LENESANS Application Note

Renesas RA Family
RAG6 Secure Firmware Update using MCUboot and
Flash Dual Bank

Introduction

MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software update. MCUboot is operating system and hardware independent and relies on hardware porting
layers from the operating system it works with. The Renesas Flexible Software Package (FSP) integrates an
MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot Module to create a
Root of Trust (RoT) for the system and perform secure booting and fail-safe application updates.

MCUboot is maintained by Linaro in the GitHub mcu-tools page https://github.com/mcu-tools/mcuboot. There
is a \docs folder that holds the documentation for MCUboot in .md file format. This application note refers to
the above-mentioned documents wherever possible and is intended to provide additional information that is
related to using the Renesas FSP MCUboot Module.

For RA Family RA6M4, RA6M5, and RAGE1 MCU Groups, the internal code flash has a dual bank feature,
which can be used to simplify and accelerate firmware update. This dual bank feature is supported from FSP
v3.6.0. This application note demonstrates secure bootloader design using this dual bank feature.

Example projects using the EK-RA6M4 evaluation kit are provided in this application project. In addition,
steps for how to master an application to use with the bootloader and how to update to a new application are
provided. Users can follow these steps to recreate the reference bootloader and link the example application
projects included in this application project to use the bootloader.

If you are interested in secure bootloader design using the MCUboot module with RA6 internal flash in linear
mode, reference application project RL1IAN0497.

Required Resources
Development tools and software

e The e? studio ISDE v2022-10 or greater
e Renesas Flexible Software Package (FSP) v4.0.0 or later
e SEGGER J-link® USB driver

The above three software components: the FSP, J-Link USB drivers and e? studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

e Python v3.9 or later- https://www.python.org/downloads/

e Renesas Flash Programming (RFP) v3.10 or later
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui

Hardware

o EK-RA6M4, Evaluation Kit for RA6M4 MCU Group http://www.renesas.com/ra/ek-rabm4
e Workstation running Windows® 10

e Two USB device cables (type-A male to micro-B male)

e One USBto TTL Serial 3.3-V UART Converter

Prerequisites and Intended Audience

Users of this application note and project should have some experience with the Renesas e? studio. Users
should read the MCUboot Port section of the FSP User’'s Manual as well as the MCU Hardware User’s
manual Flash Memory section prior to working with this application project. Users should also have some
knowledge of cryptography. Prior knowledge of Python usage is also helpful.

The intended audience includes product developers, product manufacturers, product support, or end users
who are involved with designing application systems involving usage of a secure bootloader.

R11ANO570EUO0111 Rev.1.11 Page 1 of 51
Nov.23.22 RENESAS

https://github.com/mcu-tools/mcuboot
http://www.renesas.com/fsp
https://www.python.org/downloads/
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
http://www.renesas.com/ra/ek-ra6m4

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

Using this Application Note

Section 1 is an overview of the code flash dual bank feature of RA6M4 and RA6M5 MCUSs. Users who are
familiar with the MCU dual bank features can skip this section.

Section 2 covers the general flow of architecting a system using the FSP MCUboot module. For example,
memory configuration for a code flash dual bank-based bootloader using MCUboot is introduced in this
section.

Section 3 covers the introduction to the example projects included in this application project. User should
review this section to understand how to use the example projects.

Section 4 covers the steps to create a secure bootloader using the code flash dual bank feature and
MCUboot module. Users who will customize the bootloader should review this section to understand how the
bootloader is structured.

Section 5 provides the steps to configure and sign an application to use the bootloader created in section 4.
The included example projects are used in this section.

Section 6 provides the instructions on how to debug and boot the primary application project and update to a
new image. Users who will use the dual bank feature for the first time should review this section as it
includes information about:

e Debugging and booting the primary application
e Downloading a new image using the primary image downloader
e Booting the new image

Section 7 covers the production support of provisioning the new MCU with the bootloaders and the initial
application.

Section 8 provides instructions on how to run the included example projects. Users who are familiar with
bootloader design using MCUboot can go to this section for a quick evaluation of the included example
projects.

Contents

1. Code Flash Dual Bank FEAUIE...........uuuiiiiiiiiiiiiiiiiiiiteeieeieieeieieeee st asaeesnnannnnnanes 4
1.1 RA6M4 and RAG6E1 MCU Group Code Flash Configuration............cccuveevieiiiiiiiiiieee e 4
1.2 RA6M5 MCU Group Code Flash Configurationcocccuuiiiiieeisiiiiiiiiece e s ssireer e e e e e s senieeee e e e e 7
1.3 OPLON-SEING MEMIOIY ...ttt e e e ettt e e e e e s s bbb bt et e e e e e e aanbebeeeaeeeaaaanbbeseaaaeeasaanne 10
1.3.1 Code FIash BanK MOGE..........ueiiiiiiiiiiiie ittt e e e e ettt e e e e e e e sab bbb e e e e e e e e e annbbeeeeaaeeaaannes 11
1.3.2 Startup BANK SEIECTIONeieiiiii ettt e e e e sttt e e e e e e s aaab e b e e e e e e e e e annbbeeeeeaaeeaannes 11
R 20 T = - g1 S o USRS 12
1.3.4 Code Flash BIOCK PrOtECHONccuiiiieieiie ettt nn e 12
2. Using the Code Flash Dual Bank Feature with MCUbDOOt OVerviewccccoeevviieiiiiinnneenne. 13
2.1 MCUDOOt FUNCLIONANILIES OVEIVIEWociiiiiiiieiiiee ittt 13
2.2 Using MCUboot for Code Flash Dual Bank MOGE..........ccooiiiuiiiiiiee e cesteee e e ssinee e e e e e 14
2.2.1 Use Direct XIP Firmware Update MOOEccoccuuiiiiiee i iiciiiieie e e e s e sireee e e e e e s ssenteeee e e e s s snrnaeeeeeessnnnnes 14
2.2.2 Memory Configuration Overview with Dual Bank and MCUDOOLccccciiiiiiiiiee s 14
2.3 Designing Bootloader and Initial Primary Application OVEIVIEWeeeiiiiiiiiiiiiiiieee e 15
2.4 Migrating an Existing Linear Mode MCUbOOt Based SYSIEMcooiiuiiiiiiiieiiiiiiiiie e 15
3. Guidelines for Using the Example Projects INCluded...............uuuiiiiiiieee e 15
3.1 Example Projects With BOOHUOAAET..............eiiiiiiieiii et e e e e e e 16
R11ANO570EUO0111 Rev.1.11 Page 2 of 51

Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

3.2 Example Projects Without BOOIOAUET...........oeiiiiiiiiiiiici s e e e e e e e s s e e e e e e e e e nnnes 16
4. Creating the Bootloader Project using Code Flash Dual Bank Modecccccceeiiieeennnnnne, 16
4.1 Include the MCUboot Module in the Bootloader ProjeCtcccvviiiieeee e 16
4.2 Configure the Memory Configuration and Authentication Methodccccocveee i, 19
4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver...........ccccccciiiiiiiiiiiiieeeen 20
N Y Yo (o I g L= = ToTo) A @ To [IR UUTT TP PPRR 23
4.5 Compile the BOOIOAAET PrOJECT.eeiiieiiiii ettt e e e e s et e e e e e e e s nnb e eeaaae s 23
4.6 Configure the Python Signing ENVIFONMENTcieiiiiiiiiiieee et e e e e sreee e e e e e snnrnneeeae s 23
o A S (=T o= V= (o = oo (U T3 1o T ISV]] Lo o SRR 24
5. Configuring and Signing an ApPliCation PrOJECTuuuuiiiiiiiiiii s 27
5.1 Configure the Application Project to Use the BOOtIOAdEr...........cceveeiiiiiiiiiieie e 27
SIS o T a1 aTo Rt aTcIAY o] o] [Tot= o o 1N 0 0 =V - R PR 28
5.3 Preparation for ProdUCtioN SUPPOI.......c..uuiiiiiie it e e s s sttt e s e e e e s s s rae e e aeesssnenteeeeeeeessnnstereeeeeeesnnnnes 30
6. Booting the Primary Application and Updating to a New Imagecccveeeeiieevriiiiiiineee e, 32
6.1 Prepare a SECONAANY IMAQGE .. .uuuuiiiieeiiiitiiie e e e e s et e e e e s e ss e e e e e e s s sas e eereaeesaaasssteeeaeeesssnnsreneeeeeessnnnnes 32
6.2 SELUP the HAIAWAIEceii i e e e e e st e e e e e e s s ssa e e e e eeesannntsteeeeeeeessnnsteeeneeeesannnnes 35
6.3 ErasS@ the IMCU ...ttt oottt e e e e e o e kbbb e et e e e e e e e b bbbt eeaaeeaaaanbbeseaaeeeeaanne 35
6.3.1 Use the Renesas Flash Programmer ...ttt 36
6.3.2 Use the SEGGER J-FIaSh LItEccoiiiiiiiiiiii ittt e e e e e ae e e e e e e e anes 37
6.3.3 Use Renesas Device Partition MANAGETcccuuiiirieeiiiiiiiieeeeeeesesisireeeeeeesssnesreeeeeeesssnsssreeeeeessnnnns 38
6.4 Start the DEDUG SESSION ... e e e e s s s e e e e e s sa b e e e e e e e e s nrrreeeeeeeaannne 40
6.5 Program the New Application Using the Primary Application Downloader.............ccccccevviiiivieereeenninns 42
6.6 BOOt the NeW APPICALIONeeieiiiii ettt e et e e e e e e s ab bt et e e e e e e e snbbereeeaaeeaaanes 44
7. Production SUpport CONSIAEIAtIONSciiieeeiieeiiici e e e e e e e e e e e aaa e e e aaeeeanne 45
7.1 Protect the Bootloader using Flash BIOCK Prote€CHONccvvviiiiie e e e 45
7.2 Provision the Bootloaders and the Initial Application t0 MCUoooiiiiiiiiiiiiiiiie e a7
8. Compile and Exercise the Included Example Bootloader and Application Projects................ 47
8.1 Using USB as the DowWNIoad INtErfACEcueiiiiiiiiiiieii et e e e e e e e et re e e e e e e e e nnnes a7
8.2 Using the UART as the Download INtErfacCeuuiiiiiiiiiii et 48
O, REIEBIEINCES ...ttt s 49
10. WEDSItE AN SUPPOIT ..ceeieiiieiiiiieieee ettt 50
REVISION HISTOMY ... ittt nnnnnnes 51
R11ANO570EUO0111 Rev.1.11 Page 3 of 51

Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

1. Code Flash Dual Bank Feature

For RA6M4 and RA6M5 MCU groups, the internal flash memory can operate in linear mode or dual bank
mode. In linear mode, the code flash memory is used as one area. In dual bank mode, the code flash
memory is divided into two areas. In code flash dual bank mode, the bank swap function can be used to boot
into a new application for a system that includes a bootloader.

1.1 RA6M4 and RAGE1 MCU Group Code Flash Configuration

Using the 1-Mbyte product as an example, the code flash memory in linear mode for RA6M4 includes the
blocks shown in Figure 1.

Address
0x000F_FFFF ™
Block 37
(32 Kbytes)
0x000F_8000
0x0001_FFFF
Block 9
(32 Kbytes) > User area: 1 Mbytes
0x0001_8000
0x0001_7FFF
Block 8
(32 Kbytes)
0x0001_0000
0x0000_FFFF
0x0000_E000 Block 7 (8 Kbytes)
0x0000_3FFF
0x0000_2000 Block 1 (8 Kbytes)
0x0000_1FFF
0x0000_0000 Block 0 (8 Kbytes) .

Figure 1. RA6M4 and RAG6E1 Code Flash Memory in Linear Mode
Upper Bank Address in Code Flash Linear Mode

In code linear mode, the upper bank starting address is half of the code flash size. For example, for the 1-
Mbyte RA6M4 and RA6E1 MCU used in this example project, the starting address of the upper bank address
is 0x80000. The upper bank linear mode address is used when downloading the upper bank bootloader
using MCUboot in code flash dual bank mode.

Using the 1-Mbyte product as an example, the code flash memory in dual bank mode includes the blocks
shown in Figure 2.

R11ANO570EUO0111 Rev.1.11 Page 4 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

Address
D027 _FFFF

0x0027_8000

OxD021_FFFF

0=0021_8000
DxD021_7FFF

0=0021_0000
00020 _FFFF
0x0020_EDDO0

OxD0Z0_3FFF
00020_2000
0xD020_1FFF
00020_0000

OxD0D7_FFFF

0x0007_8000

OD0D1_FFFF

0=0001_8000
DxD001_7FFF

0=0001_0000
0x0000_FFFF
0x0000_EDDOO0

DxD00D_3FFF
0<00D0_2000
DxD000_1FFF
000D0_0000

Block B1
(32 Kbytes)

Block 79
(32 Kbytes)

Block 78
(32 Kbytes)

Black 77 (8 Kbytes)

Block 71 (8 Kbytes)

Block 70 {8 Kbytes)

Reserved area

Block 21
(32 Kbytes)

Block @
(32 Kbytes)

Block &
(32 Kbytes)

Block 7 (2 Kbytes)

Block 1 (8 Kbytes)

Block 0 (8 Kbytes)

Bank 1 when the
BAMKSEL.BAMNKSWP[2:0]
bits are 111k

Bank 0when the
BANKSEL BANKSWP[2:0]
bits are 000D

Bank 0 when the
BAMNKSEL.BAMNKSWP[2:0]
bits are 111k

Bank 1 when the
BAMNKSEL.BAMNKSWP[2:0]
bits are 000D

-

User area: 1 Mbytes
axcept reserved area

Figure 2. RA6M4 and RAG6E1 Code Flash Memory in Dual Bank Mode

R11ANO570EUO111 Rev.1.11

Nov.23.22

RENESAS

Page 5 of 51

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

Table 1 is a summary of the code flash blocks in linear and dual bank mode. The upper bank address in dual
bank mode is 0x200000 regardless of the code flash size. This address should be used with the application
image downloader.

