RE NESAS Application Note

Renesas RA Family

RAG6 Secure Bootloader Using MCUboot and
Internal Code Flash

Introduction

MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software update. MCUboot is independent of operating system and hardware, and relies on hardware porting
layers from the operating system it works with. The Renesas Flexible Software Package (FSP) integrates an
MCUDboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot Module to create a
Root of Trust (RoT) for the system and perform secure booting and fail-safe application updates.

MCUboot is maintained by Linaro in the GitHub mcu-tools page https://github.com/mcu-tools/mcuboot. There
is a \docs folder that holds the documentation for MCUboot in .md file format. This application note refers to
the above-mentioned documents wherever possible and is intended to provide additional information that is
related to using the MCUboot Module with Renesas RA FSP v3.0.0 or later.

This application note guides you through application project creation using the MCUboot Module on Renesas
EK-RA6M4 and EK-RA6M3 kits for the internal flash usage using FSP v4.2.0. Example projects for the use
case of designing with TrustZone® for multi-image support are provided for EK-RA6M4 internal flash.
Example projects for the use case of designing with single-image support are provided for EK-RA6M3
internal flash. The MCUboot Module is supported across the entire RA MCU Family. Guidelines of how to
adapt the example project configurations for other RA Family MCUs are provided.

Required Resources
Development tools and software

e The e? studio ISDE v2021-10 or greater

e Renesas Flexible Software Package (FSP) v4.2.0

e SEGGER J-link® USB driver

Note: The above three software components are bundled in a downloadable platform installer available on
the FSP webpage at renesas.com/ra/fsp.

e Python v3.9 or later (https://www.python.org/downloads/)

Hardware

e EK-RA6M4 Evaluation Kit for RA6M4 MCU Group (http://www.renesas.com/ra/ek-rabm4)
e EK-RA6MS3 Evaluation Kit for RA6M3 MCU Group (http://www.renesas.com/ra/ek-rabm3)
e Workstation running Windows® 10 and Tera TermO console or similar application

e One USB device cable (type-A male to micro-B male)

Prerequisites and Intended Audience

This application note assumes that you have some experience with the Renesas e? studio IDE and Arm®
TrustZone-based development models with e? studio. You also need to understand the device lifecycle
management of Renesas RA TrustZone-based MCU groups. This knowledge can be acquired by reading the
HW User’'s Manual section “Security Features” and Renesas Application Project R11AN0469. In addition,
you should read the entire MCUboot Port section of the FSP User’'s Manual prior to moving forward with this
application project. This application project also assumes that you have some knowledge of cryptography.

The intended audience includes product developers, product manufacturers, product support, and end users
who are involved with designing application systems involving use of a secure bootloader.

R11AN0497EU0120 Rev.1.20 Page 1 of 47
Dec.23.2022 RENESAS

https://github.com/mcu-tools/mcuboot
http://www.renesas.com/fsp
https://www.python.org/downloads/
http://www.renesas.com/ra/ek-ra6m4
http://www.renesas.com/ra/ek-ra6m3

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Contents

1. OVErVIEW Of MCUDOOLcceiiiiiiiiiiie ettt ettt e e e e et e e e e e e e s e bbb e e e e e e e e e e anan 4
A 13 10 Vo) 1 U] o o o OSSR 4
1.2 MCUDOOt FUNCHONANIES OVEIVIEWviiiiiiieeiiieiiieie et ettt e e e e st e e e e e e s st eeeeaeessesnnereaeeeeeeseasnneees 4
1.2.1 Validate Application before Booting and Updating..........c..uueeiiiiiiiiiiiiiiieieeeeiiiee e 4
1.2.2 Applications UPAate SIrAtEOIESc..uuiiiiiie ettt e ettt e e e ettt e e e e e e e e ab b ae e e e e e e s e aanbbeeeeaaeeeaannneees 4
2. Architecting an Application with MCUboot Module using FSP ... 6
2.1 MCU Memory Configuration using MCUboot Module With FSP ... 6
2.2 Overview of FSP MCUDOOt MOAUIEuuiiiiiiiiiiiiiiee ettt e e e e e e bbb e e e e e e e e e aans 6
YA N 1= a1 | W @o] a1 To [0 = 11T IR RRRR 7
2.2.2 Application Image Signature TYPE OPtiONS.......ciicuiiiiiiie i i et e e s s s e e e e e s se e e e e e e s srnrranereeeeenanns 8
A T T |11 T @ o) o) =SSR 9
224 MCU Memory CONfIQUIALION.cciiitiiieeiiiiie ettt et et e st e e e st be e e e abbe e e s anbreeeeanene 10
2.3 Designing Bootloader and the Initial Primary Application OVEIVIEWcccooiiiiiiiiiiiiieeiiiiiiieeeea e 11
2.4 General Guidelines using the MCUboot Module Across RA Family MCUS.........c.c.ueeiiiiiiiiiiiiiiieeeeeeee 11
R I AT) (o] 0014 (g1 = TeTo] 1 o= To (= S PSPPSR 11
b2 ST = €0 To [T 1o IR U1] o o g SO 11
2.6.1 KEY PrOVISIONING.....uuiiiiiieiiiiiiiiiie it e e e e ettt e e e s et e e e e e s st eeeee s e s s sstaeeeeaeesaaasssaaneeeeeesannssranneaeeeeaanns 11
2.6.2 Make the Bootloader Immutable for Enhanced SECUNILY.........cceviiiiiieiiiiiie e 11
2.6.3 Advance the Device Lifecycle States Prior to the Deploying the Product to the Field....................... 12
3. RUNNING the EXAMPIE PrOJECLSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiet i 12
3.1 St UP the HAIAWAIEceiiiiiiii ettt e e e et e e e ettt e e e et bt e e e abee e e e anbreeeeaneee 12
311 SELUP EK-RABMAottt ettt ettt e et e e st e e e et e e e at e e sabe e e sateesateeebeeesabeeeteeennneeanes 12
3.2 Configure the Python Signing ENVIFONMENTuuiiiiiiiii et a e 14
3.3 Running the EK-RA6M4 Overwrite Update Mode EXample........cceeeiiiiiiiieiiee e 16
3.3.1 Initialize the RABMA MCUocuuiiiiiiiiie ettt ettt ettt e e ettt e e e st bt e e e ebbe e e s anbreeeennnee 16
3.3.2 Import the Projects under \raém4_overwrite_with_bootloader tzcccoiiiiinennnnnnns 16
3.3.3 ComPile All the PIOJECLScooiiiiiiieiiiiie ettt ettt e et e e e st be e e e e bbe e e s abbeeeeanene 16
3.3.4 Debug the Applications and Boot the Primary APpPliCAtiONS..........cooiiiiiiiiiiaiiiiiiiieee e 17
3.3.5 OpEN the J-LINK RTT VIBWETeeiiiiieiiiiiitiet ettt ettt e e e e e e et e e e e e e e e e e annbbeeeaaaeeaaanbbbeeeaaaeeaanns 17
3.3.6 Downloading and Running the Secondary APPlICAtioNScoeeeiiiiiiiiieiiee e 18
3.3.7 Update the Non-Secure Secondary IMaAQgEccuvuiiiieee i it e e e e s e e e e e s e e e e e e e snnnraeereeeeeeanns 19
3.4 Running the EK-RA6M4 Swap Update Mode EXamPIEcc.vviiiiieei i e e e e e e 20
3.4.1 Downloading and Running the Secondary APPlICALIONSccueiiiiiiiiiiiiiiee e 21
3.5 Running the EK-RA6M4 DXIP Update Mode EXampPle.........c..uueiiiiiiiiiiiiiiee e 21
3.5.1 Downloading and Running the Secondary ApplICAtioNSccooiiiiiiiiiiiiiiea e 23
3.6 SEtUP EK-RABMS ...ttt et s e et ste e e e te e e te e e s s te e e taeeasseeanteeeasteesnteeenseeeanteeanseeennneennes 23
3.7 Running the EK-RA6M3 Overwrite Update Mode EXamPle........coveeiiiiiiiiiiiee e sseee e e e 24
3.7.1 Import the Projects under Folder \raém3_overwrite_with_bootloader to a Workspace........ 24
R11AN0497EU0120 Rev.1.20 Page 2 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

3.7.2 COMPIIE thE PIOJECLS ...ceiiiiiiiitiieiie ettt e ettt e e e e e e st e b e e e e e e e s e aanbbeaeeeaeeeaanbbbeeeaaaeeaanns 24
3.7.3 Debug the Applications and Boot the Primary APPliCAtioN............couiiiiiiiiiiiiiiiiieieee e 24
3.7.4 OPEN the J-LINK RTT VIBWET ...uuiiiiie e ittt e e e eeete e e e e e e s tae e e e e e e e s st a e e e e e e e s ssasntbaeeeeaeessasstaneeeaaeesanns 25
3.7.5 Downloading and Running the Secondary APpliCAtioNSceveeiiiiiiiiiiieie e e e 26
3.8 Running the EK-RA6M3 Swap Test Update Mode EXamMPIEcccoviiiiiiiiieeiiiiiiieeeee e e e 27
3.8.1 IMPOIt the PrOJECESeeiiiiiiiii ettt et e e e st e e e e bbe e e e anbreeeeaneee 27
3.8.2 COMPIIE thE PIOJECLS ...ceiiiiiiiiiiiie ittt e ettt e e e e e e s bbbt e e e e e e e s e aanbbeeeaaaeeeaanbbbeeeaaaeeaann 28
3.8.3 Debug the Applications and Boot the Primary APPliCAtioN............cooiiiiiiiiiiiiiiiieeee e 28
3.8.4 OPEN the J-LINK RTT VIBWET ...uviiiiieei ittt e e s ee ettt e e e e e sttt e e e e e e s s st e e e e e e e s sasntbaeeeeaeessassraneeaaaeeaanns 28
3.8.5 Downloading and Running the Secondary AppliCAtioNScoveeiiiiiiiiiiieie e e e 29
G 70 T I (o 1¥] o] 1] T Yo 1T PSSR 29
4, Creating the BOOUOAUEN.........cooieeiie e e e e e e e e e e 29
4.1 Creating a Bootloader Project for RA FamMIlycoooiiiiiiiiie e 29
4.1.1 Start Bootloader Project Creation With €2 StUAIOceeeeeiueeieecie ettt 30
4.1.2 Resolve the Configurator DEPENAENCIESccoiiiiiiiiiiiee i sabeee e 32
4.1.3 Setting up the Booting AuthentiCation SUPPOITueiiiiiiiiiiiieiie e e e 37
4.1.4 Setting up the Application Authentication SigNature TYPEuueiiiiiiiiiiiiiie e 38
4.1.5 Add MCUDOOE ACHVALION COUE......eiiiiiiiiie ittt te ettt ettt e ettt e e s sttt e e s stbe e e e s stbeeeesssbeeeesasbeeaeans 38
5. Using the Bootloader with APPIICALIONSuuuuiiiiiiiiiiiiiiiiiiiiieii e 38
5.1.1 Import the Standalone ApPlICAtION PrOJECEScc.uuiiiiiiiiiiiiie e e e e e 39
5.1.2 Configure the Application Projects to Use the BOOHOAdErcccovviiiiiiiieiiiiiiieee e 39
5.2 Signing the Existing Application Projects to Use the Bootloader............cccccveeviiiciiiieiii e 40
5.2.1 Click Generate Project Content and Compile All Four Application Projects.........ccccccceevviiivveeneeeennnnns 42
5.2.2 Configure the debug CONfIGUIALIONocuiiiiiiiiie et 42
5.3 Mastering and Delivering a NeW APPICALION..........uuiiiiiii ettt a e e 45
G A] 1= o S 45
6.1 Making the Bootloader for Cortex-M33 Immutable ... 45
6.2 Making the Bootloader for Cortex-M4 IMmULabIE ... 45
6.3 Device Lifecycle Management for Renesas RA Cortex-M33 MCUS..........coiiiiiiiiiiiiiiiiee e 45
6.4 Device Lifecycle Management for Renesas RA Cortex-M4 MCUS.........cccccceeeiiiiiiiiiiieee e 46
A = (=3 (=] =] Lo =S 46
S TR V=T o 1] (= 1 o IR o] 0T 46
SNV 1T (0] T 53 (o Y/ PPN a7
R11AN0497EU0120 Rev.1.20 Page 3 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

1. Overview of MCUboot

1.1 History of MCUboot

MCUboot evolved out of the Apache Mynewt bootloader, which was created by runtime.io. MCUboot was
then acquired by JuulLabs in November 2018. The MCUboot github repo was later migrated from JuulLabs
to the mcu-tools github project. In 2020, MCUboot was moved under the Linaro Community Project umbrella
as an open source project.

1.2 MCUboot Functionalities Overview

MCUBoot handles the firmware authenticity check after startup and the firmware switch stage of the firmware
update process. Downloading the new version of the firmware is out-of-scope for MCUboot. Typically,
downloading the new version of the firmware is functionality that is provided by the application project itself.

1.2.1 Validate Application before Booting and Updating

For applications using MCUboot, the MCU memory is separated into MCUboot, Primary App, Secondary
App, and the Scratch Area. Figure 1 is an example of the single-image MCUboot memory map. For more
information on the MCUboot memory layout, refer to the Flash Map section of the MCUboot website.

Scratch Area

Secondary App

Primary App

MCUboot

Figure 1. Single Image MCUboot Memory Flash Map
The functionality of the MCUboot during booting and updating follows the process below:

The bootloader is started when the CPU is released from reset. For TrustZone-based MCUs, MCUboot is
designed to run in secure mode with all access privileges available to it. If there are images in the Secondary
App memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader authenticates the Secondary App image.

2. Upon successful authentication, the bootloader switches to the new image based on the update method
selected. Available update methods are introduced in section 1.2.2.

3. The bootloader boots the new image.

If there is no new image in the Secondary App memory region, the bootloader authenticates the Primary
applications and boots the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. If authentication is to be performed, the available methods
are RSA or ECDSA. The firmware image is authenticated by hash (SHA-256) and digital signature validation.
The public key used for digital signature validation can be built into the bootloader image or provisioned into
the MCU during manufacturing. In the examples included in this application project, the public key is built into
the bootloader images.

There is a signing tool included with MCUboot: imgtool . py. This tool provides services for creating Root
keys, key management, and signing and packaging an image with version controls. Read the MCUboot
documentation to use and understand these operations.

