LENESAS Application Note

Renesas RA Family
Exception Handling

Introduction

This application note explains how to handle exceptions on Renesas RA family MCUs with Arm® Cortex®-M
cores for user applications using the Flexible Software Package (FSP). By properly managing the factors,
location, and history of exception events that occur, you can increase debugging efficiency in the application
development process and produce a robust system against exception events. This application note also
describes a unigue bus error monitoring system on Renesas devices with Arm® Cortex®-M33 cores that
supports Arm® TrustZone® technology. The application project uses the Flexible Software Package (FSP) of
the RA family, the GNU GCC compiler, and the integrated development environment e? studio IDE to
demonstrate an exception handling flow for multiple possible faults.

Prerequisites

e Experience using Renesas e? studio IDE
e Experience using Flexible Software Package (FSP) for the RA Family

Note: For developers who are new to the Renesas RA family of MCUs, we strongly recommend to start with
Tutorial: Your First RA MCU Project — Blinky prior to trying out this application.

Required Resources
Target Hardware:

e Renesas RA Kit EK-RA6M3 (for RA6M3 with Arm® Cortex®-M4)
e Renesas RA Kit EK-RA2E1 (for RA2E1 with Arm® Cortex®-M23)
e Renesas RA Kit EK-RA6MS5 (for RA6M5 with Arm® Cortex®-M33)

Note: When applying this application note to other MCUSs, be sure to change the settings according to the
MCU specifications and evaluate it carefully.

Development Tools and Software:

e e?studio IDE version 2022-01 (22.1.0) or later

e Renesas Flexible Software Package (FSP) version 3.6.0 or later

e GCC ARM Embedded Toolchain version 10.3-2021.10 or later

e Segger J-Link RTT Viewer version 7.60e or later

Using this Application Note

Section 1 covers the general overview of the exception model on Arm® Cortex®-M processor core.
Section 2 covers the Bus Error Monitoring System for Renesas implementation.

Section 3 covers the implementing method for user-defined exception handler on FSP-based projects.
Section 4 covers the debugging method of the occurred exception event

Section 5 covers the demonstration of the application attached to this application note.

R11ANO576EJ0100 Rev.1.00 Page 1 of 38
Mar.23.22 RENESAS

https://renesas.github.io/fsp/_s_t_a_r_t__d_e_v.html#tutorial-your-first-ra-mcu-project-blinky

Renesas RA Family Exception Handling

Notes on this document
In this document, the following names are used for Renesas devices equipped with ARM Cortex®-M core.

e RA-CM4 devices: RA family devices with a single Arm® Cortex®-M4 processor core based on Armv7-M
architecture profile
Examples of target devices: RA4M1, RA6M3

e RA-CM23 devices: RA family devices with a single Arm® Cortex®-M23 processor core based on Armv8-
M architecture profile (without Security Extension)
Examples of target devices: RA2A1, RA2E1

e RA-CM33 devices: RA family devices with a single Arm® Cortex®-M33 processor core based on Armv8-
M architecture profile (with Security Extension)
Examples of target devices: RA4AM3, RA6M5, RAGEL, RA6T2

Contents

1. Exception model on Arm® ConeX®-M PrOCESSOr COME.......eeeeiiiiuruerereeeaaaaaaanneeeeeeeaeaaaaaannneeeees 4
1.1 Exception types and hanAIErS..........ccooviiiiiiiii e e e e e e e aann 4
1.2 FAUIL SALUS FEOISTEIS. ... ittt e e e e e ettt e e e e e e et ettt e e e e e eeeee bbb e e e aaeeeeebbban e aaaaeaennes 5
2. BUS EITOr 0N RA-CM33 TEVICES......uuuiiiiiiiiei ittt e et e e et eeeaa s 6
2.1 OVEIVIEW OF BUS EFTON ...ttt e e e e e e et e e e e e e e e e bbb e e e e e e e eenbaaan s 6
2.1.1 Slave TrUSLZONE FIlLEr ... 7
2.2 BUS EITON PIrOCESSING .. eittetttti e e eteteettt e e e et eeetta e e e e et eettaa e e aaaeestaaaaeaaeaeesbbaa e e aaaeeesbbann s aaeaaeeeennnnnnss 8
3. User-Defined EXCeption HANAIEKiiiiiiii e 9
3.1 Default IMPIEMENTATION. et e e e e ettt e e e e e e e et bbb e e e e e e e eenbba e e eaaas 9
3.1.1 Exception Handler DefiNItiONiii i e e e e e e e e 10
3.1.2 Default NANGIET.o e et ettt e e e e e e eaaa s 10
R 701 1 S 11/ = T o | = 11
3.2 How to add user-defined exception handIer...............ooouuiiiii e 11
3.2.1 How to configure NMI handler and faultS ... 11
3.2.2 How to implement a user eXception handIErooouiiiiiiii e e 12
T B [0 (= SO PP UPPPNN 13
3.3.1 TrUSIZONE® tECHNOIOGYccviiiictie ettt ettt et et e e e te e e et e e e et e e e be e e eabe e e etaeeernas 13
3.3.2 Device LifeCyCle ManagemMENT..........iiiieiiieeiiiii i e e e ettt e e e e et r e e e e e e e et e s e e e e e e aaeanra e e e e e e eenrrann s 13
4. Debugging eXCEPLION EVENLSciiiieiii et et e e e e e e e e e e e e e e e e et e e et e s 13
4.1 Confirming the faUlt STALUS.......couuii ettt e e e et e e e e e aabb e 14
4.1.1 View function on Renesas €2 StUdIO IDE...........cccoiiuieiiieeiiieeiie ettt st e e et eae e 14
A.1.2 PAMNEIS TOOIS. .. uuuuttiiiiitiiiiitittttiitie e e e aas 14
4.2 TraCing the @XCEPLIONttt e e e e ettt e e e e e e ettba e e e e e e e e e ebbba e e e e e aeeennbban e aaaeas 15
4.2.1 Use Of AM® COrESIGNE trACEccvveeeei ittt et e et e e et e e e e et e e e e e tee e e s staee e e s eraeeeeeenees 15
4.2.2 USE 0f €2 STUAIO TIACE VIBWccuviiiiiiiiictie e et ettt e ettt e ettt et e et e e et e e eate e e ette e e etae e ebeeesabeeestbeeeeteeeanns 15
ST B 1= 4 o (o] K11 7= 11 o] o H PSPPI 16
5.1 FUNCLONAl SPECITICALIONSttt e e e ettt e e e e e et et b r e e e e e e eeebaaan s 16
5.2 Description of the appliCation PrOJECT.......ccovveiiiii i 17
R11ANO576EJ0100 Rev.1.00 Page 2 of 38

Mar.23.22 RENESAS

Renesas RA Family Exception Handling

L TC T U 1= To I o T= T o] 1 U= r= LN o Yo L] 18
L U T a1 (=] =T TSP 18
5.5 OVErall @lgOITNMSottt e e e e e e ettt s e e e e e e e e ebbb e e e e e e e e eeabaaa s 19
L S T @ o 1= o 141 o o £ 1o =To 11 (= 22
5.6.1 Import and BUIld @ PrOJECT.ccoiiieiii e e ettt e e e e e e et e e e e e eeabbaa s 22
5.6.2 Download program and deBUQGoiiiiiiiii e 23
oI ST TS = U o 4 =T o (00 | = U 1 = U o 23
5.6.4 CoNNECE 10 J-LINK RTT VIBWET ..ottt ettt ettt e e e e e ettt e e e e e e e eetbba e e e e e aeeeabbaan s 23
L A = d = o1 (=0 [(TS | 25
LN T B =10 0 (o] K511 7= Vi (o] o FO TSP 29
5.8.1 Demo 1: Attempt StaCK OVEIMIOW.......ciii i e e e e e 30
5.8.2 Demo 2: Attempt to execute instruction from illegal region............cccooiieeiiiiiiii s 32
5.8.3 Demo 3: Attempt Secure peripheral access from NON-Secure COe..........ooouuuvuiiiiiiiiieiiiiiiiee e 33
5.9 Using example exception handler in YOUr PrOJECESccuuuuiiiieeiieeiiie e e e e e e e e e eeanennns 35
B. REIBIEINCES. ... et 36
REVISION HISTOTY ...ttt e e e e e et et ettt e e e e e e et e e taba e e e e e e 38
R11ANO576EJ0100 Rev.1.00 Page 3 of 38

Mar.23.22 RENESAS

Renesas RA Family Exception Handling

1. Exception model on Arm® Cortex®-M processor core

The Arm® Cortex®-M processor core supports various fault detection and user notification methods. When
the processor detects faults, exceptions, and interrupts, the processor transitions the processor mode.
Available processor modes on Arm® Cortex®-M processor core are as follows (Figure 1.1.).

e Thread mode
Executes application software.
The processor enters Thread mode on Reset, or as a result of an exception return.
e Handler mode
Handles exceptions.
The processor returns to Thread mode when it has finished all exception processing.

A processor with the Security Extension supports both Non-Secure and Secure states, which are orthogonal
to traditional thread and handler modes. The four processor modes of operation are:

e Non-Secure Thread mode
e Non-Secure Handler mode
e Secure Thread mode
e Secure Handler mode

Non Trusted Trusted

Secure

e Theas

mode

Secure

Handler
Handler
Without Security With Security
Extension Extension

Figure 1.1. Processor States

When the processor takes an exception, the processor pushes information onto the current stack, and stores
the information to status registers prior to exception entry.

Table 1.1 shows the available exception types and handlers, and fault status registers on each processor
core. Please refer to Section: Exception model in the processor core’s generic user guide for more details.
These documents can be found in section 6 in this document.

1.1 Exception types and handlers
Table 1.1 shows the available exception types and handler types on each processor core.

R11ANO576EJ0100 Rev.1.00 Page 4 of 38
Mar.23.22 RENESAS

Renesas RA Family

Exception Handling

Table 1.1. Available exception types and handler types

Handler types

Exception types

Arm® Cortex®-M4

Arm® Cortex®-M23

Arm® Cortex®-M33 Notes

Interrupt Service IRQO — IRQ239 IRQO — IRQ239 IRQO - IRQ479
Routines (ISRs) Notel
Fault handler Note4 HardFault HardFault HardFault Noe2
MemManage Fault MemManage Fault
BusFault BusFault Note2
UsageFault UsageFault
SecureFault Now©s3
System handler NMI NMI NM| Note2
PendSV PendsSv PendsSvVv
SvCall SVCall SVCall
SysTick SysTick SysTick

Note 1. Usable IRQ number depends on MCU device specification. Please refer to hardware user’s

manual of MCUs.

Note 2. The entry target state for HardFault, BusFault, NMI is controlled by a BFHFNMINS bit in AIRCR
(Application Interrupt and Reset Control) register.

Note 3. SecureFault always targets Secure State.