Table 1. RA6M4 and RAGE1 Code Flash

Code Flash Range Address
Linear
0x0000_0000 to 0xO000F_FFFF

Product
1-Mbyte product

Dual

Lower side bank:
0x0000_0000 to 0x0007_FFFF
Upper side bank:
0x0020_0000 to 0x0027_FFFF
Lower side bank:
0x0000_0000 to 0x0005_FFFF
Upper side bank:
0x0020_0000 to 0x0025 FFFF
Lower side bank:
0x0000_0000 to 0x0003_FFFF
Upper side bank:
0x0020_0000 to 0x0023_FFFF

768-Kbytes product | 0x0000_0000 to 0x000B_FFFF

512 Kbytes product | 0x0000_0000 to 0x0007_FFFF

Figure 3 is the code flash block structure for the RA6M4 and RAGE1. The code flash erase and programming
minimum unit is the code flash block size. The block numbering scheme is used in the block protection

design.

1 MB product : 0x000F_FFFF
768 KB product : 0x000B_FFFF
512 KB preduct : 0x0007_FFFF

1 MB product : 0x000F_8000
768 KB product : 0x0008_8000
512 KB product : 0x0007_8000

1 MB product : Block3T (32KB)
768 KB product - Block29 (32KB)
512 KB product : Block21 (32KB)

Blockd (32KB)

1 MB

1 MB product :
768 KB product :
512 KB product :

1 MB product :
768 KB product :
512 KB product :

1 MB product :
768 KB product :
512 KB product :

product :
768 KB product :
512 KB product :

0x0027_FFFF
0x0025”FFFF
0x0023_FFFF

0x0027_8000
0x0025_8000
0x0023_8000

0x0021_8000

0x0021_0000
0x0020_EQ0O

0x0020_2000
0x0020_0000

0x0007_FFFF
0x0005_FFFF
0x0003_FFFF

0xD007_8000
0x0005_8000
0xD003_8000

T MB product : Block3T (32 KB)
768 KB product : Block87 (32 KB)
512 KB product : Block83 (32 KB)

Block79 (32 KB)

Block78 (32 KB)

Block77 (& KB)

Block71 (8 KB)

Block70 (& KB)

1 MB product : Block21 (32 KB)
768 KB product : Block17 (32 KB)
512 KB product - Block13 (32 KB)

Blockd (32KB)

0x0001_ 8000 0x0001_8000
Blocks (32KB) Blockd (32KB)
0x0001_0000 0x0001_0000
0x0000_ED00 Block7 (8KB) 0x0000_E000 Block7 (8KB)
0x0000_2000 Block1 (BKB) 0x0000_2000 Block1 (BKE)
0x0000_0000 Block0 (8KB) 0x0000_0000 Block0 (BKB)
Linear mode Dual mode
Figure 3. RA6M4 and RAGE1 Code Flash Block Structure
R11ANO570EUO0111 Rev.1.11 Page 6 of 51

Nov.23.22

RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

1.2 RA6M5 MCU Group Code Flash Configuration

Using the 2-Mbyte product as example, the code flash memory in linear mode for the RA6M5 includes the
blocks shown in Figure 4.

Address
0x001F_FFFF

0x001F_8000

0x0001_FFFF

0x0001_8000
0x0001_7FFF

0x0001_0000

0x0000_FFFF
0x0000_E000

0x0000_3FFF
0x0000_2000
0x0000_1FFF
0x0000_0000

Block 69
(32 Kbytes)

Block 9
(32 Kbytes)

Block 8
(32 Kbytes)

Block 7 (8 Kbytes)

Block 1 (8 Kbytes)

Block 0 (8 Kbytes)

/

>

User area: 2 Mbytes

Figure 4. RA6M5 Code Flash Memory in Linear Mode

Upper Bank Address in Code Flash Linear Mode

In code linear mode, the upper bank starting address is half of the code flash size. For example, for the 2-
Mbyte RA6M5 MCUSs, the starting address of the upper bank address is 0x100000. The upper bank linear
mode address is used when downloading the upper bank bootloader when using MCUboot in code flash

dual bank mode.

Using the 2-Mbyte product as example, the code flash memory for the RA6MS5 in dual bank mode includes
the blocks shown in Figure 5.

R11ANO570EUO111 Rev.1.11

Nov.23.22

RENESAS

Page 7 of 51

Renesas RA Family

RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

Address
0x002F_FFFF

0x002F_8000

0x0021_FFFF

0x0021_8000
0x0021_7FFF

0x0021_0000

0x0020_FFFF
0x0020_E000

0x0020_3FFF
0x0020_2000

0x0020_1FFF
0x0020_0000

0x000F_FFFF

0x000F_8000

0x0001_FFFF

0x0001_8000
0x0001_7FFF

0x0001_0000

0x0000_FFFF
0x0000_E000

0x0000_3FFF
0x0000_2000
0x0000_1FFF
0x0000_0000

Block 107
(32 Kbytes)

\\

Block 79
(32 Kbytes)

Block 78
(32 Kbytes)

Block 77 (8 Kbytes)

Block 71 (8 Kbytes)

Block 70 (8 Kbytes)

Reserved area

Block 37
(32 Kbytes)

Block 9
(32 Kbytes)

Block 8
(32 Kbytes)

Block 7 (8 Kbytes)

Block 1 (8 Kbytes)

Block 0 (8 Kbytes)

_/

Bank 1 when the
BANKSEL.BANKSWP[2:0]
bits are 111b

Bank 0 when the
BANKSEL.BANKSWP[2:0]
bits are 000b

Bank 0 when the
BANKSEL.BANKSWP[2:0]
bits are 111b

Bank 1 when the
BANKSEL.BANKSWP[2:0]
bits are 000b

\ User area: 2 Mbytes
except reserved area

~/

Figure 5. RA6M5 Code Flash Memory in Dual Bank Mode

R11ANO570EUO111 Rev.1.11

Nov.23.22

RENESAS

Page 8 of 51

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

Table 2 is a summary of the code flash blocks in linear and dual bank mode for the RA6M5. The upper bank

address in dual bank mode is 0x200000 regardless of the code flash size. This address should be used with
the application image downloader.

Table 2. RA6MS5 Code Flash

Code Flash Range Address
Linear
0x0000_0000 to 0x001F_FFFF

Product
2-Mbytes product

Dual

Lower side bank:
0x0000_0000 to 0xO000F_FFFF
Upper side bank:
0x0020_0000 to 0x002F_FFFF
Lower side bank:
0x0000_0000 to 0x0007_FFFF
Upper side bank:

0x0020_0000 to 0x0027_FFFF

1-MByte product | 0x0000_0000 to Ox000F FFFF

Figure 6 is the code flash block structure for RA6M5. The code flash erase and programming minimum unit
is the code flash block size. The block numbering scheme is used in the block protection design.

2MB product : 0x0D02F_FFFF
1.5MB product : 0x002B_FFFF

2MB product : 0x001F_FFFF
1.5MB product : 0x0017_FFFF
1MB product : 0x000F_FFFF

2MB product : BlockgS (32KB)

1MB product : 0x0027_FFFF
2MB product : 0x002F_8000

1.5MB product : 0x002B_8000
1MB preduct : 0x0027_8000

0x0021_8000

0x0021_0000
0x0020_EODO

0x0020_2000
0x0020_0000

2MB product : 0xD00F_FFFF
1.5MB product : 0x000B_FFFF
1MB product : 0x0007_FFFF

I8 product - Block107 (32KB)
1.5MB product : Block99 (32KB)
1MB product : Blockd1 (32KB)

Block79 (32KB)

Block78 (32KB)

Block77 (8KB)

Block71 (8KB)

Block70 (8KB)

2MB product : Block37 (32KB)
. 1.5MB product : Block53 (32KB) . 1.5MB product : Block29 (32KB)
2MB product : 0x001F_8000 ; 2MB product : 0x000F_8000 .
1.5MB product : 0x0017_800p0 |1 MB product : Block37 (32KB) 1.5MB product : 0x000B_8000 | !MB product : Block21 (32KB)
1MB product : 0x000F_8000 1MB product - 0x0007_3000
Blocka (32KB) Blockd (32KB)
0x0001_8000 0X0001_5000
Blocks (32KB) Blocks (32KB)
0x0001_0000 0X0001_0000
0x0000_E000 Black7 (8KB) 0x0000_E00D Block7 (8KB)
0x0000_2000 Block1 (8KB) 0x0000_2000 Block1 (8KB)
0x0000_0000 Block0 (8KB) 0x0000_0000 Block0 (8KB)
Linear mode Dual mode
Figure 6. RA6M5 Code Flash Block Structure
R11ANO570EUO0111 Rev.1.11 Page 9 of 51

Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

1.3 Option-Setting Memory

The description in this section applies to both RA6M4 and RA6M5. The Option-Setting Memory of the
RA6M4 and RA6M5 MCUs determines the state of the MCU after a reset. Several property settings that
relate to the code flash mode are described in this section.

Address

Bx@lee_a2CC

axalea_Azce

exalea_A294

axalaa_A298

Bx@lad_AZE4

axalea_A2ge

exel1ee_A26C

axelea_A2ce

axalea_A24C

exelea_azda

ex@lea_Azlg

exelea_A2le

exelea_A2ed4

exelea_Azea

Bx@lee A1EC

exelea_AlEe

exelea_AlCC

@xeles_Alce

Bx8l1ee_Al1594

Bx8lee_Al98

exelee_Als4

Bxelee_Al8e

Bxelea_Al38

Bx8lee_Al34

exalee_All4a

Bxelea_Alle

axelea_Ale4

Bx@les_Alee

to

to

to

to

to

to

to

to

Bxe8188_AZFF

exelee_A2CB

exelee_A2ZBF

exelee_A293

Gxales_A28F

exelee_AZE3

Bx8188_A27F

exelee_A2Z6B

Bxelaa_A25F

axel1ee_A24B

8x8188_A23F

exelee_A213

axelea_A2eF

axalea_Aze3

exalea_AlFF

exelee_AlEB

exelee_A1DF

@xaled_ALCB

@xelea_AlBF

@xelea_Al93

@xele@_AlBF

Bxa1e8_Als3

Bxaled_AlTF

exelea_Al37

exelee_Al33

@xeles All3

exelee_Aler

Bxeles_Ale3

Reserved area \

Block Protect Setting Register
Select (BPS_SEL)

Reserved area

Bank Select Register Select
(BANKSEL_SEL)

Reserved area

Option Function Select Register 1
Select (OFS1_SEL)

Reserved area

Permanent Block Protect Setting
Register Secure (PBPS_SEC)

Reserved area

Block Protect Setting Register
Secure (BPS_SEC)

Reserved area

Bank Select Register Secure
(BANKSEL_SEC)

Reserved area

Secure (OFS1_SEC)

Option Function Select Register 1 /

Reserved area

Permanent Block Protect Setting
Register (PBPS)

Reserved area

Block Protect Setting Register
(BPS)

Reserved area

Bank Select Register (BANKSEL)

Reserved area

Option Function Select Register 1

Reserved area

Startup Area Setting Register
(SAS)

Reserved area

Dual Mode Select Register
(DUALSEL)

Reserved area

Option Function Select Register 0
(OFS0)

Secure region

—— Secure region

Figure 7. Option-Setting Memory

R11ANO570EUO0111 Rev.1.11
Nov.23.22

RENESAS

Page 10 of 51

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

1.3.1 Code Flash Bank Mode

The register that configures the code flash bank mode is in the Option-Setting Memory of the MCU. As
shown in Figure 7, the Dual Mode Select dual bank select register DUALSEL is located at 0x0100A110.

The DUALSEL register defines whether the code flash is in linear or dual bank mode. For a blank MCU, the
code flash is in linear mode. The user application can change this configuration. With current FSP support,
this register is set up at compile time by configuring the property under the BSP tab.

6.2.2 DUALSEL : Dual Mode Select Register

address: 0x0100_A110

Bit position: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Bit field: — — — — — — — — — — — — — _ _ _
Value after reset: User setting™
Bit position: 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Bit field: — — — — — — — — — — — — — BANKMD[2:0]
Value after reset: User setting™!
Bit Symbol Function RIW
2:0 BANKMD[2:0] Bank Mode Select R
000: Dual mode
11 1: Linear mode
Others: Setting prohibited
313 — When read, these bits return the written value. The write value should be 1. R

Note 1. The value in a blank product is 0OxFFFF_FFFF. It is set to the value written by your application

BANKMD[2:0] bit (Bank Mode Select)
The BANKMD][2:0] bits select bank mode of the dual bank function of the code flash memory

Figure 8. Register Configuration for Code Flash Dual Bank Mode

1.3.2 Startup Bank Selection

The description in this section applies to both RA6M4 and RA6M5 MCUs. Bank 0 is the lower bank for a
blank RA6M4 or RA6M5 MCU as defined by the Bank Select registers shown in Figure 9.