1.2.2 Applications Update Strategies

The following are the update strategies supported by MCUboot. The analysis of pros and cons is based on
the MCUboot functionality, but not the FSP MCUboot Module functionality. In addition, this application note is
not intended to provide all details on the MCUboot application update strategies. We recommend acquiring
more details on these update strategies by referring to the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

R11AN0497EU0120 Rev.1.20 Page 4 of 47
Dec.23.2022 RENESAS

https://github.com/mcu-tools/mcuboot
https://www.linaro.org/community-projects/
https://docs.mcuboot.com/design.html#flash-map
https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Overwrite
In the Overwrite update mode, the active firmware image is always executed from the Primary slot, and
the Secondary slot is a staging area for new images. Before the new firmware image is executed, the
entire contents of the Primary slot are overwritten with the contents of the Secondary slot (the new
firmware image).
e Pros

e Fail-safe and resistant to power-cut failures.

e Less memory overhead, with a smaller MCUboot trailer and no Scratch Area.

¢ Encrypted image support available when using external flash.
e Cons

e Does not support pre-testing of the new image prior to overwrite.

e Does not support automatic application fallback mechanism.
Overwrite upgrade mode is supported by Renesas RA FSP v3.0.0 or later. External flash memory
support is supported by FSP v3.5.0 or later. The overwrite update mode is demonstrated in sections 3.3
and 3.7.

Swap

In the Swap image upgrade mode, the active image is also stored in the Primary slot and is always
started by the bootloader. If the bootloader finds a valid image in the Secondary slot that is marked for
upgrade, then contents of the Primary slot and the Secondary slot are swapped. The new image then
starts from the Primary slot. Upgrading an old image with a new one by swapping can be a two-step
process. In this process, MCUboot performs a “test” swap of image data in flash and boots the new
image. The new image can then update the contents of flash at runtime to mark itself “OK”, and
MCUboot will then still choose to run it during the next boot.

e Pros

e The bootloader can revert the swapping as a fallback mechanism to recover the previous

working firmware version after a faulty update.

e The application can perform a self-test to mark itself permanent.

e This image upgrade mode is fail-safe and resistant to power-cut failures.

e Encrypted image support is available when using external flash.

e Cons

o Need to allocate a Scratch Area.

e Larger memory overhead, due to a larger image trailer and additional Scratch Area.

e Larger number of write cycles in the Scratch Area, faster wearing out of Scratch sectors.
Swap upgrade mode is supported by Renesas RA FSP v3.0.0 or later. Runtime image testing is
supported by FSP v3.4.0 or later, excluding v3.5.0. External flash memory support is supported by FSP
v3.5.0 or later. The swap update mode without test mode is demonstrated in section 3.4 and the swap
update mode with test mode is demonstrated in section 3.8.

Direct execute-in-place (DXIP)
In the direct execute-in-place mode, the active image slot alternates with each firmware update. If this
update method is used, then two firmware update images must be generated: one of them is linked to be
executed from the Primary slot memory region, and the other is linked to be executed from the
Secondary slot.
e Pros
e Faster boot time, as there is no overwrite or swap of application images needed.
o Fail-safe and resistant to power-cut failures.
e Cons
e Added application-level complexity to determine which firmware image needs to be downloaded.
e Encrypted image support is not available.
Direct execute-in-place mode is enabled in FSP for the code flash linear mode as well as code flash dual
bank mode. The DXIP update mode is demonstrated in section 3.5.

R11AN0497EU0120 Rev.1.20 Page 5 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

¢ RAM loading firmware update
Like the direct-XIP mode, RAM loading firmware update mode selects the newest image by reading the
image version numbers in the image headers. However, instead of executing it in place, the newest
image is copied to RAM for execution. The load address (the location in RAM where the image is copied
to) is stored in the image header. This upgrade method is not typically used in an MCU environment.
Refer to the RAM Loading section in the MCUboot page for more information on this update strategy.
This image update mode does not support encrypted images (see MCUboot documentation on
encrypted image operation).
RAM loading update mode is not supported by the Renesas RA FSP.

2. Architecting an Application with MCUboot Module using FSP

This section provides an overview of the FSP MCUboot Module, which integrates MCUboot as a module into
the FSP. The available upgrade modes and memory architecture design are discussed. In addition, signing
and mastering new images are discussed.

2.1 MCU Memory Configuration using MCUboot Module with FSP

For single-image projects, refer to Figure 1 from section 1.2.1 to see the default memory map layout. For
applications with two separately updateable images, such as TrustZone applications where the Secure and
Non-Secure images can be updated separately, the default memory map layout is shown in Figure 2.

Secondary
slot Secondary Non-Secure App
- Non-secure
Zg{”a"’ Primary Non-Secure App
i 'NSC ~
gg{”a” Primary Secure App
} NSC
:itmndary Secondary Secure App — Secure
Scratch Area
MCUBoot

Figure 2. Two-Image MCUboot Module Memory Map (TrustZone)

2.2 Overview of FSP MCUboot Module

This section provides a high-level overview of the MCUboot Module in the FSP. Currently, the FSP supports
four firmware update methods:

e Overwrite Only: The entire Primary slot is overwritten with the Secondary slot.

e Overwrite Only Fast: Only sizeof(secondary_image) is copied into Primary slot. Unused sectors are not
copied.

e Swap: The entire Primary and Secondary slots are swapped. A Scratch region is required.

e Direct XIP: The new image is run directly from its flash partition.

We recommended reviewing MCUboot Port section of the FSP User's Manual to understand the Build Time
Configurations for MCUboot. This section is not meant to cover all the configurable properties. Only some of
the most frequently used configuration options are introduced.

R11AN0497EU0120 Rev.1.20 Page 6 of 47
Dec.23.2022 RENESAS

https://docs.mcuboot.com/design.html#ram-load
https://docs.mcuboot.com/encrypted_images.html

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

2.2.1 General Configuration

i) Mew Threa
ws 3] Rernove
= >]

&) Mew Objec
T) Remove

HAL/Common Stacks

ort

<

ary | BSP | Clocks | Pins | Interrupts | Event Links lStacks] Components|

— b
gs roperty

fo

Custom mcuboot_config.h

Upgrade Mode Owverwrite Only
Validate Primary Image Enabled
Downgrade Prevention (Overwrite Only) Disabled
Murmber of Images Per Application 2 (TrustZone)

blems B Console _ LT il G2 Smart Browser [} Smart Manual
boot

Value

v Common

Figure 3. FSP MCUboot Module General Configuration Properties

General configuration properties include:

e Custom mcuboot_config.h: The default mcuboot_config.h file contains the MCUboot Module
configuration that you selected from the RA configurator. You can create a custom version of this file to
achieve additional bootloader functionalities available in MCUboot.

e Upgrade Mode: This property configures the application image update method selection explained at
the beginning of section 2.2. The options are Overwrite Only, Overwrite Only Fast, Swap, and Direct XIP,

as shown in Figure 4. Overwrite Only

is the default setting.

» l55 ethemnet "
v == mecuboot

> pi Includes

2 ra

> 2 ra_gen

» (2 src

» [= Debug

v = ra_cfg

» [= scnpt

ﬁﬂ:} configuration.sml W

o

| HAL/Common Stacks
i

g7
= NINE

A

1LE

28
)

4 > __5

2 Problems @ Smart Browser)

umrnary_BSP_CIocks]Pins]lmermpts]Event Links | Stacks| Components

Console 4 Search “O FSP Visualization _—

MCUboot

Watchdog Feed

m Property Value
APl Info | v Common
w General
Custom meouboot_config.h
Upgrade Mode Chverwrite Only
Validate Primary Image swa
Downgrade Prevention (Overwrite Only) Overwrite Only Fast
— rwrite On

MNumber of Images Per Application Direct XIP

Figure 4. Application Image Update Mode

R11ANO497EU0120 Rev.1.20
Dec.23.2022

Re Page 7 of 47
RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Figure 5 is a more detailed application image format that can be referenced to understand the various
MCUboot property definitions.

ScratchArea (swap
upgrade mode only)
__________ Trailer
Secondary -
slot _Type Length Value (TLv)
Application 2
blcader «— Image Magic number
Primary | Trailer -
slot Lee AR ™=9e-ok
"""""""" T TTLY Magic number
Application 1
""""" Header _
Bootloade Bootloader ~Header magic numper

Figure 5. General Configuration for MCUboot Module

e Validate Primary Image:

When Validate Primary Image is enabled, the bootloader performs a hash or signature verification,
depending on the verification method chosen, in addition to the MCUboot sanity check based on the
image header and TLV area magic numbers. The Header and TLV area magic numbers are always
checked as part of the sanity checking prior to the integrity checking and the signature verification.

When Validate Primary Image is disabled, only the sanity check is performed based on the MCUboot
header and TLV area magic numbers. It is highly recommended to always enable this property. Note that
the image magic number is not part of the image validation; it is a reference value that can be used for
sanity check during application upgrade debugging process. This image magic number is written to the
flash after a successful image upgrade.

e Downgrade Prevention (Overwrite Only): This property applies to Overwrite upgrade mode only.
When this property is enabled, new firmware with a lower version number will not overwrite the existing
application.

e Number of Images Per Application: This property allows you to choose one image for Non-TrustZone-
based applications and two images for TrustZone-based applications.

2.2.2 Application Image Signature Type Options

Application images using MCUboot must also be signed to work with MCUboot. At a minimum, this involves
adding a hash and an MCUboot-specific constant value in the image trailer.

Figure 6 shows the signature types available for the application image signing methods supported by the
MCUboot module. For memory restricted devices, you can choose None for Signature Type, which will
reduce the bootloader size. For example, the example bootloader for the Overwrite update mode uses a
flash area of 64 KB when using ECDSA P-256 signature type, but when signature support is not used, the
bootloader reduces to about 19 KB.

R11AN0497EU0120 Rev.1.20 Page 8 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

i

BSP | Clocks Pins | interrupts | Event Linds | Stacks | Components

Ll D Cartals _ @ Seart Browser 1) Semant Manual

Property Walue
w Comemen
Gereral
w Sagung Opticns
Trustfcne
Boot Record
Custom
Python

LR

Figure 6. Application Image Signature Type for FSP MCUboot Module

2.2.3 Signing Options
Figure 7 shows the default Custom signing option configuration provided by FSP.

w Signing Options
w TrustZone
Boot Record {mage 23

I Custarn {lmage 2) --canfirm I
Signature Type ECD=S P-256
Boot Record

ICustom --confirm I

Figure 7. FSP Default Signing Option

By default, FSP sets --confirm for the Custom property for both Image 1 and Image 2 when TrustZone is
used. For TrustZone-based applications, the Secure Image (Image 1) and Non-Secure Image (Image 2) can
have different configurations such that there is different update policy for the Secure and Non-Secure
Images. Some commonly used signing options are:

e Option --pad:
This option places a trailer on the image that indicates that the image should be considered for an
upgrade. Writing this image in the Secondary slot causes the bootloader to upgrade to it. When Swap
mode is selected, this option generates a sighing command such that the Secondary image will first be
swapped with the Primary application image. On the next reset, the Primary application previously used
will be swapped back and rebooted.

e Option --confirm:
When Swap mode is selected, this option generates a signing command such that the Secondary image
will first be swapped with the Primary application. At the next reset, there will be no swap between the
Primary and Secondary application and the Secondary application will be booted. Confirm is the default
Force Upgrade configuration.

e Noinput:
If no option is put in this property, application images signed with the signing command generated from
this setting will not be updated.

When Overwrite mode is selected, the --pad or --confirm option generates signing commands such that the
overwrite will occur and the Secondary application will overwrite the Primary application.

R11AN0497EU0120 Rev.1.20 Page 9 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

The image signing tool Imgtool . py is included with MCUboot. It is integrated as a post-build tool in

e? studio to sign the application image. For detailed information about using this tool with e? studio, refer to
the application image signing information in section 5.2. For more information on the possible options
available for this property setting, refer to the description in the imagetool.py md file and visit the MCUboot
documentation page https://docs.mcuboot.com/imgtool.html.

2.2.4 MCU Memory Configuration

Figure 8 shows the default memory configuration options provided by the FSP configurator for RA6 MCU
groups.

s Flash Layout

v TrustZone
Maon-Secure Callable Region Size + 0xQ
Mon-Secure Flash &rea Size (Bytes 0x0
Mon-Zecure Callable RAk Region G:0
Mon-Secure RAM Region Size (By (0xQ

Image 2 Header Siz_e (Bytes) (20
Bootloader Flash Area Size (Bytes) (he2 0000
Irmage 1 Header Size (Bytes) 80
Irmage 1 Flash Area Size (Bytes) (20000
Scratch Flash Area Size (Bytes) (0

Figure 8. MCU Memory Configuration Default Settings
For both single-image and two-image configurations, the following four properties need to be defined:

e Bootloader Flash Area: Size of the flash area allocated for the bootloader.

e Image 1 Header Size: Size of the flash area allocated for the application header for single image
configuration or the secure application image header size in the case of a TrustZone-based application.
This property should be set to 0x200 for RA6 and RA4 MCUs and 0x100 for RA2 MCUs.

e Image 1 Flash Area Size: Size of the flash area allocated for the application image for single image
configuration or the secure application image in the case of a TrustZone-based application.

e Scratch Flash Area Size: This property is only needed for Swap mode. The Scratch area must be large
enough to store the largest sector that is going to be swapped. For both RA6M4 and RA6M3, the
Scratch area is set up to be 32k (0x8000).

The properties under TrustZone are for TrustZone-based applications:

e Non-Secure Callback Region Size (Bytes): This area is used for the TrustZone Non-Secure Callable
area plus the MCUboot trailer. This property needs to be set to a multiple of 1024 bytes. Each Non-
Secure Callable function takes 8 bytes of flash area. The non-secure callback function usage can be
identified by referring to the section .sgstub in the secure application map file. For Swap mode, the
MCUboot trailer size is calculated as 128*(5+(3*BOOT_MAX_IMG_SECTORS).

BOOT_MAX IMG_SECTORS is the number of flash sectors in either the secure or the non-secure
image, whichever is larger.