Note 4. All faults can be treated as HardFault according to a fault enable bit in SHCSR (System Handler

Control and State) register. This bit is set to 0 (Disabled) by default.

Note 5. With Security Extension.

1.2 Fault status registers

Table 1.2 shows the fault status registers on each fault. The processor core stores the information of fault
status to these related registers when the fault occurs. By verifying these registers, we can recognize the
factor and the location of faults that occurred. Please refer to processor core’s generic user guide for more

register detalils.

Table 1.2 Fault status registers

Fault type Status and Address register name Note2

Arm® Cortex®-M4 Arm® Cortex®-M23 Arm® Cortex®-M33
HardFault SCB.HFSR - SCB.HFSR
MemManage Fault SCB.MMFSR Notel - SCB.MMFSR Notet

SCB.MMFAR SCB.MMFAR
BusFault SCB.BFSR Notet - SCB.BFSR Notetl

SCB.BFAR SCB.BFAR
UsageFault SCB.UFSR Notel - SCB.UFSR Notel
SecureFault - - SAU.SFSR

SAU.SFAR

Note 1. A subregister of the CFSR (Configurable Fault Status Register).
Note 2. Abbreviations used in this table are shown as follows.
SCB: System Control Block registers

SAU: Security Attribution Unit registers

HFSR: HardFault Status Register

MMFSR: MemManage Fault Status Register

MMFAR: MemManage Fault Status Address Register
BFSR: BusFault Status Register
BFAR: BusFault Address Register
UFSR: UsageFault Status Register
SFSR: Secure Fault Status Register

SFAR: Secure Fault Address Register

R11ANO576EJ0100 Rev.1.00

Mar.23.22

RENESAS

Page 5 of 38

Renesas RA Family Exception Handling

2. Bus Error on RA-CM33 devices

In addition to the faults specific to Arm® Cortex®-M33 CPU core, RA-CM33 devices provide some additional
error detection capability supported by the bus error monitoring system. This chapter describes how to
handle additional error information.

Note on Section 2: This chapter describes the bus error monitoring system in case of RA-CM33
device RA6M5 MCU. Please refer to the MCU’s hardware user’s manual for other MCUs.

2.1 Overview of Bus Error
The bus error monitoring system can detect the following types of bus errors:

lllegal address access

Bus master MPU error

TrustZone Filter error

Bus error transmitted from each slave IP

The TrustZone Filter (TZF) is special on RA-CM33 devices and can detect security access errors caused by
peripheral modules below that are out of CPU core scope.

Master TZF: For bus master (DMAC/DTC)
Slave TZF: For bus slave (Memory, peripherals)

See Figure 2.1. for the TZF implementation on RA-CM33 devices.

BUS Masters
CPU/DEBUG Mastel’ TZF & Bus multiplexer
CM33 Integration
IDAUTZF) |
DMAC/IDTC EDMAC
C Cache 5 Cache (TZF) [ETHER)
1 1
g ‘%: Bus Master Bus Master | g,,c pMaster MPU Slave TZ F
@ o MPU for MPU for
g 2 DMACIDTC EDMAC
w c
w

FHEIU T2 Code Flash memory

Configuration area
FLBIU Data Flash memory
FACI

SOBIU SRAMO
TzF StandbyRAM

PSBIU M I7F H Peripheral system modules |

3

i

BUS Slaves

PLEIU BT 7F Y PeripheralsiLow-speed)]

PHBIL
EQBIY

HH TZF [Peripherals(High-speed)

{O-SPI |
EOBIU o
ECBIU

{ External Memory (CSC)interface |

Bus Matrix

Note: TZF is TrustZone Filter. C cache is instruction cache. S cache is data cache.
For FLBIU, the code bus accesses the data flash memory and configuration areas (code region) through FLBIU. The
system bus accesses FACI and SCDS (peripheral region) through FLEIU.

Figure 2.1. TZF on RA-CM33 devices

When TZF detects the access errors, the TZF error occurs. Table 2.1 shows the system behavior when the
TZF error occurred. The behavior varies depending on the master or slave area to be accessed.

R11ANO576EJ0100 Rev.1.00 Page 6 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

Table 2.1. Behavior when the TZF error ocurred

Access to Access from
CPU DMAC/DTC

FHBIU (Code Flash) e SecureFault exception occurs | « Transfer does not start

FLBIU (Data Flash) e NMI or reset occurs Notel

SOBIU (SRAM) e Interrupt occurs
(DMA_TRANSERR)

PSBIU (System peripherals) e BusFault exception occursN°®? | e Stop transfer No3

PHBIU (High-speed peripherals) | ¢ NMI or reset occurs Notel o NMI or reset occurs Notel Note3

PLBIU (Low-speed peripherals) e interrupt occurs Notes
(DMA_TRANSERR)

Note 1: NMI or reset is selected with OAD (Operation after detection) bit in TZFOAD (TZF Operation After
Detection) register.

Note 2: These error behaviors do not occur for write access to the PHBIU or PLBIU address space which
memory attribute is set to "Early Write Acknowledgment" by the ARM® MPU.

Note 3: These error behaviors do not occur for write access from DMAC to the PHBIU or PLBIU address
space when the bufferable write is enabled by DMBWR.BWE.

For information on the master TZF, please refer to the Bus Error Monitoring Section in the MCU hardware
user's manual. The next section shows the error operations and the state clearing flow of the slave TZF.

2.1.1 Slave TrustZone Filter

The Slave TZF is applied to FHBIU (code flash), FLBIU (data flash), SOBIU (SRAM), PSBIU (System
peripherals), PHBIU (high-speed peripherals) and PLBIU (low-speed peripherals).

When the slave TZF error is detected, the following steps are processed:

1. Store the address of the error in BTZFNERRADD (Bus Error Address) register.

2. Store the read/write information of the error in BTZFNERRRW (Bus Error Read Write) register.

3. Setlto STERRSTAT (Slave TZF Error Status) bit of BUSNERRSTAT (Bus Error Status Register)
register.

Then an NMI request or reset request is generated depending on the OAD (Operation after Detection) bit
setting in the TZFOAD (TZF Operation After Detection) register as shown in Figure 2.2.

Users can recognize the error status by verifying BTZFnERRADD, BTZFnERRRW and BUSNERRSTAT
register in the NMI handler or after reset. These registers are kept until reset other than MPU- and TZF-
related resets or being cleared by BUSNERRCLR (BUS Error Clear) register.

R11ANO576EJ0100 Rev.1.00 Page 7 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling
cPU DMAC/DTC Master-T2F Eror Interupt (OMA TRANSERR) __,
Master-T2F | Master-TZF Ermor flag
o]
EDMAC
r s r
Bus Master MPU
| Regu
W __ ¥ ___ L
- = Master-MPU Error flag RMPU. Bus Master MPU
! Mu’:i@ ______ @‘@ 1 MMPUDAD | Ermor Reset Request N
L 4 v A J =|I BUS.DMACDTCERRSTAT ‘
bus matrix |
h F 3 r 3 r 3 F 3 F 3 rF 3
liegal 5
% llegal access | access flag
a E] =) = = Ig E g detection BUS BUSNERRSTAT
- @ o @
E F [[EFEEE >
T TZF Emor
—LtlEeares
¥ ——— ¥ ——— N ———— % —— o TZF. T2F Ermor >
1 [SlaveTzr | [Slave-12F | [Slave-12F | [Slave-2r | 1 e e e @t TZFOAD
— kA ____ J — >
-1-----t--—-—-Fr----1 ————--F—F— 1~ —_sSlave Bus Error flag
LR v v Y ¥ ¥y

Figure 2.2 Slave TZF error signal flow

2.2 Bus error processing

To prevent unexpected operation, additional operations below should be added to the BusFault exception
handler routine.

1. Verify the error information in the corresponding register
2. Clear the data in cache for the error address
3. Clear the Error Status register in the bus module

Figure 2.3. shows the recommended BusFault exception handling flowchart. For the RA-CM33 devices, one
consideration is needed for the Slave TZF error if the TZFOAD register is configured to generate an NMI. In
this case, NMI will occur first then the BusFault exception occurs next. The NMI handler should only clear the
NMI status, and the bus error status should be cleared in the BusFault handler. Figure 2.4. shows the NMI
handling flowchart.

BusFault TZF Error
Handler

l BUS.BUSNERRSTAT read ‘

BUS.BUS2ERRSTAT: No
STERRSTAT =1

Refer to following register
BUS.BTFNERRRW

BUS.BUSNERRSTAT.
SLERRSTAT=1

| Refer to following register
BUS.BUSNERRRW

BUS.BUSNERRSTAT:
ILERRSTAT =1

Refer to following register
BUS.BUSnERRRW

| Clear CACHE which ‘ j

Clear CACHE which | ‘
targeting to the error

Clear CACHE which |
targeting to the error

targeting to the error

I Write 1 to STERRCLR

i Write 1 to SLERRCLR

‘ Write 1 to ILERRCLR

BUS.BUSNERRCLR register BUS.BUSNERRCLR register BUS.BUSNERRCLR register
A,
n=1: Code Bus BusFault TZF Error
n=2: System Bus Handler END

Figure 2.3. BusFault interrupt handling flowchart

R11ANO576EJ0100 Rev.1.00
Mar.23.22

Re Page 8 of 38
KENESAS

Renesas RA Family

Exception Handling

“Determine the bus master that caused the error ‘

MNa

e NMI Slave TrustZone Filter™,
Error Handler /

BUS BUSRERRSTAT Read
BUS.DMACDTCERRSTAT Read

k.

The error occurred on ancther bus master

~ BUS.BUS2ERRSTAT.
_ STERRSTAT=1

Write 1 to the TZFCLR bit
in ICUNMICLR

|

/"NMI Slave TrustZone Fillter
Error Handler END

.//.

Figure 2.4. NMI handling flowchart

3. User-Defined Exception Handler

This chapter describes how to implement user-defined exception handlers in Flexible Software Package

(FSP)-based projects.
3.1 Default implementation

The FSP of RA family MCUs provides Board Support Packages (BSP) to support startups, exception
handlers, and so on that depend on the specifications of each device. BSP implements exception handlers in
the following source files. These files are independent of the CPU core type and are applied to any devices

in the RA family.

In ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c:

e Vector table (Figure 3.1)
e Reset handler function (Figure 3.2)

e Prototype declaration of handler functions (Figure 3.3)

e Default handler function (Figure 3.4)

/* Vector table. */

BSP_DONT_REMOVE const exc_ptr_t _ Vectors[BSP_CORTEX_VECTOR_TABLE_ENTRIES] BSP_PLACE_IN_SECTION(

BSP_SECTION_FIXED VECTORS) =

{

(exc_ptr_t) (&g _main_stack[@] + BSP_CFG_STACK_MAIN_BYTES), /*

Reset_Handler,
NMI_Handler,
HardFault_Handler,
MemManage_Handler,
BusFault_Handler,
UsageFault_Handler,
SecureFault_Handler,
e,

8,

8,
SVC_Handler,
DebugMon_Handler,
8,
PendSV_Handler,
SysTick_Handler,

MPU Fault Handler

Initial Stack Pointer
Reset Handler

NMI Handler

Hard Fault Handler

Bus Fault Handler
Usage Fault Handler
Secure Fault Handler
Reserved

Reserved

Reserved

SvCall Handler

Debug Monitor Handler
Reserved

PendSV Handler
SysTick Handler

Figure 3.1 Vector table

R11ANO576EJ0100 Rev.1.00
Mar.23.22

RENESAS

Page 9 of 38

Renesas RA Family Exception Handling

=¥ JpEE

* MCU starts executing here out of reset. Main stack pointer is set up already.

—wvoid Reset_Handler (void)

1
/* Initialize system using BSP. */
SystemInit();

/* Call user application. */
main();

= while (1)
{

/* Infinite Loop. */

Figure 3.2 Reset Handler function
In ra/fsp/src/bsp/mcu/all/bsp_group_irg.c:
e NMI handler function (Figure 3.5)

3.1.1 Exception Handler Definition

FSP applies the default handler function to various exception handler functions to ensure they exist even if a
user did not define each exception handler function. The method of implementation depends on the compiler
(Figure 3.3).

ishes to handle

* these

#if defined(_ ICCARM_)
#define WEAK_REF_ATTRIBUTE

#pragma weak HardFault_Handler
#pragma weak MemManage_Handler
#pragma weak BusFault_Handler
#pragma weak UsageFault_Handler
#pragma weak SecureFault_Handler
#pragma weak SVC_Handler

#pragma weak DebugMon_Handler
#pragma weak PendSV_Handler

Default_Handler
Default_Handler
Default_Handler .
Default_Handler IAR com p||er
Default_Handler
Default_Handler
Default_Handler
Default_Handler

(U

docgeng wegk SysTick Haodleo Default Handler -
#elif defined(GNUC_) GCC compller

#define WEAK_REF_ATTRIBUTE __attribute_ ((weak, alias("Default_Handler"))) .
Po Arm compiler
void NMI_Handler(void); // NMI s many sources and is handled by BSP

void HardFault_Handler(void) WEAK_REF_ATTRIBUTE;
void MemManage_Handler(void) WEAK_REF_ATTRIBUTE;
void BusFault_Handler(void) WEAK_REF_ATTRIBUTE;
void UsageFault_Handler(void) WEAK_REF_ATTRIBUTE;
void SecureFault_Handler(void) WEAK_REF_ATTRIBUTE;
void SVC_Handler(void) WEAK_REF_ATTRIBUTE;

void DebugMon_Handler(void) WEAK_REF_ATTRIBUTE;
void PendSV_Handler(void) WEAK_REF_ATTRIBUTE;

void SysTick_Handler(void) WEAK_REF_ATTRIBUTE;

Figure 3.3 Definition of exception handlers

3.1.1.1 GCC compiler and Arm® compiler

The GCC and Arm® compilers use function attributes (weak symbols, alias functions) to apply the default
handler function to exception handers, other than the reset handler. The user can overwrite these handlers
to user-defined functions if the function is defined using the same name.

3.1.1.2 1AR compiler

The IAR compiler uses pragma (weak symbols) to apply the default handler function to exception handlers,
other than the reset handler. The user can overwrite these handlers to user-defined functions if the function
is defined using the same name.

3.1.2 Default handler
The BSP defines the default handler function (Default_Handler) and the function applies identically to

exception handlers other than NMI handlers. The default handler function executes a breakpoint instruction
to stop the program.

R11ANO576EJ0100 Rev.1.00 Page 10 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

BSP_CFG_HANDLE_UNRECOVERABLE_ERROR(8);

1
l

Figure 3.4 Default handler function

3.1.3 NMI handler

The NMI handler function is defined in bsp_group_irg.c. When an NMI event occurs, the NMI handler
calls a callback function that can be preset by the R_BSP_GrouplrgWrite() API. It then clears the status
flag.

oy the BSP, unlike other system exceptions, because

= void NMI_Handler (void)
r
1
uintl6_t nmisr = R_ICU->NMISR;
over all NMI status flags

irq_t irq = BSP_GRP_IRQ IWDT_ERROR; irq <= BSP_GRP_IRQ CACHE PARITY; irq++)

* If the current irg status register is set call the jirq callback.
if (eu != (nmisr & (1U << irqg)))
(void) bsp_group_irq_call(irqg);
}

}

“lear status ags that have been handled

R_ICU->NMICLR = nmisr;

Figure 3.5 NMI handler function

3.2 How to add user-defined exception handler

3.2.1 How to configure NMI handler and faults
3.2.1.1 Enable the additional exceptions

The additional exceptions can be enabled by the following bits. These bits are set 0 (Disable) after reset.

e SCB.SHCSR (System Handler Control and State Register)
MEMFAULTENA: MemManage enable bit
BUSFAULTENA: BusFault enable bit
USGFAULTENA: UsageFault enable bit
SECUREFAULTENA: SecureFault enable bit Note?

Note 1: Available for a processor with Security Extension

3.2.1.2 Configure the exception for RA-CM33 devices

The target of HardFault, BusFault, and NMI are controlled by the BFHFNMINS (BusFault, HardFault, and
NMI Non-Secure) bit in AIRCR (Application Interrupt and Reset Control) register. This register can be
configured using the FSP configurator (Figure 3.6).

e Properties of BSP tab > RAxxx Family > Security > Exceptions > BusFault, HardFault, and NMI
Target

Also, the secure exception prioritization can be controlled by the PRIS (Prioritize Secure exceptions) bit in
AIRCR. If this bit is set to 1 (Enabled), Non-Secure exceptions are de-prioritized. In the FSP configurator, the
configuration for this bit is:

e Properties of BSP tab > RAxxx Family > Security > Exceptions > Prioritize Secure exceptions

R11ANO576EJ0100 Rev.1.00 Page 11 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

Board snw P.d‘g. Canﬁgmltinn Generate ;"rl?in't Content

[T} Restore Defaults

Device Selection
- [= Board Detasls
VErsion: Evaluation kit for RASMS MCU Group
Board: EK-RABMS et Visit hitpe/www renesss com/ra’ek-ra8ms to get kit user’s manual, quick start guide, errata, design package, example projects, etc.

Device: RTFAGMSBH3CFC =

RTOS: No RTOS

SurrwnaCIocks Pins | Interrupts | Event Links | Stacks Components

| QRN B [f | Problems @b Smart Browser -, 8

‘ EK-RA6MS

I Settings Property Value
 RAGMS Family

MNon-Mackable Interrupt
Secure State l
—

Dicabled |
s

SRAM Accessbility
BUS Accessibility

Both Secure and Non-Secure State

System Reset Request Accessibility
Cache Accessibility
System Reset Status Accessibility

Both Secure and Non-Secure State
Both Secure and Non-Secure State
Both Secure and Non-Secure State

Battery Backup Accessibility

Figure 3.6 Settings of exception for RA-CM33 devices

3.2.1.3 Configure the Reset Interrupt Request for peripherals

TZF and some peripherals like WDT have options to cause Non-Maskable Interrupt request or Reset output
when an exception occurs. For peripherals, most options can be configured in peripheral module driver
properties in the Stacks tab. For TZF, this can be configured by the following settings in the BSP tab (Figure

3.7).

e Properties of BSP tab > RAxxx Family > Security > Exceptions > Exception Response

Board Support Package Configuration

Device Selection
FSP version: | 3.50
Board: EX-RABMS ~| e
Device: RTFAGMSBH3CFC =

RTOS: No RTOS

Board Detasls
Evaluation kit for RASMS MCU Group

Visit hittpe/ Mo renesaz.comyra/sk-ratm to get kit user

Surﬂm-ar‘.‘@lotb Pins | Interrupts | Event Links | Stacks | Components

| REEEEUEN M ¢ Problems @b Smart Browser

Generate Project Content

[T} Restore Defaults

s manual, quick start guide, errata, design package. example projects, etc.

‘ EK-RA6MS

I Settings Property Value
 RAGMS Family
w Security
w Exceptions
| Exception Response Non-Maskable Interrupt |
BusFault, HardFault, and NMI Target Secure State
Prioritize Secure Exceptions Drcabled

SRAM Accessibility
BUS Accessibility

System Reset Request Accessibility
Cache Accessibility

System Reset Status Accessibility
Battery Backup Accessibility

Both Secure and Non-Secure State
Both Secure and Non-Secure State
Both Secure and Non-Secure State
Both Secure and Non-Secure State

Figure 3.7 Settings of exception response for TZF

3.2.2 How to implement a user exception handler
As shown in Section 3.1.1, FSP’s BSP applies the Default_Handler () function to each exception

handler, other than the NMI handler, by using weak symbols. These exception handlers can be overwritten to
a user-defined exception handler by non-weak definition.

R11ANO576EJ0100 Rev.1.00
Mar.23.22

RENESAS

Page 12 of 38

Renesas RA Family Exception Handling

The following shows the example of definition for user HardFault handler.

void HardFault_Handler(void);
void HardFault_Handler(void){

}

3.3 Notes

RA-CM33 implements some security features such as a TrustZone® technology (Armv8-M Security
Extension) and DLM (Device Lifecycle Management). These features enable a more secure application and
allow for a more secure software development. When an exception occurs, the processor may call a secure
exception handler depending on the security settings, but Non-Secure applications may not be able to detect
the state. A Secure application may want to provide a user notification for a Non-Secure application.

3.3.1 TrustZone® technology

Arm® TrustZone® technology divides the system and the application into Secure and Non-Secure domains.
Secure applications can access both Secure and Non-Secure memory and resources. Non-Secure code can
access Non-Secure memory and resources, as well as Secure resources through a set of so-called veneers
located in the Non-Secure Callable (NSC) region. When developing applications using DLM, you need to be
aware of accessible areas by TrustZone® technology.

Note: For the application project with the FSP’s Flat Project type, the entire project will be in the Secure
domain except for the EDMAC RAM buffers.

3.3.2 Device Lifecycle Management

RA-CM33 devices provide Device Lifecycle Management (DLM) that allows users to limit the area that can
be accessed from the debug interface and serial programming interfaces. By changing the level of this
feature to the next stage, application developers can restrict program code reads from debug interface and
serial programming interfaces. When developing an application using DLM, users need to be aware of how
DLM works and the current status (Table 3.1). Please refer to MCU’s Hardware User's Manual for more
information.

Table 3.1. DLM state in software development stage

Lifecycle Debug level Serial programming

SSD Allows the debug connection Available

(Secure Software Development) Can access all memories and Can program/erase/read all
peripherals code/data flash area

NSECSD Allows the debug connection Available

(Non-Secure Software Development) Can access only Non-Secure Can program/erase/read only
memory regions and Non-Secure code/data flash
peripherals area

4. Debugging exception events

This chapter provides debugging methods for exception events that have occurred. RA family devices
provide a variety of debugging environments such as Renesas e? studio IDE and partner tools. You can use
these debugging environments to improve debugging efficiency.

