LENESANS Application Note

Renesas RA Family
Injecting and Updating Secure User Keys

Introduction

Cryptography is important because it provides the tools to implement solutions for authenticity,
confidentiality, and integrity, which are vital aspects of any security solution. In modern cryptographic
systems, the security of the system no longer depends on the secrecy of the algorithm used but rather on the
secrecy of the keys.

Renesas MCU security revolves around integrated security engines. The most advanced security engine
used in the Renesas RA Family is the SCE9 Secure Crypto Engine. The SCE9 can operate in two different
modes, called Compatibility Mode and Protected Mode. The application note Renesas SCE Operational
Modes (R11AN0498) explains the definition of the two modes and their use cases. In Compatibility Mode,
SCE9 can inject secure keys as well as plaintext keys. In Protected Mode, SCE9 can inject only secure keys.

Other available security engines used in RA Family MCUs are the SCE7, SCE5, and SCE5_B. These
Secure Crypto Engines can only operate in Compatibility Mode and can inject secure keys as well as
plaintext keys.

This application project demonstrates SCE9 Protected Mode and SCE7 Compatibility Mode secure key
injection. Compatibility Mode secure key injection for SCE5 and SCE5_B uses identical APIs to SCE7 secure
key injection.

This release contains AES-256 and ECC public key injection and update examples on an RA6M4 with the
SCE9 in Protected Mode, and an AES-128 secure key injection and update example on an RA6M3 with the
SCE7 (Compatibility Mode). Example keys are provided with the projects. This application note describes
how to modify the projects to use custom keys.

Required Resources
Development tools and software

e e?studio IDE v2022_07 or greater

e Renesas Flexible Software Package (FSP) v4.0.0 or later
e SEGGER J-Link® USB driver and RTT Viewer

e Renesas Flash Programmer (RFP) v3.09 or later

e Renesas Security Key Management Tool v1.0.2 or later

The FSP, J-Link USB drivers, and e? studio are bundled in a downloadable platform installer available on the
FSP webpage at renesas.com/ra/fsp. SEGGER RTT Viewer is available for download free-of-charge from
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/. RFP is available for download from
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-qui. The free-of-charge
edition can be used for the functionality required by this Application Project. The Security Key Management
Tool can be downloaded at https://www.renesas.com/software-tool/security-key-management-tool.

Hardware

o EK-RA6M4, Evaluation Kit for RA6M4 MCU Group (http://www.renesas.com/ra/ek-raém4)
o EK-RA6M3, Evaluation Kit for RA6M3 MCU Group (http://www.renesas.com/ra/ek-raém3)
e Workstation running Windows® 10

e One USB device cable (type-A male to micro-B male)

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e? studio IDE and Arm®-
TrustZone®-technology based development models with €2 studio. In addition, the application note assumes
that you have some knowledge of RA Family MCU security features. See chapter 49, Security Features in
the Renesas RA6M4 Group MCU User’s Manual: Hardware for background knowledge preparation for the
cryptographic key injection. The intended audience are product developers, product manufacturers, product
support, or end users who are involved with any stage of injecting or updating secure keys with Renesas RA
Family MCUs.

R11AN0496EU0130 Rev.1.30 Page 1 of 71
Oct.25.22 RENESAS

http://www.renesas.com/fsp
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/software-tool/security-key-management-tool
http://www.renesas.com/ra/ek-ra6m4
http://www.renesas.com/ra/ek-ra6m3

Renesas RA Family Injecting and Updating Secure User Keys

Contents

1. SCE Wrapped Key CreateS ROOT Of TIUST........ovviiiiiiiiiiiiiiiiiieiiiieiiiiieieiseeeeeeee e 4
1.1 Introduction 10 ROO OF TIUST.....couiiiiiiiiieieiiie ettt e e nn e ere e nnnees 4
1.2 Introduction to Secure Crypto Engine and Associated KEYS..........ooccuuiiiiieeeiiiiiiiiiece e sesieeee e e e 4
1.3 Renesas Secure Key INJection AQVANTAGESuveiiiieeiiiiiiiieee e e e st e e e e e s s st err e e e e e s s e e e e e e e annsnaeees 6
1.3.1 Advantages of Key Wrapping over Key ENCIYPLONc.uuiiiiiiiiiiiiiee e 6
1.3.2 Advantages of Key Wrapping using MCU HUKcooiiiiiiiii et 7
1.4 Renesas RA MCU Factory Boot Firmware Limitations for SCE9ccccciiiiiiiiiiiiiiiiieeee e 7
2. Wrapped Key Injection Use Cases and Injection Procedure OVEervieW..................eueeeeeeieennnnnnns 8
2.1 WIAPPEA KEY TYPES -.etieiiiieeeiiitttt it e e e e e et b bttt e e e e s e st e be e et e ee e e e e aabe b e e eeaaeeeaaasbebeeeaaaeesannbebeeeaaessaaanbbesaaaaeeaaannnes 8
2.2 General Steps for Secure Key Injection and UPAteooceeieiiiiiiiiiiiiieieeee et 8
2 A 1= Y2 | 11T (o T o SO SERS 8
A (= YA U o o - (OSSR 9
2.3 Important Preparations for Using the EXxample ProjectScccovvieeiiiiiiiiiiee et n e 10
2.4 Tools Used in the Secure Key Injection and UPAate...........ccuuiiiiiiiiiiiiiiiiieeiee e 11
3. Using the Renesas KeY Wrap SEIVICEccciviiuuiiiiie e e e e e e e eaaan e s e e e e e aeannes 12
N N O == | (= = T o (= A - 1| O PES 12
3.2 Registration With DLIM SEIVETcoui ittt et e e e e e e s ab bt et e e e e e e s snnbereeeaaeeaannnes 15
3.3 Exchange User and Renesas PGP PUDIC KEYSoiiiii e 17
4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap Service........... 21
4.1 Renesas Security Key Management TOO........couii ittt e e e e e rnbbeeeaaa e 21
4.2 Creating the User Factory Programming Key using SKMT GUI Interfaceccocccvvieeiiiiiiniiiineenen. 22
4.2.1 Launching the GUI INTEIACEuiiiiiiiiiie et e e e e e e e e e e st beeeaaae s 22
4.2.2 Creating the UFPK for SCE9 Protected MOEuvviiiiee e a e snnneee e 23
4.2.3 Creating the UFPK for SCE7 Compatibility MOGE........covviiiiiiiiiiiieee e eee e 26
4.3 Using the CLI Interface for SCE9 ProteCted MOUEcoviieiiiiiiiiiiiie e e e snnee e e e 28
4.4 Wrapping the UFPK ...ttt e oottt e e e e e e s b b e b e e e e e e e e e aanbbeeeeaaeeesannbbeeeaaaaeas 28
5. Secure Key Injection for SCE9 Protected MOUE..........cccoviiiiiiiiiii e, 36
5.1 Wrap Keys With the UFPK ...t s st e e e e s s s e e e e e e s st e e e e e e e s s snnsrnneeeeeesannnes 36
5.1.1 USIiNG the SKMT GUI INEITACEccii ittt e et e e e e e e sbb e e e e e e e e e aanes 36
5.1.1.1 Wrap an Initial AES-256 Key With the UFPK ..o 36
5.1.1.2 Wrap an Initial ECC Public Key With the UFPK...........cccoiiiiiii e 38
5.1.1.3 Wrap a Key-Update Key With the UFPKcooiiiii e 41
5.1.1.4 Wrap a New AES-256 User Key With the KUKcooiiiiiiiiii e 43
5.1.1.5 Wrap a New ECC Public Key with the KUK ... 45
5.1.2 USING the SKMT CLI INTEITACE. ...cciii ittt e et e e e e e e e sbbe e e e e e e e e e aanes 46
5.1.2.1 Wrap an Initial AES-256 Key With the UFPK ... a7
5.1.2.2 Wrap an Initial ECC Public Key With the UFPK...........cocoiiiiiiii e a7
R11ANO496EU0130 Rev.1.30 Page 2 of 71

Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5.1.2.3 Create and Wrap a Key-Update Key with the UFPK ..o 48
5.1.2.4 Wrap a New AES-256 Key With the KUKccoiiiiiiiii e 49
5.1.2.5 Wrap a New ECC Public Key With the KUKcuiiiiiiii e 49
5.2 Secure Key Injection via Serial Programming INterface.............ocoooiiiiiiiiii e 50
5.2.1 Setting UP the HArAWAIE..........oueiiiii ittt e e e s e s e e e e e e s s et e e e e e e e s snnreneeeeeesannnnes 50
5.2.2 Inject the Initial User Key and Key-Update KEYccueiiiiiiiiiiiiiee i ciiiiiieeee e e sssteee e e e e e s snnrnreee e e e e s e 51

6. Secure Key Injection Preparation for SCE7 Compatibility Mode using SKMT GUI Interface ..54

6.1 Wrap an Initial AES-128 User Key UsiNg the UFPKoccciiiiiiie e csrieee e e e e e 54
6.2 Wrap a Key-Update Key With the UFPKoooiiiiccc et e e e e e e s et ve e e e e e e e nnnes 56
6.3 Wrap a New AES-128 User Key With KUK ..o e e e e st e e e e e e 58
7. Example Project for RA6M4 (SCE9 Protected MOAE)ccevvviiiiieeeiiiiiiiee e eeeans 59
0 R © =T 4 1= PP PP PP PR 60
7.2 USING the RFP INJECIEA KEYS ...uuviiiiiieiiiiiiiie e e sttt s st e e e e e s e st e e e e e e s anntnbeeeaeeeeesnstneneneeeennnnnes 61
7.2.1 Formatting the INJECIEA KEYS......coi ittt e ettt e e e e e e e s bbb reeeaaeeeannes 61
7.2.1.1 Formatting the INJECIEA AES KEYuiiiiiiiiiieiie ettt sttt b e e st e e sabe e e saneesaneas 61
7.2.1.2 Formatting the Injected ECC PUDIIC K@Yoiiiiiiiiiiiiii ettt 61
7.2.1.3 Formatting the INJECLEA KUKuiiiiiiiiie et e et e s snneee s 61
7.2.1.4 Formatting an Injected RSA PUDIIC KBYuiiiiiiiiiiiiiiie et 61
7.2.2 Verifying the Injected Key and the Updated KEY...........cooiiiuiiiiiiee i e ssceee e e e e s snievee e e e e e 62
7.2.3 Using Two Sets of KUK-Wrapped User KeY Dataoccuuiiiiiiaaiiiiiiiieee et siieieee e e 62
7.3 FSP Crypto Module Support for User Key UPAate..........cooiiiiiiiiiiiiiiiiieeee e 63
7.3.1 Save the New Wrapped Key to Data FIash..............ooiii e 64
7.4 Import and Compile the EXamPIle PrOJECT.........ccii it e e s e e e e e e s e e e e e e s e nnnes 64
7.5 RUNNING the EXAMPIE PrOJECT.....euiiiie et c st s s s e e e e s e s e e e e e s s sne e e eaeeeessnsrnreeeeeesannnnes 65
8. Example Project for RA6M3 (SCE7 Compatibility MOde)uuumiiiiiiiiieeeee 67
ST R @ V=T 4 1= PP PP PP PR 67
8.2 Using the SKMT GeNErated FilES........cccuriiiriii et e e e e e s e e e e e e e s st re e e e e e e sennnes 67
8.3 SCE7 Compatibility Mode Key INJECHION APISuuiiiiiiee e s e seee e ssseee e e e e e s st ree e e e e e s e ennes 67
8.4 Import and Compile the EXampPIe PrOJECT.........coo ittt a e 67
8.5 RUNNING the EXAMPIE PrOJECT.......eiiii ittt e e e e e ettt e e e e e e e snbbereeeaaeeaannes 68
O, REIEIEINCES ...ttt s 69
10. WEDSItE @Nd SUPPOITo e e e et s e e e e e e e e et a e e e e e e e e aatrareeeeeees 70
REVISION HISTOMY ... ittt nnnnnnes 71
R11ANO496EU0130 Rev.1.30 Page 3 of 71

Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

1. SCE Wrapped Key Creates Root of Trust

1.1 Introduction to Root of Trust

Roots of trust are highly reliable hardware, firmware, and software components that perform specific, critical
security functions (https://csrc.nist.gov/projects/hardware-roots-of-trust). In an 10T system, a root of trust
typically consists of identity and cryptographic keys rooted in the hardware of a device. It establishes a
unique, immutable, and unclonable identity to authorize a device to exist in the 10T network.

Secure boot is part of the services provided in the Root of Trust in many security systems. Authentication of
the application uses Public Key Encryption. The associated keys are part of the Root of Trust of the system.
Device ldentity, which consists of Device Private Key and Device Certificate, is part of the Root of Trust for
many loT devices.

From the above Root of Trust discussion, we can see that leakage of cryptographic keys can bring the
secure system into a risky state. Protection of the Root of Trust involves limiting key accessibility to within the
cryptographic boundary only, with keys that are securely stored and preferably unclonable. The Root of Trust
should be locked from read and write access by unauthorized parties.

The Renesas user key management system can provide all the above desired protection.

1.2 Introduction to Secure Crypto Engine and Associated Keys

The Secure Crypto Engine (SCE) is an isolated subsystem within the MCU. The security engine contains
hardware accelerators for symmetric and asymmetric cryptographic algorithms, as well as various hashes
and message authentication codes. It also contains a True Random Number Generator (TRNG), providing
an entropy source for the cryptographic operations. The Secure Crypto Engine is protected by an Access
Management Circuit, which can shut down the security engine in the event of an illegal external access
attempt. Figure 1 shows the conceptual diagram of the SCE. Refer to Table 1 for exactly what cryptographic
operations are supported by each type of SCE.

Access Management MCU Hardware Root

Circuit Key
Shuts down SCE in the) Used for installing DLM

event of an illegal access MCU HRK State Keys and externally-
attempt. created user keys

Crypto Accelerators
RSA, ECC NIST and
Brainpool, AES, SHA1,
SHA2, GHASH, HMAC,
CCM

True Random Number
Generator
SP800-22 entropy source
with NIST-certified DRBG
SP800-90A.

Hash Engine

5
o
5
=
(«h]}
=
48]
™
@
=
w
g
o
<

Secure Crypto Engine (SCE)

Figure 1. Secure Crypto Engine

The Hardware Root Key (HRK) is not a single key that is physically stored. It is represented in this
presentation as such for simplifying the description of the concepts. The SCE contains internal RAM for
operations that deal with sensitive material such as plaintext keys. This RAM is not accessible outside the
SCE.

The SCE has its own dedicated internal RAM, enabling all crypto operations to be physically isolated within
the Secure Crypto Engine. This, combined with advanced key handling capability, means that it is possible to
implement applications where there is no plaintext key exposure on any CPU-accessible bus.

Secure key storage and usage is accomplished by storing application keys in wrapped format, encrypted by
the MCU’s Hardware Unique Key and tagged with a Message Authentication Code. Since wrapped keys can

R11AN0496EU0130 Rev.1.30 Page 4 of 71
Oct.25.22 RENESAS

https://csrc.nist.gov/projects/hardware-roots-of-trust

Renesas RA Family Injecting and Updating Secure User Keys

only be unwrapped by the Secure Crypto Engine within the specific MCU that wrapped them, the wrapping
mechanism provides unclonable secure storage of application keys. The RA Family also provides a secure
key injection mechanism in order to securely provision your devices.

The Secure Crypto Engine is packed full of cryptography features that you can leverage in your higher-level
solutions, giving you the option to use hardware acceleration for reducing both execution time and power
consumption. All of the security engines offer AES, TRNG, and secure key storage and usage. The SCE7
and SCE9 expand this by offering both RSA and ECC for PKI solutions. The full complement of SCE9
Protected Mode crypto algorithms plus a selection of SCE7 crypto algorithms are NIST CAVP certified.
There are four different versions of Secure Crypto Engines for Renesas RA MCUs. Table 1 summarizes the
different SCEs and their associated cryptographic functionalities.

Table 1. SCE Cryptographic Capabilities

RA6M4, RA6M5 RA6M1, RA6M2

Ao RA4M2, RA4M3 RA6M3, RAGT1
Cryptographic Isolation
| scex | security Engine | SCE9 | SCE7 | scesB | SCE5
Identity & Key Exchange (Asymmetric)
RSA Key Gen, Sign/Verify Up to 4K Up to 2K - -
ECC Key Gen, ECDSA, ECDH Up to 512 bit Up to 384 bit - -
DSA Sign/Verify - Y - -
Privacy (Symmetric)
ECB, CBC, CTR 128/192/256 128/192/256 128/256 128/256
AES GCTR 128/192/256 128/192/256 - -
XTS 128/256 128/256 - -
CCM, GCM, CMAC 128/192/256 128/192/256 128/256 128/256
Data Integrit
GHASH Y Y - -
Hash HMAC SHA224/256 SHA224/256 - -
SHA-2 (224/256) Y Y - -
SHA-2 (384/512) - - - -
TRNG HW Entropy, SP800-22A Y Y Y Y
Key Handlin
Wrapped| Confidentiality, authenticity
Plaintext | Legacy compatibility

The features of the various Security Engines are as follows:

e SCES5 provides hardware-accelerated symmetric encryption for confidentiality. The updated SCE5_B
uses enhanced secure key handling leveraging an injected MCU-unique HUK.

e SCE7 adds asymmetric encryption and advanced hash functions for integrity and authentication.

e SCE9 expands upon the SCE7 by leveraging an injected MCU-unique HUK for secure key handling
and increasing RSA support up to RSA-4K.

The MCU-unique Hardware Unique Key (HUK) is a 256-bit random key for SCE9 and a 128-bit random key
for SCE5_B, that is injected in the Renesas factory. This key is stored in wrapped format using an MCU-
unigue key wrapping mechanism.

The MCU-unique Hardware Key (HUK) for SCE5 and SCE?7 is a derived MCU unique key which serves the
same purpose as the HUK for SCE9 and SCE5_B in terms of user key wrapping. The derived HUK for SCE7
and SCES5 is never stored and is accessible only by the SCE, and not by application code.

Since for all the SCEs, the HUK is in a wrapped format unique to the MCU, even if an attacker were able to
extract the stored key, another MCU will not be able to use it.

R11ANO496EU0130 Rev.1.30
Oct.25.22

Re Page 5 of 71
KENESAS

Renesas RA Family Injecting and Updating Secure User Keys

All SCEs can inject a Key Update Key (KUK), which can be used to securely update the user keys when a
device is deployed in the field. The KUKs are injected during end-product manufacturing via the MCU’s
programming interface or using FSP Crypto Driver. To update keys in a device that is deployed in the field,
the new key must be wrapped with one of the previously injected KUKs. In addition to replacing keys that
have been compromised, many security policies require key rotation or key update (re-keying) on a regular
basis. It is recommended to consider injecting multiple KUKSs.