For Overwrite mode, the image trailer is less than 256 bytes, for a typical application with limited number
of Non-Secure Callable APIs, it is recommended to set the Non-Secure Callable Region Size to 0x400.

e Non-Secure Flash Area Size: Size of the Non-Secure flash region. You can compile the non-secure
application to get the size of the image and set this value accordingly. This value must be a multiple of
the flash block size.

e Non-Secure Callable RAM Region: This property is the size of the Non-Secure Callable RAM region of
the Secure image. This property needs to be set to a multiple of 1024 bytes.

e Non-Secure RAM Region Size: Size of the Non-Secure RAM region. This property must be an integer
multiple of 8192 bytes.

e Image 2 Header Size: The non-secure application header size. This property should be set up by
following the same rule as explained for the Image 1 Header Size.

R11AN0497EU0120 Rev.1.20 Page 10 of 47
Dec.23.2022 RENESAS

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://docs.mcuboot.com/imgtool.html

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

2.3 Designing Bootloader and the Initial Primary Application Overview

A bootloader is typically designed with the initial Primary application. The following are the general guidelines
for designing the bootloader and the initial Primary application:

e Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image. The bootloader maintains a memory map of
all the different images shown in Figure 1 and Figure 2.

e Develop the initial Primary application, perform the memory usage analysis, and compare with the
bootloader memory allocation for consistency and adjust as needed.

¢ Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in adjustment of the memory allocated definition in the bootloader project.

e Test the bootloader and the initial Primary application.

Most of these design aspects are addressed in the walk-through in section 4.

2.4 General Guidelines using the MCUboot Module Across RA Family MCUs
The MCUboot Module is supported on all RA Family MCUs.

For the Renesas RA Cortex-M33 MCU series internal flash usage, refer to the RA6M4 example projects
demonstrated in this application project.

For the Renesas RA Cortex-M4 MCUs RA6 MCU series internal flash usage, refer to the RA6M3 example
projects demonstrated in this application project.

For the Renesas RA Cortex-M23 MCU series, refer to the RA2E1 example projects demonstrated in the
application project (R11AN0516).

2.5 Customize the Bootloader
The following aspects need to be considered when customizing the bootloader in a product design:

e Customized method to download the application.
e Use various optimization method to reduce bootloader and application image size. For example, compile
the bootloader by Optimize size.

2.6 Production Support

2.6.1 Key Provisioning

By default, the public key is embedded in the bootloader code and its hash is added to the image manifest
as a KEYHASH TLV entry. See section 4.1.3 for more details about the public key and private key that are
used for testing purpose. For production support, follow the example shown in key . c to add the public key.
In addition, you must update the private key for application image signing. Refer to Figure 64 and Figure 65
for the private key selection in the signing command.

As an alternative, the bootloader can be made independent of the included test keys by setting the
MCUBOOT_HW_KEY option. In this case, the hash of the public key must be provisioned to the target device
and MCUboot must be able to retrieve the key-hash from there. For this reason, the target must provide a
definition for the boot_retrieve public_key hash() function that is declared in
boot/bootutil/include/bootutil/sign_key.h. The full option for the -publ ic-key-format
imgtool argument is also required in order to add the whole public key (PUBKEY TLYV) to the image manifest
instead of its hash (KEYHASH TLV).

During boot, the public key is validated before it is used for signature verification. MCUboot calculates the
hash of the public key from the TLV area and compares it with the key-hash that was retrieved from the
device. This way, MCUboot is independent from the public key(s). The key(s) can be provisioned any time
and by different parties.

2.6.2 Make the Bootloader Immutable for Enhanced Security

For a Cortex-M33 MCU, refer to section 6.1 to make the bootloader immutable. For a Cortex-M4 MCU, refer
to section 6.2 to make the bootloader immutable.

R11AN0497EU0120 Rev.1.20 Page 11 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

2.6.3 Advance the Device Lifecycle States Prior to the Deploying the Product to the Field

For a Cortex-M33 MCU, refer to section 6.3 for the device lifecycle management of the MCU. For a Cortex-
M4 MCU, refer to section 6.4 for the device lifecycle management of the MCU.

3. Running the Example Projects

This section provides a walk-through of running the included example projects. To recreate the bootloader
example projects demonstrated in this section, refer to section 4.1 for the Cortex-M33 implementation.

The bootloader projects introduced have similar functionality except that the memory map definition and
application image update mode are different.

Unzip example_projects_with_bootloader.zip and you will see that there are three folders. Each
folder contains example projects for the specific MCU which include bootloader project and example
application projects.

example_projects_with_bootloader
Name

rabm3_overwrite_with_bootloader
rabm3_swap_test_with_bootloader]~ non- trustzone examples
rabmd_dxip_with_bootloader_flat

rabm4_overwrite_with_bootloader_tz

rabmd_swap_with_bootloader tz } trustzone examples

Figure 9. Example Projects with Bootloader Support

Set up the Python development environment by following section 3.3 step 3.2. Note that this step only needs
to be performed once.

3.1 Set Up the Hardware

3.1.1 Setup EK-RA6M4

e Jumper setting: J12 is set to pins 2-3 and J15 is closed.

e Connect J10 using a USB micro to B cable from EK-RA6M4 to the development PC to provide power
and debug connection using the on-board debugger.

Once the EK-RA6M4 is powered up, initialize the MCU prior to exercising the bootloader project.

Erase the entire MCU flash and ensure the MCU is in Secure Software Development Device Lifecycle State.
This can be achieved using the Renesas Device Partition Manager.

1. Power cycle the board, launch e? studio, and open the Renesas Device Partition Manager.

- & studio
Run Window Help
Renesas Debug Teols 3 Renesas Device Partition Manager I
. Run Cti+F11 [TraceX >
Figure 10. Open Renesas Device Partition Manager
R11AN0497EU0120 Rev.1.20 Page 12 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

2. Select Read current device information.

If the DLM state is SSD, NSECSD, or DPL, proceed to step 3. Otherwise, you must switch to a different
kit to continue the rest of the operation. Below is an example of the readout from an RA6M4 MCU that is
in the SSD state.

Current status of the device S
DLM state : Secure Software Development (550)
Debug level: DBG2
Secure/MSC memory partition size @
- Code Flash Secure (kB) 1191
- Code Flash N5C (kB) =1
- DataFlash Secure (kB) 0
- SRAM Secure (kB) 248
- SRAM MEC (k) :0

END of current status of the device.

Disconnecting...
DISCOMMECTED.,

---------- SUMMARY OF RESULT----------
Connection : SUCCESSFUL!

Status display : SUCCESSFUL!
------------- EMD SUMMARY------------- W

@' Impart Export Close

Figure 11. Read the Device Lifecycle States

3. Select Initialize device back to factory default, choose J-Link as the connection method, and click

Run.
{8} Renesas Device Partition Manager O =
Action
Read current device information S e e =
Set TrustZone secure / non-secure boundarie Initialize device back to factory default I
Target MCU connection: J-Link vI
! |
Serial Mo:
Debugger supply voltage (V): 0
Baud rate: 9600
DLM state to change to: 55D - Secure Software Development ~
Memory partition sizes
Code Flash Secure (KB): 9 B
Code Flash NSC (KB): 23
Data Flash Secure (KB): 0
SRAM Secure (KB): &
SRAM MSC (KB): 6
Command line took: Browse...
[1
@' Import Export Run Close
Figure 12. Initialize RA6M4 using Renesas Device Partition Manager
R11AN0497EU0120 Rev.1.20 Page 13 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

The entire flash will be erased if there are not permanently locked down sections. In addition, if the
device is in the NSECSD or DPL state, the RA6M4 will be initialized to the SSD state.

4. Power cycle the EK-RA6M4 after successfully initializing the device to the SSD state by disconnecting
the USB cable and reconnecting it to the development PC.

3.2 Configure the Python Signing Environment

If this is NOT the first time you have used the Python script signing tool on your computer, you can skip this
section. Note that section 3.3 to section 3.8 can be evaluated independently; it is not necessary to follow a
particular sequence.

Download and Install Python v3.9 or later from https://www.python.org/downloads/.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work:

e From the included example project sets (refer to Figure 9), choose the set of projects you would like to
exercise first.

e Import that set of projects into a workspace. In this example, we assume you have chosen to import the

projects under folder:
\example_projects_with_bootloader\raém4 overwrite with_bootloader_ tz.

¢ Navigate to folder \MCUboot in the bootloader project included, eg. ra_mcuboot_raém4>ra>mcu-
tools>MCUboot, right click, and select Command Prompt. This opens a command window with the
path set to the \mcu-tools\MCUboot folder.

R11AN0497EU0120 Rev.1.20 Page 14 of 47
Dec.23.2022 RENESAS

https://www.python.org/downloads/

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

w |5 ra_mcuboot_rafimd [Debog)
£ Binaries
wil Includes
v [
= AT
% board
B fip
w 2 mou-tools

£l ra_gen id ¥
& $rc Go Into
- Dtb:g Open in New Window
% ra_efy
(= script Show In Ak« Shifft W »
£ configurationa Copy Chrl s
[7] rrraMaaFICT £]
ra_cfg. bt ' .
ra_meuboot_ra Dielete Delete
(7 Developer Assi Source H
Bebonen...
Henarne... F2
Irnport...
; Bport..
Build Project Chrl+B
Refresh]
ﬁ rabmd_overwrite_with_bootloader_tz - Index »
File Edit Source Refactor Mavigat Build Targets H
Rezource Configurations »
% || 3 || ® | |3 Debug — :
Compare With »

- Restore from Local History...
B C/C+ s Project Settings Ctrl+Alt+P
Change Device

Rurn CAC++ Code Anabysis
Systern Explorer

Ti_—c,,- app_raémd_ns_primary
T_,~_—‘E- app_rabm4_ns_secondary

Tiﬁ app_rabm4_s_primary [Debug] I

Command F'mrnp! I

[w]® =

Lw_-?- app_rabm4d_s_secondary e —

T== ra_mcuboot_rabmd
- Source ¥

Figure 13. Open the Command Prompt

e We recommend upgrading pip prior to installing the dependencies. Enter the following command to
update pip:

python -m pip install --upgrade pip

e Note that if you have multiple Python versions installed, make sure to check that the Python version
is version 3.9.0 or later.

e Next, in the command window, enter the following command line to install all the MCUboot
dependencies:

pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required. Make sure this step runs successfully
prior to moving to the following sections.

R11AN0497EU0120 Rev.1.20 Page 15 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

3.3 Running the EK-RA6M4 Overwrite Update Mode Example
Follow the steps below to run the example projects for EK-RA6M4 using the MCUboot Module Overwrite
Only Update mode.

3.3.1 Initialize the RA6M4 MCU
Follow section 3.1.1 to initialize the RA6M4 MCU.

3.3.2 Import the Projects under \raém4_overwrite_with_bootloader_tz

New users should refer to the FSP User's Manual section on Importing Projects into the IDE for guidelines.
Ensure the Python signing environment is set up referencing section 3.2.

0x70000

Secondary
slot Secondary Mon-Secure App

0x50000

D-II'I'l L Primary Non-Secure App
Project Explorer 532 = h
R P 0x30000
= app_rabrmd_ns_prirnary P imary Primary Secure App
= app_rabrmd_ns_secondary R280aE
4 . Secondary Secondary Secure A
= app_rabrmd_s_primary S 4 i
- 0x10000
= app_rabimd_s_secondary Scralch Area (size=0)
] 0x10000
= ra_rcuboot_rafimd MCUboot
0x0

Figure 14. Example Projects for RA6M4 Overwrite Update Mode

e ra_mcuboot_raém4: The bootloader project configured with Overwrite update mode.

e app_rabm4_s primary: The Primary Secure application project with FSP flash driver support with the
flash driver configured as Non-Secure Callable.

e app_raébm4_ns_primary: The Primary Non-Secure application project which calls the Non-Secure
Callable flash driver to erase and write to a code flash region at the top of the code flash area. Upon
successful flash operation, all three LEDs blink.

e app_rabm4_s secondary: The Secondary Secure application project with FSP flash driver support
with the flash driver configured as Non-Secure Callable. This application image has the same
functionality as the Primary Secure application, you can use this project as a template to update the
different functionality and exercise the operation of updating the Secure image independent of the Non-
Secure Image update.

e app_rabm4_ns_secondary: The Secondary Non-Secure application project which calls the Non-
Secure Callable flash driver to erase and write to a code flash region at the top of the code flash area.
Upon successful flash operation, only the blue and green LEDs blink.

3.3.3 Compile All the Projects

The bootloader project must be compiled first prior to compiling the application projects. In addition, the
secure project must be compiled first prior to the compiling the corresponding non-secure project. For each
project, open the configuration.xImfile, click Generate Project Contents and then click ® ' to build the
project. Compile the projects following the order listed below:

1. ra_mcuboot_ra6m4

2. app_raém4_s primary
3. app_rabm4_ns_primary
4. app_ra6m4_s secondary
5. app_ra6bm4_ns_secondary

For the application projects, the post-build command will also sign the corresponding images. The signed
image for the application project is located under the /Debug folder and is named
<application_project name> bin.signed (For example,

/app_raém4_s primary/Debug/app_raém4 s primary.bin.signed).

R11AN0497EU0120 Rev.1.20 Page 16 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

3.3.4 Debug the Applications and Boot the Primary Applications
Right-click on project app_raém4_s_primary and select Debug As > Debug Configurations and confirm
the following configuration information:

e The bootloader is downloaded using the .elf format (which includes image and symbol).

e The Primary secure and non-secure images (app_raém4_s primary.bin.signed,
app_ra6ém4_ns_primary.bin_signed) are downloaded using the signed binary as Raw Binary/.

e The Primary secure and non-secure image symbols are included using the .elf files.

FRERX[EY -

Name: \ app_rabm4_s_primary Debug
‘ _ [5] Main "f;‘}i Debugger _ [[] Common | % Source
Initialization Commands
[Reset and Delay (seconds):

[Halt

type filter text

[| C/C++ Application

[T] C/C++ Remote Application

~ EASE Script

[t | GDB Hardware Debugging

[t] GDB OpenOCD Debugging

[c*] GDB Simulator Debugging (RH850)
= Java Applet

[T] Java Application

8 Launch Group

E Remote Java Application

v [c7] Renesas GDB Hardware Debugging

Load image and symbols

On connect

Load tvpe Qffegtihex)

[c7] app_rabm4_ns_primary Debug_S5D

Program Binary [app_rabmd4_s_primary....