When an exception occurs, it is important to determine the factor, location, and history of the exception event
to recognize that state. These can be acquired by checking the related registers and tracing the program
execution.

e Confirm the fault related registers
Determine the factors by checking the related fault state register, and the location of the root cause by
checking the CPU general registers that have been retracted into current stack memory.

e Tracing the program execution
Determine the history of the faults by tracing their execution.

R11ANO576EJ0100 Rev.1.00 Page 13 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

4.1 Confirming the fault status
Recognize the fault status using the e? studio view functions or partner tools.

4.1.1 View function on Renesas e studio IDE

The e? studio IDE provides various view functions to visualize the state of the MCU. Refer to Renesas e?
studio 2021-04 or higher User's Manual: Quick Start Guide (R20UT4989) for more details and usage
instructions.

e Fault Status view
The Fault Status view displays the related registers with the fault condition and the CPU general
registers that have been retracted into stack memory (Figure 4.1.).

e Registers view
The Registers view displays information about the general registers in the CPU core.

e Memory view
The Memory view allows users to display and edit the memory. That can be used to check stack
memory.

e Expressions view
The Expressions view allows users to monitor the value of global variables, static variables, or local
variables that stored in the memory. That can be used to check the current value of the user buffer.

[%5 Pin Conflicts B Console 5 Debug 4’ Search [J Memory [ECNZIISSFRIEEE =0

« HFSR 0x40000000

~ MMFSR 0x0

[1acovioL [o]
[paccvioL [1]
] MUNSTKERR [3]
[C] MSTKERR [4]
] MLSPERR [5]
] MMARVALID [7]

~ BFSR 0x0

[J IBUSERR [0]

[PRECISERR[1]
[IMPRECISERR [2]
[] UNSTKERR [3]
[] STKERR [4]

[] LSPERR [5]

[] BFARVALID [7]

~ UFSR 0x200

] UNDEFINSTR [0]
] INVSTATE [1]
O INvPC[2)

[nocp3)

[] UNALIGNED [8]

-
iitio! 00

il (3]

Htied o0

a3 ox1

itz ol

Hitils 587

i pe 0x558

1000 o 221000000

Note: This figure shows the fault status when a division-by-zero error occurs and the UsageFault is disabled.

Figure 4.1. Fault Status view on e?studio IDE

4.1.2 Partners tools

IAR Embedded Workbench for ARM and Arm® Keil® MDK provide visibility into fault-related status
information for RA devices. Figure 4.2 shows an example of the Fault exception viewer window that

R11ANO576EJ0100 Rev.1.00 Page 14 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

displays information on the most recent fault exception on the IAR EW for ARM. Please refer to partner tool
documentation for more information.

Fault exception viewer v o X

UsageFault exception.
A divide by zero error has occurred (CFSR DIVBYZERQ).

Exception accurred at PC = Oxfffffff, LR = 0x0

See the call stack for more information.

Note: This figure shows the fault status when a dividion-by-zero error occurs.

Figure 4.2 Fault exception viewer window on the IAR EW for ARM

4.2 Tracing the exception
By tracing the program execution, the history of faults can be recognized.

e Tracing the program execution with Arm® CoreSight trace technology (ETM/SWYV trace)
e Tracing the program execution without Processor Core Trace feature

4.2.1 Use of Arm® CoreSight trace

Arm® CoreSight technology provides hardware tracing feature such as ETM (Embedded Trace Macrocell)
and SWV (Serial Wire Viewer). Using these tracing functions, we can understand the operation of a
processor without affecting user program execution. These tracing functions are available for RA-CM4 and
RA-CM33 devices.

e ETM
ETM is a real-time trace module providing all the executed instructions and data tracing of a processor. It
requires 4 wires and is an event -riven trace.

e SWV
SWV provides trace capabilities such as display of reads, writes, exceptions, PC Samples, and printf. It
is single wire and is a periodic polling trace.

Note: Renesas e?studio IDE doesn’t support ETM trace. We recommended that you use partner tools if you
use the ETM trace.

Note: Renesas kits implement the ETM trace interface, but the on-board debugger doesn’t support ETM
trace. Additional hardware such as Segger J-Trace are required.

4.2.2 Use of e? studio Trace view

The e? studio IDE provides the program tracing function Trace view that can trace the program execution
flow through the debugger. The function can be used without additional hardware and software. Therefore,
the Trace view can be an effective tool for discovering root causes.

Refer to “enesas e? studio 2021-04 or higher User's Manual: Quick Start Guide (R20UT4989) for more
details and usage instructions.

R11ANO576EJ0100 Rev.1.00 Page 15 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

B Conscle i} Registers [i) Debug Shell [2] Problems [} Debugger Conscle @ Smart Browser | 8 Trace x| [] Memary = 8
B | aAncE=1 | # VB %] Ol 2| = &
Listing from record 1 of 65536
Record Label Address Source 2
user_exception_handler.c 447 return USER_EXCEPTION_HAMDLER_SUCCESS;
15 98EC Idre, [r2, #40]; 0x28
user_exception_handler.c 442 fault_status_buffer_pointer->irg_event = event;
16 9BEA strbri, [r3, #0]
user_exception_handler.c 447 fault_status_buffer_pointer- >irq_event = event;
17 SBER Idrr2, [pc, #40]; (%9914 <UsageFault_Handler+52>)
user_exception_handlerc 442 fault_status_buffer_pointer->irg_svent = event;
18 98E6 movsr, #5
user_exception_handler.c 440 if(fault_status_buffer_pointer != NULL){
19 agE4 cbzr3, 0x990a <UsageFault_Handler+42>
user_exception_handlerc 440 if(fault_status_buffer_pointer != NULL){
20 9gE2 Idrr3, [r3, #0]
user_exception_handler.c 440 if{fault_status_buffer_pointer != NULL){
21 SgE0 Idrr3, [pc, #44]; (0x9910 <UsageFault_Handler+48>)
app_common.c] result=x/y;
22 8816 Idrr2, [sp, #8]
app_common.c 98 result = %/ y;
23 8814 Idrr3, [sp, #4]
app_common.c 96 volatile inty = 0;
24 8812 strrl, [sp, #8]
app_common.c a5 volatile intx = 10; u
25 8810 strr0, [sp, 24]

Note: This figure shows the fault status when a dividion-by-zero error occurs.

Figure 4.3. Trace view on e?studio IDE

5. Demonstration

This chapter explains the sample application that demonstrates an exception handling flow for multiple
possible faults.

5.1 Functional specifications
The sample application implements the following functions.

Illegal operation attempt function

This function provides some options for attempting the illegal operation. Table 5.1 shows the available
options. After the MCU starts, users can select the options by inputting the value on RTT Viewer.
Example exception handling function

This function implements the processing flow to identify and clear the slave TZF error as shown in
section 2.2. When faults are occurred, this function saves the fault status event, clears the status
flag, and acquires the last execution program counter. The fault status register values saved in this
function are as shown in Table 1.2. The saved fault status will be output to RTT Viewer after system
reset.

Note: The software reset can be enabled by defining the ENABLED SOFTWARE_RESET macro. If the
macro is defined, the system executes software reset after exception operation, otherwise stop the
program by breakpoint instruction.

Note: For EK-RA6M5 projects that use Secure/Non-Secure project types, by default, the acquired fault
status events are stored in a Non-Secure region memory buffer for both Secure and Non-Secure
exceptions.

LED Blinky function (For confirming the CPU is running under no-fault)

This function toggles a LED for a test purpose. When LED blinks, that means the MCU is running fine.
When it stopped, exception(s) have occurred.

R11ANO576EJ0100 Rev.1.00 Page 16 of 38
Mar.23.22 RENESAS

Renesas RA Family

Exception Handling

Table 5.1. Available input options on RTT Viewer
RTT Action Available exceptions on target MCU kits
Viewer
Input EK-RA6M3 |EK-RA2E1 EK-RA6M5 |EK-RABM5
(RA-CM4 (RA-CM23 (RA-CM33 | (RA-CM33
device) device) device) device)
Flat project |Flat project |Flat project |Secure/Non-
Secure
project
“1” WDT underflow v v v v
NMI NMI NMI NMI
“2" Stack overflow v v v v
NMI NMI UsageFault |UsageFault
“3” Execute instruction from illegal v v v v
region MemManage |HardFault MemManage | MemManage
“4” Divide by zero v - v v
UsageFault UsageFault |UsageFault
“5” Access Secure attribute memory |- - - v
from Non-Secure code SecureFault
“6” Access Secure attribute peripheral | - - - v
register from Non-Secure code NMI, BusFault
“r" Access Secure attribute peripheral | - - - v
register from Non-Secure code via (No fault)
NSC
“10” Clear the fault status buffer v v v v
Note. “v” : Available, “-": Not available.

5.2 Description of the application project

Table 5.2 describes the sample applications in the application project (zip file). The projects can be
downloaded from the Renesas web site.

Table 5.2. Sample Projects

Project Name Description

Exception_Handling_Example_EK_RA6M3_Flat | The sample application with Flat project type for EK-
RABM3 kit

Exception_Handling_Example_EK_RA2E1_Flat | The sample application with Flat project type for EK-
RAZ2E1 kit

Exception_Handling_Example EK_RA6M5_Flat | The sample application with Flat project type for EK-
RAGBMS5 kit

Exception_Handling_Example_EK_RA6M5 NS | The sample applications with Secure/Non-Secure

Exception_Handling_Example_EK_RA6M5_S project type for EK-RA6M5 kit

The files in Table 5.3 from this application project serve as a reference.

R11ANO576EJ0100 Rev.1.00

Mar.23.22

RENESAS

Page 17 of 38

Renesas RA Family

Exception Handling

Table 5.3. Files used in application project

File name

Purpose

src/hal_entry.c

Contains main application call

src/app_main.c

Contains data structures and functions used in main
application

src/app_common.c

Contains functions used for the LED Blinky function and lllegal
operation attempting function

src/app_common.h

Accompanying header for exposing functionality provided by
app_common.c

src/app_message_data.h

Contains macros to output messages and register descriptions
to RTT Viewer

src/user_exception_handler.c

Contains data structures and functions used in example
exception handling function

src/user_exception_handler._h

Accompanying header for exposing functionality provided by
user_exception_handler.c

src/user_nmi_handler.c

Contains functions used in exception handling function

src/user_nmi_handler.h

Accompanying header for exposing functionality provided by
user_nmi_handler.c

Src/SEGGER_RTT/*

Implementation of SEGGER real-time transfer (RTT) which
allows real-time communication on targets which support
debugger memory accesses while the CPU is running

src/rtt_common_utils.h

Contains macros, data structures, and functions commonly
used across the project

5.3 Used peripheral modules

This application uses the following peripheral modules.

