RE N ESAS Application Note

Renesas RA Family

Implementing Production Programming Tools for
RA Cortex-M85 with Device Lifecycle Management

Introduction

Renesas RA Family MCUs implement boot mode, which provides access to built-in firmware that allows the
system configuration to be interrogated and updated. On RA8 MCUs, boot mode can be entered through a
serial port, USB virtual COM port or SWD/JTAG interface. The ability to connect to boot mode via
SWD/JTAG enhances convenience, whilst serial/USB connections retain compatibility with existing
production programming tools. In addition, to enter boot mode using the serial port or USB virtual COM port,
it is necessary to simply reset the MCU while keeping the MD pin on the device pulled low. When the MCU is
in boot mode, user code in flash/MRAM will not be active. An MCU in boot mode enumerates as a COM port
when accessed through either a serial port or a USB virtual COM port. Tools running on an external system,
such as a Windows PC, can then communicate with the MCU over this interface.

During software development or small prototype production runs, standard Renesas tools, such as the
Renesas Flash Programmer (RFP), may be used with boot mode. In such cases, the system developer may
not need to be aware of the full details of boot mode and how it works.

However, for companies who provide production programming tools—or users who plan to create their own
tools for production purposes—such tools may well be required to communicate with boot mode, particularly
for the RA8 MCU Family devices based on Cortex-M85 and Cortex-M33 that implement Device Lifecycle
Management (DLM) capabilities.

The full specification of the boot mode interface for these RA Family MCUs is detailed in Renesas Boot
Firmware application note, e.g. RO1TAN7140 (RA8M1), RO1AN7823 (RA8P1), which is available for download
from the Renesas website. This application note expands on the boot mode interface specification to provide
more practical examples of how to interface with boot mode, from both the hardware and software
perspectives. It includes demonstration code in Python on RA8M1 and RA8P1 to illustrate how boot mode
access can be accomplished. The process for other RA8 MCUs is comparable to these two devices, users
can follow the guidelines and examples outlined in the application note.

Note: We do not guarantee any operations not described in this document.
Supported MCU Groups
At the time of the release, the supported MCU groups are:

¢ RA8M1 Group
e RA8D1 Group
e RA8T1 Group
e RA8E1 Group
e RA8E2 Group
¢ RA8P1 Group
e RAS8T2 Group
¢ RA8D2 Group
¢ RA8M2 Group

Required Resources
Development tools and software

e Python v3.12 or later (https://www.python.org/downloads/)

e pySerial v3.5 (https://pyserial.readthedocs.io/en/latest/pyserial.html#installation)
e PyCryptodome (Installation — PyCryptodome 3.4.6 documentation)

e Renesas Flash Programmer v3.19.00 or later (https://www.renesas.com/rfp)

RO1AN7884EU0101 Rev.1.01 Page 1 of 70
Oct.08.25 RENESAS

https://www.python.org/downloads/
https://pyserial.readthedocs.io/en/latest/pyserial.html#installation
https://pycryptodome-master.readthedocs.io/en/latest/src/installation.html
https://www.renesas.com/en/software-tool/renesas-flash-programmer-programming-gui

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Hardware

¢ EK-RA8M1, Evaluation Kit for RA8M1 MCU Group (http://www.renesas.com/ra/ek-ra8m1)
¢ EK-RA8P1, Evaluation Kit for RA8P1 MCU Group (http://www.renesas.com/ra/ek-ra8p1)

e For demonstration purposes, this application note makes use of the RA8M1/P1 MCU and the EK-
RA8M1/P1 evaluation board. However, the available functionality will be the same on the other
supported MCU groups except when specifically noted.

e Workstation running Windows® 10/11

e Demonstration code should also work on other platforms that support Python and pySerial, but this

has not been tested.
e One USB device cable (type-A male to micro-B/type-C male) or
e One USB to TTL Serial 3.3-V UART Converter with four pieces of male to female jumper wire.

Prerequisites and Intended Audience

The intended audience is engineers creating production programming tools to use with Renesas RA Family
MCUs. Before using this application note and associated demonstration code, users should acquire the
following documentation for reference:

e Application note “Renesas Boot Firmware for (the MCU that is under consideration) Group”. E.g.
Renesas Boot Firmware for RABM1 MCU Group (RO1AN7140).

e The MCU User’'s Manual: Hardware (for the MCU that is under consideration).

¢ Application note “Device Lifecycle Management for RA8 MCUs” (RO1ANQ785).

These documents are available on the Renesas website and are referenced in this application project.

RO1AN7884EU0101 Rev.1.01 Page 2 of 70
Oct.08.25 RENESAS

http://www.renesas.com/ra/ek-ra8m1
http://www.renesas.com/ra/ek-ra8p1
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8m1-mcu-group
https://www.renesas.com/en/document/apn/device-lifecycle-management-ra8-mcus

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Contents

1. Production Programming CONCEPLSccoiiiiiiiiiii it e e e e 5
LR N = 7= Ted (o [(01U o T I PP OPPUPPOTPRP 5
1.2 Typical Production Programming FIOW.........c..oeiiiiiiiiiiiii e 5
1.3 FIash Programmingoooo oottt e et e e e bt e e e abb e e e e sbb e e e e s abbe e e e aabbeeeesanbeeeeaan 6
1.4 Device Lifecycle ManagemMENTtooiii oottt e e e e e e e e e et e e e e e e s e raneaeaaean 6
1.5 Secure / Non-secure /Non-secure Callable REGQIONScooiiiiiiiiiii i 9
1.5.1 SAU Registers and Non-TrustZone-using SOftWareccooiiiiiiiiiec i 10
1.6 Production Programming Advanced FEAtUresoccuiiiiiiiiiiiiiie e 10
1.6.1 First Stage Bootloader (FSBL) SUPPOITeiiiiiiiiie e 11
1.6.2 Secure Factory Programming (SFP) SUPPOItoiiiiiiiiiiiie e 11
1.7 Key considerations for migrating Production Programming from CM33 to CM85cc.ceeeiivnnneen. 11
2. MCU Hardware Setup for Boot MOde USEuiiiiiiiiiiiiiiis et 11
2.1 Boot Mode Communication Interfaces OVEIVIEWcooiiiiiiiiiiiiiiiiiiee e 11
D o 1V TP PEPPR PR 11
A T O [To: OSSO PRV OTR 12
2.4 MCU System Mode Control SigNalS...........cccuuuiiiiiiiiiiiiiieie e e e e e s e e e e e e e e aareae s 12
2.5 Using the 2-wire Serial CoOMMUNICAtIONueiiiiiiiiie e e e seneee s 13
2.6 Using the Universal Serial Bus (USB) COMMUNICAtIONccuuiiiiiiiiiieiiiiie et 13
2.7 Using Serial Wire Debug INterface (SWD)cooiiiiiiiiiiiie et e e 13
3. Connecting t0 BOOt MOGEuuuiiiiiiiiiiiiiiiiiiiii s 14
3.1 Boot mode operational PhasSes.c.uiiiiiiiiii e 14
0 1 11 2= 4= 1 o g T o = T SRR 16
02 B 1= T4 =1 BT~ 1 o TS PR PPRR 17
I U Ao = BT oY] o T RSP 17
3.2.3 JTAG/SWD SEHINGSeeeteieitiie ittt ettt b e st e s he e e sa b e e ebe e e sabe e e beeesabeeeabeeennneeans 17
3.3 Communication SettiNg PRasecoouiiiiiiiie et e e ee e 17
3.3.1 USB/UART COMMUNICALIONutiiiiiiiiiie ittt ettt ettt ettt e e st e e e sbee e e e snbeee e anteeeeeaneeeeeaan 17
3.3.2 JTAG/SWD COMMUNICALIONuiiiiiiiiiee et iee ettt et e ettt e e sttt e e sttt e e e sbae e e e sbeeeeesbbeeeeaseeeeesaneeeeeanns 19
T S = ToTo] 1Y, oY [T @] 1 4T 1 4 =T oo [PP URRPPPPPRR 19
4.1 Command ACCEPLADIE PRASE.........uuiiiiiiiiie ettt e e e e s 19
4.1.1 Command Packet FOMMALccuuiiiiiiie e e e e e e e e e e e e e e e aae e e e e e e e e annenneees 19
g I B = = T = Tt (= PR 20
4.1.3 Summary of Boot Mode COMMEANGS ... e e e e e e e e e e e e e e e neeeas 20
4.1.4 Boot Mode Firmware OPerationoooiiieieiiiiieie e e e e e e e e e e s e e e e e e e e nneneeeas 21
5. Typical Use Cases of Boot Mode Commands.............uuueiiiieiiiiiiiiiiiiiei e 22
Tt B O AV oY oY o) 0 T o= 1] Y SR 22
5.2 Signature Request COMMEANGcooiiiiiiiiiiiii et e e sb bt e e e sbb e e e sbbe e e e saneeeeeean 22
RO1AN7884EU0101 Rev.1.01 Page 3 of 70

Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

5.3 INQUINY COMMENG ...ttt ettt e e b bt e e e s b et e e s s b et e e e sbbe e e e eanbeeeeaanbneeeaanbneeeaan 24
I I | T1 7= 2= g =1V O O U PEPUTRRR 25
5.4.1 Initializ€ COMMENGooiiiiiiii ittt e ettt e e e sttt e e e sttt e e e sbeeeeeabbeeaesanteeeesanteeeeannsneeeanns 25
5.4.2 Check Whether Initialize Command is DiSabledcocueiiiiiiiiiiiiiee e 26
5.4.3 Disable Initialize COMMANG ...t e e e e e e e e e e e s e e e e e e e e e s e annneeeeeeaeean 28
5.5 TrustZone Boundary REGION SEIUPcooiiiiiiiiiiiiii e e e 30
LT N © o7 =1 1 o] g = Il oSSR 30
5.5.2 Acquire the Boundary Information from an Application.............ccceeeiiiiiiiiiieii e 30
5.5.3 TrustZone Boundary Request COmMmMANdccciiiiiiii i 31
5.5.4 TrustZone Boundary Setting CommMaNnd............cooiiiiiiiiii e e e e e 33
5.6 DLM Authentication Key HandliNg.........cooo it et 35
5.6.1 Inject DLM AUthentiCation KEYSeoiiiiiiii ittt e s snee e 35
5.6.2 Verify DLM AUthentiCation KEYS..........ooi ittt e s e e 39
5.7 DLM State, Protection Level and Authentication Level Handling............ccoccceeeiiiiiiiii e, 41
5.7.1 DLM Stat€ REQUESTeeiii ittt e e e e e et e e e e e e e e e s aab b e e e e e e e e eseantreneaaaeeas 41
5.7.2 DLM State TranSitiONccuuiiiiiiiiie ettt e et e et e e e st e e e sttt e e s staeeeesbbeeessanteeaesasteeaeaasseeaeanns 42
5.7.3 Protection LeVel REQUESTeiii ettt e s et e e s e nee e 44
5.7.4 Protection Level TranSitioncooiiii oottt e e e e e et e e e e e e s s st ee e e e e e e e e e e nnnneeeeeaeeean 46
5.7.5 Authentication Level REQUEST..........ooo e 48
5.7.6 Authentication Level TranSitionooo i e e e e e eeeeee s 49
6. Running the Python EXample COUEuuuuiiiiiiiiiiiiiiiiiiiiiiiii e 54
6.1 Set up the Python ENVIFONMENTt e e ee e 54
6.2 Setting Up the HardWaret r e e e e eeaaeeeas 54
6.3 RuUNNINg the First DEMO COAE.......ooiiiiiiiiiiiiie ettt et e e e e e e st e e e e e e e e nnnreeeeeae s 58
6.4 Running the Second Demonstration COOE.........ooi it e s 62
6.4.1 Establishing the ConNection (USB)..........cuuiiiiiiiiii ettt e e e e e e rnee e e e 64
6.4.2 Checking Product Type Name, Current DLM State, Protection Level and Authentication Level 65
6.4.3 Configuring TrustZone Partition BOUNAArIEScueiiiiiiiiiiiiiie e 65
6.4.4 INJECHNG DLIM AL KEYS ...ttt e e e e e ettt e e e e e e e e nae e eeeee e e e e e nnbeneeeaaeeeaaannneneeeaaaean 66
6.4.5 Configuring Final Protection Level State...........ooo e 67
6.5 Testing Authenticated DLM TransSitioNnscooooiiiiiiiiiiiie e e e e 67
6.6 Disabling the Initialize ComMMANGooiiiiiii et e e s e e e ee e e 68
7. REEIENCES ...ttt e e e e e e s e e e e e e e e e 68
8. WeDSIte @nd SUPPOITuuiiiiiiiiiiiiiit e 69
REVISION HISTOTY ... et e e e e e e e et e e e e e e e e eaaaaaas 70
RO1AN7884EU0101 Rev.1.01 Page 4 of 70

Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

1. Production Programming Concepts

This section introduces some of the concepts behind the operations required to perform production
programming of RA8 MCU Family devices based on Cortex-M85 and that implement Device Lifecycle
Management (DLM) capabilities.

1.1 Background

With many Arm Cortex-M based MCUs from a variety of silicon manufacturers, it is often possible for most
production programming operations—in particular programming of an application image into flash memory—
to be carried out over a Serial Wire Debug (SWD) connection to the target MCU, as SWD is also used for
debugging purposes during the software development process.

For RA8 MCU family devices based on the Cortex-M85 that have DLM capabilities, the SWD interface can
be used to access the MCU boot mode. Accessing boot mode is necessary to carry out various device
configuration operations. In addition to SWD, boot mode can also be accessed via SCI/UART or USB. This
application note will demonstrate how to invoke and communicate with boot mode over both SCI/UART and
USB. The command sequence can be adapted for production programming tools that use the SWD
interface.

