
 Application Note

R11AN0496EU0130 Rev.1.30 Page 1 of 71
Oct.25.22

Renesas RA Family
Injecting and Updating Secure User Keys
Introduction
Cryptography is important because it provides the tools to implement solutions for authenticity,
confidentiality, and integrity, which are vital aspects of any security solution. In modern cryptographic
systems, the security of the system no longer depends on the secrecy of the algorithm used but rather on the
secrecy of the keys.

Renesas MCU security revolves around integrated security engines. The most advanced security engine
used in the Renesas RA Family is the SCE9 Secure Crypto Engine. The SCE9 can operate in two different
modes, called Compatibility Mode and Protected Mode. The application note Renesas SCE Operational
Modes (R11AN0498) explains the definition of the two modes and their use cases. In Compatibility Mode,
SCE9 can inject secure keys as well as plaintext keys. In Protected Mode, SCE9 can inject only secure keys.

Other available security engines used in RA Family MCUs are the SCE7, SCE5, and SCE5_B. These
Secure Crypto Engines can only operate in Compatibility Mode and can inject secure keys as well as
plaintext keys.

This application project demonstrates SCE9 Protected Mode and SCE7 Compatibility Mode secure key
injection. Compatibility Mode secure key injection for SCE5 and SCE5_B uses identical APIs to SCE7 secure
key injection.

This release contains AES-256 and ECC public key injection and update examples on an RA6M4 with the
SCE9 in Protected Mode, and an AES-128 secure key injection and update example on an RA6M3 with the
SCE7 (Compatibility Mode). Example keys are provided with the projects. This application note describes
how to modify the projects to use custom keys.

Required Resources
Development tools and software
• e2 studio IDE v2022_07 or greater
• Renesas Flexible Software Package (FSP) v4.0.0 or later
• SEGGER J-Link® USB driver and RTT Viewer
• Renesas Flash Programmer (RFP) v3.09 or later
• Renesas Security Key Management Tool v1.0.2 or later

The FSP, J-Link USB drivers, and e2 studio are bundled in a downloadable platform installer available on the
FSP webpage at renesas.com/ra/fsp. SEGGER RTT Viewer is available for download free-of-charge from
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/. RFP is available for download from
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui. The free-of-charge
edition can be used for the functionality required by this Application Project. The Security Key Management
Tool can be downloaded at https://www.renesas.com/software-tool/security-key-management-tool.

Hardware
• EK-RA6M4, Evaluation Kit for RA6M4 MCU Group (http://www.renesas.com/ra/ek-ra6m4)
• EK-RA6M3, Evaluation Kit for RA6M3 MCU Group (http://www.renesas.com/ra/ek-ra6m3)
• Workstation running Windows® 10
• One USB device cable (type-A male to micro-B male)

Prerequisites and Intended Audience
This application note assumes you have some experience with the Renesas e2 studio IDE and Arm®-
TrustZone®-technology based development models with e2 studio. In addition, the application note assumes
that you have some knowledge of RA Family MCU security features. See chapter 49, Security Features in
the Renesas RA6M4 Group MCU User’s Manual: Hardware for background knowledge preparation for the
cryptographic key injection. The intended audience are product developers, product manufacturers, product
support, or end users who are involved with any stage of injecting or updating secure keys with Renesas RA
Family MCUs.

http://www.renesas.com/fsp
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/software-tool/security-key-management-tool
http://www.renesas.com/ra/ek-ra6m4
http://www.renesas.com/ra/ek-ra6m3

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 2 of 71
Oct.25.22

Contents

1. SCE Wrapped Key Creates Root of Trust .. 4
1.1 Introduction to Root of Trust .. 4
1.2 Introduction to Secure Crypto Engine and Associated Keys... 4
1.3 Renesas Secure Key Injection Advantages .. 6
1.3.1 Advantages of Key Wrapping over Key Encryption .. 6
1.3.2 Advantages of Key Wrapping using MCU HUK .. 7
1.4 Renesas RA MCU Factory Boot Firmware Limitations for SCE9 ... 7

2. Wrapped Key Injection Use Cases and Injection Procedure Overview..................................... 8
2.1 Wrapped Key Types .. 8
2.2 General Steps for Secure Key Injection and Update .. 8
2.2.1 Key Injection .. 8
2.2.2 Key Update .. 9
2.3 Important Preparations for Using the Example Projects ... 10
2.4 Tools Used in the Secure Key Injection and Update ... 11

3. Using the Renesas Key Wrap Service ... 12
3.1 Create PGP Key Pair... 12
3.2 Registration with DLM Server .. 15
3.3 Exchange User and Renesas PGP Public Keys ... 17

4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap Service 21
4.1 Renesas Security Key Management Tool ... 21
4.2 Creating the User Factory Programming Key using SKMT GUI Interface .. 22
4.2.1 Launching the GUI Interface ... 22
4.2.2 Creating the UFPK for SCE9 Protected Mode .. 23
4.2.3 Creating the UFPK for SCE7 Compatibility Mode ... 26
4.3 Using the CLI Interface for SCE9 Protected Mode ... 28
4.4 Wrapping the UFPK... 28

5. Secure Key Injection for SCE9 Protected Mode ... 36
5.1 Wrap Keys with the UFPK ... 36
5.1.1 Using the SKMT GUI Interface .. 36

 Wrap an Initial AES-256 Key with the UFPK ... 36
 Wrap an Initial ECC Public Key with the UFPK... 38
 Wrap a Key-Update Key with the UFPK ... 41
 Wrap a New AES-256 User Key with the KUK ... 43
 Wrap a New ECC Public Key with the KUK .. 45

5.1.2 Using the SKMT CLI Interface ... 46
 Wrap an Initial AES-256 Key with the UFPK ... 47
 Wrap an Initial ECC Public Key with the UFPK... 47

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 3 of 71
Oct.25.22

 Create and Wrap a Key-Update Key with the UFPK .. 48
 Wrap a New AES-256 Key With the KUK ... 49
 Wrap a New ECC Public Key With the KUK ... 49

5.2 Secure Key Injection via Serial Programming Interface .. 50
5.2.1 Setting up the Hardware .. 50
5.2.2 Inject the Initial User Key and Key-Update Key .. 51

6. Secure Key Injection Preparation for SCE7 Compatibility Mode using SKMT GUI Interface .. 54
6.1 Wrap an Initial AES-128 User Key Using the UFPK ... 54
6.2 Wrap a Key-Update Key with the UFPK.. 56
6.3 Wrap a New AES-128 User Key with KUK ... 58

7. Example Project for RA6M4 (SCE9 Protected Mode) .. 59
7.1 Overview .. 60
7.2 Using the RFP Injected Keys .. 61
7.2.1 Formatting the Injected Keys ... 61

 Formatting the Injected AES Key .. 61
 Formatting the Injected ECC Public Key ... 61
 Formatting the Injected KUK ... 61
 Formatting an Injected RSA Public Key .. 61

7.2.2 Verifying the Injected Key and the Updated Key... 62
7.2.3 Using Two Sets of KUK-Wrapped User Key Data .. 62
7.3 FSP Crypto Module Support for User Key Update .. 63
7.3.1 Save the New Wrapped Key to Data Flash ... 64
7.4 Import and Compile the Example Project .. 64
7.5 Running the Example Project .. 65

8. Example Project for RA6M3 (SCE7 Compatibility Mode) ... 67
8.1 Overview .. 67
8.2 Using the SKMT Generated Files .. 67
8.3 SCE7 Compatibility Mode Key Injection APIs ... 67
8.4 Import and Compile the Example Project .. 67
8.5 Running the Example Project .. 68

9. References .. 69

10. Website and Support ... 70

Revision History .. 71

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 4 of 71
Oct.25.22

1. SCE Wrapped Key Creates Root of Trust
1.1 Introduction to Root of Trust
Roots of trust are highly reliable hardware, firmware, and software components that perform specific, critical
security functions (https://csrc.nist.gov/projects/hardware-roots-of-trust). In an IoT system, a root of trust
typically consists of identity and cryptographic keys rooted in the hardware of a device. It establishes a
unique, immutable, and unclonable identity to authorize a device to exist in the IoT network.

Secure boot is part of the services provided in the Root of Trust in many security systems. Authentication of
the application uses Public Key Encryption. The associated keys are part of the Root of Trust of the system.
Device Identity, which consists of Device Private Key and Device Certificate, is part of the Root of Trust for
many IoT devices.

From the above Root of Trust discussion, we can see that leakage of cryptographic keys can bring the
secure system into a risky state. Protection of the Root of Trust involves limiting key accessibility to within the
cryptographic boundary only, with keys that are securely stored and preferably unclonable. The Root of Trust
should be locked from read and write access by unauthorized parties.

The Renesas user key management system can provide all the above desired protection.

1.2 Introduction to Secure Crypto Engine and Associated Keys
The Secure Crypto Engine (SCE) is an isolated subsystem within the MCU. The security engine contains
hardware accelerators for symmetric and asymmetric cryptographic algorithms, as well as various hashes
and message authentication codes. It also contains a True Random Number Generator (TRNG), providing
an entropy source for the cryptographic operations. The Secure Crypto Engine is protected by an Access
Management Circuit, which can shut down the security engine in the event of an illegal external access
attempt. Figure 1 shows the conceptual diagram of the SCE. Refer to Table 1 for exactly what cryptographic
operations are supported by each type of SCE.

Figure 1. Secure Crypto Engine
The Hardware Root Key (HRK) is not a single key that is physically stored. It is represented in this
presentation as such for simplifying the description of the concepts. The SCE contains internal RAM for
operations that deal with sensitive material such as plaintext keys. This RAM is not accessible outside the
SCE.

The SCE has its own dedicated internal RAM, enabling all crypto operations to be physically isolated within
the Secure Crypto Engine. This, combined with advanced key handling capability, means that it is possible to
implement applications where there is no plaintext key exposure on any CPU-accessible bus.

Secure key storage and usage is accomplished by storing application keys in wrapped format, encrypted by
the MCU’s Hardware Unique Key and tagged with a Message Authentication Code. Since wrapped keys can

https://csrc.nist.gov/projects/hardware-roots-of-trust

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 5 of 71
Oct.25.22

only be unwrapped by the Secure Crypto Engine within the specific MCU that wrapped them, the wrapping
mechanism provides unclonable secure storage of application keys. The RA Family also provides a secure
key injection mechanism in order to securely provision your devices.

The Secure Crypto Engine is packed full of cryptography features that you can leverage in your higher-level
solutions, giving you the option to use hardware acceleration for reducing both execution time and power
consumption. All of the security engines offer AES, TRNG, and secure key storage and usage. The SCE7
and SCE9 expand this by offering both RSA and ECC for PKI solutions. The full complement of SCE9
Protected Mode crypto algorithms plus a selection of SCE7 crypto algorithms are NIST CAVP certified.
There are four different versions of Secure Crypto Engines for Renesas RA MCUs. Table 1 summarizes the
different SCEs and their associated cryptographic functionalities.