6.2.5

BANKSEL, BANKSEL_SEC, BANKSEL_SEL : Bank Select Register

Address: BANKSEL: 0x0100_A190
BANKSEL_SEC: 0x0100_A210
BANKSEL_SEL: 0x0100_A290

Bit position: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 7 16
Bitfield: | — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — — ‘ — ‘ — ‘ — ‘ BLCKSWP[3:0] ‘
Value after reset: User setting™!
Bit position: 15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Bitfield: | — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — ‘ — — ‘ — ‘ — ‘ — ‘ — ‘ BANKSWP[2:0] ‘
Value after reset: User setting™!
Bit Symbol Function RIW
2:0 BANKSWP[2:0] Startup Bank Switch RW
This setting is valid in dual mode.
000: Start address of Bank0 is 0x0020_0000 and Bnak1 is 0x0000_0000 in dual mode
111: Start address of Bank0 is 0x0000_0000 and Bnak1 is 0x0020_0000 in dual mode
Others: Setting prohibited
15:3 — When read, these bits return the written value. The write value should be 1. RW
19:16 BLCKSWP[3:0] Block Swap Select RW
When all bits are set to 1, the block swap is disabled. When at least one bit is set to 0, block
swap is enabled and the corresponding blocks of code flash memory are swapped
This setting is valid in linear mode.
31:20 — When read, these bits return the written value. The write value should be 1 RW

Note 1. The value in a blank product is 0OxFFFF_FFFF. Itis set to the value written by your application

Figure 9. Bank 0is Default at Address 0x00000000

R11ANO570EUO111 Rev.1.11

Nov.23.22

RENESAS

Page 11 of 51

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

Only secure developers can program BANKSEL_SEC and BANKSEL_SEL registers. BANKSEL_SEC
register is for secure developers, and BANKSEL register is for non-secure developers.

BANKSEL_SEL controls whether the BANKSEL or BANKSEL_SEC setting is applied. When BANKSEL_SEL
is OXFFFFFFF8, the setting in BANKSEL is used. When BANKSEL_SEL is OxFFFFFFFF, the setting in
BANKSEL_SEC is used. For Non-Trust Zone based Flat projects, BANKSEL_SEL selects the corresponding
bits in the BANKSEL_SEC register.

1.3.3 Bank Swap

Startup bank selection provides a way to safely update the program by selecting a bank area to be started in
dual mode during a reset.

0x0027_FFFF 0x0027_FFFF
Bank 1 Bank 0
r 4
0x0020_0000 ,' 0x0020_0000
0x0007_FFFF \ 0x0007_FFFF
Bank 0 “ y Bank 1
0x0000_0000 0x0000_0000
BANKSWP[2:0] BANKSWP[2:0]
bits are 111b bits are 000b

Figure 10. Example of Startup Bank Selection (For Products with 1 Mbyte of Code Flash Memory)

Bank selection can be changed at runtime through the FSP API. The BANKSWP bits in the BANKSEL
register can be changed at the application level. The FSP flash driver provides the

R_FLASH HP_BankSwap() API to facilitate this action. This API is automatically called from the FSP
MCUboot module. The swap takes affect after the next reset.

1.3.4 Code Flash Block Protection

The RA6M4 and RA6M5 MCUs implement a security function to protect the code flash against illicit
tampering with or reading out of data in flash memory. The registers that define this security function reside
in the Option-Setting Memory. The code flash memory can be temporally or permanently protected from
programming/erasure operation.

The registers that support the temporary code flash block protection reside in the Option-Setting Memory:

address:

BPS: 0x0100_A1CO0, 0x0100_A1C4, DxD100_A1C8
BPS_SEC: 0x0100_A240, 0x0100_A244, 0x0100_A248
BPS_SEL: 0x0100_A2C0, 0x0100_A2C4, 0x0100_A2C8

Bit position: 31 0

Bit field:

Value after reset: User setting™

Note 1. The value in a blank product is OxFFFFFFFF. It is set to the value written by your application.

Figure 11. Registers Related to Temporary Code Flash Block Protection

Only secure developers can program the BPS_SEC and BPS_SEL registers. The BPS_SEC register is for
secure developers, and the BPS register is for non-secure developers. The applied setting value is
determined by the value of the corresponding bit in BPS_SEL register. BPS_SEL controls whether the BPS
or BPS_SEC setting is applied. When BPS_SEL is OXFFFFFFF8, the setting in BPS is used. When
BPS_SEL is OXFFFFFFFF, the setting in BPS_SEC is used. For Non-Trust Zone based Flat projects,
BSP_SEL selects the corresponding bits in the BSP_SEC register. The BPS and BPS_SEC registers
invalidate the programming and erasure to the code flash memory. When a BPS/BPS_SEC bit is 0, the
programming and erasure to the corresponding block are invalid.

R11ANO570EUO0111 Rev.1.11 Page 12 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

These registers can be set by configuring the BSP stack in the RA configurator as shown in Figure 87 and
Figure 88.

The registers that support the permanent code flash block protection reside in the Option-Setting Memory:

Address: PBPS: 0x0100_A1ED, OxD100_A1E4, 0x0100_A1E8
PBPS_SEC: 0x0100_A260, 0x0100_A264, 0x0100_A268

Bit position: 31 0

Bit field:

Value after reset: User setting™!

MNote 1. The value in a blank product is 0xFFFFFFFF. It is set to the value written by your application.

Figure 12. Registers Related with Permanent Code Flash Block Protection

Only secure developers can program the PBPS_SEC and PBPS_SEL registers. The PBPS_SEC register is
for secure developers, and the PBPS register is for non-secure developers. The applied setting value is
determined by the set value of the corresponding bit in the PBPS_SEL register. PBPS_SEL controls whether
the BPS or BPS_SEC setting is applied. When PBPS_SEL is OxFFFFFFF8, the setting in PBPS is used.
When PBPS_SEL is OXFFFFFFFF, the setting in PBPS_SEC is used. For Non-Trust Zone based Flat
projects, PBSP_SEL selects the corresponding bits in the PBSP_SEC register. The PBPS and PBPS_SEC
registers invalidate the programming and erasure to the code flash memory. When a PBPS/PBPS_SEC bit is
0, the programming and erasure to the corresponding block are invalid.

Setting of these registers can be achieved by configuring the BSP Properties in the RA configurator as
shown in Figure 89 and Figure 90.

2. Using the Code Flash Dual Bank Feature with MCUboot Overview

MCUboot evolved out of the Apache Mynewt bootloader, which was created by runtime.io. MCUboot was
then acquired by JuulLabs in November 2018. The MCUboot github repo was later migrated from JuulLabs
to the mcu-tools github project. In year 2020, MCUboot was moved under the Linaro Community Project
umbrella as an open-source project.

2.1 MCUboot Functionalities Overview

MCUboot handles the firmware authenticity check after start-up and the firmware switch part of the firmware
update process. Downloading the new version of the firmware is out-of-scope for MCUboot. Typically,
downloading the new version of the firmware is functionality that is provided by the application project itself.
This application project provides an example of downloading a new image using the XModem protocol from
the application project.

The functionality of MCUboot during booting and updating follows the process below:

The bootloader starts when the CPU is released from reset. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader authenticates the Secondary image.

2. Upon successful authentication, the bootloader switches to the new image based on the update method
selected. Available update methods supported by FSP are overwrite, swap, and direct XIP.

3. The bootloader boots the new image.

If there is no new image in the Secondary App memory region, the bootloader authenticates the Primary
applications and boots the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.
The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

There is a signing tool included with MCUboot: imgtool . py. This tool provides services for creating Root
keys, key management, and signing and packaging an image with version controls. Read the MCUboot
documentation to use and understand these operations.

R11ANO570EUO0111 Rev.1.11 Page 13 of 51
Nov.23.22 RENESAS

https://github.com/mcu-tools/mcuboot
https://www.linaro.org/community-projects/
https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

2.2 Using MCUboot for Code Flash Dual Bank Mode

The FSP supports overwrite, swap, and direct XIP (execute-in-place) update mode. For flash dual bank
mode, only direct XIP mode is supported. The benefits of using code flash dual bank mode in a system
including a bootloader are concurrent download of new image and faster switching to the new image, in
addition to the safety features provided by the MCUboot module as explained in section 2.2.1.

2.2.1 Use Direct XIP Firmware Update Mode

When using direct XIP mode with code flash in linear mode, the active image slot alternates with each
firmware update. If this update method is used, then two firmware update images must be generated: one of
them is linked to be executed from the primary slot memory region, and the other is linked to be executed
from the secondary slot. Direct XIP is supported in FSP versions 3.6.0 and later.

e Advantages:
e Faster boot time, as there is no overwrite or swap of application images needed.
e Fail-safe and resistant to power-cut failures.
e Disadvantages:
e Added application-level complexity to determine which firmware image needs to be downloaded.
e Encrypted image support is not available.

For overview and usage of other update modes, refer to R11AN0497 and the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

When using direct XIP mode with code flash in dual bank mode, both primary and secondary images are
linked to be executed from the primary slot memory region. When using the RA6M4 or RA6M5 MCU with
flash dual bank mode, only Non-TrustZone based Flat project is currently supported by the FSP.

Note: For Direct XIP mode, downgrade prevention is supported from the MCUboot side. When using flash
dual bank mode, the update image needs to have a version number higher than the current primary
image.

2.2.2 Memory Configuration Overview with Dual Bank and MCUboot

The FSP MCUboot module with Flash Dual Bank mode needs a bootloader for both the lower bank and the
upper bank as shown in Figure 13. In addition, the memory allocation for the bootloader and application
image must be identical.

Upper Bank

Application Upper
Bank
Bootloader Upper
Bank
Application Lower
Bank
Bootloader Lower
Bank

Lower Bank

Figure 13. Memory Architecture Using Flash Dual Bank Mode and MCUboot

R11ANO570EUO0111 Rev.1.11 Page 14 of 51
Nov.23.22 RENESAS

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

2.3 Designing Bootloader and Initial Primary Application Overview

A bootloader is typically designed with the initial primary application. The following general guidelines apply
to designing the bootloader and the initial primary application:

Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image as well as the cryptographic library used.
Develop the initial primary application, perform the memory usage analysis, and compare with the
bootloader memory allocation for consistency and adjust as needed.

Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in adjustment of the memory allocated definition in the bootloader project.

Sign the application image. The signhing command is output to the <bootloader
project>\Debug\>bootloader project>.bld file. The application image can use a Build Variable to access
this .bld file. The IDE tools use the signing command to sign the application and generate a binary file for
downloading to the MCU.

Test the bootloader and the initial primary application.

The above guidelines are demonstrated in the walk-through sections in this application note.

2.4 Migrating an Existing Linear Mode MCUboot Based System

Users can follow the general steps below to migrate an MCUboot based application system from code flash
linear mode to code flash dual bank mode:

1. Updates for the bootloader project:

A. Update the code flash mode from linear mode to dual mode in the BSP tab, as shown in Figure
34.
B. Update the application image code flash allocation if needed. See section 4.2 for details.

2. Updates for the application projects:

A. Forimage downloader implementation, the image download address needs to be updated. Refer
to the \src\Header.h in the example application project to understand where the updates need to
happen.

B. For development purpose, the debug configuration for the primary application needs to be
updated. Refer to the debug configuration for the app_primary_usb project under the
\example_projects_with_bootloader folder.

C. For production support, the scripts to generate the .srec file using the signed image need to be
updated. Refer to section 5.3 to understand the updates needed.

3. Guidelines for Using the Example Projects Included

Unzip RA6_Secure_Bootloader_DualBank.zip to unpack the example projects included in this
application project.

» example_projects_with_bootloader

.

MName

i % RAB Secure Bootloader DualBank app_primary_uart

-~ I app_primary_usb
Marme
app_secondary_uart
example_projects_with_bootloader app_secondany_ush
example_projects_without_bootloader ra_mcuboot_rabmd_dualbank

—

+ example_projects_without_bootloader

Marne

app_primary_uart
app_primary_ush

Figure 14. Example Projects Included

R11ANO570EUO0111 Rev.1.11 Page 15 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

3.1 Example Projects with Bootloader

Folder \example_projects_with_bootloader includes a bootloader, which supports the flash dual
bank feature, as well as example applications using USB or UART as the communication channel to
download new application images which are configured to use the bootloader included in this folder. Users
with experience working with MCUboot module can follow section 8 to directly exercise these example
projects. The corresponding subfolders are:

e ra_mcuboot _raém4_ dualbank: Bootloader, which enables dual bank and direct XIP update mode.

e app_primary_usb: Primary application, which is configured to work with the bootloader and
implements XModem over USB VCOM to download a new application image. FreeRTOS is used with
two threads, one threads blinks the three LEDs on EK-RA6M4 while the other thread downloads the new
application image concurrently.

e app_secondary_usb: Secondary application, which implements the same functionality as
app_primary_usb except only the blue and green LEDs are blinked.

e app_primary_uart: Primary application, which is configured to work with the bootloader and
implements XModem over UART to download a new application image. FreeRTOS is used with two
threads, one threads blinks the three LEDs on EK-RA6M4 while the other thread downloads the new
application image concurrently.

e app_secondary_uart: Secondary application, which implements the same functionality as
app_primary_uart except only the blue and green LEDs are blinked.

3.2 Example Projects without Bootloader

Folder \example_projects_without_bootloader includes standalone example projects that a user
can configure to use the bootloader project, following section 5. Note that these application projects do not
run correctly if the flash dual bank mode is not enabled because the image downloader routine included

assumes the location of the new image is in the upper bank of the RA6M4 code flash. The subfolders are:

e app_primary_usb: Same functionality as
\example_projects_with_bootloader\app_primary_usb, except it is not configured to work
with the bootloader.

e app_primary_uart: Same functionality as
\example_projects_with_bootloader\app_primary_uart, except it is not configured to work
with the bootloader.

