RE NESAS Application Note

Renesas RA Family

Guidelines for Using the S Cache on the System
Bus

Introduction

Caches can effectively improve instruction or data access speed for microcontroller and microprocessor
systems with mismatch between CPU and slower SRAM. Even though there are no internal caches in the
Arm® Cortex®-M23 and Cortex-M33 processors, for some Renesas RA Family Cortex-M33 MCUs, there are
system level caches for both instruction cache and data cache present, which help to improve instruction and
data fetch speed.

The cache enabling and configuration for the instruction cache are handled by the Renesas Flexible
Software Package (FSP). The cache enabling, disabling, and flushing functionality for the data cache are
demonstrated in this application project with reference software projects provided. In addition, this application
project provides guidelines and example code for keeping the data cache coherent. Use this application
project as a reference resource for S Cache operations.

The data cache is named S Cache in the Renesas RA Family Cortex-M33 MCU Hardware User’'s Manual.
The S Cache is on the MCU'’s system bus. The instruction cache is named C Cache and is on the code bus.
This application note is focused on the data cache usage of the RA MCUs. For consistency, this application
note uses S Cache throughout the rest of the application note. At the time of the release of this application
project, the RA Family MCU groups that support the S Cache are RA6M5, RA6M4, RAGE1, RA6T2, and
RA4M3. The user can review the MCU Hardware User’'s Manual “Buses” section and look for the Cache
section to understand whether any new MCUs include S Cache and its general specifications.

For other RA6 Series MCUs which do not have S Cache, they are provided with SRAMHS. Access to the
SRAMHS is always no wait state. Use the SRAMHS on these MCUs when improved SRAM access is
needed.

The example project provided is based on EK-RA6M5. You can easily port the example project to other
MCUs which support S Cache. The performance improvement of using S Cache on an MCU varies based on
the MCUs memory access speed, memory size, the nature of the SRAM access pattern of the application
code. The user needs to analyze all these aspects when evaluating the S Cache.

Required Resources
Development tools and software

e The e? studio ISDE v2023-01
e Renesas Flexible Software Package (FSP) v4.3.0
e SEGGER J-link® USB driver

The above three software components: the FSP, J-Link USB drivers and e? studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

Hardware

e EK-RA6MS5 Evaluation Kit for RA6M5 MCU Group (http://www.renesas.com/ra/ek-rabmb)
e Workstation running Windows® 10
e One USB device cables (type-A male to micro-B male)

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e? studio IDE development. You
must be familiar with importing, building, and debugging a Renesas RA Family MCU project based on FSP
packages. In addition, users are required to read the entire Hardware User's Manual Caches section prior to
proceeding to the rest of this application note:

R11ANO538EU0110 Rev.1.10 Page 1 of 21
May.03.23 RENESAS

http://www.renesas.com/fsp
http://www.renesas.com/ra/ek-ra6

Renesas RA Family Guidelines for Using the S Cache on the System Bus

The intended audience is product developers who wish to use the S Cache feature to improve the system
performance.

Contents

1. Overview of the S Cache onthe System BUS............cocoooiiiiiiiii 3
I O S O Vo[- A o 11 1= o] (1] = SRR 3
1.2 S CaChe SPECITICALIONSeiiiiiiiieiiii ettt e e e e e sttt e e e e e e e e bbb re e e e e e e e e annbbeaeeaaeesaannneees 4
1.3 Defining the Memory Attribute using the Memory Protection Unitcccoiiiiiiiiiiiiniiiieeee e 7
I S N O Tod L @] =1 = LT o SRS 7
2. Using S Cache in AN APPIICALIONuuu i a e e e e e e e e e e e e e e e e aeeeas 8
2.1 Using S Cache to Improve MCU PerfOrmManCecoiiiiiiiiiiiiieiie e e e a e e 8
2.2 Configuring the S Cache Registers 0N RABMD..........uuiiiiiii e e e rrre e e e e e s s rar e e e e e e e e aans 9
2.3 Improving the CPU PEerfOIMANCEoiouiiiiiii et e e e e e e e s st e e e e e e s se e e e e e e e e s snnnraneneeeeenanns 9
2.3.1 Allocating Memory Access to Maximize the MCU Bus Performance.........ccccccoovcviveieeeeeiiciivinenee e 9
2.3.2 Designing for Data Structure Grouping and AlIGNMENT.........cocciiiiiiiiiiiii e 10
2.3.3 Understanding the S Cache Update Strat@gycceieioeiiiiiiiiiiaaeeaiiiiee e e e eibeee e e e e e e e 10
2.4 Keeping S CaCNE CONEIENL.........uiiiiiiiiitiii ettt e e e e e e ettt e e e e e e e s e aeab bt e e e e e e e e aanbbbeeeaaaeeaanns 10
2.4.1 FIUShING the S CACNE ...cii i e e e e e e s e e e e e e s s e st a e e e e aeessatsraeeeaaaeeaanns 10
2.4.2 Using the Arm® Memory ProteCtion UNIt..........c.coceeeeeieeieeeeeeeeeeete et e etee e st ee e ete e ereeereeseeeee e 11
2.4.3 Choosing the Preferred Methoduuiiiiio oo e e e e e e e e e e e e e e e e e 13
R T = 1] o [N 0] = o 14
I A @ 1= YT PP UPP PR 14
3.2 Import and RUN the EXamPple PrOJECEueiiiii e e e e e e e e e e s st e e e e e e e eanns 15
3.3 Demonstration of How to Keep S Cache CONEIeNt.........cocuiiiiiiiiiiiiiii e 16
3.4 Demonstration of MCU Performance IMProVemeENt..........ooi ittt e e e e 18
I < (] (=] ot T OO PP RPPPR PP 20
LT V=T o L= (ST T o IR U o oL o 20
REVISTON HISTOTMY .ottt e et e e e e e e e e e e e e e e s e a b r e e e e e e e e aaanae 21
R11ANO538EU0110 Rev.1.10 Page 2 of 21

May.03.23 RENESAS

Renesas RA Family Guidelines for Using the S Cache on the System Bus

1. Overview of the S Cache on the System Bus

A cache is a smaller, faster memory, located closer to a processor core than main memory. It stores copies
of the data from frequently used main memory locations. Some RA Family Arm® Cortex®-M33 MCUs
implement both C Cache on the Code Bus and S Cache on the System Bus to reduce the average cost (time
or energy) to access data from the main memory.

