hardware spin lock can be used by multiple higher
level primitives (as long as the spin locks are neither held for long periods, nor held concurrently with other spin locks by
the same core - which could lead to deadlock). A hardware spin lock that is exclusively owned can be used individually
without more flexibility and without regard to other software. Note that no hardware spin lock may be acquired re-
entrantly (i.e. hardware spin locks are not on their own safe for use by both thread code and IRQs) however the default
spinlock related methods here (e.g. spin_lock_blocking) always disable interrupts while the lock is held as use by IRQ
handlers and user code is common/desirable, and spin locks are only expected to be held for brief periods.

]
4.1. Hardware APIs 285

Raspberry Pi Pico-series C/C++ SDK
]

RP2350 Warning. Due to erratum RP2350-E2, writes to new SIO registers above an offset of +0x180 alias the spinlocks,
causing spurious lock releases. This SDK by default uses atomic memory accesses to implement the
hardware_sync_spin_lock API, as a workaround on RP2350 A2.

The SDK uses the following default spin lock assignments, classifying which spin locks are reserved for
exclusive/special purposes vs those suitable for more general shared use:

Number (ID) Description

0-13 Currently reserved for exclusive use by the SDK and other
libraries. If you use these spin locks, you risk breaking SDK
or other library functionality. Each reserved spin lock used
individually has its own PICO_SPINLOCK_ID so you can
search for those.

1415 (PICO_SPINLOCK_ID_OS1 and PICO_SPINLOCK_ID_0S2).
Currently reserved for exclusive use by an operating
system (or other system level software) co-existing with
the SDK.

16-23 (PICO_SPINLOCK_ID_STRIPED_FIRST -
PICO_SPINLOCK_ID_STRIPED_LAST). Spin locks from this
range are assigned in a round-robin fashion via
next_striped_spin_lock_num(). These spin locks are
shared, but assigning numbers from a range reduces the
probability that two higher level locking primitives using
striped spin locks will actually be using the same spin
lock.

24-31 (PICO_SPINLOCK_ID_CLAIM_FREE_FIRST -
PICO_SPINLOCK_ID_CLAIM_FREE_LAST). These are
reserved for exclusive use and are allocated on a first
come first served basis at runtime via
spin_lock_claim_unused()

4.1.26.2. Macros

® jdefine SW_SPIN_LOCK_TYPE volatile uint8_t

4.1.26.3. Functions

static __force_inline void __nop (void)

Insert a NOP instruction in to the code path.

static __force_inline void __sev (void)

Insert a SEV instruction in to the code path.

static __force_inline void __wfe (void)

Insert a WFE instruction in to the code path.

static __force_inline void __wfi (void)

Insert a WFI instruction in to the code path.

static __force_inline void __dmb (void)

Insert a DMB instruction in to the code path.

static __force_inline void __dsb (void)

Insert a DSB instruction in to the code path.

]
4.1. Hardware APIs 286

Raspberry Pi Pico-series C/C++ SDK
]

static __force_inline void __isb (void)

Insert a ISB instruction in to the code path.

static __force_inline void __mem_fence_acquire (void)

Acquire a memory fence.

static __force_inline void __mem_fence_release (void)

Release a memory fence.

static __force_inline uint32_t save_and_disable_interrupts (void)

Save and disable interrupts.

static __force_inline void restore_interrupts (uint32_t status)

Restore interrupts to a specified state.

static __force_inline void restore_interrupts_from_disabled (uint32_t status)

Restore interrupts to a specified state with restricted transitions.

uint next_striped_spin_lock_num (void)

Return a spin lock number from the striped range.

void spin_lock_claim (uint lock_num)

Mark a spin lock as used.

void spin_lock_claim_mask (uint32_t lock_num_mask)

Mark multiple spin locks as used.

void spin_lock_unclaim (uint lock_num)

Mark a spin lock as no longer used.

int spin_lock_claim_unused (bool required)

Claim a free spin lock.

bool spin_lock_is_claimed (uint lock_num)

Determine if a spin lock is claimed.

static __force_inline spin_lock_t * spin_lock_instance (uint lock_num)

Get HW Spinlock instance from number.

static __force_inline uint spin_lock_get_num (spin_lock_t *Lock)

Get HW Spinlock number from instance.

static __force_inline void spin_lock_unsafe_blocking (spin_lock_t *lock)

Acquire a spin lock without disabling interrupts (hence unsafe)

static __force_inline void spin_unlock_unsafe (spin_lock_t *1lock)

Release a spin lock without re-enabling interrupts.

static __force_inline uint32_t spin_lock_blocking (spin_lock_t *1lock)

Acquire a spin lock safely.

static bool is_spin_locked (spin_lock_t *1lock)

Check to see if a spinlock is currently acquired elsewhere.

static __force_inline void spin_unlock (spin_lock_t *lock, uint32_t saved_irq)

Release a spin lock safely.

spin_lock_t * spin_lock_init (uint lock_num)

Initialise a spin lock.

]
4.1. Hardware APIs 287

Raspberry Pi Pico-series C/C++ SDK
]

void spin_locks_reset (void)

Release all spin locks.

4.1.26.4. Macro Definition Documentation

4.1.26.4.1. SW_SPIN_LOCK_TYPE

#define SW_SPIN_LOCK_TYPE volatile uint8_t

A spin lock identifier.

4.1.26.5. Function Documentation

4.1.26.5.1. _dmb
static __force_inline void __dmb (void) [static]
Insert a DMB instruction in to the code path.

The DMB (data memory barrier) acts as a memory barrier, all memory accesses prior to this instruction will be observed
before any explicit access after the instruction.

4.1.26.5.2. __dsb
static __force_inline void __dsb (void) [static]
Insert a DSB instruction in to the code path.

The DSB (data synchronization barrier) acts as a special kind of data memory barrier (DMB). The DSB operation
completes when all explicit memory accesses before this instruction complete.

4.1.26.5.3. __isb
static __force_inline void __isb (void) [static]
Insert a ISB instruction in to the code path.

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

4.1.26.5.4. _mem_fence_acquire

static __force_inline void __mem_fence_acquire (void) [static]

Acquire a memory fence.

4.1.26.5.5. __mem_fence_release

static __force_inline void __mem_fence_release (void) [static]

Release a memory fence.

]
4.1. Hardware APIs 288

Raspberry Pi Pico-series C/C++ SDK
]

4.1.26.5.6. __nop

static __force_inline void __nop (void) [static]
Insert a NOP instruction in to the code path.

NOP does nothing for one cycle. On RP2350 Arm binaries this is forced to be a 32-bit instruction to avoid dual-issue of
NOPs.

4.1.26.5.7. _sev

static __force_inline void __sev (void) [static]
Insert a SEV instruction in to the code path.

The SEV (send event) instruction sends an event to both cores.