* GPT (General PWM Timer) channel 0: Generate periodic interrupt for the LED toggling. For EK-RA6M5
Secure/Non-Secure projects, the GPTO’s security attribute is set to Secure.
* WDT (WatchDog Timer): Generate NMI interrupt when underflow event has occurred.

5.4 User interface

Table 5.4 and Figure 5.1. show the pins used for user interfaces.

Table 5.4. Used pins and connectors

User Interface EK-RA6M3 Kit EK-RAZ2E1 Kit EK-RA6M5 Kit

LED1 P403 P915 P006

PC connector J10 J10 J10
R11ANO576EJ0100 Rev.1.00 Page 18 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

EK-RA6M3 Kit EK-RA2E1 Kit EK-RA6MS Kit

LED1 J10 LED1

&d Connect
to PC

Figure 5.1. The position of used LED and connector
5.5 Overall algorithms
Figure 5.2 and Figure 5.3 shows the overall algorithms of the sample application.
For EK-RA6M3 Flat project, EK-RA2E1 Flat project and EK-RA6M5 Flat project, please refer to Figure 5.2.
For EK-RA6M5 Secure/Non-Secure project, please refer to Figure 5.3.

R11ANO576EJ0100 Rev.1.00 Page 19 of 38
Mar.23.22 RENESAS

Renesas RA Family

Exception Handling

(Power on >

4
Initialize and start

GPT module

Display project banner

Get and display the reset
source

Power on reset or
Reset pin fallen?

Initialize the status buff

| ™

¥t
Display the saved fault
status buff

)

Set buffer pointer

v

Enable required exceptions

No

Any input on RTT viewer

Yes

"1”'”10”
A4

Attempt the illegal execution
or perform system operation
regarding to input data

Others

A 4

Display the error message

&
d

No
Fault is occurred?
Yes
Save the fault status flag to
buffer

No

Software reset
option disabled?

A 4

Breakpoint instruction

Software reset

Figure 5.2 Overall algorithm of sample application (EK-RA6M3 Flat project, EK-RA2E1 Flat project
and EK-RA6M5 Flat project

R11ANO576EJ0100 Rev.1.00

Mar.23.22

RENESAS

Page 20 of 38

Renesas RA Family Exception Handling

by

Initialize and start
GPT module

(_poweren) (|

le
Secure Partition

Enable required exceptions
for Secure target exception

Transfer to Non-secure world

ées
*4
Yes

No
‘ No
N

“1”-"10" Others

o]

Fault is occurred?

Save the fault status flag to
buffer

Software reset No
option disabled?

Y

Breakpoint instruction Software reset

I

Figure 5.3 Overall algorithm of sample application (EK-RA6M5 Secure/Non-Secure project)

R11ANO576EJ0100 Rev.1.00 Page 21 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

5.6 Checking procedure
The following steps show the checking procedure of the sample application.

oukrwhPE

Import and build a project. See section 5.6.1.

Download program and start debugging. See section 5.6.2.

Start the program tracing. See section 5.6.3

Press the Resume button twice in e? studio IDE.

Connect to the J-Link RTT Viewer. See section 5.6.4.

Enter the user selection to J-Link RTT Viewer and Check the behavior. See section 5.8 for more
information on this demonstration.

5.6.1 Import and build a project
To build an application project with e? studio ISDE, proceed as follows:

NogakwhpE

©

Launch e? studio IDE.

Select any workspace in Workspace launcher.

Close Welcome window.

Select a File > Import.

Select Existing Projects into Workspace from the Import dialog box.

Select archive file.

Select the project you want to import and click Finish.

Note: For the EK-RA6M5 Secure/Non-Secure projects, please import both the Non-Secure (NS) project
and the Secure (S) project.

Clicking Generate Project Content in the Configurator window

Select Project > Build Project.

Note: For the EK-RA6M5 Secure/Non-Secure projects, the Secure project
(Exception_Handling_Example_EK_RA6M5_S) must be built at first. Then build the Non-secure project
(Exception_Handling_Example_ EK_RA6M5_NS).

R11ANO576EJ0100 Rev.1.00 Page 22 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

5.6.2 Download program and debug
To download an application project and start debugging, proceed as follows.

1. Connect the J10 connector on each kit and PC with a micro-USB cable.
2. Right-click the project and open Debug Configuration... from Debug As

Note: For EK-RA6M5 Secure/Non-Secure projects, open the Debug Configuration of the Non-Secure
project (Exception_Handling_Example_EK_RA6M5_NS) and make sure that both the secure project
program and the Non-Secure project program are set to be downloaded (Figure 5.4.)

@ Debug Configurations

Create, and run confis

Name: | Exception_Hand _RAGMS_NS Debug_SSD]
J [] Main | 35 Debugge -] Common | &, Source

C/C++ Application

[T] ¢/C++ Remote Application
EASE Script
[C] GDB Hardware Debugging

Initialization Commands
[J Reset and Delay (seconds): ' 3

[Halt

[€] GDB OpenOCD Debugging
£ GD8 Simulator Debugging (RHB50)
© IARC-SPY Application
¥ Java Applet
[T] Java Application
g Launch Group
[T, Remote Java Application
v [£7 Renesas GDB Hardware Debugging
[c7 Exception_Handler_Example_EK_RA2E1_Flat Debug_Flat
= ioa baodioc & la B RGNS it Dobuio Clos

Load image and symbols

Add...

Exception_Handler_Example EK_RAGMS S.elf [C¥Users- Image and Symbols 0 Yes
Uil ecogan Binan (Bxcention Handler Bxamale EKRAENE NSl nage and Succhiole 0 e

[Exception_Handler_Example_EK_RAG6M5_S Debug
[£7] Renesas Simulator Debugging (RX, RL78)

Runtime Options

[Set program counter at (hex):

Set breakpoint at: [main
o - S, s

Filter matched 17 of 19 items.

6)

Figure 5.4. Debug Configuration on EK-RA6M5 Secure/Non-Secure projects
3. Click Debug.

5.6.3 Start the program tracing

To trace the program execution, this demonstration uses the Trace view function of e? studio IDE. The Trace

view is turned off by default. It must be turned on before the target system starts. The Trace view can be
turned on as follows.

1. Open the Trace view window.
2. Pressthe Turn Trace On/Off button at the right-top in the window.

o 0| BQE HS| |[#V B%[Ole%| ™ § = O

No records

Record Label Address

Source

Figure 5.5. Trace view window

5.6.4 Connect to J-Link RTT Viewer

The sample application uses the Segger J-Link RTT Viewer for inputting/outputting data. The J-Link RTT
Viewer can be connected as follows.

R11ANO576EJ0100 Rev.1.00

Page 23 of 38
Mar.23.22

RENESAS

Renesas RA Family

Exception Handling

1. Launch J-Link RTT Viewer.
2. Configure the settings in Configuration page as follows.
a. EK-RA6MS3 Flat project:
Specify Target Device : R7TFA6M3AH
RTT Control Block : Auto Detection
b. EK-RAZ2EL Flat project:
Specify Target Device : R7TFA2E1A9
RTT Control Block : Auto Detection
c. EK-RAG6MS5 Flat project and Secure/Non-Secure projects:
Specify Target Device : R7TFA6M5BH

RTT Control Block : Search Range (Enter “0x20000000 0x10000” in input box)

3. Select OK.
4. Configure the Sending settings to Send on Enter.

A J-Link RTT Viewer V7.60e

File TEllT\na\s Logging Help

All Terminals Clear Input field

Sending... » I Send on Input
EndofLine.. » Fall Send on Enter
Echo input... ¥ ' Block if FIFO full

Figure 5.6 The Sending function on RTT Viewer

After the program starts, if the connection is successful, a startup message (project banner) can be shown as

following Figure 5.7 - Figure 5.9.

E J-Link RTT Viewer V7.56b -

File Terminals Input Logging Help

All Terminals Terminal O Terminal 1

y FEEREEERREE R EERER R ER R R AR R R R R R R R R R R R AR R RN R R AR R R RN R R
*

Renesas RA : Exception Handler Example
e = L s T T

> Reset Source: Software

> Menu Options

0> 1) Attempt WDT underflow
> 2) Attempt Stack overflow.
> 3) Attempt Execute instructions from illegal region.
> 4) Attempt Division by zero
0> 10) Clear the fault status buffer
User Input:

Enter

Clear

Figure 5.7 Startup message on J-Link RTT Viewer (EK-RA6M3 Flat project and EK-RA6M5 Flat

project)

R11ANO576EJ0100 Rev.1.00
Mar.23.22 RENESAS

Page 24 of 38

Renesas RA Family Exception Handling
X J-Link RTT Viewer V7.56b - O X
File Terminals Input Logging Help
All Termin als Terminsl O Terminsl 1

e

* Renesas RA : Exception Handler Example *

R e T e

Reset Source: Software

> Menu Options

> 1) Attempt WDT underflow

2) Attempt Stack overflow.

3) Attempt Execute instructions from illegal region.
> 18) Clear the fault status buffer
> User Input:

Enter Clear

Figure 5.8 Startup message on J-Link RTT Viewer (EK-RA2E1 Flat project)

ﬂ J-Link RTT Viewer V7.56b - O X
File Terminals Input Legging Help
Al Terminals Terminal O Terminsl 1

e

> * Renesas RA : Exception Handler Example *

R T T b T e s T T - T T

Reset Source: Software

> Menu Options

> 1) Attempt WDT underflow

Stack overflow.

Execute instructions from illegal region.
Division by zero

2) Attempt
Attempt
Attempt
Attempt
Attempt
Attempt

> 3)
> 4)
> 5)

Secure memory access from Non_Secure code
Secure peripheral access from Non_Secure code
Secure peripheral access from Non_Secure code via NSC

> é) Clear the fault status buffer
> User Input:

Clear

h Enter

Figure 5.9 Startup message on J-Link RTT Viewer (EK-RA6M5 Secure/Non-Secure project)

5.7 Expected Results

This section shows the expected results of actions taken by user input. The results shown in this section are
examples of running the application project attached to this application note.

For EK-RA6M3 Flat project, please refer to Table 5.5.

For EK-RA2EL1 Flat project, please refer to Table 5.6.

For EK-RAB6M5 Flat project, please refer to Table 5.7.

For EK-RAG6M5 Secure/Non-Secure project, please refer to Table 5.8.

Note: The program address in results will be changed if you change the configurations

Note: The results in RTT Viewer are displayed after the target system restarts, except for successful
messages.