1.1 S Cache Architecture

Read the Buses > Overview section in the Renesas RA Family Cortex-M33 MCU Hardware User’'s Manual
to see whether the MCU supports S Cache and understand the S Cache architecture. The bus system
architecture for RA Family Cortex-M33 MCUs that have S Cache is shown in the following graphic.

BUS Masters

CPU/DEBUG ® _ Bus multiplexer
CM33 Integration
IDAU(TZF)
I 1 DMAC/DTC EDMAC
|ccache| |[scache] (TZF) (ETHER)
T T
o o | [
= Bus Master Bus Master
Bus Master MPU
g g MPU for MPUfor | o oo
g 3 DMAC/DTC EDMAC
@ =4
w
EHBIU TZF Code Flash memory
Configuration area
FLBIU Data Flash memory
@_ FACI
S0BIU SRAMO I
{ TZF |+ StandbyRAM >
»
PSBIU I TZF H Peripheral system modules | W
-2
m
PLBIU TZF Peripherals(Low-speed) |
PHBIV | 57F | [Peripherals(High-speed) |
EQBIU rose |
EOBIU o-5PI |
ECBIU } External Memory (CSC)Interface |
Bus Matrix

MNote: TZF is TrustZone Filter. C cache is instruction cache. S cache i1s data cache.
For FLBIU, the code bus accesses the data flash memory and configuration areas (code region) through FLBIU. The

system bus accesses FACI and SCDS (peripheral region) through FLBIU

Figure 1. Bus Architecture for RA6M4 and RA6M5

The bus architecture for RAG6E1, RA6T2, and RA4M3 is similar to RA6M4 and RA6M5 regarding the S
Cache operation, however, these devices do not have external memory interface like QSPI and OSPI.

Table 1 is the bus master specification for the RA6M4 and RA6M5 MCUs with S Cache. For arbitration
between masters, the analysis in this application note is based on the following priority sequence:

EDMAC > DMAC/DTC > CPU

R11ANO538EU0110 Rev.1.10 Page 3 of 21
May.03.23 RENESAS

Renesas RA Family Guidelines for Using the S Cache on the System Bus

Table 1. Bus Specification for RA6M4 and RA6M5 MCUs with S Cache Support

Bus Master Bus Interface Synchronization | Specifications

Name Maximum Frequency

Code bus 200 MHz ICLK Connected to the CPU Instruction Cache
(C Cache) for instructions and operands

System bus 200 MHz ICLK Connected to the CPU Data Cache (S
Cache) for data access operations

DMAC/DTC 200 MHz ICLK Connected to the DMAC/DTC

EMAC (Ether) 100 MHz PCLKA Connected to the EDMAC

Note that other MCUs with S Cache support may have different ICLK and DMAC clock configurations. In
addition, some MCUs with S Cache support may not include Ethernet support, the user is required to
reference the specific MCU Hardware User’s Manual to understand the specific configurations.

1.2 S Cache Specifications

Read the Buses > Caches > Overview section in the Renesas RA Family Arm® Cortex®-M33 MCU
Hardware User's Manual to understand the S Cache specifications. The following table has a summary of
the key features for RA6M4 and RA6M5. Other MCUs with S Cache may have different capacity, number of
entries, and so forth. The user is required to reference the specific MCU Hardware User’'s Manual to
understand the specific configurations.

Table 2. S Cache Specifications for RA6M4 and RA6M5

Parameter S Cache

Capacity 2 KB

Way 2-way set associative

Line size 32/64 bytes (defaults to 32 bytes)

Number of entries 32/16 entry/way (defaults to 32 entry per way)

Write way Write through, non-write allocate

Replace way 2 way: LRU (Least recently used)

S Cache support 0x20000000-0xDFFFFFFF except Standby SRAM area (0x2800_0000 to

area Ox2FFF_FFFF).

Note: Peripheral area 0x4000_0000 to Ox5FFF_FFFF and QSPI I/O register

area 0x6400_0000 to 0x67FF _FFFF must not have the cacheable
attribution in the Arm® MPU.

Use caution when updating the Memory Protection Unit (MPU) configurations to avoid accidentally making
these sections cacheable. Note that based on the Cortex-M33 default memory map, RA6 Standby SRAM
region is also cacheable. Renesas RA6 MCUs with S Cache control have chosen a different configuration in
this area and made this section as non-cacheable. This is controlled by hardware; user does not need to set
the Standby SRAM area as non-cacheable.

In addition, the Quad Serial Peripheral Interface (QSPI) registers of the RA6 MCUs with S Cache are located
in the Normal memory region based on the Cortex-M33 default memory map as shown in Figure 2 and
Figure 3 . User needs to use the Arm Memory Protection Unit (MPU) to set this area as Non-cacheable.
Also, if the Cortex-M33 default memory map is used, the peripheral area memory type is Device nGnRE, the
cache attribute is not available for this area. As such, there is no action needed to additionally set this area
as Non-cacheable. Example code is provided in section 2.4.2 Figure 5 to set the QSPI register area as Non-
cacheable.

R11ANO538EU0110 Rev.1.10 Page 4 of 21
May.03.23 RENESAS

Renesas RA Family

Guidelines for Using the S Cache on the System Bus

225

Summary of the behavior of accesses to each region in the memory map.

Behavior of memory accesses

2 The Cortex*-M33 Processor
2.2 Memory model

Table 2-16 Memory access behavior

Address range Memory region Memory type | Shareability | XN | Description
0x00000088-8X1FFFFFFF | Code Normal Non-shareable | - Executable region for program code.
You can also put data here.
Bx20000000-8X3FFFFFFF | SRAM Normal Non-shareable | - Executable region for data. You can
also put code here.
Ox40000000-8x5FFFFFFF | Peripheral Device, nGnRE | Shareable XN | On-chip device memory.
OX600000808-8X9FFFFFFF | RAM Normal Non-shareable | - Executable region for data.
OxARPOERRR-OXDFFFFFFF | Extemal device Device, nGnRE | Shareable XN | External device memory.
OXEQ200000-0XEQG3FFFF | Private Peripheral Device. nGnRnE | Shareable XN | This region includes the SCS, NVIC,
Bus MPU, SAU, BPU, ITM, and DWT
registers,
OxXEQD4POPA-0XEARA3FFF | Device Device, nGnRnE | Shareable XN [This region is for debug components.
Contact your implementer for more
mformation.
OxE0044000-0XE@OFFFFFF | Private Peripheral Device, nGnRnE | Shareable XN [This region includes the ROM tables.
Bus
OXEQ100R0B-8XFFFFFFFFF | Vendor SYS Device, nGnRE | Shareable XN | Vendor specific.