Table 1. SCE Cryptographic Capabilities

 Functions RA6M4, RA6M5
RA4M2, RA4M3

RA6M1, RA6M2
RA6M3, RA6T1 RA6T2 RA4M1,

RA4W1
Cryptographic Isolation SCEx Security Engine SCE9 SCE7 SCE5_B SCE5
Identity & Key Exchange (Asymmetric)

RSA Key Gen, Sign/Verify Up to 4K Up to 2K - -
ECC Key Gen, ECDSA, ECDH Up to 512 bit Up to 384 bit - -
DSA Sign/Verify - Y - -

Privacy (Symmetric)
AES

ECB, CBC, CTR 128/192/256 128/192/256 128/256 128/256
GCTR 128/192/256 128/192/256 - -
XTS 128/256 128/256 - -
CCM, GCM, CMAC 128/192/256 128/192/256 128/256 128/256

Data Integrity
Hash

GHASH Y Y - -
HMAC SHA224/256 SHA224/256 - -
SHA-2 (224/256) Y Y - -
SHA-2 (384/512) - - - -

TRNG HW Entropy, SP800-22A Y Y Y Y
Key Handling

Wrapped Confidentiality, authenticity Y Y Y Y
Plaintext Legacy compatibility Y Y Y Y

The features of the various Security Engines are as follows:

• SCE5 provides hardware-accelerated symmetric encryption for confidentiality. The updated SCE5_B
uses enhanced secure key handling leveraging an injected MCU-unique HUK.

• SCE7 adds asymmetric encryption and advanced hash functions for integrity and authentication.

• SCE9 expands upon the SCE7 by leveraging an injected MCU-unique HUK for secure key handling
and increasing RSA support up to RSA-4K.

The MCU-unique Hardware Unique Key (HUK) is a 256-bit random key for SCE9 and a 128-bit random key
for SCE5_B, that is injected in the Renesas factory. This key is stored in wrapped format using an MCU-
unique key wrapping mechanism.

The MCU-unique Hardware Key (HUK) for SCE5 and SCE7 is a derived MCU unique key which serves the
same purpose as the HUK for SCE9 and SCE5_B in terms of user key wrapping. The derived HUK for SCE7
and SCE5 is never stored and is accessible only by the SCE, and not by application code.

Since for all the SCEs, the HUK is in a wrapped format unique to the MCU, even if an attacker were able to
extract the stored key, another MCU will not be able to use it.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 6 of 71
Oct.25.22

All SCEs can inject a Key Update Key (KUK), which can be used to securely update the user keys when a
device is deployed in the field. The KUKs are injected during end-product manufacturing via the MCU’s
programming interface or using FSP Crypto Driver. To update keys in a device that is deployed in the field,
the new key must be wrapped with one of the previously injected KUKs. In addition to replacing keys that
have been compromised, many security policies require key rotation or key update (re-keying) on a regular
basis. It is recommended to consider injecting multiple KUKs.

1.3 Renesas Secure Key Injection Advantages
Secure key injection and update, combined with the security engine’s support of wrapped keys, address
many vulnerabilities associated with using plaintext keys:

• Plaintext keys are never stored in code flash. In the event of a program memory breach, the sensitive
key material is protected.

• Plaintext keys are never stored in RAM. In the event of malicious code executing on the system, the
sensitive key material is still protected.

• Keys can be securely stored in code flash, data flash, or even copied into external memory, enabling
unlimited secure key storage.

In addition, Renesas key wrapping techniques protect against device cloning, as discussed below.

1.3.1 Advantages of Key Wrapping over Key Encryption

Figure 2. Key Wrapping versus Key Encryption
It is important to understand the difference between wrapping and encrypting for secure asset storage.

When data is encrypted and sent to another recipient, if that recipient has the same key, they can decrypt the
data. This results in a confidential exchange of information. However, what if there was a problem with the
transmission of the encrypted data? If the recipient unknowingly receives corrupted information, the
decryption algorithm will generate garbage data, with no indication that the original data has been corrupted.

Wrapping solves this problem by appending a Message Authentication Code to the encrypted output for
integrity checking.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 7 of 71
Oct.25.22

1.3.2 Advantages of Key Wrapping using MCU HUK

Figure 3. Key Wrapping using the HUK
Using the MCU Hardware Unique Key (HUK) to wrap the stored keys adds another protection feature – clone
protection. If the wrapped key is transmitted or copied to another MCU, that MCU’s HUK will not be able to
either unwrap or use the copied key. Even if the entire MCU contents are copied onto another device, the
keys cannot be used or exposed.

1.4 Renesas RA MCU Factory Boot Firmware Limitations for SCE9
Secure key injection via the serial programming interface is not supported for RSA 3K, RSA 4K, ECC
secp256k1, and Key-Update Keys on some older versions of the Renesas RA MCUs due to factory Boot
Firmware limitations. The user needs to use a Renesas Flash Programmer (RFP) to read out the Boot
Firmware version and confirm the support for the Secure Key Injection of the above-mentioned keys. Refer
to the RFP user’s manual Flow of Operations section to access the Bootloader Firmware version by using
the Read Device Information menu.

• V1.2.04 – WS1: secure user key inject command is not supported
• V1.3.10 – WS2: user key inject command is not supported
• V1.5.22 – CS: user key inject command is supported, but it does not support RSA 3K, RSA 4K,

secp256k1, or KUK
• V1.6.25 and above – MP: no limitations

The part information silkscreened on the device can also be checked, though it is recommended that the
boot firmware version be confirmed as described above. Boot firmware limitations exist for the following
MCUs:

• RA4M2 - All WS and ES devices
• RA4M3 - All WS, ES and CS devices (date code 014AZ00)
• RA6M4 - All WS, ES and CS devices (date code 014AZ00). MP device with date codes 028AZ00,

031AZ00
• RA6M5 - All WS and ES devices

Please note that some EK-RA6M4 and EK-RA4M3 Evaluation Kits may contain affected silicon. The
following list shows the affected kit serial numbers. Note that all early adopter kits with WS or ES silicon are
also affected.

• EK-RA4M3 – Serial numbers 219243 – 219542
• EK-RA6M4 – Serial numbers 215938 – 216237 and 218497 - 218996

If your application requires secure key injection of RSA 3K, RSA 4K, ECC secp256k1, or Key-Update Keys
and your evaluation kit does not support it, please contact your local Renesas Sales representative.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 8 of 71
Oct.25.22

2. Wrapped Key Injection Use Cases and Injection Procedure Overview
This section provides an overview of the wrapped key injection use cases and the general steps for injection
procedure of each use case. A step-by-step walk through of the wrapped key injection procedures is
provided in later sections.

2.1 Wrapped Key Types
Table 2 summarizes the key types that can be directly injected into Renesas RA Family MCUs with the
SCE9 Secure Crypto Engine. Injected keys are stored wrapped by the MCU’s HUK.

Table 2. Supported Key Types for SCE9

Lifecycle Transition Keys SECDBG_KEY, NONSECDBG_KEY, RMA_KEY
AES AES-128, AES-192, AES-256
RSA RSA-1024, RSA-2048, RSA-3072, RSA-4096 (Public and Private)
ECC secp192r1 (NIST P-192), secp224r1 (NIST P-224) (Public and Private)

secp256r1 (NIST P-256), secp384r1 (NIST P-384) (Public and Private)
secp256k1 (Public and Private)
Brainpool P256r1, P384r1, and P512r1 (Public and Private)

HMAC HMAC-SHA224, HMAC-SHA256
Utility Keys Key-Update Keys

See Table 1 to understand the types of keys supported for other Secure Crypto Engines based on the
supported crypto algorithms and Device Lifecycle Management capability.

2.2 General Steps for Secure Key Injection and Update
Secure Key Injection for SCE9 Protected Mode and SCE5_B is performed via the serial programing
interface, demonstrated here with the Renesas Flash Programmer (RFP). Secure Key Injection for SCE9
Compatibility Mode, SCE7, and SCE5 is performed through the FSP. Key preparation steps where key
material is exposed in plaintext must be performed in a secure environment.

2.2.1 Key Injection
There are three high-level steps for key injection. Section 3 guides the user to establish the PGP encrypted
communication channel between the user and Renesas DLM Server. Sections 4, 5, and 5.2 provides the
step-by-step walkthroughs of how to perform the three high-level steps for the secure key injection.

1. The first step in the secure key injection process is to use the Renesas Device Lifecycle Management
(DLM) service to wrap an arbitrary User Factory Programming Key (UFPK) (in green) using the Renesas
Hardware Root Key (HRK) (in blue). The UFPK is a 256-bit value selected by the user. The same UFPK
can be used to inject any number of keys.

Figure 4. Wrapping the UFPK using DLM Server

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 9 of 71
Oct.25.22

2. Next, the user key (in yellow) must be wrapped with the UFPK.

Figure 5. Wrap the User Key with the UFPK

3. Finally, the user key is injected by providing the wrapped UFPK (W-UFPK) and the wrapped user key to
the secure key injection mechanism of the security engine.

Figure 6. Inject User Key over the Serial Programing Interface

2.2.2 Key Update
Since injecting new keys in the field is usually done to replace older keys (key rotation or re-keying), this
process is referred to as “key update”. To enable secure key update in the field, one or more Key-Update
Keys (KUK) must be injected during production programming/provisioning, as described above.

KUKs, like other cryptographic keys, can be stored in either code flash or data flash (if available on the
MCU). Since the KUK is the only mechanism by which new keys can be injected/wrapped, it is highly
recommended that multiple KUKs be injected during production provisioning. This enables the KUK to be
rotated or revoked to adhere to an infrastructure security policy or to respond to a key exposure security
breach.

For MCUs that support secure key injection over the programmer interface, additional KUKs CANNOT be
injected after the programming interface is disabled. Once a product is in the field with its programming
interface disabled, new keys can ONLY be injected via a pre-existing KUK.

The KUKs may be stored in any code or data flash location during production. This location will be passed to
the key update API for the injection of the new user key. A user can inject multiple KUKs and provide a
scheme to rotate the keys based on timed schedule or key leakage event. We recommend that users disable
the programming interface prior to deploying to the field for security considerations.

There are two high-level steps for key update. Note that the KUK must already reside on the MCU.

1. Use the KUK (in grey) to wrap the new user key (in yellow).

Figure 7. Wrap the New User Key with a KUK

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 10 of 71
Oct.25.22

2. Use the FSP and the previously injected KUK to inject the new user key. The new user key is wrapped
by the MCU HUK (in black). Note that the APIs for the two modes are provided by different FSP
modules.

Figure 8. Update the User Key

2.3 Important Preparations for Using the Example Projects
The example projects in this application project demonstrate the secure key injection and update capabilities
of Renesas RA Family MCUs using sample keys. Sections 3, 4, and 5 describe the steps needed to replace
these sample keys with custom keys.

The following graphic shows the flow of this preparation work plus the example project for SCE9 (RA6M4
example). The block outlined in red is the scope of the functionality of the example project.

Figure 9. Operational Flow Injecting and Updating an AES-256 Key for SCE9

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 11 of 71
Oct.25.22

The following graphic shows the flow of this preparation work plus the example project for SCE7 (RA6M3
example). The block outlined in red is the scope of the functionality of the example project.