1.3 Renesas Secure Key Injection Advantages

Secure key injection and update, combined with the security engine’s support of wrapped keys, address
many vulnerabilities associated with using plaintext keys:

e Plaintext keys are never stored in code flash. In the event of a program memory breach, the sensitive
key material is protected.

e Plaintext keys are never stored in RAM. In the event of malicious code executing on the system, the
sensitive key material is still protected.

e Keys can be securely stored in code flash, data flash, or even copied into external memory, enabling
unlimited secure key storage.

In addition, Renesas key wrapping techniques protect against device cloning, as discussed below.

1.3.1 Advantages of Key Wrapping over Key Encryption

100101

100101 110101 No
110101
r - 101014 Lo
h # - - ' Indlcatlon

lv that the

100101 data was
e =) =\
Encryption

o

corrupted

000000
111111
000000

100104

110101 H i
101011 P\ Indication

that the
000000
111111 | %
0ooooo

0010

ot ©
101011 N

100101

A 00101

o1

115101 - - Pt
101011

Wrapping

corrupted

Encryption plus Integrity %

data was
Figure 2. Key Wrapping versus Key Encryption
It is important to understand the difference between wrapping and encrypting for secure asset storage.

When data is encrypted and sent to another recipient, if that recipient has the same key, they can decrypt the
data. This results in a confidential exchange of information. However, what if there was a problem with the
transmission of the encrypted data? If the recipient unknowingly receives corrupted information, the
decryption algorithm will generate garbage data, with no indication that the original data has been corrupted.

Wrapping solves this problem by appending a Message Authentication Code to the encrypted output for
integrity checking.

R11AN0496EU0130 Rev.1.30 Page 6 of 71
Oct.25.22 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

1.3.2 Advantages of Key Wrapping using MCU HUK

Every individual MCU has its
own Hardware Unigue Key,
used for storing application
keys

Benefits of MCU-unique Key Wrapping

v" Encrypting provides confidentiality

v" Wrapping adds integrity

v Wrapping with the MCU Hardware Unique Key adds
authenticity and protection against cloning

-
:bi-:»@@)_"

HUK Wrapping

Encryption plus Integrity

Only this
MCU
can
unwrap
the key

@

plus Clone Protection

—»@@):b e =
—pcﬂ%-:b e = Q*Wﬁ

Figure 3. Key Wrapping using the HUK

Using the MCU Hardware Unique Key (HUK) to wrap the stored keys adds another protection feature — clone

protection. If the wrapped key is transmitted or

copied to another MCU, that MCU’s HUK will not be able to

either unwrap or use the copied key. Even if the entire MCU contents are copied onto another device, the

keys cannot be used or exposed.
1.4 Renesas RA MCU Factory Boot

Firmware Limitations for SCE9

Secure key injection via the serial programming interface is not supported for RSA 3K, RSA 4K, ECC
secp256k1, and Key-Update Keys on some older versions of the Renesas RA MCUs due to factory Boot
Firmware limitations. The user needs to use a Renesas Flash Programmer (RFP) to read out the Boot
Firmware version and confirm the support for the Secure Key Injection of the above-mentioned keys. Refer
to the RFP user’'s manual Flow of Operations section to access the Bootloader Firmware version by using

the Read Device Information menu.

[)
[)
]

secp256k1, or KUK

e V1.6.25 and above — MP: no limitations

V1.2.04 — WS1: secure user key inject command is not supported
V1.3.10 — WS2: user key inject command is not supported
V1.5.22 — CS: user key inject command is supported, but it does not support RSA 3K, RSA 4K,

The part information silkscreened on the device can also be checked, though it is recommended that the
boot firmware version be confirmed as described above. Boot firmware limitations exist for the following

MCUs:
RA4M2 - All WS and ES devices

031AZ00
RAG6MS5 - All WS and ES devices

RA4M3 - All WS, ES and CS devices (date code 014AZ00)
RA6M4 - All WS, ES and CS devices (date code 014AZ00). MP device with date codes 028AZ00,

Please note that some EK-RA6M4 and EK-RA4M3 Evaluation Kits may contain affected silicon. The
following list shows the affected kit serial numbers. Note that all early adopter kits with WS or ES silicon are

also affected.

EK-RA4M3 — Serial numbers 219243 — 219542
EK-RA6M4 — Serial numbers 215938 — 216237 and 218497 - 218996

If your application requires secure key injection of RSA 3K, RSA 4K, ECC secp256k1, or Key-Update Keys
and your evaluation kit does not support it, please contact your local Renesas Sales representative.

R11ANO496EU0130 Rev.1.30
Oct.25.22

Page 7 of 71

RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

2. Wrapped Key Injection Use Cases and Injection Procedure Overview

This section provides an overview of the wrapped key injection use cases and the general steps for injection
procedure of each use case. A step-by-step walk through of the wrapped key injection procedures is
provided in later sections.

2.1 Wrapped Key Types

Table 2 summarizes the key types that can be directly injected into Renesas RA Family MCUs with the
SCE9 Secure Crypto Engine. Injected keys are stored wrapped by the MCU’s HUK.

Table 2. Supported Key Types for SCE9
Lifecycle Transition Keys SECDBG_KEY, NONSECDBG_KEY, RMA_KEY

AES AES-128, AES-192, AES-256
RSA RSA-1024, RSA-2048, RSA-3072, RSA-4096 (Public and Private)
ECC secpl92rl (NIST P-192), secp224rl (NIST P-224) (Public and Private)

secp256rl (NIST P-256), secp384rl (NIST P-384) (Public and Private)
secp256k1 (Public and Private)
Brainpool P256r1, P384r1, and P512r1 (Public and Private)

HMAC HMAC-SHA224, HMAC-SHA256
Utility Keys Key-Update Keys

See Table 1 to understand the types of keys supported for other Secure Crypto Engines based on the
supported crypto algorithms and Device Lifecycle Management capability.

2.2 General Steps for Secure Key Injection and Update

Secure Key Injection for SCE9 Protected Mode and SCE5_B is performed via the serial programing
interface, demonstrated here with the Renesas Flash Programmer (RFP). Secure Key Injection for SCE9
Compatibility Mode, SCE7, and SCES5 is performed through the FSP. Key preparation steps where key
material is exposed in plaintext must be performed in a secure environment.

2.2.1 Key Injection

There are three high-level steps for key injection. Section 3 guides the user to establish the PGP encrypted
communication channel between the user and Renesas DLM Server. Sections 4, 5, and 5.2 provides the
step-by-step walkthroughs of how to perform the three high-level steps for the secure key injection.

1. The first step in the secure key injection process is to use the Renesas Device Lifecycle Management
(DLM) service to wrap an arbitrary User Factory Programming Key (UFPK) (in green) using the Renesas
Hardware Root Key (HRK) (in blue). The UFPK is a 256-bit value selected by the user. The same UFPK
can be used to inject any number of keys.

User Renesas

I.. _______ "
————————— | o »

urpk | PGP Encryption |
» Jle— |
! 1

L O DLM Server

/ _Key Wrap Service /

Wrapping the UFPK

Figure 4. Wrapping the UFPK using DLM Server

R11AN0496EU0130 Rev.1.30 Page 8 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

2. Next, the user key (in yellow) must be wrapped with the UFPK.

UFPK
—» Wrap —» @‘/’)

User Key UFPK Wrapped
User Key

Figure 5. Wrap the User Key with the UFPK

3. Finally, the user key is injected by providing the wrapped UFPK (W-UFPK) and the wrapped user key to
the secure key injection mechanism of the security engine.

| N W §® § § § §F §F §F |
-

c;m: . et O

a MCU HRK
O
Unique
Programmer Inte_rface J E o

) i JU ’a’

TRNG
Code or Data Flash Security Engine /

Figure 6. Inject User Key over the Serial Programing Interface

2.2.2 Key Update

Since injecting new keys in the field is usually done to replace older keys (key rotation or re-keying), this
process is referred to as “key update”. To enable secure key update in the field, one or more Key-Update
Keys (KUK) must be injected during production programming/provisioning, as described above.

KUKs, like other cryptographic keys, can be stored in either code flash or data flash (if available on the
MCU). Since the KUK is the only mechanism by which new keys can be injected/wrapped, it is highly
recommended that multiple KUKs be injected during production provisioning. This enables the KUK to be
rotated or revoked to adhere to an infrastructure security policy or to respond to a key exposure security
breach.

For MCUs that support secure key injection over the programmer interface, additional KUKs CANNOT be
injected after the programming interface is disabled. Once a product is in the field with its programming
interface disabled, new keys can ONLY be injected via a pre-existing KUK.

The KUKs may be stored in any code or data flash location during production. This location will be passed to
the key update API for the injection of the new user key. A user can inject multiple KUKs and provide a
scheme to rotate the keys based on timed schedule or key leakage event. We recommend that users disable
the programming interface prior to deploying to the field for security considerations.

There are two high-level steps for key update. Note that the KUK must already reside on the MCU.
1. Use the KUK (in grey) to wrap the new user key (in yellow).

KUK
E— Wrap —
New User Key KUK Wrapped

New User Key

Figure 7. Wrap the New User Key with a KUK

R11AN0496EU0130 Rev.1.30 Page 9 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

2. Use the FSP and the previously injected KUK to inject the new user key. The new user key is wrapped
by the MCU HUK (in black). Note that the APIs for the two modes are provided by different FSP

modules.
6 S

' MCU HRK

‘)_’
L4
P < Dm’ B
) TRNG
Flash, External Memory, or RAM Secure Crypto Engine (SCE)

Figure 8. Update the User Key

2.3 Important Preparations for Using the Example Projects

The example projects in this application project demonstrate the secure key injection and update capabilities
of Renesas RA Family MCUs using sample keys. Sections 3, 4, and 5 describe the steps needed to replace
these sample keys with custom keys.

The following graphic shows the flow of this preparation work plus the example project for SCE9 (RA6M4
example). The block outlined in red is the scope of the functionality of the example project.

OEM Renesas (DLM Server)

Register with DLM
Generate PGP key pair

OEM PGP public key itore OEM PGP public
ey

-+ Renesas PGP public key
Store Renesas PGP
public key

|PGP Key Exchange

Generate UFPK file

using skmt.exe
Wrapping User Factory

Renesas PGP public key encrypted UFPK Programming Key

Create HRK Wrapped

" UFPK (W-UFPK)
W-UFPK encrypted with OEM PGP public key

Generate an initial plaintext AES 256 user key and
wrap it with UFPK using skmt.exe

Generate a plaintext Key Update Key and wrap it
with UFPK using skmt.exe

Generate a new plaintext AES256 user key and
wrap the new user key with the Key Update Key
using skmt.exe

Inject the initial AES256 user key and the Key
Update Key to MCU using RFP

Update the MCU with the new AES256 user key
using the FSP Crypto APIs

Figure 9. Operational Flow Injecting and Updating an AES-256 Key for SCE9

R11AN0496EU0130 Rev.1.30 Page 10 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

The following graphic shows the flow of this preparation work plus the example project for SCE7 (RA6M3
example). The block outlined in red is the scope of the functionality of the example project.

OEM Renesas (DLM Server)

Register with DLM
Generate PGP key pair

OEM PGP public key itore OEM PGP public
2
* Renesas PGP public key v
Store Renesas PGP |PGP Key Exchange
public key

Generate UFPK file

using skmt.exe
Wrapping User Factory

Create HRK Wrapped | Programming Key

« UFPK (W-UFPK)
W-UFPK encrypted with Customer PGP public key

Renesas PGP public key encrypted UFPK

Generate an initial plaintext AES 128 user key and
encrypt it with UFPK using skmt.exe

Generate a plaintext Key Update Key and
encrypt it with UFPK using skmt.exe

Generate a new plaintext AES128 user key and
encrypt the new user key with the Key Update
Key using skmt.exe

Inject the initial AES128 user key and the Key

Update Key to MCU using FSP Key Injection
for PSA Crypto API

Update the MCU with the new AES128 user key
using the FSP Key Injection for PSA Crypto API

Figure 10. Operational Flow Injecting and Updating User Keys for SCE7

2.4 Tools Used in the Secure Key Injection and Update

There are three tools used in the secure key injection and update besides e? studio, which is used as the
software project development environment. Refer to the corresponding section mentioned below for details
on obtaining, setting up, and using these tools.

e Gpg4win
This tool is used in section 3 to establish a PGP encrypted communication channel between user and
the Renesas Key Wrap server. Using this tool, the user can generate a user PGP key pair, perform key
exchange with the Renesas DLM server, and assist the reception of the W-UFPK.
e Renesas Security Key Management Tool (SKMT)
This tool is used in section 4 and section 5 to generate the following three key files:
e User key: to be injected to MCU via RFP or FSP API
o Key update key: to be injected to MCU via RFP or FSP API
e New user key wrapped using the KUK: to be updated by an FSP API
e Renesas Flash Programmer (RFP)
This tool is used in section 5.2 to inject the User key and KUK when using SCE9 Protected Mode.

R11AN0496EU0130 Rev.1.30 Page 11 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. Using the Renesas Key Wrap Service

The Renesas Key Wrap Service must be used to obtain a wrapped UFPK (W-UFPK) for the specific MCU
Group and security engine operational mode. All key material exchange is performed with PGP encryption.
This section explains the steps to establish this PGP-encrypted communication channel between the user
and the Renesas Key Wrap Server. This is a one-time process and does not need to be repeated for
different MCUs.

3.1 Create PGP Key Pair

If you already have a PGP key pair, that key can be used for the key exchange process. Otherwise, the
instructions below describe one method for creating a PGP key pair.

The PGP software demonstrated here is GPG4Win, which can be downloaded from this URL:
http://www.gpg4win.org/

The screen shots included in this application note are based on gpg4win-4.0.0.exe. There may be minor
graphic interface updates with later versions. However, the functionality used in this application note should
persist.

Download and install Kleopatra:

E Gpgdwin Setup — 2 Gpgdwin Setup —

Installation Complete

Completing Gpg4win Setup

Setup was completed successfully,

Gpg4win
GnUPG for Windows
Gpg4win has been installed on your computer,

Completed

Click Finish ko close Setup,

Run Kleopatra

Q GpgOL % GpgEX
== Gpg4win ﬁ
GnuPG for Windows
oS, (Heopara

ypio Manapsr

[show the README file:

Gpgdwin brings crypto 1o volr deskiop! 50 to Gpg4ws webpags

< Back, Cancel < Back | Cancel

Figure 11. Download and Install Kleopatra
Launch Kleopatra and create a PGP Key Pair.

1. Click File > New Key Pair
2. Choose Create a personal OpenPGP key pair.

Choose Format

Please choose which type you want to create,

Create a personal OpenPGP key pair
OpenPGP key pairs are certified by confirming the fingerprint of the public key.

—» Create a personal X.509 key pair and certification request
#.509 key pairs are certified by a certification authority (CA). The generated
request needs to be sent to a CA to finalize creation.

Mext Cancel

Figure 12. Create a Personal Open PGP Key Pair

R11AN0496EU0130 Rev.1.30 Page 12 of 71
Oct.25.22 RENESAS

http://www.gpg4win.org/

Renesas RA Family Injecting and Updating Secure User Keys

3. Provide a Name and Email. Note that even though these are marked as optional, at least one entity
must be provided to move to the next stage. Check Protect the generated key with a passphase.

? X

Enter Details

Please enter your personal details below. If you want more control over the parameters, click
on the Advanced Settings button.

Name |5ecure_key | (optional)

EMail:

customer@company.com | (optional)

Protect the generated key with a passphrase.

secure_key <customer@company.com:

Advanced Settings...

Figure 13. Provide Name and Email

4. Click Advanced Settings and select RSA as the key type.

™ Advanced Settings - Kleopatra ? it

Technical Details

® RSA 3,072 bits -
+R5A 3,072 bits v
O DsA 2,048 bits

+ Elgamal | 2,048 bits
(O EcDSAJEDDSA | ed25519

+ ECDH 25519

Certificate Usage

Signing Certification
Encrypticn |:| Authentication
Valid until: | 1/13/2024 v b
f
concal |
Figure 14. Select RSA Encryption
R11ANO496EU0130 Rev.1.30 Page 13 of 71

Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5. Click Create and provide a passphrase twice to protect the private key. Then click OK. Be sure to save
your passphrase.

Creating Key Pair...

The process of creating a key requires large amounts of random numbers. This may require
several minutes...

7 pinentry-qt - *

Please enter the passphrase to
s protect your new key

r | Passphrase:

Repeat:

Next Cancel

Figure 15. Define a Passphrase

6. The PGP key pair should be created successfully. Click Finish.

Key Pair Creation Wizard

Key Pair Successfully Created

Your new key pair was created successfully. Please find details on the result and some
suggested next steps below.

Result

Key pair created successfully,
Fingerprint: 012345678 9abcdef0123456789abodef01234567

Next Steps
Make a Backup OF Your Key Pair...
Send Public Key By EMail, .,

Upload Public Key To Directory Service. ..

Cance!

Figure 16. PGP Key Pair Created

7. A new item will be created in Kleopatra. Right-click on the keypair just created and select Export.

k2 it B B B Q El B
Sign/Encrypt... Decrypt/Verify... Import.. Export.. Certify... Lookup on Server.. Cerlificates MNotepad Smartcards

[search... <ait+q> Al Ce

Name E-Mail User-IDs Valid From Valid Until Key-ID

secure_key customer@company.com certified =™
= Certify..

= Revoke Certification...
Trust Root Certificate
Distrust Root Certificate

Change Certification Trust...

Change Expiry Date...
Change Passphrase...
Add User-ID...

|— Delete Del

= Backup Secret Keys...
= Print Secret Key...
B Publish on Server... Ctrl+5Shift+E

Details

Figure 17. Export the User PGP Public Key

R11AN0496EU0130 Rev.1.30 Page 14 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

8. Save the public key to a file with an * _asc extension. In this example, this file is renamed to
customer_public.asc. Click Save.

™ Export OpenPGP Certificates X

+ <« (C:) Windows » secure_key_injection v <] /C' Search secure key

EE

Organize = Mew folder == o

4 Downloads ~ Name

Date modified Type
J‘& Music

Mo items match your search.
&=| Pictures

m Videos

i (C) Windows

=% MNetwork S

File name:l customer_public.asc I

Save as type: OpenPGP Certificates (*.asc *.gpg *.pgp)

~ Hide Folders Cancel

Figure 18. Save the PGP public key to a folder
3.2 Registration with DLM Server

The first time you use the Renesas Key Wrap service, you will have to register with the Renesas DLM
Server.