Figure 2. Arm® Cortex®-33 Default Memory Map

R11ANO538EU0110 Rev.1.10

May.03.23

RENESAS

Page 5 of 21

Renesas RA Family

Guidelines for Using the S Cache on the System Bus

OXFFFF_FFFF

0xE000_0000

0x8720_0000

0x8000_0000

0x6300_0000
0x6400_0000

System for Cortex®-M33

Reserved area™

External address space
(CS area)

External address space
(Octal SPI area)

QSPI Registers

QSPI Memory area

0x6000_0000
0x4080_0000
0x407F_C000

Ox407F_0000
Ox407E_0000

0x4018_0000

Reserved area*?

Flash /O registers

Reserved area™

Flash /O registers

Reserved area™

Peripheral 1/O registers

0x4000_0000

0x2800_0400
0x2800_0000
0x2008_0000

0x2000_0000
0x0800_2000
0x0800_0000
0x0100_A300

0x0100_A100

0x0100_81B4
0x0100_80F0

0x0030_0000

0x0000_0000

Reserved area™

Standby SRAM

Resemved area™

SRAMO

Reserved area™

On-chip flash (data flash)

Reserved area™

On-chip flash (option-setting memory)

Reserved area*

On-chip flash (Factory Flash)

Reserved area*

On-chip flash (code flash)
(read only)*!

Note 1. See Table 4.1. The capacity of the flash differs depending on the product.

Note 2. Do not access reserved areas.

Figure 3. Memory Areas that Need to be Non-Cacheable

R11ANO538EU0110 Rev.1.10

Page 6 of 21
May.03.23 RENESAS

Renesas RA Family Guidelines for Using the S Cache on the System Bus

1.3 Defining the Memory Attribute using the Memory Protection Unit

The RA6 and RA4 MCU groups which have the S Cache support also includes the optional Arm Memory
Protection Unit (MPU). The MPU is a programmable peripheral that can define memory access permissions,
such as privileged access only, and memory attributes, for example Cacheability, for different memory
regions.

When S Cache is enabled, whether a memory region is cacheable depends on the MPU configuration. The
MPU is programmable and the configuration of the MPU regions is managed by several memory mapped
MPU registers. The MPU can be used to protect memory regions by defining access permissions.

Although the Arm® Cortex®-M23 and Cortex-M33 processors do not have an internal level 1 cache, the
cache attributes produced by the MPU settings are exported to the processor’s top level. The RA Family
MCU S Cache can utilize this feature to vary the cacheable setting for the SRAM regions. For example, for
any algorithms where the variables need to be updated and flushed very frequently by multiple bus masters,
using the MPU to configure these areas as non-cacheable may benefit the system.

When enabled, the MPU can override Cortex-M33's the default memory access behavior. The attributes and
permissions of all regions, except that targeting the NVIC and debug components, can be modified using an
implemented MPU.

The user can set up the MPU to define additional memory regions as non-cacheable. Section 2.4.2 explains
the use case of using the Arm MPU to achieve S Cache coherency.

The example project demonstrates how setting the SRAM region that is used by the DMA and CPU as non-
cacheable can avoid the cache coherency issue. User can reference section 3 for the details.

1.4 S Cache Operation

Read the Buses > Caches > Operation section in the Hardware User’'s Manual to understand the access
flow from CPU to S cache. Once the S cache is enabled, access to the cacheable area follows the access
flow as shown in Figure 4.

The S cache function works when it is enabled, and cacheable access is performed from the CPU. When an
SRAM access to the cacheable area is initiated, the cache first checks the address of CPU access request
and compares the address with the entries in the cache tag. Then based on this, the CPU determines
whether the CPU access is a hit or a miss.

If the access is a read, the system behavior varies according to the following rules:

e For aread hit, the cache reads required data from the cache data and returns it to CPU. In a cache read
hit, there is a 0 bus wait cycle.

e For aread miss, the cache reads one cache line data from memory and stores it into the cache data.
The cache then returns the required data. In cache read miss, the number of bus cycles used is same as
when cache is disabled.

If the access is a write, the system behavior varies according to the following rules:

e For a write hit, the cache processes a write cycle to cache data and a write cycle to memory.
e For a write miss, the cache processes a write cycle to memory. There is no impact on cache data.

R11ANO538EU0110 Rev.1.10 Page 7 of 21
May.03.23 RENESAS

Renesas RA Family Guidelines for Using the S Cache on the System Bus

CPU access

Y

Access memory

Hit? ~ miss
lhn
Y
Read from cache Cache fill Write to cache

Read from memory

4

Write to memory |-

Figure 4. Access flow from CPU to S cache
2. Using S Cachein An Application

Consider using S cache for improved MCU performance based on the analysis in this section. Guidelines on
when to use S cache in an application, usage notes for using S cache and how to keep S cache coherent
are addressed in this section.

2.1 Using S Cache to Improve MCU Performance

The description in this section uses RA6M4, RA6M5 and RA4M3 as examples. User can adapt the same
analysis to other MCUs wherever it applies.

RAB6M5 and RA6M4 have a maximum system clock of 200 MHz. Access to SRAM is a slower process
compared to the CPU speed. The analysis of using S cache on RA MCU assumes the Error Correction Code
on the SRAM is disabled (which is the default setting from the MCU and FSP point of view). Under this
condition, the read access to S cache is 1 cycle with cache hit and access to SRAM is 4 cycles (with 1 wait
state) when the system bus is operating at over 100 MHz. This application project demonstrates the MCU
performance improvement when the CPU is operating at 200 MHz. When operating at 100 MHz or less, read
access to S cache is 1 cycle with cache hit and access to SRAM is 3 cycles (with 0 wait state).

For RA4M3, the maximum system clock is 100 MHz. Accessing SRAM is always 0 wait states. Read access
to S cache is 1 cycle with cache hit and read access to SRAM is 3 cycles (with O wait state). For this reason,
enable S cache if improved system performance is desired.

For RA MCUs with S cache support, consider enabling S cache to boost system performance when the data
processed by the CPU exhibits a significant spatial locality, like in the case of a working buffer which does
not need to be updated frequently.

Note that when S cache is enabled, and the above condition is met, the more frequently the data in S cache
is used without needing an update, the larger the benefit of using S cache.

For a cache miss, the bus access cycle is same as when the cache is disabled for all MCUs which support S
cache. And there is no performance improvement from cache write operations. For data not frequently used,
filling the cache is an initial operation that will not be repeated or is repeated with very low frequency.