Symbols only Yes

7] app_rabm4_ns_secondary Debug_SSD ra_mcuboot_rabmd.elf [C:\MCUboot\R... Image and Symbols 0 Ves
(¢’ app_rabmd_s_primary Debug app_rabm4_ns_primary.elf [C:\MCUbo... ~Symbols only 0 Yes
7] app_rabmd_s_secondary Debug app_rabmd_s_primary.bin.signed [C:\M... Raw Binary 20000 Yes
[£7] ra_mcuboot_rabm4 Debug_Flat 2 B R [Baw Binac, 20000 Yes

(7] Renesas Simulator Debugging (RX, RL78)

Figure 15. Debug Configuration RA6M4 Overwrite

Click Debug.
The debugger should hit the reset handler in the bootloader. Note the address is in the bootloader image.

i void Reset_Handler (void)
/* Initialize system using BSP. *f
2 54 0000aacd SystemInit();

Call user applicati
main();
while (1)

{
}

1

Figure 16. Start the Application Execution

Click Resume twice “* and boot the Primary image. All three LEDs should be blinking. Pause the
execution and confirm the execution is in the Non-secure Primary slot.

Click "™ torun again.

3.3.5 Openthe J-Link RTT Viewer
Configure the RTT Viewer as shown below. Set up the search range as: 0x2003e000 0x8000.

R11AN0497EU0120 Rev.1.20 Page 17 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

ﬂ J-Link RTT Wiewer Y6980 | Canfiguration X

Connection ko J-Link

®) Use [[] serial Mo

() TCR/IP
() Existing Session

Specify Target Device

RIFAEMAAF ~|

Scripk File {optianal)

Target Interface & Speed
SWD v | 4000kHz -

RTT Conkrol Block

() Auto Detection () address (® Search Range

Enter one or more address rangeis) the RTT Control black can be Tocated in.

Syntax: <RangeStart [Hex]> <RangeSize=[, <Rangelstart [Hex]> <RangelSizes, ...]
Example: 0x10000000 0x1000, 0x2000000 0x1000

020036000 0x5000) |

Cancel

Figure 17. Configure the RTT Viewer

Click OK and observe the output on the RTT Viewer. This output shows the Primary application is being
executed and all three LEDs are blinking.

@@ | Running the Primary non-secure application with owverwrite update mode.
>

aax: {1 write successfull
@@> Flash Operation is successful. The Red, Blue and Green LEDs should be blinking.

Figure 18. Execution of Primary Non-Secure Application for Overwrite Mode

3.3.6 Downloading and Running the Secondary Applications

During development, you can use the ancillary loading capability to load the new secure image to the
intended location. You can use the example new secure application provided in this project and follow the
steps below to perform an application upgrade:

1. Pressthe button to pause the program.

2. On the top of the e? studio toolbar, click the " ‘Load Ancillary File button to load the new application
images to the Secondary slot region. Refer to section 3.9 for troubleshooting when using the Load
Ancillary File function.

@ X
| Load Ancillary File
H Select an ancillary file for loading
File: ${workspace_loc:\app_rabm4_s_secondary\Debug\app_raém4_s_secondary.bin.signed} | | Workspace... | File System...
. FA Load as raw binary image
3.‘\ddress:
| ok | Cancel
Figure 19. Load the Secondary Secure Application Image for Overwrite Update Mode
R11AN0497EU0120 Rev.1.20 Page 18 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

-] x |
Load Ancillary File

Select an ancillary file for loading

File: ‘ S{w‘orkspaceﬁlcc:'\app_raﬁmd_ns_secondar'y".Debuiapp_raémd_ns_sEcondary.bln.sugned}l v| Workspace... | File System...

Load as raw binary image
Address: 0x00050000]f

cance'

Figure 20. Load the Secondary Non-Secure Application Image for Overwrite Update Mode

3. Click Resume " . The overwrite occurs and the new image is executed. The blue and green led will be
blinking instead of all three LEDs.

4. Onthe RTT Viewer output, confirm that the following messages are printed and only the blue and green
LEDs are blinking.

Running the Secondary non-secure application with owerwrite update mode.

flash write successfull
. The Blue and Green LED should be blinking.

Figure 21. Executing the Secondary Non-Secure image for Overwrite Update Mode

3.3.7 Update the Non-Secure Secondary Image

This step is provided as a reference for implementation of individual image update when designing in a
TrustZone environment.

Click Pause again and download the Primary Non-Secure application to the Secondary Non-Secure slot

using the Load Ancillary File . ' tool. Click OK. Click Resume ™ again. The three LEDs start to blink
again and the RTT Viewer shows the same message as Figure 38.

e For Overwrite update mode, if the Secondary image is marked for update, overwrite always occurs.

e |tis possible to update the Secure and Non-Secure applications individually with proper application
design.

® x |
Load Ancillary File

Select an ancillary file for loading

File: |5{workspace_\cc:\app_raémd_ns‘primary'\Debuglapp_raﬁmd_ns_primary.bin.signed,\l v | | Workspace... | File System...

oad as raw binary image
Address: | 0x00050000 |
——

Cance

Figure 22. Load the Primary Non-Secure Image to the Second Slot

R11AN0497EU0120 Rev.1.20 Page 19 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

3.4 Running the EK-RA6M4 Swap Update Mode Example

The process of running the EK-RA6M4 Swap Update mode is similar to the Overwrite Update mode. This
section focuses on the difference in the operation:

1. Follow section 3.1.1 to initialize the RA6M4 MCU.
2. Import the project under folder \raém4_swap_with_bootloader_tzto a workspace.

5 Project Explarer &2 =

T_,-_—Ev app_rabmd_ns_primary
T_,-_—C,, app_rabmd_ns_secondary
le% app_rabmd_s_primary
= app_tabmd_s_secondary
= ra_mcuboot_rafimd

Secondary

slot Secondary Non-Secure App
slrulqnary Primary Non-Secure App
zg'{”aw Primary Secure App
Secondary Secondary Secure App

slot

Scratch Area (size=0x8000)

MCUboot

0x78000

0x58000

0x38000

0x28000

0x18000

0x10000
0x0

Figure 23. Example Projects for RA6M4 Swap Update Mode

e The bootloader project ra_mcuboot_ra6m4 has similar functionality as the bootloader with
Overwrite Update mode introduced in section 3.3 step 3.3.3 except that the memory map definition
and application image update mode are different.

e The functionalities of the application projects are same as the Overwrite Update mode.

3. Configure the Python Signing Environment by following section 3.2 if this is the first time you are signing

the application image.

4. Compile the example projects in the same order as the Overwrite update mode by referencing section
3.3 step 3.3.3. Ensure the signed image for the application project is located under the /Debug folder and
is named <application_project_name>_bin.signed.

5. Review the Debug Configuration and boot the Primary applications by referencing section 3.3.4.

& Debug Configurations

Create, manage, and run configurations

FeREX BY-

Name: ‘ app_rabmd_s_primary Debug

[€] C/C++ Application
[€] C/C++ Remote Application
= EASE Script
[€] GDB Hardware Debugging
[£] GDB OpenOCD Debugging
[c¥ GDB Simulator Debugging (RH850)
Java Applet

—
¢l
@@ Launch Group
1. Remote Java Application
v [c] Renesas GDB Hardware Debugging
[£7] app_rabm4_ns_primary Debug_SSD

=
[T Java Application
@

[£7] app_rabm4_ns_secondary Debug_SSD
[c*] app_rabm4_s_primary Debug
[£7] app_rabm4_s_secondary Debug
[£7 ra_mcuboot_raém4 Debug_Flat
[£7] Renesas Simulator Debugging (RX, RL78)

Initialization Commands
[C]Reset and Delay (seconds):
[Halt

‘ [5] Main | %5 Debugger _E‘: Source [_| Common

Load image and symbols

~flenzme Loadbge Qffs
Program Binary [app_r... Symbols only
ra_mcuboot_rabm4.elf ... Image and Symbols 0
app_rabm4_ns_primary... Symbols only 0
app_rabmd_s_primary... Raw Binary 28000
Lo safcad o ka0, BaucBioas 32000

Figure 24. Debug Configuration RA6M4 Swap Update Mode

R11AN0497EU0120 Rev.1.20
Dec.23.2022

RENESAS

Page 20 of 47

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

6. Open the J-Link RTT Viewer and set up the same configuration as Figure 17.
7. Click OK and observe the following output on the RTT Viewer. This output shows the Primary application
is being executed and all three LEDs are blinking.

Flash Operation is successful. The Red, Blue and Green LEDs should be blinking.

Running the Primary non-secure application with swap update mode.

flash write successfull
Flash Cperation is successful. The Red, Blue and Green LEDs should be blinking.

Figure 25. Execution of Primary Non-Secure Application for Swap Update Mode

3.4.1 Downloading and Running the Secondary Applications

During development, you can use the Ancillary loading capability to load the new Secure image to the
intended location. You can use the example new Secure application provided in this application and follow
the steps below to perform an application upgrade. Refer to section 3.9 for troubleshooting when using the
Load Ancillary File function.

1. Pressthe button to pause the program.
2. Load the secure new application images to the Secondary slot region using the Ancillary loading

capability " ' from the top of the e? studio toolbar in a similar way as Figure 19 except use address
0x18000.

3. Load the non-secure new application image to the Secondary slot region using the Ancillary loading
capability " ' from the top of the e? studio toolbar in a similar way as Figure 20 except use address
0x58000.

4. Click Resume Lg . The swap occurs, and the new image is executed. Only the blue and green LEDs
should be blinking.

5. Confirm the execution result.

> Running the Secendary non-secure application with swap update mede.

write succ ul!
Flash Operation is successful. The Blue and Green LEDs should be blinking.

Running the Secondary non-secure application with swap update mode.

rite successfull
Operation is successful. The Blue and Green LEDs sheould be blinking.

@
@
ol
&
@
o]
i
i
i
A

Figure 26. Executing the Secondary Non-Secure Image for Swap Update Mode

3.5 Running the EK-RA6M4 DXIP Update Mode Example

The process of running the EK-RA6M4 DXIP Update Modes is similar to the Overwrite Update mode. This
section will focus on the difference in the operation:

1. Follow section 3.3 to initialize the RA6M4 MCU.

2. Import the project under folder \raém4_dxip_with_bootloader_flatto a workspace and see the
following set of example projects.

R11AN0497EU0120 Rev.1.20 Page 21 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

— 0x30000
fke;ondary Secondary App
Name . 0x20000
:;:“9"5’ Primary App
app_rabm4_primary 0x10000
app_rabm4_secondary Scratch Area (size=0x0) 0510000
X
ra_mcuboot_rabmd_dxip MCUboot
0x0

Figure 27. Example Projects for RA6M4 Direct XIP Update Mode

The functionalities of the application projects are blinking the LEDs and providing RTT viewer outputs.

3. Configure the Python signing environment by following section 3.2 if this is the first time you are signing
the application image.

4. The bootloader needs to be compiled first. For each project, open the configuration.xlm file, click
Generate Project Contents and then click %/ to build the project. Compile the example projects
following below orders. Ensure the signed image for the application project is located under the /Debug
folder and is named <application_project name>_bin.signed

1. ra_mcuboot_ra6m4_dxip
2. app_ra6m4_primary
3. app_ra6m4_secondary

5. Verify the debug configuration and follow section 3.3 step 3.3.4 to start debugging the application.

Q Debug Configurations

Create, manage, and run configurations

L] x| E = Name: | app_rabm4_primary Debug_Flat
type filter text [5] Main | %5 Debugger _ [[] Common | & Source
[€] C/C++ Application Initialization Commands
(€] C/C++ Remote Application [] Reset and Delay (seconds):
EASE Script
[c] GDB Hardware Debugging (1 Halt
[€] GDB OpenOCD Debugging
[£7 GDB Simulator Debugging (RH850)
® Java Applet
[T] Java Application
§ Launch Group Load image and symbols

Remote Java Application
v [c7] Renesas GDB Hardware Debugging
[c 7| app_rabm4_primary Debug_Flat Pregram Binary [app_rabm4_prim... Symbols only Yes
Iﬂmmmﬁ!t ra_mcuboot_rabmd4_dxip.elf [C:\.. Image and Symbols 0 Yes

c 7| ra_mcuboot_rabm4_dxip Debug_Fla app_rabmd4_primary.bin.signed [C... Raw Binary 10000 Yes

Filename Load type Offset (hex) On connect

Figure 28. Debug Configuration DXIP Update Mode

6. Open the J-Link RTT Viewer and set up configuration similar as Figure 17 except change the search
range to 0x20000000 0x8000.

7. Click OK and observe the following output on the RTT Viewer. This output shows the Primary application
is being executed and all three LEDs are blinking.

Running the Primary application with DXIP update mode.
The Red, Blue and Green LEDs should be blinking.

Figure 29. Execution of Primary Application for DXIP Update Mode

R11AN0497EU0120 Rev.1.20 Page 22 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

3.5.1 Downloading and Running the Secondary Applications
Refer to section 3.9 for trouble shooting when using the Load Ancillary File function.

During development, you can use the Ancillary loading capability & from the top of the e? studio toolbar
to load the new image to the intended location. You can use the example new application provided in this
application and follow the steps below to perform an application upgrade:

1. Pressthe button to pause the program.

2. Load the new application images to the Secondary slot region using the Ancillary loading (3 capability
from the top of the e? studio toolbar.

& X

Load Ancillary File

Select an ancillary file for loading

File: | $fworkspace loc\app_rabmé_secondany\Debughapp_rabmd_secendary.bin.signed] ~| | Workspace... | | File System...

Load as raw binary image
Address:|| 300020000 |
e——

ok]| Conce

Figure 30. Load the Secondary Secure Application Image for DXIP Update Mode

3. Click Resume ¥ The swap occurs, and the new image is executed. Only the blue and green LEDs
should be blinking.

4. Confirm the same configuration as shown in Figure 17, then click OK.

Running the Secondary application with DXIP update mode.
The Blue LED should be blinking.

s]

B
B
B

[ex]

Figure 31. Executing the Secondary Image for DXIP Update Mode

3.6 Set up EK-RAG6M3

Erase the entire MCU flash prior to proceeding to the following steps. This can be done using J-Link Flash
Lite. Launch J-Flash Lite and select the RA6M3, as shown in Figure 39.

Device Interface
RIFAEMIAH | SWD v | 4D00kHz v oK
Figure 32. Open J-Link Flash and Select RA6M3
Click OK and select Erase Chip at the next window.
R11AN0497EU0120 Rev.1.20 Page 23 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

File Help
Target
Device Interface Speed
[R7FaGMaAH | [swo | [4000 kHz
Data File {bin [hex f mok § srec .. Prog. addr. {bin File only)

| | |D><DEIDDEIDE|D | Erase Chip

I Program Device

Figure 33. Erase RA6M3
The entire flash will be erased if there are not permanently locked down sections.

