
 Application Note

R11AN0576EJ0100 Rev.1.00 Page 1 of 38
Mar.23.22

Renesas RA Family

Exception Handling
Introduction
This application note explains how to handle exceptions on Renesas RA family MCUs with Arm® Cortex®-M
cores for user applications using the Flexible Software Package (FSP). By properly managing the factors,
location, and history of exception events that occur, you can increase debugging efficiency in the application
development process and produce a robust system against exception events. This application note also
describes a unique bus error monitoring system on Renesas devices with Arm® Cortex®-M33 cores that
supports Arm® TrustZone® technology. The application project uses the Flexible Software Package (FSP) of
the RA family, the GNU GCC compiler, and the integrated development environment e2 studio IDE to
demonstrate an exception handling flow for multiple possible faults.

Prerequisites
• Experience using Renesas e2 studio IDE
• Experience using Flexible Software Package (FSP) for the RA Family

Note: For developers who are new to the Renesas RA family of MCUs, we strongly recommend to start with

Tutorial: Your First RA MCU Project – Blinky prior to trying out this application.

Required Resources
Target Hardware:

• Renesas RA Kit EK-RA6M3 (for RA6M3 with Arm® Cortex®-M4)
• Renesas RA Kit EK-RA2E1 (for RA2E1 with Arm® Cortex®-M23)
• Renesas RA Kit EK-RA6M5 (for RA6M5 with Arm® Cortex®-M33)

Note: When applying this application note to other MCUs, be sure to change the settings according to the

MCU specifications and evaluate it carefully.

Development Tools and Software:

• e2 studio IDE version 2022-01 (22.1.0) or later
• Renesas Flexible Software Package (FSP) version 3.6.0 or later
• GCC ARM Embedded Toolchain version 10.3-2021.10 or later
• Segger J-Link RTT Viewer version 7.60e or later

Using this Application Note
Section 1 covers the general overview of the exception model on Arm® Cortex®-M processor core.

Section 2 covers the Bus Error Monitoring System for Renesas implementation.

Section 3 covers the implementing method for user-defined exception handler on FSP-based projects.

Section 4 covers the debugging method of the occurred exception event

Section 5 covers the demonstration of the application attached to this application note.

https://renesas.github.io/fsp/_s_t_a_r_t__d_e_v.html#tutorial-your-first-ra-mcu-project-blinky

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 2 of 38
Mar.23.22

Notes on this document
In this document, the following names are used for Renesas devices equipped with ARM Cortex®-M core.

• RA-CM4 devices: RA family devices with a single Arm® Cortex®-M4 processor core based on Armv7-M
architecture profile
Examples of target devices: RA4M1, RA6M3

• RA-CM23 devices: RA family devices with a single Arm® Cortex®-M23 processor core based on Armv8-
M architecture profile (without Security Extension)
Examples of target devices: RA2A1, RA2E1

• RA-CM33 devices: RA family devices with a single Arm® Cortex®-M33 processor core based on Armv8-
M architecture profile (with Security Extension)
Examples of target devices: RA4M3, RA6M5, RA6E1, RA6T2

Contents

1. Exception model on Arm® Cortex®-M processor core .. 4
1.1 Exception types and handlers... 4
1.2 Fault status registers .. 5

2. Bus Error on RA-CM33 devices ... 6
2.1 Overview of Bus Error .. 6
2.1.1 Slave TrustZone Filter .. 7
2.2 Bus error processing .. 8

3. User-Defined Exception Handler ... 9
3.1 Default implementation... 9
3.1.1 Exception Handler Definition .. 10
3.1.2 Default handler ... 10
3.1.3 NMI handler ... 11
3.2 How to add user-defined exception handler .. 11
3.2.1 How to configure NMI handler and faults .. 11
3.2.2 How to implement a user exception handler ... 12
3.3 Notes ... 13
3.3.1 TrustZone® technology ... 13
3.3.2 Device Lifecycle Management .. 13

4. Debugging exception events ..13
4.1 Confirming the fault status .. 14
4.1.1 View function on Renesas e2 studio IDE ... 14
4.1.2 Partners tools ... 14
4.2 Tracing the exception ... 15
4.2.1 Use of Arm® CoreSight trace .. 15
4.2.2 Use of e2 studio Trace view .. 15

5. Demonstration ...16
5.1 Functional specifications .. 16
5.2 Description of the application project .. 17

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 3 of 38
Mar.23.22

5.3 Used peripheral modules ... 18
5.4 User interface .. 18
5.5 Overall algorithms .. 19
5.6 Checking procedure ... 22
5.6.1 Import and build a project ... 22
5.6.2 Download program and debug ... 23
5.6.3 Start the program tracing .. 23
5.6.4 Connect to J-Link RTT Viewer .. 23
5.7 Expected Results ... 25
5.8 Demonstration ... 29
5.8.1 Demo 1: Attempt Stack Overflow .. 30
5.8.2 Demo 2: Attempt to execute instruction from illegal region .. 32
5.8.3 Demo 3: Attempt Secure peripheral access from Non-Secure code .. 33
5.9 Using example exception handler in your projects .. 35

6. References ..36

Revision History..38

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 4 of 38
Mar.23.22

1. Exception model on Arm® Cortex®-M processor core
The Arm® Cortex®-M processor core supports various fault detection and user notification methods. When
the processor detects faults, exceptions, and interrupts, the processor transitions the processor mode.
Available processor modes on Arm® Cortex®-M processor core are as follows (Figure 1.1.).

• Thread mode
Executes application software.
The processor enters Thread mode on Reset, or as a result of an exception return.

• Handler mode
Handles exceptions.
The processor returns to Thread mode when it has finished all exception processing.

A processor with the Security Extension supports both Non-Secure and Secure states, which are orthogonal
to traditional thread and handler modes. The four processor modes of operation are:

• Non-Secure Thread mode
• Non-Secure Handler mode
• Secure Thread mode
• Secure Handler mode

Figure 1.1. Processor States
When the processor takes an exception, the processor pushes information onto the current stack, and stores
the information to status registers prior to exception entry.

Table 1.1 shows the available exception types and handlers, and fault status registers on each processor
core. Please refer to Section: Exception model in the processor core’s generic user guide for more details.
These documents can be found in section 6 in this document.