R11ANO538EU0110 Rev.1.10 Page 8 of 21
May.03.23 RENESAS

Renesas RA Family

Guidelines for Using the S Cache on the System Bus

2.2 Configuring the S Cache Registers on RA6M5

The following table summarizes the S cache registers, their functionality and the application functions used in
this application project to configure these registers. Refer to the included example projects to look at the
detailed definitions for these functions.

Table 3. S Cache Register Configuration Demonstrated in the Application Project

Registers

Functionality

API created in application code

SCACTL:
S Cache Control Register

Enable and disable S cache

void enable_s_cache(void);

void disable_s cache(void);

SCAFCT:
S Cache Flush Control
Register

Flush or do not flush the S
cache

void Fflush_s cache(void);

SCALCF:
S Cache Line Configuration
Register

Configuration register that
configures the S cache line

size to 32 or 64 (default is 32)

void
select_s cache_line_size(bool
line_size 32);

For other S Cache related registers, the application project uses the default setting after MCU reset. Table 4
is a summary of these registers and their default settings used in the application project.

Table 4. Registers Configured at Default MCU Reset State

Registers

Functionality

Default Settings used in the
Application Project

CSAR:
Cache Security Attribution
Register

This register defines the
security attributes of registers
for Cache Control, Line
Configuration, and Cache
Error.

This register is write-protected by the
PRCR register. The default setting is
used in the application project. Both
secure and non-secure projects can use
these attributes.

CAPOAD:
Cache Parity Error Operation
After Detection Register

This register defines the action
the MCU will take when a
Cache Parity Error is detected.
The options are Non-Maskable
Interrupt or Reset.

The default setting is Non-Maskable
Interrupt. This setting is used in the
application project. Demonstrations on
the handling of the NMI interrupt are out

of the scope of this application project.

Some tips to maximize the MCU bus performance are discussed. And finally, guidelines on how to design
the software to benefit from the S Cache update scheme are provided.

2.3

Improving the CPU Performance

As explained in section 2.1, enabling S cache can improve system performance for some applications. The
analysis in section 2.1 focuses on the time saving from the bus cycle access point of view. Aside from the
bus access, instruction cycles are also a factor which influences the system performance. Therefore, the
perceived system performance improvement will not be proportional to the bus cycle savings.

The analysis of the system performance improvement based on the example project provided in this
application project is provided in later sections.

2.3.1 Allocating Memory Access to Maximize the MCU Bus Performance

Several guidelines for memory allocations should be considered when designing the software for the
purpose of improved performance, for example, when S Cache is enabled on RA MCUs.

e Variables often accessed together should be close to one-another in memory. This increases the
likelihood that the other variable will already be in the cache after the processor has accessed the first
variable, thus avoiding cache misses.

e When accessing data linearly, use vectors or arrays. Linked lists, hash maps, dictionaries and so forth
are great data structures for many things, but they are not cache friendly. Iterating through such a data
structure involves many cache misses. If performance is important, stick to arrays. In addition, use
arrays of values instead of arrays of pointers. Accessing the variable using a pointer invariably involves a
cache miss. So, for fast array access, dispense with the pointers and go with values.

R11ANO538EU0110 Rev.1.10

May.03.23

RENESAS

Page 9 of 21

Renesas RA Family Guidelines for Using the S Cache on the System Bus

2.3.2 Designing for Data Structure Grouping and Alignment

When looking at how a program accesses memory, design decisions can be made that will take the most
advantage of cache. If a data set that a program is working on is smaller than the cache line size of the
processor, it is important to make sure that the data is read into one cache line. This is done by grouping the
data together in a structure and aligning that structure, so it stays in a cache line.

For example, suppose a function uses local variables i and j as subscripts into a 2-dimensional array, they
might be declared as follows:

int i, j;

These variables are commonly used together, but they can fall in different cache lines, which could be
detrimental to performance. If the variables are used in a part of the program that is performance-critical, we
could instead declare them as follows:

struct { int i, jJ; } sub;

This relies on the compiler's default alignment for structures. This default alignment is typically enough to
ensure that the structure would be aligned in cache such that both indexes would be in the same cache line.
i and j must now be referred to as sub.1 and sub.j.

The alignment of the structure can be specified if the compiler supports this feature. Here is an example
using the attribute feature of GCC to align a structure on an 8-byte boundary:

struct { int i, J; } sub __ attribute _ ((aligned (8)));

2.3.3 Understanding the S Cache Update Strategy

The RA MCUs use the Least Recently Used (LRU) policy as the cache replace method. With the Cache
Write-through, no-write allocate policy, the cache is filled upon read miss as shown in Figure 4.

To benefit from the LRU policy, design the system with the following points in mind to avoid cache replace
events whenever possible:

e Use the data while still in cache. Consider that data usage and if possible, load data from the memory to
the cache just once, use them or do some modifications on them, and then return it back to the operating
memory. If we need to store the same data from SRAM to cache, we are not using the cache optimally.

e Reduce the number of times data which is already saved to the cache is written to memory if these
variables are updated. For example, in a sorting algorithm, we can reduce the instances of writing the
original array by employing some intermediate variables.

2.4 Keeping S Cache Coherent

Cache coherency needs to be considered when the cacheable region is accessed by both the CPU and
other bus masters (such as DTC, DMAC). For shared memory between MCU and other bus masters (DTC
and DMAC), S cache needs to be flushed prior to CPU access or the shared memory area can be set as
Non-cacheable using the MPU. Otherwise, it might use stale data from the S cache since other bus masters
might have updated the SRAM.

2.4.1 Flushing the S Cache
Flushing the S Cache can be achieved by one of two ways:

e Flush S Cache in the application code
Software developers know which regions are common for CPU and other masters and they know when
the CPU or another master writes to the command regions, the software developer can decide on what
regions are cacheable by setting up the MPU.

The S-Cache is a write through cache, when the CPU writes to an address, and that address is already
in the cache, a cache HIT occurs for the write. The data is written to the cache, then the cache will
subsequently write the data out to the main system memory, so the cache and main system memory will
be coherent after the main system memory is written. This means for a CPU write to memory, the only
cache coherency issue occurs for a short time while the Cache is doing the write to main memory. For
the cacheable regions, the recommendation is for software developer to flush the S cache prior to the
CPU'’s read access to the common region. This method is demonstrated in this application project.