A user can also use a customized application project that implements image downloading and follow section
5 to use the bootloader.

4. Creating the Bootloader Project using Code Flash Dual Bank Mode

This section demonstrates the creation process of the bootloader project utilizing MCUboot and the Flash
Dual Bank Mode with the RA6M4 running in Non-TrustZone mode.

4.1 Include the MCUboot Module in the Bootloader Project
Follow below steps to start the bootloader project creation and include the MCUboot module in the project:

1. Launch e? studio and start a new C/C++ Project. Click File > New > C/C++ Project.

&) Man0516 - &% studio

Edit Source Refactor Mawvigate Search Project RenesasViews Run Window Help
Alt+Shift+M > Renesas CfC++ Project »

COpen File... & Makefile Project with Existing Code

L Open Projects from File System.., [e] | C/C++ Praject | Create a new C or C++ project

Recamt Fila: 3 P Demiact

Figure 15. Start a New Project

R11ANO570EUO0111 Rev.1.11 Page 16 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

2. Choose Renesas RA->Renesas RA C/C++ Project. Click Next.

3} Mew C/C+ Project O X
Templates for New CfC+ + Project

Al Renesas RA CfC++ Project

Chiake == Cregte an evecutable or static librany C/C++

Make project for flenesas 4,

':?j' < Back | Finish Cancel

Figure 16. Choose Renesas RA C/C++ Project

3. Provide the project name ra_mcuboot_ra6m4_dualbank in the next screen. Click Next.
4. Inthe next screen, choose EK-RA6M4 for Board and click Next.

Board: EK-RAGM4 ~

Device: R7FAGMAAFICFE

Figure 17. Select the Board
5. Choose Executable for Build Artifact Selection and No RTOS. Click Next.

a Renesas RA C/C++ Project

O X
Renesas RA C/C++ Project —
Build Artifact and RTOS Selection
Build Artifact Selection FTOS Selection
@ Executable Mo RTOS v
* Project builds to an executable file

() Static Library
* Project builds to a static library file

(O Executable Using an RA Static Library
* Project builds to an executable file
* Project uses an existing RA static library project

@

< Back Finish Cancel

Figure 18. Choose to Build Executable and No RTOS

6. Choose Bare Metal — Minimal for the Project Template in the next screen and click Finish to establish
the initial project.

@® _ Bare Metal-Minimaﬂ
-

- Bare metal FEP project that includes B3P, This project will initialize clocks, ping, stacks, and the C runtime environment

Figure 19. Choose the Project Template

R11ANO570EUO0111 Rev.1.11 Page 17 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

7. When the following prompt opens, click Open Perspective.

ﬁ Open Associated Perspective? *

J | Open the FEP Configuration perspective?

[Remernber my decision

‘ Open Perspective MNa

Figure 20. Choose Open the FSP Configuration Perspective

The project is created and the bootloader project configuration is displayed.
8. Select the Pins tab and uncheck Generate data for RA6M4 EK.

Select Pin Configuration _ﬂ Export to C5V file E‘ Configure Pin Driver Warnings

I|RA6M4 EK I v| Manage configurations... @Senerate data: | g_bsp_pin_cfg

Figure 21. Uncheck Generate data for RA6M4 EK Pin Configuration

Use the pull-down menu to switch from RA6M4 EK to R7TFA6M4AF3CFB.pincfg for the Select Pin
Configuration option, then select the Generate data check box and enter g_bsp_pin_cfg. Note that
here we choose to use this configuration which has fewer peripherals/pins configured since the
bootloader does not use the extra peripheral or GPIO pins configured in the RA6M4 EK configuration.
This also reduces some memory usage for the bootloader project.

Select Pin Configuration _ﬂ Export to CSV file [Z—| Configure Pin Driver Warnings

R7FABMAAFICFB.pincfg v

Manage configurations... Generate data: | g_bsp_pin_cfg

Figure 22. Select g_bsp_pin_cfg and Generate data g_bsp_pin_cfg

9. Once the project is created, click the Stacks tab on the RA configurator. Add New Stack->Bootloader->

MCUboot.

Analog
Artificial Intelligence
Audio

I Bootloader
CapTouch
Connectivity

non

4 MCUboot
4 MCUboot Image Utilities

foow vl v v

Taggus
T eefiei
i aadddd
e

......

Figure 23. Add the MCUboot Port

R11ANO570EUO0111 Rev.1.11 Page 18 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

10. Next, configure the General properties of MCUboot. We will resolve the errors in the configurator in the
following steps.
For the MCUboot module, configure the Update Mode to Direct XIP and Number of Images Per
Application to 1.

4% g_ioport /0 Port # MCUboot
(r_ioport)

@ (i)

BSP | Clocks | Pins | Interrupts | Event Links | € Stacks Components

ns & Smart Browser | [C] Properties X L't} Pin Conflicts
1

Property Value
w Common

~ General
Custom mecuboot_cenfig.h
Upgrade Mode Direct XIP
Validate Primary Image Enabled
Downgrade Prevention (Overwrite Only) Disabled
Number of Images Per Application 1

Figure 24. General Configuration for MCUboot Module
The properties configured are:

e Custom mcuboot_config.h: The default mcuboot_config.h file contains the MCUboot Module
configuration that the user selected from the RA configurator. The user can create a custom version of
this file to achieve additional bootloader functionalities available in MCUboot.

e Upgrade Mode: This property configures the application image upgrade method. The available options
are Overwrite Only, Overwrite Only Fast, Swap and Direct XIP. Only Direct XIP is supported for flash
dual bank operation.

e Validate Primary Image: When enabled, the bootloader will perform a hash or signature
verification,depending on the verification method chosen, in addition to the MCUboot magic number
based sanity check. When disabled, only a sanity check is performed based on the MCUboot magic
number.

e Number of Images Per Application: This property allows user to choose one image for Non-
TrustZone-based applications and two images for TrustZone-based applications. Set this property to 1.

e Downgrade Prevention (Overwrite Only): This property applies to Overwrite upgrade mode only.
When this property is Enabled, a new firmware with a lower version number will not overwrite the
existing application.

Note: For Direct XIP mode, download grade prevention is supported from the MCUboot side. When using
flash dual bank mode, the update image needs to have a version number higher than the current
primary image.

4.2 Configure the Memory Configuration and Authentication Method

Configure the Signing Options and Flash Layout of the MCUboot module. For the EK-RA6M4, the default
memory for the code flash dual bank mode is shown in Figure 25. This default memory map is used for the
example bootloader design.

Dual Mode Linear Mode
RAEM4 code flash Addr Addr

OF 5 reqrster | 0x100A100 01004100

Secondary app (linked for
primary app address)
Bank 1 _ 0x210000 [xS0000

No OFS »| Bootioader (linked for 0x0)
0200000 OxB0000

Primary app (linked for
pnmary app address) » . v
Bank0 _ 0x10000 0x10000

Has OFS »| Bootloader (linked for 0x0)

0x0 0x0

Figure 25. MCUboot Dual Bank Memory Map

R11ANO570EUO0111 Rev.1.11 Page 19 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

From the configurator point of view, there is no need to update any of the properties for the Flash Layout as it
already matches with the memory map shown in Figure 25.

w Flash Layout
Trust{one

Bootloader Flash Area Size (Bytes) Ox 10000
Image 1 Header Size (Bytes) 0200
Image 1 Flash Area Size (Bytes) O 70000
Seratch Flash Area Size (Bytes) Ox0

Figure 26. Configure the Flash Layout and Signing Options
Explanation of the Above Configurations:

e Bootloader Flash Area: Size of the flash area allocated for the bootloader, with a boundary of 0x8000
since 0x8000 is the minimum erase size for RA6M4 code flash.

e Image 1 Header Size: Size of the code flash reserved for the application image header. It must meet
minimum VTOR alignment requirements based on the number of interrupts implemented on the RA6M4.
For the RA6M4, this property should be set to a minimum of 0x200 to support all interrupts.

e Image 1 Flash Area Size: Size of application image 1, including the header and trailer. For the RA6M4,
this size needs to be on a boundary of 0x8000 which is the smallest flash erase size.

e Scratch Flash Area Size: This property is only needed for Swap mode. This property is not used for the
flash dual bank bootloader design.

e Signature Type: Signing algorithm selection. The choices are:
o NONE: Select this option for bootloaders that do not support signature verification.
e ECDSA P-256: Select this option for this example bootloader design.
e RSA 2048 and RSA 3072
e Application images using MCUboot must be signed to work with MCUboot. At a minimum, this

involves adding a hash and an MCUboot-specific constant value in the image trailer.

e Custom: Use the default -—confirm for this bootloader design. Switching to a new image is always
confirmed, and the new image will be booted after a subsequent system reset. Reverting the image with
Direct XIP is not supported with the current FSP version.

4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver

Follow steps below to configure the MbedTLS module and the flash driver:

1. Right-click on Add Crypto Stack and choose to add the MbedTLS (Crypto Only) module.

& MCUboot
@

[|
@ MCUboot Port for RA (rm_mcuboot_port) 4 MCUboot logg

® @
L T I

" Add Crypto Stack % Add Requires Flash % Add External Memory
Implementation

! Mew ! » @ MCUboot Custom Crypto (Protected Mode)
4 | MbedTLS (Crypto Only)

4 TinyCrypt (S/W Only)

Figure 27. Select MbedTLS Crypto Only Module
2. Click on Add Requires Flash stack and select Flash (r_flash_hp) stack.

] |

A] [
I [

3.1 Add Requires Flash @ Add External Memory

Implementation
IfaPeH 1

New > 4 Flash (r_flash_hp)

Figure 28. Add the Flash Driver

R11ANO570EUO0111 Rev.1.11 Page 20 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

3. Next, set the Code Flash Programming to Enabled. As Data Flash Programming is not used in the
bootloader, select Disabled for the Data Flash Programming to reduce the bootloader memory
footprint.

g_flashO Flash (r_flash_hp)

Settings Property Value
APl Info | v Common
Parameter Checking Default (B5P)
Code Flash Pregramming Enable Enabled
Data Flash Programming Enable Disabled
» Muodule g_flash0 Flash (r_flash_hp)
[ame g flazh0
IData Flazh Background Operation Disabled I

Callback MULL
Flash Ready Interrupt Priority Disabled
Flash Error Interrupt Priority Disabled

Figure 29. Configure the Flash Driver
4. Configure the following properties of the MbedTLS (Crypto Only) module:

Y
r

|BSP | Clocks | Pins |Interrupts | Event Links | © Stacks| Components

ims @ Smart Browser _ IR (4 Pin Conflicts

LS (Crypto Only)

" Property Value

| v General

= PSA_CRYPTO_SECURE Undefine
MBEDTLS_DEPRECATED_WARNING Undefine
MBEDTLS_DEPRECATED_REMOVED Define
MBEDTLS_CHECK_PARAMS Define
MBEDTLS_CHECK_PARAMS_ASSERT Undefine
MBEDTLS_ERROR_STRERROR_DUMMY Define
MBEDTLS_MEMORY_DEBUG Undefine
MBEDTLS_MEMORY_BACKTRACE Undefine
MBEDTLS_PSA_CRYPTO_SPM Undefine
MBEDTLS_SELF_TEST Undefine

| MBEDTLS_THREADING_ALT Undefinel
_IHREADING_PTHREAD Undefine

MBEDTLS_USE_PSA_CRYPTO Undefine
MBEDTLS_VERSION_FEATURES Define
MBEDTLS ERROR C Define
MBEDTLS_MEMORY_BUFFER_ALLOC_C Define
MBEDTLS_PSA_CRYPTO_C Define
MBEDTLS PSA CRYPTO SE C Undefine
MBEDTLS_THREADING_C Undefine
MBEDTLS_TIMING_C Undefine
MBEDTLS_VERSION_C Define
MBEDTLS_MEMORY_ALIGN_MULTIPLE Undefine

Figure 30. Configure the MbedTLS (Crypto Only) Module

R11ANO570EU0111 Rev.1.11 Page 21 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

5. Disable RSA to save some memory usage.

[4

r|BSP | Clocks ‘Pins ‘ Interrupts | Event Links = @ Stncks‘ Components

ems @ Smart Browser [JEIGEEN EEEPN
LS (Crypto Only)

" Property Value
:l v Public Key Cryptography (PKC)
> DHM
» ECC
v RSA
MBEDTLS_PK_RSA_ALT_SUPPORT Undefine

EDILS RSA MO CRT Dafing
| MBEDTLS_RSA_C Undefine

[Pin Conflicts

Figure 31. Disable RSA

6. Set up the Stack and Heap used by the bootloader based on the authentication mode. Set the following
values in the BSP tab:

e —— o — ———— g ———

v Commeon
rMain stack size (bytes) 0x 1000

Heap size (bytes) 0400

Figure 32. Configure the BSP Stack and Heap Usage
7. Add the Example Production Key module.

& Add ASN.1 parser if
using TinyCrypt or
Custom Crypto

Mew >|| 4 MCUboot Example Keys (NOT FOR PRODUCTION)

Figure 33. Add the Example Production Key module
8. Enable the Dual Bank Mode under the BSP tab.