4.1.26.5.8. __wfe

static __force_inline void __wfe (void) [static]

Insert a WFE instruction in to the code path.

The WFE (wait for event) instruction waits until one of a number of events occurs, including events signalled by the SEV
instruction on either core.

4.1.26.5.9. __wfi

static __force_inline void __wfi (void) [static]

Insert a WFI instruction in to the code path.

The WFI (wait for interrupt) instruction waits for a interrupt to wake up the core.

4.1.26.5.10. is_spin_locked

static bool is_spin_locked (spin_lock_t * lock) [inline], [static]
Check to see if a spinlock is currently acquired elsewhere.
Parameters

lock Spinlock instance

4.1.26.5.11. next_striped_spin_lock_num
uint next_striped_spin_lock_num (void)
Return a spin lock number from the striped range.

Returns a spin lock number in the range PICO_SPINLOCK_ID_STRIPED_FIRST to PICO_SPINLOCK_ID_STRIPED_LAST in
a round robin fashion. This does not grant the caller exclusive access to the spin lock, so the caller must:

1. Abide (with other callers) by the contract of only holding this spin lock briefly (and with IRQs disabled - the default
via spin_lock_blocking()), and not whilst holding other spin locks.

2. Be OK with any contention caused by the - brief due to the above requirement - contention with other possible
users of the spin lock.
Returns

lock_num a spin lock number the caller may use (non exclusively)

]
4.1. Hardware APIs 289

Raspberry Pi Pico-series C/C++ SDK
]

See also
PICO_SPINLOCK_ID_STRIPED_FIRST

PICO_SPINLOCK_ID_STRIPED_LAST

4.1.26.5.12. restore_interrupts

static __force_inline void restore_interrupts (uint32_t status) [static]
Restore interrupts to a specified state.

Parameters

status Previous interrupt status from save_and_disable_interrupts()

4.1.26.5.13. restore_interrupts_from_disabled
static __force_inline void restore_interrupts_from_disabled (uint32_t status) [static]
Restore interrupts to a specified state with restricted transitions.

This method should only be used when the interrupt state is known to be disabled, e.g. when paired with
save_and_disable_interrupts()

Parameters

status Previous interrupt status from save_and_disable_interrupts()

4.1.26.5.14. save_and_disable_interrupts

static __force_inline uint32_t save_and_disable_interrupts (void) [static]
Save and disable interrupts.

Returns

The prior interrupt enable status for restoration later via restore_interrupts()

4.1.26.5.15. spin_lock_blocking

static __force_inline uint32_t spin_lock_blocking (spin_lock_t * lock) [static]
Acquire a spin lock safely.
This function will disable interrupts prior to acquiring the spinlock
Parameters

lock Spinlock instance

Returns

interrupt status to be used when unlocking, to restore to original state

4.1.26.5.16. spin_lock_claim

void spin_lock_claim (uint lock_num)
Mark a spin lock as used.

Method for cooperative claiming of hardware. Will cause a panic if the spin lock is already claimed. Use of this method
by libraries detects accidental configurations that would fail in unpredictable ways.

]
4.1. Hardware APIs 290

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

lock_num the spin lock number

4.1.26.5.17. spin_lock_claim_mask
void spin_lock_claim_mask (uint32_t lock_num_mask)
Mark multiple spin locks as used.

Method for cooperative claiming of hardware. Will cause a panic if any of the spin locks are already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

lock_num_mask Bitfield of all required spin locks to claim (bit 0 == spin lock 0, bit 1 == spin lock 1 etc)

4.1.26.5.18. spin_lock_claim_unused
int spin_lock_claim_unused (bool required)
Claim a free spin lock.
Parameters
required if true the function will panic if none are available
Returns

the spin lock number or -1 if required was false, and none were free

4.1.26.5.19. spin_lock_get_num
static __force_inline uint spin_lock_get_num (spin_lock_t * lock) [static]
Get HW Spinlock number from instance.
Parameters
lock The Spinlock instance
Returns

The Spinlock ID

4.1.26.5.20. spin_lock_init
spin_lock_t * spin_lock_init (uint lock_num)
Initialise a spin lock.
The spin lock is initially unlocked
Parameters

lock_num The spin lock number
Returns

The spin lock instance

]
4.1. Hardware APIs 291

Raspberry Pi Pico-series C/C++ SDK
]

4.1.26.5.21. spin_lock_instance
static __force_inline spin_lock_t * spin_lock_instance (uint lock_num) [static]
Get HW Spinlock instance from number.
Parameters
lock_num Spinlock ID
Returns

The spinlock instance

4.1.26.5.22. spin_lock_is_claimed
bool spin_lock_is_claimed (uint lock_num)
Determine if a spin lock is claimed.
Parameters

lock_num the spin lock number
Returns
true if claimed, false otherwise
See also
spin_lock_claim

spin_lock_claim_mask

4.1.26.5.23. spin_lock_unclaim

void spin_lock_unclaim (uint lock_num)

Mark a spin lock as no longer used.

Method for cooperative claiming of hardware.
Parameters

lock_num the spin lock number to release

4.1.26.5.24. spin_lock_unsafe_blocking

static __force_inline void spin_lock_unsafe_blocking (spin_lock_t * lock) [static]
Acquire a spin lock without disabling interrupts (hence unsafe)
Parameters

lock Spinlock instance

4.1.26.5.25. spin_locks_reset

void spin_locks_reset (void)

Release all spin locks.

]
4.1. Hardware APIs 292

Raspberry Pi Pico-series C/C++ SDK
]

4.1.26.5.26. spin_unlock
static __force_inline void spin_unlock (spin_lock_t * lock, uint32_t saved_irq) [static]
Release a spin lock safely.

This function will re-enable interrupts according to the parameters.

Parameters

lock Spinlock instance

saved_irq Return value from the spin_lock_blocking() function.
See also

spin_lock_blocking()

4.1.26.5.27. spin_unlock_unsafe

static __force_inline void spin_unlock_unsafe (spin_lock_t * lock) [static]
Release a spin lock without re-enabling interrupts.

Parameters

lock Spinlock instance

4.1.27. hardware_ticks

Hardware Tick API.

4.1.27.1. Detailed Description

RP2040 only has one tick generator, and it is part of the watchdog hardware.

The RP2350 has a dedicated Tick block that is used to supply ticks to TIMERO, TIMER1, RISC-V platform timer, Arm
Cortex-M33 0 timer, Arm Cortex-M33 1 timer and the WATCHDOG block.