R11ANO538EU0110 Rev.1.10 Page 10 of 21
May.03.23 RENESAS

Renesas RA Family Guidelines for Using the S Cache on the System Bus

e Flush S cache at the end of bus master transfer
This method may incur more overhead when frequent transfers are needed. This method is
demonstrated in this application project.

Keep in mind that flushing the S Cache invalidates the entire S Cache, not just the shared regions. Flushing
the S Cache should be done as infrequently as possible to maintain the best system performance.

2.4.2 Using the Arm® Memory Protection Unit
User can reference below link to understand the fundamental of the Arm v8-M MPU:

Memory Protection Unit (MPU) Version 1.0 (arm.com). For a more detailed description of the Arm v8-M
MPU, user can reference the Armv8-M Architecture Reference Manual.

Here are some of the key points that are covered in the above links that are related with the usage of S
Cache. User should keep these in mind when using the MPU for S Cache control.

e The memory model and address space.

e The MPU programmers’ model: Renesas support 8 MPU regions when TrustZone is not enabled
and 8 MPU regions each for secure and non-secure region when TrustZone is enabled. 32 bytes as
the smallest size, 32 bytes aligned addressing, configurable by series of memory mapped-registers.

e The difference between Armv7-M and Armv8-M.1 MPU

e The memory types and attributes: Normal memory are cacheable by default when the MPU is
enabled. Note that Renesas MCU architecture defined the Standby SRAM region as Non-cacheable
by hardware when S Cache is enabled. MPU can selectively set some Normal memory regions as
Non-cacheable. Device memory is always non-cacheable.

e Memory Barrier Instructions:
— A Data Memory Barrier (DMB) operation is recommended to force any outstanding writes to

memory before enabling the MPU.

— A DSB is used after enabling the MPU to ensure that the subsequent ISB instruction is executed
only after the write to the MPU Control register is completed. The ISB instruction is used after
the DSB to ensure the processor pipeline is flushed and subsequent instructions are re-fetched
with new MPU configuration settings.

e MPU register overview

e Configuring an MPU region (reference Configuring an MPU Region).

Setting up a memory region as Non-cacheable is very easy with the CMSIS API which follows the
recommendations mentioned above (CMSIS support for MPU). An example of using CMSIS API to set up a
memory area used by both the CPU and DMA master as Non-cacheable to resolve the S Cache coherency
issue is demonstrated in this application project. Table 5 is a brief description on the CMSIS MPU APIs, all of
these APIs are inline functions included in mpu_armv8.h which is automatically included when establishing
a project template using the RA Smart Configurator. These CMSIS-APIs already are including the necessary
memory barrier instruction calls.

R11ANO538EU0110 Rev.1.10 Page 11 of 21
May.03.23 RENESAS

https://developer.arm.com/documentation/100699/0100
https://developer.arm.com/documentation/ddi0553/
https://developer.arm.com/documentation/107565/0100/Memory-protection/MPU-programmers-model/Configuring-an-MPU-region
https://developer.arm.com/documentation/107565/0100/Getting-started-with-Armv8-M-based-systems/CMSIS-support-for-MPU

Renesas RA Family

Guidelines for Using the S Cache on the System Bus

Table 5. CMSIS MPU API

CMSIS MPU Configuration API

Functionality

Comments

ARM_MPU_Disable

Disable the MPU

This API should be called every
time the MPU configuration is to
be updated. This is to provide
portability of the MPU
configuration code. This APl is
demonstrated in the example
project.

ARM_MPU_SetRegion

Configure the MPU region
number, MPU Base Address
Register and MPU Limit Address
Register

This function is used to configure
the location of one MPU region.
This APl is demonstrated in the
example project.

ARM_MPU_SetMemAttr

Set up the MPU region attribute

This function is used to configure
the attribute of one MPU region.
This API is demonstrated in the
example project.

ARM_MPU_Enable

Enable the MPU with the default
memory map as background and
define whether to enabled MPU
during hardfault NMI.

This API is demonstrated in the
example project.

ARM_MPU_Load

Configure a number of MPU
regions using a table.

An example of using this API is
included in the example code in
Figure 5. to set the QSPI register
region as Non-cacheable. This
region is not set as Non-
cacheable from the default
memory map and must be
included in any projects which
utilize the QSPI.

As explained in section 1.2, the QSPI register area should be non-cacheable, when using the QSPI, user
should set the 10 register region as non-cacheable. Optionally user can set the memory area as nonn-

cacheable as well.

#define
#deFfine
#deFfine
#define
#define
#deFfine
#define
#define
#define
#define

MPU_REGION_O
MPU_REGION_1
REGION_O_ATTR_IDX
REGION_1_ATTR_IDX
READ_WRITE
READ_ONLY
PRIVILEGED_ONLY
ANY_PRVILEGE
EXECUTION_PERMITTED
NO_EXECUTION

ou
1u
ou
1u
ou
1U
ou
1u
ou
1u

const ARM_MPU_Region_t mpuTable[1][2] = {

{

// BASE SH RO

NP
{ .RBAR = ARM_MPU_RBAR(Ox60000000UL, ARM_MPU_SH NON, 1UL, 1UL, OUL),

XN LIMIT ATTR

ARM_MPU_RLAR(Ox63FFFFFFUL, 1UL) },

{ -RBAR = ARM_MPU_RBAR(0x64000000UL, ARM_MPU_SH_NON, OUL, 1UL, 1UL),

ARM_MPU_RLAR(Ox67FFFFFFUL, 2UL) }

-RLAR

-RLAR

R11ANO538EU0110 Rev.1.10
May.03.23

RENESAS

Page 12 of 21

Renesas RA Family Guidelines for Using the S Cache on the System Bus

3

}:

/* Disable MPU */
ARM_MPU_Disable(Q);
ARM_MPU_Load(0, mpuTable[0], 2);

ARM_MPU_SetMemAttr(REGION_O_ATTR_IDX, ARM_MPU_ATTR(ARM_MPU_ATTR_MEMORY (O, O, 1, 0),
ARM_MPU_ATTR_MEMORY_ (O, O, 1, 0))); //ARM_MPU_ATTR_MEMORY_ (NT, WB, RA, WA)

ARM_MPU_SetMemAttr(REGION_1_ATTR_IDX, ARM_MPU_ATTR(ARM_MPU_ATTR_DEVICE_nGnRnE,
ARM_MPU_ATTR_DEVICE_nGNnRNE));

/* Enable MPU, enable default memory map as background, MPU enabled during fault and NMI
handlers */

ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA Msk | MPU_CTRL_HFNMIENA_Msk);

Figure 5. Setting the QSPI Register Region and Memory Region as Non-cacheable

Note that in order to use the MPU on the default memory map, user needs to enable the MPU and enable
the privileged mode. See below MPU_CTRL register attributes based on the
(https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-
memory-protection/mpu-control-register). In our example project, the default memory map is used, so both
ENABLE bit and PRIVDEFENA bit are enabled to configure the MPU regions.