3.7 Running the EK-RA6M3 Overwrite Update Mode Example

Follow the steps below to run the example projects for EK-RA6M3 using the MCUboot Overwrite Only
Update mode.

3.7.1 Import the Projects under Folder \ra6m3_overwrite_with_bootloader to a
Workspace
The following example projects are included in this folder:

0x50000
3‘;‘:0""“ Secondary App
0x30000
I Project Explorer 53 Primary Primary App
= slot
[. _ S 0x10000
= app_rabm3_primary Scratch Area (size=0x0)
25 app_raBm3_secondany, 0x10000
=5 ra_mcuboot_rabm3 MCUboot 0x0

Figure 34. Example Projects for RA6M3 Overwrite Update Mode

e Project ra_mcuboot ra6m3 is the bootloader project.

e Project app_ra6ém3_primary is the initial Primary application project. This project blinks the three
LEDs on the EK-RA6M3 Kkit.

o Project app_ra6m3_secondary is the Secondary application project. This project blinks the blue LED
on the EK-RA6M3 kit.

Follow section 3.2 to set up the Python signing environment if this is the first time you are signing the
application image.

3.7.2 Compile the Projects

The bootloader needs to be compiled first. For each project, open the configuration.xml file, click

Generate Project Contents, and then click to build the project. For the application projects, the post-
build command will also sign the corresponding images. The signed image is located under the \Debug
folder and is named <project_name>.bin.signed (for example,
/app_raém3_primary/Debug/app_raém3_primary.bin.signed)

1. ra_mcuboot _ra6m3
2. app_ra6m3_primary
3. app_ra6m3_secondary

3.7.3 Debug the Applications and Boot the Primary Application
Right-click on project app_raém3_primary and select Debug As > Debug Configuration.

R11AN0497EU0120 Rev.1.20 Page 24 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

a Debug Configurations

Create, manage, and run configurations

_ CELEER . | =| .‘1 M Name: | app_rabm3_primary Debug_Flat
type filter text ‘ =] Main - %5 Debugger _ B Common| B Source |
(] C/C++ Application Initialization Commands
[c] C/C++ Remote Application [Reset and Delay (seconds): 3
L= EASE Script
et ’ [JHalt
|c | GDB Hardware Debugging

(| GDB OpenOCD Debugging
[©7] GDB Simulator Debugging (RH850)
¥ Java Applet
7] Java Application
@ Launch Group
E Remote Java Application
v [

Load image and symbols

Renica COB Hordwae Debiiags Filename Load type Offset (hex) On connect
'c’| app_rabm3_primary Debug_Flat Program Binary [app_rabm3_primary.elf] Symbols only Yes
[c¥| app_rabm3_secondary Debug_Flat ra_mcuboot_rabm3.elf [C\AMCUbcot\R... Image and Symbols 0 Yes
€7 ra_mcuboot_rabm3 Debug_Flat app_rabm3_primary.bin.signed [CA\MCU... Raw Binary 10000 VYes

Figure 35. Debug Configuration RA6M3 Overwrite Update
Click Debug.

The debugger should be at the reset handler in the bootloader. Note the address is in the bootloader image.

%5 Debug I3 = | i+ § = B & [ra_mcuboot_rab {54 [app_rabm3_prim {84 [app_rabm3,
w [app_rabm3_primary Debug_Flat [Renesas GDB Hardware Debugging] 64 BEEEGeAC SystemInit();
W E app_rabm3_primary.elf [1] [cores: 0] 65) 11 1 .
. . [/* Call user application. */
: : : :
w uf‘)lhread 11 (single core) [core: 0] (Suspended : Signal : SIGTRAP: Trace/breaky 67 BRBAGE12 main();
= Reset_Handler() at startup.c:64 Oxbelc AR

Figure 36. Start the RA6M3 Application Execution

Click Resume twice “® and boot the Primary image. All three LEDs should be blinking.

3.7.4 Open the J-Link RTT Viewer
Configure the RTT Viewer as shown below. Configure the address search range as 0x1ffe0000 0x8000.

R11AN0497EU0120 Rev.1.20

Page 25 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

ﬂ I-Link BTT Viewer W6.98b | Configuration X

Connection ko J-Link,

[serial Mo L

) TCR{TP
O Existing Session

Specify Target Device

RIFAGM3AH ~ || I

Script file {optional)

Target Interface & Speed
WD > [4000kHz =

RTT Control Block

() Auka Detection () Address (®) Search Ranoe
|

Enter one or more address rangels) the RTT Control block can be located in.
Syntax: <RangeStart [Hex]> <RangeSize=[, <RangelStart [Hex]> <RangelSize=, ...]
Example: 0x10000000 0x1000, 0x2000000 O:xx1000 I
| ox1ffenonajoxaono | |
———

' Cancel

o T

Figure 37. Configure the RTT Viewer for RA6M3 Project

Click OK and observe the following output on the RTT Viewer. This output shows the Primary application is
being executed and all three LEDs are blinking.

Running the Primary application with overwrite update mode.
The Red, Blue and Green LEDs should be blinking.

=
FEey

Running the Primary application with overwrite update mode.
The Red, Blue and Green LEDs should be blinking.

a
a
a
a

=)
A

Figure 38. Execution of Primary Application for Overwrite Mode

3.7.5 Downloading and Running the Secondary Applications

During development, you can use the Ancillary loading capability ™ ' to load the new Secure image to the
intended location. Follow the steps below to perform an application upgrade. Refer to section 3.9 for
troubleshooting when using the Load Ancillary File function.

R11AN0497EU0120 Rev.1.20 Page 26 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

1. Press to pause the program.

2. Load the new application images to the Secondary slot region using the Ancillary loading capability "
from the top of the e? studio toolbar. Select Load as raw binary image and configure the Address to
0x30000.

@ X |
Load Ancillary File

Select an ancillary file for loading

File: | S{workspace_Ioc:\app_ra5m3_5ec0ndar}r\Debudapp_ra6m3_5econdar}t.bin.5igned}| v| Workspace... | | File System...

| g:uad as raw binary image |
Address:| 0x30000 |

ok || Cence

Figure 39. Load the Secondary Application Image for Overwrite Mode

3. Click Resume g . The overwrite occurs and the new image is executed. Now only the Blue LED should
be blinking.

4. Confirm the same configuration as shown in Figure 37, then click OK. The following output is printed and
only the blue LED blinks.

Running the Secondary application with overwrite update mode.
The blue LED should be blinking.

Running the Secondary application with overwrite update mode.
The blue LED should be blinking.

Figure 40. Executing the Secondary Application Image for Overwrite Update Mode

3.8 Running the EK-RA6M3 Swap Test Update Mode Example

Follow the steps below to run the example projects for EK-RA6M3 using the MCUboot Swap Test Update
mode.

3.8.1 Import the Projects
Import the projects under Folder \raém3_swap_test with_bootloader to a Workspace.

The following example projects are included in this folder:

0x60000
:E':””da"f Secondary App
15 Project Explorer &% . 0x40000
| = & :‘g:nary Primary App
s : 0x20000
= app_ratm3_primary Scratch Area (size=0x8000)

= app_rabim3_secondary 0x18000

£ ra_mcuboot_rafim3 MCUboot 050

Figure 41. Example Projects for RA6M3 Swap Test Update Mode

e Project ra_mcuboot_ra6m3 is the bootloader project.

e Project app_ra6ém3_primary is the initial Primary application project. This project blinks the three
LEDs on the EK-RA6M3 Kit.

e Project app_ra6m3_secondary is the Secondary application project. This project blinks the blue LED
on the EK-RA6M3 kit.

R11AN0497EU0120 Rev.1.20 Page 27 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Follow section 3.2 to set up the Python signing environment if this is the first time you are signing the
application image.

3.8.2 Compile the Projects

The bootloader project needs to be compiled first. For each project, open the configuration.xml file,
click Generate Project Contents, and then click to build the project. Compile the projects in following the
order:

1. ra_mcuboot_ra6m3_swap_testmode
2. app_ra6m3_primary
3. app_ra6bm3_secondary

For the application projects, the post-build command will also sign the corresponding images. The signed
image is located under the \Debug folder and is named <project_name>_bin.signed (for example,
/app_raém3_primary/Debug/app_raém3_primary.bin.signed)

3.8.3 Debug the Applications and Boot the Primary Application
Right-click on project app_raém3_primary and select Debug As > Debug Configuration.

& Debug Configurations

Create, manage, and run configurations

_ P . = R B Y~ || Name: | app_rabm3_primary Debug_Flat
‘ type filter text ‘ =] Main | %5 Debugger _ [[] Common| & Source
[c] C/C++ Application Initialization Commands
[€] C/C++ Remote Application] Reset and Delay (seconds):
= EASE Script

[JHalt

[c] GDB Hardware Debugging

[£] GDB OpenOCD Debugging

[c*] GDB Simulator Debugging (RH850)
i Java Applet

[T Java Application

Launch Group Load image and symbols
-T; Remote Java Application

v T Rencsos OB Elocdwore ibunaiie Filename Load type Offset (hex) On connect
app_rabm3_pri 7 Program Binary [app_r... Symbols only Yes
[c7] app_rabm3_secondary Debug_Flat ra_mcuboot_rabm3_sw... Image and Symbols 0 Yes
[£7 ra_mcuboot_rabm3_swap_testmode C app_rabm3_primary.bi... Raw Binary 18000 Yes

Figure 42. Debug Configuration RA6M3 Overwrite Update
Click Debug.

Click Resume twice “® and boot the Primary image. All three LEDs should be blinking.

3.8.4 Open the J-Link RTT Viewer

Configure the RTT Viewer as shown in Figure 37. Observe the following output on the RTT Viewer. This
output shows the Primary application is being executed and all three LEDs are blinking.

88> | Running the Primary application with swap (test mode) update mode.

#2> The Red, Blue and Green LEDs should be blinking.

Figure 43. Execution of Primary Application for Swap Test Mode Mode

R11AN0497EU0120 Rev.1.20 Page 28 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

3.8.5 Downloading and Running the Secondary Applications

During development, you can use the Ancillary loading capability " ' to load the new Secure image to the
intended location. Follow the steps below to perform an application upgrade. Refer to section 3.9 for
troubleshooting when using the Load Ancillary File function.

1. Press to pause the program.

2. Load the new application images to the Secondary slot region using the Ancillary loading capability -
from the top of the e? studio toolbar in a similar way as Figure 39. Select Load as raw binary image and
configure the Address to 0x38000.

3. Click Resume g . The swap occurs and the new image is executed. Now only the blue LED should be
blinking.

4. Confirm the same configuration as shown in Figure 37, then click OK. The following output is printed and
only the blue LED should blink.

@8> Running the Secondary application with swap (test mode) update mode.

88> The blue LED should be blinking.

Figure 44. Executing the Secondary Application Image for Swap Test Update Mode

5. Pause and reset the application from the debugger.

3.9 Troubleshooting
When running the example projects, you may experience USB Debug connection or the RTT Viewer

connection issue when using the “Load Ancillary File” button " to download the Secondary image. To
recover from these failures:

e |f the USB Debug connection disconnects, the recommendation is to try out another available USB port
for the USB Debug connection. If failure persists, contact Renesas support.

o |Ifthe RTT Viewer disconnects, the recommendation is to power cycle the board and restart the debug
session.

4. Creating the Bootloader

This section provides a walk-through of the bootloader creation of the example projects as well as how to link
the standalone application with the bootloader. For most of the steps, the considerations and configurations
in creating bootloader with the different upgrade mode are common. Whenever there is a difference in the
implementation of the different update mode, the difference will be addressed.

The walk-through of the bootloader creation in this section targets the bootloader used in section 3.3 for the
TrustZone enabled system. Wherever there is a need to address the Non-TrustZone enabled
implementation, it will be addressed.

4.1 Creating a Bootloader Project for RA Family

The screen captures used in these sections are based on the RA6M4 based bootloader projects used in
section 3.3, 3.4, and 3.5. Follow this section to establish the bootloader projects used in section 3.3, which
uses Overwrite Only as the application update mode. Updates needed for the bootloader projects used in the
section 3.4 and 3.5.are addressed.

The creation of the RA6M3 based bootloaders used in section 3.7 and 3.8 are very similar. Wherever there is
a difference in the operation, it will be addressed inline.

R11AN0497EU0120 Rev.1.20 Page 29 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

4.1.1 Start Bootloader Project Creation with e? studio
Follow the steps below to create the initial bootloader project based on EK-RA6M4:

1.

From the e? studio Workspace, navigate to the File > New > Renesas C/C++ Project > Renesas RA
and then select Renesas RA C/C++ Project and press Next.

Provide the project name ra_mcuboot_ra6m4 and click Next. The exact name needs to be provided to
follow the default instructions in this section. If a different name is provided, all instructions related with
the name of the bootloader project need to be updated accordingly.

In the next screen, select FSP version 4.2.0 and the EK-RA6M4 board. Use the default Debugger
setting J-Link Arm and click Next.

Note that if the creation process is using other newer FSP versions, some details on the error messages
shown when the MCUboot module is initially added may be different. Adapt the actions accordingly to
satisfy the dependencies.

When the following screen appears, select Flat (Non-TrustZone) Project.

@ Renesas RA C/C++ Project O X

Renesas RA C/C+ + Project ——
Project Type Selection

Project Type Selection

(®) Flat (Non-TrustZone) Project
® Renesas RA device project without TrustZone
separation
* Al code, data and peripheral settings will be
configured in this project
Renesas RA device will rermain in secure mode
® EDMAC RAM buffers will automatically be placed in
non-secure RARK

(O TrustZone Secure Project

i ® Renesas RA device project for TrustZone secure
execution

® All code, data and peripherals placed in this project
wiill be initialized as secure

® Secure project settings such as TrustZone partitions,
linker maps and a list of secure peripherals will be
passed to a selected non-secure project

® After initialization, a call to the non-secure startup
handler will be rade

(O TrustZone Non-secure Project
* Renesas RA device project for TrustZone non-secure
execution
® Al code, data and peripherals placed in this project
wiill be initialized as non-secure
* Must be associated with a secure project or secure
bundle

@ < Back Mext » Finish Cancel

Figure 45. Choose Flat Project as Project Type

R11AN0497EU0120 Rev.1.20 Page 30 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

3. Choose Executable as the Build Artifact Selection and No RTOS. Click Next.

-

{3} Renesas RA C/C++ Project O X

Renesas RACSC+ + Project
Build Artifact and RTOS Selection

Build Artifact Selection LLIOS Selection
(®) Executable Mo RTOS ~
* Project bLLdS to an executable file |

() Static Library
* Project builds to a static library file

() Executable Using an RA Static Library
* Project builds to an executable file
* Project uses an existing RA static library
project

'i?)' < Back Mext = Finish Cancel

Figure 46. Choose Executable and No RTOS

4. In the next screen, select the project template.

Choose Bare-Metal — Minimal as the Project Template Selection and click Next.
5. Update the Pin configuration file.