SCI/USB boot mode is entered when the MCU is reset with the MD pin on the device pulled low. In boot
mode, rather than any user code in flash being executed, a terminal-like interface is made available through
either a serial port (often referred to in Renesas documentation as SCI/UART) or a USB virtual COM port.
Tools running on an external system, such as a Windows PC, can then communicate with the MCU over this
interface.

Boot mode is also available on other RA Family MCUs based on Cortex-M23, Cortex-M4 and Cortex-M33
CPUs based MCUs that do not implement DLM capabilities. However, on such MCUs, the functionality
provided by boot mode is somewhat different and production programming can generally be carried out over
SWD without requiring any access to boot mode (although programming can also be done through boot
mode).

The example in this application demonstrates SCI/UART and USB for establishing communication, but to
minimize integration effort and maximize consistency across the ecosystem, we recommend that using
SWD/JTAG bootmode communication.

1.2 Typical Production Programming Flow

RA8 MCU Family devices based on Cortex-M85 with DLM capabilities are delivered from the factory in the
Chip Manufacturing (CM) or Original Equipment Manufacturer (OEM) state. A typical production
programming flow includes the following steps:

1. Establish the necessary hardware connections to enable the use of boot mode.

2. Reset the MCU into boot mode and establish communication from the host to the MCU over either
SCI/UART or USB or SWD. Then, check the current DLM state.

If the MCU is in the CM state, use the DLM state transition command to transition the DLM state from
CM to OEM. This step is explained in more detail later in this document.

3. Ifthe MCU is not in the CM or OEM state—for example, if this is an evaluation board that has already
been used for other purposes—an “Initialize” command may be issued if the device is in the LCK_BOOT
or RMA states. At the end of the “Initialize” command, the MCU is changed to the OEM state and
Protection Level 2 (PL2) with the Code Flash, Data Flash (or MRAM on RA8P1) and Flash Option
settings erased. This step is explained in more detail later in this document.

4. Reset to normal operation and program the MCU'’s flash memory over SWD.

e This can also be done through boot mode but would generally be much slower.
e This step is not demonstrated in this application note.

5. Reset MCU again into boot mode.

6. Set up the required “security related options” using boot mode operations. Details on how to perform
these steps are explained in section 4. ltems are demonstrated in the example code:

a) Configure TrustZone partition boundaries.
b) Inject DLM/AL Keys.
c) Change to DLM/PL states.

RO1AN7884EU0101 Rev.1.01 Page 5 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

1.3 Flash Programming

Generally, RA8 MCUs provide three types of flash memory, with slight differences in the way they are erased
and programmed:

e Code Flash memory

e Data Flash memory

e Option Flash memory

With the RA8P1, the types of memory are:

e Code MRAM memory

e Extra MRAM memory

Although it is possible to program these flash memory areas through the boot mode interface, in many
production programming tools it may be preferable to carry out such programming over an SWD connection
while the MCU is in normal operating mode.

Note: If programming flash through the boot mode interface, the DLM state of the MCU must first be
changed from CM (factory default) to OEM.

For a particular MCU, details such as memory sizes and the mechanisms available to program each area are
detailed in the Flash Memory chapter of the corresponding "User's Manual: Hardware".

Example flash source code in Keil MDK flash driver format is available in our Device Family Packs (DFP) on
the Renesas RA Flexible Software Package (FSP) GitHub.

At the time of writing, the latest version is available as part of FSP 6.0.0 at:

e https://github.com/renesas/fsp/releases/download/v6.0.0/MDK Device Packs v6.0.0.zip

Check the FSP GitHub for newer versions.
The Arm/Keil document for the code layout and functions of their flash driver format is available at:

e https://www.keil.com/pack/doc/CMSIS/Pack/html/algorithmFunc.html

Additional flash programming code is available for reference within the FSP drivers for each MCU group.

1.4 Device Lifecycle Management

Most RA8 family MCUs based on Arm Cortex-M85 CPUs adopt the concept of a device life cycle and
maintain the life cycle state inside the device. The DLM state is used to restrict access to the MCU's internal
resources through SWD/JTAG debugger and boot mode interfaces as the device lifecycle states progress.
The DLM state is only configurable through boot mode over an SCI/UART, USB or SWD/JTAG connection.
The set of boot mode commands that are possible are controlled by the current lifecycle state. Changing
lifecycle state is also only possible using a boot mode command. Note that a production programming tool
should always move a MCU into at least OEM (not leave it in the CM state).

Table 1 describes the DLM states that may be involved in the production programming stage.

RO1AN7884EU0101 Rev.1.01 Page 6 of 70
Oct.08.25 RENESAS

https://github.com/renesas/fsp
https://github.com/renesas/fsp/releases/download/v6.0.0/MDK_Device_Packs_v6.0.0.zip
https://www.keil.com/pack/doc/CMSIS/Pack/html/algorithmFunc.html

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Table 1. TrustZone-Enabled RA8 Family MCU Group Device Lifecycle States

Lifecycle Definition Protection Boot mode access
Level

CM “Chip Manufacturing” PL2 Available.
(Some MCUs may be delivered in this Cannot access code/data
state) flash area.

OEM “Original Equipment Manufacturer” PL2 or PL1 Available.
The device is owned by the customer. or PLO

LCK_BOOT | “LoCKed BOOT interface” PLO Not available.
The debug interface and the serial
programming interface and permanently
disabled.

RMA_REQ “Return Material Authorization REQuest” PLO Available.
Request for RMA. The customer must Cannot access code/data
send the device to Renesas in this state. flash area.

RMA_ACK “Return Material Authorization PL2 Available.
ACKnowledge” Cannot access code/data
Failure analysis in Renesas. flash area.

RMA_ RET “Return Material Authorization PLO Not available.
ACKnowledge”
The device is back to the customer. The
device does not boot.

The three Protection levels are:

e PL2: The debugger connection is allowed, with no restriction on access to memories and peripherals.

e PL1: The debugger connection is allowed, with access to only non-secure memory regions and
peripherals.

e PLO: The debugger connection is not allowed.

Figure 1, Figure 2 and Figure 3 describe the possible transitions between DLM, PL and AL states.
Production programming tools need to be able to inject the keys required to allow authenticated DLM state
changes.

Authentication using RMA_KEY is required
Transition is not possible when AL2_KEY is disabled

Authentication using RMA_ACK_KEY is required
RMA_ACK_KEY is Renesas specific key

™~ \ / s il
4 T

N

| > RMA REQ RMA_ACK ——» RMA_RET

W ™~
) _ \ NG / N

e ™\
\ e

/

CM

Transition is possible unless disabled

LCK_BODT |

e

Figure 1. Device Lifecycle Management on RASM1

RO1AN7884EU0101 Rev.1.01
Oct.08.25

Re Page 7 of 70
RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Authentication using RMA_KEY is required Authentication using RMA_ACK_KEY is required
Transition is not possible when AL2_KEY is disabled RMA_ACK_KEY is Renesas specific key

N

OEM —» RMAREQ +—» RMAACK ——p(RMARET |

N N N/

—

I\\“ Transition is possible unless disabled

."//—__ _

LCK_BOOT |

Figure 2. Device Lifecycle Management on RA8P1

] —» Transition in AL2

—/ _ __\x-u___..-/ \ __T_..-/ —— Transition in AL2 or AL1

- _ —» Initialize
- B Transition is possible when it is not prohibited
—_— Transition is not possible when AL2_KEY is disabled

/ } :"'*\ /-""'_"'a /_\ —» Transition without no restriction
' | PL1] [PLO '
S

- T —» Transition without authentication

|/-:A_:_ﬁ\'n (!_--_,;H\] -/I’---_A
N N N

. o o —* Transition with authentication using AL1_KEY
" Transition is not possible when AL1_KEY is disabled

ﬁ\ — Transition with authentication using AL2_KEY
LO J'| Transition is not possible when AL2_KEY is disabled

Figure 3. PL and AL states and transitions on RA8 MCU Groups

For production programming, the tool must move a device from CM to OEM for MCUs that are delivered from
the factory if the device is delivered in CM state. The tool may alternatively need to transit the DLM state
back to OEM using an “Initialize” command for MCUs that have been used in the past. At the end of the
sequence, the tool may also need to support locking down of the device—to prevent user’s proprietary code
and data being read back—by moving the DLM state into LCK_BOOT or moving to RMA_REQ state in case
of customers need Renesas support. Boot mode also provides a command to disable the “Initialize”
command, preventing future erasing of flash/MRAM and resetting of DLM state, Protection Level and
Authentication Level.

Authenticated transitions are possible using AL keys. These user-defined keys are injected during specific
device lifecycle states to allow authenticated regression back to that state.

The primary keys that most applications will use are:

RO1AN7884EU0101 Rev.1.01 Page 8 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

o AL2 KEY
e The Authentication Level 2 Key can be injected when the MCU is in the OEM state. It can be used
when the MCU is in the OEM_PL1 or OEM_PL2 state to regress back to the OEM_PL2 state without
erasing flash memory. This key is used in green arrow of Figure 3.
o AL1_KEY
e The Authentication Level 1 Key can be injected when the MCU is in the OEM state. It can be used
when the MCU is in the OEM_PLO state to regress back to the OEM_PL1 state without erasing flash
memory. This key is used in red arrow of Figure 3.

Note that an AL key injected during production allows a user to change the DLM/PL state post-production if
and only if they have access to the original key.

1.5 Secure / Non-secure /Non-secure Callable Regions

Arm TrustZone technology is a core security technology developed by Arm and included as part of the v8-M
architecture. It is typically implemented on a wide range of Cortex-M85 based devices, including Renesas’
RA8 Family MCUs. The key point about TrustZone technology is that it provides and enforces a partition
between trusted and non-trusted portions of the system, which provides the designer of a product with a
building block towards producing a more secure MCU application. At a basic level, the way this partitioning is
implemented is by use of memory regions, which effectively covers code, data, and peripherals within the
overall memory map.

First, we have Secure memory regions. These are the trusted regions covering overall system boot as well
as trusted or protected IP such as key storage and data decryption.

Secondly, we have non-secure memory regions, which are used for our normal application code and data,
which do not require direct access to the trusted data. The important point here is that non-secure operations
are only allowed to access non-secure regions, thereby preventing unapproved access to trusted information
or operations.

Finally, we have Non-Secure Callable regions, which are used to provide a gateway between the secure and
non-secure worlds.

RA Cortex-M85 based MCUs with DLM implement a combination of hardware and software defined
attribution units is used to establish secure and non-secure memory regions. The Implementation Defined
Attribution Unit (IDAU), a fixed hardware component, and its companion Master Security Attribution Unit
(MSAU) for other bus masters, work in parallel with the software configurable Security Attribution Unit (SAU).
This parallel query system ensures the stricter security label is applied, guaranteeing that secure memory
remains protected even if one of the attribution units is misconfigured.

For more details, refer to The MCU User’s Manual: Hardware (for the MCU that is under consideration),
section Arm Security Features; or refer to Security Design using Arm TrustZone - Cortex M85 (R11AN0897).

RO1AN7884EU0101 Rev.1.01 Page 9 of 70
Oct.08.25 RENESAS

https://www.renesas.com/en/document/apn/security-design-using-arm-trustzone-cortex-m85

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Address Address map Security At_lr\butlon Region
partition number
OxFFFF_FFFF Vendor SYS
Exempt 1]
0xE000_0000 PPB
0xC000_0000 External
Device
0xAD00_0000 NS
6
0x8000_0000 External
RAM
0x6000_0000
NS
Peripheral
0x4000_0000 = °
NS 4
SRAM
NSC 3
0x2000_0000
NS 2
Code
0xD000_0000 NSC !

Figure 4. TrustZone Configurations Example using RASM1

The IDAU provides a fixed, hardware-defined security map for code, SRAM, peripheral regions, and MSAU
extended that map for other bus masters, which cannot be changed at runtime. Additional TrustZone
boundaries as Secure, NSC, Non-Secure regions will be programmed into the SAU through boot mode.
Therefore, as part of the production programming sequence, appropriate values for these registers need to
be configured by the tools.

When a secure application is built, Renesas tools generate a file (.rpd) that contains details of the required
split between Secure/Non-Secure memory. The .rpd file can be used by the production programming tool to
configure the appropriate values into the security attributes register through boot mode.

1.5.1 SAU Registers and Non-TrustZone-using Software

Renesas tools also generate the .rpd file for applications that do not use TrustZone technology. In most
cases, the SAU registers could theoretically be left set to the default (maximal) values that will be set by
running an Initialize command.

However, in some cases, this is not appropriate. Some applications need some areas of memory set to be
Non-Secure. Configuring the SAU regions is necessary for such use cases.

In general, to ensure correct application execution, we recommend always setting up security attributes as
part of the production programming process.

1.6 Production Programming Advanced Features

The Renesas RA8 MCU also provides security foundation to authenticate and protect the firmware during
production programming. For details on the commands to achieve these functionalities, please refer to the
boot firmware application note of the MCU. To review an example usage of these features in an application,
please refer to the application projects “Application Design using RA8 First Stage Bootloader (R11ANQ0774)
and RA8 Secure Factory Programming (RO1AN7516)”.

RO1AN7884EU0101 Rev.1.01 Page 10 of 70
Oct.08.25 RENESAS

https://www.renesas.com/en/document/apn/application-design-using-ra8-first-stage-bootloader-application-project
https://www.renesas.com/en/document/apn/ra8-secure-factory-programming

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

1.6.1 First Stage Bootloader (FSBL) Support

The FSBL, which is masked in ROM and can execute after reset to verify the OEM firmware programmed in
the on-chip flash. Due to its immutable nature, the FSBL provides a silicon-based Root of Trust (RoT).

To use the FSBL, the OEM firmware must be verified during production programming by the MCU boot
firmware using ECDSA. Production programming software must follow the proscribed order of operations (as
per the Boot Firmware documentation for the MCU) for injecting keys, programming the image and
authenticating the image using the code certificate, optionally a key certificate and OEM root public key.