Iol:lu Pin-;.lntmupts Event Links | Stacks Cumponmb.

siems [Console @ Smart Browser 1} Smart Manual
\6M4

Property Value
> RTFABMAAFICFB
v RAGM4
Sefies 6

v RAGM4 Family

» Security

» OFS0 register settings

> OFS1 register settings

» Block Protection Settings (BPS)

> Permanent Block Protection Settings (PBPS)

[

» Clocks
Sherup-c nainaks 22 Bytes
I Dual Bank Mode Enabled
Tan Gscillator Wart Time 163 cycles

Figure 34. Enable Flash Dual Bank Mode

R11ANO570EU0111 Rev.1.11 Page 22 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

4.4 Addthe Boot Code

Save Configuration.xml and click Generate Project Content. Then, expand the Developer
Assistance->HAL/Common->MCUboot->Quick Setup and drag Call Quick Setup to the top of the
hal_entry.c of the bootloader project.

Add the following function call to the top of the hal _entry() function:
mcuboot_quick setup();

4.5 Compile the Bootloader Project
In the RA configurator, click Generate Project Content, then compile the project.

'Invoking: GNU Arm Cross Create Flash Image'
arm-none-eabi-objcopy -0 srec "ra_mcuboot_raém4_dualbank.elf"” “ra_mcuboot_ra6ma4_dualbank.srec”
"Invoking: GNU Arm Cross Print Size'
arm-none-eabi-size --format=berkeley "ra_mcuboot_ra6m4_dualbank.elf”
text data bss dec hex filename
60376 e 6356 66732 1@4ac ra_mcuboot_raémd_dualbank.elf
‘Finished building: ra_mcuboot_raém4_ dualbank.srec”
'Finished building: ra_mcuboot_ra6m4_dualbank.siz'

©1:12:01 Build Finished. @ errors, 19@ warnings. (toock 57s.212ms)

Figure 35. Compile the Bootloader ra_mcuboot_raém4_dualbank

There are warnings from third-party code.

4.6 Configure the Python Signing Environment

Signing the application image can be done using a post-build step in e? studio, using the image signing tool
Imgtool . py, which is included with MCUboot. This tool is integrated as a post-build tool in e2 studio to sign
the application image. If this is NOT the first time you have used the Python script signing tool on your
computer, you can skip to section 5.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work. Navigate to the ra_mcuboot_raém4_dualbank>ra>mcu-
tools>MCUboot folder in the Project Explorer, right click and select Command Prompt. This will open a
command window with the path set to the \mcu-tools\MCUboot folder.

(2) Developer Assistance

v % ra_mcuboot_ra6m4_dualban} Open in New Window
47 Binaries Show In Alt+ Shift+W >
[n Includes
v B ra E) Copy Ctrl+C

(= arm Paste Ctrl+V
(= board 3 Delete Delete
= fsp
. Source >

v (= mcu-tools

(= MCUboot Move...

5 ra_gen Rename... =
B src

= Debug fx Import...

(= ra_cfg /5 Export...

& scrpt Build Project Ctrl+B

i‘; configuration.xml

|=| R7TFABM4AF3CFB.pincfg
|=| ra_cfg.txt Index >
|Z| ra_mcuboot_rabmd_dualba

Refresh F5

Build Targets >
(?) Developer Assistance § i

Resource Configurations >

Team >

Compare With >

Restore from Local Hist{ 0pen Command Prompt
& C/C++ Project Settings Ctrl+Alt+P

Renesas C/C++ Project Settings >

%7 Run C/C++ Code Analysis
M System Explorer

Ii Command Prompt I
vl Validate

Figure 36. Open the Command Prompt

R11ANO570EUO0111 Rev.1.11 Page 23 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

We recommend upgrading pip prior to installing the dependencies. Enter the following command to update
pip:
python -m pip install --upgrade pip

Next, in the command window, enter the following command line to install all the MCUboot dependencies:

pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required.
Review the Signing Command

The signing command for the application image will be automatically generated when the booloader is
compiled. In the Project Explorer, open the
ra_mcuboot_raém4_dualbank\debug\ra mcuboot ra6m4 dualbank.bld file. The signing
command is under the section <image>.

The application image uses a Build Variable to link with the .bld file. This process is explained in detail in
the section 5.1. The application image has access to the .bld file, and the signing command will be
automatically executed when the application image is compiled.

<images:
<image path="§{BuildArtifactFileBaseName}.bin.signed">python
§{workspace loc:ra mcuboot raém4 dualbank}/ra/fsp/src/rm_mcuboot port/rm mcuboot port sign.py sign --header-size
0x200 --align 128 --max-align 128 --slot-size O0x70000 --max-sectors 14 --confirm --pad-header
${BunildArtifactFileName} ${BuildArtifactFileBaseName}.bin.signed</images>

Figure 37. Signing Command in the .bld File

4.7 Prepare for Production Support

For production support, generate a . srec file of the bootloader to be loaded to the upper bank. This can be
done by configuring a custom Builder within e2 studio for the bootloader project.

This application project includes a bat file, process_bootloader .bat, which runs a script using
srec_cat.exe to generate a .srec file, ra_mcuboot_ra6m4_dualbank offset.srec, which offsets the
bootloader offset to the RA6M4 flash linear mode upper bank address at 0x80000.

Note that for MCUs with different code flash size, the upper bank address needs to be updated accordingly.
As explained in sections 1.1 and 1.2, this address is at half of the code flash size.

Since the option-setting memory is located outside of the bank range, this process also truncates the
bootloader to the bank size, which is 0x80000.

srec_cat Debug\ra_mcuboot_raém4_dualbank.srec -crop 0 0x80000 -offset 0x80000 -o
ra_mcuboot_ra6ém4_dualbank_offset.srec

Figure 38. Process the Bootloader to Load to the Upper Bank: process_bootloader.bat
Follow the steps below to configure the custom Builder in the bootloader project just created:

1. Unzip RA6_Secure_Bootloader Dualbank.zip and copy
\ra_mcuboot_ra6m4_dualbank\process_bootloader.bat as well as srec_cat.exe, located in
the same folder, to the project root folder of the bootloader project just created.

R11ANO570EUO0111 Rev.1.11 Page 24 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

2. Right-click on the bootloader project, open the Properties page, and navigate to Builders page. Click
New to start creating the customized Builder.

[type filter text | | Builders Gv v 8

e Configure the builders for the project:
ulgers

[s1h DDSC Builder | New... I
[o3h COT Builder

[m1h Scanner Configuration Builder
[mih DDSC Bundle Builder Edit...

~ C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor Remove
C/C++ General
MCU
Project Natures
Project References
Renesas QF
Run/Debug 5ettings
Task Tags
Validation

Import...

HREE

Up

Down

@' Apply and Close Cancel

Figure 39. Create a New Custom Builder Entry

3. Select Program in the next screen, then click OK:

Q Choose configuration type m} X

Choose an external tool type to create:

L Q Program I

Figure 40. Select the Type of the Builder as Program

R11ANO570EUO0111 Rev.1.11 Page 25 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

4. Next, provide the new Builder name Process Bootloader and click Browse Workspace to select
process_bootloader .bat file as the Location of the Builder. Also, click Browse Workspace to set

the Working Directory as shown below. Then, click Apply.

Q Edit Configuration

Edit launch configuration properties

Create a configuration that will run a program during builds

| X

Name: IProcess Bootloader I

_ % Refresh | B Environment | =% Build Options

Location:

‘ S{workspace_loc:/ra_mcuboot_rabm4_dualbank/process_bootloader.bat} |

Browse Workspace... | Browse File System... Variables...
Working Directory:
‘ iS{workspacE_EDc:/'ra_mcuboot_raﬁm&l_dualbank} i
Browse Workspace... | Browse File System... Variables...
Arguments:
Variables...

Note: Enclose an argument containing spaces using double-quotes ().

S

Show Command Line

Revert

Apply

Cancel

Figure 41. Configure the Custom Builder

5. Click OK, then Apply and Close at the next screen.

ﬁ Properties for ra_mcuboot_rabmd_dualbank

| type filter text

Resource
w G C++ Build
Build Variables
Environment
Legging
Settings
Tool Chain Editor
C/C++ General
MCU
Project Matures
GY

H

Builders

Configure the builders for the project:

[u1h DDSC Builder
[o3h COT Builder

[osh Seanner Configuration Builder

13 DDSC Bundle Builder

@Pmcess Bootloader I

Mew...
Import...
Edit...

Remaove

| Apply and Close |

Cancel

Figure 42. Custom Builder

R11ANO570EUO111 Rev.1.11

Nov.23.22

RENESAS

Page 26 of 51

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

6. Recompile the bootloader project and notice that ra_mcuboot_raém4_ dualbank_offset.srec is
created under the bootloader project root directory.

v =% ra_mcuboot_rabm4_dualbank [Debug]

1% Binaries

it Includes

B ra

(= ra_gen

2 src

(= Debug

(= ra_cfg

(= script

1o¢ configuration.xml
process_bootloader.bat
RIFAGMAAF3CFB.pincig
3 cfgxt

ra_mcuboot_rabm4_dualbank_offset.srec
ra_mcuboot rabm4_dualbank Debug_Flat.launch

o1y srec_cat.exe

(?) Developer Assistance |

Figure 43. Rebuild the Bootloader with the Custom Builder
5. Configuring and Signing an Application Project

Developing an initial application to use a bootloader starts with developing and testing the application and
the bootloader independently. Using the bootloader with an existing application or developing a new
application to use the bootloader involves the following common steps:

e Adjust the memory map of the bootloader to allow the application and bootloader to fit the available MCU
memory area.

e Configure the application to use the bootloader.

e Sign the application image.

e Developing an application to use a bootloader typically requires the application to have the capability to
download a new application. This application project demonstrates how to download a new application
using the USB and UART interfaces as examples. Users typically have custom methods to download
new application images.

5.1 Configure the Application Project to Use the Bootloader

Users can follow FSP User’'s Manual section Tutorial: Your First RA MCU Project — Blinky to establish a new
project. This application note uses the included example project as the initial application project and guides
the user through the procedures to configure the example project to use the bootloader established in
section 4.

Note that the steps described in this section can be applied to other existing application projects to configure

the application project to use the bootloader. Be sure to consider the size the application project. When using
the bootloader with a different application project, the Image 1 Flash Area Size property should be adjusted

accordingly.

Import the desired application projects under folder \example_projects_without_bootloader to the
workspace where the bootloader is created. For example, if the intended firmware update channel is USB,
import app_primary_usb into the workspace.

Note: In this section’s illustrations, the USB interface is used. The procedure for using the UART interface is
similar to using USB.

Right-click on the application project folder app_primary_usb in the Project Explorer and select
Properties. Select C/C++ Build > Build Variables, click Add and set the Variable name to

R11ANO570EUO0111 Rev.1.11 Page 27 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

BootloaderDataFile, and check the Apply to all configurations box. Change the Type to File and enter
the path to the _bld file for the bootloader project ra_mcuboot_ra6m4_dualbank:

o Set ${workspace_loc:ra_mcuboot_ra6m4_dualbank}/Debug/ra_mcuboot_raém4_dualbank._bld for
the value.

type filter text I Build Variables =
Resource

Builders
v C/C++ Build Configuration: Debug [Active] ~ | Manage Configurations...

Build Variables

Environment

Logging
Settings Name Type Value Add...

Teol Chain Editor
C/C++ General
MCU &) Define a New Build Variable X
Project Natures
Project References

Renesas QFE Applyto all configurations
Run/Debug Settings e | File -
Task Tags 2

Variable name:l BootloaderDataFile I v

Validation Value: [m4_dualbank}/Debugjra mcuboot_rasmd_dualbank.bld|| | Browse
] Show
Build Vari inal builder
configur; pternal
builder

Apply

@

Figure 44. Configure the Build Variable to Use the Bootloader
Click OK, then Apply and Apply and Close in the next screen.

5.2 Signing the Application Image

Note: If you rebuild the bootloader project after changing any of the signing and signature Properties of the
MCUboot module, you will need to Generate Project Content again to bring in the updated .bld file.

When using Direct XIP mode, each application can define a version number. This is achieved by defining an
Environment Variable: MCUBOOT_IMAGE_VERSION.

For applications that support signature verification, the signing key can be configured using Environment
Variable MCUBOOT_IMAGE_SIGNING_KEY. If there is no signature verification, then it is not necessary to
set Environment Variable MCUBOOT_IMAGE_SIGNING_KEY.

Open the Properties page of the project app_primary_usb, under Environment, click Add and configure
MCUBOOT_IMAGE_VERSION.

R11ANO570EUO0111 Rev.1.11 Page 28 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

@
| type filtes text | Envirenment o v §
! Resource
Builders
w C/C++ Build Configuration: | Debug [Active] ~ | Manage Configurations...

Build Variables

Log _D'"ﬂ Environment variables to set -
Settings .

Tool Chain Editor Variable Value Qrigin Select...
C/C++ General cwoD C:\a_dual_bank_boot\F5P_v3.5\Recreation\app_pnmary_uch'Debug BUILD SYSTEM
Mcy GCC_VERSION o e m BUILD SYSTEM Edit..
|
Project Natures PATH | W hew vadahe F10.3-2021,10\bin\;... BUILD SYSTEM
Proect Reerences puD Name]| MCUBOGT MAGE VERSION ' BULD SYSTEM
Renfsas QE) TCINSTALL - F10.3-2021.100 BUILD SYSTEM Undefine
$un.-$ebug Settings T VERSION Value: | 1.00 ol BUILD SYSTEM
ik dd to all configurat
e @ d to all configurations
1
(®) Append variables to native environment
() Replace native environment with specified one
Restore Defaults Apply

¢ ,, Apply and Close Cancel

Figure 45. Configure the Application Version
Similarly, add the new variable for MCUBOOT_IMAGE_SIGNING_KEY.