The project will now be created, and the bootloader project configuration will be displayed. Select the
Pins tab and deselect the Generate data check box. Use the pull-down menu to switch from RA6M4 EK

to R7TFA6M4AF3CFB.pincfg for the Select Pin Configuration option, select the Generate data check
box and enter g_bsp_pin_cfg.

Pin Configuration ‘

Generate Pr

Select Pin Configuration

RABMA EK :I Manage configurations...

ey Export to CSVfile -] Configure Pin Driver Warnings

Figure 47. Uncheck Generate Data for RA6M4 EK Pin Configuration

Select Pin Configuration _ﬂ Export to CSV file [E2| Configure Pin Driver Warnings

Il RTFFAEMAAFICFB. pincfg v | Iﬂanaqe configurations,., Generate data: | q_bsp_pin_cfg

Figure 48. Select R7TFA6M4AF3CFB.pinCfg and Generate data g_bsp_pin_cfg

Note that when we select the Flat Project model, the I/Os are configured as Secure by default. Updating
the pin configuration as shown above selects the pin configuration with the minimal number of pins
defined because any I/O that is defined in the Flat project will not be available for use in the Non-Secure
application and can only be accessed by the Secure application.

6. Add the MCUboot module.

Change to the Stacks tab and select New Stack > Bootloader > MCUboot.

HALommoen Stadka o Mg ok >

Figure 49. Add the MCUboot Module

R11AN0497EU0120 Rev.1.20

Page 31 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

4.1.2 Resolve the Configurator Dependencies
After the MCUboot module is brought into the configurator, follow the steps in this section to resolve the
dependencies:

1. Resolve the following dependency of the MCUboot by adding the MbedTLS (Crypto Only) stack.

LF]
Lopmgrrn Pramct Cpmsird

AL i L b | Mk + s et b = e

EE T T P P L TR TR T R T T 22 L P T T
Thel ectmecw sy b sl dd by ooed attes mcdab eatacr oaly

Hrvoe AWLT faries & rnqeied Ao TCTVRL 1 enpCoyph dw Cugiiem ot et Mo i wasd & crapin £ack
A rplmad progasty

AN £ adieig JUREE DNt T

Hrite B3 1 parips star il e pililed F Rl m sed ol Soaiie #a08

gy B U
Cptairal

‘:. Aol Rargupera Flmty & bl [abwrra Pdaerey

Figure 50. MCUboot Module Dependency
Left click on Add Crypto Stack, choose New and add the MbedTLS (Crypto Only) stack.

[= el isteiti F58 Coslpritin £ |
Stacks Configuration

Thersaads. *

- : —
¥ g gt W0 P | op
RO

& k] Mgy, Flashy LI T ——
Tt
A Bt Cunfors Crypés Prodecied Lok
- & ‘
pry

Figure 51. Add MbedTLS (Crypto Only) Module

R11AN0497EU0120 Rev.1.20 Page 32 of 47
Dec.23.2022 RENESAS

Renesas RA Family

RA6 Secure Bootloader Using MCUboot and Internal Code Flash

2. Configure the Mbed

Crypto dependencies.

Follow the prompt in Figure 52 to update the corresponding properties for the MCUboot Port for RA

Module.
P SR AF IR o
" 8 Tese Viusknation =
h_ﬁ?_“m Thot i schiee slermant dots Aot sas this vies
HAL/Commen Stacks o v Stk » = Rarrenm
bl T

i'; Rl b [T L K)
[
- i
* Mot Cryprt HW | st ol
i e ey o LTS
T pa Arypani

i |
e e | —
¥ SO0 Compatibsty Mods

ia
¥ i

& ek byl with o b of Thes codor indicaies: WCURDOuod Port o RLA Jrrn mcusbaoot_poet]” i Mlodhule: indtenos
— Ths nviZarce rmary e seloesrsonc] By oo cther mociule rctarde onlly

Livos Berpuers Flah D
Ervor; MBIELS THREADING C in MbedfILS Krypio Onby) ment rf be delieed onder MEwdTLS [Cryplos Ok s sl 8E OTLS, THREADSNG
Livoa -arlated propety
5 bd = sl = WASETIT IRE ATRIRG
v MABIIELS FHEADENG ALT i Mbed 115 [Tyl Dedy] ol naodk bt kel saraches b 115 [yl Dby B cutvrmadandeeratn sl WL DL S, THIRLADENG AL T
[FTp e pe——
e 1%, it = el = WARECILS. THREADRIES &
Error: MBEOTLS WEMCRY BUNFER_ALOC € in Rbad TS [rgpia Qo) must e defined under Ml 115 (Crppta Cnly i ommornCeen sl BETDILS WTMCRY_BLETER ALOC ¢
Livis-selabid Pty
WIS K rrmae Ot = s - IS AT WAL
Lrv . Coner Hlarihy Progi s it e Drded iy Flashilossiraeif o Flaiks Frodge smirerng Lnabie
Frra; fhaka Aank bigga o) b decahiond urale Flagvicebdelats Mash kgl Ogevslion

¥ ki Ky oo fod
= Crypla [Crlonad

Fi

gure 52. Dependencies of MCUboot Module for RA Stack

Configure the following properties:

4 g_flash0 Flash
(r_flash_hp)

leSP ‘C\Dcks‘Pin;llnterruptlevent Links | Stacks Componsntsl

lems B Console | [T Properties 3 | @ Smart Browser [E} Smart Manual Q Emorlog [

LS (Crypto Only)

|

s Property Value

ul Platform

.
FSA_CRYPTO_SECURE Undefine
MBEDTLS_DEPRECATED_WARNING Undefine
MBEDTLS_DEPRECATED_REMOVED Define
MBEDTLS_CHECK_RETURM_WARMING Undefine
MBEDTLS_ERROR_STRERROR_DUMMY Define
MBEDTLS_ MEMORY_DEBUG Undefine
MBEDTLS_MEMORY_BACKTRACE Undefine
MBEDTLS_PSA_CRYPTO_CLIENT Undefine
MBEDTLS_PSA_CRYPTO_SPM Undefine
MBEDTLS SELF TEST Undefine
MBEDTLS_THREADING_ALT Undefine

. G_PTHREAD Undefine

MBEDTLS_USE_PSA_CRYPTO Undefine

MBEDTLS_VERSIOM_FEATURES Define

R
I MBEDTLS_MEMORY_BUFFER_ALLOC_C Define I

- m g T g o v

MBEDTLS PSA_CRYPTO_SE_C Undefine
MBEDTLS_THREADING_C Undefine ||
) L Undefine
MBEDTLS_VERSION_C Define
MBEDTLS_MEMORY_ALIGN_MULTIPLE Undefine
MBEDTLS_MEMORY_ALIGN_MULTIPLE value 4
MBEDTLS_CHECK_RETURN Define

MBEDTLS_IGNORE_RETURM Undefine

Figure53. C

onfigure Highlighted Properties for the MbedTLS (Crypto Only) Stack

R11ANO497EU0120 Rev.1.20 Page 33 of 47

Dec.23.2022

RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash
Add the r_flash_hp module:

ry]
I I

5.7 Add Requires Flash 5 Add External Memory
Implementation

—_— |
MNew >0 & Flash (r_flash_hp) |I

Figure 54. Add ther_flash_hp Stack
Configure the r_flash_hp stack:

L ry
I T
g’ﬂ? MbedTLS (Crypto Only) -+ g_flashD Flash
{r_flash_hp)
@ ()
ry
I I
[4 Mhed Crunto HW | [5% add percictent il

BSP | Clocks | Pins | Interrupts | Event Links | €3 Stacks| Components

ms @ Smart Browser L&JPinConﬂicts [T Properties &2
) Flash (r_flash_hp)

Property Value

w Commen
Parameter Checking Default (BSP)
Code Flash Programming Enable Enabled
Data Flash Programming Enable Disabled

v Module g_flas] ash (r_tlash_hp, ;
Mame g flash0

l Data Flash Background Operation Disabled

Callback MULL
Flash Ready Interrupt Pricrity Disabled
Flash Error Interrupt Priority Disabled

Figure 55. Configure ther_flash_hp Stack

3. Hover the cursor over MbedTLS (Crypto Only) stack. You will see warnings as shown in Figure 56.
4. Under the BSP tab, set up the stack and heap size to support ECC:
¢ RA Common > (set Main stack size to 0x1000 and Heap size to 0x400)

A e

I I
A MbedTLS (Crypto Only) 45 g_flash Flash Driver C
ont_flash_hp

4 A stack elernentwith a bar of this color indicates "MbedTLS (Crypto Onkd)' is a cornmon rmodule instance.
2 This instance may be referenced by multiple other module instances across multiple stacks,

Errar: & minimum heap of (400 is required to use ECC, To disable ECC, under Cornmon|PRCIECC, undefine MBEDTLS_ECP_C and anything else that uses ECC (MBEDTLS_ECDSA_C).

Errar-related property:

bedTLS (Crypto Onlyd > Public Key Cryptography (PECHECC|MBEDTLS ECP C

Errar: & minimum heap of (1500 is required to use RSA, To disable RSA, under Common|PKCIRSS undefine MBEDTLS_RSA_C, and under Common|PKC, undefine MBEDTLS Pk_C, MBEDTLS_PK_PARSE C, MBEDTLS_PK_WRITE_C.
Errar-related property:

IbedTLS (Crypto Onlyd > Public Key Cryptography (PECHRSAMBEDTLS RSA C

Errar: & minimum heap of (200 is required to use AES. AES cannot be disabled.

Errar-related property:

IbedTLS (Crypto Onlyd » Cipher|MBEDTLS AES C

Errar: & minimum stack of 4K (1000) is required. If used in an RTOS thread, the thread stack should instead be at least (<1000,

Figure 56. Dependencies of Mbed TLS (Crypto Only) Stack

R11AN0497EU0120 Rev.1.20 Page 34 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

5. Disable RSA following the prompt in Figure 57. This bootloader design uses ECC for signature
generation. Disable the RSA algorithm to save the BSP Heap size.

@ MCUboot Part for R4 4 MCUboot Example
Keys (MOT FOR
FRODUCTION)

®

a
[I
42 MbedTLS (Crypto Only) 4 g_flashOFlash Driver
anr_flash_hp

A stack elerment with a bar of this color indicates '"MbedTLS (Crypto Only)' is a common module instance,

This instance may be referenced by multiple other module instances across multiple stacks,

Ertor: A minimur heap of 3«1500is required to use RS&, To disable RS, under Cormmon|PKC|RSA undefine MBEDTLE_RSS,_C, and under Common|PKC, undefine MBEDTLS_PK_C, MBEDTLS_PK_PARSE_C, MBEDTLS_PK_WRITE_C.
Ertor-related property:

MbedTLS (Crypto Only) > Public Key Cryptography (PECIRSAMBEDTLS RS& C

Figure 57. Dependencies of RSA

|
¢ MbedTLS (Crypto Only)

(i)

a
I I

BSP | Clocks | Pins | Interrupts | Event Links | € Stacks | Components

ms @ Smart Browser [&; Pin Conflicts

.5 (Crypto Only)

Property Value
« Public Key Cryptography (PKC)
DHM
ECC

~ RSA
MBEDTLS_PK_RSA_ALT_SUPPORT Undefine
MBEDTLS RSA NO CRT Define

Figure 58. Disable RSA

At this point the error message in the stack window should have been resolved.
6. Decide the number of application images.

For MCUs with TrustZone support:

e |If the application uses TrustZone, there will be two application images in each slot: secure and non-
secure application. In this case, set the Number of images per Application to 2.

o If the application does not use TrustZone, there will be one application image in each slot. In this
case, set the Number of images per Application to 1.

e The bootloader used in section 3.3 uses TrustZone, so for this example bootloader, set the Number
of images per Application to 2. MCUboot > Common > General > Number of images per
Application (change from 1 to 2).

For MCUs without TrustZone support, set this property to 1.

7. Configure the Flash Layout for RA6M4 Overwrite Update as shown below based on the standalone
application projects described in section 5. For your application projects, you can follow the guidelines in
section 2.3 to design the bootloader memory allocation. This configuration matches the bootloader used

in section 3.3.
DX70000
v Flash Layout Secondary
v TrustZone siot Secondary Non-Secure App
Non-Secure Callable Region Size (Bytes) 0x400 0x50000
Non-Secure Flash Area Size (Bytes) (TrustZone Non-Secure) 0x20000 :Tt! ary Primary Non-Secure App
Non-Secure Callable RAM Region Size (Bytes) 0x0 : 30000
Non-Secure RAM Region Size (Bytes) (TrustZone Non-Secure) 0x2000 -_;r_grl'm Primary Secure App)
Image 2 Header Size (Bytes) 0x200 o 0x20000
Bootloader Flash Area Size (Bytes) 0x10000 Secondary Secandary Secure App
Image 1 Header Size (Bytes) 0x200 o 5 0x10000
Image 1 Flash Area Size (Bytes) 0x10000 SESENS (anel) 0x10000
Scratch Flash Area Size (Bytes) 0x0 Motboe! 0%0
Figure 59. Memory Configuration of Overwrite Update Mode RA6M4
R11AN0497EU0120 Rev.1.20 Page 35 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Configure the MCUboot module and application memory allocation based on RA6M4 Swap Update
mode as shown below based on the standalone application projects described in section 5. This
configuration matches the bootloader used in section 3.4.