1.6.2 Secure Factory Programming (SFP) Support

SFP supports image programming in ciphertext format in a non-secure environment. To use the SFP, the
production programming software must follow the proscribed order of operations (as per the Boot Firmware
documentation for the MCU) for injecting keys, programming the encrypted image and setting up the FSBL
(optional).

When using SFP, the encrypted data write boot mode command is used to program the application. The
encrypted data write command also changes the device to the specified state, PLO or LCK_BOOT when
saving the data. Thus, a separate DLM or PL state setting command is not required in this case to lock down
the device after programming completes.

1.7 Key Considerations for Migrating Production Programming from CM33 to CM85

For users who are already familiar with production programming on CM33, please note that when
transitioning to CM85, it is important to understand the key differences between CM85 and CM33, and
update the Production Programming software accordingly:

e Add support for the new Device Lifecycle states not currently available on CM33, such as the OEM
state, which introduces Protection Level and Authentication Level configurations.

e Support functionality to inject the OEM root key and certificate for FSBL usage.

e Support for injecting Secure Factory Programming (SFP) files using the encrypted data write
command. Note that this feature is also available on certain CM33 MCUs, e.g. RA4L1 and RA4C1.

For some commands, the types of keys eligible for injection have been changed. Refer to the Boot Firmware
application note for details.

2. MCU Hardware Setup for Boot Mode Use

This section describes the hardware requirements for setting up the production environment, including the
power, clock, communication interface connections, and the signals that control the MCU operation mode.

2.1 Boot Mode Communication Interfaces Overview
Boot mode can then be accessed using one of the following communication methods:

e 2-wire serial communication (often referred to in Renesas documentation as SCI/UART)
e Universal Serial Bus (USB) communication (over a virtual COM port)

Serial Wire Debug (SWD) Interface

Multiplex SWD Interface and SCI/UART Interface on the SWD debug header

Communication with boot mode can be carried directly over SWD. In addition, Renesas has defined a
specification for reusing certain pins from an SWD debug header as UART pins. This enables production
programming tools to communicate over a single physical connector using either SWD (for communication
with boot mode and programming flash) or UART (for communication with boot mode).

The hardware requirements of these communication methods are described in the following sections. These
sections use the RA8M1 MCU group as an example. For production support, confirm details for the specific
MCU being used in the Hardware User’s Manual Section “Pin Functions”.

2.2 Power

The production hardware setup needs to provide proper power and ground to the MCU. The example
guidelines shown in Table 2 and Table 3 are based on the RA8M1 MCU.

Table 2. RA8M1 MCU Operating Voltage Range

RO1AN7884EU0101 Rev.1.01 Page 11 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Operating voltage VCC =1.68t03.6V
When using USB communication: VCC = 3.0 to 3.6V

Table 3. RA8M1 MCU Power Signals

Function Signal 10 Comments
Name
Power supply | VCC, VCC2 | Input Power supply pin. Connect it to the system power supply.

Connect this pin to VSS by a 0.1-pF capacitor. The
capacitor should be placed close to the pin.

VCC_DCDC | Input Switching regulator power supply pin.
VLO I/O Switching regulator pin.
VCL Input Connect this pin to the VSS pin by the smoothing capacitor

used to stabilize the internal power supply. Place the
capacitor close to the pin.

VBATT Input Battery Backup power pin.
VSS, Input Ground pin. Connect it to the system power supply (0 V).
VSS_DCDC

2.3 Clock

The clock signal is also mandatory for the MCU and the boot firmware to function. To use the boot mode
firmware, there are specific requirements on the main oscillator frequency. Table 4 shows the requirement
for the RA8 MCU.

Table 4. Clock Source for Boot Mode Operation

Clock Source | RA8M1/D1/T1/E1/E2, RA8P1:
Main Oscillator Frequency of 8, 10, 12, 15, 16, 20, 24, 32, 48 MHz
can be used by boot mode firmware. Otherwise, HOCO will be used.

Table 5. Clock Signals

Function Signal | 10 Comments

Name

Clock XTAL Output Pins for a crystal resonator. Input an external clock signal
EXTAL | Input through the EXTAL pin.

* When performing USB communication with HOCO, Sub-OSC must be oscillating stably.

2.4 MCU System Mode Control Signals

As mentioned in section 1.1, SCI/USB boot mode is entered when the MCU is reset with the MD pin on the
device pulled low. Table 6 describes some more details on these two signals.

Table 6. General Signals for Accessing the Boot Mode

RO1AN7884EU0101 Rev.1.01 Page 12 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Function Signal | IO Comments

Name

Operating MD Input Pin for setting the operating mode. The signal level on MD must
mode control not be changed during operation mode transition on release

from the reset state. For the MCU groups covered in this
application note, the MD pin is P201.

MCU Reset RES Input Reset signal input pin. The MCU enters the reset state when the
control RES signal goes low.

2.5 Using the 2-wire Serial Communication

The Serial Communication Interface (SCI) hardware block used for UART communication has several
channels. For boot mode use, channel 9 is used to enumerate a COM port. Table 7 provides more details on
the UART signals.

Table 7. UART Boot Mode Pins

Function Name | Signal | IO Comments
SCI (channel 9) RXD9 | Input RA8M1/D1/T1/E1/E2, RA8P1: P208
TXD9 | Output RA8M1/D1/T1/E1/E2, RA8P1: P209

2.6 Using the Universal Serial Bus (USB) Communication

USB communication with boot mode can be used by all the supported MCU groups. Table 8 describes the
details on the USB signals. The production programming fixture development team can refer to the Renesas
evaluation board schematic to provide the signal conditioning circuit for the USB connections.

Table 8. USB Interface and Configurations

Function Signal 10 Comments
Name
USB Full VCC_USB Input USB Full-speed power supply pin. Connect this pin to VCC.
Speed Connect this pin to VSS_USB through a 0.1 uF capacitor
placed close to the VCC_USB pin.
VSS_USB Input USB Full-speed ground pin. Connect this pin to VSS.
USB_DP /0 D+ pin of the USB on-chip transceiver. Connect this pin to
the D+ pin of the USB bus.
USB_DM I/O D- pin of the USB on-chip transceiver. Connect this pin to
the D- pin of the USB bus.
USB_VBUS Input USB cable connection monitor pin. Connect this pin to
(P407) VBUS of the USB bus. Designers should scale down the
5V VBUS input to the MCU’s operating VCC voltage range
with ESD projection. The VBUS pin status (connected or
disconnected) can be detected when the USB module is
operating as a function controller.
USB_VBUSEN | Output VBUS (5V) supply enable signal for external power supply
chip.

2.7 Using Serial Wire Debug Interface (SWD)

For performance reasons, a production programming tool may prefer to program flash memory over an SWD
connection, rather than using the boot mode interface. For RA8 MCUSs, using the debug connector can
conveniently support boot mode access as well as flash programming support over the SWD interface.

In addition, the SCI/UART boot access pins can be shared on the debug connector, allowing both the
SCI/UART and SWD interfaces to access boot mode through the debug connector. Renesas has
standardized on an extended configuration of the SWD header. This is achieved by reusing pins on the
standard debug connector as shown in Figure 5. Refer to the RA8 MCU Family Quick Design Guide
(RO1AN7087) section “Emulator Support” for more details on the specification of this interface.

RO1AN7884EU0101 Rev.1.01 Page 13 of 70
Oct.08.25 RENESAS

https://www.renesas.com/en/document/apn/ra8-mcu-quick-design-guide

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Arm standard

JTAG connector - - Serial
10-pin 20-pin Port SWD ITAG Program MCU
; ~P201 | NC | NC MD
1 1
2 2 {p210 [swoio| Tms | nc
3 3
4 4 {P211 | swak| Tcx NC
5 5 |
6 - 6 {P209 [swo | oo | Txp9
7 e 7 I
8 8 {r208| nc | 101 | rxoo
9 GND detect 9 ‘
10 10 II nRESET
B 7J7
12 ips08 | TRacECLk | NC
13
14 { p307 | TRACEDATAO) | NC
15 |—
16 { p30s | TRACEDATA[1] | NC
17 }—
18 { P305 | TRACEDATA[2] | NC
19 |
20 { P304 | TRACEDATA[3] | NC
7T

Figure 5. Access the Boot Mode through the Multi-emulator Interface Header

The setup shown in Figure 5 allows the production programming tools to control whether the target MCU will
be accessed through serial communications or SWD, based on whether it pulls MD low or not when
asserting reset for boot mode access. If boot mode access is not in use, pins on the SWD header can be
used as SCI/UART RXD/TXD pins by the production programming tool hardware.

This configuration of the SWD header is also commonly used for debugging purposes, where boot mode
operations are also required (for example, to inject TrustZone partition boundaries).

3. Connecting to Boot Mode
This section explains the procedure to establish communications with the boot mode.

3.1 Boot mode operational phases

When the MCU is reset with MD pulled low, the MCU enters a sequence of operational phases, as shown in
Figure 6:

1. Initialization phase.
2. Communication setting phase.
3. Command acceptable phase

RO1AN7884EU0101 Rev.1.01 Page 14 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

(Host > (Microcentroller)

Raset

JTAS/SWD (JTAG mede antry *2

A 4

Resetreleass

USB enumeration

[y

k4

Initialization phase w

Initialization

Communication setting phase v

Communication setting |

00h [3times] N
UART or USE
ACHK (00h)

Generic code (55h)

Boot code (C6h)

Command acceptable phase w

Each command *1

*1: From the Command acceptable phase, the host and microcontroller send data in turn unless otherwise noted.
The host shall execute the data transmission after receiving the data from the microcontroller.

*2: If the magic code “A5SH" is set in the JBMDR register during a pin reset, the microcontroller will boot into JTAG
mode.

Figure 6. Boot Mode Operational Phases
Figure 7 shows this in more detail, in relation to the MCU DLM state.

The rest of this section examines how production programming tools can make the connection to boot mode,
moving the MCU through the Initialization and Communication setting phases, and then entering the
Command acceptance phase.

RO1AN7884EU0101 Rev.1.01 Page 15 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Reset release (Serial programming mode)

| Initialization phase |

DLM state 1s LCK_BOOT
Software

Get DLM state >
_// reset

DLM state is not LCK_BOOT

Communication setting phase

h 4

e

Check mode entry

Single-chip mode Software
g reset

Received
data other
than 00h

Receiwe
three consecutive
00h data(*1

JTAG boot mode

Received three

Received consecutive 00h data
data other k
than 55h Receive

Genenc code

Received 55h data

Command acceptable phase

Eror
occurred

Receiwe
each command

Executed Received conmmand

Execute
each command

*1: Boot firmware adopts IP (SCI or USBFS) that received 00h consecutively three times earlier as the
communication method.

Figure 7. Command Execution State Transition Diagram

3.2 Initialization Phase

Production programming tools do not need to carry out any actions during the Initialization phase. Once boot
mode is entered after release of the reset pin with MD in low state, the boot mode firmware initializes the
required hardware modules (including UART or USB) and then transits to the Communication setting phase.

RO1AN7884EU0101 Rev.1.01 Page 16 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

3.2.1 Serial Settings
When using serial communication to access the boot mode, the following default settings are in use:

Bit rate 9600 bps (minimum, until the baud rate setting command)
6Mbps (maximum)

Data length | 8 bits (LSB first)

Parity bit None

Stop bit 1 bit

Communication is performed at 9600 bps until the baud rate setting command is invoked (in the Command
acceptable phase). After the baud rate setting command has completely successfully, communication is then
performed at the desired baud rate. The maximum bit rate that can be communicated with the device is
returned by “RMB” of the “signature request” command.

e |f communication with the MCU is interrupted during an active boot mode session - for example, due to
cable disconnection, host-side timeout, or power loss - the MCU may enter an undefined state. Reset the
MCU and reenter the boot mode may be required under certain conditions. The production programming
tools should implement timeout handling and retry mechanisms to recover from communication failures
whenever possible.

e Communication with the boot firmware through UART is demonstrated in this application note. However,
the “Baud rate setting” command is not demonstrated. Refer to Boot Firmware application note, e.g.
RO1AN7140 for more details of commands. For production use cases requiring custom baud rates, refer
to that document for implementation guidance.

3.2.2 USB Settings
When using USB communication to access the boot mode, the following settings are in use:

Transfer rate 12 Mbps (USB 2.0 Full Speed)

Device class Communication Device Class (CDC)

e SubClass: Abstract Control Mode (ACM)
e Protocol: Common AT commands

Vender ID 0x045B (Renesas)

Product ID 0x0261

Transfer mode | Control (in/out)
Bulk (in, out)

Interrupt (in)
3.2.3 JTAG/SWD Settings
When using JTAG/SWD communication to access the boot mode, the following settings are in use:

Transfer rate 25MHz (maximum)
Data length 32 bits
Magic code A5h

3.3 Communication Setting Phase
There are 3 methods to communicate with the device in boot mode:

e USB and UART: These two interfaces are demonstrated in this application project.
o JTAG/SWD: This method is not demonstrated in the current application.

More information and signal timing visualization are available in “Communication Methods” and “General
Procedure” section in Boot Firmware application note.

3.3.1 USB/UART Communication

Once the system enters the Communication setting phase, boot mode polls the selected communication
interface looking for a sequence of 3 consecutive 0x00 characters being transmitted by the production
programming tools. When 3 consecutive 0x00 characters are received, boot mode sends an ‘ACK’ (another
0x00) back to the production programming tools to indicate that communication is being established.

RO1AN7884EU0101 Rev.1.01 Page 17 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Figure 8 shows an example function, communication setting (), that could be used within the
production programming tool to implement the Communication setting phase sequence. In this example, the
code will attempt to start communication with boot mode 20 times.

The production programming tools should hold MD low throughout this process.