1. Open the URL https://dim.renesas.com/keywrap in a browser and click New registration.

Login screen of Key Wrap service

E—mail address:

Password:

Mew registration

If you forgot your password...

Figure 19. Start Registration with Renesas DLM Server
2. Follow the prompt to provide a valid email address and click Send mail.

Please enter your e—mail address hefore using this system.
We will send e~mail for purposes of identification. . .
Please make sure that you can receive e-mail from the domain @renesas.com .

E-mail address | customer@company.com

Figure 20. Register User Email Address

R11ANO496EU0130 Rev.1.30

Page 15 of 71
Oct.25.22 RENESAS

https://dlm.renesas.com/keywrap

Renesas RA Family Injecting and Updating Secure User Keys

After clicking Send mail, the following screen will appear. Click Return.

The e-mail has been sent.

E—-mail address - [)tustnlnel@mmgany.tllm]

Click on the link in the e—mail, and register vour information.

Unless vou have registeraed within three hours, the link expires, so re—start the process
from registration of vour e—mail address.

=

Figure 21. Acknowledge Email Transmission

3. You should receive an email similar to the one shown below. Click on the URL provided to confirm your
registration.

Dear customer,

Thank you for registering with the KeyWrap service.
To start using this service, you need to click on the following URL to register your information.

https://dlm.renesas.com/keywrap/?menu=reg%2Fregist¥2Ffixed%2F¶m=id%30Duf251 203Cd7ODIjiIEN%2 52BOmMISX7ghfivHOmP%252F1gQ7aH8%253D

- Notes
Please register your information within three hours of receiving this e-mail.
The URL expires after the three hours, after which you will need to start the registration process anew.
Please delete this email if you were not aware that you were going to receive it.
* This email was sent from & send-only address.
Please understand that there will be no response, even if you reply to this address.
* If you have forgotten your password, reset your password via the link “If you have forgotten your password ..." on the login page of this system.

Thank you.

Renesas Electronics Corporation

Figure 22. Registration Confirmation Email

4. Follow the prompts to provide your name and company name and create a password. Click the Next
(confirmation) button. Note that the password must consist of 8 to 32 alphanumeric characters and may
include the symbols “I” and “@".

Your information will be registered. Enter all of the following items
The password is from 8 to 32 characters, which must he single-byte, and may include
the symbols 1 @

E-mail address : |custumer@cunpany.com

Name |_customer J

Company Name |com pany |

[n— [—

Re—enter your password | e

|| Next {confirmation) |

Figure 23. Confirm Registration

R11AN0496EU0130 Rev.1.30 Page 16 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

After the confirmation screen is displayed, click on the Register button to complete the user registration.

The following iterms will be registered. Are you sure?

E-mail address ;| customer@company.com
Name : customer

Comparny Mame : company

Password | 90000000000
Re—enter your password . @ 000000000

[Fegater || Fetum |

Figure 24. Finish the Registration
3.3 Exchange User and Renesas PGP Public Keys
If you have not already exchanged PGP keys with the Renesas DLM server, follow the steps below.

1. After successfully registering the user information, the following screen will open. Click the Start service
button to start using the key encryption system.

Registered

E-rmail address ;| customer@ company.com

Narme : customer

Comparty Nerme © | company

Figure 25. Start DLM Key Wrapping Service

2. When the agreement warning shows up, scroll down to the bottom of the Trusted Secure IP Key Wrap
Agreement and click | agree. You will then be logged into the DLM server. Note that the Agreement will
come up every time you log into the DLM server.

—— CAUTION!"———

--- PLEASE READ THE FOLLOWING BEFORE USING THE SERVICE ---

This Trusted Secure [P Key Wrap Service Agreement (this "Agreement") is between you and
Renesas Electronics Corporation. Please carefully note that this Agreement is legally valid
agreement relating to Trusted Secure IP key encryption (the "Service").

Article 15 (ENTIRE AGREEMENT)

This Agreement sets forth the entire agreement of the parties with respect to the subject matter
hereof and supersedes any prior or contemporaneous agreements, written or oral, concerning the
subject matter hereof. Any change, modification or amendment of the terms of this Agreement shall
not be effective unless reduced to writing and authorized by both parties.

| agree disagree. | view POF

Figure 26. Agreement for Using the Renesas DLM Server

R11AN0496EU0130 Rev.1.30 Page 17 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. When you log into the DLM system, the window below appears. Click PGP key exchange.

PGP key exchange| Display history

our PGP key has not been exchanged vet. Start by exchanging your PGP ke,

) N

The RZ family users.

RZ

\ The B family users.
R

\ The RE family users.
RE

\ The RA family users.
‘ RA

Figure 27. Start PGP Key Exchange

4. Click Reference and select the public key generated earlier (customer_public.asc). Notice that the
fingerprint of the Renesas PGP public key is displayed. This will be used to certify the Renesas public
key after you receive it.

Select vour PGP public key that exported format, and dick on PGP key exchange” button.
Your public key will be sent to Renesas, and the PGP public key of Renesas will be sent to vour e—mail address.

| | EEteed PGP key exchange

The fingermnnt of PGP public key of Renesas is below.

FB18 EBSE 1F61 20E3 9613
SDF7 Fo17 183C 1EAD EBGD

Figure 28. Browse the Customer PGP Public Key
5. Click PGP key exchange.

PGP key exchange screen
customer is already logged—in

Select vour PGP public key that exported format, and dlick on “PGP key exchangs™ button
Your public key will be sent to Renesas, and the PGP public key of Renesas will be sent to vour e—mail address.

[C¥fakepath¥customer_public asc I==2rs | PGP key exchange I

The fingerprint of PGP public key of Renesas is below.

FB18 EBSG 1HG1 20E9 9613
80F7 Fo17 18905 1EAD EBBD

Figure 29. Exchange Keys

R11AN0496EU0130 Rev.1.30 Page 18 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

6. Once the PGP public key is submitted, click Return.

Your PGP public key submit is being procsssed in vour application for registration.
After completion of registration, registration—completion e—mail to which the PGP public ke of Renesas is attached will be sent.
Please wait fora while.

Figure 30. Wait for Renesas’s PGP Public Key
7. You will receive an email from Renesas at the email address registered with the DLM server with the
contents as shown below if the key exchange is successful. It typically takes about one to two minutes to

receive this email.
Note that a PGP public key can be registered any number of times. The latest PGP public key that has

been registered successfully is used for encryption. All previously registered PGP public keys are
discarded.

D keywrap-pub.key

3KB

To this user:
Thank you for using the KeyWrap service.
mport processing of the registered PGP public key was done.

The PGP public key of Renesas is attached to this mail.
f you request an encryption processing, transmit the data via our website after using the attached public key of Renesas to encrypt your data.

Please delete this email if you were not aware that you were going to receive it.

* This email was sent from a send-only address.
Please understand that there will be no response, even if you reply to this address.

Thank you.

Renesas Electronics Corporation

Figure 31. Receive the Renesas PGP Public Key

Save the Renesas PGP public key file (keywrap-pub . key).
8. Go back to the Kleopatra application and import the Renesas PGP Public key to Kleopatra as shown

below.

l MNarre Date
B customer_public.asc 1/15
J keywrap-pub.key 115
vy | Kleopatra v €
el View Cerfificates Tools Sefftings i€y Date modified: 1/15/2021 11:30 PM
EE MNew Key Pair... Ctrl+MN Size: 311 KB
Q. Lookup on Server... Ctrl+Shift+|)
Crlel e | keywrap-pub.key | | By files (4
B Export.. Ctrl+E |

Figure 32. Import Renesas Public Key

R11ANO496EU0130 Rev.1.30 Page 19 of 71

Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

9. After Open is clicked, a new item is added in Kleopatra as not certified.

All Certificates Imported Certificates

Name E-Mail User-1Ds Valid From Valid Uny

secure_key customer({@company.com certified 171372022 171372024 A5G

Figure 33. Renesas Public Key is Imported

10. Confirm that the Fingerprint displayed is same as what is shown on the screen represented in Figure 29.
Click Certify.

2 customer_public.asc OpenPGP Text File 3KB
[keywrap-pub key KEY File 4B
pping Too - o X
Edit_Tools Help
Jeo ™ Kleopatra - u] X
—{ File View Certificates Tools Settings Window Help
o i =2 B ® Q S
Sign/Encrypt... DecryptfVerify... Import.. Export.. Certify... Lookup on Server.. | Certificates MNotepad Smartcards
[search...<Alt+Q> | [l Certificates v
(% Al Certificates Imported Certificates]
Name E-Mail User-IDs Valid From Valid Until Key-ID
keywrap customer-key ti not certified 10/23/2018 -
secure_key customer@company.com certified 1/13/2022 1/13/20; =
5] Revoke Certification...
Trust Root Certificate
Distrust Root Certificate
Change Certification Trust...
Change Expiry Date...
Change Passphrase..
Add User-ID...
|” Delete Del
= Export.. Ctrl+E
B Backup Secret Keys.
= Print Secret Key...
B Publish on Server... Ctrl+Shift+E
Details

Figure 34. Confirm the Fingerprint and Certify the Renesas Public Key

11. Click Certify again from following screen.

™ Certify Certificate: keywrap - Kleopatra >

Fingerprint: FB18 EB66 1F61 20E9 9613 B8DFY F517 189C 1EAS E5S5D
Only the fingerorint dlearly identifies the key and its owner.

Certify with: semre_ke'y <customer@company.com (certified, created: 1/13/2022) e

keywrap <customer-key-encryption-system@Im.renesas.com>

P Advanced

ey]| © cance

Figure 35. Certify the Certificate

R11AN0496EU0130 Rev.1.30 Page 20 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

12. Provide the passphrase to unlock the secure key.

7 pinentry-qt — x

Please enter the passphrase to unlodk the OpenPGP secret key:
"secure_key <customer @company.com:="
[\:I 3072-bit RSA key, ID ASSC63B480A 18869,
E created 2022-01-13.

Passphrase:| |sesessssss| =

Cancel

Figure 36. Provide the Passphrase

13. The following item will pop up upon successful certification. Click OK.

(™ Certificati.. 7 X
o Certification successful,
|Search. 1 e
iy Imported Certificates
Marme E-Mail User-IDs Valid From Valid Until Key-ID
{keyanrap custorner-key-enc rption-system@lm.renesas. f certified | 10/23/2018 Fa17 188C 1EAS ERAD]

Figure 37. Successful Certification

4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap
Service

If you do not already have a W-UFPK for your target MCU Group, follow the steps below to wrap a UFPK
with the Renesas Hardware Root Key as described by Figure 4.

4.1 Renesas Security Key Management Tool

The Renesas Security Key Management Tool (SKMT) performs several functions during the secure key
injection process. Open the following link to access the latest SKMT:

https://www.renesas.com/software-tool/security-key-management-tool

From the above link, find the Downloads area and download the latest Security Key Management Tool
installer. This tool supports Windows and Linux. The screen shots in this document came from the Windows
environment.

* Downloads

Tite Type Date

Security key Management Tool ¥1.02 for Windows

& 7P MB8AMB CIAS Software & Taols - Other Jun 30, 2022

Security Key Management Tool V1.02 for Linux
& zZr 15615MB EHAE

2items

Software & Tools - Other Jun 30, 2022

Figure 38. Download the Security Key Management Tool for Windows or Linux

Once the installer executable is downloaded, right-click on the installer, and select Run as administrator to
install this tool. Follow the prompt to select the Setup Language, currently both English and Japanese are
supported. Next, select the installation folder. By default, it will be installed into
C:\Renesas\SecurityKeyManagementTool\. If a previous version is installed, the old version will be
overwritten.

R11AN0496EU0130 Rev.1.30 Page 21 of 71
Oct.25.22 RENESAS

https://www.renesas.com/software-tool/security-key-management-tool

Renesas RA Family Injecting and Updating Secure User Keys

The User’'s Manual of this tool is located in the \DOC folder. We recommend that you read through the user’'s
manual before proceeding to the following section.

The SKMT provides two interfaces to users, a Command Line Interface (CLI) and a Graphic User Interface
(GUI). The CLI interface is typically used for production support and the GUI interface is primarily intended
for development usage. This application note will explain how to use both interfaces to perform key injection
and update.

4.2 Creating the User Factory Programming Key using SKMT GUI Interface

Define a UFPK and convert it to a binary format that is compatible with the Renesas Key Wrap Service. This
can be done using the Renesas Security Key Management Tool (SKMT).

The same UFPK can be used for all RA Family MCUs. However, the corresponding W-UFPK may be
different, depending on the specific MCU Group. Therefore, these examples will use different UFPKs. To use
the GUI interface to prepare the UFPK for secure key injection for SCE9 Protected Mode, follow section
4.2.2. To use the GUI interface to prepare the UFPK for secure key injection for SCE7 Compatibility Mode,
follow section 0. To use the CLI interface to prepare the UFPK for secure key injection, follow section 4.3.

4.2.1 Launching the GUI Interface

Double-click SecurityKeyManagementTool.exe to launch the GUI interface.

Renesas » SecurityKeyMangementTool

.

MName

CL

configuration

DocC

plugins

workspace

SecurityKeyManagementTool.Exel

12| SecurityKeyManagementTool.ini
|| unins0D0.dat
ri’l unins000.exe

Figure 39. Launch SKMT GUI Interface

R11AN0496EU0130 Rev.1.30 Page 22 of 71
Oct.25.22 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

4.2.2 Creating the UFPK for SCE9 Protected Mode
To use the example projects for RA6M4, in the Overview window, select RA Family, SCE9 Protected

Mode.

| Security Key Management Tool

Generate UFPK Generate KUK Wrap Key
RENESAS

Security Key Management Tool

This tool is designed to assist in the preparation of application and Device Lifecycle Management (DLM) keys for

I
secure installation and update.

Keys are securely installed via a User Factory Programming Key (UFPK), which must be wrapped by the Renesas
Key Wrap Service to obtain a wrapped UFPK (W-UFPK).

Keys are securely updated via a Key-Update Key (KUK), which must be securely installed.

Please refer to the specific microcontroller/microprocessor documentation for more information about
supported security features,

Select microcontroller/microprocessor and crypto engine § RA Family, SCES Protected Mode ~

Please select the target microcontroller or microprocessor before continuing.

Status Clear Help

Figure 40. Select RA Family, SCE9 Protected Mode

R11AN0496EU0130 Rev.1.30
RENESAS

Oct.25.22

Page 23 of 71

Renesas RA Family Injecting and Updating Secure

User Keys

Next, navigate to the Generate UFPK page.

For the User Factory Programming Key, select Generate random value.

Click the Browse button to select a folder to store the key, and name the resulting file ufpk.key.
Click Generate UFPK key file. The ufpk.key file will be generated. This operation is demonstrated in

Figure 41.

Overview Generate UFPK Generate KUK Wrap Key

A User Factory Provisioning Key (UFPK] is used to securely install Device Lifecycle Management (DLM) and
and then used to prepare keys for secure installation.

User Factory Provisioning Key
(®) Generate random value
() Use specified value (32 hex bytes, big endian format)

0011.2233445566778899AABBCCDDEEFFD01122334455667 78899AABBCCDDEEFF

Output file {key) :

C\User_key_installation_protected_mode\keys_guiufpl.key Browse...

Generate UFPK key file

Send the generated UFPK key file to the Renesas Key Wrap service
https://dIm.Renesas.com/keywrap
to obtain the wrapped UFPK (W-UFPK).

B security Key Management Tool — O et

application keys during preduction programming. The UFPK must be wrapped by the Renesas Key Wrap service

Help b
|
~ 0
UFPK: OCO4BESBFET71CEBDF4318B9B3T17CCIABCF20AB4AI08B3ET100006CETADDFFTE
Output File: C:\User_key_installation_protected_mode\keys_guiufpl.key
OPERATION SUCCESSFUL v
MAarrm e A Fiimmrrer T

Figure 41. Generate Random Value for the UFPK using GUI for SCE9

R11ANO496EU0130 Rev.1.30

Oct.25.22 RENESAS

Page 24 of 71

Renesas RA Family Injecting and Updating Secure User Keys

It is also possible to specify a specific UFPK. The following is an example of using the same UFPK used in
the example project: 000102030405060708090A0BOCODOEOF000102030405060708090a0b0c0d0e0f

Note that the 32-byte UFPK must be provided in big-endian format.

ﬁ Security Key Management Tool — O X

Overview |Generate UFPK |Generate KUK Wrap Key

A User Factory Provisioning Key (UFPK) is used to securely install Device Lifecycle Management (DLM) and
application keys during production programming. The UFPK must be wrapped by the Renesas Key Wrap service
and then used to prepare keys for secure installation.

User Factory Provisioning Key b

O Generate random valye

(®) Use specified value (32 hex bytes, big endian format)
[000102030405060708090A0BOCODOEOF000102030405060708090a0b0c0d0e0f

Qutput file (key) :

C:\User_key_installation_protected_mode\keys_guitufpk.key Browse...

Generate UFPK key file

Send the generated UFPK key file to the Renesas Key Wrap service
https://dim.Renesas.com/keywrap
to obtain the wrapped UFPK (W-UFPK).

Help

UFPK: 000102030405060708090A0B0OCODOEOFD00102030405060708090A0B0CODOEOF A
Output File: C:\User_key_installation_protected_mode\keys_gui\ufpk.key

OPERATION SUCCESSFUL

Figure 42. Generate Fixed UFPK using GUI for SCE9

R11AN0496EU0130 Rev.1.30 Page 25 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

4.2.3 Creating the UFPK for SCE7 Compatibility Mode
To use the example projects for RA6MS3, select RA Family, SCE7 Compatibility Mode as the MCU family

and security engine.

ﬂ Security Key Management Tool

Overview | Generate UFPK Generate KUK Wrap Key

XENESANS
Security Key Management Tool

This teol is designed to assist in the preparation of application and Device Lifecycle Management (DLM) keys for
secure installation and update.

Keys are securely installed via a User Factory Programming Key (UFPK), which must be wrapped by the Renesas
Key Wrap Service to obtain a wrapped UFPK (W-UFPK).

Keys are securely updated via a Key-Update Key (KUK), which must be securely installed.

Please refer to the specific microcontroller/microprocessor documentation for more information about
supported security features.