Figure 10. Operational Flow Injecting and Updating User Keys for SCE7

2.4 Tools Used in the Secure Key Injection and Update
There are three tools used in the secure key injection and update besides e2 studio, which is used as the
software project development environment. Refer to the corresponding section mentioned below for details
on obtaining, setting up, and using these tools.

• Gpg4win
This tool is used in section 3 to establish a PGP encrypted communication channel between user and
the Renesas Key Wrap server. Using this tool, the user can generate a user PGP key pair, perform key
exchange with the Renesas DLM server, and assist the reception of the W-UFPK.

• Renesas Security Key Management Tool (SKMT)
This tool is used in section 4 and section 5 to generate the following three key files:
• User key: to be injected to MCU via RFP or FSP API
• Key update key: to be injected to MCU via RFP or FSP API
• New user key wrapped using the KUK: to be updated by an FSP API

• Renesas Flash Programmer (RFP)
This tool is used in section 5.2 to inject the User key and KUK when using SCE9 Protected Mode.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 12 of 71
Oct.25.22

3. Using the Renesas Key Wrap Service
The Renesas Key Wrap Service must be used to obtain a wrapped UFPK (W-UFPK) for the specific MCU
Group and security engine operational mode. All key material exchange is performed with PGP encryption.
This section explains the steps to establish this PGP-encrypted communication channel between the user
and the Renesas Key Wrap Server. This is a one-time process and does not need to be repeated for
different MCUs.

3.1 Create PGP Key Pair
If you already have a PGP key pair, that key can be used for the key exchange process. Otherwise, the
instructions below describe one method for creating a PGP key pair.

The PGP software demonstrated here is GPG4Win, which can be downloaded from this URL:
http://www.gpg4win.org/

The screen shots included in this application note are based on gpg4win-4.0.0.exe. There may be minor
graphic interface updates with later versions. However, the functionality used in this application note should
persist.

Download and install Kleopatra:

Figure 11. Download and Install Kleopatra
Launch Kleopatra and create a PGP Key Pair.

1. Click File > New Key Pair
2. Choose Create a personal OpenPGP key pair.

Figure 12. Create a Personal Open PGP Key Pair

http://www.gpg4win.org/

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 13 of 71
Oct.25.22

3. Provide a Name and Email. Note that even though these are marked as optional, at least one entity
must be provided to move to the next stage. Check Protect the generated key with a passphase.

Figure 13. Provide Name and Email

4. Click Advanced Settings and select RSA as the key type.

Figure 14. Select RSA Encryption

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 14 of 71
Oct.25.22

5. Click Create and provide a passphrase twice to protect the private key. Then click OK. Be sure to save
your passphrase.

Figure 15. Define a Passphrase

6. The PGP key pair should be created successfully. Click Finish.

Figure 16. PGP Key Pair Created

7. A new item will be created in Kleopatra. Right-click on the keypair just created and select Export.

Figure 17. Export the User PGP Public Key

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 15 of 71
Oct.25.22

8. Save the public key to a file with an *.asc extension. In this example, this file is renamed to
customer_public.asc. Click Save.

Figure 18. Save the PGP public key to a folder

3.2 Registration with DLM Server
The first time you use the Renesas Key Wrap service, you will have to register with the Renesas DLM
Server.

1. Open the URL https://dlm.renesas.com/keywrap in a browser and click New registration.

Figure 19. Start Registration with Renesas DLM Server

2. Follow the prompt to provide a valid email address and click Send mail.

Figure 20. Register User Email Address

https://dlm.renesas.com/keywrap

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 16 of 71
Oct.25.22

After clicking Send mail, the following screen will appear. Click Return.

Figure 21. Acknowledge Email Transmission

3. You should receive an email similar to the one shown below. Click on the URL provided to confirm your
registration.

Figure 22. Registration Confirmation Email

4. Follow the prompts to provide your name and company name and create a password. Click the Next
(confirmation) button. Note that the password must consist of 8 to 32 alphanumeric characters and may
include the symbols “!” and “@”.

Figure 23. Confirm Registration

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 17 of 71
Oct.25.22

After the confirmation screen is displayed, click on the Register button to complete the user registration.

Figure 24. Finish the Registration

3.3 Exchange User and Renesas PGP Public Keys
If you have not already exchanged PGP keys with the Renesas DLM server, follow the steps below.

1. After successfully registering the user information, the following screen will open. Click the Start service
button to start using the key encryption system.

Figure 25. Start DLM Key Wrapping Service

2. When the agreement warning shows up, scroll down to the bottom of the Trusted Secure IP Key Wrap
Agreement and click I agree. You will then be logged into the DLM server. Note that the Agreement will
come up every time you log into the DLM server.

Figure 26. Agreement for Using the Renesas DLM Server

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 18 of 71
Oct.25.22

3. When you log into the DLM system, the window below appears. Click PGP key exchange.

Figure 27. Start PGP Key Exchange
4. Click Reference and select the public key generated earlier (customer_public.asc). Notice that the

fingerprint of the Renesas PGP public key is displayed. This will be used to certify the Renesas public
key after you receive it.

Figure 28. Browse the Customer PGP Public Key

5. Click PGP key exchange.

Figure 29. Exchange Keys

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 19 of 71
Oct.25.22

6. Once the PGP public key is submitted, click Return.

Figure 30. Wait for Renesas’s PGP Public Key

7. You will receive an email from Renesas at the email address registered with the DLM server with the
contents as shown below if the key exchange is successful. It typically takes about one to two minutes to
receive this email.
Note that a PGP public key can be registered any number of times. The latest PGP public key that has
been registered successfully is used for encryption. All previously registered PGP public keys are
discarded.

Figure 31. Receive the Renesas PGP Public Key
Save the Renesas PGP public key file (keywrap-pub.key).

8. Go back to the Kleopatra application and import the Renesas PGP Public key to Kleopatra as shown
below.

Figure 32. Import Renesas Public Key

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 20 of 71
Oct.25.22

9. After Open is clicked, a new item is added in Kleopatra as not certified.

Figure 33. Renesas Public Key is Imported

10. Confirm that the Fingerprint displayed is same as what is shown on the screen represented in Figure 29.
Click Certify.

Figure 34. Confirm the Fingerprint and Certify the Renesas Public Key

11. Click Certify again from following screen.

Figure 35. Certify the Certificate

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 21 of 71
Oct.25.22

12. Provide the passphrase to unlock the secure key.

Figure 36. Provide the Passphrase

13. The following item will pop up upon successful certification. Click OK.

Figure 37. Successful Certification

4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap
Service

If you do not already have a W-UFPK for your target MCU Group, follow the steps below to wrap a UFPK
with the Renesas Hardware Root Key as described by Figure 4.

4.1 Renesas Security Key Management Tool
The Renesas Security Key Management Tool (SKMT) performs several functions during the secure key
injection process. Open the following link to access the latest SKMT:

https://www.renesas.com/software-tool/security-key-management-tool

From the above link, find the Downloads area and download the latest Security Key Management Tool
installer. This tool supports Windows and Linux. The screen shots in this document came from the Windows
environment.

Figure 38. Download the Security Key Management Tool for Windows or Linux
Once the installer executable is downloaded, right-click on the installer, and select Run as administrator to
install this tool. Follow the prompt to select the Setup Language, currently both English and Japanese are
supported. Next, select the installation folder. By default, it will be installed into
C:\Renesas\SecurityKeyManagementTool\. If a previous version is installed, the old version will be
overwritten.

https://www.renesas.com/software-tool/security-key-management-tool

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 22 of 71
Oct.25.22

The User’s Manual of this tool is located in the \DOC folder. We recommend that you read through the user’s
manual before proceeding to the following section.

The SKMT provides two interfaces to users, a Command Line Interface (CLI) and a Graphic User Interface
(GUI). The CLI interface is typically used for production support and the GUI interface is primarily intended
for development usage. This application note will explain how to use both interfaces to perform key injection
and update.

4.2 Creating the User Factory Programming Key using SKMT GUI Interface
Define a UFPK and convert it to a binary format that is compatible with the Renesas Key Wrap Service. This
can be done using the Renesas Security Key Management Tool (SKMT).

The same UFPK can be used for all RA Family MCUs. However, the corresponding W-UFPK may be
different, depending on the specific MCU Group. Therefore, these examples will use different UFPKs. To use
the GUI interface to prepare the UFPK for secure key injection for SCE9 Protected Mode, follow section
4.2.2. To use the GUI interface to prepare the UFPK for secure key injection for SCE7 Compatibility Mode,
follow section 0. To use the CLI interface to prepare the UFPK for secure key injection, follow section 4.3.

4.2.1 Launching the GUI Interface
Double-click SecurityKeyManagementTool.exe to launch the GUI interface.

Figure 39. Launch SKMT GUI Interface

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 23 of 71
Oct.25.22

4.2.2 Creating the UFPK for SCE9 Protected Mode
To use the example projects for RA6M4, in the Overview window, select RA Family, SCE9 Protected
Mode.

Figure 40. Select RA Family, SCE9 Protected Mode

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 24 of 71
Oct.25.22

Next, navigate to the Generate UFPK page.

• For the User Factory Programming Key, select Generate random value.
• Click the Browse button to select a folder to store the key, and name the resulting file ufpk.key.
• Click Generate UFPK key file. The ufpk.key file will be generated. This operation is demonstrated in

Figure 41.

Figure 41. Generate Random Value for the UFPK using GUI for SCE9

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 25 of 71
Oct.25.22

It is also possible to specify a specific UFPK. The following is an example of using the same UFPK used in
the example project: 000102030405060708090A0B0C0D0E0F000102030405060708090a0b0c0d0e0f

Note that the 32-byte UFPK must be provided in big-endian format.

Figure 42. Generate Fixed UFPK using GUI for SCE9

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 26 of 71
Oct.25.22

4.2.3 Creating the UFPK for SCE7 Compatibility Mode
To use the example projects for RA6M3, select RA Family, SCE7 Compatibility Mode as the MCU family
and security engine.

Figure 43. Select RA Family, SCE7 Compatibility Mode

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 27 of 71
Oct.25.22

Next, navigate to the Generate UFPK page.

• For the User Factory Programming Key, select Generate random value.
• Click the Browse button to select a folder to store the key, and name the resulting file ufpk.key.
• Click Generate UFPK key file. The ufpk.key file will be generated.

It is also possible to specify a specific UFPK. The following is an example of using the same UFPK used in
the example project:
2222222222222222222222222222222211111111111111111111111111111111

Note that the 32-byte UFPK must be provided in big-endian format.

Figure 44 Generate Fixed UFPK using GUI for SCE7

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 28 of 71
Oct.25.22

4.3 Using the CLI Interface for SCE9 Protected Mode
Open a Command Prompt window and navigate to the folder where skmt.exe resides, typically under
\Renesas\Security Key Management Tool\CLI\.

Use the following command to generate a random UFPK and place it in a key file (ufpk.key). If desired, a
complete file name with path may be specified. Refer to the Security Key Management Tool user’s manual to
understand the usage of /genufpk option.

skmt.exe /genufpk /output "C:\User_key_injection_protected_mode\keys\ufpk.key"

This command will generate a random 256-bit UFPK as shown below.