This routine demonstrates the communication setting phase handling
def communication_setting():
loopcount = 28

print("Sending three exe@ to target to start Communication Setting Phase")
while lcopcount != @:
Try this a few times
ser.write(b'\x00")
This sleeping time can change based on what source clock is used for the MCU.
Reference the Section "Communication Setting Phase™ in Renesas Boot Firmware app note.
Ex: RO1AN714©(RA8BM1) for details".
time.sleep(SHORT_DELAY)
ser.write(b'\xe8"')
time.sleep(SHORT_DELAY)
ser.write(b'\x00")
time.sleep(SHORT_DELAY)
h = ser.read()
if h == b'\x@0":
print("Success: ACK received")
break
loopcount -= 1
time.sleep(SHORT_DELAY)

return loopcount

Figure 8. Communication Setting — Making the initial connection

If no ACK is received, it can be because a previous boot mode connection is still active. This can be verified
using a boot mode Inquiry command. This is explained in section 5.3.

Once the production programming tools have received the ACK code, they should then transmit the “generic
code” (0x55) to which boot mode will reply with the “boot code”, as shown in Figure 9. For the MCUs
described in this application note, the boot code is 0xC6.

RO1AN7884EU0101 Rev.1.01 Page 18 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

print("Sending GENERIC code to target : @x55")
ser.write(b'\x55")

print("Checking for the Boot code sent back from target")
time.sleep(SHORT_DELAY)

h = ser.read()

print("Received :" + h.hex())

match h:

case b'\xC&6"':
print("CM85/CM33 boot code received")
bootcode = BxC6

case b'\xC3':
print("CM4/CM23 boot code received")
print("They are not supported by this demonstration")
terminate_execution()

case _
print("*** ERROR : Unknown code received, closing down™)
terminate_execution()

Figure 9. Completing the connection - retrieving the boot code

In a real production programming tool, the boot code alone is not sufficient to completely identify the MCU
type being communicated with and the capabilities available through its boot mode. The “Signature”
command should be used to obtain additional details and determine such information.

3.3.2 JTAG/SWD Communication

This is enabled by setting a magic code in the JBMDR register during terminal reset and the MD pin level is
high. When JTAG/SWD communication is selected, boot firmware waits for the generic code without waiting
for 0x00 characters. Refer to the Boot Firmware application note for detailed procedures to enter and exit
Boot Firmware mode; production programming software should adhere to these steps to establish
communication.

4. Boot Mode Commands

This section describes how production programming tools can interact with boot mode, after they have
retrieved the boot code and the MCU boot mode has entered the Command acceptable phase.

4.1 Command Acceptable Phase

Once in Command Acceptable Phase, the MCU’s boot mode expects to receive command packets from the
production programming tools, telling it which boot mode operation is to be carried out. Boot mode responds
back to the production programming tools using data packets. Some commands also require data packets to
be sent from the production programming tools back to boot mode providing additional information for use in
the operation.

Sequence diagrams showing the transmission of packets for each command can be found in Boot Firmware
application note, e.g. RO1AN7140, RO1AN7290.

41.1 Command Packet Format

Production programming tools send information for the required operation to the MCU’s boot mode in the
form of a command packet in format shown in Table 9.

Table 9. Command Packet

RO1AN7884EU0101 Rev.1.01 Page 19 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Symbol Size Value | Description

SOH 1 byte | 01h Start of command packet.

LNH 1 byte | - Packet length (length of “CMD + Command information”) [High].

LNL 1 byte | - Packet length (length of “CMD + Command information”) [Low].

CMD 1 byte | - Command code, as described in section 4.1.3.

Command | Oto - Command information. Examples:

information | 255 e For Write command: Start/End address.

bytes e For Baudrate setting command: UART baudrate.

SUM 1 byte | - Sum data of “LNH + LNL + CMD + Command information” (expressed as
two’s complement).
For example: LNH + LNL + CMD + Command information (1) +
Command information (2) + ... + Command information(n) + SUM = 00h.

ETX 1 byte | 03h End of packet.

Note: If the host sends data that exceeds 261 bytes, subsequent operations are not guaranteed.

4.1.2 Data Packet

The production programming tools and the boot mode firmware send additional data to each other in the
format shown in Table 10.

Table 10. Data Packet

Symbol Size Value Description

SOD 1 byte | 81h Start of data packet.

LNH 1 byte | - Packet length (length of “RES + Data”) [High] (*1).

LNL 1 byte | - Packet length (length of “RES + Data”) [Low] (*1).

RES 1 byte | - Refer to Boot Firmware application note - section “RES: Response code”
for all the supported response codes.

Data (*3) - Transmit data. Examples:

e For Write data transmission: Write data.

e For Status transmission: Status code (STS), Status details (ST2) and
Failure address (ADR).

SUM 1 byte | - Sum data of “LNH + LNL + RES + Data” (expressed as two's

complement).

For example: LNH + LNL + RES + Data(1) + Data(2) + ... + Data(n) +

SUM = 00h.

ETX 1 byte | 03h End of packet.

*1: If the host sends a packet whose length is 0 byte or over 1025 bytes, the microcontroller returns a packet

with an indefinite RES value.

*2: If the host sends data that exceeds 1030 bytes, subsequent operations are not guaranteed.

*3: The size is 1-1024 bytes. As an exception, the maximum is 1040 bytes only for the Encrypted data write

command.

41.3 Summary of Boot Mode Commands

Table 11 is the summary of all the boot mode commands available on the MCUs described in this application
note. For the commands that are not demonstrated in this application project, refer to application note
RO1AN7140 to understand the command format details, response, and error handling.

RO1AN7884EU0101 Rev.1.01 Page 20 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Table 11. Boot Command Code Summary

Value | Device Name Comment

RA8M1, RA8P1

RA8D1, RA8T1,

RA8E1, RASE2
71h O O DLM state transit command Demonstrated
2Ch O O DLM state request command Demonstrated
72h O O Protection level transit command Demonstrated
73h @) ©) Protection level request command Demonstrated
75h O O Authentication level request command Demonstrated
30h O O Authentication command Demonstrated
28h O O Key setting command Demonstrated
2Ah O O User key setting command Not demonstrated
29h O O Key verify command Demonstrated
2Bh O O User key verify command Not demonstrated
50h @) O Initialize command Demonstrated
4Eh O O Boundary setting command Demonstrated
4Fh O O Boundary request command Demonstrated
51h O O Parameter setting command Not demonstrated
52h O O Parameter request command Not demonstrated
4Ah @) Lock bit setting command Not demonstrated
4Bh O Lock bit request command Not demonstrated
4Ch O O ARC configuration setting command Not demonstrated
4Dh @) O ARC configuration request command Not demonstrated
00h O O Inquiry command Demonstrated
3Ah O O Signature request command Demonstrated
3Bh O O Area information request command Not demonstrated
34h O O Baudrate setting command Not demonstrated
12h @) O Erase command Not demonstrated
13h O O Write command Not demonstrated
15h O O Read command Not demonstrated
18h O O CRC command Not demonstrated
2Eh @) O OEM root public key setting command Not demonstrated
2Fh O OEM root public key verify command Not demonstrated
26h O O Code certificate update command Not demonstrated
27h O O Code certificate check command Not demonstrated
38h @) SiP Flash various setting command Not demonstrated
39h O SiP Flash various request command Not demonstrated
36h O O External flash memory setting command | Not demonstrated
1Ah @) O Encrypted data write command Not demonstrated

4.1.4 Boot Mode Firmware Operation
When the boot mode firmware receives a command packet, it performs packet analysis:

RO1AN7884EU0101 Rev.1.01 Page 21 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

e The boot mode firmware recognizes the start of the command packet by receiving SOH. If the boot mode
firmware receives something other than SOH, it waits until SOH is received.

e If ETX is not added to the received command packet, the boot mode firmware sends a “Packet error”.

o |f the SUM of the received command packet is different from the sum value, the boot mode firmware

sends a “Checksum error”.

e |f the received command packets of LNH and LNL are different from the values specified in the packet
format, the boot mode firmware sends a “Packet error”.
e |f the CMD command in the received command packet is an undefined code, the boot mode firmware

sends an “Unsupported command error”.

e |f the received command packets of LNH and LNL are different from the values specified in each
command, the boot mode firmware sends a “Packet error”.
e When an error described above occurs, the boot mode firmware does not process and returns to the

command waiting state.

When the packet analysis has successfully completed, the boot mode firmware executes command
processing. Refer to the explanation of each command for specific details.

When a command completes successfully, the boot mode firmware stays in the “Command acceptable

phase”.

5. Typical Use Cases of Boot Mode Commands

This section describes several typical use cases of the boot mode commands. The command format and

example code are provided.

5.1 Overview of Use cases

For more details on the use cases described in this section, refer to the section Command List in Boot
Firmware application note. Table 12 details the specific subsections from Boot Firmware that match the

following use cases from this application note.

Table 12. Boot Mode Command Use Cases

Section in this application note

Corresponding section in Boot Firmware AN

Device Signature Command

Signature Request Command

Boot Mode Inquiry Command

Inquiry command

Initialize MCU Command

Initialize command

Disable Initialize Command

Parameter setting command

Check Whether Initialize Command is Disabled

Parameter request command

Inject AL keys

Key setting command

Verify AL keys

Key verifying command

DLM State Request

DLM state request command

DLM State Transition

DLM state transition command

TrustZone Boundary Setting Command

Boundary setting command

TrustZone Boundary Request Command

Boundary request command

5.2 Signature Request Command

This command sends the information of the device signature to the host.

RO1AN7884EU0101 Rev.1.01
Oct.08.25

Page 22 of 70

RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

6.22.2.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 01h
CMD (1 byte) 3Ah (Signature request command)
SUM (1 byte) C5h
ETX (1 byte) 03h
6.22.2.2 Data Packet [Signature]
SOD (1 byte) 81h
LNH (1 byte) 00h
LNL (1 byte) 2Ah
RES (1 byte) 3Ah (OK)
RMB (4 bytes) Recommended maximum UART baudrate of the device [bps].
*Order of sending: High -> ... -> Low
For example: 6 Mbps (6000000bps) -> 00h, 5Bh, 8Dh, 80h
NOA (1 byte) Number of accessible areas
For example, if the device has 4 areas -> 04h
TYP (1 byte) Type code (features and functions of the device):
03h: RABM1 MCU Group and others
BFV (3 byte) Boot firmware version
Order of sending: Major version -> minor version -> build
For example, v2.4.1.6 -> 02h, 04h, 10h
DID (16 bytes) Device ID
16-byte |D code (unique ID) for identifying the particular MCU
PTN (16 bytes) Product type name.
Character strings (20h for the space)
Order of sending example: R7TFA6M3AH
->52h, 37h, 46h, 41h, 36h, 4dh, 33h, 41h, 48h, 20h, 20h, 20h, 20h, 20h,
20h, 20h
SUM (1 byte) Sum data
ETX (1 byte) 03h

Figure 10. Signature Request Command Packets

RO1AN7884EU0101 Rev.1.01

Oct.08.25

Re Page 23 of 70
RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

This routine demonstrates the "Signature Request Command”.
def command_signature_request():

SOH=b "\ xe1'

LNH=b"\x8e6'

LML=b"‘x81"

#B8x3A: Signature request command

CMD=b "\ x3A"

SUM=b " \xC5"

EXT=b"''\x&3"

command = SOH + LNH + LNL + CMD + SUM + EXT

print{"Sending Signature Request command:™)
print_bytes hex({command)

ser.write{command)

time.sleep(LONG_DELAY)

Acquire the response

return_packet = receive data packet()

The RES byte is the fourth index

RES = return_packet[3]

if RES != @x3A:
print{"Signature Request - FAIL")

else:
print{"Signature Request - SUCCESS")
The TYP byte is the tenth index
TYP = return_packet[9]
The PTN byte starts from the thirtieth index
PTN = return_packet[20:44]

product_type_name = PTN.rstrip(b’'\x28").decode(" ascii")

print({"Product Type Mame: + product_type name)

return TYP

Figure 11. Signature Request Command Example Code

5.3 Inquiry Command

The Inquiry command checks whether a previous boot mode connection is still alive.

6.21.2.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 01h
CMD (1 byte) 00h (Inquiry command)
SUM (1 byte) FFh
ETX (1 byte) 03h

Figure 12. Inquiry Command Packet

RO1AN7884EU0101 Rev.1.01
Oct.08.25 RENESAS

Page 24 of 70

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

This routine demonstrates the "Inquiry Command".

This command checks if boot firmware is in ‘Command acceptable phase’ or not.

def command_inquiry():

SOH=b'\x@e1'

LNH=b'\x@e"

LNL=b'\x@1"'

#0x00: Inquiry command

CMD=b"' \ x@8"

SUM=b " \xFF"'

EXT=b'\x@3'

command = SOH + LNH + LNL + CMD + SUM + EXT

print("Sending Inquiry command:")
print_bytes_hex(command)
ser.write(command)
time.sleep(LONG_DELAY)

Figure 13. Inquiry Command Example Code
5.4 Initialize the MCU

The commands introduced in this section are used to ensure that the MCU is in the OEM DLM state and

Protection Level is PL2 state to ready for other operations, such as flash programming.

5.4.1 Initialize Command

The Initialize command can be executed in the OEM state with PL2, PL1, PLO of the Protection Level state. It
clears the User area, Data area, Config area, EEP config area, Boundary setting, and Key index (Wrapped
keys). In addition, the PL state transitions to PL2 from PL1 and PLO. Erase processing is performed
unaffected by the flash block protection settings (BPS, BPS_SEC). However, if PBPS and PBPS_SEC are
set, then the Initialize command cannot be processed. This command is typically not used in the production
programming environment unless the MCU has been previously used (for example, an evaluation board

being used for testing purposes).

The Initialize command takes the current DLM state as an input parameter. So, prior to executing the
Initialize command, the production programming tools need to acquire the current DLM state using the DLM

State Request Command (see demonstration in section 5.7.1).