4.1.27.2. Typedefs

typedef enum tick_gen_num_rp2350 tick_gen_num_t
Tick generator numbers on RP2350 (used as typedef tick_gen_num_t)

typedef enum tick_gen_num_rp204@ tick_gen_num_t @710

Tick generator numbers on RP2040 (used as typedef tick_gen_num_t)

4.1.27.3. Enumerations

enum tick_gen_num_rp2350 { TICK_PROC@ = @, TICK_PROC1 = 1, TICK_TIMER® = 2, TICK_TIMERT = 3, TICK_WATCHDOG = 4,
TICK_RISCV = 5, TICK_COUNT }

Tick generator numbers on RP2350 (used as typedef tick_gen_num_t)

enum tick_gen_num_rp204@ { TICK_WATCHDOG = @, TICK_COUNT } @ZNILD

Tick generator numbers on RP2040 (used as typedef tick_gen_num_t)

4.1. Hardware APIs 293

Raspberry Pi Pico-series C/C++ SDK
]

4.1.27.4. Functions

void tick_start (tick_gen_num_t tick, uint cycles)

Start a tick generator.

void tick_stop (tick_gen_num_t tick)

Stop a tick generator.

bool tick_is_running (tick_gen_num_t tick)

Check if a tick genererator is currently running.

4.1.27.5. Typedef Documentation

4.1.27.5.1. tick_gen_num_t

typedef enum tick_gen_num_rp2350 tick_gen_num_t

Tick generator numbers on RP2350 (used as typedef tick_gen_num_t)

4.1.27.5.2. tick_gen_num_t

typedef enum tick_gen_num_rp2040 tick_gen_num_t
Tick generator numbers on RP2040 (used as typedef tick_gen_num_t)

RP2040 only has one tick generator, and it is part of the watchdog hardware

4.1.27.6. Enumeration Type Documentation

4.1.27.6.1. tick_gen_num_rp2350

enum tick_gen_num_rp2350

Tick generator numbers on RP2350 (used as typedef tick_gen_num_t)

4.1.27.6.2. tick_gen_num_rp2040
enum tick_gen_num_rp2040
Tick generator numbers on RP2040 (used as typedef tick_gen_num_t)

RP2040 only has one tick generator, and it is part of the watchdog hardware

4.1.27.7. Function Documentation

4.1.27.7.1. tick_is_running

bool tick_is_running (tick_gen_num_t tick)
Check if a tick genererator is currently running.
Parameters

tick The tick generator number

]
4.1. Hardware APIs 294

Raspberry Pi Pico-series C/C++ SDK
]

Returns

true if the specific ticker is running.

4.1.27.7.2. tick_start

void tick_start (tick_gen_num_t tick, uint cycles)

Start a tick generator.

Parameters
tick The tick generator number
cycles The number of clock cycles per tick

4.1.27.7.3. tick_stop

void tick_stop (tick_gen_num_t tick)
Stop a tick generator.

Parameters

tick The tick generator number

4.1.28. hardware_timer

Low-level hardware timer API.

4.1.28.1. Detailed Description
This API provides medium level access to the timer HW. See also pico_time which provides higher levels functionality
using the hardware timer.
The timer peripheral on RP-series microcontrollers supports the following features:
® RP2040 single 64-bit counter, incrementing once per microsecond
® RP2350 two 64-bit counters, ticks generated from the tick block
® Latching two-stage read of counter, for race-free read over 32 bit bus

® Four alarms: match on the lower 32 bits of counter, IRQ on match.
On RP2040, by default the timer uses a one microsecond reference that is generated in the Watchdog (see RP2040
Datasheet Section 4.8.2) which is derived from the clk_ref.

On RP2350, by default the timer uses a one microsecond reference that is generated by the tick block (see RP2350
Datasheet Section 8.5)

The timer has 4 alarms, and can output a separate interrupt for each alarm. The alarms match on the lower 32 bits of
the 64 bit counter which means they can be fired a maximum of 2232 microseconds into the future. This is equivalent
to:

® 2732 +10%6: ~4295 seconds

® 4295 + 60: ~72 minutes
The timer is expected to be used for short sleeps, if you want a longer alarm see the hardware_rtc functions.

]
4.1. Hardware APIs 295

Raspberry Pi Pico-series C/C++ SDK
]

4.1.28.1.1. Example

1 #include <stdio.h>
2 #include "pico/stdlib.h”

3
4 volatile bool timer_fired = false;
5
6 int64_t alarm_callback(alarm_id_t id, __unused void *user_data) {
7 printf("Timer %d fired!\n", (int) id);
8 timer_fired = true;
9 // Can return a value here in us to fire in the future
10 return 0;
11 }
12
13 bool repeating_timer_callback(__unused struct repeating_timer *t) {
14 printf("Repeat at %1ld\n", time_us_64());
15 return true;
16 }
17
18 int main() {
19 stdio_init_all();
20 printf("Hello Timer!\n");
21
22 // Call alarm_callback in 2 seconds
23 add_alarm_in_ms (2000, alarm_callback, NULL, false);
24
25 // Wait for alarm callback to set timer_fired
26 while (!timer_fired) {
27 tight_loop_contents();
28 }
29
30 // Create a repeating timer that calls repeating_timer_callback.
31 // If the delay is > @ then this is the delay between the previous callback ending and the
next starting.
32 // If the delay is negative (see below) then the next call to the callback will be exactly
500ms after the
33 // start of the call to the last callback
34 struct repeating_timer timer;
35 add_repeating_timer_ms(500, repeating_timer_callback, NULL, &timer);
36 sleep_ms(36000);
37 bool cancelled = cancel_repeating_timer (&timer);
38 printf("cancelled... %d\n", cancelled);
39 sleep_ms(2000) ;
40
41 // Negative delay so means we will call repeating_timer_callback, and call it again
42 // 500ms later regardless of how long the callback took to execute
43 add_repeating_timer_ms(-500, repeating_timer_callback, NULL, &timer);
44 sleep_ms(3000) ;
45 cancelled = cancel_repeating_timer (&timer);
46 printf("cancelled... %d\n", cancelled);
47 sleep_ms(2000) ;
48 printf("Done\n");
49 return 0;
50 }
See also
pico_time

4.1. Hardware APIs

296

Raspberry Pi Pico-series C/C++ SDK
]

4.1.28.2. Macros

® fidefine TIMER_ALARM_IRQ_NUM(timer, alarm_num)
® ftdefine TIMER_ALARM_NUM_FROM_IRQ(irq_num)

® jftdefine TIMER_NUM_FROM_IRQ(irq_num)

® #define PICO_DEFAULT_TIMER @

® #define PICO_DEFAULT_TIMER_INSTANCE()

4.1.28.3. Typedefs

typedef void(* hardware_alarm_callback_t)(uint alarm_num)

4.1.28.4. Functions

static uint32_t timer_time_us_32 (timer_hw_t *timer)

Return a 32 bit timestamp value in microseconds for a given timer instance.
static uint32_t time_us_32 (void)

Return a 32 bit timestamp value in microseconds for the default timer instance.
uint64_t timer_time_us_64 (timer_hw_t *timer)

Return the current 64 bit timestamp value in microseconds for a given timer instance.
uint64_t time_us_64 (void)

Return the current 64 bit timestamp value in microseconds for the default timer instance.
void timer_busy_wait_us_32 (timer_hw_t *timer, uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds using the given timer instance.
void busy_wait_us_32 (uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds using the default timer instance.
void timer_busy_wait_us (timer_hw_t *timer, uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds using the given timer instance.
void busy_wait_us (uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds using the default timer instance.
void timer_busy_wait_ms (timer_hw_t *timer, uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds using the given timer instance.
void busy_wait_ms (uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds using the default timer instance.
void timer_busy_wait_until (timer_hw_t *timer, absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp using the given timer instance.
void busy_wait_until (absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp using the default timer instance.
static bool timer_time_reached (timer_hw_t *timer, absolute_time_t t)

Check if the specified timestamp has been reached on the given timer instance.