1.1 Exception types and handlers
Table 1.1 shows the available exception types and handler types on each processor core.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 5 of 38
Mar.23.22

Table 1.1. Available exception types and handler types

Handler types Exception types
Arm® Cortex®-M4 Arm® Cortex®-M23 Arm® Cortex®-M33 Note5

Interrupt Service
Routines (ISRs) Note1

IRQ0 – IRQ239 IRQ0 – IRQ239 IRQ0 - IRQ479

Fault handler Note4 HardFault
MemManage Fault
BusFault
UsageFault

HardFault HardFault Note2
MemManage Fault
BusFault Note2
UsageFault
SecureFault Note3

System handler NMI
PendSV
SVCall
SysTick

NMI
PendSV
SVCall
SysTick

NMI Note2
PendSV
SVCall
SysTick

Note 1. Usable IRQ number depends on MCU device specification. Please refer to hardware user’s
manual of MCUs.

Note 2. The entry target state for HardFault, BusFault, NMI is controlled by a BFHFNMINS bit in AIRCR
(Application Interrupt and Reset Control) register.

Note 3. SecureFault always targets Secure State.
Note 4. All faults can be treated as HardFault according to a fault enable bit in SHCSR (System Handler

Control and State) register. This bit is set to 0 (Disabled) by default.
Note 5. With Security Extension.

1.2 Fault status registers
Table 1.2 shows the fault status registers on each fault. The processor core stores the information of fault
status to these related registers when the fault occurs. By verifying these registers, we can recognize the
factor and the location of faults that occurred. Please refer to processor core’s generic user guide for more
register details.

Table 1.2 Fault status registers

Fault type Status and Address register name Note2
Arm® Cortex®-M4 Arm® Cortex®-M23 Arm® Cortex®-M33

HardFault SCB.HFSR - SCB.HFSR
MemManage Fault SCB.MMFSR Note1

SCB.MMFAR
- SCB.MMFSR Note1

SCB.MMFAR
BusFault SCB.BFSR Note1

SCB.BFAR
- SCB.BFSR Note1

SCB.BFAR
UsageFault SCB.UFSR Note1 - SCB.UFSR Note1
SecureFault - - SAU.SFSR

SAU.SFAR
Note 1. A subregister of the CFSR (Configurable Fault Status Register).
Note 2. Abbreviations used in this table are shown as follows.

SCB: System Control Block registers
SAU: Security Attribution Unit registers
HFSR: HardFault Status Register
MMFSR: MemManage Fault Status Register
MMFAR: MemManage Fault Status Address Register
BFSR: BusFault Status Register
BFAR: BusFault Address Register
UFSR: UsageFault Status Register
SFSR: Secure Fault Status Register
SFAR: Secure Fault Address Register

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 6 of 38
Mar.23.22

2. Bus Error on RA-CM33 devices
In addition to the faults specific to Arm® Cortex®-M33 CPU core, RA-CM33 devices provide some additional
error detection capability supported by the bus error monitoring system. This chapter describes how to
handle additional error information.

Note on Section 2: This chapter describes the bus error monitoring system in case of RA-CM33
device RA6M5 MCU. Please refer to the MCU’s hardware user’s manual for other MCUs.

2.1 Overview of Bus Error
The bus error monitoring system can detect the following types of bus errors:

• Illegal address access
• Bus master MPU error
• TrustZone Filter error
• Bus error transmitted from each slave IP

The TrustZone Filter (TZF) is special on RA-CM33 devices and can detect security access errors caused by
peripheral modules below that are out of CPU core scope.

• Master TZF: For bus master (DMAC/DTC)
• Slave TZF: For bus slave (Memory, peripherals)

See Figure 2.1. for the TZF implementation on RA-CM33 devices.

Figure 2.1. TZF on RA-CM33 devices
When TZF detects the access errors, the TZF error occurs. Table 2.1 shows the system behavior when the
TZF error occurred. The behavior varies depending on the master or slave area to be accessed.

Slave TZF

Master TZF

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 7 of 38
Mar.23.22

Table 2.1. Behavior when the TZF error ocurred

Access to Access from
CPU DMAC/DTC

FHBIU (Code Flash)
FLBIU (Data Flash)
S0BIU (SRAM)

• SecureFault exception occurs • Transfer does not start
• NMI or reset occurs Note1
• Interrupt occurs

(DMA_TRANSERR)
PSBIU (System peripherals)
PHBIU (High-speed peripherals)
PLBIU (Low-speed peripherals)

• BusFault exception occurs Note2
• NMI or reset occurs Note1

• Stop transfer Note3
• NMI or reset occurs Note1 Note3
• interrupt occurs Note3

(DMA_TRANSERR)
Note 1: NMI or reset is selected with OAD (Operation after detection) bit in TZFOAD (TZF Operation After

Detection) register.
Note 2: These error behaviors do not occur for write access to the PHBIU or PLBIU address space which

memory attribute is set to "Early Write Acknowledgment" by the ARM® MPU.
Note 3: These error behaviors do not occur for write access from DMAC to the PHBIU or PLBIU address

space when the bufferable write is enabled by DMBWR.BWE.

For information on the master TZF, please refer to the Bus Error Monitoring Section in the MCU hardware
user’s manual. The next section shows the error operations and the state clearing flow of the slave TZF.

2.1.1 Slave TrustZone Filter
The Slave TZF is applied to FHBIU (code flash), FLBIU (data flash), S0BIU (SRAM), PSBIU (System
peripherals), PHBIU (high-speed peripherals) and PLBIU (low-speed peripherals).

When the slave TZF error is detected, the following steps are processed:

1. Store the address of the error in BTZFnERRADD (Bus Error Address) register.
2. Store the read/write information of the error in BTZFnERRRW (Bus Error Read Write) register.
3. Set 1 to STERRSTAT (Slave TZF Error Status) bit of BUSnERRSTAT (Bus Error Status Register)

register.

Then an NMI request or reset request is generated depending on the OAD (Operation after Detection) bit
setting in the TZFOAD (TZF Operation After Detection) register as shown in Figure 2.2.

Users can recognize the error status by verifying BTZFnERRADD, BTZFnERRRW and BUSnERRSTAT
register in the NMI handler or after reset. These registers are kept until reset other than MPU- and TZF-
related resets or being cleared by BUSnERRCLR (BUS Error Clear) register.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 8 of 38
Mar.23.22

Figure 2.2 Slave TZF error signal flow

2.2 Bus error processing
To prevent unexpected operation, additional operations below should be added to the BusFault exception
handler routine.