UFPK: E8AB23E99C9AD42823DA4215549A41496720F7243680A4715F4B944ACC94B691

Output File: C:\User_key_injection_protected_mode\keys\ufpk.key

Figure 45. Create a Random UFPK Using SKMT CLI

It is also possible to specify a specific UFPK, as shown by the following command:

skmt.exe /genufpk /ufpk
"000102030405060708090A0B0C0D0E0F000102030405060708090a0b0c0d0e0f" /output
"C:\User_key_injection_protected_mode\keys\ufpk.key"

 UFPK: 000102030405060708090A0A0C0D0E0F000102030405060708090a0b0c0d0e0f
Output File: C:\User_key_injection_protected_mode\keys\ufpk.key

Figure 46. Create a Fixed UFPK Using SKMT CLI

4.4 Wrapping the UFPK
The next step is to obtain a W-UFPK from the Renesas Key Wrap Service based on the selected UFPK.
Note that if the UFPK is changed, a new W-UFPK must be obtained.

1. Encrypt the UFPK with the Renesas public key. This key was imported earlier to Kleopatra. Using
Kleopatra, select Sign/Encrypt… and select the desired ufpk.key file. Then click Open.

Figure 47. Encrypt the UFPK File for PGP Transfer

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 29 of 71
Oct.25.22

2. When asked which entity this file is to be encrypted for, (optionally) uncheck Encrypt for me and check
Sign as, Encrypt for others, and Encrypt / Sign each file separately.

Figure 48. Select PGP Encryption Options

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 30 of 71
Oct.25.22

3. Click the Open Selection Dialog (the icon). This will open a Certificate Selection dialog box. Take
care to keep UFPK and W-UFPK key files separate for different MCU Groups.

Figure 49. Open the Selection Dialog

4. In this window, select keywrap to select the Renesas public key, then click OK

Figure 50. Select the Renesas PGP public key

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 31 of 71
Oct.25.22

5. Ensure that the correct destination folder for the encrypted key is selected under Output. Finally, click
Sign/Encrypt.

Figure 51. Encrypt UFPK using Renesas PGP Public Key

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 32 of 71
Oct.25.22

6. If you do not check Encrypt for me, you will get an Encrypt-To-Self Warning that you cannot decrypt
the data. Click Continue.

Figure 52. Start the UFPK Encryption process

7. Provide your private key passphrase, then click OK.

Figure 53. Provide Passphrase

8. The UFPK encrypted with the Renesas public key will be generated, with .gpg added to the extension of
the key. In this case, the file ufpk.key.gpg is generated. Click Finish.

Figure 54. Provide User Passphrase

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 33 of 71
Oct.25.22

9. Now we can send the UFPK that has been encrypted with Renesas Public Key to the Renesas DLM
Server for wrapping. Return to the DLM Server web page:

Figure 55. Select the MCU Family
• To create a W-UFPK for the RA6M4 example project, select the Renesas RA Family and click Protected

Mode RA6M4/RA6M5 Encryption of customer’s data.

Figure 56. Select the RA6M4/RA6M5 MCU Group
• To create a W-UFPK for the RA6M3 example project, select the Renesas RA Family and click

Compatibility Mode RA6M1/RA6M2/RA6M3/RA6T1 Encryption of customer’s data.

Figure 57. Select the RA6M1/RA6M2/RA6M3/RA6T1 MCU Group

10. Click Encryption service for products at the next screen.

Figure 58. Choose Encryption service for products

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 34 of 71
Oct.25.22

11. Click Reference, select the ufpk.key.gpg created previously, and click Open. Note that in the DLM
server description, Key2 refers to the UFPK.

Figure 59. Select the PGP-Encrypted UFPK file

12. Click Settle. The following message will be printed. Then click Return to menu. You can now log out of
the Renesas Key Wrap Service.

Figure 60. Return to the DLM Server Main Menu

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 35 of 71
Oct.25.22

13. The wrapped UFPK Key (W-UFPK) encrypted with your PGP public key should arrive in your email
typically in about 1-2 minutes. Save the attached file.

Figure 61. Receiving the W-UFPK via Email

14. With the Kleopatra program, click Decrypt/Verify, select the W-UFPK file, and click Open.

Figure 62. Decrypt the W-UFPK

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 36 of 71
Oct.25.22

15. Follow the prompt to provide your PGP private key passphrase, click OK. The decrypted W-UFPK is
generated in the folder specified.

Figure 63. Decrypting the Encrypted W-UFPK
16. Click Save All to save the decrypted W-UFPK key file ufpk.key_enc.key to the same folder as the

UFPK key file. Both key files are required to generate key injection bundles.

5. Secure Key Injection for SCE9 Protected Mode
5.1 Wrap Keys with the UFPK
This section walks the user through the wrapping process required for secure key injection and update. The
SKMT tool is used to perform this key wrapping process.

Step-by-step instructions for generating the three types of keys are provided, using both the CLI and GUI
interfaces of the SKMT.

• User Key wrapping with the UFPK for secure key injection of the user key
• Key-Update Key wrapping with the UFPK for secure key injection of the KUK
• User Key wrapping with the KUK for secure key update of the user key

This application project provides examples for user key wrapping of both AES-256 and ECC secp256r1
public keys.

5.1.1 Using the SKMT GUI Interface
To prepare a Protected Mode user key to inject using RFP, we need the UFPK, W-UFPK, and the user key
as input to the SKMT GUI interface.

Launch the SKMT GUI and select RA Family, SCE9 Protected Mode on the Overview tab. On the Wrap
Key tab, open the submenu Key Type. This page can be used to choose which key type to prepare.

 Wrap an Initial AES-256 Key with the UFPK
A NIST CAVP test vector is used for this purpose.

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

Figure 64. NIST AES 256 Test Vector

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 37 of 71
Oct.25.22

In the Key Type area, choose Key Type and specify AES with 256 bits.

Figure 65. Choose AES 256 bits as the Key Type
Navigate to the Key Data page and input the Raw key data as shown below based on the NIST vector
shown in Figure 64. The key data is duplicated here to easily copy and paste to the GUI interface.

KEY = 8000

Figure 66. Set up the Key Data
Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair created in section 4.2 and 4.4. For the IV, select Generate random value. In the Output option,
select RFP; then click the Browse button, choose the output folder, and name the output file.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 38 of 71
Oct.25.22

Figure 67. Generate the AES 256 RFP Injection Key File
Now click Generate File. The AES256.rkey file will be generated.

The plaintext AES-256 key and UFPK are NOT contained in the *.rkey file, enabling confidential transfer of
the key injection file contents.

 Wrap an Initial ECC Public Key with the UFPK
A set of NIST test vectors are used in this application project.

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Component-Testing

Figure 68. NIST ECC secp256r1 Test Vector

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Component-Testing

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 39 of 71
Oct.25.22

Launch the SKMT GUI and select RA Family, SCE9 Protected Mode on the Overview tab. On the Wrap
Key tab, select the Key Type as ECC and secp256r1, public as shown in Figure 69.

Figure 69. Choose secp256r1 Public Key

Next, configure the Key Data. Under the Key Data area, select Raw and provide the Qx and Qy as shown
below. The key data is duplicated here to easily copy and paste to the GUI interface.

Qx = 1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c271bf83

Qy = ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9

Figure 70. Provide the ECC Public Key data

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 40 of 71
Oct.25.22

Next, under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-
UFPK key pair created in section 4.2 and 4.4. For the IV, select Generate random value. For the Output
option, select RFP; then click the Browse button, choose the output folder, and name the output file.

Figure 71. Generate the ECC Public Key RFP Injection Key File using GUI
The plaintext KUK and UFPK are NOT contained in the *.rkey file, enabling confidential transfer of the key
injection file contents.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 41 of 71
Oct.25.22

 Wrap a Key-Update Key with the UFPK
The SKMT can be used to generate a sample KUK. To generate the KUK key file, navigate to the Generate
KUK tab and use : 000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f.

Click the Browse button to select the folder and file name for the generated key file, here specified as
kuk_for_new_key.key. Next, click Generate KUK key file, and the kuk_for_new_key.key file will be
generated in the selected folder.

Figure 72. Generate the KUK File used to Encrypt the User Key for SCE9

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 42 of 71
Oct.25.22

Next, we will wrap the KUK so it can be injected to the MCU. Navigate to the Wrap Key page and choose
KUK from the Key Type area.

Figure 73. Choose KUK to Wrap

Navigate to the Key Data page, select the File option, and browse to the kuk_for_new_key.key key file
generated in Figure 72.

Figure 74. Provide the KUK .key File

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 43 of 71
Oct.25.22

Next, under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-
UFPK key pair created in section 4.2 and 4.4. For the IV, select Generate random value. For the Output
option, select RFP; then click the Browse button, choose the output folder, and name the output file.

Now click the Generate File button. The KUK.rkey file will be generated.

Figure 75. Generate the Key-Update Key Injection File using GUI for SCE9

 Wrap a New AES-256 User Key with the KUK
In the section, we will use the kuk_for_new_key.key generated in Figure 72 to wrap a new AES-256 key.

We will use a second NIST test vector to demonstrate secure key update using the KUK.

Figure 76. NIST Test Vector as New AES-256 Key Test Data
Navigate to the SKMT Wrap Key tab. In the Key Type area, select AES-256 with 256 bits.

Figure 77. Choose AES 256bit New User Key

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 44 of 71
Oct.25.22

In the Key Data area, provide the key data from the NIST vector based on Figure 76. The key data is
duplicated here to copy and paste into the GUI interface.

KEY = c000

Figure 78. Provide the New AES 256-bit Key Data
In the Wrapping Key area, select KUK as the wrapping key and click Browse to locate the
kuk_for_new_key.key file generated in Figure 72. For the IV, choose Generate random value. For the
Output option, choose C Source and name the output file as new_aes_key.c. Name the Key name
property as NEW_AES256. This name will be used in the source files for key-specific definitions.

Finally, click Generate file. Both the new_aes_key.c and the new_aes_key.h files will be generated.

Figure 79. Generate KUK-Wrapped AES-256 Key

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 45 of 71
Oct.25.22

 Wrap a New ECC Public Key with the KUK
In the section, we will use the kuk_for_new_key.key generated in Figure 72 to wrap a new ECC Public
key.

To demonstrate updating the ECC public key, another NIST ECC secp256r1 test vector is used in this
application project.

Figure 80. New Set of NIST ECC Test Vectors
Follow the procedure below to wrap the new ECC public key using the KUK file generated in Figure 72.

From the SKMT GUI, make sure RA Family, SCE9 Protected Mode is selected from the Overview page.
Next, navigate to Wrap Key page. Select the Key Type as secp256r1, public as shown in Figure 69.

Under the Key Data area, select Raw and provide Qx and Qy as shown below. The key data is duplicated
here so user can copy and paste to the GUI interface.

Qx = e266ddfdc12668db30d4ca3e8f7749432c416044f2d2b8c10bf3d4012aeffa8a

Qy = bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39

Figure 81. Provide the New ECC Public Key Data

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 46 of 71
Oct.25.22

Next, under the Wrapping Key section, click the corresponding Browse button to select the KUK generated
in section 5.1.1.2. For the IV, select Generate random value. In the Output option, choose C Source and
name the output as new_ecc_public_key.c. set the Key name to NEW_ECC_PUB.