]
4.1. Hardware APIs 297

Raspberry Pi Pico-series C/C++ SDK
]

static bool time_reached (absolute_time_t t)

Check if the specified timestamp has been reached on the default timer instance.

void timer_hardware_alarm_claim (timer_hw_t *timer, uint alarm_num)
cooperatively claim the use of this hardware alarm_num on the given timer instance
void hardware_alarm_claim (uint alarm_num)

cooperatively claim the use of this hardware alarm_num on the default timer instance

int timer_hardware_alarm_claim_unused (timer_hw_t *timer, bool required)

cooperatively claim the use of a hardware alarm_num on the given timer instance

int hardware_alarm_claim_unused (bool required)

cooperatively claim the use of a hardware alarm_num on the default timer instance
void timer_hardware_alarm_unclaim (timer_hw_t *timer, uint alarm_num)

cooperatively release the claim on use of this hardware alarm_num on the given timer instance
void hardware_alarm_unclaim (uint alarm_num)

cooperatively release the claim on use of this hardware alarm_num on the default timer instance

bool timer_hardware_alarm_is_claimed (timer_hw_t *timer, uint alarm_num)

Determine if a hardware alarm has been claimed on the given timer instance.

bool hardware_alarm_is_claimed (uint alarm_num)
Determine if a hardware alarm has been claimed on the default timer instance.

void timer_hardware_alarm_set_callback (timer_hw_t *timer, uint alarm_num, hardware_alarm_callback_t callback)
Enable/Disable a callback for a hardware alarm for a given timer instance on this core.

void hardware_alarm_set_callback (uint alarm_num, hardware_alarm_callback_t callback)

Enable/Disable a callback for a hardware alarm on the default timer instance on this core.

bool timer_hardware_alarm_set_target (timer_hw_t *timer, uint alarm_num, absolute_time_t t)

Set the current target for a specific hardware alarm on the given timer instance.

bool hardware_alarm_set_target (uint alarm_num, absolute_time_t t)
Set the current target for the specified hardware alarm on the default timer instance.
void timer_hardware_alarm_cancel (timer_hw_t *timer, uint alarm_num)
Cancel an existing target (if any) for a specific hardware_alarm on the given timer instance.
void hardware_alarm_cancel (uint alarm_num)
Cancel an existing target (if any) for the specified hardware_alarm on the default timer instance.
void timer_hardware_alarm_force_irq (timer_hw_t *timer, uint alarm_num)

Force and IRQ for a specific hardware alarm on the given timer instance.

void hardware_alarm_force_irq (uint alarm_num)

Force and IRQ for a specific hardware alarm on the default timer instance.
static vint timer_hardware_alarm_get_irq_num (__unused timer_hw_t *timer, uint alarm_num)

Returns the irq_num_t for the alarm interrupt from the given alarm on the given timer instance.
static uint hardware_alarm_get_irq_num (timer_hw_t *timer, uint alarm_num)

Returns the irg_num_t for the alarm interrupt from the given alarm on the default timer instance.
static uint timer_get_index (timer_hw_t *timer)

Returns the timer number for a timer instance.

]
4.1. Hardware APIs 298

Raspberry Pi Pico-series C/C++ SDK
]

static timer_hw_t * timer_get_instance (uint timer_num)

Returns the timer instance with the given timer number.

4.1.28.5. Macro Definition Documentation

4.1.28.5.1. TIMER_ALARM_IRQ_NUM

#define TIMER_ALARM_IRQ_NUM(timer, alarm_num)
Returns the irg_num_t for the alarm interrupt from the given alarm on the given timer instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.28.5.2. TIMER_ALARM_NUM_FROM_IRQ

#idefine TIMER_ALARM_NUM_FROM_IRQ(irq_num)

Returns the alarm number from an \irg_num_t. See TIMER_LINSTANCE_NUM_FROM_IRQ to get the timer instance
number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.28.5.3. TIMER_LNUM_FROM_IRQ

#define TIMER_NUM_FROM_IRQ(irq_num)
Returns the alarm number from an \irq_num_t. See TIMER_INSTANCE_NUM_FROM_IRQ to get the alarm number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.28.5.4. PICO_DEFAULT_TIMER

f#idefine PICO_DEFAULT_TIMER 0

The default timer instance number of the timer instance used for APIs that don’t take an explicit timer instance On
RP2040 this must be 0 as there is only one timer instance On RP2040 this may be setto O or 1.

4.1.28.5.5. PICO_DEFAULT_TIMER_INSTANCE

#tdefine PICO_DEFAULT_TIMER_INSTANCE()
Returns the default timer instance on the platform based on the setting of PICO_DEFAULT_TIMER.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.28.6. Typedef Documentation

4.1.28.6.1. hardware_alarm_callback_t
typedef void(* hardware_alarm_callback_t) (uint alarm_num)
Callback function type for hardware alarms

Parameters

]
4.1. Hardware APIs 299

Raspberry Pi Pico-series C/C++ SDK
]

alarm_num the hardware alarm number
See also

hardware_alarm_set_callback()

4.1.28.7. Function Documentation

4.1.28.7.1. busy_wait_ms
void busy_wait_ms (uint32_t delay_ms)
Busy wait wasting cycles for the given number of milliseconds using the default timer instance.
Parameters
delay_ms delay amount in milliseconds
See also

timer_busy_wait_ms

4.1.28.7.2. busy_wait_until
void busy_wait_until (absolute_time_t t)
Busy wait wasting cycles until after the specified timestamp using the default timer instance.
Parameters
t Absolute time to wait until
See also

timer_busy_wait_until

4.1.28.7.3. busy_wait_us
void busy_wait_us (uint64_t delay_us)
Busy wait wasting cycles for the given (64 bit) number of microseconds using the default timer instance.
Parameters
delay_us delay amount in microseconds
See also

timer_busy_wait_us

4.1.28.7.4. busy_wait_us_32
void busy_wait_us_32 (uint32_t delay_us)
Busy wait wasting cycles for the given (32 bit) number of microseconds using the default timer instance.
Parameters
delay_us delay amount in microseconds
See also
timer_busy_wait_us_32