1. Verify the error information in the corresponding register
2. Clear the data in cache for the error address
3. Clear the Error Status register in the bus module

Figure 2.3. shows the recommended BusFault exception handling flowchart. For the RA-CM33 devices, one
consideration is needed for the Slave TZF error if the TZFOAD register is configured to generate an NMI. In
this case, NMI will occur first then the BusFault exception occurs next. The NMI handler should only clear the
NMI status, and the bus error status should be cleared in the BusFault handler. Figure 2.4. shows the NMI
handling flowchart.

Figure 2.3. BusFault interrupt handling flowchart

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 9 of 38
Mar.23.22

Figure 2.4. NMI handling flowchart

3. User-Defined Exception Handler
This chapter describes how to implement user-defined exception handlers in Flexible Software Package
(FSP)-based projects.

3.1 Default implementation
The FSP of RA family MCUs provides Board Support Packages (BSP) to support startups, exception
handlers, and so on that depend on the specifications of each device. BSP implements exception handlers in
the following source files. These files are independent of the CPU core type and are applied to any devices
in the RA family.

In ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c:

• Vector table (Figure 3.1)
• Reset handler function (Figure 3.2)
• Prototype declaration of handler functions (Figure 3.3)
• Default handler function (Figure 3.4)

Figure 3.1 Vector table

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 10 of 38
Mar.23.22

Figure 3.2 Reset Handler function
In ra/fsp/src/bsp/mcu/all/bsp_group_irq.c:

• NMI handler function (Figure 3.5)

3.1.1 Exception Handler Definition
FSP applies the default handler function to various exception handler functions to ensure they exist even if a
user did not define each exception handler function. The method of implementation depends on the compiler
(Figure 3.3).

Figure 3.3 Definition of exception handlers

3.1.1.1 GCC compiler and Arm® compiler
The GCC and Arm® compilers use function attributes (weak symbols, alias functions) to apply the default
handler function to exception handers, other than the reset handler. The user can overwrite these handlers
to user-defined functions if the function is defined using the same name.

3.1.1.2 IAR compiler
The IAR compiler uses pragma (weak symbols) to apply the default handler function to exception handlers,
other than the reset handler. The user can overwrite these handlers to user-defined functions if the function
is defined using the same name.

3.1.2 Default handler
The BSP defines the default handler function (Default_Handler) and the function applies identically to
exception handlers other than NMI handlers. The default handler function executes a breakpoint instruction
to stop the program.

IAR compiler

GCC compiler
Arm compiler

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 11 of 38
Mar.23.22

Figure 3.4 Default handler function

3.1.3 NMI handler
The NMI handler function is defined in bsp_group_irq.c. When an NMI event occurs, the NMI handler
calls a callback function that can be preset by the R_BSP_GroupIrqWrite() API. It then clears the status
flag.

Figure 3.5 NMI handler function

3.2 How to add user-defined exception handler
3.2.1 How to configure NMI handler and faults
3.2.1.1 Enable the additional exceptions
The additional exceptions can be enabled by the following bits. These bits are set 0 (Disable) after reset.

• SCB.SHCSR (System Handler Control and State Register)
MEMFAULTENA: MemManage enable bit
BUSFAULTENA: BusFault enable bit
USGFAULTENA: UsageFault enable bit
SECUREFAULTENA: SecureFault enable bit Note1

Note 1: Available for a processor with Security Extension

3.2.1.2 Configure the exception for RA-CM33 devices
The target of HardFault, BusFault, and NMI are controlled by the BFHFNMINS (BusFault, HardFault, and
NMI Non-Secure) bit in AIRCR (Application Interrupt and Reset Control) register. This register can be
configured using the FSP configurator (Figure 3.6).

• Properties of BSP tab > RAxxx Family > Security > Exceptions > BusFault, HardFault, and NMI
Target

Also, the secure exception prioritization can be controlled by the PRIS (Prioritize Secure exceptions) bit in
AIRCR. If this bit is set to 1 (Enabled), Non-Secure exceptions are de-prioritized. In the FSP configurator, the
configuration for this bit is:

• Properties of BSP tab > RAxxx Family > Security > Exceptions > Prioritize Secure exceptions

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 12 of 38
Mar.23.22

Figure 3.6 Settings of exception for RA-CM33 devices

3.2.1.3 Configure the Reset Interrupt Request for peripherals
TZF and some peripherals like WDT have options to cause Non-Maskable Interrupt request or Reset output
when an exception occurs. For peripherals, most options can be configured in peripheral module driver
properties in the Stacks tab. For TZF, this can be configured by the following settings in the BSP tab (Figure
3.7).

• Properties of BSP tab > RAxxx Family > Security > Exceptions > Exception Response

Figure 3.7 Settings of exception response for TZF

3.2.2 How to implement a user exception handler
As shown in Section 3.1.1, FSP’s BSP applies the Default_Handler() function to each exception
handler, other than the NMI handler, by using weak symbols. These exception handlers can be overwritten to
a user-defined exception handler by non-weak definition.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 13 of 38
Mar.23.22

The following shows the example of definition for user HardFault handler.

void HardFault_Handler(void);
void HardFault_Handler(void){
 …
}

3.3 Notes
RA-CM33 implements some security features such as a TrustZone® technology (Armv8-M Security
Extension) and DLM (Device Lifecycle Management). These features enable a more secure application and
allow for a more secure software development. When an exception occurs, the processor may call a secure
exception handler depending on the security settings, but Non-Secure applications may not be able to detect
the state. A Secure application may want to provide a user notification for a Non-Secure application.

3.3.1 TrustZone® technology
Arm® TrustZone® technology divides the system and the application into Secure and Non-Secure domains.
Secure applications can access both Secure and Non-Secure memory and resources. Non-Secure code can
access Non-Secure memory and resources, as well as Secure resources through a set of so-called veneers
located in the Non-Secure Callable (NSC) region. When developing applications using DLM, you need to be
aware of accessible areas by TrustZone® technology.

Note: For the application project with the FSP’s Flat Project type, the entire project will be in the Secure
domain except for the EDMAC RAM buffers.

3.3.2 Device Lifecycle Management
RA-CM33 devices provide Device Lifecycle Management (DLM) that allows users to limit the area that can
be accessed from the debug interface and serial programming interfaces. By changing the level of this
feature to the next stage, application developers can restrict program code reads from debug interface and
serial programming interfaces. When developing an application using DLM, users need to be aware of how
DLM works and the current status (Table 3.1). Please refer to MCU’s Hardware User’s Manual for more
information.