—— 0x78000
Secondary
slot Secondary Non-Secure App
—— 0x58000
Primary :
v TrustZone <lot Primary Non-Secure App
Non-Secure Callable Region Size (Bytes) 0xC00 0x38000
Non-Secure Flash Area Size (Bytes) (TrustZone Non-Secure) 0x20000 Primary Primary Secure App
Non-Secure Callable RAM Region Size (Bytes) 0x0 slot 0x28000
Non-Secure RAM Region Size (Bytes) (TrustZone Non-Secure) 0x2000 X
Image 2 Header Size (Bytes) 0x200 Sletm”dﬂry Secondary Secure App
Bootloader Flash Area Size (Bytes) 0x10000 =0 ——— 0x18000
Image 1 Header Size (Bytes) 0x%200 Scratch Area (size=0x8000)
Image 1 Flash Area Size (Bytes) 0x10000 — 0x10000
Scratch Flash Area Size (Bytes) 0x8000 0x0

Figure 60. Memory Configuration of Swap Update Mode RA6M4

Configure the MCUboot module and application memory allocation based on RA6M4 Direct XIP mode
based on the example projects presented in section 3.5. This configuration matches the bootloader used
in section 3.5.

~ Flash Layout
v TrustZone

Non-Secure Callable Region Size (Bytes) 0 Secondary —— 0x30000
Non-Secure Flash Area Size (Bytes) (TrustZone Non-Secure) 0 slot Secondary App
Non-Secure Callable RAM Region Size (Bytes) 0x0 0x20000
Non-Secure RAM Region Size (Bytes) (TrustZone Non-Secure) 0 Primary Primary App
Image 2 Header Size (Bytes) 0x200 slot
Bootloader Flash Area Size (Bytes) 0x10000 0x10000
Image 1 Header Size (Bytes) 0x200 Scratch Area (size=0x0)
Image 1 Flash Area Size (Bytes) 0x10000 0x10000
Scratch Flash Area Size (Bytes) 0x0 MCUboot 0x0

Figure 61. Memory Configuration of Direct XIP Update Mode RA6M4

Configure the MCUboot module and application memory allocation based on the RA6M3 Overwrite
Update mode based on the example projects presented in section 3.7. This configuration matches the
bootloader used in section 3.7.

v Flash Layout
v TrustZone

Non-Secure Callable Region Size (Bytes) 0x0 0x50000
Non-Secure Flash Area Size (Bytes) (TrustZone Non-Secure) 0x0 f;'tm”dary Secondary App
Non-Secure Callable RAM Region Size (Bytes) 0x0 0x30000
Non-Secure RAM Region Size (Bytes) (TrustZone Non-Secure) 0x0 : .
- Primary Primary App
Image 2 Header Size (Bytes) 0x200 slot
Bootloader Flash Area Size (Bytes) 0x10000 0x10000
Image 1 Header Size (Bytes) 0x200 Scratch Area (size=0x0)
Image 1 Flash Area .Size (Bytes) 0x20000 MCUboot 0x10000
Scratch Flash Area Size (Bytes) 0x0 0x0

Figure 62. Memory Configuration of Overwrite Update Mode RA6M3

R11AN0497EU0120 Rev.1.20 Page 36 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Configure the MCUboot module and application memory allocation based on RA6M3 Swap Test Update
mode based on the example projects presented in section 3.8. This configuration matches the
bootloader used in section 3.8.

v Flash Layout
v TrustZone

Non-Secure Callable Region Size (Bytes) 0x0 0x60000
Non-Secure Flash Area Size (Bytes) (TrustZone Non-Secure) 0x0 :lifondary Secondary App
Non-Secure Callable RAM Region Size (Bytes) 0x0 0x40000
Non-5ecure RAM Region Size (Bytes) (TrustZone Non-Secure) 0x0 Primary .
Image 2 Header Size (Bytes) 0x200 slot Primary App
Bootloader Flash Area Size (Bytes) 0x10000 X 0x20000
Image 1 Header Size (Bytes) 0x200 Scratch Area (size=0x8000) 0x18000
Image 1 Flash Area Size (Bytes) 0x20000 MCUboot
Scratch Flash Area Size (Bytes) 0x0 0x0

Figure 63. Memory Configuration of Swap Test Update Mode RA6M3

For the configuration of the swap test mode run time support, refer to application note R11AN0516 to
understand the operation.

4.1.3 Setting up the Booting Authentication Support
You can choose to use the default pair of public/private keys included in MCUboot for testing purposes:

e The default public keys are defined in /ra_mcuboot_ra6m4/ra/mcu-
tools/MCUboot/sim/mcuboot-sys/csupport/keys.c.

e The default private keys are included in folder /ra_mcuboot_raém4/ra/mcu-
tools/MCUboot/sim/.

v li-jc ra_mcuboot_rabm4 [Debug]
_;‘;;.P Binaries
[Includes
v |'|J_:!- ra
Cf arm
(= board
= fsp
v ,,_—f mcu-tools
v = MCUboot
= boot
= scripts
v (2= sim
v (= mcuboot-sys
v (= csupport

[E] enc-ec236-priv.pem
[E] enc-ec256-pub.pem Used for image encryption, not used
[E] enc-rsa2048-priv.pem in this application project

2] root-ec-p256.pem
21 root-rsa-2048.pem Used for image signing
51 root-rsa-3072.pem

Figure 64. Example Public Keys and Private Keys Included in MCUboot Port Stack

To use the example keys, select Add Example Keys > New > MCUboot Example Keys (NOT FOR
PRODUCTION).

R11AN0497EU0120 Rev.1.20 Page 37 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

51 Add [Optional] Add
Example Keys

Mew > I~{7 MCUboot Example Keys (MOT FOR PRODUCTIOMN) I

I
& q_flash0 Flash Driver
on t_flash_hp

Figure 65. Add the MCUboot Example Key

Note: The example public key and private key used in the MCUboot is for testing purposes only. Refer to
section 2.6 for guidelines on selecting the public key and private key for production support.
Application Project R11AN0567 includes procedures to create customized key pair preparation. Refer
to R11ANO567 to create customized key pairs.

4.1.4 Setting up the Application Authentication Signature Type

There are three signature types supported in FSP as shown below. Open the Property page of stack
MCUboot > Common > Signing Options to look at the signing options. In this example implementation,
ECDSA P-256 is used for all the example bootloaders demonstrated in section 3.

4.1.5 Add MCUboot Activation Code
Follow the steps below to add the MCUboot activation code and compile the bootloader:

1. Add the source code and compile the bootloader.

Follow the steps below to add the source code to the bootloader project and compile the project.

e Openhal_entry.c.

e Open Developer Assistance.

e GotoHAL/Common > MCUboot > Quick Setup. Drag Call Quick Setup to the top of the
hal_entry.c file before the hal _entry() function call.

e Call this function at the top of the hal _entry() function
e mcuboot_quick _setup();

Notes on the mcuboot_quick_setup function

e The main functionality established in the bootloader project is established by function
mcuboot_quick_setup, which performs the following functions:

e The boot_go function does most of the functions of a bootloader except the final step of
jumping to the main image. This function returns a structure pointer (rsp for return structure
pointer) for the image to boot from.

e The RM_MCUBOOT_PORT_BootApp function cleans up resources used by the bootloader and
jumps to the application image.

2. Compile the bootloader project.
e Save the project (save the source code and the configuration.xml file) and click Generate

Project Content and then compile the project.

5. Using the Bootloader with Applications

A set of existing non-bootloader-based projects are used to demonstrate how to configure existing
application projects to use the bootloader. General guidelines are also provided for adapting to other existing
applications. Unzip example_projects_no_bootloader.zip.

R11AN0497EU0120 Rev.1.20 Page 38 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

These projects have the same functionality as the projects demonstrated in section 3.3 except these projects
are not configured to use the bootloader. Follow the steps below to configure the standalone application
projects to use the bootloader and sign the application.

5.1.1 Import the Standalone Application Projects

Import the RA6M4 standalone example project to the same workspace as the bootloader project you created
in the previous section. In this section, we will update these existing projects to use the bootloader created in
the previous section.

doader > rabmd

Marne

app_rabimd_ns_prirmary
app_rabimd_ni_secondary
app_rabmd_s_primary

app_rabimd_s_secondary

Figure 66. Standalone Example Projects for RA6M4 with No Bootloader support
5.1.2 Configure the Application Projects to Use the Bootloader

We will now alter the project Properties configuration to have it use the bootloader. Right-click on the
app_ra6ém4_s primary folder in the Project Explorer and select Properties. Select C/C++ Build>Build
Variables, click Add and set the Variable name to BootloaderDataFile and check the Apply to all
configurations box. Change the Type to File and enter
${workspace_loc:ra_mcuboot_raém4}/Debug/ra_mcuboot_raébm4.bld for the value. Click OK to save the
changes.

| type filter text | | Build Variables CR R
Resource
Builders
v CfC++ Build Configuration: | Debug [Active] “ | | Manage Configurations...
Build Wariahles
Ervironment
Logging
Settings ‘ Mame Type Walue Add...
Tool Chain Editor {8} Edit Existing Build Variable X Edit..
CAC++ General
MCU Wariable narne: | BootloaderDataFile Delete
Project Matures Type: Fila -
Project References
Renesas QF Walue: | _Ioc:ra_mcuboot_ra6m4}f‘Debug;‘ra_mcuboot_raﬁmd-.bld| | Browese
Run/Debug Settings
Task Tags
“alidation
ng external builder
BWARY, internal builder
Cancel faults Apphy
'/?:' Apply and Close Cancel
......... N PO
Figure 67. Configure the Build Variable to Use the Bootloader
R11AN0497EU0120 Rev.1.20 Page 39 of 47

Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Follow the same procedure and settings as shown in Figure 67 to configure the other three projects:

e app_rabmd_ns_primary
e app_rabm4_s_secondary
e app_rabm4_ns_secondary

5.2 Signing the Existing Application Projects to Use the Bootloader

The signing command for the application image will be automatically generated when the bootloader is
compiled. In the Project Explorer, navigate to the <boot_project > debug > <boot project
> _bld file. The signing command is under the section <image >.

Note: If you rebuild the bootloader project after changing any of the signing and signature Properties of the
MCUboot module, you will need to select Generate Project Content again to bring in the
updated .bld file.

Each application can have a defined version number. This version number can be used in the Overwrite
Upgrade mode when Downgrade Prevention is Enabled. This is achieved by defining an Environment
Variable: MCUBOOT_IMAGE_VERSION. If there is signature verification, then it is necessary to set the
Environment Variable: MCUBOOT _IMAGE_SIGNING_KEY.

&) Properties for app_rabm4_s_primary O *
[type filter text Environment (=1 v 8
Resource
Builders
w C/C++ Build Configuration: | Debug [Active] *~ | Manage Configurations...
Logslng Ernvironment variables to set Add
Settings
Variabl Val Crigi
Tool Chain Editor arnaple alue ngm Select...
C/C++ General CWD Ch\Usersh\a309%044\ Dow... BUILD SYSTEM
MCU GCC_VERSION 10.21 BUILD SYSTEM Edit...
Project Natures PATH C:\Renesas\FSP_v3.5.0\t... BUILD SYSTEM -
- elete
Project References PWD C:\Users\a5099044\Dow... BUILD SYSTEM
Renesas OF . TCINSTALL C:\Renesas\FSP_v3.5.00t.. BUILD SYSTEM Undefine
Run/Debug Settings TC_VERSION 103.1.20210824 BUILD SYSTEM
Task Tags
Validation
(®) Append variables to native environment
() Replace native environment with specified one
Restore Defaults Apply
':?;' Apply and Close Cancel

Figure 68. Add New Environment Variable

Add Environment variable for the application image version.

ﬁ Mew variable X r

Mame: | MCUBOOT_IMAGE_VERSIOM

Value: || 1.0.0f I | Variables

[] Add to all configurations

Figure 69. Add MCUBOOT_IMAGE_VERSION variable

Add an Environment variable to configure the application image signing key.

R11AN0497EU0120 Rev.1.20 Page 40 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

ﬁ Mew variable h:4

Name:|| MCUBOOT_IMAGE_SIGNING_KEY
1l.l’all.lva:l 1bmd}ra/mecu-toolsyMCUboot/root-ec-p256.pem I Variables

[~] Add to all configurations

Figure 70. Add MCUBOOT_IMAGE_SIGNING_KEY Variable

ﬁ Properties for app_rabmd_s_primary m} x
|t;;pefi|tertr:><t Envi t =R - &
Resource
Builders

v CfC++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...

Environment

Settings Environment variables to set Add...
Tool Chain Editor Variable Value O Select..
C/C++ General CWD CAMCUboot\FSP_v3.S\original_RAGE_AP\rabmd_overwrite_with_bootloader\app_raémd... BL
mMcu GCC VERSION 1031 BL Edit...
Praject Matures MCUBOOT_IMAGE_SIGNING_KEY S{workspace_locira_mcuboot_raémd}/ra/mcu-tecls/MCUboot/root-ec-p236.pem U
Project References MCUBOOT_IMAGE_VERSION 1.0.0 s felste
Renesas QF PATH C:\Renesas\FSP_v3.3.0\teclchains\gec_arm\gcc-arm-none-eabi-10.3-2021.100binY; G, BL Undefine
Run/Debug Settings PWD CAMCUboot\FSP_v3.5\original_RAG_AP\rabmd_overwrite_with_bootloader\app_raémd... BL
Task Tags TCINSTALL C\Renesas\FSP_v3.5.0\toolchains\gee_armi\gee-arm-none-cabi-10.3-2021.10 BL
Validation TC_VERSION 10.3.1.20210824 BL
< >

@ Append variables to native environment

(O Replace native environment with specified one

Restore Defaults Apply

@' Apply and Close Cancel

Figure 71. Configure the Signing Key and Application Version
Note: The private key used for signing the application image is indicated in the signing command.

/ra/mcu-tools/MCUboot/root-ec-p256.pem is used for the example bootloader. This key is
used for testing purposes only. For real world use case and production support, you MUST change
this to the private key of their choice.

To be able to always recompile the project when the environment variables or the linker script are updated,
we recommend adding a Pre-build step to always delete the el T file as shown in Figure 72.

| type filter text ‘ Settings

Resource
Builders
v C/C++ Build
Build Variables

Environment ® Tool Settings ® Toolchain| # Build Steps | B

Pre-build steps

Tool Chain Editor Command(s):
C/C++ General | rm -f ${ProjName}.elf I

Configuration: |Debug [Active]

Figure 72. Configure the Pre-build Command

R11AN0497EU0120 Rev.1.20 Page 41 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Follow the same procedure to configure the other three projects:

e app_rabmd_ns_primary
e app_rabm4_s_secondary
e app_rabm4_ns_secondary

5.2.1 Click Generate Project Content and Compile All Four Application Projects

For both Primary and Secondary applications, compile the Secure application first and then the Non-Secure
application.