R11ANO576EJ0100 Rev.1.00
Mar.23.22

Re Page 25 of 38
KENESAS

Renesas RA Family

Exception Handling

Table 5.5. Expected result on the EK-RA6MS3 flat project

RTT Viewer Input
and Action

Expected Result

R
WDT underflow

e NMI has occurred.

e An exception occurred in bsp_prv_software_delay loop() in
bsp_delay.c

e The address that the exception occurs in is not recognized from the buffer
data because this sample application acquires the last program counter only
when the fault occurs.

e The results in RTT Viewer are as follows.

> NMI WDT Error occurred.

|(2H
Stack overflow

e NMI has occurred.

e An exception occurred at the address OXCB8 (Line 159 in common.c)

e The address that the exception occurs in is not recognized from the buffer
data because this sample application acquires the last program counter only
when the fault occurs.

e The results in RTT Viewer are as follows.

> NMI MPU Stack Pointer error occurred.

H3H
Execute instruction
from illegal region

¢ MemManage exception has occurred.

e An exception occurred at the address OXxCB4 (Line 147 in app_common . c)

e The address that the exception occurs in is not recognized from the stack
memory that stores the last program counter because this is the program
execution error. The above address can be found from the results of the
program tracing.

e The results in RTT Viewer are as follows.

8> MemManageFault occurred.
SCB_MMFSR : @x8l
TACCVIOL: Instruction access violation. The processor attempted an instruction fetch from

a location that does not permit execution.

Last PC address: @xEG800800

g
Divide by zero

* UsageFault exception has occurred.
* An exception occurred at the address 0XCAO (Line 133 in app_common . C)
* The results in RTT Viewer are as follows.
> UsageFault occurred.
SCB_UFSR : @x@200

DIVBYZERO: The processor has attempted to divide by @.

Last PC address: @x00008CA®

Hlon
Clear the fault status
buffer

* No exception occurred.
e The results in RTT Viewer are as follows.

> Clear the fault status buffer.

> Successful!

R11ANO576EJ0100 Rev.1.00

Mar.23.22

Re Page 26 of 38
KENESAS

Renesas RA Family

Exception Handling

Table 5.6. Expected result on the EK-RA2EL flat project

RTT Viewer Input and
Action

Expected Result

R
WDT underflow

e NMI has occurred.

e An exception occurred in bsp_prv_software_delay loop() in
bsp_delay.c

e The address that the exception occurs in is not recognized from the buffer
data because this sample application acquires the last program counter only
when the fault occurs.

e The results in RTT Viewer are as follows.

@8> NMI WDT Error occurred.

|(2H
Stack overflow

e NMI has occurred.

e An exception occurred at the address 0xD54 (Line 159 in common.c)

e The address that the exception occurs in is not recognized from the buffer
data because this sample application acquires the last program counter only
when the fault occurs.

e The results in RTT Viewer are as follows.

> NMI MPU Stack Pointer error occurred.

H3H
Execute instruction
from illegal region

e HardFault exception has occurred.

e An exception occurred at the address 0xD48 (Line 147 in app_common . c)

e The address that the exception occurs in is not recognized from the stack
memory that stores the last program counter because this is the program
execution error. The above address can be found from the results of the
program tracing.

e The results in RTT Viewer are as follows.

@> HardFault occurred.

Last PC address: @xE0200000

l(lOH
Clear the fault status
buffer

¢ No exception occurred.
e The results in RTT Viewer are as follows.

> Clear the fault status buffer.

00> Successful!

Table 5.7. Expected result on the EK-RA6M5 Flat project

RTT Viewer Input and
Action

Expected Result

Stack overflow

“1" e NMI has occurred.
WDT underflow e An exception occurred in bsp_prv_software_delay_loop(Q) in
bsp_delay.c
e The address that the exception occurs in is not recognized from the buffer
data because this sample application acquires the last program counter only
when the fault occurs.
e The results in RTT Viewer are as follows.
> NMI WDT Error occurred.

“2" e UsageFault exception has occurred.

e An exception occurred at the address 0x994 (Line 159 in app_common. c)
e The results in RTT Viewer are as follows.

80> UsageFault occurred.
SCB_UFSR : exeele
STKOF: Sticky flag indicating whether a stack overflow error has occurred.

Last PC address:

@x00000994

R11ANO576EJ0100 Rev.1.00

Mar.23.22

Re Page 27 of 38
KENESAS

Renesas RA Family

Exception Handling

RTT Viewer Input and
Action

Expected Result

H3H
Execute instruction
from illegal region

¢ MemManage exception has occurred.
e An exception occurred at the address 0x988 (Line 147 in app_common. c)
e The address that the exception occurs in is not recognized from the stack

memory that stores the last program counter because this is the program
execution error. The above address can be found from the results of the

program tracing.
e The results in RTT Viewer are as follows.

@8> MemManageFault occurred.
00> SCB_MMFSR : ex@l
0> TACCVIOL: Instruction access violation. The processor attempted an instruction fetch from

ae> a location that does not permit execution.
2e>
28> Last PC address: 8xEG000000

IK4H
Divide by zero

e UsageFault exception has occurred.
e An exception occurred at the address 0x978 (Line 133 in app_common. c)
e The results in RTT Viewer are as follows.

88> UsageFault occurred.

U SCB_UFSR : @x08200

00> DIVBYZERO: The processor has attempted to divide by 8.
00>

00> Last PC address: Ox00000973

ulon

Clear the fault status
buffer

¢ No exception occurred.

e The results in RTT Viewer are as follows.
88> Clear the fault status buffer.

80> Successful!

Table 5.8. Expected Result on the EK-RA6M5 Secure/Non-Secure project

RTT Viewer Input
and Action

Expected Result

l(lH
WDT underflow

l(211
Stack overflow

H3H
Execute instruction
from illegal region

Secure world NMI has occurred.

An exception occurred in bsp_prv_software_delay loop() in
bsp_delay.c

The address that the exception occurs in is not recognized from the buffer data
because this sample application acquires the last program counter only when
the fault occurs.

The results in RTT Viewer are as follows.

80> S project NMI WDT Error occurred.

Non-Secure world UsageFault exception has occurred.
An exception occurred at the address 0x8834 (Line 159 in app_common.c)
The results in RTT Viewer are as follows.

80> NS project UsageFault occurred.

ee>

SCB_UFSR : @xeele

STKOF: Sticky flag indicating whether a stack overflow error has occurred.

Last PC address: @x@@0@83834
Non-Secure world MemManage exception has occurred.
An exception occurred at the address 0x882C (Line 147 in app_common. c)
The address that the exception occurs in is not recognized from the stack
memory that stores the last program counter because this is the program
execution error. The above address can be found from the results of the
program tracing.
The results in RTT Viewer are as follows.

80> NS project MemManageFault occurred.

SCB_MMFSR : @x@l
TACCVIOL: Instruction access violation. The processor attempted an instruction fetch from

a location that does not permit execution.

Last PC address: @xE0000000

R11ANO576EJ0100 Rev.1.00 Page 28 of 38

Mar.23.22

RENESAS

Renesas RA Family

Exception Handling

RTT Viewer Input
and Action

Expected Result

YT
Divide by zero

w5
Access Secure
attribute memory
from Non-Secure
code

¢ Non-Secure world UsageFault exception has occurred.
e An exception occurred at the address 0x8818 (Line 133 in app_common.c)
e The results in RTT Viewer are as follows.

@8> NS project UsageFault occurred.
00> SCB_UFSR : @x0200

DIVBYZERO: The processor has attempted to divide by @.

Last PC address: @x80003318
e Secure world SecureFault exception has occurred.
e An exception occurred at the address O0x884E (Line 174 in app_common.c)
e The results in RTT Viewer are as follows.

80> S project SecureFault occurred.
ee> SAU_SFSR : exeeoeeess
AUVIOL: Sticky flag indicating that an attempt was made to access parts of
the address spacethat are marked as Secure with NS-Req for the transaction
set to Non-secure.
SFARVALID: Secure Fault Address Register (SFAR) valid flag.
SAU_SFAR : ©xeeooeole

Last PC address: @x@@0@884E

“6"
Access Secure
attribute peripheral
register from Non-
Secure code

e Secure world NMI and BudFault exception has occurred.
e An exception occurred at the address 0x8860 (Line 190 in app_common.c)
e The results in RTT Viewer are as follows.

00> S project NMI TrustZone error occurred.
@0> 5 project BusFault occurred.
> SCB_BFSR : @x32
PRECISERR: Precise data bus error. A data bus error has occurred, and the PC value stacked
for the exception return points to the instruction that caused the fault.
BFARVALID: BFAR holds a valid fault address.
SCB_BFAR : 9x40169064

Last PC address: @x00003560

o
Access Secure
attribute peripheral
register from Non-
Secure code via
NSC

¢ No exception occurred.
e The results in RTT Viewer are as follows.

80> Attempt to access Secure GPT® GTPR from Secure code.
80> Execution will be successful

8@> Successful!

Hlon
Clear the fault
status buffer

¢ No exception occurred.

e The results in RTT Viewer are as follows.
@8> Clear the fault status buffer.

80> Successful!

5.8 Demonstration

This section demonstrates how to determine the root cause from the related registers and the program
tracing results, for the EK-RA6M5 Secure/Non-Secure projects and the following configurations.

Configurations

Selected value

Software reset option in user_exception_handler.h

Not enabled

Response

RAB6M5 Family — Security — Exceptions — Exception

Non-Maskable Interrupt

RABM5 Family — Security — Exceptions —BusFault,
HardFault, and NMI Target

Secure State

DLM Stage

SSD (Secure Software Development)

R11ANO576EJ0100 Rev.1.00

Mar.23.22

Re Page 29 of 38
KENESAS

Renesas RA Family Exception Handling

5.8.1 Demo 1: Attempt Stack Overflow
Demo 1 shows the demonstration result when attempting a stack overflow.

1. Runthe MCU. LEDL1 blinks.

2. Enter 2 to the input box of the RTT Viewer.

3. System attempts to cause the stack overflow. Then, the system will stop in the NS project
UsageFault_handler().

4. Confirm the saved fault status in the buffer to determine the fault factor.

et il . Irq_event: IRQ_EVENT_USAGEFAULT.

It means UsageFault has occurred

G nev vent nimi_event t NMI_EVENT_NONE
[bus_access_err_event bus_access_erm_t BUS_ACCESS_ERR_MNONE

0 exception_occurred_mode y_occurred_mode_t EXCEPTION_OCCURRED_IN_THREAD_MODE
3« SCB_CFSR 1048576

(=)= SCB_HFSR 0
(4= SCB_MMFSR 0y
3« SCB_MMFAR BA1BETI31
(3= SCB_BFSR 0'%o
% | SCB_UFSR: 0x10 (STKOF bit is raised).