Table 3.1. DLM state in software development stage

Lifecycle Debug level Serial programming
SSD
(Secure Software Development)

Allows the debug connection
Can access all memories and
peripherals

Available
Can program/erase/read all
code/data flash area

NSECSD
(Non-Secure Software Development)

Allows the debug connection
Can access only Non-Secure
memory regions and
peripherals

Available
Can program/erase/read only
Non-Secure code/data flash
area

4. Debugging exception events
This chapter provides debugging methods for exception events that have occurred. RA family devices
provide a variety of debugging environments such as Renesas e2 studio IDE and partner tools. You can use
these debugging environments to improve debugging efficiency.

When an exception occurs, it is important to determine the factor, location, and history of the exception event
to recognize that state. These can be acquired by checking the related registers and tracing the program
execution.

• Confirm the fault related registers
Determine the factors by checking the related fault state register, and the location of the root cause by
checking the CPU general registers that have been retracted into current stack memory.

• Tracing the program execution
Determine the history of the faults by tracing their execution.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 14 of 38
Mar.23.22

4.1 Confirming the fault status
Recognize the fault status using the e2 studio view functions or partner tools.

4.1.1 View function on Renesas e2 studio IDE
The e2 studio IDE provides various view functions to visualize the state of the MCU. Refer to Renesas e2
studio 2021-04 or higher User’s Manual: Quick Start Guide (R20UT4989) for more details and usage
instructions.

• Fault Status view
The Fault Status view displays the related registers with the fault condition and the CPU general
registers that have been retracted into stack memory (Figure 4.1.).

• Registers view
The Registers view displays information about the general registers in the CPU core.

• Memory view
The Memory view allows users to display and edit the memory. That can be used to check stack
memory.

• Expressions view
The Expressions view allows users to monitor the value of global variables, static variables, or local
variables that stored in the memory. That can be used to check the current value of the user buffer.

Note: This figure shows the fault status when a division-by-zero error occurs and the UsageFault is disabled.

Figure 4.1. Fault Status view on e2 studio IDE

4.1.2 Partners tools
IAR Embedded Workbench for ARM and Arm® Keil® MDK provide visibility into fault-related status
information for RA devices. Figure 4.2 shows an example of the Fault exception viewer window that

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 15 of 38
Mar.23.22

displays information on the most recent fault exception on the IAR EW for ARM. Please refer to partner tool
documentation for more information.

Note: This figure shows the fault status when a dividion-by-zero error occurs.

Figure 4.2 Fault exception viewer window on the IAR EW for ARM

4.2 Tracing the exception
By tracing the program execution, the history of faults can be recognized.

• Tracing the program execution with Arm® CoreSight trace technology (ETM/SWV trace)
• Tracing the program execution without Processor Core Trace feature

4.2.1 Use of Arm® CoreSight trace
Arm® CoreSight technology provides hardware tracing feature such as ETM (Embedded Trace Macrocell)
and SWV (Serial Wire Viewer). Using these tracing functions, we can understand the operation of a
processor without affecting user program execution. These tracing functions are available for RA-CM4 and
RA-CM33 devices.

• ETM
ETM is a real-time trace module providing all the executed instructions and data tracing of a processor. It
requires 4 wires and is an event -riven trace.

• SWV
SWV provides trace capabilities such as display of reads, writes, exceptions, PC Samples, and printf. It
is single wire and is a periodic polling trace.

Note: Renesas e2 studio IDE doesn’t support ETM trace. We recommended that you use partner tools if you

use the ETM trace.

Note: Renesas kits implement the ETM trace interface, but the on-board debugger doesn’t support ETM
trace. Additional hardware such as Segger J-Trace are required.

4.2.2 Use of e2 studio Trace view
The e2 studio IDE provides the program tracing function Trace view that can trace the program execution
flow through the debugger. The function can be used without additional hardware and software. Therefore,
the Trace view can be an effective tool for discovering root causes.

Refer to “enesas e2 studio 2021-04 or higher User’s Manual: Quick Start Guide (R20UT4989) for more
details and usage instructions.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 16 of 38
Mar.23.22

Note: This figure shows the fault status when a dividion-by-zero error occurs.

Figure 4.3. Trace view on e2 studio IDE

5. Demonstration
This chapter explains the sample application that demonstrates an exception handling flow for multiple
possible faults.

5.1 Functional specifications
The sample application implements the following functions.

• Illegal operation attempt function
This function provides some options for attempting the illegal operation. Table 5.1 shows the available
options. After the MCU starts, users can select the options by inputting the value on RTT Viewer.

• Example exception handling function
This function implements the processing flow to identify and clear the slave TZF error as shown in
section 2.2. When faults are occurred, this function saves the fault status event, clears the status
flag, and acquires the last execution program counter. The fault status register values saved in this
function are as shown in Table 1.2. The saved fault status will be output to RTT Viewer after system
reset.
Note: The software reset can be enabled by defining the ENABLED_SOFTWARE_RESET macro. If the
macro is defined, the system executes software reset after exception operation, otherwise stop the
program by breakpoint instruction.
Note: For EK-RA6M5 projects that use Secure/Non-Secure project types, by default, the acquired fault
status events are stored in a Non-Secure region memory buffer for both Secure and Non-Secure
exceptions.

• LED Blinky function (For confirming the CPU is running under no-fault)
This function toggles a LED for a test purpose. When LED blinks, that means the MCU is running fine.
When it stopped, exception(s) have occurred.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 17 of 38
Mar.23.22

Table 5.1. Available input options on RTT Viewer

RTT
Viewer
Input

Action Available exceptions on target MCU kits

EK-RA6M3
(RA-CM4
device)
Flat project

EK-RA2E1
(RA-CM23
device)
Flat project

EK-RA6M5
(RA-CM33
device)
Flat project

EK-RA6M5
(RA-CM33
device)
Secure/Non-
Secure
project

“1” WDT underflow ✓
NMI

✓
NMI

✓
NMI

✓
NMI

“2” Stack overflow ✓
NMI

✓
NMI

✓
UsageFault

✓
UsageFault

“3” Execute instruction from illegal
region

✓
MemManage

✓
HardFault

✓
MemManage

✓
MemManage

“4” Divide by zero ✓
UsageFault

- ✓
UsageFault

✓
UsageFault

“5” Access Secure attribute memory
from Non-Secure code

- - - ✓
SecureFault

“6” Access Secure attribute peripheral
register from Non-Secure code

- - - ✓
NMI, BusFault

“7” Access Secure attribute peripheral
register from Non-Secure code via
NSC

- - - ✓
(No fault)

“10” Clear the fault status buffer ✓ ✓ ✓ ✓

Note. “✓”: Available, “-”: Not available.