Reserved, res0O.

Enables privileged software access to the default memory map.
When the MPU is enabled:
Disables use of the default memory map. Any memory access to a location that is not covered by any enabled region causes a fault.

PRIVDEFENA
1 Enables use of the default memory map as a background region for privileged software accesses.

When enabled, the background region acts as if it has the lowest priority. Any region that is defined and enabled has priority over this default map. If the MP!
ignores this bit.

Enables the operation of MPU during HardFault and NMI handlers.

When the MPU is enabled:

HENMIENA MPU is disabled during HardFault and NMI handlers, regardless of the value of the ENABLE bit.

ENABLE MPU is disabled.

MPU is enabled.

Figure 6. MPU_CTRL Register

2.4.3 Choosing the Preferred Method

Which method to use in the user application to avoid S Cache coherency issue is highly application
dependent. To reduce S Cache flushing influence on CPU performance, when to flush the S Cache needs to
be carefully considered. In addition, user should design the application based on the recommendations from
section 2.3 so the benefit of using the S Cache is maximized, which is also helpful to offset the overhead of
the operations to avoid S Cache coherency issue.

If frequent S Cache flushing is inserted synchronously to the flow of the application, the performance of the
system might be negatively influenced under certain conditions. For example, when using EDMAC with
Ethernet applications, the transfer speed is very fast and the shared region is used very frequently, in this
case, setting the shared memory buffer as non-cacheable can be a better option than S Cache flushing to
achieve S Cache coherency.

R11ANO538EU0110 Rev.1.10 Page 13 of 21
May.03.23 RENESAS

https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-control-register
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/security-attribution-and-memory-protection/mpu-control-register

Renesas RA Family Guidelines for Using the S Cache on the System Bus

3. Example Project

3.1 Overview

This example project demonstrates how to enable and disable S Cache, how to handle S Cache coherency
and how to use the cycle counter on the debug unit Data Watchpoint and Trace Unit (DWT) to evaluate the
CPU performance improvement when S Cache is enabled.

System setup:

e Asine and cosine data set are stored in code flash.

e The data set is then transferred to the SRAM via a DMA channel.

e Next, the standard deviation of sine?+cosine? are calculated by reading the sine cosine data from the
buffer in the SRAM.

e The standard deviation should be 0 if there is cache coherency. When the S Cache is enabled, since
both CPU and MPU access the shared area, the content in this area can lose coherency. The S Cache
coherency issue is manifested by enlarged standard deviation. The example project demonstrated three
methods to keep the cache coherent and hence recover the correct standard deviation.

The FSP modules used in this example project include r_dma, r_agt, and Arm® CMSIS DSP library. Their
functionalities are explained briefly as follows:

e r_dmac: transfer data to DAC register to generate the sine and cosine wave

e r_agt: time the DMA transfer of the DAC data

Arm® CMSIS DSP module: calculate the standard deviation of (sine? + cosine?)
e Arm CMSIS MPU API: set up the shared SRAM region as non-cacheable

In addition, the cycle counter on the debug unit Data Watchpoint and Trace Unit (DWT) is used to track CPU
cycles used in a fixed set of calculations when S Cache is disabled or enabled.

Analysis of S Cache Usage:

e The deviation of (sine? + cosine?) will be larger if S Cache coherency is broken. See section 3.3 for this
analysis.

e sine? + cosine? calculation should be faster when S Cache is enabled. See section 3.4 for this analysis.

¢ When the SRAM region which is shared by CPU and DMA is set as Non-cacheable, the sine? + cosine?
calculation took slightly longer time with S Cache enabled compared with flushing the S Cache.

e This application project provides routines to update S Cache line size. But it does not demonstrate the
line size configuration to CPU performance. For set associative cache, line size primarily influences the
cache miss time penalty. Larger line size means larger penalty in time when a cache miss happens
because it takes longer to bring the line in to the cache.

To show the set associative cache line size influence on the CPU performance, frequent S Cache
misses need to be simulated. This is not demonstrated in this example project because there is no
frequent S Cache miss designed in the performance analysis routine. On the other hand, for a cache of
constant size, using larger line size increases spatial locality which can be helpful for some applications.
User should analyze the application at hand to select the line size that supports the best performance of
the system. This is typically achieved through empirical investigation. Once the line size is determined
for a system, it should not be randomly changed unless a new analysis is performed.

R11ANO538EU0110 Rev.1.10 Page 14 of 21
May.03.23 RENESAS

Renesas RA Family

Guidelines for Using the S Cache on the System Bus

3.2 Import and Run the Example Project

Import project using_s_cache_ra6m5 into an e? studio workspace. Click Generate Project Content and
compile the example project. Next, connect J10 USB Debug port on EK-RA6M5 to the development PC.
Right click on the project using_s_cache_ra6m5 and select Debug As > Renesas GDB Hardware