Select microcontroller/microprocessor and crypto engine: I RA Family, SCET7 Compatibility Mode lf

Please select the target microcontreller or microprocessor before continuing.

Status Clear Help

Figure 43. Select RA Family, SCE7 Compatibility Mode

R11ANO496EU0130 Rev.1.30 Page 26 of 71

Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Next, navigate to the Generate UFPK page.

e For the User Factory Programming Key, select Generate random value.
e Click the Browse button to select a folder to store the key, and name the resulting file ufpk.key.
e Click Generate UFPK key file. The ufpk.key file will be generated.

It is also possible to specify a specific UFPK. The following is an example of using the same UFPK used in
the example project:

2222222222222222222222222222222211111111111111111111111111111111

Note that the 32-byte UFPK must be provided in big-endian format.

B security Key Management Tool — O *

Overview | Generate UFPK | Generate KUK Wrap Key 1

A User Factory Programming Key (UFPK) is used to securely install Device Lifecycle Management (DLM) and
application keys during production programming. The UFPK must be wrapped by the Renesas Key Wrap service
and then used to prepare keys for secure installation.

User Factory Programming Key
() Generate random value |

(®) Use specified value (32 hex bytes, big endian format)

222222222222222222222222222222221 1111111111111 T1111111111111111

Output file (key) :

Chsecure_key_injection\ufpk. key ‘ Browse...

Generate UFPK key file

Send the generated UFPK key file to the Renesas Key Wrap service
https://dlm.renesas.com/keywrap/
to obtain the wrapped UFPK (W-UFPE).

Status Clear Help
~
UFPK: 2222222222222222222222222222222211111111111111111111111111111111
Output File: Chsecure_key_injection\ufpl.key
(OPERATION SUCCESSFUL
v
Figure 44 Generate Fixed UFPK using GUI for SCE7
R11AN0496EU0130 Rev.1.30 Page 27 of 71

Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

4.3 Using the CLI Interface for SCE9 Protected Mode

Open a Command Prompt window and navigate to the folder where skmt. exe resides, typically under
\Renesas\Security Key Management Tool\CLI\.

Use the following command to generate a random UFPK and place it in a key file (ufpk.key). If desired, a
complete file name with path may be specified. Refer to the Security Key Management Tool user’'s manual to
understand the usage of /genufpk option.

skmt.exe /genufpk Zoutput "C:\User_key injection_protected_mode\keys\ufpk.key"

This command will generate a random 256-bit UFPK as shown below.

UFPK: E8AB23E99C9AD42823DA4215549A41496720F7243680A4715F4B944ACC94B691
Output File: C:\User_key_ injection_protected_mode\keys\ufpk.key

Figure 45. Create a Random UFPK Using SKMT CLI

It is also possible to specify a specific UFPK, as shown by the following command:

skmt.exe /genufpk Zufpk
'000102030405060708090A0BOCODOEOF000102030405060708090a0b0c0d0e0f"" /output
"C:\User_key_injection_protected mode\keys\ufpk.key"

UFPK: 000102030405060708090A0A0CODOEOF000102030405060708090a0b0c0d0eOF
Output File: C:\User_key_injection_protected_mode\keys\ufpk.key

Figure 46. Create a Fixed UFPK Using SKMT CLI

4.4 Wrapping the UFPK

The next step is to obtain a W-UFPK from the Renesas Key Wrap Service based on the selected UFPK.
Note that if the UFPK is changed, a new W-UFPK must be obtained.

1. Encrypt the UFPK with the Renesas public key. This key was imported earlier to Kleopatra. Using
Kleopatra, select Sign/Encrypt... and select the desired ufpk.key file. Then click Open.

=/ Pictures

Wideas | kesawrap-pub.ke: 1415
¥

=@ypci0 | & | ufpk.key 1/16

= (0C) REA_Private (\\rea-

— P RER Duklic Aheand ¥ C

) “msn ufpkkey Date modified: 1/16/2021 10:39 AM Date created: 1/16/20211¢
i e KEY File Size: 32 bytes
SignfEncrypt... -~

File name: |ufpk.ke o] BNFiles ¢
S - 1

Figure 47. Encrypt the UFPK File for PGP Transfer

R11AN0496EU0130 Rev.1.30 Page 28 of 71
Oct.25.22 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

2. When asked which entity this file is to be encrypted for, (optionally) uncheck Encrypt for me and check
Sign as, Encrypt for others, and Encrypt / Sign each file separately.

™ Sign/Encrypt Files - Kleopatra ? X

Sign [/ Encrypt Files
Prove authenticity {sign)

Encrypt

SECI.II'E_keY <customer@company.com> (certified, created: 4/11/2022) w

] Encrypt for me:

Encrypt for others:

secure_key <customer@company.com:> (certified, created: 4/11/2022)

2% Please enter a name or email address..

[] Encrypt with password. Anyone you share the password with can read the data.

Output
Output files/folder:

|C:,i’User_kev_inslalIaﬁun_proteded_mode,l’keys_gui ql im|
= =

I Encrypt / Sign each file separately.l

Figure 48. Select PGP Encryption Options

R11ANO496EU0130 Rev.1.30

Oct.25.22

Re Page 29 of 71
KENESAS

Renesas RA Family Injecting and Updating Secure User Keys

3. Click the Open Selection Dialog (the 2t icon). This will open a Certificate Selection dialog box. Take
care to keep UFPK and W-UFPK key files separate for different MCU Groups.

™ Sign/Encrypt Files - Kleopatra ? d

Sign / Encrypt Files
Prove authentidty (sign)

Sign as: [secure_key <customer@company.com> (certified, created: 4/11/2022) w
Encrypt
] Encrypt for me: secure_key <customer@company.com:> (certified, created: 4/11/2022)

pr—
'lncr:.'ptfor others: || 2 IF‘IeesE enter a name or email address..
=l

| Open selection dialog.

[] Encrypt with password. Anyone you share the password with can read the data.

Qutput
Qutput files/folder:

|C:,I'UsEr_kev_instaIIaﬁun_pruteded_mode,l’keys_gui q| |

Encrypt / Sign each file separately.

Figure 49. Open the Selection Dialog

4. In this window, select keywrap to select the Renesas public key, then click OK

™ Certificate Selection - Kleopatra ? x

: Flease select one of the following certificates:

Search... | All Certificates | |

MName E-Mail User-IDs Valid From Valid Until Key-1D

I keywrap customer-key-encryption-system@Im.renesas... not cert.. 10/23/2018 F517 189C 1EAS ESED I
secure_key customer@com pany.com certified 4/11/2022 4/11/2024

Reload Import... Lookup... New... Groups... Close

Figure 50. Select the Renesas PGP public key

R11AN0496EU0130 Rev.1.30 Page 30 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5. Ensure that the correct destination folder for the encrypted key is selected under Output. Finally, click
Sign/Encrypt.

™ Sign/Encrypt Files - Kleopatra ? x

Sign / Encrypt Files

Prove authenticty (sign)

Sign as: seu.lre_key <customer@company.com> (certified, created: 4/11/2022) R
Encrypt |
1 Encrypt for me: secure_key <customer@company.com> (certified, created: 4/11/2022) E

Encrypt for others: ccustomer-key-encryption-system@|m.renesas.com> (certified, OpenPGP, created: 10,1’23,!2D13}i| ¢

| 8% Please enter a name or email address.. |

[1 Encrypt with password. Anyone you share the password with can read the data.

Qutput
Qutput files/folder:

|C:}User_key_instaIlaﬁunjruteded_mode,l‘keys_gui Gl |

Encrypt / Sign each file separately.

Sign |/ Encrypt] Cancel

‘ oy] Sign/Encrypt Files - Kleopatra ? X

Sign / Encrypt Files

Prove authenticity (sign)

Sign as: "3 secure key <customer@company.com> (certified, created: 7/12/2022) v
Encrypt
O Encrypt for me: secure key <customer@company.com> (certified, created: 7/12/2022)

Encrypt for others: <customer-key-encryption-system@Im.renesas.com> (certified, OpenPGP, created: 10/23/2018ﬂ

‘ 2% Please enter a name or email address... ‘

0 Encrypt with password. Anyone you share the password with can read the data.

Output

Output files/folder:

C:/Secure_Key_Injection a ‘ |

Encrypt / Sign each file separately.

Sign / Encrypt Cancel

Figure 51. Encrypt UFPK using Renesas PGP Public Key

R11AN0496EU0130 Rev.1.30 Page 31 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

6. If you do not check Encrypt for me, you will get an Encrypt-To-Self Warning that you cannot decrypt
the data. Click Continue.

™ Encrypt-To-Self Warning - Kleopatra ? *

Mone of the recipients you are encrypting to seems to be your own.
This means that you will not be able to decrypt the data anymore, once encrypted.
Do you want to continue, or cancel to change the recipient selection?

Do not ask again

I Continue I | & Cancel |

Figure 52. Start the UFPK Encryption process

7. Provide your private key passphrase, then click OK.

7 pinentry-qt — x

Please enter the passphrase to unlodk the OpenPGP secret key:
"secure_key <customer @company.com ="
| 3072-bit RSA key, ID ASSC63E480A 16869,
| created 2022-01-13.

PESSF*'IrEEE:I|..........| J @

Figure 53. Provide Passphrase

8. The UFPK encrypted with the Renesas public key will be generated, with .gpg added to the extension of
the key. In this case, the file ufpk.key.gpg is generated. Click Finish.

| ™ Sign/Encrypt Files - Kleopatra ? s

Results
Status and progress of the crypto operations is shown here,

OpenPGP: All operations completed.

ufpk.key — ufpk.key.gpg: Signing and encryption succeeded.

T Fren] e

Figure 54. Provide User Passphrase

R11AN0496EU0130 Rev.1.30 Page 32 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

9. Now we can send the UFPK that has been encrypted with Renesas Public Key to the Renesas DLM
Server for wrapping. Return to the DLM Server web page:

PGP key exchange| Display history

The RZ family users

RZ

\ The RX family users.
‘ R

N

The RE family users

RE&E
ﬁa The RA family users.

Figure 55. Select the MCU Family

e To create a W-UFPK for the RA6M4 example project, select the Renesas RA Family and click Protected
Mode RA6M4/RABMS5 Encryption of customer’s data.

DLM and Protected Mode
Ihstallation via a device programmer, for DLM kevs or use with the FSP Crypto AP

RA6M4/RA6M5 Encryption of customer's data |

Figure 56. Select the RA6M4/RA6M5 MCU Group

e To create a W-UFPK for the RA6M3 example project, select the Renesas RA Family and click
Compatibility Mode RA6M1/RA6M2/RA6M3/RA6T1 Encryption of customer’s data.

Compatibility Mode
Installation via the FSP Key Installation APls, for use with the PSA Crypto APl

RA6M4/RAB6M5 Encryption of customer's data
RA6M1/RA6M2/RA6M3/RAB6T1 Encryption of customer's data

Figure 57. Select the RA6M1/RA6M2/RA6M3/RA6T1 MCU Group

10. Click Encryption service for products at the next screen.

BEA6MA Customer data selection screen

Encryption service for products |

The Feve lousomer s ke generaed by vou will be encrypted by “HRFw” (the embedded key of RAGMEA chip) and sent to vou

Figure 58. Choose Encryption service for products

R11AN0496EU0130 Rev.1.30 Page 33 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

11. Click Reference, select the ufpk.key.gpg created previously, and click Open. Note that in the DLM
server description, Key?2 refers to the UFPK.

Use our PGP public key to encrypt Key? that vou have made as the customer key.

Specify the file for encryption by using the browse button, and click on the OK button.
Example: oo pap, etc

Organize + Mew folder
3D Objects A Name Dat
[Documents B customer_public.asc 11
J Downloads
J) husic J keywrap-pub.key 141
& Pictures | ufpkke /1
B videos B ufpk.key.gpg 1
= (CYPCI0
v <
ufpkkey.gpg Date modified: 1/16/2021 11:42 AM
=] OpenPGP Binary File Size: 1.05KB
File name: |ufpk.key.gpg o] A Files ¢
| Open

Figure 59. Select the PGP-Encrypted UFPK file

12. Click Settle. The following message will be printed. Then click Return to menu. You can now log out of
the Renesas Key Wrap Service.

Return to the menu

We have accepted vour request. The encrvioted key data will be sent to the specified e—mail address.
FPlease check the e—mail.

Figure 60. Return to the DLM Server Main Menu

R11AN0496EU0130 Rev.1.30 Page 34 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

13. The wrapped UFPK Key (W-UFPK) encrypted with your PGP public key should arrive in your email
typically in about 1-2 minutes. Save the attached file.

Your [RA6MA4] customer key has been successfully encrypted and is attached to this mail. inbox =

KeyWrap service <customer-key-encryption-systemi@lm.renesas.coms & 2:25PM (D minut
W tome =

To customer

Thank you for using the Key\rap service.
We have sent the encrypted data as an attachment. Save the attached file, and proceed with PGP decryption

Product name: RAGK4
Processing mods: Products mode

Please delete this email if you were not aware that you were going to receive it
* This email wias sent from a send-only address

Please understand that there will be no respanse, even if you reply to this address
Thank you

Renesas Electronics Corporation

n ufpk.key_enc.key.p... '

Figure 61. Receiving the W-UFPK via Email
14. With the Kleopatra program, click Decrypt/Verify, select the W-UFPK file, and click Open.

Organize = New folder

|5 Documents * MName Dat

‘ Downlaads £ customer_public.asc 1/1¢

D Music

[&=] Pictures | keywrap-pub.key 1418

B videos 7 ufpk.key 1/1¢

=5 cypoio £ ufpk.kev.qgpg 1/1¢
. £ ufpk.k ey, 11

=x () REA_Private (\\rea- I S ke Encey.pap I |

wg (¥:) REA_Public (hrea-1 v €

ufpk.key_enc.key pgp Date modified: 1/16/2021 2:27 PM
= OpenPGP Binary File Size: 801 bytes
vy Kleopatra

File View Certificates Tools Setti File name: | ufpk.key_enc.key.pgp V| Al Files (%)

Sign/Encrypt... | Deaypt/Verifyy. Impori

Figure 62. Decrypt the W-UFPK

R11AN0496EU0130 Rev.1.30 Page 35 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

15. Follow the prompt to provide your PGP private key passphrase, click OK. The decrypted W-UFPK is
generated in the folder specified.

]ﬂf—:: pt/Verify Files
i

| output folder: |C:,‘User_key-_ jon_protected_mode/keys_gui -| i}

All operations completad.

| N -

ufpk.key_enc.key.pgp — ufpk.key_enc.key: Decryption succeeded. Show Audit Log

E Mote: You cannot be sure who encrypted this message as it is not signed.
i Recipient: secure_key <customer@company.com> (2738 E220 30C0 2479

Save All Discard

Figure 63. Decrypting the Encrypted W-UFPK

16. Click Save All to save the decrypted W-UFPK key file ufpk.key enc.key to the same folder as the
UFPK key file. Both key files are required to generate key injection bundles.

5. Secure Key Injection for SCE9 Protected Mode

5.1 Wrap Keys with the UFPK

This section walks the user through the wrapping process required for secure key injection and update. The
SKMT tool is used to perform this key wrapping process.

Step-by-step instructions for generating the three types of keys are provided, using both the CLI and GUI
interfaces of the SKMT.

e User Key wrapping with the UFPK for secure key injection of the user key
e Key-Update Key wrapping with the UFPK for secure key injection of the KUK
e User Key wrapping with the KUK for secure key update of the user key

This application project provides examples for user key wrapping of both AES-256 and ECC secp256r1
public keys.

5.1.1 Using the SKMT GUI Interface

To prepare a Protected Mode user key to inject using RFP, we need the UFPK, W-UFPK, and the user key
as input to the SKMT GUI interface.

Launch the SKMT GUI and select RA Family, SCE9 Protected Mode on the Overview tab. On the Wrap
Key tab, open the submenu Key Type. This page can be used to choose which key type to prepare.

5.1.1.1 Wrap an Initial AES-256 Key with the UFPK
A NIST CAVP test vector is used for this purpose.
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

KEEY = 8000
IV = 00000000000000000000000000000000

PLAINTEXT = 00000000000000000000000000000000

CIPHERTEXT = e35atdcklSb2llallebcfadfaaZiZbh755

Figure 64. NIST AES 256 Test Vector

R11AN0496EU0130 Rev.1.30 Page 36 of 71
Oct.25.22 RENESAS

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

Renesas RA Family Injecting and Updating Secure User Keys

In the Key Type area, choose Key Type and specify AES with 256 bits.

Overview Generate UFPK Generate KUK | Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Key Type Key Data

O DLM |DLM-SSD TDES

(KUK (CJRSA 2048 bits, public

(@) AES 256 hits w (JECC secp256rl, public
ARC4 O HMAC [SHA256-HMAC

Figure 65. Choose AES 256 hits as the Key Type

Navigate to the Key Data page and input the Raw key data as shown below based on the NIST vector
shown in Figure 64. The key data is duplicated here to easily copy and paste to the GUI interface.

KEY = 8000

Overview Generate UFPK Generate KUK | Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update,

{_JFile Browse...

® Raw 2000|

Figure 66. Set up the Key Data

Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair created in section 4.2 and 4.4. For the 1V, select Generate random value. In the Output option,
select RFP; then click the Browse button, choose the output folder, and name the output file.

R11AN0496EU0130 Rev.1.30 Page 37 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Wrapping Key

UFPK UFPK File: C\secure_key_injection‘\keys_gui\ufpk.key | Browse... I

W-UFPK File ; | C\secure_key_injection\keys_gui\ufpk.key_enc.key Browse...

OKUK | C\secure_key_injection\key_update_key.key Browse.,

v
I@ Generate random value I

(O Use specified value (16 hex bytes, big endian format)

Qutput

Format: | RFP v IFile: C:\secure_key_injection\keys_gnli\AESESé.rkey ‘l Browse...

10000 Key name : | NEW_AES128

Generate file

Status Clear Help
Output File: C:\secure_key_injection\keys_gui\AES256.rkey .
UFPK: 000102030405060708090A0B0CODOEOF000102030405060708090A0BOCODOEOF
W-UFPK: 000000006FEE15036A3B4E726F0B3FIE1F74BT076FEE15036A3B4E726F0B3FOE1F74B707
IV: B2AB0515ADD2078BD23F24402B414883
Encrypted key:
8BIF70CAGEQTFCFCFEE3CDCTAB137B62B0B551D289E51F85507044E2B843291B2D1B57A3D0ABI9DSAL4B4B12E31B88A2
OPERATION SUCCESSFUL v

Figure 67. Generate the AES 256 RFP Injection Key File
Now click Generate File. The AES256. rkey file will be generated.