5.2 Description of the application project
Table 5.2 describes the sample applications in the application project (zip file). The projects can be
downloaded from the Renesas web site.

Table 5.2. Sample Projects

Project Name Description
Exception_Handling_Example_EK_RA6M3_Flat The sample application with Flat project type for EK-

RA6M3 kit
Exception_Handling_Example_EK_RA2E1_Flat The sample application with Flat project type for EK-

RA2E1 kit
Exception_Handling_Example_EK_RA6M5_Flat The sample application with Flat project type for EK-

RA6M5 kit
Exception_Handling_Example_EK_RA6M5_NS
Exception_Handling_Example_EK_RA6M5_S

The sample applications with Secure/Non-Secure
project type for EK-RA6M5 kit

The files in Table 5.3 from this application project serve as a reference.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 18 of 38
Mar.23.22

Table 5.3. Files used in application project

File name Purpose
src/hal_entry.c Contains main application call
src/app_main.c Contains data structures and functions used in main

application
src/app_common.c Contains functions used for the LED Blinky function and Illegal

operation attempting function
src/app_common.h Accompanying header for exposing functionality provided by

app_common.c
src/app_message_data.h Contains macros to output messages and register descriptions

to RTT Viewer
src/user_exception_handler.c Contains data structures and functions used in example

exception handling function
src/user_exception_handler.h Accompanying header for exposing functionality provided by

user_exception_handler.c
src/user_nmi_handler.c Contains functions used in exception handling function
src/user_nmi_handler.h Accompanying header for exposing functionality provided by

user_nmi_handler.c
src/SEGGER_RTT/* Implementation of SEGGER real-time transfer (RTT) which

allows real-time communication on targets which support
debugger memory accesses while the CPU is running

src/rtt_common_utils.h Contains macros, data structures, and functions commonly
used across the project

5.3 Used peripheral modules
This application uses the following peripheral modules.

 GPT (General PWM Timer) channel 0: Generate periodic interrupt for the LED toggling. For EK-RA6M5
Secure/Non-Secure projects, the GPT0’s security attribute is set to Secure.

 WDT (WatchDog Timer): Generate NMI interrupt when underflow event has occurred.

5.4 User interface
Table 5.4 and Figure 5.1. show the pins used for user interfaces.

Table 5.4. Used pins and connectors

User Interface EK-RA6M3 Kit EK-RA2E1 Kit EK-RA6M5 Kit
LED1 P403 P915 P006
PC connector J10 J10 J10

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 19 of 38
Mar.23.22

Figure 5.1. The position of used LED and connector

5.5 Overall algorithms
Figure 5.2 and Figure 5.3 shows the overall algorithms of the sample application.

For EK-RA6M3 Flat project, EK-RA2E1 Flat project and EK-RA6M5 Flat project, please refer to Figure 5.2.

For EK-RA6M5 Secure/Non-Secure project, please refer to Figure 5.3.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 20 of 38
Mar.23.22

Figure 5.2 Overall algorithm of sample application (EK-RA6M3 Flat project, EK-RA2E1 Flat project
and EK-RA6M5 Flat project

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 21 of 38
Mar.23.22

Figure 5.3 Overall algorithm of sample application (EK-RA6M5 Secure/Non-Secure project)

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 22 of 38
Mar.23.22

5.6 Checking procedure
The following steps show the checking procedure of the sample application.

1. Import and build a project. See section 5.6.1.
2. Download program and start debugging. See section 5.6.2.
3. Start the program tracing. See section 5.6.3
4. Press the Resume button twice in e2 studio IDE.
5. Connect to the J-Link RTT Viewer. See section 5.6.4.
6. Enter the user selection to J-Link RTT Viewer and Check the behavior. See section 5.8 for more

information on this demonstration.

5.6.1 Import and build a project
To build an application project with e2 studio ISDE, proceed as follows:

1. Launch e2 studio IDE.
2. Select any workspace in Workspace launcher.
3. Close Welcome window.
4. Select a File > Import.
5. Select Existing Projects into Workspace from the Import dialog box.
6. Select archive file.
7. Select the project you want to import and click Finish.

Note: For the EK-RA6M5 Secure/Non-Secure projects, please import both the Non-Secure (NS) project
and the Secure (S) project.

8. Clicking Generate Project Content in the Configurator window
9. Select Project > Build Project.

Note: For the EK-RA6M5 Secure/Non-Secure projects, the Secure project
(Exception_Handling_Example_EK_RA6M5_S) must be built at first. Then build the Non-secure project
(Exception_Handling_Example_EK_RA6M5_NS).

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 23 of 38
Mar.23.22

5.6.2 Download program and debug
To download an application project and start debugging, proceed as follows.

1. Connect the J10 connector on each kit and PC with a micro-USB cable.
2. Right-click the project and open Debug Configuration… from Debug As

Note: For EK-RA6M5 Secure/Non-Secure projects, open the Debug Configuration of the Non-Secure
project (Exception_Handling_Example_EK_RA6M5_NS) and make sure that both the secure project
program and the Non-Secure project program are set to be downloaded (Figure 5.4.)

Figure 5.4. Debug Configuration on EK-RA6M5 Secure/Non-Secure projects
3. Click Debug.

5.6.3 Start the program tracing
To trace the program execution, this demonstration uses the Trace view function of e2 studio IDE. The Trace
view is turned off by default. It must be turned on before the target system starts. The Trace view can be
turned on as follows.