Debugging.
& K2 - using_s_cache_ra6m5/ra/fsp/src/bspfemsis/Device/RENESAS/Source/startup.c - e studio
File Edit Source Refactor MNawvigate Search Project Renesas\iews Run Window Help
] ‘ %5 Debug “ | | [c7] using_s_cache_rabm5 Debug_Flat 9~ B v Q @i & &g~ e
- S == =T =
Fi Project Explorer X S 9 W & = O {8 [using_s_cache_rabm5] FSP Configuration Lg startup.c ¢
v |5 using_s_cache_rabm 5 [Debug! |§% 7> eooc2cee
¥ Binaries MNew > /* Initialize system using ¢
DD 2CH 1 .
i) Includes Go Into 2028264 SystemInit();
5} ra ik o o . g F
= . . /* Call user application. *,
(3 ra_gen Upenlinthieadiindon PRRR2CcHR main();
v (2 sre Show In Alt+Shift+ >
(= SEGGER_RTT - P0R02cEc = while (1)
= - [Z Copy Ctrl+C
Lh| comman_utils.h . e e "
— Paste Cirl+V /% Infinite Loop. ™/
e dmac_transfers.c a)
[dmac_transfers.h 3 Delete Delete I
,__c‘j chvt.c Source > N X i
[B dwt.h + _De?ault exception ham:lller'.ﬂ
\ Mowe... = void Default_Handler (void)
g hal_entry.c — -
s Rename... F2 egee2cee
fﬂ s_tache.c <l /¥ & error has occurred. Tt
h] s_cache.h p Import., Qeee2c72 BSP_CFG_HANDLE_UNRECCVERABLE
|.€] test_cases.c 202@2c 74 h
— g Export.
|h test_cases.h r* main stack *f
N 4 ST Renesas FSP Export » /% Hain stack 7
‘g t!mer_!n!t!al!se.c static uint8_t g _main_stack[BSP,
W timer_initialise.h Build Project BSP_PLACE_IN_SECTION{BSP_SECTIO!
Le| transfer_initialise.c ol Proi
[transfer_initialise.h CERIARSe /* Heap */
= Debug Refresh —#if (BSP_CFG_HEAP_BYTES > @)
= ra_cfg Al Al BSP_DONT_REMOVE static uints t
= seript Close Unrelated Praject BSP_PLACE_IN_SECTION(BSP_SE(
4o configuration.xml #endif
= RTFAGMSBH3ICFC.pincfy Build Targets >
5 ra_cfgect Index > = /* All system a;lf.cr:pt}:.ons ir.| the
S . he ek rabmS d * these exceptions in their cot
= using_s_cache_ek_rabmo_ch Build Configurations » %
=| using_s_cache_ek_rabm3 De - #if defined(ICCARM)
=| using_s_cache_rabm5 Debu @ Run&s 4 #define WEAK REF ATTRIBUTE
| using_s_cache_rabm3 Debu 25 Debug As > [c¥] 1GDB Simulator Debugging (RHE50)
(@) Developer Assistance Teamn > [E] 2Llocal C/C++ Application
Cornpare With > Iﬁ 3 Renesas GDB Hardware Debugging ||
Restare from Local History... (£ 4 Renesas Simulator Debugging (RX, RL78)

Figure 7. Using S Cache Example Project

R11ANO538EU0110 Rev.1.10

May.03.23 RENESAS

Page 15 of 21

Renesas RA Family Guidelines for Using the S Cache on the System Bus

Connect to RTT viewer.

[E J-Link RTT Wiewer V7.50a | Configuration X
Connection to J-Link

| @ uss [serial o

| O Tceip

() Existing Session
Specify Target Device

R7FAEMSAH v

Script file {optional)

Target Interface & Speed
SWD v 4000kHz ~

RTT Control Block

() auto Detection () Address (@) Search Range

Enter one or more address range(s) the RTT Control block can be loc
Syntax: <RangeStart [Hex]> <RangeSize>[, <RangelStart [Hex]>
Example: 0x10000000 0x1000, 0x2000000 0x1000

| 0xZ20000000 0x8000 |

Cancel

Figure 8. Connect to SEGGER RTT Viewer

The actions a user can take through the RTT user interface are: S Cache configuration, whether to flush S
Cache, where to Flush S Cache, as well as the S Cache line configuration.

input 1 to calculate the standard deviation with s cache disabled

input 2 to calculate the standard deviation with s cache enabled with ne cache invalidation

input 3 to calculate the standard deviation with s cache enabled and flushed in DMA Complete interrupt
input o calculate the standard deviation with s_cache enabled and flushed in application

input o calculate the standard deviation with s_cache enabled and DMA buffer in nen-cacheable region
input & to evaluate the DWT cycles + cosine”2 calculations with s cache disabled

input 7 to evalua ycles used in 186086 si + cosine”2 calculations with s cache flushed in DMA_Complete IRQ callback
with 1i

input 8 to evaluate used in 1560080 si + cosine”2 calculations with s cache flushed in app with line

input 9 to evaluate the D used in 1 + cosine*2 calculations with sram region used by DMA as non-cacheable
with i

input =ine”2 + cosine"2 calculations with s cache flushed in DMA Complete IRQ callback
with 1i 64

input 11 to evaluate the DWT cycles used in 18688@ sine”2 + cosine"2 calculations with s cache flushed in app with line size 64

Figure 9. Actions Users Can Perform via RTT User Menu

3.3 Demonstration of How to Keep S Cache Coherent

When the S Cache is enabled and filled, the calculation uses the data from S Cache, which can be different
from the data transferred to the SRAM via the DMA transfer. This example project demonstrated that when S
Cache is disabled, the standard deviation of (sine?+ cosine?) is 0 as expected.

When S Cache is enabled, the S Cache is corrupted after DMA transfers data to SRAM. When
(sine? + cosine?) is calculated, the corrupted S Cache is used and hence generates larger standard
deviation.

R11ANO538EU0110 Rev.1.10 Page 16 of 21
May.03.23 RENESAS

Renesas RA Family Guidelines for Using the S Cache on the System Bus

Enable S cache
Incorrect result from

CMSIS DSP Lib
Calculation of standard

of sine®2+cosine™2
Reset SRAM buffer to 0

S Cache has incorrect
sine and cosine data

Code flash SRAM buffer
At this moment,

the S Cache
holds stale data

r_dmac

Sine and Cosine Sine and Cosine
data data

Figure 10. S Cache Coherency is Broken due to DMA Transfer to Common Area

When the S Cache is flushed in a DMA transfer complete interrupt callback and in the user application prior
to the calculation of (sine?+ cosine?), S Cache coherency is restored.

Correct result from
CMSIS DSP Lib

Enable $ cache Calculation of standard
of sine”2+cosine”2

Reset SRAM buffer to 0 - :
S Cache has correct sine

and cosine data

Code flash SRAM buffer

r_dmac Flush S Cache

Sine and Cosine
data

Sine and Cosine
data

Figure 11. S Cache Coherency is Restored — Flush S Cache in Application Code

Correct result from
CMSIS DSP Lib
Calculation of standard
of sine®2+cosine®2

Enable 5 cache

Reset SRAM buffer to 0 Cache is

filled S Cache has correct sine
and cosine data

Code flash SRAM buffer

r_dmac

Sine and Cosine Sine and Cosine

data Flush S Cache at end data
of DAMC transfer

Figure 12. S Cache Coherency is Restored — Flush S Cache in DMA Transfer Complete Callback

R11ANO538EU0110 Rev.1.10 Page 17 of 21
May.03.23 RENESAS

Renesas RA Family Guidelines for Using the S Cache on the System Bus

Another method to achieve S Cache coherency is to set the SRAM Sine and Cosine data area as non-
cacheable. Doing so will slightly reduce the performance of the system compared with flushing the S Cache
based on the example project.