]
4.1. Hardware APIs 300

Raspberry Pi Pico-series C/C++ SDK
]

4.1.28.7.5. hardware_alarm_cancel
void hardware_alarm_cancel (uint alarm_num)
Cancel an existing target (if any) for the specified hardware_alarm on the default timer instance.
Parameters
alarm_num the hardware alarm number
See also

timer_hardware_alarm_cancel

4.1.28.7.6. hardware_alarm_claim
void hardware_alarm_claim (uint alarm_num)
cooperatively claim the use of this hardware alarm_num on the default timer instance
This method hard asserts if the hardware alarm is currently claimed.
Parameters
alarm_num the hardware alarm to claim
See also
timer_hardware_alarm_claim

hardware_claiming

4.1.28.7.7. hardware_alarm_claim_unused
int hardware_alarm_claim_unused (bool required)
cooperatively claim the use of a hardware alarm_num on the default timer instance
This method attempts to claim an unused hardware alarm
Parameters
required if true the function will panic if none are available
Returns
alarm_num the hardware alarm claimed or -1 if required was false, and none are available
See also
timer_hardware_alarm_claim_unused

hardware_claiming

4.1.28.7.8. hardware_alarm_force_irq
void hardware_alarm_force_irq (uint alarm_num)
Force and IRQ for a specific hardware alarm on the default timer instance.

This method will forcibly make sure the current alarm callback (if present) for the hardware alarm is called from an IRQ
context after this call. If an actual callback is due at the same time then the callback may only be called once.

Calling this method does not otherwise interfere with regular callback operations.
Parameters
alarm_num the hardware alarm number

]
4.1. Hardware APIs 301

Raspberry Pi Pico-series C/C++ SDK
]

See also

timer_hardware_alarm_force_irq

4.1.28.7.9. hardware_alarm_get_irq_num

static uint hardware_alarm_get_irq_num (timer_hw_t * timer, uint alarm_num) [inline], [static]

Returns the irg_num_t for the alarm interrupt from the given alarm on the default timer instance.

Parameters
timer the timer instance
alarm_num the alarm number

4.1.28.7.10. hardware_alarm_is_claimed
bool hardware_alarm_is_claimed (uint alarm_num)
Determine if a hardware alarm has been claimed on the default timer instance.
Parameters
alarm_num the hardware alarm number
Returns
true if claimed, false otherwise
See also
timer_hardware_alarm_is_claimed

hardware_alarm_claim

4.1.28.7.11. hardware_alarm_set_callback
void hardware_alarm_set_callback (uint alarm_num, hardware_alarm_callback_t callback)
Enable/Disable a callback for a hardware alarm on the default timer instance on this core.

This method enables/disables the alarm IRQ for the specified hardware alarm on the calling core, and set the specified
callback to be associated with that alarm.

This callback will be used for the timeout set via hardware_alarm_set_target

O NoTE

This will install the handler on the current core if the IRQ handler isn't already set. Therefore the user has the
opportunity to call this up from the core of their choice

Parameters

alarm_num the hardware alarm number

callback the callback to install, or NULL to unset
See also

timer_hardware_alarm_set_callback

hardware_alarm_set_target()

]
4.1. Hardware APIs 302

Raspberry Pi Pico-series C/C++ SDK
]

4.1.28.7.12. hardware_alarm_set_target
bool hardware_alarm_set_target (uint alarm_num, absolute_time_t t)
Set the current target for the specified hardware alarm on the default timer instance.

This will replace any existing target

Parameters
alarm_num the hardware alarm number
t the target timestamp
Returns

true if the target was "missed"; i.e. it was in the past, or occurred before a future hardware timeout could be set
See also

timer_hardware_alarm_set_target

4.1.28.7.13. hardware_alarm_unclaim
void hardware_alarm_unclaim (uint alarm_num)
cooperatively release the claim on use of this hardware alarm_num on the default timer instance
Parameters
alarm_num the hardware alarm to unclaim
See also
timer_hardware_alarm_unclaim

hardware_claiming

4.1.28.7.14. time_reached
static bool time_reached (absolute_time_t t) [inline], [static]
Check if the specified timestamp has been reached on the default timer instance.
Parameters
t Absolute time to compare against current time
Returns
true if it is now after the specified timestamp
See also

timer_time_reached

4.1.28.7.15. time_us_32
static uint32_t time_us_32 (void) [inline], [static]
Return a 32 bit timestamp value in microseconds for the default timer instance.

Returns the low 32 bits of the hardware timer.

]
4.1. Hardware APIs 303

Raspberry Pi Pico-series C/C++ SDK

© NOTE

This value wraps roughly every 1 hour 11 minutes and 35 seconds.

Returns
the 32 bit timestamp
See also

timer_time_us_32

4.1.28.7.16. time_us_64
uint64_t time_us_64 (void)
Return the current 64 bit timestamp value in microseconds for the default timer instance.

Returns the full 64 bits of the hardware timer. The pico_time and other functions rely on the fact that this value
monotonically increases from power up. As such it is expected that this value counts upwards and never wraps (we
apologize for introducing a potential year 5851444 bug).

Returns
the 64 bit timestamp
See also

timer_time_us_64

4.1.28.7.17. timer_busy_wait_ms

void timer_busy_wait_ms (timer_hw_t * timer, uint32_t delay_ms)

Busy wait wasting cycles for the given number of milliseconds using the given timer instance.

Parameters

timer the timer instance

delay_ms delay amount in milliseconds
See also

busy_wait_ms

4.1.28.7.18. timer_busy_wait_until

void timer_busy_wait_until (timer_hw_t * timer, absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp using the given timer instance.

Parameters

timer the timer instance

t Absolute time to wait until
See also

busy_wait_until

]
4.1. Hardware APIs 304

Raspberry Pi Pico-series C/C++ SDK
]

4.1.28.7.19. timer_busy_wait_us

void timer_busy_wait_us (timer_hw_t * timer, uint64_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds using the given timer instance.

Parameters

timer the timer instance

delay_us delay amount in microseconds
See also

busy_wait_us

4.1.28.7.20. timer_busy_wait_us_32

void timer_busy_wait_us_32 (timer_hw_t * timer, uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds using the given timer instance.

Parameters

timer the timer instance

delay_us delay amount in microseconds
See also

busy_wait_us_32

Busy wait wasting cycles for the given (32 bit) number of microseconds using the given timer instance.