-]
| type filter text | | Environment = v &
: Resource
Builders
~ C/C++ Build Configuration: | Debug [Active] | Manage Configurations...

I°99'"9 Environment variables to set m
Settings | B New variable X =

gl Select...

Tool Chain Editor Variable :
C/C++ General WD Namzl MCUBOOT IMAGE SIGNING m'] S i
e SCEVERION Value: Iha"kIH-!f'Mcu-tuols.rMCUbuot-‘root-«-pzsa_peﬁI Variables il T

Project Matures Mcusoot_lma(_wnsmuEl del o ol configurations | USER: CONFIG

Del
Project References PATH inone-eabi-10.3-2021.10\bin\;... BUILD SYSTEM =
Renesas GF PWD BLILD SYSTEM Undefine
by 3 Cancel
Run/Debug Settings TCINSTALL i inone-eabi-10.3-2021.10, BUILD SYSTEM
sk g TC_VERSION 103120210828 d BUILD SYSTEM
Validation
| L
(®) Append variables to native environment
(O Replace native environment with specified cne
Restore Defaults Apply

Figure 46. Configure the Private Signing Key
Note that the private key used for signing the application image is indicated in the signing command.

/ra/mcu-tools/MCUboot/root-ec-p256.pem is used for the example bootloader. This key is used for
testing purpose only. For real world use case and production support, users MUST change this to the private
key of their choice.

R11ANO570EUO0111 Rev.1.11 Page 29 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

Figure 47 is the result of the above configuration. Click Apply and Close.

type filter text Environment v - 8
Resource
Builders
w C/C++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...
Build Variables
Logslng Environment variables to set Add
Settings
Tool Chain Editer Variable Value Origin Select..
C/C++ General CWD Cha_dual_bank_boot\FSP_v3.6\zip_files\app_primary_usb\Debug BUILD SYSTI
MCU GCC VERSION 1031 BUILD SYSTH Edit...
Project Natures MCUBOOT_IMAGE S1G... woerkspace_locra_mcuboot rabm4_duzlbank}/ra/meu-tools/MCUboot/root-ec-p236.pem USER: CONF Delete
Project References MCUBOOT_IMAGE VER... 1.0.0 USER: CONF
Refactoring History PATH C\Renesas\RA\e2studio_v2022-01_fsp_v3.6.0\toolchains\gcc_arm\gcc-arm-none-eabi-10.3-2021.... BUILD SYSTH Undefine
Renesas OF PWD C\a_dual_bank_boot\FSP_v3.B\zip_files\app_primary_usb\Debug BUILD SYSTI
i“':(-’?e"ug Settings TCINSTALL C:\Renesas\RA\ e2studio_v2022-01_fsp_v3.6.0\ ool chains\gee_armigec-arm-none-eabi-10.3-2021... BUILD SYSTI
ask lags TC_VERSION 10.3.1.20210824 BUILD 5YSTI
Validation
< >
(®) Append variables to native environment
(O Replace native environment with specified one
Restore Defaults Apply
|
':?;' Apply and Close Cancel

Figure 47. Configure the Application Image version number and Signing Key

To be able to recompile the project whenever the Environment Variables are updated, it is recommended
add a Pre-build step to always delete the _elf file, as shown in Figure 48, so the application project is
always recompiled.

Resource
Builders
v C/C++ Build
Build Variables
Environment

Configuration: Debug [Active]

Logging

Tool Chain Editor
C/C++ General
MCU

&) Tool Settings 3 Toolchain |# Build Steps Build Artifact |aid Binary Parsers

Pre-build steps
Command(s):

€ Error Parsers

Irm -f §{ProjName}.elf I

Project Natures =
. Description:
Project References

Figure 48. Configure the Pre-build Command
At this point, a user can click Generate Project Content and compile the newly created application project
and ensure that \Debug\app_primary_usb.bin.signed is generated.
5.3 Preparation for Production Support

For production support, a . srec file based on the signed application image needs to be generated.
This .srec file offsets the application to the start address of the primary application, 0x10000 based on
Figure 25.

srec_cat Debug\app_primary_usb.bin.signed -binary -offset 0x10000 -o
app_primary_usb_singed_offset.srec

Figure 49. Create app_primary_usb_signed_offset.srec

R11ANO570EUO0111 Rev.1.11
Nov.23.22

Re Page 30 of 51
KENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

Follow steps similar to section 4.7 to add the custom Builder and compile the primary application:

1. Copy \example_projects_with_bootloader\app_primary_usb\srec_cat.exe and

process_signed_binary_ primary.bat to the root of project app_primary_usb.

2. Follow section 4.7 to create the new Builder. The finished configuration should look like Figure 50.

a Edit Configuration O X
Edit launch configuration properties 0
Create a configuration that will run a program during builds -

Name: || Process Signed Binary Primary I

_ 9 Refresh | I Environment (= Build Options

Location:

S{workspace_loc:/app_primary_usb/process_signed_binary_primary.bat} |

Browse Workspace... | Browse File System... Variables...
Working Directory:
${workspace_loc:/app_primary_usb}
[Bmwse Workspace...l Browse File System... Variables...
Arguments:
Variables...

Note: Enclose an argument containing spaces using double-quotes ().

Show Command Line Revert Apply

(?) OK Cancel

Figure 50. Configure the Custom Builder for the Primary Application

R11ANO570EUO111 Rev.1.11

Nov.23.22

RENESAS

Page 31 of 51

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

3. Click Generate Project Content and compile the app_primary_usb project. Ensure that
app_primary_usb_signed_offset.srec is generated under the root of the app_primary_usb
project.

v % app_primary_ush
q:f Binaries
i Includes
2 ra
2 ra_gen
= sre
= Debug
=% ra_cfg
= script
I =| app_primary_ush_signed_offset.srec I

=| app_primary_ush.elf.jlink

=| app_primary_usb.elf.launch

fif';? configuration.xml

[%] process_signed_binary_primary.bat
=| RTFAGBMAAFICFE.pincfg

=| ra_cfg.bet

@. srec_cat.exe

{7) Developer Assistance

Figure 51. Signed Primary Image Offset to the Primary Slot
6. Booting the Primary Application and Updating to a New Image

To update the application, the primary application needs to provide an image downloader. A new image will
also need to be prepared to test the image downloader function.

6.1 Prepare a Secondary Image

In this project, a secondary image is created to test the downloading functionality of the primary application.
The new application can be created by either modifying the existing application or creating a new application
project. If a new application project is used, the user needs to establish the linkage to the bootloader by
following section 5. The newly created application project must also provide a method to download the new
application to the upper bank.

In this application project, we will import the initial application project to the same workspace, rename the
new project, and perform minor updates.

Right-click in the white space in the Project Explorer area and select Import and choose Rename & Import
Existing C/C++ Project into Workspace.

R11ANO570EUO0111 Rev.1.11 Page 32 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

& import a

Select
Y

Select an import wizard:

Choose import wizard, H

[type filter text

v [General
JE Archive File
) CMSIS Pack
=¥ Existing Projects into Workspace
[} File System
] Preferences
(), Projects from Folder or Archive
% Rename & Import Existing C/C++ Project into Workspacel
T Renesas Cor Project for Ca okORy G f ok
1= Renesas CS+ Project for CC-RX and CC-RL
= CfC++
= Install
(= Oomph
(= Run/Debug

(= Team

@ < Back Next » Finish Cancel

Figure 52. Import the Initial Application

Once the Import window opens, name the project app_secondary_usbh, check Select root directory, and

click Browse:

Q Import O

Rename & Import Project i
Select a directory to search for existing Eclipse projects. / /

—
Project name:|| app_secondary_usb| I

Use default location
C:\a_dual_bank_boot\FSP_v3.6\Recreate3\app_sec: Browse...

Create Directory for Project

default
Import from:
(®) Select root directory: ~ I Browse...
O Select archive file: Browse
Projects:
Options

[JKeep build configuration output folders

QI

7~
\

< Back Next > Finish Cancel

Figure 53. Name the New Application

Browse into the Workspace folder and select app_primary_usb.

R11ANO570EUO111 Rev.1.11

Nov.23.22

RENESAS

Page 33 of 51

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

ﬁ Import O x
Rename & Import Project —
Select a directory to search for existing Eclipse projects. / J

Project name: | app_secondary_usb | f

Use default location

C:\a_dual_bank_boot\FSP_v3.6\Recreate3\app_secondary Browse...]
Create Directory for Project
default
Import from:
(®) Select root directory: | C:\a_dual_bank_boot\FSP_v3.6\Recreate3 v Browse...
() Select archive file: Browse...
Projects:
| app_primary_usb (C:\a_dual_bank_boot\FSP_v3.6\Recreate3\app_primary_ush) |

ra_mcuboot_rabmd_dualbank (C:\a_dual_bank_boot\FSP_v3.6\Recreate3\ra_mcuboot_raém4 ¢

< >

Options
[[] Keep build configuration output folders

)

< Back Next > | Finish | Cancel

Figure 54. Select to Initial Primary Application
Click Finish. The new application project will be created with the following attributes:

e When importing the primary application, the Build Variable and Environment Variables are
automatically imported.

e The custom Builder “Process Signed Binary Primary” is also imported. For a clean project, a user must
manually remove this Builder and the corresponding support files from the secondary project.

e Unlike in normal XIP Mode operation, the linker script symbol XIP_SECONDARY_SLOT_IMAGE must
be undefined in Dual Bank mode. By default, XIP_SECONDARY_SLOT_IMAGE is undefined in the
linker script symbol, so no action needs to be taken here.

Update Existing Application to a New Application
To demonstrate the application update, update the application to blink the blue and green LED only.

Perform the following code updates in blinky thread_entry.c:

R11ANO570EUO0111 Rev.1.11 Page 34 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

Change below section of code in blinky thread_entry:
/* Update all board LEDs */
for (uint32_t i = 0; i < leds.led_count; i++)

{
/* Get pin to toggle */
uint32_t pin = leds.p_leds[i];
/* Write to this pin */
R_BSP_PinWrite((bsp_io_port_pin_t) pin, pin_level);
}

To:
/* update the blue led */
R_BSP_PinWrite(leds.p_leds[0], pin_level);

/* update the green led */
R_BSP_PinWrite(leds.p_leds[1], pin_level);

Figure 55. Update the LED Control
Save the updated source file, click Generate Project Content, then compile the new project.

If you create a new application project and would like to debug the new project with the bootloader, follow the
instructions in section 6.3 to section 6.7. When debugging an update image with the bootloader, you can
treat the update image as the primary application.

6.2 Set Up the Hardware

If using app_primary_usb as the initial application project:

e Connect J10 (USB Debug) using a USB micro to B cable from the EK-RA6M4 to the development PC to
provide power and debug connection using the on-board debugger.

e Connect J11 (USB FS) using a USB micro to B cable from the EK-RA6M4 to the development PC to
provide USB Device connection.

If using app_primary_uart as the initial application project:

e Connect J10 using a USB micro to B cable from the EK-RA6M4 to the development PC to provide power
and debug connection using the on-board debugger.
e Connect the three pins in Table 3 on the UART to USB converter to the EK-RA6MA4.

Table 3. Connection through the UART Interface

UART to USB Converter | RA6M4
RX P101 (TX)
TX P100 (RX)
GND GND

6.3 Erase the MCU

When MCUboot is used in flash dual bank mode, the code flash mode needs to start in linear mode. Erasing
the MCU Option-Setting Memory settings will configure the code flash mode to linear mode. Erasing the
entire MCU memory is recommended. The MCU can be erased through a variety of methods. A user can
erase the MCU flash using the Renesas Device Partition Manager, Renesas Flash Programmer, or third-
party tools like JFlash Lite.

Note: If the MCU is in code flash dual bank mode, make sure to restore to linear mode prior to proceeding
to the rest of the application note sections. The rest of the operations assume the device starts in
code flash linear mode. They will not work if the device is already in code flash dual bank mode.

R11ANO570EUO0111 Rev.1.11 Page 35 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

6.3.1 Use the Renesas Flash Programmer
The Renesas Flash Programmer (RFP) can detect the flash mode when a new RFP project is created.
Note: Prior to connecting with the RFP, power cycle the development board.

Connect the EK-RA6M4 to the PC through J10 USB Debug. Launch RFP and create a new RFP project.
Click File -> New Project.

]
[]

Figure 56. Create a New RFP Project

Configure the Microcontroller selection as well as the Tool used for communication. Then, click Connect.

Es Create New Project - X

Project Information

Microcontroller: ~

Project Name: I|new_rfppr0ject I |

Project Folder: |C:'-a_dua|_bank_bnot | Browse...
Communication

Toal: Interface: 2 wire UART

Tool Details... MNum: AutoSelect

Figure 57. Configure the New Project

Once the connection is successfully established, the user can open the Block Settings page to check the

Code Flash configurations.

If RA6MA4 flash is in code flash linear mode, Blocks Settings are presented as in Figure 58.

File Target Device

Help

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code User Keys

Region Start End Size Erase PV
= R7FAGM4AFICFB

Code Flash 1 (x00000000 OxOOOFFFFF 1.0M

Data Flash 1 008000000 (x08001FFF 8K

Corfig Area 0x0100A100 (x0100A2FF 512

Figure 58. Flash in Linear Mode

If the RA6M4 flash is in flash dual bank mode, Block Settings are presented as in Figure 59.