1. Open the Trace view window.
2. Press the Turn Trace On/Off button at the right-top in the window.

Figure 5.5. Trace view window

5.6.4 Connect to J-Link RTT Viewer
The sample application uses the Segger J-Link RTT Viewer for inputting/outputting data. The J-Link RTT
Viewer can be connected as follows.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 24 of 38
Mar.23.22

1. Launch J-Link RTT Viewer.
2. Configure the settings in Configuration page as follows.

a. EK-RA6M3 Flat project:
Specify Target Device：R7FA6M3AH
RTT Control Block：Auto Detection

b. EK-RA2E1 Flat project:
Specify Target Device：R7FA2E1A9
RTT Control Block：Auto Detection

c. EK-RA6M5 Flat project and Secure/Non-Secure projects:
Specify Target Device：R7FA6M5BH
RTT Control Block：Search Range (Enter “0x20000000 0x10000” in input box)

3. Select OK.
4. Configure the Sending settings to Send on Enter.

Figure 5.6 The Sending function on RTT Viewer

After the program starts, if the connection is successful, a startup message (project banner) can be shown as
following Figure 5.7 - Figure 5.9.

Figure 5.7 Startup message on J-Link RTT Viewer (EK-RA6M3 Flat project and EK-RA6M5 Flat
project)

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 25 of 38
Mar.23.22

Figure 5.8 Startup message on J-Link RTT Viewer (EK-RA2E1 Flat project)

Figure 5.9 Startup message on J-Link RTT Viewer (EK-RA6M5 Secure/Non-Secure project)

5.7 Expected Results
This section shows the expected results of actions taken by user input. The results shown in this section are
examples of running the application project attached to this application note.

For EK-RA6M3 Flat project, please refer to Table 5.5.

For EK-RA2E1 Flat project, please refer to Table 5.6.

For EK-RA6M5 Flat project, please refer to Table 5.7.

For EK-RA6M5 Secure/Non-Secure project, please refer to Table 5.8.

Note: The program address in results will be changed if you change the configurations

Note: The results in RTT Viewer are displayed after the target system restarts, except for successful
messages.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 26 of 38
Mar.23.22

Table 5.5. Expected result on the EK-RA6M3 flat project

RTT Viewer Input
and Action Expected Result
“1”
WDT underflow

• NMI has occurred.
• An exception occurred in bsp_prv_software_delay_loop() in

bsp_delay.c
• The address that the exception occurs in is not recognized from the buffer

data because this sample application acquires the last program counter only
when the fault occurs.

• The results in RTT Viewer are as follows.

“2”
Stack overflow

• NMI has occurred.
• An exception occurred at the address 0xCB8 (Line 159 in common.c)
• The address that the exception occurs in is not recognized from the buffer

data because this sample application acquires the last program counter only
when the fault occurs.

• The results in RTT Viewer are as follows.

“3”
Execute instruction
from illegal region

• MemManage exception has occurred.
• An exception occurred at the address 0xCB4 (Line 147 in app_common.c)
• The address that the exception occurs in is not recognized from the stack

memory that stores the last program counter because this is the program
execution error. The above address can be found from the results of the
program tracing.

• The results in RTT Viewer are as follows.
•
•
•

“4”
Divide by zero

 UsageFault exception has occurred.
 An exception occurred at the address 0xCA0 (Line 133 in app_common.c)
 The results in RTT Viewer are as follows.

\

“10”
Clear the fault status
buffer

 No exception occurred.
 The results in RTT Viewer are as follows.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 27 of 38
Mar.23.22

Table 5.6. Expected result on the EK-RA2E1 flat project

RTT Viewer Input and
Action Expected Result
“1”
WDT underflow

• NMI has occurred.
• An exception occurred in bsp_prv_software_delay_loop() in

bsp_delay.c
• The address that the exception occurs in is not recognized from the buffer

data because this sample application acquires the last program counter only
when the fault occurs.

• The results in RTT Viewer are as follows.

“2”
Stack overflow

• NMI has occurred.
• An exception occurred at the address 0xD54 (Line 159 in common.c)
• The address that the exception occurs in is not recognized from the buffer

data because this sample application acquires the last program counter only
when the fault occurs.

• The results in RTT Viewer are as follows.

“3”
Execute instruction
from illegal region

• HardFault exception has occurred.
• An exception occurred at the address 0xD48 (Line 147 in app_common.c)
• The address that the exception occurs in is not recognized from the stack

memory that stores the last program counter because this is the program
execution error. The above address can be found from the results of the
program tracing.

• The results in RTT Viewer are as follows.
•

“10”
Clear the fault status
buffer

• No exception occurred.
• The results in RTT Viewer are as follows.
•

Table 5.7. Expected result on the EK-RA6M5 Flat project

RTT Viewer Input and
Action Expected Result
“1”
WDT underflow

• NMI has occurred.
• An exception occurred in bsp_prv_software_delay_loop() in

bsp_delay.c
• The address that the exception occurs in is not recognized from the buffer

data because this sample application acquires the last program counter only
when the fault occurs.

• The results in RTT Viewer are as follows.

“2”
Stack overflow

• UsageFault exception has occurred.
• An exception occurred at the address 0x994 (Line 159 in app_common.c)
• The results in RTT Viewer are as follows.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 28 of 38
Mar.23.22

RTT Viewer Input and
Action Expected Result
“3”
Execute instruction
from illegal region

• MemManage exception has occurred.
• An exception occurred at the address 0x988 (Line 147 in app_common.c)
• The address that the exception occurs in is not recognized from the stack

memory that stores the last program counter because this is the program
execution error. The above address can be found from the results of the
program tracing.

• The results in RTT Viewer are as follows.

“4”
Divide by zero

• UsageFault exception has occurred.
• An exception occurred at the address 0x978 (Line 133 in app_common.c)
• The results in RTT Viewer are as follows.

“10”
Clear the fault status
buffer

• No exception occurred.
• The results in RTT Viewer are as follows.

Table 5.8. Expected Result on the EK-RA6M5 Secure/Non-Secure project

RTT Viewer Input
and Action Expected Result
“1”
WDT underflow

• Secure world NMI has occurred.
• An exception occurred in bsp_prv_software_delay_loop() in

bsp_delay.c
• The address that the exception occurs in is not recognized from the buffer data

because this sample application acquires the last program counter only when
the fault occurs.

• The results in RTT Viewer are as follows.

“2”
Stack overflow

• Non-Secure world UsageFault exception has occurred.
• An exception occurred at the address 0x8834 (Line 159 in app_common.c)
• The results in RTT Viewer are as follows.

“3”
Execute instruction
from illegal region

• Non-Secure world MemManage exception has occurred.
• An exception occurred at the address 0x882C (Line 147 in app_common.c)
• The address that the exception occurs in is not recognized from the stack

memory that stores the last program counter because this is the program
execution error. The above address can be found from the results of the
program tracing.