6.12.2.1 Command Packet

SOH (1 byte) 01h

LNH (1 byte) 00h

LNL (1 byte) 03h

CMD (1 byte) 50h (Initialize command)

SDLM (1 byte) Source DLM state code:
+ 04h: OEM

DDLM (1 byte) Destination DLM state code:
e 04h: OEM

SUM (1 byte) Sum data

ETX (1 byte) 03h

6.12.2.2 Data Packet [Status OK]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 0Ah

RES (1 byte) 50h (OK)

STS (1 byte) 00h (OK)

ST2 (4 bytes) FFFFFFFFh (unused code)
ADR (4 bytes) FFFFFFFFh (unused code)
SUM (1 byte) AEh

ETX (1 byte) 03h

Figure 14. Initialize Command Packets

RO1AN7884EU0101 Rev.1.01
Oct.08.25 RENESAS

Page 25 of 70

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

The "Initialize Command”™ clears User area, Data area, Config area,
EEP config area, Boundary setting, and Key index (Wrapped key).
In addition, the PL state transitions to PL2.
def command initialize(current DLM state):

SOH=b"'x81'

LNH=b"\xe8"

LHNL=b"\x83"

#9x58: Initialize command

CMD=b""x58'

Source DLM state code

SDLM=current_DLM_state

Destination DLM state code

DDLM=b"\xB4"

SUM=calc_sum(LMNH + LNL + CMD + SDLM + DDLM)

EXT=b"\x83"

command = SOH + LMH + LNL + CMD + SDLM + DDLM + SUM + EXT

print("Sending MCU Initialize command:")
print_bytes hex{command}
ser.write{command)
time.sleep(INITIALIZE DELAY)

Acquire the response
return_packet = receive data packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != 8x58:

print{"Initialize - FAIL")
else:

print{"Initialize - SUCCESS™)

o Y N O B e e
print("Warning : After MCU Initialize is run, an MCU reset is")

print (" required before further boot mode operations.”™)
R RN

Figure 15. Initialize Command Example Code

Note: In the example code, INITIALIZE DELAY is set 5 seconds. The command response time specified
in the “AC Characteristics” section in Boot Firmware documentation. Users can safely adjust this value to
compatible with the specific hardware set up used, as long as the hardware still responds correctly.

5.4.2 Check Whether Initialize Command is Disabled

For a non-factory fresh device (for example, a device previously used for development/testing purposes), it is
possible that boot mode Initialize command might have been disabled (and other changes made). Checking
whether the MCU Initialize command is disabled or not can be achieved by using the Parameter Request
command.

RO1AN7884EU0101 Rev.1.01 Page 26 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.16.2.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 02h
CMD (1 byte) 52h (Parameter request command)
PMID (1 byte) Parameter ID
Specifiable parameter:
PMID Parameter description | Specifiable after Encrypted data write
command

01h Disable initialization Specifiable

02h Disable LCK_BOOT Specifiable

03h Disable AL2_key Specifiable

04h Disable AL1_key Non-specifiable
SUM (1 byte) Sum data
ETX (1 byte) 03h

6.16.2.2 Data Packet [Parameter Data]

SOD (1 byte) 81h
LNH (1 byte) 00h
LNL (1 byte) 02h
RES (1 byte) 52h (OK)
PRMT (1 byte) Parameter data:
e« [PMID=01h]
— 00h: Initialization is disabled.
— 07h: Initialization is enabled.
« [PMID=02h]
— 00h: Transition to LCK_BOOT is disabled.
— 0O7h: Transition to LCK_BOOT is enabled.
« [PMID=03h]
— 00h: Authentication using AL2_KEY is disabled (*1).
— 07h: Authentication using AL2_KEY is enabled.
« [PMID=04h]
— 00h: Authentication using AL1_KEY is disabled.
— 07h: Authentication using AL1_KEY is enabled.
SUM (1 byte) Sum data
ETX (1 byte) 03h

*1: When disabled, initialization and transition to RMA_REQ are also impossible.

Figure 16. Command Packet: Check whether Initialize Command is Disabled

RO1AN7884EU0101 Rev.1.01

Oct.08.25

Page 27 of 70

RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Reference section "Parameter Request Command”
for the definition of the parameters.
def command check whether initialize is disabled():
SOH=b"\x81'
LNH=b " "x86 '
LNL=b""x82"
#8x52: Parameter regquest command
CMD=b"%x52"
Parameter ID: enable/disable of the Initialization
PMID=b" 81"
SUM=calc_sum{LMH + LNL + CMD + PMID)
EXT=b"'\x83"
command = SOH + LNH + LNL + CMD + PMID + SUM + EXT

print({"Sending MCU check whether Initialize command is disabled command:")
print_bytes hex({command})

ser.write(command)

time.sleep(LONG _DELAY)

return_packet = receive data packet()
RES is the fourth byte
RES = return_packet[3]
if RES == Bx52:
Whether Initialize command is disabled is indicated by the fifth byte
PRMT = return_packet[4]
if PRMT == ox8a:
print{"Initialization is disabled")

print{"\nlltiiirrrrrrrrrrrrrrrirrrrrrrrrrprrrriirrrrrrrrrrrrrrrirrrrrrremy
print{"Warning : If the Initialization is disabled and the DLM state")
print("” is not OEM, then the bootmode demonstration code RAZ.py™)
print("” can not run successfully as the TrustZone boundary™)
print("” can only be set up in OEM state.™)

e N N N N AN

elif PRMT == Bx87:
print{"Initialization is enabled™)
else:
print{“Check whether Initialize Command is disabled or not command failed")

return PRMT

Figure 17. Example Code: Check whether Initialize Command is Disabled

5.4.3 Disable Initialize Command
As part of the final production programming process, the Initialize command can be disabled if required.

NOTE: This step is non-reversable, so exercise with caution!

This command is included in the bootmode demonstration code RA8.py code, but the section of the
code is not enabled due to the risk of locking up the MCU during the development of tools for production
programming. Refer to section 6.6 for details on enabling this command in the demonstration code.

RO1AN7884EU0101 Rev.1.01 Page 28 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

6.15.2.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 03h
CMD (1 byte) 51h (Parameter setting command)
PMID (1 byte) Parameter ID Specifiable parameter:
PMID | Parameter Specifiable at | Specifiable after Encrypted
description data write command
01h Disable initialization | AL2/AL1/ALO | Specifiable
02h Disable LCK_BOOT | AL2/ALA1 Specifiable
03h Disable AL2_key AL2 Specifiable
04h Disable AL1_key AL2/AL1 Non-specifiable
PRMT | (1 byte) Parameter data:
¢ [PMID=01h]
— 00h: Disable initialization
+ [PMID=02h]
— 00h: Disable transition to LCK_BOOT
« [PMID=03h]
— 00h: Disable of authentication using AL2_KEY (*1)
+ [PMID=04h]
— 00h: Disable of authentication using AL1_KEY
SUM (1 byte) Sum data
ETX (1 byte) 03h

*1: When disabled, initialization and transition to RMA_REQ are also impossible.

6.15.2.2 Data Packet [Status OK]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 0Ah

RES (1 byte) 51h (OK)

STS (1 byte) 00h (OK)

ST2 (4 bytes) FFFFFFFFh (unused code)
ADR (4 bytes) FFFFFFFFh (unused code)
SUM (1 byte) Sum data

ETX (1 byte) 03h

Figure 18. Disable the ‘Initialize Command’ Command Packet

RO1AN7884EU0101 Rev.1.01

Oct.08.25

RENESAS

Page 29 of 70

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

The "Initialize command™ can be disabled using the
"Parameter setting command”.
UL WARNING !D1Dt!
This step is non-reversible, so invoke with caution!
def command disable initialize():
SOH=b" ‘@1’
LNH=b"\x88"
LNL=b"\x83"
#8x51: Parameter setting command
CMD=b " x51"
Parameter ID
PMID=b""x81"
Parameter Data Bx88 is for disable Initialize
PRMT=b"\x88"
SUM=calc_sum{LNH + LNL + CMD + PMID + PRMT)
EXT=b"'\x@3"
command = SOH + LNH + LML + CMD + PMID + PRMT + SUM + EXT

print("\nSending Disable Initialize command:™)

print_bytes hex({command)

print({"\nWarning : After MCU Initialize is disabled, it cam never be re-enabled.")
ser.write{command)

time.sleep(LONG_DELAY)

Acquire the response
return_packet = receive data packet()
The RE5 byte is the fourth index
RES = return_packet[3]
if RES != @x51:
print{"\nDisable Initialize command - FAIL")
else:
print("Disable Initialize command - SUCCESS")

Figure 19. Example Code: Disable the ‘Initialize Command’

5.5 TrustZone Boundary Region Setup

This section explains the operational flow of the TrustZone boundary setup and introduces the command
packet and the example code.

5.5.1 Operational Flow
The recommended flow when setting up the TrustZone partition boundary regions is:

1. Acquire the TrustZone partition boundary information from the application.

2. Check DLM state and AL as necessary. The TrustZone partition boundaries can only be set up in OEM
with PL2 state.

3. Set up boundaries.

4. Verify the boundaries set up properly.

5.5.2 Acquire the Boundary Information from an Application

The security attribute regions information is stored in a .rpd file generated as a post-build step in an RA
project in e? studio, or a RASC-generated EWARM / MDK project. Table 13 shows how to find the .rpd file
based on the IDE.

RO1AN7884EU0101 Rev.1.01 Page 30 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Table 13. The . rpd File Location Based on IDE

IDE Location of the .rpd file

e? studio Secure project root folder: <secure_project_name>\Debug\<secure_project_name>. rpd

EWARM Secure project root folder:
<secure_project_name>\Debug\exe\<secure_project_name>.rpd

MDK Secure project root folder: <secure_project_name>\Objects\<secure_project_name>.rpd

The format of the .rpd file is identical across the IDEs. Figure 20 shows the contents of the rpd file.

Project Explorer > = & § =0 demo_S.rpd <
I demo_NS 1 RAM_S_START=0x22080000
v S demo.S [Debug] 2 RAM_S_SIZE=@x2280
. ! 3 FLASH_S_START=@x2008000

% Binaries 4 FLASH_S_SIZE=8xE8e8

S includes 5 DATA_FLASH_S_START=0x27088080

8 & DATA_FLASH_S_SIZE=0x0

= SDRAM_S_START=8x6580800000

= ra_gen 8 SDRAM_S_SIZE=8x@

G orc 9 0SPI@_C58_S_START=0x50000008

v & Debug 10 0SPI@_CS8_S_SIZE=0x0

= 11 0SPIB_C51_S_START=8x900006888
& ra 12 0SPIB_CS1_S_SIZE=8xe
& ra_gen 13 OPTION_SETTING_OFS@_S_START=8x300a108

14 OPTION_SETTING_OFS@_S_SIZE=8x4

- S 15 OPTION_SETTING_OFS2_S_START=@x300ale4
3 demo_S.elf - [arm/le] 16 OPTION_SETTING_OFS2_S_SIZE=8x4
a1} secure.o - [arm/le] 17 OPTION_SETTING_DUALSEL_S_START=8x380all@
& bsp_linker infoh 18 OPTION_SETTING_DUALSEL_S_SIZE=8x8
— HER TR 19 OPTION_SETTING_OFS1_S_START=8x1300a180
&J compile_commands.json 20 OPTION_SETTING_OFS1_S_SIZE=8x@

OPTION_SETTING_BANKSEL_S_START=8x1308a19@
OPTION_SETTING_BANKSEL_S_SIZE=@xe
OPTION_SETTING_BPS_S_START=8x1300alco
OPTION_SETTING_BPS_S_SIZE=@xe
OPTION_SETTING_PBPS_S_START=0x130@ale®
OPTION_SETTING_PBPS_S_SIZE=@xe
OPTION_SETTING_OFS1_SEC_S_START=8x3008a20@
OPTION_SETTING_OFS1_SEC_S_SIZE=@x4

demo_S.cref

P
0l

demo _S.elfin

demo 5.ma
demo S.rpd

demo Ssbd

J b3 B
=

T3]

J P B

=]

demo_S.srec

i fsp_genlid 9 OPTION_SETTING_BANKSEL_SEC_S_START=0x300a210

_ . o OPTION_SETTING_BANKSEL SEC_S_SIZE=@x@

& maleiie OPTION_SETTING BPS_SEC_S_START=@x300a248
makefile.init OPTION_SETTING_BPS_SEC_S_SIZE=0x®

LUV N

OPTION_SETTING_PBPS_SEC_S_START=0x300a260
OPTION_SETTING_PBPS_SEC_S_SIZE=0x0@
OPTION_SETTING_OFS1_SEL_S_START=@x300a280
OPTION_SETTING_OFS1_SEL_S_SIZE=@x4d

L memorny_regions.ld

b

@ objects.mk

L L L L L s B

Ly’

@ sources.mk

Figure 20. Obtain the IDAU Region Size using EWARM

The FLASH_S_SIZE is the size of the Secure Code Flash region. The production programming tools need to
convert this value to KB (kilobytes) and then assign this value to the CFS as shown in Figure 23.

The DATA_FLASH_S_SIZE is the size of the Secure Data Flash region. The production programming tools
needs to convert this value to KB and then assign this value to DFS as shown in Figure 23.

Production programming tools can ignore the other fields.

5.5.3 TrustZone Boundary Request Command

Reading the configured security attribute regions setup can be achieved using the command in Figure 21.
The example code to perform this function is shown in Figure 22.