4.1.28.7.21. timer_get_index
static uint timer_get_index (timer_hw_t * timer) [inline], [static]
Returns the timer number for a timer instance.
Parameters
timer the timer instance
Returns
the timer number
See also

TIMER_NUM

4.1.28.7.22. timer_get_instance
static timer_hw_t * timer_get_instance (uint timer_num) [inline], [static]
Returns the timer instance with the given timer number.
Parameters
timer_num the timer number
Returns

the timer instance

]
4.1. Hardware APIs 305

Raspberry Pi Pico-series C/C++ SDK
]

4.1.28.7.23. timer_hardware_alarm_cancel

void timer_hardware_alarm_cancel (timer_hw_t * timer, uint alarm_num)

Cancel an existing target (if any) for a specific hardware_alarm on the given timer instance.

Parameters

timer the timer instance

alarm_num the hardware alarm number
See also

hardware_alarm_cancel

4.1.28.7.24. timer_hardware_alarm_claim
void timer_hardware_alarm_claim (timer_hw_t * timer, uint alarm_num)
cooperatively claim the use of this hardware alarm_num on the given timer instance

This method hard asserts if the hardware alarm is currently claimed.

Parameters

timer the timer instance

alarm_num the hardware alarm to claim
See also

hardware_alarm_claim

hardware_claiming

4.1.28.7.25. timer_hardware_alarm_claim_unused
int timer_hardware_alarm_claim_unused (timer_hw_t * timer, bool required)
cooperatively claim the use of a hardware alarm_num on the given timer instance

This method attempts to claim an unused hardware alarm

Parameters

timer the timer instance

required if true the function will panic if none are available
Returns

alarm_num the hardware alarm claimed or -1 if required was false, and none are available
See also
hardware_alarm_claim_unused

hardware_claiming

4.1.28.7.26. timer_hardware_alarm_force_irq
void timer_hardware_alarm_force_irq (timer_hw_t * timer, uint alarm_num)
Force and IRQ for a specific hardware alarm on the given timer instance.

This method will forcibly make sure the current alarm callback (if present) for the hardware alarm is called from an IRQ
context after this call. If an actual callback is due at the same time then the callback may only be called once.

]
4.1. Hardware APIs 306

Raspberry Pi Pico-series C/C++ SDK
]

Calling this method does not otherwise interfere with regular callback operations.

Parameters

timer the timer instance

alarm_num the hardware alarm number
See also

hardware_alarm_force_irq

4.1.28.7.27. timer_hardware_alarm_get_irq_num

static uint timer_hardware_alarm_get_irq_num (__unused timer_hw_t * timer, uint alarm_num) [inline], [static]

Returns the irg_num_t for the alarm interrupt from the given alarm on the given timer instance.

Parameters
timer the timer instance
alarm_num the alarm number
See also

TIMER_ALARM_IRQ_NUM

4.1.28.7.28. timer_hardware_alarm_is_claimed

bool timer_hardware_alarm_is_claimed (timer_hw_t * timer, uint alarm_num)

Determine if a hardware alarm has been claimed on the given timer instance.

Parameters

timer the timer instance

alarm_num the hardware alarm number
Returns

true if claimed, false otherwise
See also
hardware_alarm_is_claimed

hardware_alarm_claim

4.1.28.7.29. timer_hardware_alarm_set_callback
void timer_hardware_alarm_set_callback (timer_hw_t * timer, uint alarm_num, hardware_alarm_callback_t callback)
Enable/Disable a callback for a hardware alarm for a given timer instance on this core.

This method enables/disables the alarm IRQ for the specified hardware alarm on the calling core, and set the specified
callback to be associated with that alarm.

This callback will be used for the timeout set via hardware_alarm_set_target

]
4.1. Hardware APIs 307

Raspberry Pi Pico-series C/C++ SDK

© NOTE

This will install the handler on the current core if the IRQ handler isn't already set. Therefore the user has the
opportunity to call this up from the core of their choice

Parameters

timer the timer instance

alarm_num the hardware alarm number

callback the callback to install, or NULL to unset
See also

hardware_alarm_set_callback

timer_hardware_alarm_set_target()

4.1.28.7.30. timer_hardware_alarm_set_target

bool timer_hardware_alarm_set_target (timer_hw_t * timer, uint alarm_num, absolute_time_t t)
Set the current target for a specific hardware alarm on the given timer instance.

This will replace any existing target

Parameters
timer the timer instance
alarm_num the hardware alarm number
t the target timestamp
Returns

true if the target was "missed"; i.e. it was in the past, or occurred before a future hardware timeout could be set
See also

hardware_alarm_set_target

4.1.28.7.31. timer_hardware_alarm_unclaim

void timer_hardware_alarm_unclaim (timer_hw_t * timer, uint alarm_num)

cooperatively release the claim on use of this hardware alarm_num on the given timer instance

Parameters

timer the timer instance

alarm_num the hardware alarm to unclaim
See also

hardware_alarm_unclaim

hardware_claiming

4.1.28.7.32. timer_time_reached

static bool timer_time_reached (timer_hw_t * timer, absolute_time_t t) [inline], [static]

Check if the specified timestamp has been reached on the given timer instance.

]
4.1. Hardware APIs 308

Raspberry Pi Pico-series C/C++ SDK
]

Parameters

timer the timer instance

t Absolute time to compare against current time
Returns

true if it is now after the specified timestamp
See also

time_reached

4.1.28.7.33. timer_time_us_32
static uint32_t timer_time_us_32 (timer_hw_t * timer) [inline], [static]
Return a 32 bit timestamp value in microseconds for a given timer instance.

Returns the low 32 bits of the hardware timer.

O NOTE

This value wraps roughly every 1 hour 11 minutes and 35 seconds.

Parameters
timer the timer instance
Returns
the 32 bit timestamp
See also

time_us_32

4.1.28.7.34. timer_time_us_64
uint64_t timer_time_us_64 (timer_hw_t * timer)
Return the current 64 bit timestamp value in microseconds for a given timer instance.

Returns the full 64 bits of the hardware timer. The pico_time and other functions rely on the fact that this value
monotonically increases from power up. As such it is expected that this value counts upwards and never wraps (we
apologize for introducing a potential year 5851444 bug).

Parameters
timer the timer instance
Returns
the 64 bit timestamp
See also
time_us_64

Return the current 64 bit timestamp value in microseconds for a given timer instance.

]
4.1. Hardware APIs 309

Raspberry Pi Pico-series C/C++ SDK
]

4.1.29. hardware_uart

Hardware UART API.

4.1.29.1. Detailed Description

RP-series microcontrollers have 2 identical instances of a UART peripheral, based on the ARM PL011. Each UART can
be connected to a number of GPIO pins as defined in the GPIO muxing.

Only the TX, RX, RTS, and CTS signals are connected, meaning that the modem mode and IrDA mode of the PLO11 are
not supported.