• The results in RTT Viewer are as follows.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 29 of 38
Mar.23.22

RTT Viewer Input
and Action Expected Result
“4”
Divide by zero

• Non-Secure world UsageFault exception has occurred.
• An exception occurred at the address 0x8818 (Line 133 in app_common.c)
• The results in RTT Viewer are as follows.

“5”
Access Secure
attribute memory
from Non-Secure
code

• Secure world SecureFault exception has occurred.
• An exception occurred at the address 0x884E (Line 174 in app_common.c)
• The results in RTT Viewer are as follows.

“6”
Access Secure
attribute peripheral
register from Non-
Secure code

• Secure world NMI and BudFault exception has occurred.
• An exception occurred at the address 0x8860 (Line 190 in app_common.c)
• The results in RTT Viewer are as follows.

“7”
Access Secure
attribute peripheral
register from Non-
Secure code via
NSC

• No exception occurred.
• The results in RTT Viewer are as follows.

“10”
Clear the fault
status buffer

• No exception occurred.
• The results in RTT Viewer are as follows.

5.8 Demonstration
This section demonstrates how to determine the root cause from the related registers and the program
tracing results, for the EK-RA6M5 Secure/Non-Secure projects and the following configurations.

Configurations Selected value
Software reset option in user_exception_handler.h Not enabled
RA6M5 Family → Security → Exceptions → Exception
Response

Non-Maskable Interrupt

RA6M5 Family → Security → Exceptions →BusFault,
HardFault, and NMI Target

Secure State

DLM Stage SSD (Secure Software Development)

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 30 of 38
Mar.23.22

5.8.1 Demo 1: Attempt Stack Overflow
Demo 1 shows the demonstration result when attempting a stack overflow.

1. Run the MCU. LED1 blinks.
2. Enter 2 to the input box of the RTT Viewer.
3. System attempts to cause the stack overflow. Then, the system will stop in the NS project

UsageFault_handler().
4. Confirm the saved fault status in the buffer to determine the fault factor.

Figure 5.10. Saved Fault Status
5. Confirm the stack pointer to determine the location of the root cause

For RA-CM4 and RA-CM23 project, it can be confirmed from the value “msp” (main stack pointer) or
“psp” (process stack pointer) on Registers view. For RA-CM33 Secure/Non-Secure projects, the stack
pointer separates between Secure and Non-Secure state. Therefore, we should check four stack
memories pointed to by msp_s (main stack pointer in secure world), the msp_ns (main stack pointer in
Non-Secure world), psp_s (process stack pointer in Secure world) and psp_ns (process stack pointer in
Non-Secure world). For an RA-CM33 Flat project, the Non-Secure stack pointer can be ignored since the
program is always running in Secure state.
The stack pointer containing the last program counter can be recognized by the EXC_RETURN value in
current link register. Please refer to the section “Exception return” in the processor core’s generic user
guide for more details.
The following figure shows the demonstration that finds the last PC from the stack memory msp_ns
points to using Memory view.

Figure 5.11. Finding the last PC from msp_ns

Last PC (Offset 0x18) is 0x0000_8834

Irq_event: IRQ_EVENT_USAGEFAULT.
It means UsageFault has occurred

SCB_UFSR: 0x10 (STKOF bit is raised).
It means a stack overflow has occurred.

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 31 of 38
Mar.23.22

The sample application also implements the last program counter acquisition. So, we can find that result
in the buffer as follows.

Figure 5.12. Finding the Last PC from buffer
From the above results, we found the last executed program address (0x0000_8834).

6. Determine the source code from the last executed program address.
Open the Disassembly view and enter the last program counter address 0x8834 to the input box in top
of this view. The view will disassemble the program and highlight the related code as follows.

Figure 5.13. Disassembling code
You can find the source code and that line number by scrolling up from the highlighted line. Also, when
you hover the mouse cursor on the line number of the source code, you can find the file name such as
\Exception_Handling_Example_EK_RA6M5_NS\sec\app_common.c.

Figure 5.14. Finding the file name
Note: If you cannot see the source code, press the Show Source button in right-top in this view.

From above, we can find the root cause of the fault that occurred.

• Factor: a stack pointer overflow
• Location: the program address 0x0000_8834 (Line 159 in app_common.c file)

last_program_counter: 0x8834

\Exception_Handling_Example_EK_RA6M5_NS\sec\app_common.c

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 32 of 38
Mar.23.22

Also, after the system is restarted by pressing the Reset button and Resume button on e2 studio IDE, the
details of the saved fault status are displayed on RTT viewer as follows.

Figure 5.15. Saved fault status after restart

5.8.2 Demo 2: Attempt to execute instruction from illegal region
Demo 2 shows the demonstration result when attempting an execution from an illegal region.

1. Run the MCU. LED1 blinks.
2. Enter 3 to the input box of the RTT Viewer.
3. System attempts to execute instruction from an illegal region (0xE0000000). Then the system will stop in

the NS project’s MemManage_handler().
4. Confirm the saved fault status in the buffer to determine the fault factor.

Figure 5.16. Determine fault factor
5. Confirm the stack pointer to determine the location of root cause

From the following results, we found the last executed program address (0xE000_0000) from the buffer.
But its address is out of the flash area. Therefore, we cannot get the information from the stack memory.

Figure 5.17. Program counter outside flash area

irq_event: IRQ_EVENT_MEMMANAGE.
Means MemManage fault has occurred.

SCB_MMSR: 0x1 (IACCVIOL bit is
raised).
Means the processor attempted an
instruction fetch from a location that does
not permit execution.

last_program_counter: 0xE000_0000

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 33 of 38
Mar.23.22

6. Check the tracing result.
When the MCU stops, the Trace view will show the tracing result in order of the execution history.
By default, only the executed program address is displayed. Selecting the Source button and
Disassembly button is recommended to easily understand the related program.
We can find the exception entry point by scrolling the line. In the below example, the fault has occurred
after the record number 89. Also, from the displayed results, we find the related source code, the file
name (app_common.c), and line number (Line 147).

Figure 5.18. Checking trace results
From the above, we can find the root cause of the fault that occurred.