Finally, click Generate file. Both the new_ecc_public_key.c and the new_ecc_public_key.h files will
be generated.

Figure 82. Generate KUK-Wrapped ECC Public Key

5.1.2 Using the SKMT CLI Interface
This section describes how to perform the actions described above using the SKMT CLI interface. These
examples use SCE9 Protected mode, but SCE7 support is fundamentally the same.

The /genkey command of the Security Key Management Tool command line tool skmt.exe will be used to
prepare keys for secure injection and update. These are the options for this command:

• /keytype – This input can take either ASCII or a one-byte hexadecimal input parameter indicating the
key type.

• /ufpk – The User Factory Programming Key.
• /wufpk – The Renesas HRK-wrapped UFPK.
• /kuk – The Key-Update Key for secure key update.
• /mcu – The target MCU and security engine.
• /output – The output of the command.

Refer to the Security Key Management Tool user’s manual for more information about these commands,
including the valid values for each parameter.

This application project uses an AES-256 key and an ECC secp256r1 public key to illustrate the secure key
injection and update processes.

For these examples, we will use the UFPK and W-UPFK created earlier.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 47 of 71
Oct.25.22

 Wrap an Initial AES-256 Key with the UFPK
In the Command Prompt window opened earlier (section 4.3), use the following command to create the AES-
256 key injection file (AES256_CLI.rkey). Refer to the Security Key Management Tool user manual for
more information on how to construct the command.

Skmt.exe /genkey /ufpk
file=”C:\User_key_injection_protected_mode\keys_gui\ufpk.key” /wufpk
file=”C:\User_key_injection_protected_mode\keys_gui\ufpk.key_enc.key” /mcu
“RA-SCE9” /keytype “AES-256” /key
“8000” /filetype
“rfp” /output “C:\User_key_injection_protected_mode\keys_gui\AES256_CLI.rkey”

Note that in this example:

• We are using 8000
from the NIST vector in Figure 64 as the AES-256 plaintext user key.

• We have specified the key type “AES-256”.
• “RA-SCE9” is used for the /mcu option.
• We are using a randomly generated IV. The IV changes each time this command is executed.
• In this example, we have specified the complete file path for the key file AES256_CLI.rkey.

Output File: C:\User_key_injection_protected_mode\keys_gui\AES256_CLI.rkey

UFPK: 000102030405060708090A0B0C0D0E0F000102030405060708090A0B0C0D0E0F

W-UFPK: 000000006FEE15036A3B4E726F0B3F9E1F74B7076FEE15036A3B4E726F0B3F9E1F74B707

IV: 0B730F4F7194A9CB67E284A1B0D2A370

Encrypted key:
1D6612F7F276BFBBEBE05410151C43E74E0368D3FB0688FB7A5D2D35E2B286A9963C14F3FE16A4529AAC7E8B0650EB72

Figure 83. Create the AES-256 User Key Injection File
The generated key file AES256_CLI.rkey now contains the encrypted user key along with the W-UFPK.
The plaintext AES-256 key and UFPK are NOT contained in the *.rkey file, enabling confidential transfer of
the key injection file contents.

 Wrap an Initial ECC Public Key with the UFPK
In this section, we will use the ECC key pair in Figure 68 as example of preparing an ECC public key for
secure key injection.

In the Command Prompt window opened earlier (section 4.3), use the following command to create the ECC
public key injection file (ECC_Public_Key_CLI.rkey). Refer the Security Key Management Tool user
manual for more information on how to construct the command.

Skmt.exe /genkey /ufpk
file=”C:\User_key_injection_protected_mode\keys_gui\ufpk.key” /wufpk
file=”C:\User_key_injection_protected_mode\keys_gui\ufpk.key_enc.key” /mcu
“RA-SCE9” /keytype “secp256r1-public” /key
“1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c271bf83
ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9” /filetype
“rfp” /output
“C:\User_key_injection_protected_mode\keys_gui\ECC_Public_Key_CLI.rkey”

Note that in this example:

• 1ccbe91c075fc7f4f033bfa248db8fccd3565de94bbfb12f3c59ff46c271bf83
ce4014c68811f9a21a1fdb2c0e6113e06db7ca93b7404e78dc7ccd5ca89a4ca9 is the NIST ECC
public key from Figure 68 .

• We have specified the key type “secp256r1-public”.
• “RA-SCE9” is used for the /mcu option.
• We are using a randomly generated IV. The IV is updated in each encryption instance.
• The command option /output defines the locations and name of the output file.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 48 of 71
Oct.25.22

Output File: C:\User_key_injection_protected_mode\keys_gui\ECC_Public_Key_CLI.rkey

UFPK: 000102030405060708090A0B0C0D0E0F000102030405060708090A0B0C0D0E0F
W-UFPK: 1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEFE12345678

IV: 0273B7277508F33491F2BA569B092535

Encrypted key:
1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234
567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF

Figure 84. Create the ECC Public Key Injection File Using CLI

 Create and Wrap a Key-Update Key with the UFPK
We can use the SKMT to create a key file for a KUK. This is done with the following command:

skmt.exe /genkuk /kuk
"000102030405060708090A0B0C0D0E0F000102030405060708090a0b0c0d0e0f" /output
"C:\User_key_injection_protected_mode\keys_gui\kuk_for_new_key_cli.key"

Note that in this example:

• We have specified the complete file path for the key file.
• We need to use the same Key-Update Key as used in section 5.1.2.3 .

KUK: 000102030405060708090A0B0C0D0E0F000102030405060708090A0B0C0D0E0F

Output File: C:\User_key_injection_protected_mode\keys_gui\kuk_for_new_key_cli.key

Figure 85. Create the KUK Key File
The generated key file kuk_for_new_key_cli.key now contains the KUK. Retain this key file to use for
wrapping new user keys for secure key update.

To enable secure key update, we must first securely inject the KUK. Use the SKMT to wrap the KUK with
the UFPK and create a key injection file for use with RFP with the following command:

skmt.exe /genkey /ufpk
file=”C:\User_key_injection_protected_mode\keys_gui\ufpk.key” /wufpk
file=”C:\User_key_injection_protected_mode\keys_gui\ufpk.key_enc.key” /mcu
“RA-SCE9” /keytype “key-update-key” /key
file=”C:\User_key_injection_protected_mode\keys_gui\kuk_for_new_key_cli.key”
/filetype “rfp” /output
“C:\User_key_injection_protected_mode\keys_gui\KUK_CLI.rkey”

Note that in this example:

• We are using the KUK key file created above.
• We have specified key type “key-update-key”.
• We are using a randomly generated IV. The IV changes each time this command is executed.
• In this example, we have specified complete file path for the key file (KUK_CLI.rkey).

Output File: C:\User_key_injection_protected_mode\keys_gui\KUK_CLI.rkey

UFPK: 000102030405060708090A0B0C0D0E0F000102030405060708090A0B0C0D0E0F

W-UFPK: 1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEFE12345678

IV: 1234567890ABCDEF1234567890ABCDEF

Encrypted key:
1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF

Figure 86. Create the Key-Update Key Injection File Using CLI
The generated key file KUK_CLI.rkey now contains the wrapped KUK along with the W-UFPK. The
plaintext KUK and UFPK are NOT contained in the *.rkey file, enabling confidential transfer of the key
injection file contents.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 49 of 71
Oct.25.22

Wrap a New AES-256 Key With the KUK

The user can use the following command to wrap the new AES key defined in Figure 76 using the KUK. This
is done with the following command.
C:\Renesas\SecurityKeyMangementTool\cli>skmt.exe /genkey /kuk
file="C:\Secure_Key_Injection\keys_gui\kuk_for_new_key_cli.key" /mcu "RA-SCE9"
/keytype "AES-256" /key
"c000" /filetype
"csource" /keyname "NEW_AES256" /output
"C:\User_key_injection_protected_mode\keys_gui\new_aes_key_cli.c"

Note that in this example:

• We are using c000 as
the new AES-256 plaintext key.

• We are using a randomly generated IV. The IV changes each time this command is executed.
• We use the /keyname to create an identifiable key structure name that is unique in the software project.

This resolves confusions when more than one set of new user keys are to be generated. If this option is
not provided, a key structure name of encrypted_user_key_data is generated for the key structure.

• The generated new_aes_key_cli.c and new_aes_key_cli.h files include the output information in
a data structure. The user can directly include these two files in the application project. This is
demonstrated in the example project included.

Output File: C:\User_key_injection_protected_mode\keys_gui\new_aes_key_cli.h

Output File: C:\User_key_injection_protected_mode\keys_gui\new_aes_key_cli.c

KUK: 000102030405060708090A0B0C0D0E0F000102030405060708090A0B0C0D0E0F

IV: 3C8841F6E6AE05B7625098EC70C542C1

Encrypted key:
03FE218ABCD0AD2F5A5634833ABD7F4D6F4CF8BF2CAC737CE1BE56C28DF0ADAD52536EED8DF405031230F935B087ECA0

Figure 87. Encrypt the New User Key with the KUK

 Wrap a New ECC Public Key With the KUK
Use the following command to wrap the new ECC public key shown in Figure 80.

skmt.exe /genkey /kuk
file="C:\Secure_Key_Injection\keys_gui\kuk_for_new_key.key" /mcu "RA-SCE9"
/keytype "secp256r1-public" /key
"e266ddfdc12668db30d4ca3e8f7749432c416044f2d2b8c10bf3d4012aeffa8abfa86404a2e9f
fe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39" /filetype "csource"
/keyname “NEW_ECC_PUB” /output
"C:\Secure_Key_Injection\keys_gui\new_ecc_public_key_cli.c"

Note that in this example:

• e266ddfdc12668db30d4ca3e8f7749432c416044f2d2b8c10bf3d4012aeffa8a
bfa86404a2e9ffe67d47c587ef7a97a7f456b863b4d02cfc6928973ab5b1cb39 is the ECC public
key from the NIST test vector shown in Figure 80.

• The key type “secp256r1-public” is one of the available options specified in the Security Key
Management Tool user’s manual.

• "RA-SCE9" is used for the /mcu option.
• We are using a randomly generated IV. The IV changes each time this command is executed.
• The command option /output defines the locations and name of the output file.
• We use the /keyname to create an identifiable key structure name that is unique in the software project.

This resolves confusions when more than one set of new user keys are to be generated. If this option is
not provided, a key structure name of encrypted_user_key_data is generated for the key structure.