RO1AN7884EU0101 Rev.1.01 Page 31 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

6.14.2.1 Command Packet

SOH (1 byte) 01h

LNH (1 byte) 00h

LNL (1 byte) 01h

CMD (1 byte) 4Fh (Boundary request command)

SUM (1 byte) BOh

ETX (1 byte) 03h

6.14.2.2 Data packet [Boundary Setting Data]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 0Bh

RES (1 byte) 4Fh (OK)

RSV (2 bytes) 0000h (unused code)

CFS (2 bytes) Size of Code Flash Secure region [KB]
For example: 0100h -> 01h, 00h (256 KB)

DFS (2 bytes) Size of Data Flash Secure region [KB]
For example: 0004h -> 00h, 04h (4 KB)

RSV (2 bytes) 0000h (unused code)

RSV (2 bytes) 0000h (unused code)

SUM (1 byte) Sum data

ETX (1 byte) 03h

Figure 21. Command Packet for Reading Security Region Setup
Mttt

This routine demonstrates
def command_trustzone_boundary_request(sig_type):
SOH=b'\x@1"'
LNH=b'\xe8"
LNL=b'\xe1"'
CMD=b'\x4F' # Boundary request command
SUM=b"'\xBe"'
EXT=b'\x@3"
command = SOH + LNH + LNL + CMD + SUM + EXT

print("Sending read boundary region command:")
print_bytes_hex(command)

ser.write(command)

time.sleep(LONG_DELAY)

Acquire the response
return_packet = receive_data_packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != @x4F:
print("Read boundary region - FAIL")
else:
print("Read boundary region - SUCCESS")
print_boundary_region(return_packet, sig_type)

return RES

"TrustZone Boundary Request Command".

Figure 22. Example Code: Request TrustZone Boundary

RO1AN7884EU0101 Rev.1.01

Oct.08.25

RENESAS

Page 32 of 70

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

5.5.4 TrustZone Boundary Setting Command

Figure 23 is the command packet for setting up the TrustZone boundary. The new stored boundary setting
becomes effective after resetting the device.

6.13.2.1 Command Packet

SOH (1 byte) 01h

LNH (1 byte) 00h

LNL (1 byte) 0Bh

CMD (1 byte) 4Eh (Boundary setting command)

RSV (2 bytes) 0000h (unused code)

CFS (2 bytes) Size of Code Flash Secure region [KB].
For example: 0100h -> 01h, 00h (256 KB)
* 32 KB align

DFS (2 bytes) Size of Data Flash Secure region [KB].
For example: 0004h -> 00h, 04h (4 KB)

RSV (2 bytes) 0000h (unused code)

RSV (2 bytes) 0000h (unused code)

SUM (1 byte) Sum data

ETX (1 byte) 03h

* If CFS does not comply with alignment, boot firmware rounds down them.

Figure 23. Command Packet for TrustZone Boundary Setup

Figure 24 shows the example code for setting up the TrustZone boundary cover for both RA8x1 and RA8P1
Groups.

RO1AN7884EU0101 Rev.1.01 Page 33 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

This routine demonstrates "TrustZone Boundary Setting Command".
def command_setup_trustzone_boundary(sig_type):
print("Configuring device with :")
if sig_type == ex83:
RABx1 MCU Group
SOH=b"\xe1"
LNH=b ' \x@8"
LNL=b"'\xeB"
CMD=b "' \x4E"' # Boundary setting command
RSV_1=b'\x@@"' # Unused code
RSV_2=b'\x@0'
print("™ - 512KB of Code Flash Secure region")
CFS_1=b'\x@2' # 512KB
CFS_2=b'\x@0'
print("™ - 4KB of Data Flash Secure region™)
DFS_1=b'\xg0"'
DFS_2=b"'\xe4' # 4KB
RSV_3=b"\x@@"' # Unused code
RSV_4=b'\xe@'
RSV_5=b'\xee’ # Unused code
RSV_6=b'\x80"
SUM=calc_sum(LNH + LNL + CMD + RSV_1 + RSV_2 + CFS5_1 + CFS_2 + \
DFS_1 + DFS_2 + RSV_3 + RSV_4 + RSV_5 + RSV_6)
EXT=b'\x@3"’
command = SOH + LNH + LNL + CMD + RSV_1 + RSV_2 + CFS_1 + CFS_2 + \
DFS_1 + DFS_2 + RSV_3 + RSV_4 + RSV_5 + RSV_6 + SUM + EXT
else:
RABP1 MCU
SOH=b'\x@1"'
LNH=b"\xe@"
LNL=b"\xeB"
CMD=b "' \x4E"' # Boundary setting command
RSV_1=b'\xe8' # Unused code
RSV_2=b'\xe8@'
print(™ - 512KB of Code MRAM Secure region")
CMS_1=b"'\x02"' # 512KB
CMS_2=b'\x80"
RSV_3=b"\x@@"' # Unused code
RSV_4=b'\x00"
RSV_5=b"'\xe8"' # Unused code
RSV_6=b'\x80"
RSV_7=b"\x@@"' # Unused code
RSV_8=b'\x00"
SUM=calc_sum(LNH + LNL + CMD + RSV_1 + RSV_2 + CMS_1 + CMS_2 + \
RSV_3 + RSV_4 + RSV_5 + RSV_6 + RSV_7 + RSV_8)
EXT=b'\x@3"
command = SOH + LNH + LNL + CMD + RSV_1 + RSV_2 + CMS_1 + CMS_2 + \
RSV_3 + RSV_4 + RSV_5 + RSV_6 + RSV_7 + RSV_8 + SUM + EXT

print("Sending TrustZone boundary setup command:")
print_bytes_hex(command)

ser.write(command)

time.sleep(LONG_DELAY)

Acquire the response
return_packet = receive_data_packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != @x4E:
print("\n*** ERROR : Set up boundary region - FAIL")
else:
print("\nSet up boundary region - SUCCESS")

return RES

Figure 24. Example Command Setting up TrustZone Boundary

RO1AN7884EU0101 Rev.1.01 Page 34 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

5.6 DLM Authentication Key Handling

DLM Authentication keys are stored in dedicated, non-user-accessible memory within the MCU, with one slot
dedicated to each Authentication Level transition. Therefore, when injecting the key, it is necessary to specify
which target AL key, so that the key is placed into the correct slot.

Key injection for AL2 and AL1 states is demonstrated in this application note. Injection of the RMA key can
follow similar sequence but is not demonstrated in this application note.

Note: The injection of user keys is very similar to AL keys, except that additional address information is
required in the corresponding command, as these keys are stored in user flash.

Keys can be generated using the following systems:
e The “Security Key Management Tool”
e The Renesas Device Lifecycle Management server available from the Renesas website

The procedure for generating the DLM Authentication keys is described in R11ANQ785.

5.6.1 Inject DLM Authentication Keys
Injecting a DLM AL key requires a two-stage sequence, as shown in Figure 25.

(Host) (Microcontrollar)l

Command packet

| Packet analysis

Data packet [status ERR] Packet error / Checksum error

First Stage: [====--maaaa a0 o e e aeea e a

Command [command acceptance analysis |
paCkEt Data packet [status ERR] Command acceptance error
Parameter error / Secure error
| Packst analysis
Second Stagefk-----cooo-- Datapacket[status€RR] __ _________| Packet error / Checksum error / Parameter error

Data packet |

Data packet [status ERR] Trusted system error

| Install key

Data packet [status ERR] Flash access error

Data packet [status OK]

Figure 25. DLM Key Injection Flow

RO1AN7884EU0101 Rev.1.01 Page 35 of 70
Oct.08.25 RENESAS

https://www.renesas.com/en/document/apn/device-lifecycle-management-ra8-mcus

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.8.2.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 02h
CMD (1 byte) 28h (Key setting command)
KYTY (1 byte) Key type:
¢ 01h: AL2_KEY
¢ 02h: AL1_KEY
¢ 03h: RMA_KEY
SUM (1 byte) Sum data
ETX (1 byte) 03h

Figure 26. DLM Key Injection Command Packet

6.8.2.2 Data Packet [Key Data]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 55h

RES (1 byte) 28h (OK)

SKR (4 bytes) Shared key ring number.

For example: 01234567h -> 01h, 23h, 45h, 67h

ESKY (32 bytes) | Wrapped install key (W-UFPK).

For example: 01234567_89AB ... 2233_44556677h -> 01h, 23h, 45h, ..., 55h,
66h, 77h

IVEC (16 bytes) | Initialization Vector.

For example: 01234567_89AB ... 2233_44556677h -> 01h, 23h, 45h, ..., 55h,
66h, 77h

EOKY (32 bytes) | Install data (Encrypted key | MAC).

Encrypted key (bytes 0-15) + MAC (bytes 16-31)

For example: If install data is as follows, the host should send EOKY in the order
shown in the lower table.

Install data:
Encrypted key
00 01 02 03 04 05 06 07
08 09 DA 0B oc 0D 0E OF
MAC
10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F

Order of sending EOKY:

1st 2nd 3rd 4th 5th 6th Tth 8th
00 01 02 03 04 05 06 07
9th 10th 11th 12th 13th 14th 15th 16th
08 09 DA 0B 0cC 0D 0E 0OF
17th 18th 19th 20th 21st 22nd 23rd 24th
10 11 12 13 14 15 16 17
25th 26th 27th 28th 29th 30th 31st 32nd
18 19 1A 1B 1C 1D 1E 1F

SUM (1 byte) Sum data

ETX (1 byte) 03h

Figure 27. DLM Key Injection Data Packet

To properly prepare for the DLM key injection, the production programming tools need to understand

the .rkey file format. The .rkey file is also base64 encoded, so the production programming tools need to first
decode the data prior to accessing the fields. Once the .rkey file is decoded, the .rkey file data fields can then
be accessed. The format of the fields is shown in Figure 28, and is further explained in the user manual of
Secure Key Management Tool.

Key Data is stored in order and size shown in Figure 28. The byte order is big-endian.

RO1AN7884EU0101 Rev.1.01 Page 36 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Name Type Size Description
Magic code Char[4] 4 Bytes "REK1"
Suite Version Integer 4 Bytes Data format version.
Currently Must be 1.
Reserved Byte[7] 7 Bytes Reserved. Must be 0.
Key Type Byte 1 Bytes [For DLM key]
Must be 0.

[For user key]
Keytype value constant
(Refer to 4.5.2 keytype Options)

Encrypted Key Size Integer 4 Bytes Size of "Encrypted Key" (= N bytes)
Byte[36] 36 Bytes Value of the W-UFPK file sent from the Renesas DLM
server
W-UFPK

The first 4 bytes are Shared Key Number
The remaining 32 bytes are the WUFPK value

Initialization Vector Byte[16] 16 Bytes Initialization vector value used to Wrap user key.
Encrypted Key Byte[N] N Bytes User key encrypted with UFPK value + MAC value
Data CRC Byte[4] 4 Bytes Calculated CRC for all data except this CRC data.

Initial Value = OxFFFFFFFF
Magic number = 0x04C11DB7

Figure 28. DLM Key Data Structure

The demonstration code for DLM Authentication key injection is included in function
command_inject dlm key (). The main operations carried out by this function are:

¢ Read the AL2 or AL1 key file (.rkey) to an array.
o Decode the base64 array so all the data fields can be accessed.

o Parse the .rkey file for the field of magic code, key type, w-ufpk, initialization vector, and the encrypted
DLM key to ensure valid content.

e |Issue DLM AL Key Injection command packet and verify the response.
o |Issue DLM AL Key Injection data packet and verify the response using the decoded key data.

Figure 29 and Figure 30 show the example code.

RO1AN7884EU0101 Rev.1.01 Page 37 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

This routine demonstrates "DLM Key Injection” command.
The supported key types are AL1 and AL2 key.
def command_inject_dlm_key(dlm_key type, sig type):
if (dlm_key_type != b'\x81" and dlm_key type != b"'\x82'):
print("This key type is not supported”)
Return with unknown DLM key type
return UNKNOWN_KEY
elif (dlm key type == b''x81"):
if sig type == Bx83:
RABx1 MCU Group
text_file = open("./dlm_keys/AL2Z_KEY_RASM1.rkey", "r")
else:
RABP1 MCU
text_file = open("./dlm_keys/AL2_KEY_RA8SP1.rkey",
elif (dlm_key type == b"'\x82'):
if sig type == @x83:
RABx1 MCU Group
text_file = open("./dlm_keys/AL1 KEY_RASML.rkey", "r™)
else:
RABP1 MCU
text file = open("./dlm keys/AL1 KEY RASP1.rkey", "r™)

r)

message bytes, encrypted key size = parse the dlm key field(text file, dlm_key type, sig type)
if (message bytes l= @ and encrypted key size l= 8):

Proceed with the DLM key injection command packet stage

SOH=b"'\x81' # Start of command packet

LHNH=b"'x88"

LHL=b"'\x82"

CMD=b"'x28" # DLM Key injection command

KYT¥=dlm_key type

SUM=calc_sum{LNH + LNL + CMD + KYTY)

EXT=b"'\x83"

command = SOH + LMH + LNL + CMD + K¥TY + SUM + EXT

print("\nSending DLM key injection command packet: ")
print_bytes hex(command)

ser.write{command)

time.sleep(LONG DELAY)

Acquire the response of the command packet stage
return_packet = receive_data_packet()

The RES byte is the fourth index

RES = return_packet[3]

Figure 29. Example Code: DLM Key Injection — Part 1

RO1AN7884EU0101 Rev.1.01 Page 38 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

if RES != @x282:
print{"DLM key injection command packet - FAIL™)
alse:

The STS is the fifth index

STS = return_packet[4]

if 5TS != exee:

print("DLM key injection command packet - FAIL")

The SUM is the 14th index

SUM = return_packet[13]

if SUM == exD6:

print("\nDLM key injection command packet - SUCCESS™)

Start the data packet stage

S0D=b"\x81" # Start of data packet

LHNH=b "\ x08"

LNL=b"\x55" # 85 byte: one byte (RES) + shared key ring number (4 bytes) + w-ufpk (32 bytes)
#+ initialize vector (16 bytes) + encrypted dlm key and mac (32 bytes)

RES=b"'\x28" # OK byte

SKR=b"\x08'*4 #Shared key ring number.