It means a stack overflow has occurred.

o
20002104 <g_fault_status_buffer_ns+40>
0¥

™ current_stack_pointer stack_pointer_t
[current_stack_frame_state_contex stack_frame_state_context t (.)
(e magic_number uintaz t 30541969

Figure 5.10. Saved Fault Status

5. Confirm the stack pointer to determine the location of the root cause
For RA-CM4 and RA-CM23 project, it can be confirmed from the value “msp” (main stack pointer) or
“psp” (process stack pointer) on Registers view. For RA-CM33 Secure/Non-Secure projects, the stack
pointer separates between Secure and Non-Secure state. Therefore, we should check four stack
memories pointed to by msp_s (main stack pointer in secure world), the msp_ns (main stack pointer in
Non-Secure world), psp_s (process stack pointer in Secure world) and psp_ns (process stack pointer in
Non-Secure world). For an RA-CM33 Flat project, the Non-Secure stack pointer can be ignored since the
program is always running in Secure state.
The stack pointer containing the last program counter can be recognized by the EXC_RETURN value in
current link register. Please refer to the section “Exception return” in the processor core’s generic user
guide for more details.
The following figure shows the demonstration that finds the last PC from the stack memory msp_ns
points to using Memory view.

T LT

8-B

1 msp Ox20002348 @ 0x20002245 | — 1
! psp Oxaff4face

i

¢ meplim 020002640 00000D0020002A50 20002008 FFFFFFFF 00000005 00009555

Wi psplim o0

. 0000000020002A60 00008834 51000200 61466567 SF746CT75
11 misc [primask = Ox0, basepri = 0xg,

u 0x200005d 0000000020002A70 BABEG168 2B72656C 00000001 20002644
::SD e Ox20002248 0000000020002A80 20002640 00000000 0000CoCC 00004 1BC
pspps U(U_ 0000000020002A 0000A1BC 0D00A1BC D000A1BC 00008791

! pspns Deatfafacs Last PC (Offset 0x18) is 0x0000_8834
Ox 20000260

! msplim_s

0000000020002A40

1 msplim_ns Ox200026d0 0000000020002AC0 00000060 0000A1C7 O0000A1BC FEFFFFFF
i psp\im_s ox0 0000000020002AD0 27TCEEACA 60907090 EFEE6287 569CBC3F
1848 psplim_ns o0 0000000020002AEQ 3C49E3CE COAECI0B 7CSFE27A FASBFDad4

Figure 5.11. Finding the last PC from msp_ns

R11ANO576EJ0100 Rev.1.00 Page 30 of 38
Mar.23.22 RENESAS

Renesas RA Family

Exception Handling

The sample application also implements the last program counter acquisition
in the buffer as follows.

. So, we can find that result

Expression Type Value

v (g fault_statuz_buffer_nz Fault_status_t (=]
(4= iry_event i event t IRO_EVENT_LISAGEFALLT
e nmi_event nimi_event t NMI_EVENT_NONE

e
T

bus_access_err_event
exception_occurred_mode

bus_access et BUS_ACCESS_ERR_NONE

exception_occurred_mode_t EXCEPTION_OCCURRED_IN_THREAD_MODE

0+ SCB_CFSR uinta2 t 1HB576
(=)= SCB_HFSR uint32_t o
t== SCB_MMFSR wints t 0wy
e SCB_MMFAR uinti2_t B41BET131
14 SCB_BFSR wintB_t 0%
(=)= SCB_BFAR uint32 t 0
(== SCE_UFSR uint16_t 16
s SAL_SFSR uint32_t o
(e SAU_SFAR uintaz t o
(™ BUSnERRSTAT uintd_t [4] 20002104 <g_fault_status_buffer_ns+40>
(=)= BUS_BUSTZF_n_ERRRW uint_t)
1 I oo PAERR o
e last_program, counter uintz2 1 e J— last_program_counter: 0x8834
T CCTTENT T FEgeer T p v i — —
h.. rent_stack_pointer stack_pointer_t
™ current_stack_frame_state_contex: stack_frame_state_context_t }
e magic_number uintaz t 305419696

Figure 5.12. Finding the Last PC from buffer

From the above results, we found the last executed program address (0x0000_8834).

Determine the source code from the last executed program address.

Open the Disassembly view and enter the last program counter address 0x8834 to the input box in top

of this view. The view will disassemble the program and highlight the related

code as follows.

== Disassembly X Io:aﬂ}d MME8 =20
8ee8882c: bx r3 ~
B0008882e: nop
159 volatile uint8_t dummy[1825] = {@};
execute_stack_overflow:
eeeessse: movs rl, #8
832 ny<h {1r}
Be0885834: subw S| 5 #1036 ;@4
Bee8s8838: moVW r2, #1621 3 8x3
Beeesssc: add reé, sp, #3
60e8883e: str rl, [sp, #4]
20008848 : bl @xa286 <memset>
161 (void) (dummy) ;
20088544 : addw sp, sp, #1836 3 @x48c
Be0088848: ldr.w pc, [sp], #4 v

Figure 5.13. Disassembling code

You can find the source code and that line number by scrolling up from the highlighted line. Also, when
you hover the mouse cursor on the line number of the source code, you can find the file name such as

\Exception Handling_ Example EK RA6M5 NS\sec\app_common.c.

[oxg834

2000882c: bx \Exception_Handling_Example_EK_RA6M5_NS\sec\app_common.c A
00003882e:
159 volatile uint8 t dummy[1025] = {@};
execute_stack_overtlow:
00008830: movs rl, #0
00008832: push {1r}
000033834 : subw sp, sp, #1036 ; @x4oc|
00008838: movw r2, #1e21 ; ex3fd
0000883c: add re, sp, #8
0000883e: str rl, [sp, #4]
00008840 : bl @xa286 <memset>
161 (void) (dummy) ;
00008844 : addw sp, sp, #1036 ; @x4ec
000088438 : ldr.w pc, [sp], #4 v

Figure 5.14. Finding the file name

Note: If you cannot see the source code, press the Show Source button in right-top in this view.

From above, we can find the root cause of the fault that occurred.

e Factor: a stack pointer overflow

Location: the program address 0x0000_8834 (Line 159 in app_common.c file)

R11ANO576EJ0100 Rev.1.00

Mar.23.22 RENESAS

Page 31 of 38

Renesas RA Family Exception Handling

Also, after the system is restarted by pressing the Reset button and Resume button on e? studio IDE, the
details of the saved fault status are displayed on RTT viewer as follows.

88> NS project UsageFault occurred.
aa> SCB_UFSR : @xeale

00> STKOF: Sticky flag indicating whether a stack overflow error has occurred.
88>
0e> Last PC address: @xbooes8334

Figure 5.15. Saved fault status after restart

5.8.2 Demo 2: Attempt to execute instruction from illegal region
Demo 2 shows the demonstration result when attempting an execution from an illegal region.

1. Runthe MCU. LEDL1 blinks.
2. Enter 3 to the input box of the RTT Viewer.

3. System attempts to execute instruction from an illegal region (0OXE0000000). Then the system will stop in
the NS project’'s MemManage _handler ().

4. Confirm the saved fault status in the buffer to determine the fault factor.

Expression Type Value . G
(8 g foult status but foul status ¢ irg_event: IRQ_EVENT_MEMMANAGE.
vw'(fp E :u:u:s — ira: ev;t”: IRQ_EVENT MEMMANAGE Mq_ M ,\(/?_ f _lt h d
)= nmi_event nmi_event_t NMI_EVENT_NONE eans em anage au as occurre .
(4- bus_access_err_event bus_access_err t BUS_ACCESS_ERR_NONE
(4: exception_occurred_mode exception_occurmed_mode t EXCEPTION_OCCURRED IN_THREAD_MODE
9+ SCB_CFSR uint32_t 1 X T,
e s SCB_MMSR: 0x1 (IACCVIOL bit is
L oo o P | | .
i)
- SCB_MMFAR uint32.t BATBET131 \ raised).
- SC3 BFSR uinte ¢ oKl Means the processor attempted an
4= SCB_BFAR uint32_t 0 . . .
- SCE_UFSR uintiat 0 instruction fetch from a location that does
4 SAL_SFSR uint32 t 0 . .
0 SALLSFAR iz e o not permit execution.
(& BUSERRSTAT uinta_t[4] 0420002104 <g_fault_status_buffer_ns+40>
(9= BUS_BUSTZF_n_ERRRW uintd_t 0'¥0
4 BUS_BUSTZF_n_ERRADD uint32. t 0
9: last_program_counter uint32 t 375B096384
9= current_link_register uint32_t 4204967208
[*#¥ current_stack_pointer stack_pointer_t {
[current_stack_frame_state_contex stack_frame_state_context_t {..}
(- magic_number uint32 t 305419896

Figure 5.16. Determine fault factor

5. Confirm the stack pointer to determine the location of root cause

From the following results, we found the last executed program address (OXEO00_0000) from the buffer.
But its address is out of the flash area. Therefore, we cannot get the information from the stack memory.

Expression Type Value
v [g_fault_status_buffer_ns fault_status_t fu
)= irq_event irg_event_t IRQ_EVENT_MEMMANAGE
4= nmi_event nmi_event_t NMI_EVENT_NONE
(9= bus_access_er_event bus_access_err_t BUS_ACCESS_ERR_MONE
9= exception_occurred_mede exception_occurred_mode_t EXCEPTION_OCCURRED_IN_THREAD_MODE
(9= SCB_CFSR uint32_t 1
() SCB_HFSR uint3z_t 0
(- SCB_MMFSR uint8_t 1 %001
(9= SCB_MMFAR uint32_t 841887131
(9= SCB_BFSR uintg_t 0¥
(x)- SCB_BFAR uint32_t 0
(- SCB_UFSR uint16_t 0
(9= SAU_SFSR uint32_t 0
9= SALL_SFAR uint32_t 0
[*= BUSnERRSTAT uint8_t [4] 0x20002104 <g_fault_status_buffer_ns+40>
(- BUS_BUSTZF_n_ERRRW uints_t 0¥’
(- BUS BUSTZF n_ERRADD qutSZﬁt 0 N
e o R ST] last_program_counter: 0OXE000_0000
(9= current_link_register uint32_t 4294967208
[* current_stack_pointer stack_pointer_t {ue}
(2 current_stack frame state_contex stack frame state_context t {..}
9= magic_number uint32_t 305419896

Figure 5.17. Program counter outside flash area

R11ANO576EJ0100 Rev.1.00 Page 32 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

6. Check the tracing result.
When the MCU stops, the Trace view will show the tracing result in order of the execution history.
By default, only the executed program address is displayed. Selecting the Source button and
Disassembly button is recommended to easily understand the related program.
We can find the exception entry point by scrolling the line. In the below example, the fault has occurred
after the record number 89. Also, from the displayed results, we find the related source code, the file
name (app_common.c), and line number (Line 147).

Fault occurs and call

/ MemManage_Hander()

= : c i n8Tel <MernMarisge_ Hardler ["
B ; T | —| Last execution program

Figure 5.18. Checking trace results
From the above, we can find the root cause of the fault that occurred.

e Factor: a processor attempted an execution from an unpermitted location
e Location: the program address 0x0000_882C (Line.147 in app_common.c file)

Also, after pressing the Reset button and Resume button on e? studio IDE has restarted the system, the
details of the saved fault status are displayed on RTT viewer as follows.