• The generated new_ecc_public_key_cli.c and new_ecc_public_key_cli.h files include the
output information in a data structure. The user can directly include these two files in the application
project. This is demonstrated in the example project included.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 50 of 71
Oct.25.22

Output File: C:\Secure_Key_Injection\keys_gui\new_ecc_public_key_cli.h

Output File: C:\Secure_Key_Injection\keys_gui\new_ecc_public_key_cli.c

KUK: 000102030405060708090A0B0C0D0E0F000102030405060708090A0B0C0D0E0F

IV: 36E763D5A82924B4888732D50C93B602

Encrypted key:
9B0A7F8C91C038704A4F2C758EAC3DDD1372B4DC6AA4F22667D7D0E41218A1DEDBB8337E557B59B91100225BC8BBE2807221
4FF3C729D953AEFA9E997C3989967C831DC6501E9528715ADA30FA0D0402

Figure 88. Encrypt the New ECC Public Key with the KUK

5.2 Secure Key Injection via Serial Programming Interface
Follow this section to inject the AES-256 key, the ECC public key, and the Key-Update Key (KUK) that were
prepared in section 5.1.1 or section 5.1.2. This capability is supported by RA Family MCUs that incorporate
the SCE9 (Protected Mode) or SCE5_B security engine.

5.2.1 Setting up the Hardware
Set up the EK-RA6M4 evaluation board as follows.

• Set the jumpers to their default settings. Refer to the EK-RA6M4 User’s Manual for details.
• Connect the EK-RA6M4 J10 connector to the development PC using a USB micro-B cable to provide

power and a debug connection using the on-board debugger.

Erase the entire MCU flash and ensure that the MCU is in the SSD Device Lifecycle State. This can be done
using the Renesas Flash Programmer, as shown here.

1. Unzip rfp_project.zip
2. Launch the Renesas Flash Programmer GUI executable
3. Select File > Open Project and select ra6m4_secure_key_inject.rpj.
4. Select Device Information > Initialize Device.

Figure 89. Open RFP Project and Initialize the Device
Upon successful initialization, the following message will be printed.

Figure 90. RA6M4 Initialization

Unless there are permanently locked flash blocks, the entire flash will be erased and the RA6M4 will be set
to SSD state through the above steps.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 51 of 71
Oct.25.22

5.2.2 Inject the Initial User Key and Key-Update Key
After initializing the RA6M4, power-cycle the board and follow the steps below to inject the AES-256 key, the
ECC public key, and the Key-Update Key. This section uses the set of injection keys generated from the GUI
interface.

To simplify duplicating this example, the .rkey files that match the example project are included in the
rfp_resources.zip file. If the user has used the NIST vectors included in this application project for
verification purpose, they can use the included .rkey files for system verification. The screen captures
included in this section use these files for demonstration purpose. If different keys are used, then the
corresponding .rkey files must be updated to match those keys.

• Navigate to the User Keys tab and check Write User Keys.

Figure 91. Select Write User Keys
• Click and browse to the .rkey file containing the AES256 key, which for this example is

\rfp_resources\user_keys\AES256.rkey (Figure 67). Set the Address property to a data flash
or code flash address applicable for your specific application. In this example, the AES key will be
injected to the first block of Data Flash at 0x08000000.

Figure 92. Configure the AES-256 User Key Selection and Injection Address
• Click Add Key. The selected AES key will be added for injection.

Figure 93. AES-256 User Key is Configured for Injection

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 52 of 71
Oct.25.22

• Click and browse to the ECC_Public_Key.rkey (Figure 71). Set the Address property to a data
flash or code flash address applicable for your specific application. In this example, the ECC public key
will be injected to the third block of Data Flash at 0x08000080.

Figure 94. Configure the ECC Public Key Selection and Injection Address
• Click Add Key. The selected ECC public key will be added for injection.

Figure 95. ECC Public Key is Configured for Injection
• Click and browse to the KUK.rkey (Figure 75) or KUK_CLI.rkey (Figure 86) file generated in

Figure 86. Set the Address property to a data flash or code flash address applicable for your specific
application. In this example, the Key-Update Key will be injected at code flash address 0x40000.

Figure 96. Configure the Key-Update Key Selection and Injection Address
• Click Add Key. The selected Key-Update Key will be added for injection.

Figure 97. Key Update Key is Configured for Injection

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 53 of 71
Oct.25.22

• Browse to the Operation Settings tab and note that Erase, Program, Verify, and Erase Before
Program are selected.

Figure 98. Select to Perform Flash Erase, Program, and Verify
• Browse to the Block Settings tab and note that the entire flash region is selected for Erase.

Figure 99. Entire Flash Region is Selected for Erase
• Browse to the Operation tab. Click Start to inject the AES-256, the ECC public key, and the Key-Update

Key. The injection should succeed with a similar output message as shown below at the selected flash
addresses.

Figure 100. Secure Keys Successfully Injected

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 54 of 71
Oct.25.22

In this example code, no application is programed since we are interested only in the key injection. In a
production flow, it is possible to program the application and user keys together. This operation can also be
performed using the command line function of RFP.

6. Secure Key Injection Preparation for SCE7 Compatibility Mode using SKMT GUI
Interface

This section shows how to generate the .c and .h files which can be used in an application project that
uses the FSP APIs to inject keys for use with the PSA Crypto APIs using the security engine in Compatibility
Mode. This key injection method must be used for both user keys and Key-Update Keys.

6.1 Wrap an Initial AES-128 User Key Using the UFPK
A NIST CAVP test vector is used for demonstration.

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

KEY = e0000000000000000000000000000000

IV = 00000000000000000000000000000000

PLAINTEXT = 00000000000000000000000000000000

CIPHERTEXT = 72a1da770f5d7ac4c9ef94d822affd97

Figure 101. NIST AES-128 Test Vector
Using the SKMT GUI interface, on the Overview tab, select RA Family, SCE7 Compatibility Mode. On the
Wrap Key tab, in the Key Type area, choose AES and 128 bits.

Figure 102. Choose AES-128 bits as the Key Type
Select the Key Data tab and input the Raw Key Data as shown below based on the NIST vector as shown in
Figure 101.

Figure 103. Set up the Initial AES-128 Key Data

https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Block-Ciphers

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 55 of 71
Oct.25.22

Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair. Choose Generate random value option for the IV data. For the Output option, select C Source;
then click the Browse button, choose the output folder and file name, and name the key. This name will be
reflected in the definitions generated for the C source files.

Now click the Generate File button. The source files to inject the AES key will be generated.

Figure 104. Generate the Initial AES-128 Encrypted Key File
Note that the generated new_aes_128.c and new_aes_128.h are used in the RA6M3 secure key injection
example project.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 56 of 71
Oct.25.22

6.2 Wrap a Key-Update Key with the UFPK
To wrap a KUK with the UFPK, we will first generate a KUK .key file. To generate the KUK .key file,
navigate to the Generate KUK tab and input the KUK data. We will use this value for our sample key:

KUK = ffffffffeeeeeeeeddddddddccccccccbbbbbbbbaaaaaaaa0000000099999999

Click the Browse button to select the folder and file name for the generated key file, shown here as
key_update_key.key. Next, click Generate KUK key file to generate the file as specified.

Figure 105. Generate the KUK File used to Inject New User Key for SCE7

We will now create files for securely injecting the KUK. Select the Wrap Key tab. In the Key Type area,
choose KUK. In the Key Data area, select File and specify the key_update_key.key file created above.

Under the Wrapping Key section, click the corresponding Browse buttons to select the UFPK and W-UFPK
key pair. Use a random IV for the encryption portion of the wrapping mechanism. For the Output option,
select C Source; then click the Browse button, choose the output folder and file name. Next, name the key
as KUK. This name will be used in the key-specific definitions in the C source files.

Now click the Generate File button. The source files to inject the KUK will be generated.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 57 of 71
Oct.25.22

Figure 106. Generate the Key-Update Key Injection File using GUI
Note that the generated key_update_key.c and key_update_key.h are used in the RA6M3 secure key
injection example project.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 58 of 71
Oct.25.22

6.3 Wrap a New AES-128 User Key with KUK
We will use a second NIST test vector to demonstrate AES key update using the KUK.

KEY = 80000000000000000000000000000000

IV = 00000000000000000000000000000000

PLAINTEXT = 00000000000000000000000000000000

CIPHERTEXT = 0edd33d3c621e546455bd8ba1418bec8

Figure 107. Second NIST AES-128 Test Vector
Navigate to the SKMT Wrap Key page, in the Key Type area, and select AES with 128 bits.

Figure 108. New AES-128 Key
In the Key Data area, provide the key data from the second NIST test vector.

Figure 109. New AES128 Key
In the Wrapping Key area, select KUK as the wrapping key and click the corresponding Browse button to
select the key_update_key.key file generated above. For the IV, choose Generate random value. In the
Output section, select C Source; then click the Browse button, choose the output folder and file name, and
name the key. This name will be reflected in the definitions generated in the C source files.

Then click Generate file. The new_aes_key.c and the new_aes_key.h files will be both generated.
These two files are used in the RA6M3 example project.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 59 of 71
Oct.25.22

Figure 110. Encrypted New AES128 Key File is Generated

7. Example Project for RA6M4 (SCE9 Protected Mode)
To exercise the example projects as is, user can follow below steps:

• Inject the included example RFP injection keys (AES256.rkey, KUK.rkey, and
ECC_Public_Key.rkey which are included in rfp_resource.zip) by following section 5.2.2.

• A set of new user keys (AES256 as well as ECC Public Key) generated using the example KUK is
already provisioned in the example projects. User can then directly proceed to exercise the example
project.

• Please do not use the example keys for production support.

To use the example projects with customized keys, user can follow below steps:

• To test customized RFP injection keys and new user update keys (generated by following section
5.1.1 or 5.1.2 rather than using the ones included in rfp_resources.zip), user needs to follow
section 5.2.2 to inject the keys to the MCU. User also needs to generate customized new user key
files (new_aes_key.c/.h and new_ecc_public_key.c/.h) with the same key name to replace

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 60 of 71
Oct.25.22

the corresponding files used in the example project. Once the example projects are updated, user
can proceed to running the example projects to verify the operations.

• To test new user key update procedure only, user can use the included RFP KUK.rkey file to
generate new source files to replace the corresponding files in the example project. Once the
example projects are updated, user can then proceed to the verification of the operations.

7.1 Example Project Overview
This pair of TrustZone-based secure and non-secure example projects provides the following functions:

Secure project (secure_key_inject_update_ra6m4_s):
• Uses the injected AES-256 key to perform cryptographic operation using AES256-CBC.
• Uses the injected Key-Update Key (KUK) to inject the new AES-256 key and store this new AES-256 key

to data flash.
• Uses the new AES-256 to perform cryptographic operation using AES256-CBC.
• Uses the injected ECC public key to verify the NIST test signature shown in Figure 68.
• Uses the injected Key-Update Key (KUK) to inject the new wrapped ECC public key and store this new

ECC public key to data flash.
• Uses the new ECC public key to verify the NIST test signature shown in Figure 80.

Non-secure project (secure_key_inject_update_ra6m4_ns):
• Establishes an RTT Viewer interface to allow users to select the intended Secure Crypto Engine and

flash operation.
• Calls the non-secure callable APIs provided from the secure project based on user selection from the

RTT Viewer interface.
• Prints the user operation results on the RTT Viewer.

Figure 111. Software Block Diagram

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 61 of 71
Oct.25.22

The FSP modules used in this pair of example projects are:

• r_sce_protected: This module is used in the secure region and provides services to the non-secure
region via non-secure callable APIs

• r_flash_hp: This module is used in the secure region and provides services to the non-secure region
via non-secure callable APIs

For more information on designing applications with TrustZone support, refer to the application project
Renesas RA Family MCU Security Design with TrustZone – IP Protection.