• Factor: a processor attempted an execution from an unpermitted location
• Location: the program address 0x0000_882C (Line.147 in app_common.c file)

Also, after pressing the Reset button and Resume button on e2 studio IDE has restarted the system, the
details of the saved fault status are displayed on RTT viewer as follows.

Figure 5.19. Saved fault status displayed on RTT viewer

5.8.3 Demo 3: Attempt Secure peripheral access from Non-Secure code
The Demo 3 shows the demonstration result when attempting a secure peripheral access from Non-Secure
code without NSC call.

1. Run the MCU. LED1 blinks.
2. Enter 6 to the input box of the RTT Viewer.
3. System attempts a Secure peripheral access from Non-Secure code. Then the system will stop in the S

project’s BusFault_handler().
4. Confirm the status of the fault status buffer.

Last execution program

Fault occurs and call
MemManage_Hander()

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 34 of 38
Mar.23.22

Figure 5.20. Status of the fault status buffer
5. Confirm the stack pointer to determine the location of root cause.

From the following results, we found the last executed program address (0x0000_8860) from the buffer.

Figure 5.21. Finding the last PC from buffer

irq_event: IRQ_EVENT_BUSFAULT.
Means MemManage fault has occurred.

nmi_event: NMI_EVENT_TRUSTZONE.
Means NMI TrustZone event has
occurred.

 bus_access_err_event:
BUS_ACCESS_ERR_SLAVE_TZF_SYS
TEMBUS.
Means Slave TZF system bus err that
accessed through system bus has
occurred.

SCB_BFSR: 0x82 (PRECISERR bit and
BFARVALID bit are raised).

BUS1ERRSTAT: 0x2 (STERRSTAT bit is
raised).
Means the slave TrustZone Filter error is
occurred.

BUS_BUSTZF_n_ERRADD: 0x40169064

SCB_BFAR: 0x40169064

BUS_BUSTZF_n_ERRRW: 0x0

last_program_counter: 0x8860

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 35 of 38
Mar.23.22

6. Determine the source code from the last program counter address.
From the following results, we found the source code (Line 190 in app_common.c).

Figure 5.22. Determine the source file
From the above, we can find the root cause of the fault that occurred.

• Factor: illegal access from the Non-Secure world to a Secure attributed peripheral register (0x40169064)
• Location: the program address 0x0000_8860 (Line 190 in app_common.c file)

Also, after pressing the Reset button and Resume button on the e2 studio IDE has restarted the system , the
details of the saved fault status are displayed on RTT viewer as follows.

Figure 5.23. Saved fault status displayed on RTT viewer

5.9 Using example exception handler in your projects
This application note provides an example exception handler. You can apply it to your projects in the
following manner.

1. Copy the following files to your project.
 user_exception_handler.c
 user_exception_hanlder.h

2. Add the following code to your project to enable the example exception handler.

#include "user_exception_handler.h" ← Include directive
fault_status_t <user-defined buffer name>; ← Definition of user buffer
…
void hal_entry{
f_clear_fault_status_buffer(&<user-defined buffer name>); ← Initialize user
buffer
f_set_fault_status_buffer(&<user-defined buffer name>); ← Set user buffer
pointer to program
f_enable_additional_faults(); ← Enable additional faults
…
}

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 36 of 38
Mar.23.22

6. References
• Renesas FSP User's Manual renesas.github.io/fsp
• Renesas RA MCU datasheet Select the relevant MCUs from the www.renesas.com/ra
• Example Projects github.com/renesas/ra-fsp-examples

• Arm® Cortex®-M4 Devices Generic User Guide: https://developer.arm.com/documentation/dui0553
• Arm® Cortex®-M23 Devices Generic User Guide: https://developer.arm.com/documentation/dui1095
• Arm® Cortex®-M33 Devices Generic User Guide: https://developer.arm.com/documentation/100235

https://renesas.github.io/fsp
https://www.renesas.com/ra
https://github.com/renesas/ra-fsp-examples
https://developer.arm.com/documentation/dui0553
https://developer.arm.com/documentation/dui1095
https://developer.arm.com/documentation/100235

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 37 of 38
Mar.23.22

Website and Support
Visit the following URLs to learn about key elements of the RA family, download components and related
documentation, and get support.

RA Product Information renesas.com/ra
RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP

Renesas Support renesas.com/support

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family Exception Handling

R11AN0576EJ0100 Rev.1.00 Page 38 of 38
Mar.23.22

Revision History

Rev. Date
Description
Page Summary

1.00 Mar.23.22 — First release document

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states

of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in

terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Exception model on Arm® Cortex®-M processor core
	1.1 Exception types and handlers
	1.2 Fault status registers

	2. Bus Error on RA-CM33 devices
	2.1 Overview of Bus Error
	2.1.1 Slave TrustZone Filter

	2.2 Bus error processing

	3. User-Defined Exception Handler
	3.1 Default implementation
	3.1.1 Exception Handler Definition
	3.1.1.1 GCC compiler and Arm® compiler
	3.1.1.2 IAR compiler

	3.1.2 Default handler
	3.1.3 NMI handler

	3.2 How to add user-defined exception handler
	3.2.1 How to configure NMI handler and faults
	3.2.1.1 Enable the additional exceptions
	3.2.1.2 Configure the exception for RA-CM33 devices
	3.2.1.3 Configure the Reset Interrupt Request for peripherals

	3.2.2 How to implement a user exception handler

	3.3 Notes
	3.3.1 TrustZone® technology
	3.3.2 Device Lifecycle Management

	4. Debugging exception events
	4.1 Confirming the fault status
	4.1.1 View function on Renesas e2 studio IDE
	4.1.2 Partners tools

	4.2 Tracing the exception
	4.2.1 Use of Arm® CoreSight trace
	4.2.2 Use of e2 studio Trace view

	5. Demonstration
	5.1 Functional specifications
	5.2 Description of the application project
	5.3 Used peripheral modules
	5.4 User interface
	5.5 Overall algorithms
	5.6 Checking procedure
	5.6.1 Import and build a project
	5.6.2 Download program and debug
	5.6.3 Start the program tracing
	5.6.4 Connect to J-Link RTT Viewer

	5.7 Expected Results
	5.8 Demonstration
	5.8.1 Demo 1: Attempt Stack Overflow
	5.8.2 Demo 2: Attempt to execute instruction from illegal region
	5.8.3 Demo 3: Attempt Secure peripheral access from Non-Secure code

	5.9 Using example exception handler in your projects

	6. References
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