The plaintext AES-256 key and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of
the key injection file contents.

5.1.1.2 Wrap an Initial ECC Public Key with the UFPK
A set of NIST test vectors are used in this application project.

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Component-Testing

M=g =

590523887 7cT77421f73e43ee3da6f2db%e2ccadsfcP42dececlcbd25482935faaf416983fel6Sblal4See2bodl
ebdca3bdfd46c4310a7461f9a37960cac72d3feb54732253605fb1ddfd2B8065b53chb5858a8ad28175bE9%kbd386
ated4T7leaTabbclToc934a8d791e91491eb3754d03799790fe2d308d16146d5c900d0debds7d79ced

Qx = lecke9lcOTE5fcT7E4£f033bfaZ248dbE8fccd3565de4bbf12f3c59ff4ec2T1REES

Qv = ced40l4ce83llf%a2lalfdbicliecll3eledbTcad3b7404eT78dcTocodScai%adcald

R = f3ac8081b514795b8843e3d662952 7ed2afdeéblfEa555aTacabb5e6f79c8c2ac
5 = 8bf77819ca05a6b2T786cTE262bET371cefoTh218296E175a3ccddazacc058903
Figure 68. NIST ECC secp256rl Test Vector
R11AN0496EU0130 Rev.1.30 Page 38 of 71

Oct.25.22 RENESAS

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Component-Testing

Renesas RA Family Injecting and Updating Secure User Keys

Launch the SKMT GUI and select RA Family, SCE9 Protected Mode on the Overview tab. On the Wrap
Key tab, select the Key Type as ECC and secp256r1, public as shown in Figure 69.

% Security Key Management Tool — O x

Overview Generate UFPK Generate KUK | Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Key Type Key Data

| (ODLM | DLM-S5D TDES (
I (O KUK () RSA 2048 bits, public

() AES 128 bits @) ECC secp23brl, public w
l ARCA (O HMAC |SHAZ56-HMAC

Figure 69. Choose secp256rl Public Key
Next, configure the Key Data. Under the Key Data area, select Raw and provide the Qx and Qy as shown
below. The key data is duplicated here to easily copy and paste to the GUI interface.
Qx = 1lccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46¢271bf83
Qy = ce4014c68811f9a21alfdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9

Overview Generate UFPK Generate KUY Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Key T}rpe KE}" Data

) File Browse...

®Raw Qx| 1cche9l cOT5fcTF4033bfa248dbfccd3565ded4bbfb1 23c58f46c271bfA3

Qy i) cedD14c68811f9a21a1fdb2cleb113e06dbTcad3bT404eT8dc TecdScaddadcad

Figure 70. Provide the ECC Public Key data

R11AN0496EU0130 Rev.1.30 Page 39 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Next, under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-
UFPK key pair created in section 4.2 and 4.4. For the 1V, select Generate random value. For the Output
option, select RFP; then click the Browse button, choose the output folder, and name the output file.

Wrapping Key

(® UFPK UFPK File |‘ Ci\secure_key_injection\keys_gui\ufpk.key Browse...
W-UFPK File ;I Ci\secure_key_injection\keys_gui\ufpk.key_enc.key Browse...

OKUK KUK File ; C\secure_key_injection\key_update_key key Browse...

v

| 5:2 Generate random value I

(O Use specified value (16 hex bytes, big endian format)

Output
Format : ~ | File: ‘C:\secure_key_injedion\keys_gui\ECC_Public_Key.rkey Browse...
10000 Key name : | NEW_AES128
I | Generate file l I
Status Clear Help
Output File: C\secure_key_injection\keys_gui\ECC_Public_Key.rkey ~

UFPK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF

W-UFPK: 000000006FEE15036A3B4E726F0B3FSE1F74B7076FEE15036A3B4E726F0B3FOE1F74B707

IV: B3753B6EE872153846507EFCC21E8147

Encrypted key:
FO3FB1DEB1FOGSE67730D2EF81085273F91D3A29CI3AFFAB454DF180737A3C4BC67CE2ZACA2TA3482DCCA38D835440DAT56E
EG4ATD117D2ACAE2ZBADFOF75F37FD652BB08C201911E061F7ATEDFDS3B2CT

OPERATION SUCCESSFUL

Figure 71. Generate the ECC Public Key RFP Injection Key File using GUI

The plaintext KUK and UFPK are NOT contained in the *. rkey file, enabling confidential transfer of the key
injection file contents.

R11AN0496EU0130 Rev.1.30 Page 40 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5.1.1.3 Wrap a Key-Update Key with the UFPK
The SKMT can be used to generate a sample KUK. To generate the KUK key file, navigate to the Generate
KUK tab and use : 000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0eOT.

Click the Browse button to select the folder and file name for the generated key file, here specified as
kuk_for_new_key.key. Next, click Generate KUK key file, and the kuk_for_new_key.key file will be

generated in the selected folder.

E Security Key Management Too — O b4

Overview Generate UFPK | Generate KUK IWrap Key

i i

Key-Update Keys (KUKs) are used to securely update application keys after production programming.
The KUKs themnselves must be securely installed.

Key-Update Key

i) Generate random value
(®) Use specified value (32 hex bytes, big endian format)

000102030405060702090a0b0c0d0e0f000102030405060702000a0b0c0d 0elf

Cutput file (key) :

L

ChUser_key_installation_protected_mode\keys_guitkuk_for_new_key.key | Browse...

Generate KUK key file

Help
KUK: 000102030405060708090A0B0CODOEOFOD0102030405060708090A0B0CODOENF ”
Output File: ChUser_key_installation_protected_modelkeys_guitkuk_for_new_key.key
OPERATION SUCCESSFUL w

Figure 72. Generate the KUK File used to Encrypt the User Key for SCE9

R11AN0496EU0130 Rev.1.30 Page 41 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Next, we will wrap the KUK so it can be injected to the MCU. Navigate to the Wrap Key page and choose
KUK from the Key Type area.

B security Key Management Tool — O *

Overview Generate UFPK Generate KUY Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Key Type | Key Data

(O DLM | DLM-55D TDES

(®) KUK (CIRSA 2048 bits, public

() AES 256 bits (OECC secpd36rl, public
ARC4 (O HMAC | SHAZ56-HMAC

Figure 73. Choose KUK to Wrap

Navigate to the Key Data page, select the File option, and browse to the kuk_for_new_key.key key file
generated in Figure 72.

Security Key Management Tool = O X

Overview Generate UFPK Generate KUK |Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Keylype

@ File |‘ C:\secure_key_injection\keys_gui\kuk_for_new_key.key =
(O Raw

Figure 74. Provide the KUK .key File

R11AN0496EU0130 Rev.1.30 Page 42 of 71
Oct.25.22 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

Next, under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-
UFPK key pair created in section 4.2 and 4.4. For the 1V, select Generate random value. For the Output
option, select RFP; then click the Browse button, choose the output folder, and name the output file.

Now click the Generate File button. The KUK . rkey file will be generated.

Wrapping Key

K@ Generate random value I

(O Use specified value (16 hex bytes, big endian format)

Output

RFP v~ File:

Format [Ci\secure_key_injection\keys_gui\KUK.rkey

® UFPK UFPK File : I| C\secure_key_injection\keys_gui\ufpk.key iI Browse...

W-UFPK File i| C\secure_key_injection\keys_gui\ufpk.key_enc.key |i Browse...
O KUK Ch\secure_key_injection\key update_key.key Browse...
v

10000 ey name : | NEW_AES128

Generate file

Output File: C:\secure_key_injection\keys_gui\KUK.rkey

UFPK: 000102030405060708090A0B0CODOEOF000102030405060708090A0B0CODOEOF

W-UFPK: 000000006FEE15036A3B4E726F0B3FIE1F74B7076FEE15036A3B4E726F0B3FOE1F74B707
IV: 76450FAOE71FF768114FDD0533139B41

Encrypted key:

OPERATION SUCCESSFUL

Status Clear Help

50A2C54E051BBAEF563CE7789DDD75AE440AE287310BE4691186DED4B12969C0804934420EA9AAZCOTFOEZTAB25DEDET

Figure 75. Generate the Key-Update Key Injection File using GUI for SCE9

5.1.1.4 Wrap a New AES-256 User Key with the KUK

In the section, we will use the kuk_for_new_key .key generated in Figure 72 to wrap a new AES-256 key.

We will use a second NIST test vector to demonstrate secure key update using the KUK.

KEY = c000

IV = 00000000000000000000000000000000
PLAINTEXT = 00000000000000000000000000000000
CIPHERTEXT = b291l6Scdcf2di3ei38l25alZecbaad0n

Figure 76. NIST Test Vector as New AES-256 Key Test Data
Navigate to the SKMT Wrap Key tab. In the Key Type area, select AES-256 with 256 bits.

Overview Generate UFPK Generate KUK Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Key Type Key Data

ODLM |DLM-55D TDES
COIKUK (O RSA 2048 bits, public
1 @) AES 256 bits e (OECC secp256rl, public
ARC4 OHMAC | SHA5E-HMAC

Figure 77. Choose AES 256bit New User Key

R11ANO496EU0130 Rev.1.30

Oct.25.22 RENESAS

Page 43 of 71

Renesas RA Family Injecting and Updating Secure User Keys

In the Key Data area, provide the key data from the NIST vector based on Figure 76. The key data is
duplicated here to copy and paste into the GUI interface.

KEY = ¢000

Key T}rpe KE’_‘,‘ Data
_J File Browse...
(@) Raw

Figure 78. Provide the New AES 256-bit Key Data

In the Wrapping Key area, select KUK as the wrapping key and click Browse to locate the
kuk_for_new_key.key file generated in Figure 72. For the 1V, choose Generate random value. For the
Output option, choose C Source and name the output file as new_aes_key.c. Name the Key name
property as NEW_AES256. This name will be used in the source files for key-specific definitions.

Finally, click Generate file. Both the new_aes_key.c and the new_aes_key _h files will be generated.

Wrapping Key

L,’:J UFPK |IEPKE C:\secure_key_injection\keys_gui\ufpk.key Browse...
Ci\secure_key_injection\keys_gui\ufpk.key_enc. key Browse...

@® KUK KUK File: C\secure_key_injection\keys_gui\kuk_for_new_key.key Browse...

v

I@ Generate random value I

(O Use specified value (16 hex bytes, big endian format)

Qutput
Format:] |CSo ~ |File: C:\secure_key_injection\ke)rs_guiinew_aes_key.c J Browse...
10000 Key name: “NEW_AESZSB |
I Generate file I
Status Clear Help
Output File: C:\secure_key_injection\keys_gui\new_aes_key.h A

Output File: C:\secure_key_injection\keys_gui\new_aes_key.c

KUK: 000102030405060708090A0B0CODOEOF000102030405060708090A0B0CODOEQF

IV: 7TF27A610925502A809BF066A8F76F950

Encrypted key:
7668697C91D014992E334D221E3BBA141D9614A483B8B3466246CDDB573CFEASOESBETDA4BACT5FE93E7C3D4FAZ5D4DID
OPERATION SUCCESSFUL

Figure 79. Generate KUK-Wrapped AES-256 Key

R11AN0496EU0130 Rev.1.30 Page 44 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5.1.1.5 Wrap a New ECC Public Key with the KUK

In the section, we will use the kuk_for_new_key .key generated in Figure 72 to wrap a new ECC Public
key.

To demonstrate updating the ECC public key, another NIST ECC secp256r1 test vector is used in this
application project.

M=sg =
c35e2f092553c55772926bdbeBTe9796827d17024dbb9233a5453662225987dd344deb72df987144b8c6c43b
cd4lb&54b84cciSeeleébbedTai2lcBeci38b503e3dE6728c45%4a%€7d83011a0e050kb5d54cd47f4e366c0812kbe
B808fbb2eaScefaciifb3ebect342738e225f7c7c2b011lce3Tib56621a20642b4d36e060db4524aF1

0= = e2ebddfdcl?2e68db30d4cal3e8fT7749432c416044F2d208c10bE3d4012aeffata

Qy = bfafed04a2e89ffecTd47ciE8TefTad7a7f456b863b4d02cfce928973akb5kblck3d

R 976d3a4e8d23326dclbaa®fas60bTcd4e53f425864£5058483a64T73b6a2110759k2db

5 1b7eee8cebTlhacclldedd4eelafde2eddcfaes2aeS01T7d4555b8eeefel3eal 32

Figure 80. New Set of NIST ECC Test Vectors
Follow the procedure below to wrap the new ECC public key using the KUK file generated in Figure 72.

From the SKMT GUI, make sure RA Family, SCE9 Protected Mode is selected from the Overview page.
Next, navigate to Wrap Key page. Select the Key Type as secp256r1, public as shown in Figure 69.

Under the Key Data area, select Raw and provide Qx and Qy as shown below. The key data is duplicated
here so user can copy and paste to the GUI interface.

Qx = e266ddfdc12668db30d4ca3e8f7749432¢c416044f2d2b8c10bf3d4012aeffa8a
Qy = bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39

Ke}r T}rpe KE’_‘," Data

{_JFile Browse...

@ Raw Ox:| e266ddfdc12668db30d4caledf7749432c416044f2d2bac 10bf3d401 2aeffada

Qy : | bfaB6404a2e0ffebTdd7c587efTalTaTi456b863bAd02 cfcf028973absb1cb3y|

Figure 81. Provide the New ECC Public Key Data

R11AN0496EU0130 Rev.1.30 Page 45 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Next, under the Wrapping Key section, click the corresponding Browse button to select the KUK generated
in section 5.1.1.2. For the IV, select Generate random value. In the Output option, choose C Source and
name the output as new_ecc_public_key.c. set the Key name to NEW_ECC_PUB.

Finally, click Generate file. Both the new_ecc_public_key.c and the new_ecc_public_key.h files will
be generated.

Wrapping Key
(O UFPK : C:\secure_key_injection\k

m

ys_gui\ufpk.key Browse

Ci\secure_key_injection\keys_gui\ufpk.key_enc.key

m
n

@® KUK KUK File: Ci\secure_key_injection\keys_guf\kuk_for_new_key.key Browse...

v

Ir@ Generate random value I

(O Use specified value (16 hex bytes, big endian format)

Output

Format: CSo ~ File: C:\secure_key_injecticrn\keys_guiInew_ecc_public_key.c ‘ Browse...

Key name : | NEW_ECC_PUB]
P—

| Generate file I

Status Clear Help

QOutput File: C:\secure_key_injection\keys_gui\new_ecc_public_key.c A
KUK: D0D102030405060708090A0B0CODOEOFD00102030405060708090A0BOCODOEDF

IV: 8E7CB4BDCBBE76224CCBE3B561757857

Encrypted key:

827E9C277B0ADSF00688B53B20FOF0BOA02ATABE26E20048C42AB1CEBO674C45F82E61CD6973254863BABCO66E 1353084963
5E6BFEFE207FEESFFBF537B1C47B59DC2D1F921F32A23BC217FCCO4F50BBC

OPERATION SUCCESSFUL

Figure 82. Generate KUK-Wrapped ECC Public Key

5.1.2 Using the SKMT CLI Interface

This section describes how to perform the actions described above using the SKMT CLI interface. These
examples use SCE9 Protected mode, but SCE7 support is fundamentally the same.

The /genkey command of the Security Key Management Tool command line tool skmt . exe will be used to
prepare keys for secure injection and update. These are the options for this command:

o /keytype — This input can take either ASCII or a one-byte hexadecimal input parameter indicating the
key type.

e /ufpk — The User Factory Programming Key.

e /wufpk — The Renesas HRK-wrapped UFPK.

e /kuk — The Key-Update Key for secure key update.

e /mcu — The target MCU and security engine.

e /output — The output of the command.

Refer to the Security Key Management Tool user’'s manual for more information about these commands,
including the valid values for each parameter.

This application project uses an AES-256 key and an ECC secp256r1 public key to illustrate the secure key
injection and update processes.

For these examples, we will use the UFPK and W-UPFK created earlier.

R11AN0496EU0130 Rev.1.30 Page 46 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5.1.2.1 Wrap an Initial AES-256 Key with the UFPK

In the Command Prompt window opened earlier (section 4.3), use the following command to create the AES-
256 key injection file (AES256_CL 1 . rkey). Refer to the Security Key Management Tool user manual for
more information on how to construct the command.

Skmt._exe /genkey /ufpk

file="C:\User_key injection_protected_mode\keys guil\ufpk.key” /wufpk
file="C:\User_key_injection_protected_mode\keys_gui\ufpk.key enc.key” /mcu
“RA-SCE9” /keytype “AES-256" /key
*8000” /Tiletype
“rfp” /output “C:\User_key injection_protected_mode\keys gui\AES256_ CLI.rkey”

Note that in this example:

e We are using 8000
from the NIST vector in Figure 64 as the AES-256 plaintext user key.

e We have specified the key type “AES-256"".

e “RA-SCE9”is used for the /mcu option.

e We are using a randomly generated IV. The IV changes each time this command is executed.

In this example, we have specified the complete file path for the key file AES256_CLI . rkey.

Output File: C:\User_key injection_protected_mode\keys_ gui\AES256_CLI .rkey

UFPK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF

W-UFPK: OOOO0000O6FEE15036A3B4E726FOB3F9E1F74B7076FEE15036A3B4E726FOB3F9EL1F74B707
1V: 0B730F4F7194A9CB67E284A1B0OD2A370

Encrypted key:
1D6612F7F276BFBBEBE05410151C43E74E0368D3FB0688FB7A5D2D35E2B286A9963C14F3FE16A4529AAC7E8BO650EB72

Figure 83. Create the AES-256 User Key Injection File

The generated key file AES256_CL1 . rkey now contains the encrypted user key along with the W-UFPK.
The plaintext AES-256 key and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of
the key injection file contents.

5.1.2.2 Wrap an Initial ECC Public Key with the UFPK

In this section, we will use the ECC key pair in Figure 68 as example of preparing an ECC public key for
secure key injection.

In the Command Prompt window opened earlier (section 4.3), use the following command to create the ECC
public key injection file (ECC_Public_Key_ CLI.rkey). Refer the Security Key Management Tool user
manual for more information on how to construct the command.