4.1.29.1.1. Example

1 int main() {

w

// Set the GPIO pin mux to the UART - pin @ is TX, 1 is RX; note use of UART_FUNCSEL_NUM
for the general

4 // case where the func sel used for UART depends on the pin number
5 // Do this before calling uart_init to avoid losing data

6 gpio_set_function(®, UART_FUNCSEL_NUM(uarte, 0));

7 gpio_set_function(1, UART_FUNCSEL_NUM(uarte, 1));

8

9 // Initialise UART @

10 uvart_init(uarte, 115200);

11

12 uart_puts(uart@, "Hello world!");

13 }

4.1.29.2. Macros

® jfidefine UART_NUM(uart)

® jdefine UART_INSTANCE(num)

® fdefine UART_DREQ_NUM(uart, is_tx)
® fidefine UART_CLOCK_NUM(uart)

® ftdefine UART_FUNCSEL_NUM(uart, gpio)
® fidefine UART_IRQ_NUM(uart)

® #define UART_RESET_NUM(uart)

4.1.29.3. Enumerations

enum uart_parity t { UART_PARITY_NONE, UART_PARITY_EVEN, UART_PARITY_0DD }

UART Parity enumeration.

4.1.29.4. Functions

static uint vart_get_index (uvart_inst_t *uart)

Convert UART instance to hardware instance number.

]
4.1. Hardware APIs 310

Raspberry Pi Pico-series C/C++ SDK
]

static vart_inst_t * vart_get_instance (uint num)
Get the UART instance from an instance number.
static vart_hw_t * vart_get_hw (uart_inst_t *uvart)
Get the real hardware UART instance from a UART instance.

uint vart_init (uvart_inst_t *uart, uint baudrate)

Initialise a UART.

void vart_deinit (uvart_inst_t *uart)

Delnitialise a UART.

uint vart_set_baudrate (uart_inst_t *uart, uint baudrate)

Set UART baud rate.

static void vart_set_hw_flow (uart_inst_t *uart, bool cts, bool rts)

Set UART flow control CTS/RTS.

void vart_set_format (uart_inst_t *uart, uint data_bits, uint stop_bits, vart_parity_t parity)

Set UART data format.

static void vart_set_irgs_enabled (uart_inst_t *uart, bool rx_has_data, bool tx_needs_data)

Enable/Disable UART interrupt outputs.

static bool vart_is_enabled (uart_inst_t *uart)

Test if specific UART is enabled.

void vart_set_fifo_enabled (uart_inst_t *uart, bool enabled)

Enable/Disable the FIFOs on specified UART.

static bool vart_is_writable (uart_inst_t *uart)

Determine if space is available in the TX FIFO.

static void vart_tx_wait_blocking (uart_inst_t *uart)

Wait for the UART TX fifo to be drained.

static bool vart_is_readable (uart_inst_t *uart)
Determine whether data is waiting in the RX FIFO.
static void vart_write_blocking (uart_inst_t *uart, const uint8_t *src, size_t len)

Write to the UART for transmission.

static void vart_read_blocking (uart_inst_t *uart, uint8_t *dst, size_t len)

Read from the UART.

static void vart_putc_raw (uart_inst_t *uvart, char c)

Write single character to UART for transmission.

static void vart_putc (uart_inst_t *uvart, char c)

Write single character to UART for transmission, with optional CR/LF conversions.

static void vart_puts (uart_inst_t *uart, const char *s)

Write string to UART for transmission, doing any CR/LF conversions.
static char vart_getc (uart_inst_t *uvart)

Read a single character from the UART.

void vart_set_break (uart_inst_t *uart, bool en)

Assert a break condition on the UART transmission.

]
4.1. Hardware APIs 311

Raspberry Pi Pico-series C/C++ SDK
]

void uart_set_translate_crlf (uart_inst_t *uart, bool translate)

Set CR/LF conversion on UART.

static void vart_default_tx_wait_blocking (void)

Wait for the default UART’s TX FIFO to be drained.

bool uart_is_readable_within_us (uart_inst_t *uart, uint32_t us)

Wait for up to a certain number of microseconds for the RX FIFO to be non empty.

static vint vart_get_dreq_num (uart_inst_t *uart, bool is_tx)

Return the dreq_num_t to use for pacing transfers to/from a particular UART instance.

static uvint vart_get_reset_num (uart_inst_t *uvart)

Return the reset_num_t to use for pacing transfers to/from a particular UART instance.

4.1.29.4.1. uart0

#define vart® ((uart_inst_t *)uart@_hw)
Identifier for UART instance 0.
The UART identifiers for use in UART functions.

e.g. uart_init(uart1, 48000)

4.1.29.4.2. uart1

#define vart1 ((uart_inst_t *)uart1_hw)

Identifier for UART instance 1.

4.1.29.5. Macro Definition Documentation

4.1.29.5.1. UART_NUM

#define UART_NUM(uart)
Returns the UART number for a UART instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.2. UART_INSTANCE
#define UART_INSTANCE(num)
Returns the UART instance with the given UART number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.3. UART_DREQ_NUM

#define UART_DREQ_NUM(uart, is_tx)

Returns the dreq_num_t used for pacing DMA transfers to or from this UART instance. If is_tx is true, then it is for
transfers to the UART else for transfers from the UART.

Note this macro is intended to resolve at compile time, and does no parameter checking

]
4.1. Hardware APIs 312

Raspberry Pi Pico-series C/C++ SDK

4.1.29.5.4. UART_CLOCK_NUM

#define UART_CLOCK_NUM(uart)
Returns clock_num_t of the clock for the given UART instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.5. UART_FUNCSEL_NUM

#define UART_FUNCSEL_NUM(uart, gpio)
Returns gpio_function_t needed to select the UART function for the given UART instance on the given GPIO number.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.6. UART_IRQ_NUM

#define UART_IRQ_NUM(uart)
Returns the irg_num_t for processor interrupts from the given UART instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.5.7. UART_RESET_NUM

#define UART_RESET_NUM(uart)
Returns the reset_num_t used to reset a given UART instance.

Note this macro is intended to resolve at compile time, and does no parameter checking

4.1.29.6. Enumeration Type Documentation

4.1.29.6.1. uart_parity_t

enum uvart_parity_t

UART Parity enumeration.

4.1.29.7. Function Documentation

4.1.29.7.1. uart_default_tx_wait_blocking

static void vart_default_tx_wait_blocking (void) [inline], [static]

Wait for the default UART’s TX FIFO to be drained.

4.1.29.7.2. uvart_deinit

void vart_deinit (uart_inst_t * vart)

Delnitialise a UART.

Disable the UART if it is no longer used. Must be reinitialised before being used again.

Parameters

4.1. Hardware APIs 313

Raspberry Pi Pico-series C/C++ SDK
]

vart UART instance. uartO or uart1

4.1.29.7.3. uart_get_dreq_num

static uint vart_get_dreq_num (uart_inst_t * uart, bool is_tx) [inline], [static]

Return the dreg_num_t to use for pacing transfers to/from a particular UART instance.