R11ANO570EUO0111 Rev.1.11
Nov.23.22

RENESAS

Page 36 of 51

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

& Renesas Flash Programmer V3,09.00 - X

Target Device Help

Operation Operation Settings Block Settings Aash Options Connect Settings Unigue Code User Keys
End Size Erase PV

Region Start

R7FABM4AF3CFB

Code Flash 1 (x00000000 CxDDO7FFFE
¥ Code Flash 2 0x00200000 __ OxD027FFFF___ 512K
4] Data Fash 1 (08000000 (x08001FFF 3K)
#. Corfig Area 0x0100A100 x0100A2FF 512

Figure 59. Flash in Dual Bank Mode

Whether the MCU is in flash dual bank mode or flash linear mode, the Initialize Device command can erase
the entire flash, including the Config Area, and thus return the MCU to code flash linear mode.

File | Target Device I Help

Operati Read Device Information 2sh Opti

Read Memory...
Pn Read Flash Options

| I Initialize Device I |
DLM Transition...

Figure 60. Initialize Device Command

If the Initialize Device is successful, the message in Figure 61 will be presented in the status window.

Connecting the tool

Tool - J-Link (J-Link OB-5124 compiled Jan 17 2022 10:30:42), Interface - 2 wire UART
Connecting to the target device

Setting the target device

Communication speed : 9600bps

Setting the target device

MCU Unique ID : dE4B297 1454 14BA33636363456118F 29

Boot Firmwvare Verzion @ W1.6.25

Erazing the tarest device

Dizconnecting the tool
Operation completed.

Figure 61. Initialize Device Succeeded

6.3.2 Use the SEGGER J-Flash Lite

J-Flash Lite is a free, simple graphical user interface which allows downloading into flash memory of target
systems. J-Flash Lite is part of the J-Link Software and Documentation package that is installed when the J-
Link software & documentation pack is installed.

To use J-Flash Lite, connect the USB Debug port J10 to the PC and launch J-Flash Lite. Select the Device
and debug Interface and communication speed.

ﬂ SEGGER. J-Flash Lite V7.56b — *
Device Interface

Figure 62. Launch the J-Flash Lite

Click OK. In the next screen, select Erase Chip.

R11ANO570EUO0111 Rev.1.11 Page 37 of 51
Nov.23.22 RENESAS

https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

H SEGGER J-Flash Lite V7.56b — >
File Help

Target

Device Interface Speed

[R7FaGMaAF | [swo | [4000 kHz |
Data File (bin / hex f mot [srec /... Prog. addr. (bin file only)
L] 000000000 I SEESEILE I

Program Device

Log

Connecting to J-Link...
Connecting to target...
Erasing...

ERROR: Could not erase chip
Done.

Connecting to J-Link...
Connecting to target...
Erasing...

Done.

Ready

Figure 63. Erase the MCU using J-Flash Lite

Note that when using Segger J-Flash Lite 7.68b or earlier, the Erase operation needs to be performed twice
if the device is already in dual bank mode. This may be fixed in later J-Flash Lite versions.

6.3.3 Use Renesas Device Partition Manager

Power cycle the evaluation board EK-RA6M4 after a debug session to use the Renesas Device Partition
Manager. Within e? studio, navigate to Run -> Renesas Debug Tools -> Renesas Device Partition

Manager. Select J-Link as the connection method and select action Initialize device back to factory
default.

Click Run. The MCU will be erased.

R11ANO570EUO111 Rev.1.11

Page 38 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

| *
i
| Device Family:}| Renesas RA
Action
Read current device information Change device lifecycle management state

Set TrustZone secure / non-secure boundaries In]tia]ize device back to factory default

Target MCU connection: J-Link v

Emulator Connection: Serial No v

Serial No/IP Address: |

Debugger supply voltage (V): 0
Baud rate: 9600
DLM state to change to: S5D - Secure Software Development

Memory partition sizes
Code Flash Secure (KB) 256
Code Flash NSC (KB} 0
Data Flash Secure (KB) 0

SRAM Secure (KB) 256
SRAM NSC (KB) 0
Command line took: Browse...
Baud rate (bps) : 9600 ~

Display errorsin : English

Connecting..,
Loading library : SUCCESSFUL!
Establishing connection : SUCCESSFUL!
CONNECTED.

Initializing device and rolling back DLM state to SSD...
SUCCESSFUL!

Disconnecting...
DISCONNECTED.

---------- SUMMARY OF RESULT----------
Connection : SUCCESSFUL!
Device initialization ; SUCCESSFUL!

@

Import Export Run Close

Figure 64. Erase the MCU using Renesas Device Partition Manager

R11ANO570EU0111 Rev.1.11 Page 39 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

6.4 Start the Debug Session
Follow the steps below to start the debug session:

1. Disable flash content caching from the Debugger setting.
Right-click on project app_primary_usb->Debug As->Debug Configurations, navigate to Debugger -
> Debug Tool Settings, and uncheck Allow caching of flash contents. Otherwise, when debugging
bootloader applications, the memory window may show wrong information.

B Mai&- Startup | B~ Source | [Common

Debug hardware: |J-Link ARM ~ | Target Device: | R7TFABMAAF

GDB Settings Connection Settingsl Debug Tool SEttingsI

w~ 10 Y
Use Default 1O Filename Yes]
|0 Filename Ssupport_area_loc}

v General Debug
Reset After Reload Yes]

~ Memory
Endian Little Endian v

~ Break
Use Flash Breakpoints Yes]
Allow Simulation No]
w Flash

Flash Bus Type
Flash Memory Type
WorkRam Start
WorkRam End

Erase on-chip program flash before download Mo v
Erase on-chip data flash before download Mo v
Use CFI-Flash No v
CFl Start (1]
CFl End (1]

~ Semihosting
Semihosting breakpoint address

~ RTOS
RTOS Integration in Debug View Mo v
RTOS Debugging - Large Number of Threads, Mo v

w System

I Allow caching of flash contents MNo I W

+ Time Measurement
Run Break Time Measurement Yes v
Count Every Core Cycle Yes v
Operating Freauency [MHz] v

Figure 65. Disable Flash Content Caching
R11ANO570EUO111 Rev.1.11 Page 40 of 51

Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

2. Configure the load image and symbols properties.
Open the Debug Configurations: app_primary_usb->Debug As->Debug Configurations.
Make sure app_primary_usb Debug_Flat is selected and select the Startup tab.
Click Add..., then Workspace, navigate to the ra_mcuboot_raém4_dualbank project, and select the
ra_mcuboot_raém4_dualbank.elf file from the debug folder. Click OK.

& Add download module > [

Specify download module name:

| ra_mcuboot_rabmd_dualbank\Debufira_mcuboot_ra Emri_dualbank.elf}

Variables... Search Project... Workspace... File System...

Figure 66. Add the Bootloader Project to Debug Configuration

3. Change the Load type of the Program Binaries for the app_primary_usb project to Symbols only by
clicking on the cell for Load type and selecting Symbols only from the drop-down menu.

Load image and symbaols

Filename Load type Offset (hex) On connect
Program Binary [app_primary_ush.elf] Symbaols onl Yes
ra_mcuboot_rabm4d_dualbank.elf [Cha_d... I Image and Symbols ID Yes

Figure 67. Select to load Symbols only for the Application Project

4. Follow similar steps to add the signed primary image and the upper bank bootloader. Choose Image
only as the Load type for the upper bank bootloader and choose Raw Binary as the Load type for the
primary application image.

Load image and symbols

Filename Load type Offset (hex) On connect Add..
Program Binary [app_primary_ush.elf] Symbols only Yes
app_primary_ush.bin.signed [C\Users\a30.. Raw Binary 10000 Yes Edit...
ra_mcuboot_rabmd_dualbank.elf [C:\Users... Image only 80000 Yes B
ra_mcuboot_rabmd_dualbank.elf [C:\Users... Image and Symbols 0 Yes
Move up
Meowve down

Figure 68. Add the Signed Primary Image and Upper Bank Bootloader
5. Click Debug. The debugger should hit the reset handler in the bootloader.

—r - U P e e

Bad3d SystemInit();

G4 Boa
65
66 /* Call user application. */
67 B2BRa43a main();
63
63 = while (1)
e
@
1 /* Infinite Loop. */
@eeBad3e 1
.

Figure 69. Start the Application Execution

R11ANO570EUO0111 Rev.1.11 Page 41 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

6. Choose Remember my decision and click Switch if prompted to switch the perspective.

ﬁ Confirm Perspective Switch >

-~) This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective supports application debugging by providing views for
displaying the debug stack, variables and breakpoints.

Switch to this perspective?

Rernember my decision

oo] ™

Figure 70. Switch the Perspective

7. Click Resume " to run the project.
The program should now be paused in main at the hal_entry() call in the bootloader.

/* generated main source file - de not edit */
#include "hal_data.h”
= int main(void)

peeeeizc | hal_entry ();
6 G2eaal32 return @;

}

Figure 71. Start the Application Execution

8. Click ™ to run again.

The red, blue, and green LEDs on the EK-RA6M4 should now be blinking while the blinky application is
running.

6.5 Program the New Application Using the Primary Application Downloader
Follow the steps below to program the new application created in section 6.1:

1. Open Tera Term and choose the USB Serial Port (COM number may be different for your setup). Then
click OK.

Tera Term: New connection x
O TCPIP myhost.example.com
Histony
Telnet 22
3SH SSH2
Other
AUTO
@® Serial Port: | COM7: USB Serial Port [COM7) v
Cancel Help

Figure 72. Open the COM Port

Note: When using the UART interface, select the Serial Terminal and set the Speed to 115200. Skip this
step if using the USB interface.

R11ANO570EUO0111 Rev.1.11 Page 42 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

Tera Term: Serial port setup and connection >
Port. COM7? ~ i
New setting
Data: 8 bit v Cancel
Parity: none w
Stop bits: 1 bit v Help
Flow control: none ~

Figure 73. Configure the Baud Rate if using UART Interface

The menu in Figure 78 will be displayed on the Tera Term.

Fleaze select from below menu options:

1 — Display image slot info
2.— Download and hoot the new image (XModem)
|

Figure 74. Tera Term Menu

2. Select option 1 to print the image slot information.

>1

EaEaZaZaZaZaZaloadaZ T 3 T 2 3 3 2 3 3 3 3 3.3 3 3 3

* Primary Image Slot =

000

Image version: 1.8 (Rev: B, Build: 8>
Primary image start address: xh010006
Header size: AxB8288 (512 bytes)
Protected TLU size: AxAPAR (A bhytes>

Image size: AxB0B00B2B4 <45748 bhytes>

RaEa o T e e

»* Secondary Image Slot »=
EaaZaZaZaZag 2 T 3 3 3 3.3 .3 3 3 3. 3. 3.3 .3 3 3.3 3.3
Image version: 255.255 C(Rev: 65535, Build: -1>
Secondary image start address: BxBA210080
ize: BxFFFF (65535 bhytes>
Protected TLU size: AxFFFF (65535 hytes?>
Image size: BxFFFFFFFF <-1 hytes)

Figure 75. Print the Image Slot Information

3. Select option 2 to download the secondary image using the primary image downloader.

1 — Display image =lot info
2 — Download and hoot the new image <(HModem>
»2

Blank checking the secondary slot...

NS Secondary slot hlank

Start Hmodem transfer...

System will awntomatically reset after successful download...

Figure 76. Choose Option 2 to Download the New Image using XModem

R11ANO570EU0111 Rev.1.11 Page 43 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

4. Open the Transfer interface of the Tera Term.

| ¥ COMS - Tera Term VT
Edit Setup Control Window Help

New connection... FIYE IO F6C (40812 hytes)
Duplicate session Alt=D
Cygwin connection Alt+G
255 {(Rev: 65535, Build:
Lo FFFFFF
ger FF (65535 bytes)

FF ¢(65535 hytes)
FFFFFF (-1 hytes>

Sendﬁh; w image (XModem>

SSH SC XMODEM >

Change directory... YMODEM >
Reolav Loa... ZMODEM > |

Receive...
Send...

Figure 77. Start Transfer from Tera Term

5. Choose \app_secondary_usb\Debug\app_secondary_usb.bin.signed, then click Open.

T Tera Terrmn: XMODEM Send
Look in: | Debug V| e Er
MName - Date modified Type
ra 3/17/2022 2:41 PM File fo
ra_gen 3/17/2022 2:41 PM File fo
src 3/17/2022 2:41 PM File fo
|| 1 app_secondary_usb.bin.signed | 3/18/2022 2:11 AM SIGME
| app_secondary_ush.elf 3/18/2022 211 AM ELF Fil
| app_secondary_ush.elf.in 3/18/2022 211 AM IN File
amm carnndane ok man 2ARIINTT 11 AKA RAAD E

Figure 78. Choose the Signed Secondary Image

The secondary image is then downloaded and programmed to the upper bank.

Tera Term: XMODEM Send X

Filename: |app_secondaty_ush.l:|

Protocol: XMODEM [checksum]
Packeti: 837
Bytes transferred: 107136
Elapsed time: 0:00

III 81.7%

Figure 79. Download the New Image via XModem

6.6 Boot the New Application
The system will automatically reboot after the new image is downloaded.

Resetting the system

Please select from helow menu options:

TR Display image slot info
2 — Download and boot the new image <(HModem>

Figure 80. The New Image is Booted

Select option 1 to read the swapped memory layout.