7.2 Using the RFP Injected Keys
7.2.1 Formatting the Injected Keys
The keys that are injected into the MCU flash using RFP cannot be used directly by the FSP Crypto APIs. A
minor formatting change is required.

 Formatting the Injected AES Key
The following code snippet reads the AES-256 key from flash. The destination buffer can then be used for
cryptographic operations. Replace the macro DIRECT_AES_KEY_ADDRESS with the actual injection address.

static sce_aes_wrapped_key_t injected_key;

injected_key.type = SCE_KEY_INDEX_TYPE_AES256;

memcpy(injected_key.value, (uint32_t *)DIRECT_AES_KEY_ADDRESS,

HW_SCE_AES256_KEY_INDEX_WORD_SIZE*4);

 Formatting the Injected ECC Public Key
The following code snippet reads the ECC public key from flash. The destination buffer can then be used for
cryptographic operations. Replace the macro DIRECT_ECC_PUB_KEY_ADDRESS with the actual injection
address.

static sce_ecc_public_wrapped_key_t ecc_public_key_injected;

ecc_public_key_injected.type = SCE_KEY_INDEX_TYPE_ECC_P256_PUBLIC;

wrapped_ecc_public_key_size = sizeof(ecc_public_key_injected.value);

memcpy((uint8_t *)(&(ecc_public_key_injected.value)), (uint8_t *)DIRECT_ECC_PUB_KEY_ADDRESS,

wrapped_ecc_public_key_size);

 Formatting the Injected KUK
The following code snippet reads the injected KUK from the flash. The destination buffer can then be used
for secure key update. Replace the macro KUK_ADDRESS with the actual injection address.

static sce_key_update_key_t kuk_key;

kuk_key.type = SCE_KEY_INDEX_TYPE_UPDATE_KEY_RING;

memcpy(kuk_key.value, (uint32_t *)(KUK_ADDRESS),HW_SCE_UPDATE_KEY_RING_INDEX_WORD_SIZE*4);

 Formatting an Injected RSA Public Key
This application project does not include an example usage for RSA secure key injection and update, but the
principles are identical. The following code snippet can be used to format an injected RSA public key.
Replace the macro RSA_2048_PUB_KEY_ADDRESS with the actual injection address

static sce_rsa2048_public_wrapped_key_t injected_rsa_public_key;

injected_rsa_public_key.type = SCE_KEY_INDEX_TYPE_RSA2048_PUBLIC;

uint32_t wrapped_rsa_2048_public_key_size = sizeof(injected_rsa_public_key.value);

memcpy((uint8_t *)(&(injected_rsa_public_key.balur)), (uint32_t *)RSA_2048_PUB_KEY_ADDRESS,

wrapped_rsa_2048_public_key_size);

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 62 of 71
Oct.25.22

7.2.2 Verifying the Injected Key and the Updated Key
To verify the AES injection, provide the plaintext message and the expected cipher text for the injected AES
key and the updated AES key to the software project. For example, based on the NIST vectors presented in
Figure 64 and Figure 76, use the data below in aes_crypto_operations.c:

#define BLOCK 16

/* NIST vector plaintext message*/

static uint8_t plain_text[BLOCK] = {

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

/* NIST vector initialization vector for the directly injected AES key and the AES key update*/

static uint8_t iv[BLOCK] = {

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

/* NIST cipher to match directly injected AES key*/

static uint8_t cipher_expected[BLOCK] = {

 0xe3, 0x5a, 0x6d, 0xcb, 0x19, 0xb2, 0x01, 0xa0, 0x1e, 0xbc, 0xfa, 0x8a, 0xa2, 0x2b, 0x57, 0x59

};

/* NIST cipher to match new AES key */

static uint8_t cipher_expected_new[BLOCK] = {

 0xb2, 0x91, 0x69, 0xcd, 0xcf, 0x2d, 0x83, 0xe8, 0x38, 0x12, 0x5a, 0x12, 0xee, 0x6a, 0xa4, 0x00

};

To verify the ECC public key injection, the expected signature using the ECC private key which matches the
injected ECC public key (see Figure 68) is provided in the array ECC_SECP256R1ExpectedSignature in
ecc_crypto_operation.c.

/* This is an externally generated NIST test signature using the private key */

uint8_t ECC_SECP256R1ExpectedSignature[] =

{

 0xf3, 0xac, 0x80, 0x61, 0xb5, 0x14, 0x79, 0x5b, 0x88, 0x43, 0xe3, 0xd6, 0x62, 0x95, 0x27, 0xed,

 0x2a, 0xfd, 0x6b, 0x1f, 0x6a, 0x55, 0x5a, 0x7a, 0xca, 0xbb, 0x5e, 0x6f, 0x79, 0xc8, 0xc2, 0xac,

 0x8b, 0xf7, 0x78, 0x19, 0xca, 0x05, 0xa6, 0xb2, 0x78, 0x6c, 0x76, 0x26, 0x2b, 0xf7, 0x37, 0x1c,

 0xef, 0x97, 0xb2, 0x18, 0xe9, 0x6f, 0x17, 0x5a, 0x3c, 0xcd, 0xda, 0x2a, 0xcc, 0x05, 0x89, 0x03

};

Figure 112. Provision the ECC_SECP256R1ExpectedSignaure Array
Similarly, the expected signature using the ECC private key which matches the updated ECC public key (see
Figure 80) is provided in the array ECC_SECP256R1ExpectedSignature_New in
ecc_crypto_operation.c.

/* This is an externally generated signature using the private key */

uint8_t ECC_SECP256R1ExpectedSignature_New[] =

{

 0x97, 0x6d, 0x3a, 0x4e, 0x9d, 0x23, 0x32, 0x6d, 0xc0, 0xba, 0xa9, 0xfa, 0x56, 0x0b, 0x7c, 0x4e,

 0x53, 0xf4, 0x28, 0x64, 0xf5, 0x08, 0x48, 0x3a, 0x64, 0x73, 0xb6, 0xa1, 0x10, 0x79, 0xb2, 0xdb,

 0x1b, 0x76, 0x6e, 0x9c, 0xeb, 0x71, 0xba, 0x6c, 0x01, 0xdc, 0xd4, 0x6e, 0x0a, 0xf4, 0x62, 0xcd,

 0x4c, 0xfa, 0x65, 0x2a, 0xe5, 0x01, 0x7d, 0x45, 0x55, 0xb8, 0xee, 0xef, 0xe3, 0x6e, 0x19, 0x32

};

Figure 113. Provision the ECC_SECP256R1ExpectedSignaure_New Array
There is no action needed from the user if the same sets of keys and plaintext messages are used. If new
sets of keys and messages are used, the user needs to update the project with the new credentials for the
above items.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 63 of 71
Oct.25.22

7.3 FSP Crypto Module Support for User Key Update
This section introduces the FSP Crypto APIs for SCE Protected Mode that are used for secure user key
update. For a complete description of all FSP Crypto APIs, refer to the FSP User’s Manual.

To use keys that have been injected via the secure key injection process using the serial interface, the
application must refer to those keys at the address where they were injected. If you inject keys at addresses
other than those demonstrated above, be sure to change your application code to reflect those addresses.
See instructions in section 7.4.

To perform secure AES key update, use the following API to MCU-uniquely wrap a new AES key using a
previously injected Key-Update Key:

fsp_err_t R_SCE_AES256_EncryptedKeyWrap (

uint8_t *initial_vector,

uint8_t *encrypted_key,

sce_key_update_key_t *key_update_key,

sce_aes_wrapped_key_t *wrapped_key)

The API parameters are:
• [in] initial_vector: Pointer to a buffer that holds the initialization vector that was used to wrap the

new key. This must be the IV that was used during the key wrap process shown in section 5.1.1.4 or
section 5.1.2.4. This value will be included in the generated new_aes_key.c and new_aes_key.h.

• [in] encrypted_key: Pointer to a buffer that holds the new key, wrapped by the KUK. In this
example, it is the KUK-wrapped AES-256 key that was output during the key wrap process shown in
section 5.1.1.4 or section 5.1.2.4. This value will be included in the generated new_aes_key.c and
new_aes_key.h.

• [in] key_update_key: Pointer to the Key-Update Key that was previously injected on the MCU. This
address must match the address used when injecting the KUK in section 5.2.2. The user needs to
update the macro definition KUK_ADDRESS defined in flash_storage.h to match the injection
address.

• [in, out] wrapped_key: This is the SRAM buffer to store the wrapped new user key. For security
considerations, it is recommended to erase this buffer right after the wrapped key is saved to flash. In
this application project, the newly generated wrapped key is stored to data flash and used in the example
project.

To perform secure ECC public key update, use the following API to MCU-uniquely wrap a new ECC public
key using a previously injected Key-Update Key:

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap (

uint8_t * initial_vector,

uint8_t *encrypted_key,

sce_key_update_key_t *key_update_key,

sce_ecc_public_wrapped_key_t *wrapped_key)

The API parameters are:

• [in] initial_vector: Pointer to a buffer that holds the initialization vector that was used to wrap the
new key. This must be the IV that was used during the key wrap process shown in section 5.1.1.5 or
section 5.1.2.5. This value will be included in the generated new_ecc_public_key.c and
new_ecc_public_key.h.

• [in] encrypted_key: Pointer to a buffer that holds the new key, wrapped by the HUK. In this
example, it is the KUK-wrapped ECC private key that was output during the key wrap process shown in
section 5.1.1.5 or section 5.1.2.5. This value will be included in the generated new_ecc_public_key.c
and new_ecc_public_key.h.

• [in] key_update_key: Pointer to the Key-Update Key that was previously injected on the MCU. This
address must match the address used when injecting the KUK in section 5.2.2. The user needs to
update the macro definition KUK_ADDRESS defined in flash_storage.h to match the injection
address.

• [in, out] wrapped_key: This is the SRAM buffer to store the wrapped new user key. For security
considerations, it is recommended to erase this buffer right after the wrapped key is saved to flash. In
this application project, the newly generated wrapped key is stored to data flash and used in the example
project.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 64 of 71
Oct.25.22

7.3.1 Save the New Wrapped Key to Data Flash
Once a new key is wrapped, the user needs to use the flash driver r_flash_hp to manually store it to the
data flash.

sce_aes_wrapped_key_t wrapped_new_user_key;

error = R_SCE_AES256_EncryptedKeyWrap (

 iv_encrypt_new_key, encrypted_new_key, &kuk_key, &wrapped_new_user_key);

Refer to function store_new_aes_key_to_data_flash() and function
store_new_ecc_pub_key_to_data_flash() for the operations of storing the new wrapped keys to
data flash.

7.4 Import and Compile the Example Project
Follow the steps below to exercise the example project. Note that there are sections of the code that must be
updated using the secure key injection results generated above prior to compiling and running the project.
Note that if the user has used the NIST vectors included in this application project for verification purposes,
steps 4 to 5 can be skipped.