SUM=calc_sum(LMH + LML + RES + SKR + message bytes [24:56] + message bytes [56:72] +
message bytes [72:72+encrypted key size])

ETX = b'\x@3"

command = 50D 4+ LNMH + LNL + RES + SKR + message bytes [24:56] + message bytes [56:72] + 1\
message bytes [72:72+encrypted key size] + SUM + ETX

print{"\nSending DLM key injection data packet: ™)
print_bytes hex{command)

ser.write(command)

time.sleep(LONG_DELAY)

Acquire the response of the data packet stage
return_packet = receive data packest()
The RES byte is the fourth index
RES = return_packet[3]
if RES != @x28:
print("DLM key injection data packet failed")
else:
The STS is the fifth index
5TS = return_packet[4]
if 5TS != exee:
print{"Injecting DLM key failed")
elif KYTY == b'\x81":
print{"\nDLM key injection data packet
print{"Injecting AL2 key is successful™)
elif KYTY == b'\x82":
print{"\nDLM key injection data packet
print("Injecting AL1 key is successful™)

SUCCESS\n™)

SUCCESS\n™)

return RES

Figure 30. Example Code: DLM Key Injection — Part 2
5.6.2 Verify DLM Authentication Keys

After injecting the DLM AL keys, the production programming tools should invoke a verify command to
confirm correct injection. Figure 31 shows the command packet information for verifying the DLM AL keys.

RO1AN7884EU0101 Rev.1.01 Page 39 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.10.2.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 02h
CMD (1 byte) 2%h (Key verify command)
KYTY (1 byte) Key type:
¢ 01h: AL2_KEY
* 02h: AL1_KEY
¢ 03h: RMA_KEY
SUM (1 byte) Sum data
ETX (1 byte) 03h

Figure 31. DLM Key Verify Command Packet

This routine demonstrates "DLM Key Verify Command”.
The supported key types are AL1 and AL2 key.
def command verify dlm key(dlm_key type):
SOH=b"'\x@1’
LNH=b"\x@8"
LNL=b"\x@2"
CMD=b"\x28" # DLM Key verify command
KYTY=dlm_key type # DLM Key type
SUM=calc_sum(LNH + LNL + CMD + KYTY)
ETX=b'\x@3'
command = SOH + LNH + LNL + CMD + KYTY + SUM + ETX

if KYTY == b"\x01':

print({"Sending DLM AL2 key verify command:")
elif KYTY == b'\x@2":

print("Sending DLM AL1 key verify command:")
else:

print({"Unsupported DLM Key type")

print_bytes_hex(command)
ser.write(command)
time.sleep(LONG_DELAY)

Acquire the response
return_packet = receive data packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != @x29:
print("DLM key wverification - FAIL")
else:
The STS is the fifth index
STS = return_packet[4]
if 5TS != exg@e:
print("Verifying injected DLM key failed")
elif KYTY == b"\x@1":
print("Verifying injected AL2 key is successful™)
elif KYTY == b'\x@2":
print("Verifying injected AL1 key is successful™)

return RES

Figure 32. DLM Authentication Key Verify Command Example Code

RO1AN7884EU0101 Rev.1.01 Page 40 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

5.7 DLM State, Protection Level and Authentication Level Handling
This section explains the DLM state, Protection Level (PL) and Authentication Level (AL) request command
and the non-authenticated DLM state, PL and AL transition command.

5.7.1 DLM State Request

The state request command is demonstrated in the included example code. Figure 33 shows the state
request command packet format. Figure 34 shows the example code.

6.3.2.1 Command Packet

SCOH (1 byte) 01h

LNH (1 byte) 00h

LNL (1 byte) 01h

CMD (1 byte) 2Ch (DLM state request command)
SUM (1 byte) D3h

ETX (1 byte) 03h
6.3.2.2 Data Packet [DLM State]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 02h

RES (1 byte) 2Ch (OK)

DLM (1 byte) DLM state code
SUM (1 byte) Sum data

ETX (1 byte) 03h

Figure 33. DLM State Request Command Packet

RO1AN7884EU0101 Rev.1.01

Oct.08.25

Page 41 of 70

RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

This routine demonstrates the "DLM State Request Command".
The command execution result and the DLM state are returned.
def command_DLMstateRequest():

SOH=b"‘x@1'

LMH=b "\ x88'

LHML=b"\x@1'

CMD=b"'x2C" # DLM state request command code

SUM=b" '\ xD3"

EXT=b"'\x@3"

command = SOH + LNH + LNL + CHD + SUM + EXT

print("Sending DLM State Request command:™)
print_bytes_hex({command)

ser.write{command)

time.sleep(LONG_DELAY)

Acquire the response
return_packet = receive data packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != @x2C:
print({"*** ERROR : Read DLM state - FAIL")
DLM = b'\xFF'
else:
The DLM byte is the fifth index
DLM = return_packet[4]
match DLM:
case Ox81l:
print("Current DLM state is Chip Manufacturing,")
print("User must use the DLM state transition command to transition to OEM state")

case Bx84:

print("Current DLM state is OEM")
case Bx86:

print{"Current DLM state is LCK BOOT")
case @xe7:

print{"Current DLM state is RMA REQ"™)
case @xe8:

print("Current DLM state is RMA_ACK™)
case @xe9:

print("Current DLM state is RMA_RET")
case _

print({"Unknown DLM state")

return RE5S, DLM

Figure 34. DLM State Request Command Example Code

5.7.2 DLM State Transition
This section covers the non-authenticated DLM state transition. Authenticated transitions are not generally
required in production programming tools.

The recommended flow when performing DLM state transition is described in Figure 35. The current DLM
state is a required parameter for the DLM state transition command and should be acquired first.

RO1AN7884EU0101 Rev.1.01 Page 42 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

C Command acceptable phase)

. Check current DLM state as necessary

DLM state request command

: SDLM : Current DLM state

.+ DDLM : Destination DLM state

DLM state transit command or
Authentication command

Make sure that it is possible to transit from
SDLM to DDLM.

No
OK?
Yes
DLM state request command
% Check the transition result as necessary.
No *) when transiting using “Authentication command”,
Expected DLM necessary to execute device reset before this
state ? *) when transiting to LCK_BOOT, this is not doable
Yes

ERROR

- . (

D

Figure 35. Recommended Flow for Performing DLM State Transition

6.2.1.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 03h
CMD (1 byte) 71h (DLM state transit command)
SDLM (1 byte) Source DLM state code:
« 01h:CM
* 04h: OEM
+ 08h: RMA_ACK
DDLM (1 byte) Destination DLM state code:
* 04h: OEM
¢ 06h: LCK_BOOT
+ 09h: RMA_RET
SUM (1 byte) Sum data
ETX (1 byte) 03h
6.2.1.2 Data Packet [Status OK]
SOD (1 byte) 81h
LNH (1 byte) 00h
LNL (1 byte) 0Ah
RES (1 byte) 71h (OK)
STS (1 byte) 00h (OK)
ST2 (4 bytes) FFFFFFFFh (unused code)
ADR (4 bytes) FFFFFFFFh (unused code)
SUM (1 byte) 8Dh
ETX (1 byte) 03h

Figure 36. DLM State Transition Command Packet

RO1AN7884EU0101 Rev.1.01
Oct.08.25

Page 43 of 70

RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

This routine demonstrates the "DLM State Transit Command”.
def command_DLMstateTransition(source_DLM_state, target_DLM_state):
RES, SDLM = command_DLMstateRequest()

if RES = @x2C:
print(“"Read DLM state - FAIL")
elif SDLM != int.from_bytes(source_DLM_state, "big"):
print("Adjust the source DLM state!™)
else:
if target DLM state != source DLM state and source DLM state != b"\xB&"'
and source_DLM_state != b'\x87' and source_DLM_state != b''\x88" and \
source_DLM _state != b"\x@2"':
S0H=b"\xB1"
LNH=b "\xB8"
LNL=b"\xB3"
#9x71: DLM state transit command
CMD=b"\x71"
S5DLM=source DLM state
DDLM=target DLM state
SUM=calc_sum(LMH + LML + CMD + SDLM + DDLM)
EXT=b"\x83"
command = S0OH + LNH + LNL + CMD + SDLM + DDLM + SUM + EXT

print{"%nSending DLM State Transition command:™)
print_bytes_hex(command)

ser.write(command)

time.sleep(LONG_DELAY)

Acquire the response
return_packet = receive data packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != ex71:

print("DLM Transition command - FAIL")
elif DDLM == b'\x84"':

print("DLM state changed to OEM."™)

the 5TS is the fifth index

STS = return_packet[4]

if STS != exes:

print({"DLM state Transition command - FAIL")

return RES

Figure 37. Example Code for DLM State Transition Command

5.7.3 Protection Level Request

The PL request command is demonstrated in the included example code. Figure 38 shows the PL request
command packet format. Figure 39 shows the example code.

RO1AN7884EU0101 Rev.1.01 Page 44 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.5.2.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 01h
CMD (1 byte) 73h (Protection level request command)
SUM (1 byte) 8Ch
ETX (1 byte) 03h

6.5.2.2 Data Packet [Protection Level]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 02h

RES (1 byte) 73h (OK)

CPL (1 byte) Current PL code
» 02h: Protection level 2
+ 03h: Protection level 1
* 04h: Protection level 0

SUM (1 byte) Sum data

ETX (1 byte) 03h

This routine demonstrates the "Protection Level Request Command”.
The command execution result and the Protection level are returned.
def command_ProtectionlLevelRequest():

SOH=b'\x81'

LNH=b"%\x88 "

LNL=b"%x81"

CMD=b'%\x73" # Protection level request command code

SUM=b"\x8C"

EXT=b'\x@3"

command = SOH + LNH + LNL + CMD + SUM + EXT

print(“Sending Protection Level Request command:")
print_bytes hex(command)

ser.write(command)

time.sleep(LONG_DELAY)

Acquire the response
return_packet = receive_data_packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != 8x73:
print("*** ERROR : Read Protection Level - FAIL")
CPL = b'"\xFF'
else:
The CPL byte is the fifth index
CPL = return_packet[4]
match CPL:
Case 8xe2:
print({"Current Protection Level (PL) is PL2")}
case @x@83:
print("Current Protection Level (PL) is PL1")
case @x84:
print("Current Protection Level (PL) is PLB")
case _
print{"Unknown Protection Level™)

return RES, CPL

Figure 39. Protection Level Request Command Example Code

RO1AN7884EU0101 Rev.1.01 Page 45 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

5.7.4 Protection Level Transition
This section covers the non-authenticated PL transition. Authenticated transitions are not generally required

in production programming tools.

The recommended flow when performing PL transition is described in Figure 40. The current DLM state, PL
and AL are necessary for the PL transition command and should be acquired first.

(Command acceptable phase >

¥

Check current DLM state, PL and
" AL as necessary

DLM state request command
& Protection level request command
& Authentication level request command

Current DLM state =
OBMm ?

Yes

Destination PL
> Current AL?

Yes . See:
h 4 *Transiting Authentication level”

Transit to higher
Authentication level

. . SPL:Current PL
¥ < DPL : Destination PL

Protection level transit command

' - «

Yes

¥

Protection level request command .+ Check the transition result as necessary
i

Expected PL?

Yes

C = > = >

Figure 40. Recommended Flow for Performing Protection Level Transition

RO1AN7884EU0101 Rev.1.01 Page 46 of 70

Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.4.21 Command Packet

SOH (1 byte) 01h

LNH (1 byte) 00h

LNL (1 byte) 03h

CMD (1 byte) 72h (Protection level transit command)
SPL (1 byte) Source PL code:

e 02h: Protection level 2
¢ 03h: Protection level 1
* (04h: Protection level 0
DPL (1 byte) Destination PL code:

« (2h: Protection level 2
* (3h: Protection level 1
* (04h: Protection level 0
SUM (1 byte) Sum data

ETX (1 byte) 03h

6.4.2.2 Data Packet [Status OK]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 0Ah

RES (1 byte) 72h (OK)

STS (1 byte) 00h (OK)

ST2 (4 bytes) FFFFFFFFh (unused code)
ADR (4 bytes) FFFFFFFFh (unused code)
SUM (1 byte) 8Ch

ETX (1 byte) 03h

Figure 41. Protection Level Transition Command Packet

This routine demonstrates the "Protection Level Transit Command™.
def command ProtectionLevelTransition(target_PL_state):
RES, DLM = command DLMstateRequest()

if RES != @x2C:
print{"Read DLM state - FAIL")
return RES
elif DLM != 8xa4:
print{"DLM state is not OEM, cannot proceed")
return @xFF

RES, CPL = command_ProtectionLevelRequest()

if RES != @x73:
print{"Read Protection Level - FAIL")
return RES

target PL_state = int.from_bytes(target PL_state, "big")
if target PL_state < CPL
print{"Protection Level upgrade -»> Checking Authentication Level™)
RES, CAL = command_AuthenticationlLevelRequest()
if RES != @x75:
print{"Read Authentication Level - FAIL")
return RES
elif CAL != @x82:
print{"Transiting to AL2")
RES = command_AuthenticationlLevelTransition(b"\x82")
if RES != ex3e:
print("Authentication Level Transition - FAIL")
return RES

Figure 42. Example Code for Protection Level Transition Command - part 1

RO1AN7884EU0101 Rev.1.01 Page 47 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Transition to the target Protection Level
SOH=b"\x@1"

LNH=b"'\x88"

LNL=b"\x83"

#8x72: Protection Level transition command
CMD=b"%\x72"

SDLM=CPL.to_bytes(1, "big")

DDLM=target PL_state.to bytes(1, "big")
SUM=calc_sum(LNH + LNL + CMD + SDLM + DDLM)
EXT=b"'\x@83"

command = SOH + LNH + LNL + CMD + SDLM + DDLM + SUM + EXT

print("\nSending Protection Level Transition command:™)
print_bytes hex{command)

ser.write{command)

time.sleep(LONG_DELAY)

Acguire the response
return_packet = receive data packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != @x72:
print("Protection Level Transition command - FAIL™)
else:
if DDLM == b"\x02":
print("Protection Level changed to PL2.")
elif DDLM == b'\x@3":
print("Protection Level changed to PL1.")
elif DDLM == b'\x84":
print({"Protection Level changsd to PLB.")

return RES

Figure 43. Example Code for Protection Level Transition Command — part 2

5.7.5 Authentication Level Request

The AL request command is demonstrated in the included example code. Figure 44 shows the AL request
command packet format. Figure 45 shows the example code.