Skmt.exe /genkey /ufpk
file="C:\User_key_injection_protected_mode\keys_gui\ufpk.key” /wufpk
file="C:\User_key_injection_protected_mode\keys guil\ufpk._key enc.key” /mcu
“RA-SCE9” /keytype “secp256rl-public” /key
“1ccbe91c075Fc7F41033bfa248db8fccd3565de94bbTh12¥3c59FF46c271bT83
ce4014c68811F9a21alfdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9” /Filetype
“rfp” /output

“C:\User_key_injection_protected_mode\keys gui\ECC_Public_Key CLI.rkey”

Note that in this example:

e 1lccbe91c075Fc7f4f033bTa248db8fccd3565de94bbfh12F3c59FF46c271bf83
ce4014c68811f9a2l1alfdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca is the NIST ECC
public key from Figure 68 .

e We have specified the key type “secp256rl-public”.

e “RA-SCE9”is used for the /mcu option.

e We are using a randomly generated IV. The IV is updated in each encryption instance.

e The command option Zoutput defines the locations and name of the output file.

R11AN0496EU0130 Rev.1.30 Page 47 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Output File: C:\User_key injection_protected_mode\keys_gui\ECC_Public_Key_ CLI.rkey
UFPK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF

W-UFPK: 1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEFE12345678
1V: 0273B7277508F33491F2BA569B092535

Encrypted key:
1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234
567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF

Figure 84. Create the ECC Public Key Injection File Using CLI
5.1.2.3 Create and Wrap a Key-Update Key with the UFPK
We can use the SKMT to create a key file for a KUK. This is done with the following command:

skmt._exe /genkuk /kuk
'000102030405060708090A0BOCODOEOF000102030405060708090a0b0c0d0e0f"" /output
"C:\User_key_injection_protected_mode\keys gui\kuk for_new_key cli_key"

Note that in this example:

e We have specified the complete file path for the key file.
e We need to use the same Key-Update Key as used in section 5.1.2.3 .

KUK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF
Output File: C:\User_key_ injection_protected_mode\keys gui\kuk_ for_new_key cli.key

Figure 85. Create the KUK Key File

The generated key file kuk_for_new_key cli.key now contains the KUK. Retain this key file to use for
wrapping new user keys for secure key update.

To enable secure key update, we must first securely inject the KUK. Use the SKMT to wrap the KUK with
the UFPK and create a key injection file for use with RFP with the following command:

skmt._exe /genkey /ufpk
file="C:\User_key_injection_protected_mode\keys guil\ufpk._key” /wufpk
file="C:\User_key_injection_protected_mode\keys_gui\ufpk.key enc.key” /mcu
“RA-SCE9” /keytype “key-update-key” /key

File="C:\User_key injection_protected_mode\keys gui\kuk for_new_key cli_key”
/Tiletype “rfp” /output
“C:\User_key_injection_protected_mode\keys gui\KUK_CLI .rkey”

Note that in this example:

e We are using the KUK key file created above.

e We have specified key type “key-update-key”.

e We are using a randomly generated IV. The IV changes each time this command is executed.
¢ In this example, we have specified complete file path for the key file (KUK_CL1I . rkey).

Output File: C:\User_key_injection_protected_mode\keys gui\KUK_CLI.rkey

UFPK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF

W-UFPK: 1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEFE12345678
1V: 1234567890ABCDEF1234567890ABCDEF

Encrypted key:
1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF

Figure 86. Create the Key-Update Key Injection File Using CLI

The generated key file KUK_CL1 . rkey now contains the wrapped KUK along with the W-UFPK. The
plaintext KUK and UFPK are NOT contained in the * . rkey file, enabling confidential transfer of the key
injection file contents.

R11AN0496EU0130 Rev.1.30 Page 48 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Wrap a New AES-256 Key With the KUK

The user can use the following command to wrap the new AES key defined in Figure 76 using the KUK. This
is done with the following command.

C:\Renesas\SecurityKeyMangementTool\cli>skmt.exe /genkey /kuk
File="C:\Secure_Key_Injection\keys gui\kuk_for_new_key cli_key" /mcu "RA-SCE9"
/keytype "AES-256" /key
**c000*" /Filetype
""csource" /keyname ""NEW_AES256" /output

"C:\User_key injection_protected mode\keys gui\new _aes key cli.c"

Note that in this example:

e We are using cO00 as
the new AES-256 plaintext key.

e We are using a randomly generated IV. The IV changes each time this command is executed.

e We use the /keyname to create an identifiable key structure name that is unique in the software project.
This resolves confusions when more than one set of new user keys are to be generated. If this option is
not provided, a key structure name of encrypted_user_key data is generated for the key structure.

e The generated new_aes_key cli.c and new_aes_key cli.h files include the output information in
a data structure. The user can directly include these two files in the application project. This is
demonstrated in the example project included.

Output File: C:\User_key_injection_protected_mode\keys_gui\new_aes_key cli.h
Output File: C:\User_key injection_protected_mode\keys_gui\new_aes_key cli.c
KUK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF

1V: 3C8841F6E6AE05B7625098EC70C542C1

Encrypted key:
03FE218ABCDOAD2F5A5634833ABD7F4D6F4CF8BF2CAC737CE1BES6C28DFOADAD52536EED8DF405031230F935B087ECAQ

Figure 87. Encrypt the New User Key with the KUK
5.1.2.4 Wrap a New ECC Public Key With the KUK
Use the following command to wrap the new ECC public key shown in Figure 80.

skmt.exe /genkey /kuk
file="C:\Secure_Key_ Injection\keys gui\kuk for_new_key.key" /mcu "RA-SCE9"
/keytype "secp256rl-public" Zkey
"e266ddfdc12668db30d4ca3e8F7749432c416044F2d2b8c10bf3d4012aeffa8abfa86404a2e9f
fe67d47c587ef7a97a7f456b863b4d02cTc6928973ab5blcb39™ /filetype "csource"
/keyname “NEW_ECC_PUB” /output

"C:\Secure_Key Injection\keys gui\new_ecc_public _key cli.c"

Note that in this example:

e e266ddfdc12668db30d4ca3e8f7749432c416044F2d2b8c10b¥3d4012aeffa8a
bfa86404a2e9ffe67d47c587et7a97a7t456b863b4d02ctc6928973ab5b1cb39 is the ECC public
key from the NIST test vector shown in Figure 80.

e The key type “secp256r1-public” is one of the available options specified in the Security Key
Management Tool user’s manual.

e "RA-SCE9"is used for the /mcu option.

e We are using a randomly generated IV. The IV changes each time this command is executed.

e The command option Zoutput defines the locations and name of the output file.

o We use the /keyname to create an identifiable key structure name that is unique in the software project.
This resolves confusions when more than one set of new user keys are to be generated. If this option is
not provided, a key structure name of encrypted_user_key data is generated for the key structure.

e The generated new_ecc_public_key cli.c and new_ecc_public_key cli.h filesinclude the
output information in a data structure. The user can directly include these two files in the application
project. This is demonstrated in the example project included.

R11AN0496EU0130 Rev.1.30 Page 49 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

Output File: C:\Secure_Key_Injection\keys_gui\new_ecc_public_key cli.h
Output File: C:\Secure_Key_ Injection\keys gui\new_ecc_public_key cli.c
KUK: 000102030405060708090A0BOCODOEOF000102030405060708090A0BOCODOEOF
1V: 36E763D5A82924B4888732D50C93B602

Encrypted key:
9BOA7F8C91C038704A4F2C758EAC3DDD1372B4DC6AA4F22667D7D0OE41218A1DEDBB8337E557B59B91100225BC8BBE2807221
4FF3C729D953AEFA9EQ97C3989967C831DC6501E9528715ADA30FAOD0402

Figure 88. Encrypt the New ECC Public Key with the KUK

5.2 Secure Key Injection via Serial Programming Interface

Follow this section to inject the AES-256 key, the ECC public key, and the Key-Update Key (KUK) that were
prepared in section 5.1.1 or section 5.1.2. This capability is supported by RA Family MCUs that incorporate
the SCE9 (Protected Mode) or SCE5_B security engine.

5.2.1 Setting up the Hardware
Set up the EK-RA6M4 evaluation board as follows.

e Set the jumpers to their default settings. Refer to the EK-RA6M4 User’'s Manual for details.
e Connect the EK-RA6M4 J10 connector to the development PC using a USB micro-B cable to provide
power and a debug connection using the on-board debugger.

Erase the entire MCU flash and ensure that the MCU is in the SSD Device Lifecycle State. This can be done
using the Renesas Flash Programmer, as shown here.

1. Unzip rfp_project.zip

2. Launch the Renesas Flash Programmer GUI executable

3. Select File > Open Project and select rabm4_secure_key inject.rpj.

4. Select Device Information > Initialize Device.

File | Dewvice Information I Help

File I Device Information Help Operati Read Device Information
Mewy Project... Read Memony..
| Open Project., Fr Read Flash Options
Save Project | I Initialize Device I
) DLM Transition
Sawve Irmage File..,

Figure 89. Open RFP Project and Initialize the Device

Upon successful initialization, the following message will be printed.

Tareet device : RYFABMAAFIGFE

Connecting the tool

Toal - J-Link {J-Link OB-5124 compiled Feb 2 2021 16:57:21), Interface : 2 wire UART
Connecting to the target device

Setting the tarzet device

Communication speed @ 9600bps

Setting the target device

Erasing the target devic

Dizconnecting the tool
Operation completed

Clear statuz and meszage

Figure 90. RA6M4 Initialization

Unless there are permanently locked flash blocks, the entire flash will be erased and the RA6M4 will be set
to SSD state through the above steps.

R11AN0496EU0130 Rev.1.30 Page 50 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5.2.2 Inject the Initial User Key and Key-Update Key

After initializing the RA6M4, power-cycle the board and follow the steps below to inject the AES-256 key, the
ECC public key, and the Key-Update Key. This section uses the set of injection keys generated from the GUI
interface.

To simplify duplicating this example, the . rkey files that match the example project are included in the
rfp_resources.zip file. If the user has used the NIST vectors included in this application project for
verification purpose, they can use the included . rkey files for system verification. The screen captures
included in this section use these files for demonstration purpose. If different keys are used, then the
corresponding - rkey files must be updated to match those keys.

¢ Navigate to the User Keys tab and check Write User Keys.

l‘ Renesas Flash Programmer W3.08.00 (Free-of-charge Edition) — b

File Dewvice Information Help

Operation Operation Settings Block Settings Flash Options - Connect Settings Unique Cc-de

rike User Keys
Encrypted key File

Addrezs: | 00000000 Add Key Femove Selected Keps
| Address File M arne |

Figure 91. Select Write User Keys

e Click "= and browse to the .rkey file containing the AES256 key, which for this example is
\rfp_resources\user_keys\AES256. rkey (Figure 67). Set the Address property to a data flash
or code flash address applicable for your specific application. In this example, the AES key will be
injected to the first block of Data Flash at 0x08000000.

Operation Operation Seftings Block Seftings Flash Options Connect Settings Unigue Code User Kays

Write User Keys
Encrypted Key File
| ion_protected_moder11an0456eu01 1'II-raiecure-key-instaII-Llpdate‘u‘fp_resources‘u.lser_keys\ﬁESZﬁﬁ.ﬂ(eﬂ]|

Address : || 08000000 —| Add Key Remove Selected Keys

Figure 92. Configure the AES-256 User Key Selection and Injection Address
e Click Add Key. The selected AES key will be added for injection.

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Cods User Keys

Wiite User Keys

Encrypted Key File
Address ;| 00000000 I Add Key I Remove Selected Keys
Address File Name

CAlser_key_installation_protected_mode'r11an045962u0110+a-secure-key-install-updatefp. ..

Figure 93. AES-256 User Key is Configured for Injection

R11AN0496EU0130 Rev.1.30 Page 51 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

e Click "= and browse to the ECC_Public_Key.rkey (Figure 71). Set the Address property to a data
flash or code flash address applicable for your specific application. In this example, the ECC public key
will be injected to the third block of Data Flash at 0x08000080.

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code User Keys

Wite User Keys

Encrypted Key File
|acted_mode\r1 1an0496eul110+a-securefkey-nstall-update wfp_resourceswser_keys\ECC_Public_Key key
Address : | | 02000080 —| Add Key Remove Selected Keys

Figure 94. Configure the ECC Public Key Selection and Injection Address
e Click Add Key. The selected ECC public key will be added for injection.

Operation Operation Settings Block Settings Flash Options Connect Settings Unigue Code User Keys

Write User Keys
Encrypted Key File

Address : 00000000 Add Key Remove Selected Keys

Address File: Name
08000000 CiUser_key_installation_protected_mode'r11an04596eu0110+a-securefey-nstal-updatedp...
C:xUser_key_installation_protected_mode’r11an0456eu0110+a-secure-key-install-update'dp ..

Figure 95. ECC Public Key is Configured for Injection

e Click "= and browse to the KUK. rkey (Figure 75) or KUK_CLI . rkey (Figure 86) file generated in
Figure 86. Set the Address property to a data flash or code flash address applicable for your specific
application. In this example, the Key-Update Key will be injected at code flash address 0x40000.

Operation Operation Settings Block Settings Flash Options Connect Seftings Unique Code User Keys

Write Uzer Keys
Encrypted Key File
|a||ationjrotected_mode\r1‘lanﬂdﬂﬁeuﬂ‘l 10+ iecure-ke'_.'-instaII-L|pdate‘u'fp_resources‘u.lser_keys\KUK.rke:.'D

Address : 00040000 || Add Key Remove Selected Keys

Figure 96. Configure the Key-Update Key Selection and Injection Address
e Click Add Key. The selected Key-Update Key will be added for injection.

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code User Keys

Write User Keys

Encrypted Key File
Addrezs : | DDD0O0DOOO Add Key Remove Selected Keys

Address File Name
0E000000 Colser_key_installation_protected_mode’r11an0456eu0110+asecurekey-nstall-updatedp. ..
02000030 Colzer_key_installation_protected_mode'r11an04562u0110+rasecurekey-nstall-update dp. ..
00040000 CMUser key installation_protected _moder11an0496eu0110+a-securekey-install-update™p...

Figure 97. Key Update Key is Configured for Injection

R11AN0496EU0130 Rev.1.30 Page 52 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

e Browse to the Operation Settings tab and note that Erase, Program, Verify, and Erase Before
Program are selected.

File Dewvice Information Help

Operation Operation Settings Block Settings Flash Options Connect Settings Urnique Code User Keys

Commmatd Eraze Optionz
Eraze I Eraze Selected Blocks I w
] P - -
e Frogram & Yerify Options
ey Eraze Before Program

L] Program Flash Options Werify by reading the device

[“erity Flash Options

[1 Checksum
Checksum Type

CRC-32 mathod

Figure 98. Select to Perform Flash Erase, Program, and Verify

e Browse to the Block Settings tab and note that the entire flash region is selected for Erase.

Bl R7FAEMAAFICFE
: O:000FFFFF 1.0M
Data Flash 1 0408000000 Ox0BO0TFFF 8K
Conlig Area 0401004700 0x010042FF 512

Figure 99. Entire Flash Region is Selected for Erase

e Browse to the Operation tab. Click Start to inject the AES-256, the ECC public key, and the Key-Update
Key. The injection should succeed with a similar output message as shown below at the selected flash
addresses.

Operation Operation Settings Block Settings Flash Options Connect Settings Unique Code User Keys

Project Information

Curent Project: | rabmd _secure_key in'ect.E'I

Microcontroller: RYFABM4AF3CFB

Program File

Browse ...

FAash Operation

Erase »> Program => Verify

Start

| [Data Flash 1] 008000000 - 0x08001FFF =ize: 8 K ’

IﬁJ‘riting data to the target device]
[User Kews] 0:x00040000
[User Kews] 0:x02000000
[User Kews] 0x02000080

erifyine data

[Uzer Kews] 000040000
[Uzer Kews] 008000000
[Uzer Kews] 0x08000080

Disconnecting the tool
Operation completed.

Figure 100. Secure Keys Successfully Injected

R11AN0496EU0130 Rev.1.30 Page 53 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

In this example code, no application is programed since we are interested only in the key injection. In a
production flow, it is possible to program the application and user keys together. This operation can also be
performed using the command line function of RFP.

6. Secure Key Injection Preparation for SCE7 Compatibility Mode using SKMT GUI
Interface

This section shows how to generate the .c and .h files which can be used in an application project that
uses the FSP APIs to inject keys for use with the PSA Crypto APIs using the security engine in Compatibility
Mode. This key injection method must be used for both user keys and Key-Update Keys.

6.1 Wrap an Initial AES-128 User Key Using the UFPK
A NIST CAVP test vector is used for demonstration.

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

KEY = e0000000000000000000000000000000

IV = 00000000000000000000000000000000
PLAINTEXT = 00000000000000000000000000000000
CIPHERTEXT = 72alda770f5d7ac4c9ef94d822affd9o7

Figure 101. NIST AES-128 Test Vector

Using the SKMT GUI interface, on the Overview tab, select RA Family, SCE7 Compatibility Mode. On the
Wrap Key tab, in the Key Type area, choose AES and 128 bits.

Overview Generate UFPK Generate KUK | Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Key Type Key Data

DLM | DLM-SSD TDES
(KUK (CRSA 2048 bits, public
(@) AES | 128 bits ~ (O ECC secp236r], public
ARCA OHMAC | SHA256-HMAC

Figure 102. Choose AES-128 bits as the Key Type

Select the Key Data tab and input the Raw Key Data as shown below based on the NIST vector as shown in
Figure 101.

Owverview Generate UFPK Generate KUK | Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Ke}r T}rpe KE}" Data

I File Browse...
® Raw £0000000000000000000000000000000
(_) Random - Qutput file Browse...

Figure 103. Set up the Initial AES-128 Key Data

R11AN0496EU0130 Rev.1.30 Page 54 of 71
Oct.25.22 RENESAS

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

Renesas RA Family Injecting and Updating Secure User Keys

Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair. Choose Generate random value option for the IV data. For the Output option, select C Source;
then click the Browse button, choose the output folder and file name, and name the key. This name will be

reflected in the definitions generated for the C source files.

Now click the Generate File button. The source files to inject the AES key will be generated.