Parameters
vart UART instance. uart0 or uart1
is_tx true for sending data to the UART instance, false for receiving data from the UART instance

4.1.29.7.4. vart_get_hw
static vart_hw_t * vart_get_hw (uart_inst_t * vart) [inline], [static]
Get the real hardware UART instance from a UART instance.

This extra level of abstraction was added to facilitate adding PIO UARTSs in the future. It currently does nothing, and
costs nothing.

Parameters
vart UART instance
Returns

The uart_hw_t pointer to the UART instance registers

4.1.29.7.5. uart_get_index
static uint vart_get_index (uart_inst_t * uvart) [inline], [static]
Convert UART instance to hardware instance number.
Parameters

uart UART instance
Returns

Number of UART, 0 or 1.

4.1.29.7.6. uart_get_instance
static vart_inst_t * vart_get_instance (uint num) [inline], [static]
Get the UART instance from an instance number.
Parameters
vart UART instance
Returns

Number of UART, 0 or 1

4.1.29.7.7. uart_get_reset_num

static uint vart_get_reset_num (uart_inst_t * vart) [inline], [static]

]
4.1. Hardware APIs 314

Raspberry Pi Pico-series C/C++ SDK
]

Return the reset_num_t to use for pacing transfers to/from a particular UART instance.

Parameters
vart UART instance. uartO or uart1
is_tx true for sending data to the UART instance, false for receiving data from the UART instance

4.1.29.7.8. uart_getc
static char vart_getc (uart_inst_t * vart) [inline], [static]
Read a single character from the UART.
This function will block until a character has been read
Parameters

vart UART instance. uart0 or uart1
Returns

The character read.

4.1.29.7.9. uart_init

uint vart_init (uart_inst_t * uart, uint baudrate)

Initialise a UART.

Put the UART into a known state, and enable it. Must be called before other functions.

This function always enables the FIFOs, and configures the UART for the following default line format:
* 8 data bits
® No parity bit

® One stop bit
© NoTE

There is no guarantee that the baudrate requested will be possible, the nearest will be chosen, and this function will
return the configured baud rate.

Parameters
vart UART instance. uart0 or uart1
baudrate Baudrate of UART in Hz
Returns

Actual set baudrate

4.1.29.7.10. uart_is_enabled
static bool vart_is_enabled (uart_inst_t * uart) [inline], [static]
Test if specific UART is enabled.
Parameters
vart UART instance. uart0 or uart1
Returns

]
4.1. Hardware APIs 315

Raspberry Pi Pico-series C/C++ SDK
]

true if the UART is enabled

4.1.29.7.11. uart_is_readable
static bool uart_is_readable (uart_inst_t * vart) [inline], [static]
Determine whether data is waiting in the RX FIFO.
Parameters
vart UART instance. uart0 or uart1
Returns

true if the RX FIFO is not empty, otherwise false.

4.1.29.7.12. uart_is_readable_within_us

bool uart_is_readable_within_us (uart_inst_t * vart, uint32_t us)

Wait for up to a certain number of microseconds for the RX FIFO to be non empty.

Parameters

vart UART instance. uart0 or uart1

us the number of microseconds to wait at most (may be 0 for an instantaneous check)
Returns

true if the RX FIFO became non empty before the timeout, false otherwise

4.1.29.7.13. uart_is_writable
static bool vart_is_writable (uart_inst_t * vart) [inline], [static]
Determine if space is available in the TX FIFO.
Parameters
uart UART instance. uart0O or uart
Returns

false if no space available, true otherwise

4.1.29.7.14. uart_putc
static void vart_putc (uart_inst_t * vart, char c¢) [inline], [static]
Write single character to UART for transmission, with optional CR/LF conversions.

This function will block until the character has been sent to the UART transmit buffer

Parameters
vart UART instance. uart0 or uart1
¢ The character to send

]
4.1. Hardware APIs 316

Raspberry Pi Pico-series C/C++ SDK

4.1.29.7.15. uart_putc_raw
static void vart_putc_raw (uart_inst_t * vart, char c) [inline], [static]
Write single character to UART for transmission.

This function will block until the entire character has been sent to the UART transmit buffer

Parameters
vart UART instance. uart0 or uart1
c The character to send

4.1.29.7.16. uart_puts

static void vart_puts (uart_inst_t * vart, const char * s) [inline], [static]
Write string to UART for transmission, doing any CR/LF conversions.

This function will block until the entire string has been sent to the UART transmit buffer

Parameters
vart UART instance. uart0 or uart1
s The null terminated string to send

4.1.29.7.17. uart_read_blocking

static void vart_read_blocking (uart_inst_t * vart, uint8_t * dst, size_t len) [inline], [static]

Read from the UART.

This function blocks until len characters have been read from the UART

Parameters
vart UART instance. uart0O or uart
dst Buffer to accept received bytes
len The number of bytes to receive.

4.1.29.7.18. uart_set_baudrate

uint vart_set_baudrate (uart_inst_t * uart, uint baudrate)

Set UART baud rate.

Set baud rate as close as possible to requested, and return actual rate selected.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time
may be dropped by the UART.

Any characters still in the transmit buffer will be sent using the new updated baud rate. uart_tx_wait_blocking() can be
called before this function to ensure all characters at the old baud rate have been sent before the rate is changed.

This function should not be called from an interrupt context, and the UART interrupt should be disabled before calling
this function.

Parameters
vart UART instance. uart0 or uart1
baudrate Baudrate in Hz

4.1. Hardware APIs 317

Raspberry Pi Pico-series C/C++ SDK
]

Returns

Actual set baudrate

4.1.29.7.19. uart_set_break

void vart_set_break (uart_inst_t * uvart, bool en)

Assert a break condition on the UART transmission.

Parameters
vart UART instance. uart0O or uart
en Assert break condition (TX held low) if true. Clear break condition if false.

4.1.29.7.20. uart_set_fifo_enabled
void uart_set_fifo_enabled (uart_inst_t * uart, bool enabled)
Enable/Disable the FIFOs on specified UART.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time
may be dropped by the UART.

Any characters still in the transmit FIFO will be lost if the FIFO is disabled. uart_tx_wait_blocking() can be called before
this function to avoid this.

This function should not be called from an interrupt context, and the UART interrupt should be disabled when calling this

function.
Parameters
vart UART instance. uart0 or uart1
enabled true to enable FIFO (default), false to disable

4.1.29.7.21. uart_set_format

void vart_set_format (uart_inst_t * vart, uint data_bits, uint stop_bits, vart_parity_t parity)
Set UART data format.

Configure the data format (bits etc) for the UART.

The UART is paused for around two character periods whilst the settings are changed. Data received during this time
may be dropped by the UART.

Any characters still in the transmit buffer will be sent using the new updated data format. uart_tx_wait_blocking() can be
called before this function to ensure all characters needing the old format have been sent before the format is changed.

This function should not be called fr