1. Launch e2 studio and import secure_key_inject_update_ra6m3.zip file to a workspace.
2. Open crypto_operations.c in the secure project secure_key_inject_update_ek_ra6m4_s,

under the folder \secure_key_inject_update_s\src.
3. At the bottom of flash_storage.h, find the macro definitions DIRECT_AES_KEY_ADDRESS,

DIRECT_ECC_PUB_KEY_ADDRESS, and KUK_ADDRESS based on Figure 97.
4. Replace new_aes_key.h and new_aes_key.c with the new sets of files generated in section 5.1.1.4

or section 5.1.2.4 located in folder \secure_key_inject_update_ek_ra6m4_s\src\.
5. Replace new_ecc_public_key.c and new_ecc_public_key.h generated in section 5.1.1.5 or

section 5.1.2.5 located in folder \secure_key_inject_update_ek_ra6m4_s\src\.
6. If different file names are used, update the #include definition in aes_crypto_operations.c on

this line to reflect the new file name.

Figure 114. Include the Generated Header File for AES operation
7. If different file names are used, update the #include definition in ecc_crypto_operations.c on

this line to reflect the new file name.

Figure 115. Include the Generated Header File for ECC operation
8. Next, double-click configuration.xml from the secure project. Once the configurator is opened, click

Generate Project Content and then compile the secure project.
9. Expand the non-secure project and double-click the configuration.xml file. Once the configurator is

opened, click Generate Project Content and compile the non-secure project.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 65 of 71
Oct.25.22

7.5 Running the Example Project
Once the source code compilation is successful, follow the steps below to exercise the example projects:

1. Choose to debug from the non-secure application. Right-click on
secure_key_inject_update_ra6m4_ns and select Debug As > Renesas GDB Hardware
Debugging.

2. Execution will halt at the secure project reset handler.

Figure 116. Running to the Secure Project Reset Handler

3. Click Resume twice to run the project.
4. Open the J-Link RTT Viewer with the settings shown below.

Figure 117. RTT Viewer Setting

5. Click OK. The following menu should be printed.

Figure 118. Main RTT User Menu

a. Input 1 to confirm that the cipher text for the first AES key is successfully decrypted by the injected
AES-256 key.

Figure 119. Crypto Operation with Injected AES-256 Key

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 66 of 71
Oct.25.22

b. Input 2 to perform a key update to wrap the new AES-256 key and save the new key to data flash.
Note that the SCE handles the wrapping of the new key internally, without exposing the plaintext
key. It is not possible to extract the plaintext key. The wrapped AES key in SRAM is deleted after
storing to data flash. Note that if menu option ‘1’ is rerun after menu item ‘2’ is run, it will fail because
the new AES key will not generate the same cipher text as the original key.

Figure 120. Update the AES Key and Store to Data Flash

c. Input 3 to confirm that the cipher text for the second AES key is successfully decrypted by the
updated AES-256 key.

Figure 121. Crypto Operation with the New AES Key

d. Input 4 to confirm that the signature generated using the first ECC private key is successfully verified
by the injected ECC public key.

Figure 122. Crypto Operation with Injected ECC Public Key

e. Input 5 to perform a key update to wrap the new ECC public key and save the new key to data flash.
Note that the SCE handles the wrapping of the new key internally, without exposing the plaintext
key. It is not possible to extract the plaintext key. The wrapped ECC public key in SRAM is deleted
after storing to data flash. Note that if menu option ‘4’ is rerun after menu item ‘5’ is run, it will fail
because the new ECC public key cannot verify a signature that was generated by the first key’s
private key.

Figure 123. Update the ECC Public Key and Store to Data Flash

f. Input 6 to confirm that the signature generated using the second ECC private key is successfully
verified by the updated ECC public key.

Figure 124. Crypto Operation with the New ECC Public Key
Successful operations of the above menu items conclude the demonstration of the secure key injection and
update in this application project.

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 67 of 71
Oct.25.22

8. Example Project for RA6M3 (SCE7 Compatibility Mode)
This section introduces SCE7 Compatibility Mode with an example of AES-128 user key injection and
update.

8.1 Overview
This example project demonstrates the following functionalities of the compatibility mode of SCE7:

• AES-128 key injection using the files generated in section 6.1.

• Verifying the injected AES-128 key using PSA Crypto APIs and a NIST AES test vector.

• Key-Update Key injection using the files generated in section 6.2.

• AES key update using the files generated in section 6.3.

• Verifying the updated AES-128 key using PSA Crypto APIs and a NIST AES test vector.

8.2 Using the SKMT Generated Files
The source files generated from Figure 104, Figure 106, Figure 110 are included in the example project.
These files provide the UFPK-wrapped and KUK-wrapped keys used to demonstrate the functionality
described above.

Figure 125. RA6M3 Example Project Source Code

8.3 SCE7 Compatibility Mode Key Injection APIs
This demonstration uses the APIs in the Key Injection module (r_sce_key_injection) to perform key
injection. Refer to the FSP User Manual for the complete list of key injection APIs and their parameters.

8.4 Import and Compile the Example Project
Note that if AES keys other than the NIST vectors are used, then those new source files need to replace the
existing files in the example project prior to compiling and running the example project. If the NIST vectors
included in this application project are being used for verification purposes, steps 2 to 5 can be skipped.

1. Launch e2 studio and import secure_key_inject_update_ra6m3.zip file to a workspace.
2. Replace initial_aes_128.h and initial_aes_128.c with the new set of files generated in

Figure 104.
3. Replace key_update_key.c and key_update_key.h with the new set of files generated in Figure

106.
4. Replace new_aes_128.h and new_aes_128.c with the new sets of files generated in Figure 110.

Containing Key Information
generated using SKMT

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 68 of 71
Oct.25.22

5. If different file names are used, update the #include definition in hal_entry.c on this line to reflect
the new file name.

Figure 126. Include the Generated Header File for AES operation
6. Next, double-click configuration.xml. Once the configurator is opened, click Generate Project

Content and then compile the secure project.

8.5 Running the Example Project
Follow the steps below to exercise the example projects:

1. Right-click on secure_key_injection_update_ra6m3 and select Debug As > Renesas GDB
Hardware Debugging.

2. Execution will halt at the reset handler.

Figure 127. Running to the Project Reset Handler

3. Click Resume twice to run the project.
4. Open the J-Link RTT Viewer with the settings shown below.

Figure 128. RTT Viewer Setting

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 69 of 71
Oct.25.22

5. Click OK. The following execution result should be printed. User can step into the code to understand
the code execution flow.

Figure 129. Execution Result - Secure Key Injection and Update Example Project RA6M3

9. References
1. Renesas RA Family Device Lifecycle Management Key Injection Application Note (R11AN0469)

2. Renesas RA Family Secure Crypto Engine Operational Modes Application Note (R11AN0498)

3. Renesas RA Family MCU Security Design with TrustZone – IP Protection (R11AN0467)

4. Renesas RA Family MCU Plaintext Key Injection (R11AN0473)

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 70 of 71
Oct.25.22

10. Website and Support
Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-ra6m4
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Injecting and Updating Secure User Keys

R11AN0496EU0130 Rev.1.30 Page 71 of 71
Oct.25.22

Revision History

Rev. Date
Description
Page Summary

1.00 May.19, 2021 - First release document
1.10 Jan. 27, 2022 - Update to use Security Key Management Tool CLI V1.0.0
1.20 Mar.25, 2022 - Updated to add SKMT GUI support
1.30 Oct. 25, 2022 - Update to support SCE7 with FSP v4.0.0

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
 Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. SCE Wrapped Key Creates Root of Trust
	1.1 Introduction to Root of Trust
	1.1 Introduction to Secure Crypto Engine and Associated Keys
	1.3 Renesas Secure Key Injection Advantages
	1.3.1 Advantages of Key Wrapping over Key Encryption
	1.3.2 Advantages of Key Wrapping using MCU HUK

	1.4 Renesas RA MCU Factory Boot Firmware Limitations for SCE9

	2. Wrapped Key Injection Use Cases and Injection Procedure Overview
	2.1 Wrapped Key Types
	2.2 General Steps for Secure Key Injection and Update
	2.2.1 Key Injection
	2.2.2 Key Update

	2.3 Important Preparations for Using the Example Projects
	2.4 Tools Used in the Secure Key Injection and Update

	3. Using the Renesas Key Wrap Service
	3.1 Create PGP Key Pair
	3.2 Registration with DLM Server
	3.3 Exchange User and Renesas PGP Public Keys

	4. Wrapping the User Factory Programming Key Using the Renesas Key Wrap Service
	4.1 Renesas Security Key Management Tool
	4.2 Creating the User Factory Programming Key using SKMT GUI Interface
	4.2.1 Launching the GUI Interface
	4.2.2 Creating the UFPK for SCE9 Protected Mode
	4.2.3 Creating the UFPK for SCE7 Compatibility Mode

	4.3 Using the CLI Interface for SCE9 Protected Mode
	4.4 Wrapping the UFPK

	5. Secure Key Injection for SCE9 Protected Mode
	5.1 Wrap Keys with the UFPK
	5.1.1 Using the SKMT GUI Interface
	5.1.1.1 Wrap an Initial AES-256 Key with the UFPK
	5.1.1.2 Wrap an Initial ECC Public Key with the UFPK
	5.1.1.3 Wrap a Key-Update Key with the UFPK
	5.1.1.4 Wrap a New AES-256 User Key with the KUK
	5.1.1.5 Wrap a New ECC Public Key with the KUK

	5.1.2 Using the SKMT CLI Interface
	5.1.2.1 Wrap an Initial AES-256 Key with the UFPK
	5.1.2.2 Wrap an Initial ECC Public Key with the UFPK
	5.1.2.3 Create and Wrap a Key-Update Key with the UFPK
	5.1.2.4 Wrap a New ECC Public Key With the KUK

	5.2 Secure Key Injection via Serial Programming Interface
	5.2.1 Setting up the Hardware
	5.2.2 Inject the Initial User Key and Key-Update Key

	6. Secure Key Injection Preparation for SCE7 Compatibility Mode using SKMT GUI Interface
	6.1 Wrap an Initial AES-128 User Key Using the UFPK
	6.2 Wrap a Key-Update Key with the UFPK
	6.3 Wrap a New AES-128 User Key with KUK

	7. Example Project for RA6M4 (SCE9 Protected Mode)
	7.1 Example Project Overview
	7.2 Using the RFP Injected Keys
	7.2.1 Formatting the Injected Keys
	7.2.1.1 Formatting the Injected AES Key
	7.2.1.2 Formatting the Injected ECC Public Key
	7.2.1.3 Formatting the Injected KUK
	7.2.1.4 Formatting an Injected RSA Public Key

	7.2.2 Verifying the Injected Key and the Updated Key

	7.3 FSP Crypto Module Support for User Key Update
	7.3.1 Save the New Wrapped Key to Data Flash

	7.4 Import and Compile the Example Project
	7.5 Running the Example Project

	8. Example Project for RA6M3 (SCE7 Compatibility Mode)
	8.1 Overview
	8.2 Using the SKMT Generated Files
	8.3 SCE7 Compatibility Mode Key Injection APIs
	8.4 Import and Compile the Example Project
	8.5 Running the Example Project

	9. References
	10. Website and Support
	Revision History