R11ANO570EUO0111 Rev.1.11 Page 44 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

>1

% Primary Image Slot =

Image version: .1 <¢Rev: B, Build: @>
Primary image start addre BxB081 8888
ize: Bx02808 (512 hytes>

BxB08B <@ bhytes>
Image size: BxBBBB9F74 {48828 hytes>

00 0 0 0 e o e e
* Secondary Image Slot =
00 0 0 0 e o e e
Image version: 1.8 (Rev: B, Build: @

i start addre AxAR21 0060

BxA288 <512 hytes>

Protected TLU size: AxAABB (@ bhytes>
Image size: AxBBBBB2B4 (45748 hytes>

Figure 81. The Slot Layout After New Image is Booted

Note that even though the secondary image is booted, it cannot be debugged as the symbol downloaded to
the debugger is for the primary image.

Also, if you want to perform further update, the new image must have a version of higher than the current
image in the primary slot.
7. Production Support Considerations

This section describes one possible flow of production flow. Users may adapt this procedure to their own
needs wherever possible.

7.1 Protect the Bootloader using Flash Block Protection

The secure bootloader protects the Root of Trust of the system. It should be protected from alteration by the
application. Based on Figure 35, the bootloader is located in the first 64-KB region. Based on Figure 3, the
blocks that need to be protected are blocks 0 to 8 for the lower bank and 70 to 78 for the upper bank.

Users can set up these blocks to be temporarily protected in the ra_mcuboot_raém4_dualbank project
under the BSP tab. If these blocks are protected temporarily, the block protection setting can be reset by
performing the MCU erase operations described in section 6.3.

7| BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

ems [Console [REGKENESS T G Smart Browser [} Smart Mar

5M4

Property Value
Security
OFS50 register settings
OF51 register settings
w Block Protection Settings (BPS)

~ BPSD
Flash Block 0 [
Flash Block 1 =
Flash Block 2 =
Flash Block 3 =
Flash Block 4 =
Flash Block 5 =
Flash Block & =
Flash Block 7 =
Flash Block & [
Hlash Block & [
Flash Block 10 O
Flazh Block 11 O
Flazh Block 12 O

Figure 82. Temporary Protection of the Lower Bank Bootloader Area

R11ANO570EUO0111 Rev.1.11 Page 45 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

ry | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

lems & Console [JEIGEEGECS Y G Smart Browser [} Smart Manual

6M4
s Property Value
package_pins 144
v RAGM4
series 6
~ RAGM4 Family
Security

OF50 register settings
OF51 register settings
~ Block Protection Settings (BPS)

BPS0

BP51

+ BPS2
Flash Block 70 (Dual Maode Only) [
Flash Block 71 (Dual Mode Only) [l
Flash Block 72 (Dual Mode Only) [
Flash Block 73 (Dual Made Only) [
Flash Block 74 (Dual Mode Only) [
Flash Block 75 (Dual Mode Only) [
Flash Block 76 (Dual Maode Only) [
Flash Block 77 (Dual Maode Only) [
Flash Block 78 (Dual Mode Only))
EL =] | 1 OL0 IIdAﬁIJ'\ |
Flash Block 20 (Dual Made Only) O
Flash Block 81 (Dual Mode Only) O

Figure 83. Temporary Protection of the Upper Bank Bootloader Area

Users can set up these blocks to be permanently protected in the ra_mcuboot_ra6ém4_dualbank project
under the BSP tab.
Note: If these blocks are protected permanently, these areas cannot be erased and reprogrammed through

the lifetime of the MCU. Users need to be very cautious when setting up the permanent protection.
The MCU erase operations described in section 6.3 will not be able to erase these blocks.

1ary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

oblems [E Console [EEHEGES @ Smart Browser [E} Smart Manu:

{A6M4

Property Value
» Security
OF50 register settings
OF51 register settings
~ Block Protection Settings (BPS)

ngs

BPS0

BP51

BPS2

~ Permanent Block Protection Settings (PBPS)
~ PBPSD

Flash Block 0 =
Flash Block 1 =
Flash Block 2 =
Flash Block 3 [
Flash Block 4 =
Flash Block 5 =
Flash Block 6 =
Flash Block 7 [
Flash Block 8 =
Flash Block 9 O
Flash Block 10 i
Flash Block 11 O

Figure 84. Permanent Protection of the Lower Bank Bootloader Area

R11ANO570EUO0111 Rev.1.11 Page 46 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

Summary |BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

[#1 Problems &) Conscle [JEREGEERSEE G2 Smart Browser [} Smart Manual

EK-RAG6M4

Settings ~ Property Value
R7FABMAAFICFB
w RABM4
Series 6
~ RAGBMS Family
Security
OFS0 register settings
OF51 register settings
Block Protection Settings (BPS)
~ Permanent Block Protection Settings (PBPS)
PBRSO
PEPS1
~ PBRS2
Flash Block 70 (Dual Mede Only)
Flash Bleck 71 (Dual Mode Only)
Flash Block 72 (Dual Mede Only)
Flash Block 73 (Dual Mede Only)
Flash Block 74 (Dual Mede Only)
Flash Block 75 (Dual Mede Only)
Flash Block 76 (Dual Made Only)
Flash Block 77 (Dual Mede Only)
Flash Block 78 (Dual Mede Only)
|_Flash Block 79 (Dual Mode Only)
Flash Block 80 (Dual Mede Only)
Flash Block 81 (Dual Mede Only)

0o EEREREEEF

Figure 85. Permanent Protection of the Upper Bank Bootloader Area

The included example bootloader does not include the block settings to enable block protection. Users can
enable them prior to field deployment.

7.2 Provision the Bootloaders and the Initial Application to MCU

Users can combine the .srec files generated from the above sections into one .srec file and program it to
the MCU during production.

The three images to be combined are:

e Bootloader for the Lower Bank: ra_mcuboot_ra6m4_dualbank.srec

e Bootloader for the Upper Bank: ra_mcuboot_ra6m4_dualbank offset.srec

e Application for the Lower Bank: app_primary_usb_signed_offset.srec

Use the following command to generate one combined .srec from the above three . srec files:
srec_cat ra_mcuboot raém4_dualbank.srec ra mcuboot ra6ém4_ dualbank offset.srec
app_primary_usb_signed offset.srec -o combined.srec

Download combined.srec to the MCU using RFP or J-Flash Lite in the same way as programming the
ra_mcuboot_ raém4 dualbank_offset as explained in section 6.4.

Once the device is deployed to the field, the application update can be achieved using the image downloader
implemented in the application project.

8. Compile and Exercise the Included Example Bootloader and Application
Projects

8.1 Using USB as the Download Interface
For the USB interface, three projects are needed:

e ra_mcuboot ra6m4 dualbank
e app_primary_usb
e app_secondary_usb

Users can follow the steps below to run the example projects in the folder
\RA6_Secure_Bootloader_Dualbank\example_projects_with_bootloader:

1. Follow the instructions in section 6.2 to set up the hardware.

R11ANO570EUO0111 Rev.1.11 Page 47 of 51
Nov.23.22 RENESAS

Renesas RA Family RAG6 Secure Firmware Update using MCUboot and Flash Dual Bank

Import the above-mentioned three projects to a Workspace.
Open the Configuration.xml file from project ra_mcuboot_ra6m4_dualbank.
Click Generate Project Content.
Compile the project ra_mcuboot_ra6m4_dualbank.
Open the ConFiguration.xml file from project app_primary_usb.
Click Generate Project Content.
Compile the app_primary_usb.
Open the Configuration.xml file from project app_secondary_usb.
. Click Generate Project Content.
. Compile the app_secondary_usb project.
. Erase the entire chip following instructions in section 6.3.
. Debug the application from project app_primary_usb in the e? studio environment.
. Resume the program execution twice. All three LEDs should be blinking.
. Stop the debug session and power cycle the EK-RA6M4.
. Open Tera Term with the enumerated COM port (USB Serial Device).
. Use Tera Term to send the \app_secondary_usb\Debug\app_secondary_usb.bin._signed to
the MCU following the instructions in section 6.6. This will take about 30 seconds.
18. System will be reset automatically after download.
19. Blue and green LEDs should be blinking.
20. Enter menu item 1 to confirm the image with version 1.1.0 is located in the primary slot (lower bank) and
the image with version 1.0.0 is located in the secondary slot (upper bank).

©CoNoORr WD

PR R R RR R R
NoO UM WN RO

8.2 Using the UART as the Download Interface
For the UART interface, three projects are needed:
e ra_mcuboot_raém4_ dualbank

e app_primary_uart
e app_secondary_uart

Users can follow the steps below to run the example projects in the folder
\RA6_Secure_Bootloader_Dualbank\example_projects_with_bootloader:

=

Follow the instructions in section 6.2 to set the hardware.
Import the above-mentioned three projects to a workspace.
Open the Configuration.xml file from project ra_mcuboot_ra6m4_dualbank.
Click Generate Project Content.
Compile the project ra_mcuboot_ra6m4_dualbank.
Open the Configuration.xml file from project app_primary_uart.
Click Generate Project Content.
Compile app_primary_uart.
Open the Configuration.xml file from project app_secondary_uart.
. Click Generate Project Content.
. Compile the app_secondary_uart project.
. Erase the entire chip following the instructions in section 6.3.
. Debug the application from project app_primary_uart in the e2 studio environment.
. Resume the program execution twice. All three LEDs should be blinking.
. Stop the debug session and power cycle the EK-RA6M4.
. Open the Tera Term with the enumerated COM port and set up the baud rate as 115200.
. Use Tera Term to send the \app_secondary_uart\Debug\app_secondary_uart.bin.signed to
the MCU by following section 6.6. This will take about 50 seconds.
18. System will be reset automatically after download.
19. Blue and green LEDs should be blinking.
20. Enter menu item 1 to confirm the image with version 1.1.0 is located in the primary slot (lower bank) and
the image with version 1.0.0 is located in the secondary slot (upper bank).

©oNoTOrON

PR R R RR R R
NoO O~ WN RO

R11ANO570EUO0111 Rev.1.11 Page 48 of 51
Nov.23.22 RENESAS

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

9.

=

AN

References

Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project (R11AN0416)

Using MCUboot with RA6 Family MCUs Application Project (R11AN0497)
Using MCUboot with RA2 Family MCUs Application Project (R11AN0516)
Using MCUboot with Encrypted Image and QSPI (R11AN0567)

R11ANO570EUO0111 Rev.1.11
Nov.23.22

RENESAS

Page 49 of 51

https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

10. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-rabm4
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11ANO570EUO0111 Rev.1.11 Page 50 of 51

Nov.23.22 RENESAS

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family RA6 Secure Firmware Update using MCUboot and Flash Dual Bank

Revision History

Description

Rev. Date Page Summary

1.00 March 21, 2022 | - First release document

1.10 Nov. 11, 2022 - Updated Operation Flow based on e?studio 2022-10 or later.
Used FSP v4.0.0. Document title changed from “RA6 Secure
Bootloader Update using MCUboot and Flash Dual Bank” to
“RA6 Secure Firmware Update using MCUboot and Flash
Dual Bank”

111 Nov. 23, 2022 - Corrected typo, added Figure 56 and included RAGE1.

R11ANO570EU0111 Rev.1.11 Page 51 of 51

Nov.23.22 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or 1/0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quiality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2022 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Code Flash Dual Bank Feature
	1.1 RA6M4 and RA6E1 MCU Group Code Flash Configuration
	1.2 RA6M5 MCU Group Code Flash Configuration
	1.3 Option-Setting Memory
	1.3.1 Code Flash Bank Mode
	1.3.2 Startup Bank Selection
	1.3.3 Bank Swap
	1.3.4 Code Flash Block Protection

	2. Using the Code Flash Dual Bank Feature with MCUboot Overview
	2.1 MCUboot Functionalities Overview
	2.2 Using MCUboot for Code Flash Dual Bank Mode
	2.2.1 Use Direct XIP Firmware Update Mode
	2.2.2 Memory Configuration Overview with Dual Bank and MCUboot

	2.3 Designing Bootloader and Initial Primary Application Overview
	2.4 Migrating an Existing Linear Mode MCUboot Based System

	3. Guidelines for Using the Example Projects Included
	3.1 Example Projects with Bootloader
	3.2 Example Projects without Bootloader

	4. Creating the Bootloader Project using Code Flash Dual Bank Mode
	4.1 Include the MCUboot Module in the Bootloader Project
	4.2 Configure the Memory Configuration and Authentication Method
	4.3 Configure the MbedTLS Crypto Only Module and the Flash Driver
	4.4 Add the Boot Code
	4.5 Compile the Bootloader Project
	4.6 Configure the Python Signing Environment
	4.7 Prepare for Production Support

	5. Configuring and Signing an Application Project
	5.1 Configure the Application Project to Use the Bootloader
	5.2 Signing the Application Image
	5.3 Preparation for Production Support

	6. Booting the Primary Application and Updating to a New Image
	6.1 Prepare a Secondary Image
	6.2 Set Up the Hardware
	6.3 Erase the MCU
	6.3.1 Use the Renesas Flash Programmer
	6.3.2 Use the SEGGER J-Flash Lite
	6.3.3 Use Renesas Device Partition Manager

	6.4 Start the Debug Session
	6.5 Program the New Application Using the Primary Application Downloader
	6.6 Boot the New Application

	7. Production Support Considerations
	7.1 Protect the Bootloader using Flash Block Protection
	7.2 Provision the Bootloaders and the Initial Application to MCU

	8. Compile and Exercise the Included Example Bootloader and Application Projects
	8.1 Using USB as the Download Interface
	8.2 Using the UART as the Download Interface

	9. References
	10. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