Overview Generate UFPK Generate KUK| Wrap Key

Key Type KE‘y Data

E Security Key Management Tool =

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

a X

Output File: C:\Secure_Key_Injection\initial_aes_128.c

UFPK: 22222222222222222222222222222222 1111111111 11111111 1111111111111

W-UFPK: 0000000071A5C6A5720E0BCT731164CB96EDGABSET364ACEC02BESBET12A3270FB9754F57
IV: 3E974F300B86FC6D59COD21D6DCCTITB

Encrypted key: 585C8F79DB5CBEB434BADD4DDFI0FEODS472948B0014893FC238608201FAEDTA
QOPERATION SUCCESSFUL

O File Browse...
(® Raw e0000000000000000000000000000000
(O Random - Qutput file Browse...
Wrapping Key
(® UFPK UFPK File : l C:\Secure_Key_Injection\ufpk.key ‘ Browse...
W-UFPK File : l C:\Secure_Key_Injection\ufpk.key_enc.key ‘ Browse..,
O KUK Browse...
v
I@ Generate random value I
O Use specified value (16 hex bytes, big endian format)
Output
Format: |C Source ~ | File: l C\Secure_Key_Injection\initial_aes_128.c ‘ Browse..,
ess | 10000 Key name : | AES128 |
| Generate file I
Status Clear Help

v T

Figure 104. Generate the Initial AES-128 Encrypted Key File

Note that the generated new_aes 128.c and new_aes_128_h are used in the RA6M3 secure key injection

example project.

R11AN0496EU0130 Rev.1.30
Oct.25.22 RENESAS

Page 55 of 71

Renesas RA Family Injecting and Updating Secure User Keys

6.2 Wrap a Key-Update Key with the UFPK

To wrap a KUK with the UFPK, we will first generate a KUK .key file. To generate the KUK .key file,
navigate to the Generate KUK tab and input the KUK data. We will use this value for our sample key:

KUK = FFffffffeeeeeeeeddddddddcccccceccbbbbbbbbaaaaaaaa0000000099999999

Click the Browse button to select the folder and file name for the generated key file, shown here as
key update_key._key. Next, click Generate KUK key file to generate the file as specified.

| B Security Key Management Tool — O >

Overview Generate UFPK | Generate KUK I‘Jrap Key

Key-Update Keys (KUKs) are used to securely update application keys after production programming.
The KUKs themselves must be securely installed.

Key-Update Key
() Generate random value

(®) Use specified value (32 hex bytes, big endian format)
I| ffffffffeceeeeeeddddddddccccccccbbbbbbbbaaaaaaaaliioo0009FFFFFFa I

Output file (key) :

| Cih\secure_key_injection’\key_update_key.key | Browse...

Generate KUK key file

Status Clear Help

Output File: C:hsecure_key_injection\key_update_key.key

KUK: FFFFFFFFEEEEEEEEDDDDDDDDCCCCCCCCBEEBEBBEAAAAAAAADDDODODDSI999999
OPERATION SUCCESSFUL

Figure 105. Generate the KUK File used to Inject New User Key for SCE7

We will now create files for securely injecting the KUK. Select the Wrap Key tab. In the Key Type area,
choose KUK. In the Key Data area, select File and specify the key update_key.key file created above.

Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair. Use a random IV for the encryption portion of the wrapping mechanism. For the Output option,
select C Source; then click the Browse button, choose the output folder and file name. Next, name the key
as KUK. This name will be used in the key-specific definitions in the C source files.

Now click the Generate File button. The source files to inject the KUK will be generated.

R11AN0496EU0130 Rev.1.30 Page 56 of 71
Oct.25.22 RENESAS

Renesas RA Family

E Security Key Management Tool — [o]

Overview Generate UFPK Generate KUK] Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Kgy Typg Key Data

(@ File C:\Secure_Key_Injection\key_update_key.key | Browse...

O Raw e0000000000000000000000000000000

(O Random - Output file Browse...

Wrapping Key

® UFPK UFPK File: l C:\Secure_Key_Injection\ufpk.key ‘ Browse...
W-UFPK File : l C:\Secure_Key_Injection\ufpk.key_enc.key ‘ Browse...

OKUK KUKFil Browse...

v

(® Generate random value

(O Use specified value (16 hex bytes, big endian format)

Injecting and Updating Secure User Keys

Output

Format: C Source ~ | File: ‘C:\Secure_l(ey_lnjection\key_update_key.c ‘ Browse...

10000 Key name: | KUK |

| Generate file

Status Clear Help

Output File: C:\Secure_Key_Injection\key_update_key.c

UFPK: 222222222222222222222222222222221 1111111 T T TITIITINIITIITITIIINM

W-UFPK: 0000000071A5C6A5720E0BCT31164CBI6EDGABSETI64ACEC02BESEET12A3270FBOT54F57

IV: 145837504484190E15336B758EBCCC17

Encrypted key:
10771F656FD50D272AE94A986B877FFESF12CT4760AA2EDOATCBDFDC380DSEEBDA0077545D087FAC2002E9095C 198
199

OPERATION SUCCESSFUL

Note that the generated key update_key.c and key_update_key.h are used in the RA6M3 secure key

Figure 106. Generate the Key-Update Key Injection File using GUI

injection example project.

R11AN0496EU0130 Rev.1.30

Oct.25.22

RENESAS

Page 57 of 71

Renesas RA Family Injecting and Updating Secure User Keys

6.3 Wrap a New AES-128 User Key with KUK
We will use a second NIST test vector to demonstrate AES key update using the KUK.

KEY = 80000000000000000000000000000000

IV = 00000000000000000000000000000000
PLAINTEXT = 00000000000000000000000000000000
CIPHERTEXT = 0Oedd33d3c621e546455bd8bal418bec8

Figure 107. Second NIST AES-128 Test Vector
Navigate to the SKMT Wrap Key page, in the Key Type area, and select AES with 128 bits.

B security Key Management Tool = O X

Overview Generate UFPK Generate KUK Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

Key Type Key Data

DLM [DLM-5SD TDES
O KUK ORSA 2048 bits, public
@ AES 128 bits v OECC secp256r1, public

RRCA (OHMAC | SHA256-HMAC

Figure 108. New AES-128 Key

In the Key Data area, provide the key data from the second NIST test vector.

Overview Generate UFPK Generate KUK Wrap Key

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

O File Browse..
(® Raw 80000000000000000000000000000000

(O Random - Qutput file Browse

Figure 109. New AES128 Key

In the Wrapping Key area, select KUK as the wrapping key and click the corresponding Browse button to
select the key update_key._key file generated above. For the IV, choose Generate random value. In the
Output section, select C Source; then click the Browse button, choose the output folder and file name, and
name the key. This name will be reflected in the definitions generated in the C source files.

Then click Generate file. The new_aes_key.c and the new_aes_key . h files will be both generated.
These two files are used in the RA6M3 example project.

R11AN0496EU0130 Rev.1.30 Page 58 of 71
Oct.25.22 RENESAS

Renesas RA Family

Injecting and Updating Secure User Keys

‘f:‘*R Security Key Management Tool

Overview Generate UFPK Generate KUK |Wrap Key

Key Type Key Data
() File

Keys must be wrapped by the UFPK for secure installation or by the KUK for secure update.

C:\Secure_Key Injection\key update key.key

il hed

Browse...

(® Raw

80000000000000000000000000000000

(O Random - Output file

Wrapping Key
(O UFPK

\Secure_Key

_Injection\ufpk.key

C\Secure_Key_Injection\ufpk.key

Browse...

Browse...

_enc.key Browse

L .

® KUK KUK File:

CA\Secure_Key_Injection\key_update_key.key

Browse...

v

(@ Generate random value

O Use specified value (16 hex bytes, big endian format)

OQutput

o

l. C:\Secure_Key |

Format : | C Source File:

Injection\new_aes_128.c] Browse...

10000 Key name | | NEW_AES128

J

Generate

file

Status Clear Help

Output File: C:\Secure_Key_Injection\new_aes_128.h
Output File: C\Secure_Key_Injection\new_aes_128.c

Iv: 2176FDDCF6DDA2FDB0%8306DDC256AD7

OPERATION SUCCESSFUL

KUK: FFFFFFFFEEEEEEEEDDDDDDDDCCCCCCCCEBEEBBBBBAAAAAAAADDODDODDS9999999

Encrypted key: AETB88101A4A9A4D97208D62128DB2352FB3C2FAFCFDACOAAGIB32ET2E250237

Figure 110. Encrypted New AES128 Key File is Generated
7. Example Project for RA6M4 (SCE9 Protected Mode)

To exercise the example projects as is, user can follow b

elow steps:

Inject the included example RFP injection keys (AES256. rkey, KUK. rkey, and

ECC_Public_Key.rkey which are included in rfp_resource.zip) by following section 5.2.2.

A set of new user keys (AES256 as well as ECC

Public Key) generated using the example KUK is

already provisioned in the example projects. User can then directly proceed to exercise the example

project.
[]
To use the example projects with customized keys, user

e To test customized RFP injection keys and new

5.1.1 or 5.1.2 rather than using the ones include

Please do not use the example keys for production support.

can follow below steps:

user update keys (generated by following section
d in rfp_resources.zip), user needs to follow

section 5.2.2 to inject the keys to the MCU. User also needs to generate customized new user key
files (new_aes_key.c/_.h and new_ecc_public_key.c/ .h) with the same key name to replace

R11ANO496EU0130 Rev.1.30
Oct.25.22

Page 59 of 71

RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

the corresponding files used in the example project. Once the example projects are updated, user
can proceed to running the example projects to verify the operations.

e To test new user key update procedure only, user can use the included RFP KUK . rkey file to
generate new source files to replace the corresponding files in the example project. Once the
example projects are updated, user can then proceed to the verification of the operations.

7.1 Example Project Overview
This pair of TrustZone-based secure and non-secure example projects provides the following functions:

Secure project (secure_key_inject_update_raém4_s):

Uses the injected AES-256 key to perform cryptographic operation using AES256-CBC.

Uses the injected Key-Update Key (KUK) to inject the new AES-256 key and store this new AES-256 key
to data flash.

Uses the new AES-256 to perform cryptographic operation using AES256-CBC.

Uses the injected ECC public key to verify the NIST test signature shown in Figure 68.

Uses the injected Key-Update Key (KUK) to inject the new wrapped ECC public key and store this new
ECC public key to data flash.

Uses the new ECC public key to verify the NIST test signature shown in Figure 80.

Non-secure project (secure_key_inject_update_raém4_ns):

Establishes an RTT Viewer interface to allow users to select the intended Secure Crypto Engine and
flash operation.

Calls the non-secure callable APIs provided from the secure project based on user selection from the
RTT Viewer interface.

Prints the user operation results on the RTT Viewer.

Color Legend

NSC APl Veneer

e
L
.

I
e 2 5 [—

Figure 111. Software Block Diagram

R11AN0496EU0130 Rev.1.30 Page 60 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

The FSP modules used in this pair of example projects are:

e r_sce_protected: This module is used in the secure region and provides services to the non-secure
region via non-secure callable APIs

o r_Tlash_hp: This module is used in the secure region and provides services to the non-secure region
via non-secure callable APIs

For more information on designing applications with TrustZone support, refer to the application project
Renesas RA Family MCU Security Design with TrustZone — IP Protection.

7.2 Using the RFP Injected Keys

7.2.1 Formatting the Injected Keys

The keys that are injected into the MCU flash using RFP cannot be used directly by the FSP Crypto APIs. A
minor formatting change is required.

7.21.1 Formatting the Injected AES Key

The following code snippet reads the AES-256 key from flash. The destination buffer can then be used for
cryptographic operations. Replace the macro DIRECT_AES_KEY_ADDRESS with the actual injection address.

static sce_aes_wrapped_key t injected_key;

injected_key.type = SCE_KEY_INDEX_TYPE_AES256;

memcpy(injected_key.value, (uint32_t *)DIRECT_AES_KEY_ADDRESS,
HW_SCE_AES256_KEY_INDEX_WORD_SIZE*4);

7.2.1.2 Formatting the Injected ECC Public Key

The following code snippet reads the ECC public key from flash. The destination buffer can then be used for
cryptographic operations. Replace the macro DIRECT_ECC_PUB_KEY_ADDRESS with the actual injection
address.

static sce_ecc_public_wrapped_key_ t ecc_public_key injected;

ecc_public_key_injected.type = SCE_KEY_INDEX_TYPE_ECC_P256_PUBLIC;

wrapped_ecc_public_key size = sizeof(ecc_public_key injected.value);

memcpy((uint8_t *)(&(ecc_public_key_injected.value)), (uint8_t *)DIRECT_ECC_PUB_KEY_ADDRESS,
wrapped_ecc_public_key size);

7.2.1.3 Formatting the Injected KUK

The following code snippet reads the injected KUK from the flash. The destination buffer can then be used
for secure key update. Replace the macro KUK_ADDRESS with the actual injection address.

static sce_key_update_key t kuk_key;
kuk_key.type = SCE_KEY_INDEX_TYPE_UPDATE_KEY_RING;
memcpy (kuk_key.value, (uint32_t *)(KUK_ADDRESS),HW_SCE_UPDATE_KEY_RING_INDEX_WORD_SI1ZE*4);

7.2.1.4 Formatting an Injected RSA Public Key

This application project does not include an example usage for RSA secure key injection and update, but the
principles are identical. The following code snippet can be used to format an injected RSA public key.
Replace the macro RSA_2048 PUB_KEY_ADDRESS with the actual injection address

static sce_rsa2048 public_wrapped_key t injected_rsa_public_key;

injected_rsa_public_key.type = SCE_KEY_INDEX_TYPE_RSA2048_PUBLIC;

uint32_t wrapped_rsa_2048 public_key size = sizeof(injected_rsa_public_key.value);

memcpy((uint8_t *)(&(injected_rsa_public_key.balur)), (uint32_t *)RSA 2048 PUB_KEY_ADDRESS,
wrapped_rsa_2048_public_key_size);

R11AN0496EU0130 Rev.1.30 Page 61 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

7.2.2 Verifying the Injected Key and the Updated Key

To verify the AES injection, provide the plaintext message and the expected cipher text for the injected AES
key and the updated AES key to the software project. For example, based on the NIST vectors presented in
Figure 64 and Figure 76, use the data below in aes_crypto_operations.c:

#define BLOCK 16
/* NIST vector plaintext message*/
static uint8_t plain_text[BLOCK] = {
0x00, 0x00, 0x00, 0x00, Ox00, Ox00, 0x00, 0x00, Ox00, Ox00, 0x00, Ox00, Ox00, 0x00, 0x00, Ox00
3

/* NIST vector initialization vector for the directly injected AES key and the AES key update*/
static uint8_t i1v[BLOCK] = {
0x00, 0x00, 0x00, 0x00, Ox00, Ox00, 0x00, 0x00, Ox00, Ox00, 0x00, Ox00, Ox00, 0x00, 0x00, Ox00
}:
/* NIST cipher to match directly injected AES key*/
static uint8_t cipher_expected[BLOCK] = {
Oxe3, Ox5a, Ox6d, Oxcb, 0x19, Oxb2, 0x01, OxaO, Oxle, Oxbc, Oxfa, Ox8a, Oxa2, O0x2b, 0x57, 0x59

};

/* NIST cipher to match new AES key */
static uint8_t cipher_expected_new[BLOCK] = {
Oxb2, 0x91, 0x69, Oxcd, Oxcf, O0x2d, 0x83, Oxe8, 0x38, 0x12, Ox5a, 0x12, Oxee, Ox6a, Oxa4, O0x00

};

To verify the ECC public key injection, the expected signature using the ECC private key which matches the
injected ECC public key (see Figure 68) is provided in the array ECC_SECP256R1ExpectedSignature in
ecc_crypto_operation.c.

/* This is an externally generated NIST test signature using the private key */

uint8_t ECC_SECP256R1ExpectedSignature[] =

{

0Oxf3, Oxac, 0x80, Ox61, Oxb5, 0x14, 0x79, Ox5b, 0x88, 0x43, Oxe3, Oxd6, 0x62, 0x95, 0x27, Oxed,
Ox2a, Oxfd, Ox6b, Ox1f, Ox6a, O0x55, Ox5a, Ox7a, Oxca, Oxbb, Ox5e, Ox6f, 0x79, Oxc8, Oxc2, Oxac,
Ox8b, Oxf7, O0x78, 0x19, Oxca, Ox05, Oxa6, Oxb2, 0x78, Ox6c, Ox76, Ox26, Ox2b, Oxf7, 0x37, Oxlc,
Oxef, 0x97, Oxb2, 0x18, Oxe9, Ox6f, 0x17, Ox5a, Ox3c, Oxcd, Oxda, Ox2a, Oxcc, Ox05, 0x89, 0x03

¥

Figure 112. Provision the ECC_SECP256R1ExpectedSignaure Array

Similarly, the expected signature using the ECC private key which matches the updated ECC public key (see
Figure 80) is provided in the array ECC_SECP256R1ExpectedSignature_New in
ecc_crypto_operation.c.

/* This is an externally generated signature using the private key */

uint8_t ECC_SECP256R1ExpectedSignature_New[] =

{

0x97, Ox6d, Ox3a, Ox4e, 0x9d, 0x23, 0x32, Ox6d, OxcO, Oxba, Oxa9, Oxfa, Ox56, OxOb, Ox7c, Ox4e,
0x53, Oxf4, 0x28, 0x64, Oxf5, Ox08, 0x48, Ox3a, O0x64, 0x73, Oxb6, Oxal, 0x10, 0x79, Oxb2, Oxdb,
Ox1lb, 0x76, Ox6e, 0x9c, Oxeb, 0x71, Oxba, Ox6c, 0x01, Oxdc, Oxd4, Ox6e, OxOa, Oxf4, 0x62, Oxcd,
Ox4c, Oxfa, Ox65, Ox2a, Oxe5, 0x01, Ox7d, O0x45, O0x55, Oxb8, Oxee, Oxef, Oxe3, Ox6e, 0x19, 0x32

};

Figure 113. Provision the ECC_SECP256R1ExpectedSignaure_New Array

There is no action needed from the user if the same sets of keys and plaintext messages are used. If new
sets of keys and messages are used, the user needs to update the project with the new credentials for the
above items.

R11AN0496EU0130 Rev.1.30 Page 62 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

7.3 FSP Crypto Module Support for User Key Update

This section introduces the FSP Crypto APIs for SCE Protected Mode that are used for secure user key
update. For a complete description of all FSP Crypto APIs, refer to the FSP User’'s Manual.

To use keys that have been injected via the secure key injection process using the serial interface, the
application must refer to those keys at the address where they were injected. If you inject keys at addresses
other than those demonstrated above, be sure to change your application code to reflect those addresses.
See instructions in section 7.4.