Figure 13 is an example run of the S Cache coherency handling routines provided in this application project.

AC dma_transfer_sine_cosine_operation in progress.
AC dma_transfer_sine_cosine_operation transfer completed.

andard deviation when s cache is disabled is @

AC dma_transfer_sine_cosine_operation in progress.
AC dma_transfer_sine_cosine_operation transfer completed.

andard deviation when s cache is enabled but not flushed is 2

DMAC dma_transfer_sine_cosine_operation in progress.
AC dma_transfer_sine_cosine_operation transfer completed.

andard deviation when s cache is enabled and flushed in dma transfer complete callback is @

AC dma_transfer_sine cosine_operation in progress.

AC dma_transfer_sine cosine_operation transfer completed.

andard deviation when s cache is enabled and flushed in app i

dma_transfer_sine_cosine_operation in progress.
AC dma_transfer_sine_cosine_operation transfer completed.

andard deviation when s cache is enabled and DMA buffer destination is in the non-cacheable region is @

Figure 13. Demonstration of How to Keep S Cache Coherent

Table 6. Standard Deviation of Sine? + Cosine?

S Cache Configuration Standard Deviation
Disabled 0

Enabled but S Cache not Flushed after DMA Transfer Around 2879112
Enabled and S Cache Flushed in DMA Complete Transfer 0

Enabled and S Cache Flush in Application Code 0

Enabled and SRAM region used by DMA and CPU is non- 0

cacheable

3.4 Demonstration of MCU Performance Improvement

In this example project, 1000 cycles of 180 (sine? + cosine?) calculations are performed. The number of DWT
cycles used for this calculation is captured and displayed on the RTT Viewer.

R11ANO538EU0110 Rev.1.10 Page 18 of 21
May.03.23 RENESAS

Renesas RA Family Guidelines for Using the S Cache on the System Bus

DMAC dma_transfer_sine_cosine_operation in progress.

DMAC dma_transfer_sine_cosine_cperation transfer completed.

DWT cycle used when s cache is disabled is 14528684

Test setup is: 5 cache is enabled with line size set to 32 and S cache is flushed in DMA complete interrupt.
DMAC dma_transfer_sine_cosine cperation in pregress.

DMAC dma_transfer_sine_cosine_operation transfer completed.

DWT cycle used is 7938274

Test setup is: S cache is enabled with line size set to 32 and S cache is flushed in application.
DMAC dma_transfer_sine_cosine_operation in progress.

DMAC dma_transfer_sine_cosine_operation transfer completed.

DWT cycle used is 7938295

]

Test setup is: S cache is enabled with line size set to 32 and SRAM region set as non-cacheablen.
DMAC dma_transfer_sine_cosine_coperation in progress.

DMAC dma_transfer_sine_cosine operation transfer completed.

DWT cycle used is 8498346

-
1w

Test setup is: S cache is enabled with line size set to 64 and S cache is flushed in DMA complete interrupt.
DMAC dma_transfer_sine_cosine_operation in progress.

DMAC dma_transfer_sine_cosine_operation transfer completed.

DWT cycle used is 7938245

Test setup is: S cache is enabled with line size set to 64 and S cache is flushed in application.

DMAC dma_transfer_sine_cosine_operation in progress.

DMAC dma_transfer_sine_cosine_cperation transfer completed.

DWT cycle used is 7933242

Figure 14. Demonstration of CPU Performance Improvement when S Cache is Enabled

From the output presented in the above example, the CPU performance improvement is about 50%. This
presented CPU performance increase depends on savings from bus access as well as instruction cycle
access. When the SRAM area used by the DMA and CPU is set as non-cacheable, the performance
improvement is slightly lower than flushing the S Cache with a drop of about 7%.

As explained in the overview section 3.1, this example project does not demonstrate the line size influence
on the CPU performance. The number of DWT cycle counter stays about the same for 32-byte or 64-byte
line size configuration.

Also, notice that the CPU performance stays about the same when using the three different flushing
methods, whether flushing at the end of the DMA transfer or in the application or setting the shared region as
non-cacheable.

R11ANO538EU0110 Rev.1.10 Page 19 of 21
May.03.23

Renesas RA Family Guidelines for Using the S Cache on the System Bus

4. References

RA6M5 Group User's Manual: Hardware: https://www.renesas.com/document/man/rabm5-group-users-
manual-hardware?language=en&r=1493931

5. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M5 Resources renesas.com/ra/ek-rabm5

RA Product Information renesas.com/ra

Flexible Software Package (FSP) renesas.com/ra/fsp

RA Product Support Forum renesas.com/ra/forum

Renesas Support renesas.com/support

R11ANO538EU0110 Rev.1.10 Page 20 of 21

May.03.23 RENESAS

https://www.renesas.com/document/man/ra6m5-group-users-manual-hardware?language=en&r=1493931
https://www.renesas.com/document/man/ra6m5-group-users-manual-hardware?language=en&r=1493931
https://www.renesas.com/ra/ek-ra6m5
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family

Guidelines for Using the S Cache on the System Bus

Revision History

Description
Rev. Date Page Summary
1.0.0 Jan.06.22 - First release document
1.1.0 May.03.23 - Add MPU example code and description

R11ANO538EU0110 Rev.1.10

May.03.23

RENESAS

Page 21 of 21

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview of the S Cache on the System Bus
	1.1 S Cache Architecture
	1.2 S Cache Specifications
	1.3 Defining the Memory Attribute using the Memory Protection Unit
	1.4 S Cache Operation

	2. Using S Cache in An Application
	2.1 Using S Cache to Improve MCU Performance
	2.2 Configuring the S Cache Registers on RA6M5
	2.3 Improving the CPU Performance
	2.3.1 Allocating Memory Access to Maximize the MCU Bus Performance
	2.3.2 Designing for Data Structure Grouping and Alignment
	2.3.3 Understanding the S Cache Update Strategy

	2.4 Keeping S Cache Coherent
	2.4.1 Flushing the S Cache
	2.4.2 Using the Arm® Memory Protection Unit
	2.4.3 Choosing the Preferred Method

	3. Example Project
	3.1 Overview
	3.2 Import and Run the Example Project
	3.3 Demonstration of How to Keep S Cache Coherent
	3.4 Demonstration of MCU Performance Improvement

	4. References
	5. Website and Support