5.2.2 Configure the debug configuration
1. Open the Debug Configurations: app_raém4_s_primary > Debug As > Debug Configurations
Make sure that app_raébm4_s_primary Debug is selected and select the Startup tab.

{8} Debug Configurations O X
Create, manage, and run configurations ﬁ\'
BeRX|BET- Marme: | app_ramd_s_primary Debug |
[vpe firter text || [E Main ?;;Dghugger!; Startup F Common| i Saurce
[E] C/C++ Application Initialization Commands ~
[£] C/C++ Remote Anplication [Reset and Delay (seconds): 3
I EASE Script

(] GDE Hardware Debugging ClHate

GDB OpenOCD Debugging

[67] GDB Simulator Debugging (RHES0)
= Java Applet

77 Java Application

@ Launch Group Load image and symbols

T Remote Java Bpplication -
[Renesas 608 Hardhware Debugging Filename Load type Offset (hex) O cannect L
q Pragram Binary [app_r.. Image and Symhbols Vs
Edit...
Rernowe
[Renesas Simulstor Debugging (RX, RL78)
hawve up
Mave dowin

Runtime Options

[Set program courter at (hex):

[Set breakpoint at: [roain | v
i S
Revert Appl
Filter matched 15 of 17 items eve PRy

Figure 73. Configure the Primary Secure Project Debug Startup

R11AN0497EU0120 Rev.1.20 Page 42 of 47
Dec.23.2022 RENESAS

Renesas RA Family

RA6 Secure Bootloader Using MCUboot and Internal Code Flash

2. Set up the Debug Configurations.

Click Add... and then Workspace. Navigate to the ra_mcuboot_raém4 project and select the

ra_mcuboot_raém4.elf file from the debug folder. Click OK.

1@

Create, manage, and run configurations

H

1

; B § = *| =R Marne: | app_rabmd_s_primary Debug

2 | fype filter text

| [E] Main | %% Debugger] Common | - Source

[E] T+ + Application Initialization Commands ~
[c] C/C++ Remate Application [JReset and Delay (secondsh: 3
= EASE Script
[£] GDB Hardware Debugging LlHate
1 [£] GDB OpenOCD Debugging
I [E7] GDE Simulator Debugging (RHA50)
i 1 Java Applet
E [T Java Application
! 1§ Launch Graup Load image and symbals
! T Remote Java &pplication -
+ [E7] Renesas GDB Hardware Debugging Filename Load type Offset (hex) On connect e,
Program Binary [app_r.. Image and Symbaols es
L Edit...
1 g Add download module e Remowe
g
i Specify download module narme: Fowve up
warkspace_locthra_rncuboot_raGrmdhDebudhra_mouboot_raGmd.elf
! [sworispace Joci = fo-mevboot nmaci} | Move down
Wariables.., Search Project... File Systern...
) I
4 0K Cancel
|' L
£ >
Rewvert: Apply

Filter matched 15 of 17 items

"
@

Clase

Figure 74. Add the Bootloader Project

Click Add again and add the app_raébm4_ns_primary project binary app_raém4_ns_primary.elf as in

the prior step. Click OK.

& 2dd download rmodule

Specify download module name:

| rkspace_loc:\app_raﬁm4_ns_primary\Debugl\app_raﬁmdl_ns_primary.elf} I

Wariables... Search Project... Workspace... File Swsterm...

Figure 75. Add the Non-Secure Project

R11AN0497EU0120 Rev.1.20

Dec.23.2022 RENESAS

Page 43 of 47

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Change the load type of the Program Binaries for the app_raém4_ns_primary and
app_raébm4_s_primary to Symbols only by clicking on the cell for load type and selecting Symbols
only from the drop-down menu.

Load irnage and syrmbols
Filenarne Load type Offset (hexd Onocor Add
Fragram Binary [app_rabmd_s_prirnary.elf] Syrmbaols only I s
V| ra_mcuboot_rabmd.elf [CAMCUbootyreleasedr,, Image and Symbols 0 e Edit..
< app_rabrd_ns_prirnary.elf [CAMCUboothrelea., Symbals only I 0 es Flaiimia

Fdorse up
hove down

£ >

Runtime Options

[et prograr counter at (hex):

[Set breakpoint at:

| ==Y >

Rewert Apply

Figure 76. Select to load Symbols only for the Secure and Non-Secure Project

3. Add the signed binary image to the download options using Raw Binary Load type.

Load image and symbols

Filename Load type Offset... On co..
Program Bina... Symbols only Yes
ra_mcuboot_r.. Imageand.. 0 Yes
app_rabm4 n... Symbols only 0 Yes
app_rabm4_s... Raw Binary 20000 Yes
app_raébm4 _n... Raw Binary 30000 Yes

Figure 77. Load the Sighed Images

Note that for different update mode and different application images, the load address needs to be
update. For the example projects included in this application project, you can reference the memory
configuration images include in Figure 59 to Figure 63 to set up the load address.

4. Atfter the above is set up, follow section 3.3 to run the projects if Overwrite Update mode is used or follow
section 3.4 to run the projects if Swap Update mode is used.

R11AN0497EU0120 Rev.1.20 Page 44 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

5.3 Mastering and Delivering a New Application

Mastering and delivering a new application involves similar steps described above in section 4.2 and section
5.2. Typically, the following aspects must be considered in the designing of delivering new applications:

1. Create the new application and sign the new application by following the steps below:
a) Refer to the RA Family MCU Security Design with TrustZone with IP Protection Application Project
for new project creation with TrustZone support.
b) Refer to section 4 to configure the new application to use the bootloader and sign the new
application.
2. Download the new application to the Secondary slots.
This step varies based on the downloading method selected by each user. In this application project, the
Ancillary file download capability from e? studio is used for demonstration purpose. You can use this
method as a testing tool when developing a customized new image downloader. Application Projects
R11AN0570 and R11ANO0576 include image downloader examples using XModem over COM port and
can be used for reference.

6. Appendix

6.1 Making the Bootloader for Cortex-M33 Immutable

To make the bootloader immutable, you must lock the flash blocks containing the bootloader from being
programmed and erased.

The RA6M4 features two sets of registers which facilitate flash block locking. Block Protect Setting (BPS)
Registers feature bits that map to individual flash blocks. When a bit is set to zero, the corresponding flash
block cannot be erased or programmed. The Permanent Block Protect Setting (PBPS) Registers have a
similar bit mapping to flash blocks. When a bit is set in one of these registers, the corresponding flash block
is permanently locked from being erased and programmed if the same bit in the Block Protect Setting
Register is also cleared to zero. This process is irreversible. Once a flash block is permanently locked, it
cannot be unlocked again.

Based on the example bootloaders provided in this application project, the flash blocks used by the
bootloader are:

¢ RA6M4 Overwrite Mode: block 0-7
¢ RA6M4 Swap Mode: block 0-8
e RAG6M3 Overwrite Mode: block 0-7

Refer to the RA Family MCU Securing Data at Rest using TrustZone Application Project to understand the
operational flow of setting up the Flash Block Protection.

Note that ticking the BSP0O and PBPSO Flash Block settings will permanently lock the flash blocks. This
CANNOT be reversed. Further details can be found in sections 6.2.6 and 6.2.7 of the RA6M4 Hardware
User’'s Manual.

6.2 Making the Bootloader for Cortex-M4 Immutable

Refer to the Renesas RA MCU Family Securing Data at Rest Utilizing the Renesas Security MPU application
project section Permanent Locking of the FAW Region to understand how to make the bootloader for Cortex-
M4 Immutable. Section PC Application to Permanently Lock the FAW in the same application note describes
how to handle Flash locking in production mode.

6.3 Device Lifecycle Management for Renesas RA Cortex-M33 MCUs

Once the bootloader development is finished, you may want to transition the Device Lifecycle State of the RA
Cortex-M33 MCU to lock down the debugger and the serial programming interface.

We recommend referring to the Device Lifecycle State Transitions in the Production Flow section in the
Renesas RA Family MCU Device Lifecycle Management Key Installation Application Note to understand the
device lifecycle management options during production.

The operational overview of how to use Renesas Flash Programmer to perform these transitions are
explained in the Overview of Device Lifecycle State Transitions using Renesas Flash Programmer section.

R11AN0497EU0120 Rev.1.20 Page 45 of 47
Dec.23.2022 RENESAS

Renesas RA Family RA6 Secure Bootloader Using MCUboot and Internal Code Flash

6.4 Device Lifecycle Management for Renesas RA Cortex-M4 MCUs

Once the bootloader development is finished, you may want to set up the ID Code protection on the
Renesas RA Cortex-M4 MCU to lock down the debugger and the serial programming interface.

You can refer to the Securing Data at Rest Utilizing the Renesas Security MPU Application Project section
Setting up the Security Control for Debugging for the desired setting to control the device lifecycle
management of the RA Cortex-M4 MCUs using the ID Code protection method.

7. References

1. Renesas RA Family MCU Securing Data at Rest using Security MPU and Flash Access Window
Application Project (R11AN0416)

Renesas RA Family MCU Securing Data at Rest using Arm TrustZone Application Project (R11AN0468)
Renesas RA Family MCU Device Lifecycle Management Key Installation Application Note (R11AN0469)
Renesas RA Family MCU Security Design with TrustZone — IP Protection (R11AN0467)

Renesas RA Family RA2 MCU Secure Bootloader Design using MCUboot (R11AN0516)

Renesas RA Family MCU Secure Bootloader Design using Dualbank and MCUboot (R11AN0570)

N o o > D

Renesas RA Family MCU Booting Encrypted Image using MCUboot and External Flash Memory
(R11ANO0567)

8. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-rabm4
EK-RA6M3 Resources renesas.com/ra/ek-rabm3
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ral/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11AN0497EU0120 Rev.1.20 Page 46 of 47

Dec.23.2022 RENESAS

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/ra/ek-ra6m3
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family

RA6 Secure Bootloader Using MCUboot and Internal Code Flash

Revision History

Description
Rev. Date Page Summary
1.0.0 May.12.2021 - First release document.
1.1.0 Feb.14.2022 - Update to FSP v3.5.0.
1.2.0 Dec. 23. 2022 - Update to FSP v4.2.0. Add Direct XIP and Swap Test Mode.

R11AN0497EU0120 Rev.1.20

Dec.23.2022

Re Page 47 of 47
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi. (Max.) and Viu (Min.).
Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWww.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2022 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview of MCUboot
	1.1 History of MCUboot
	1.2 MCUboot Functionalities Overview
	1.2.1 Validate Application before Booting and Updating
	1.2.2 Applications Update Strategies

	2. Architecting an Application with MCUboot Module using FSP
	2.1 MCU Memory Configuration using MCUboot Module with FSP
	2.2 Overview of FSP MCUboot Module
	2.2.1 General Configuration
	2.2.2 Application Image Signature Type Options
	2.2.3 Signing Options
	2.2.4 MCU Memory Configuration

	2.3 Designing Bootloader and the Initial Primary Application Overview
	2.4 General Guidelines using the MCUboot Module Across RA Family MCUs
	2.5 Customize the Bootloader
	2.6 Production Support
	2.6.1 Key Provisioning
	2.6.2 Make the Bootloader Immutable for Enhanced Security
	2.6.3 Advance the Device Lifecycle States Prior to the Deploying the Product to the Field

	3. Running the Example Projects
	3.1 Set Up the Hardware
	3.1.1 Set up EK-RA6M4

	3.2 Configure the Python Signing Environment
	3.3 Running the EK-RA6M4 Overwrite Update Mode Example
	3.3.1 Initialize the RA6M4 MCU
	3.3.2 Import the Projects under \ra6m4_overwrite_with_bootloader_tz
	3.3.3 Compile All the Projects
	3.3.4 Debug the Applications and Boot the Primary Applications
	3.3.5 Open the J-Link RTT Viewer
	3.3.6 Downloading and Running the Secondary Applications
	3.3.7 Update the Non-Secure Secondary Image

	3.4 Running the EK-RA6M4 Swap Update Mode Example
	3.4.1 Downloading and Running the Secondary Applications

	3.5 Running the EK-RA6M4 DXIP Update Mode Example
	3.5.1 Downloading and Running the Secondary Applications

	3.6 Set up EK-RA6M3
	3.7 Running the EK-RA6M3 Overwrite Update Mode Example
	3.7.1 Import the Projects under Folder \ra6m3_overwrite_with_bootloader to a Workspace
	3.7.2 Compile the Projects
	3.7.3 Debug the Applications and Boot the Primary Application
	3.7.4 Open the J-Link RTT Viewer
	3.7.5 Downloading and Running the Secondary Applications

	3.8 Running the EK-RA6M3 Swap Test Update Mode Example
	3.8.1 Import the Projects
	3.8.2 Compile the Projects
	3.8.3 Debug the Applications and Boot the Primary Application
	3.8.4 Open the J-Link RTT Viewer
	3.8.5 Downloading and Running the Secondary Applications

	3.9 Troubleshooting

	4. Creating the Bootloader
	4.1 Creating a Bootloader Project for RA Family
	4.1.1 Start Bootloader Project Creation with e2 studio
	4.1.2 Resolve the Configurator Dependencies
	4.1.3 Setting up the Booting Authentication Support
	4.1.4 Setting up the Application Authentication Signature Type
	4.1.5 Add MCUboot Activation Code

	5. Using the Bootloader with Applications
	5.1.1 Import the Standalone Application Projects
	5.1.2 Configure the Application Projects to Use the Bootloader
	5.2 Signing the Existing Application Projects to Use the Bootloader
	5.2.1 Click Generate Project Content and Compile All Four Application Projects
	5.2.2 Configure the debug configuration

	5.3 Mastering and Delivering a New Application

	6. Appendix
	6.1 Making the Bootloader for Cortex-M33 Immutable
	6.2 Making the Bootloader for Cortex-M4 Immutable
	6.3 Device Lifecycle Management for Renesas RA Cortex-M33 MCUs
	6.4 Device Lifecycle Management for Renesas RA Cortex-M4 MCUs

	7. References
	8. Website and Support
	Revision History