To perform secure AES key update, use the following APl to MCU-uniquely wrap a new AES key using a
previously injected Key-Update Key:

fsp_err_t R_SCE_AES256_EncryptedKeyWrap (
uint8_t *initial_vector,
uint8_t *encrypted_key,
sce_key_update_key t *key update_key,
sce_aes_wrapped_key_ t *wrapped_key)

The API parameters are:

e [in] initial_vector: Pointer to a buffer that holds the initialization vector that was used to wrap the
new key. This must be the IV that was used during the key wrap process shown in section 5.1.1.4 or
section 5.1.2.4. This value will be included in the generated new_aes_key.c and new_aes_key.h.

e [in] encrypted_key: Pointer to a buffer that holds the new key, wrapped by the KUK. In this
example, it is the KUK-wrapped AES-256 key that was output during the key wrap process shown in
section 5.1.1.4 or section 5.1.2.4. This value will be included in the generated new_aes_key.c and
new_aes_key.h.

e [Jin] key update_key: Pointer to the Key-Update Key that was previously injected on the MCU. This
address must match the address used when injecting the KUK in section 5.2.2. The user needs to
update the macro definition KUK_ADDRESS defined in Flash_storage.h to match the injection
address.

o [in, out] wrapped_key: This is the SRAM buffer to store the wrapped new user key. For security
considerations, it is recommended to erase this buffer right after the wrapped key is saved to flash. In
this application project, the newly generated wrapped key is stored to data flash and used in the example
project.

To perform secure ECC public key update, use the following API to MCU-uniquely wrap a nhew ECC public
key using a previously injected Key-Update Key:

fsp_err_t R_SCE_ECC_secp256rl1l_EncryptedPublicKeyWrap (
uint8_t * initial_vector,
uint8_t *encrypted_key,
sce_key_update_key t *key update_key,
sce_ecc_public_wrapped_key_t *wrapped_key)

The API parameters are:

o [in] initial_vector: Pointer to a buffer that holds the initialization vector that was used to wrap the
new key. This must be the IV that was used during the key wrap process shown in section 5.1.1.5 or
section 5.1.2.5. This value will be included in the generated new_ecc_public_key.c and
new_ecc_public_key_h.

e [in] encrypted_key: Pointer to a buffer that holds the new key, wrapped by the HUK. In this
example, it is the KUK-wrapped ECC private key that was output during the key wrap process shown in
section 5.1.1.5 or section 5.1.2.5. This value will be included in the generated new_ecc_public_key.c
and new_ecc_public_key_h.

e [Jin] key update_ key: Pointer to the Key-Update Key that was previously injected on the MCU. This
address must match the address used when injecting the KUK in section 5.2.2. The user needs to
update the macro definition KUK_ADDRESS defined in Flash_storage.h to match the injection
address.

e [in, out] wrapped_key: This is the SRAM buffer to store the wrapped new user key. For security
considerations, it is recommended to erase this buffer right after the wrapped key is saved to flash. In
this application project, the newly generated wrapped key is stored to data flash and used in the example
project.

R11AN0496EU0130 Rev.1.30 Page 63 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

7.3.1 Save the New Wrapped Key to Data Flash

Once a new key is wrapped, the user needs to use the flash driver r_flash_hp to manually store it to the
data flash.

sce_aes_wrapped_key_ t wrapped_new_user_key;
error = R_SCE_AES256_EncryptedKeyWrap (
iv_encrypt_new_key, encrypted_new_key, &kuk_key, &wrapped_new_user_key);

Refer to function store_new_aes_key to_data_ flash() and function
store_new_ecc_pub_key to data flash() for the operations of storing the new wrapped keys to
data flash.

7.4 Import and Compile the Example Project

Follow the steps below to exercise the example project. Note that there are sections of the code that must be
updated using the secure key injection results generated above prior to compiling and running the project.
Note that if the user has used the NIST vectors included in this application project for verification purposes,
steps 4 to 5 can be skipped.

1. Launch e? studio and import secure_key _inject _update_ra6m3.zip file to a workspace.

2. Open crypto_operations.c in the secure project secure_key inject_update ek raétm4_s,
under the folder \secure_key_inject update_s\src.

3. Atthe bottom of Flash_storage.h, find the macro definitions DIRECT_AES_KEY_ADDRESS,
DIRECT_ECC_PUB_KEY_ADDRESS, and KUK_ADDRESS based on Figure 97.

4. Replace new_aes _key.h and new_aes_key.c with the new sets of files generated in section 5.1.1.4
or section 5.1.2.4 located in folder \secure_key inject _update ek raém4_s\src\.

5. Replace new_ecc_public_key.c and new_ecc_public_key.h generated in section 5.1.1.5 or
section 5.1.2.5 located in folder \secure_key_ inject update ek raém4 s\src\.

6. If different file names are used, update the #include definition in aes_crypto_operations.c on
this line to reflect the new file name.

#include "crypto_operations.h”
#include "hal_data.h"
#include "r_sce.h”

#include "flash storage.h”
J#include "new_aes_key.h" |

Figure 114. Include the Generated Header File for AES operation

7. If different file names are used, update the #include definition in ecc_crypto_operations.c on
this line to reflect the new file name.

#include <crypto_cperaticns.h>
#include "hal_data.h”

#include "r_sce.h”

#include "flash storgse . h”
I#include "new_ecc_public_key.h"l

Figure 115. Include the Generated Header File for ECC operation

8. Next, double-click configuration.xml from the secure project. Once the configurator is opened, click
Generate Project Content and then compile the secure project.

9. Expand the non-secure project and double-click the configuration.xml file. Once the configurator is
opened, click Generate Project Content and compile the non-secure project.

R11AN0496EU0130 Rev.1.30 Page 64 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

7.5 Running the Example Project
Once the source code compilation is successful, follow the steps below to exercise the example projects:

1. Choose to debug from the non-secure application. Right-click on
secure_key inject update raém4 ns and select Debug As > Renesas GDB Hardware
Debugging.

2. Execution will halt at the secure project reset handler.

dow Help
13 LS g M

[}

[t B

§3'6§.'nin&§l‘5§ i

|| cryoto_oper.. lg| startup.c le| startup.c 2 lg| main.c lg] user_config.c Lh| app_de
&1 2RORSI3E SystemInit();
=5
56 J* Call user application. */
67 Q00B5936 main{};
eR

Figure 116. Running to the Secure Project Reset Handler

3. Click Resume U twice to run the project.
4. Open the J-Link RTT Viewer with the settings shown below.

ﬂ J-Link RTT Wiewer W7.50a | Configuration *

Coppection to J-Link
[serial Mo

) TCRP
() Existing Session

Specify Target Device

V erragrsar |

Script file {optional)

Target Interface & Speed
SWD w | 4000kHz

RTT Control Block
(7)) Auto Detection () Address (®) Search Range

Enter one or more address rangels) the RTT Control block can be loc
Synkax: <Rangestart [Hex]> <RangeSize=[, <Rangelstart [Hex]:
Example: 0x10000000 0x1000, 0x2000000 O:x1000

I [nx20000000 0x@000 |

Crca

Figure 117. RTT Viewer Setting

5. Click OK. The following menu should be printed.

with directly injected

ith newly updated ey
ith directly injec ECC public key

ly updated ECC public key

Figure 118. Main RTT User Menu

Input 1 to confirm that the cipher text for the first AES key is successfully decrypted by the injected
AES-256 key.

a.

Cryptographic operation with directly injected AES key, which is injected via the serial interface.

successtul with directly injected AES k

sult: Cryptographic operation is

Figure 119. Crypto Operation with Injected AES-256 Key

R11ANO496EU0130 Rev.1.30 Page 65 of 71

Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

b. Input 2 to perform a key update to wrap the new AES-256 key and save the new key to data flash.
Note that the SCE handles the wrapping of the new key internally, without exposing the plaintext
key. It is not possible to extract the plaintext key. The wrapped AES key in SRAM is deleted after
storing to data flash. Note that if menu option ‘1" is rerun after menu item ‘2’ is run, it will fail because
the new AES key will not generate the same cipher text as the original key.

@8> Update the new AES key encrypted with key update key and store the new wrapped key in data flash.

Ba
@8> Result: AES Key is updated and stored to Data Flash

Figure 120. Update the AES Key and Store to Data Flash

c. Input 3 to confirm that the cipher text for the second AES key is successfully decrypted by the
updated AES-256 key.

Cryptographic operation with new wrapped AES key stored in data flash

Result: Cryptographic operation is successful with Updated AES Key

Figure 121. Crypto Operation with the New AES Key

d. Input 4 to confirm that the signature generated using the first ECC private key is successfully verified
by the injected ECC public key.

Cryptographic operation with directly injected ECC public key, which is injected wvia the serial interface.

: Cryptographic operation is successful with directly injected ECC public key

Figure 122. Crypto Operation with Injected ECC Public Key

e. Input 5 to perform a key update to wrap the new ECC public key and save the new key to data flash.
Note that the SCE handles the wrapping of the new key internally, without exposing the plaintext
key. It is not possible to extract the plaintext key. The wrapped ECC public key in SRAM is deleted
after storing to data flash. Note that if menu option ‘4’ is rerun after menu item ‘5’ is run, it will fail
because the new ECC public key cannot verify a signature that was generated by the first key’s
private key.

» Update the new ECC public key encrypted with key update key and store the new wrapped key in data flash.

» Result: ECC public Key is updated and stored to Data Flash

Figure 123. Update the ECC Public Key and Store to Data Flash

f. Input 6 to confirm that the signature generated using the second ECC private key is successfully
verified by the updated ECC public key.

Cryptographic operation with new wrapped ECC public key stored in data flash

Result: Cryptographic operation is successful with Updated ECC public Key

Figure 124. Crypto Operation with the New ECC Public Key

Successful operations of the above menu items conclude the demonstration of the secure key injection and
update in this application project.

R11ANO496EU0130 Rev.1.30 Page 66 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

8. Example Project for RA6M3 (SCE7 Compatibility Mode)

This section introduces SCE7 Compatibility Mode with an example of AES-128 user key injection and
update.

8.1 Overview
This example project demonstrates the following functionalities of the compatibility mode of SCE7:

e AES-128 key injection using the files generated in section 6.1.

o Verifying the injected AES-128 key using PSA Crypto APIs and a NIST AES test vector.
e Key-Update Key injection using the files generated in section 6.2.

e AES key update using the files generated in section 6.3.

e Verifying the updated AES-128 key using PSA Crypto APIs and a NIST AES test vector.

8.2 Using the SKMT Generated Files

The source files generated from Figure 104, Figure 106, Figure 110 are included in the example project.
These files provide the UFPK-wrapped and KUK-wrapped keys used to demonstrate the functionality
described above.

v s secure_key_injection_update_rabm3
:jff Binaries
L Includes
2 ra
2 ra_gen
v @ sre
= SEGGER_RTT
app_definitions.h
common_utils.h
crypto_ep.h
L] hal_entry.c
[|| initial_aes_128.c

initial_aes_128.h Containing Key Information
lg| k date k generated using SKMT
.C| key_update_key.c

key_update_key.h
| new_aes 128.c
new_aes_128.h

Figure 125. RA6M3 Example Project Source Code

8.3 SCE7 Compatibility Mode Key Injection APIs

This demonstration uses the APlIs in the Key Injection module (r_sce_key injection) to perform key
injection. Refer to the FSP User Manual for the complete list of key injection APIs and their parameters.

8.4 Import and Compile the Example Project

Note that if AES keys other than the NIST vectors are used, then those new source files need to replace the
existing files in the example project prior to compiling and running the example project. If the NIST vectors
included in this application project are being used for verification purposes, steps 2 to 5 can be skipped.

1. Launch e? studio and import secure_key_inject_update_ra6m3.zip file to a workspace.

2. Replace initial_aes 128.h and initial_aes 128.c with the new set of files generated in
Figure 104.

3. Replace key update_key.c and key_update_key . h with the new set of files generated in Figure
106.

4. Replace new_aes_128.h and new_aes_128.c with the new sets of files generated in Figure 110.

R11AN0496EU0130 Rev.1.30 Page 67 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5. If different file names are used, update the #include definition in hal_entry.c on this line to reflect
the new file name.

#include "hal_data.h”

#include "common_utils.h"
#include "crypto_ep.h"
#include "app_definitions.h"
#include "hw sce ra private.h”
#include "initial aes_128.h"
#include "key_update_key.h"
#include "new_aes_128.h"

Figure 126. Include the Generated Header File for AES operation

6. Next, double-click configuration.xml. Once the configurator is opened, click Generate Project
Content and then compile the secure project.

8.5 Running the Example Project
Follow the steps below to exercise the example projects:
1. Right-click on secure_key_ injection_update_ra6ém3 and select Debug As > Renesas GDB

Hardware Debugging.
2. Execution will halt at the reset handler.

' SystemInit();

mni|:|:[] .)

while (1)

}
5

Figure 127. Running to the Project Reset Handler

3. Click Resume "™ twice to run the project.
4. Open the J-Link RTT Viewer with the settings shown below.

J-Link RTT Viewer V7.60d | Configuration >

Connection to J-Link

m [serial Mo
() TCPjIP
O Existing Session

Specify Target Device

R7FAGM3AH " |

Script file (optional)
| |

Target Interface & Speed
SWD * 4000kHz

RTT Control Block
(@) Auto Detection] () Address (") search Range
Jink automatically detects the RTT contral block.

Cancel

Figure 128. RTT Viewer Setting

R11AN0496EU0130 Rev.1.30 Page 68 of 71
Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

5. Click OK. The following execution result should be printed. User can step into the code to understand
the code execution flow.

00> Result: Initial AES 128 Key Wrap is successful

00>

ee>

@8> Result: Cryptographic operation is successful with initial wrapped AES 128 key
08>

8>

80> Result: KUK Wrapping is successful

0a>

00>

88> Result: AES 128 Update Key Wrap is successful

ee>

0e>

08> Result: Cryptographic operation is successful with updated wrapped AES 128 key
0e>

Figure 129. Execution Result - Secure Key Injection and Update Example Project RA6M3

9. References

1. Renesas RA Family Device Lifecycle Management Key Injection Application Note (R11AN0469)

2. Renesas RA Family Secure Crypto Engine Operational Modes Application Note (R11AN0498)

3. Renesas RA Family MCU Security Design with TrustZone — IP Protection (R11AN0467)

4. Renesas RA Family MCU Plaintext Key Injection (R11AN0473)

R11ANO0496EU0130 Rev.1.30 Page 69 of 71

Oct.25.22 RENESAS

Renesas RA Family Injecting and Updating Secure User Keys

10. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-rabm4
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11ANO496EU0130 Rev.1.30 Page 70 of 71

Oct.25.22 RENESAS

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family

Injecting and Updating Secure User Keys

Revision History

Description
Rev. Date Page Summary
1.00 May.19, 2021 - First release document
1.10 Jan. 27, 2022 - Update to use Security Key Management Tool CLI V1.0.0
1.20 Mar.25, 2022 - Updated to add SKMT GUI support
1.30 Oct. 25, 2022 - Update to support SCE7 with FSP v4.0.0

R11ANO496EU0130 Rev.1.30

Oct.25.22

Re Page 71 of 71
KENESAS

Notice

1.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWWw.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

Rev.4.0-1 November 2017)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2022 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. SCE Wrapped Key Creates Root of Trust
	1.1 Introduction to Root of Trust
	1.1 Introduction to Secure Crypto Engine and Associated Keys
	1.3 Renesas Secure Key Injection Advantages
	1.3.1 Advantages of Key Wrapping over Key Encryption
	1.3.2 Advantages of Key Wrapping using MCU HUK

	1.4 Renesas RA MCU Factory Boot Firmware Limitations for SCE9

	2. Wrapped Key Injection Use Cases and Injection Procedure Overview
	2.1 Wrapped Key Types
	2.2 General Steps for Secure Key Injection and Update
	2.2.1 Key Injection
	2.2.2 Key Update

	2.3 Important Preparations for Using the Example Projects
	2.4 Tools Used in the Secure Key Injection and Update

	3. Using the Renesas Key Wrap Service
	3.1 Create PGP Key Pair
	3.2 Registration with DLM Server
	3.3 Exchange User and Renesas PGP Public Keys

	4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap Service
	4.1 Renesas Security Key Management Tool
	4.2 Creating the User Factory Programming Key using SKMT GUI Interface
	4.2.1 Launching the GUI Interface
	4.2.2 Creating the UFPK for SCE9 Protected Mode
	4.2.3 Creating the UFPK for SCE7 Compatibility Mode

	4.3 Using the CLI Interface for SCE9 Protected Mode
	4.4 Wrapping the UFPK

	5. Secure Key Injection for SCE9 Protected Mode
	5.1 Wrap Keys with the UFPK
	5.1.1 Using the SKMT GUI Interface
	5.1.1.1 Wrap an Initial AES-256 Key with the UFPK
	5.1.1.2 Wrap an Initial ECC Public Key with the UFPK
	5.1.1.3 Wrap a Key-Update Key with the UFPK
	5.1.1.4 Wrap a New AES-256 User Key with the KUK
	5.1.1.5 Wrap a New ECC Public Key with the KUK

	5.1.2 Using the SKMT CLI Interface
	5.1.2.1 Wrap an Initial AES-256 Key with the UFPK
	5.1.2.2 Wrap an Initial ECC Public Key with the UFPK
	5.1.2.3 Create and Wrap a Key-Update Key with the UFPK
	5.1.2.4 Wrap a New ECC Public Key With the KUK

	5.2 Secure Key Injection via Serial Programming Interface
	5.2.1 Setting up the Hardware
	5.2.2 Inject the Initial User Key and Key-Update Key

	6. Secure Key Injection Preparation for SCE7 Compatibility Mode using SKMT GUI Interface
	6.1 Wrap an Initial AES-128 User Key Using the UFPK
	6.2 Wrap a Key-Update Key with the UFPK
	6.3 Wrap a New AES-128 User Key with KUK

	7. Example Project for RA6M4 (SCE9 Protected Mode)
	7.1 Example Project Overview
	7.2 Using the RFP Injected Keys
	7.2.1 Formatting the Injected Keys
	7.2.1.1 Formatting the Injected AES Key
	7.2.1.2 Formatting the Injected ECC Public Key
	7.2.1.3 Formatting the Injected KUK
	7.2.1.4 Formatting an Injected RSA Public Key

	7.2.2 Verifying the Injected Key and the Updated Key

	7.3 FSP Crypto Module Support for User Key Update
	7.3.1 Save the New Wrapped Key to Data Flash

	7.4 Import and Compile the Example Project
	7.5 Running the Example Project

	8. Example Project for RA6M3 (SCE7 Compatibility Mode)
	8.1 Overview
	8.2 Using the SKMT Generated Files
	8.3 SCE7 Compatibility Mode Key Injection APIs
	8.4 Import and Compile the Example Project
	8.5 Running the Example Project

	9. References
	10. Website and Support
	Revision History