NS project MemManageFault occurred.
SCB MMFSR : @x@1
IACCVIOL: Instruction access violation. The processor attempted an instruction fetch from

a location that does not permit execution.

Last PC address: @xE6000000

Figure 5.19. Saved fault status displayed on RTT viewer

5.8.3 Demo 3: Attempt Secure peripheral access from Non-Secure code

The Demo 3 shows the demonstration result when attempting a secure peripheral access from Non-Secure
code without NSC call.

1. Runthe MCU. LED1 blinks.

2. Enter 6 to the input box of the RTT Viewer.

3. System attempts a Secure peripheral access from Non-Secure code. Then the system will stop in the S
project’s BusFault_handler().

4. Confirm the status of the fault status buffer.

R11ANO576EJ0100 Rev.1.00 Page 33 of 38
Mar.23.22 RENESAS

Renesas RA Family

Exception Handling

irg_event: IRQ_EVENT_BUSFAULT.
Means MemManage fault has occurred.

R - e ————————eee——————————
o - . nmi_event: NMI_EVENT_TRUSTZONE.
o v L —| Means NMI TrustZone event has
= T :
(x)- bus access err event bus acce_ss err t BUS ACCESS ERR SLAVE TZF SYSTEMBUS OCCU rred .
)= exception_occurred_mode exception_occurred_mode_t EXCEPTION_OCCURRED_IN_THREAD_MODE
9= SCB_CFSR uint32_t 33280
- SCB_HFSR unts2 t 0 bus_access_err_event:
9= SCB_MMFSR uintg_t 0'¥0'
TV e BUS_ACCESS_ERR_SLAVE_TZF_SYS
69- SCB BFSA. Lints t 130 '¥202" | §
(9= SCB BFAR uint32 t 107525530 TE M B U S'
R Rgg-: ° o Means Slave TZF system bus err that
(- SAU SFAR wintzz 1 \arszzosen accessed through system bus has
w (& BUSNERRSTAT uintg_t [4] <g_fault_status_buffer_s+40>
”’ﬁ: e T S * occurred.
()= BUSHERRSTAT[1 uﬁt 2 EGZ'
S ALY i SCB_BFSR: 0x82 (PRECISERR bit and
(- BUSHERRSTAT[3] uints ¢ 0% — e)
TS PN T) BFARVALID bit are raised).
)= BUS_BUSTZF_n_ERRADD tﬂ_t 107&5&0
o o B e serzon SCB_BFAR: 0x40169064
(= current_stack_poiniter stack_pointer_t fod
(= current stack_frame_state contex stack_frame state context t {..} —
(4= mogie_number w3z t 205419895 BUS1ERRSTAT: Ox2 (STERRSTAT bit is

raised).
Means the slave TrustZone Filter error is
occurred.

BUS_BUSTZF_n_ERRRW: 0x0

BUS_BUSTZF_n_ERRADD: 0x40169064

Figure 5.20. Status of the fault status buffer

5. Confirm the stack pointer to determine the location of root cause.
From the following results, we found the last executed program address (0x0000_8860) from the buffer.

Expression Type Value
~ [# g_fault_status_buffer_s fault_status_t fd
(- irq_event irq_event t IRQ_EVENT_BUSFAULT

©d= nmi_event
(9= bus_access_err_event
()= exception_occurred_mode

nmi_event_t
bus_access_err_t
exception occurred mode t

NMI_EVENT_TRUSTZONE
BUS_ACCESS_ERR_SLAVE_TZF_SYSTEMBUS
EXCEPTION_OCCURRED_IN_THREAD_MODE

9= SCB_CFSR uint32_t 33280

9= SCB_HFSR uint32_t a

)= SCB_MMFSR uints_t 0'¥0'

69= SCB_MMFAR uint32_t 1075220580

()= SCB_BFSR uintd_t 130 ¥202'

)= SCB_BFAR uint3z_t 1075220580

9= SCB_UFSR uinti6_t o

)= SAU_SFSR uint32_t o

)= SAU_SFAR uint3z_t 1075220580
+ & BUSnERRSTAT uintg_t[4]

0%20002024 <g_fault_status_buffer_s+40>

()= BUSnERRSTAT[0] uints t o
()= BUSnERRSTAT[1] uintg_t 2 '¥002'
()= BUSnERRSTAT[2] uints_t 0¥
()= BUSnERRSTAT[3] uints t LR
()= BUS_BUSTZF_n_ERRRW uints_t 0%
Lo pic olcTrE o copan o aaZszoocco
(9= current_link_register uint3z_t 4294967209
([current_stack_pointer stack_pointer_t {}
(# current _stack_frame _state contex stack_frame state context t {.}
9= magic_number uint3z_t 205419896

} last_program_counter: 0x8860

Figure 5.21.

Finding the last PC from buffer

R11ANO576EJ0100 Rev.1.00
Mar.23.22

Re Page 34 of 38
KENESAS

Renesas RA Family Exception Handling

6. Determine the source code from the last program counter address.
From the following results, we found the source code (Line 190 in app_common . c).

= foreesd [enBlElrse g =8
A
¥Exception_Handling_Example EK_RASMS_NS¥srcflapp_common.c I
dummy read = *gpt@ gtpr pointer; Search
execute_access_S_perjaherals from_NS_code:
ldr r3, [pc, #@Scroll up 6c <execupe_access_S_peripherals_from_NS_code+16>)
Sli) sp, #8
1dr r3, [r3, #100] 9-)(64 | |
str r3, [sp, #4
(void) (dummy_read);
ldr r3, [sp, #4]
add sp, #8
bx 1r
nop v

Figure 5.22. Determine the source file
From the above, we can find the root cause of the fault that occurred.

e Factor: illegal access from the Non-Secure world to a Secure attributed peripheral register (0x40169064)
e Location: the program address 0x0000_8860 (Line 190 in app_common .c file)

Also, after pressing the Reset button and Resume button on the e? studio IDE has restarted the system , the
details of the saved fault status are displayed on RTT viewer as follows.

@8> S project NMI TrustZone error occurred.

88> S project BusFault occurred.

ea> SCB_BFSR : @x82

00> PRECISERR: Precise data bus error. A data bus error has occurred, and the PC value stacked
08> for the exception return points to the instruction that caused the fault.

ee> BFARVALID: BFAR holds a valid fault address.
8a> SCB_BFAR : @x48169064

00>

20> Last PC address: @x0eees36e

Figure 5.23. Saved fault status displayed on RTT viewer

5.9 Using example exception handler in your projects

This application note provides an example exception handler. You can apply it to your projects in the
following manner.

1. Copy the following files to your project.
— user_exception_handler.c
— user_exception_hanlder.h
2. Add the following code to your project to enable the example exception handler.

#include "'user_exception_handler.h" < Include directive
fault _status_t <user-defined buffer name>; < Definition of user buffer

void hal_entry{

T _clear_fault status buffer(&<user-defined buffer name>); < Initialize user
buffer

T_set_fault_status_buffer(&<user-defined buffer name>); <« Set user buffer
pointer to program

T_enable_additional_faults(); < Enable additional faults

i

R11ANO576EJ0100 Rev.1.00 Page 35 of 38
Mar.23.22 RENESAS

Renesas RA Family Exception Handling

6. References

e Renesas FSP User's Manual renesas.github.io/fsp

e Renesas RA MCU datasheet Select the relevant MCUs from the www.renesas.com/ra

e Example Projects github.com/renesas/ra-fsp-examples

e Arm® Cortex®-M4 Devices Generic User Guide: https://developer.arm.com/documentation/dui0553

e Arm® Cortex®-M23 Devices Generic User Guide: https://developer.arm.com/documentation/duil095

e Arm® Cortex®-M33 Devices Generic User Guide: https://developer.arm.com/documentation/100235
R11ANO576EJ0100 Rev.1.00 Page 36 of 38

Mar.23.22 RENESAS

https://renesas.github.io/fsp
https://www.renesas.com/ra
https://github.com/renesas/ra-fsp-examples
https://developer.arm.com/documentation/dui0553
https://developer.arm.com/documentation/dui1095
https://developer.arm.com/documentation/100235

Renesas RA Family Exception Handling

Website and Support
Visit the following URLSs to learn about key elements of the RA family, download components and related
documentation, and get support.

RA Product Information renesas.com/ra

RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support

R11ANO576EJ0100 Rev.1.00 Page 37 of 38

Mar.23.22 RENESAS

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family

Exception Handling

Revision History

Rev.

Date

Description

Page

Summary

1.00

Mar.23.22

First release document

R11ANO576EJ0100 Rev.1.00

Mar.23.22

RENESAS

Page 38 of 38

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
Input of signal during power-off state

Do not input signals or an 1/0O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between Vi (Max.) and Vi (Min.).

Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2022 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Exception model on Arm® Cortex®-M processor core
	1.1 Exception types and handlers
	1.2 Fault status registers

	2. Bus Error on RA-CM33 devices
	2.1 Overview of Bus Error
	2.1.1 Slave TrustZone Filter

	2.2 Bus error processing

	3. User-Defined Exception Handler
	3.1 Default implementation
	3.1.1 Exception Handler Definition
	3.1.1.1 GCC compiler and Arm® compiler
	3.1.1.2 IAR compiler

	3.1.2 Default handler
	3.1.3 NMI handler

	3.2 How to add user-defined exception handler
	3.2.1 How to configure NMI handler and faults
	3.2.1.1 Enable the additional exceptions
	3.2.1.2 Configure the exception for RA-CM33 devices
	3.2.1.3 Configure the Reset Interrupt Request for peripherals

	3.2.2 How to implement a user exception handler

	3.3 Notes
	3.3.1 TrustZone® technology
	3.3.2 Device Lifecycle Management

	4. Debugging exception events
	4.1 Confirming the fault status
	4.1.1 View function on Renesas e2 studio IDE
	4.1.2 Partners tools

	4.2 Tracing the exception
	4.2.1 Use of Arm® CoreSight trace
	4.2.2 Use of e2 studio Trace view

	5. Demonstration
	5.1 Functional specifications
	5.2 Description of the application project
	5.3 Used peripheral modules
	5.4 User interface
	5.5 Overall algorithms
	5.6 Checking procedure
	5.6.1 Import and build a project
	5.6.2 Download program and debug
	5.6.3 Start the program tracing
	5.6.4 Connect to J-Link RTT Viewer

	5.7 Expected Results
	5.8 Demonstration
	5.8.1 Demo 1: Attempt Stack Overflow
	5.8.2 Demo 2: Attempt to execute instruction from illegal region
	5.8.3 Demo 3: Attempt Secure peripheral access from Non-Secure code

	5.9 Using example exception handler in your projects

	6. References
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