6.6.2.1 Command Packet

SOH (1 byte) 01h
LNH (1 byte) 00h
LNL (1 byte) 01h
CMD (1 byte) 75h (Authentication level request command)
SUM (1 byte) 8Ah
ETX (1 byte) 03h

6.6.2.2 Data Packet [Authentication Level]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 02h

RES (1 byte) 75h (OK)

CAL (1 byte) Current AL code

* 02h: Authentication level 2
* (3h: Authentication level 1
¢ 04h: Authentication level 0
SUM (1 byte) Sum data

ETX (1 byte) 03h

Figure 44. Authentication Level Request Command Packet

RO1AN7884EU0101 Rev.1.01 Page 48 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

This routine demonstrates the "Authentication Level Request Command”.
The command execution result and the Authentication level are returned.
def command AuthenticationlLevelRequest():

SOH=b""%xe1'

LNH=b""x88"

LNL=b"Yx81'

CMD=b'%x75"' # Authentication level request command code

SUM=b" ‘x84

EXT=b""x@83"

command = SOH + LNH + LNL + CMD + SUM + EXT

print{"Sending Authentication Level Request command:™)
print_bytes_hex(command)

ser.write{command)

time.sleep(LONG_DELAY)

Acquire the response
return_packet = receive_data_packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != @x75:
print("*** ERROR : Read Authentication Level - FAIL")
CAL = b"\xFF"'
else:
The AL byte is the fifth index
CAL = return_packet[4]
match CAL:
case Bx92:
print("Current Authentication Level (AL) is AL2"™)
case Bx@3:
print("Current Authentication Level (AL) is AL1™)
case Bx84d:
print("Current Authentication Level (AL) is AL@")
case _
print("Unknown Authentication Level™)

return RES, CAL

Figure 45. Authentication Request Command Example Code

5.7.6 Authentication Level Transition
This section covers the AL transition. Authenticated transitions are not generally required in production
programming tools.

The recommended flow when performing AL transition is described in Figure 46. The current DLM state and
AL are necessary for the AL transition command and should be acquired first.

RO1AN7884EU0101 Rev.1.01 Page 49 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

(Com‘mnd acceptable phase)

DLM state request command
& Authentication level request command

.+ Check current DLM state and AL as necessary

No Current DLM state =
oBv?
Yes
. . SDLM : Current AL
Authentication command “" DDLM - Destination AL
No
OK?
Yes

Authentication level request command

.- Check the transition result as necessary

A

Expected AL?

Yes

C o > D

Figure 46. Recommended Flow for Performing Authentication Level Transition

RO1AN7884EU0101 Rev.1.01 Page 50 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

6.7.2.1 Command Packet

SOH (1 byte) 01h

LNH (1 byte) 00h

LNL (1 byte) 04h

CMD (1 byte) 30h (Authentication command)

SDLM (1 byte) Source DLM/AL code.

For DLM transitions:
« 04h: OEM
« 07h: RMA_REQ
For AL transitions:
« (03h AL1
« (04h- ALO
DDLM (1 byte) Destination DLM/AL code.
For DLM transitions:
+ 07h: RMA_REQ
« (08h: RMA_ACK
For AL transitions:
« 02h: AL2
« (03h AL1
CHCT (1 byte) Authentication type:
+ (00h: Random number (Can be used in all transit cases.)
e 0O1h: MCU unique ID (Can be used only in transit to RMA_REQ.)
SUM (1 byte) Sum data
ETX (1 byte) 03h
6.7.2.2 Data Packet [Challenge Value or Unique ID]

SOD (1 byte) 81h

LNH (1 byte) 00h

LNL (1 byte) 11h

RES (1 byte) 30h (OK)

CHCD (16 bytes) Challenge value or Unigue 1D
For example: 01234567_89AB 2233 _44556677h -> 01h, 23h, 45h, |
55h, 66h, 77h

SUM (1 byte) Sum data

ETX (1 byte) 03h

Figure 47. Authentication Level Transition Command Packet

RO1AN7884EU0101 Rev.1.01

Oct.08.25

RENESAS

Page 51 of 70

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

This routine demonstrates the "Authentication Level Transit Command”.
def command_ AuthenticationLevelTransition(target AL state):
RES, DLM = command DLMstateRequest()

if RES != Bx2C:
print{"Read DLM state - FAIL")
return RES
elif DLM != @xe4:
print{"DLM state is not OEM, cannot proceed™)
return @xFF

RES, CAL = command AuthenticationLevelRequest()

if RES = 8x75:
print({"Read Authentication Level - FAIL")
elif CAL != int.from_bytes(target AL state, "big"):
SOH=b"‘\xB1'
LNH=b" ‘=88’
LNL=b"\x84"
#@8x38: Authentication command
CMD=b"‘x38"
SDLM=CAL.to _bytes(1, "big")
DDLM=target AL state
CHCT=b"\x60’
SUM=calc_sum{LNH + LML + CMD + SDLM + DDLM + Eﬂgl}
EXT=b"‘x@3"
command = SOH + LMH + LWL + CMD + SDLM + DDLM + CHCT + SUM + EXT

print({”\nSending DLM State Transition command:™)
print_bytes hex{command)

ser.write{command)

time.sleep(LONG_DELAY)

Figure 48. Example Code for Authentication Level Transition Command - Part 1

RO1AN7884EU0101 Rev.1.01 Page 52 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Acquire the response
return_packet = receive data packet()
The RES byte is the fourth index
RES = return_packet[3]
if RES != @x38:
print{"Authentication Transition command - FAIL™)
else:
challenge data = return_packet[4:28]
print{"Challenge data : ")
print_bytes hex(challenge data)
Calculate the response value using AE5-128 CMAC
response_data = calc_response _value(challenge data, b'\x@8'*1g)
print{"Response data : ")
print_bytes hex(response data)

Send Data Packet with Response Value
500=b"x81"

LNH=b"\xB8"

LNL=b"%x21"

RES=b"'\x38"

MAC=response_data

SUM=calc_sum{LNH + LML + RES + MAC)

ETX = b*'\x@83'

command = SOD + LMH + LML + RES + MAC + SUM + ETX

print{"\nSending Authentication Response Value:")
print_bytes hex({command)

ser.write{command)

time.sleep(AL_DATA_RESPONSE DELAY)

Acquire the response
return_packet = receive data packet()
The RES byte is the fourth index
RES = return_packet[3]
The 575 is the fifth index
5TS = return_packet[4]
if RES != @x3@ and 575 != @x@e:
print{"Authentication Response Walue - FAIL")
else:
if DOLM == b"\x82":
print("AL state changed to AL2.™)
elif DDLM == b"'\x83":
print({"AL state changed to AL1.™)

return RES

Figure 49. Example Code for Authentication Level Transition Command — Part 2

RO1AN7884EU0101 Rev.1.01 Page 53 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6. Running the Python Example Code

Many of the typical boot mode commands are implemented in the included example code, which can be
used as a starting point for writing a complete production programming tool. The code snippets provided in
earlier sections are taken from the examples.

6.1 Set up the Python Environment

To execute the demonstration code supplied along with this application note, it is necessary to install the
following software packages first. Follow the links below to acquire and install the software needed:

¢ Install Python:

e Python 3.10 or later (https://www.python.org/downloads/)
e Install the pySerial package

e pySerial 3.5 (https://pyserial.readthedocs.io/en/latest/pyserial.html#installation)
¢ Install PyCryptodome package

e PyCryptodome (Installation — PyCryptodome 3.4.6 documentation)

6.2 Setting Up the Hardware

The demonstration code works with all the MCU groups covered in this application project. The example
shown here uses an RA8M1/RA8P1 MCU fitted to an EK-RA8M1/EK-RA8P1 evaluation board.

To cause the RA8M1 MCU to enter boot mode on reset, first ensure that a jumper has been placed on the
MD (“BOOT MODE?”) jumper, in this case J16, as shown in Figure 50.

GND -
- [s
-

J@
L
. HF’:EF

: é@@ﬁmmgmﬁ Eemt oyp
GROVE1 3rT o GROVE2 3
WD12 MlElm u

~ D13 mikro
Jz1. BUS
AN PWM |
©INT
RX
TX
ScL
SDA

+5V

=
(V)
o
=
T
=
<<

= - -
a '} > > 1
th B Ww N

i ?

.a‘ﬂ.ﬂ.'
b LEDS =
EEEE x EEEM.O e
¥ DEBUG2

EK."RABM1 i

Version 1

) P/N RTK7EKA8M1S00001BE
renesas.com/ra/ek-ra8ml

Shunt on Boot Mode Jumper (J16)

Figure 50. Shunt the MD Pin Jumper on EK-RA8M1

RO1AN7884EU0101 Rev.1.01 Page 54 of 70
Oct.08.25 RENESAS

https://www.python.org/downloads/
https://pyserial.readthedocs.io/en/latest/pyserial.html#installation
https://pycryptodome-master.readthedocs.io/en/latest/src/installation.html

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

To cause the RA8P1 MCU to enter boot mode on reset, first ensure that a jumper has been placed on the
MD (“BOOT MODE”) jumper, in this case J16 pins 1-2, as shown in Figure 51.

PMOD2
425

DEBUG3

»

LED1 LED2 LED3

III -R12-1

I-_ K-RA8 P1

Version 1

RTK ?EhAdP‘IEﬁ(][)Il(HBELi
renes»s.com/ek-radp1

Shunt on Boot Mode Jumper (J16 pins 1-2)

Figure 51. Shunt the MD Pin Jumper on EK-RA8P1
Next, decide whether the serial or USB interface will be used for boot mode communication.
If the USB interface is used:

e Using a USB micro to B cable, connect J11 (USB FS) from the EK-RA8M1/EK-RA8P1 to the
development PC to provide USB Device connection.
e See Table 8 for more general details on the USB connection.

RO1AN7884EU0101 Rev.1.01 Page 55 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Reset Button

Shunt on J16 (pull MD
pin to low)

J11 USB FS

Figure 52. Hardware Setup using USB Full Speed Port
If the serial interface is used:

e Connect the four pins in Table 14 on the UART to USB converter to the EK-RA8M1 and connect the
other end of the converter to the PC’s USB port. Note that there may be variations on the voltage output
from the converter cable. For the FTDI cable demonstrated in Figure 53, the voltage supply to the MCU
is 5V. Another converter may output 3.3V, so the production programming tool should take this into
consideration when setting up the hardware.

e See Table 7 for more details of the serial interface.

Table 14. Connection through the UART Interface

UART to USB Converter | EK-RA8BM1 EK-RA8P1

RX J51: Pin 20 (MCU P209 (TXD9)) J2: Pin 21 (MCU P209 (TXD9))

> J51: Pin 16 (MCU P208 (RXD9)) J2: Pin 37 (MCU P208 (RXD9))

+5V (FTDI cable power J51: Pin 01 J1: Pin 08

output voltage. Check the | (If +3.3V is provided from the (If +3.3V is provided from the

voltage output on the converter, then connect to Pin 02 of | converter, then connect to Pin 01 of

converter used.) J51). If the production programming | J2). If the production programming
board has stable power supply, then | board has stable power supply, then
this pin connection is not needed. this pin connection is not needed.

GND J51: Pin 50 (MCU Ground) J2: Pin 39 (MCU Ground)

RO1AN7884EU0101 Rev.1.01 Page 56 of 70

Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

OSPI
FLASH
64Mx8
S12Mb

|
PaLz
L}

P2OS

+‘J'PEFH

I VREFLO
VREFHO

I P511

04

Figure 53. Hardware Setup using UART to USB Converter for EK-RA8M1

RO1AN7884EU0101 Rev.1.01 Page 57 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

OCTASPI FLASH® c11ame it 1335y ¢s @

512Mbit

P310

PTO4

w25 I-—u,_4
R1DE & PCo0 (2] O|O|D|0|0|0]O
"D 00000000

'.EI-

RABF1

R7 ASPW FLCAC
1GHz + 250MHz
1MB Code Flas
ZME SRAM, B

0000000000000 000000O

* = -
=g N
i =
= =

Q
O
| @
O
8 | @
7@
8| @
(@
0| @
o
O
0
Q
o
1(©
0
Q
O
O
O

[]
| —]

TR

S
502|Q O fpsoo o | m

w |0 5V
avceo| @ © |reos
avsso| © © |psos
vrern | D O |psoz
vrerL| © © |rsao

errn | @ O |psos

PA5S| O O lesas

0 O P54

o O Fo04 g
O O |roos
O O P

Pi00
VR

D F:‘I:I‘Ml‘ul'REFLI:I 0 0 PE05

.
;|0 O
O

+3.3W PO15 FO0é 02 gl P
RESET_L P08 PO FOOD P103 P‘.li"i

'D

Bciz
Bcizz

Bciis

Tooooooooooooo
]olo[ololol_o]ololo]ololol

[
(=}
=

Il

P07
PDO5S PDO3

Parallel Graphics Expansion Port

Pag

-
P54 T -
Fi11 il =
+13v I =
+3.2v [l =
Paos Il =
Pao7 I =
PT10 I =
P15 Il =
Poanz Il =
Pr1 Il =
Pa13 I =
p2or I =
reoc I =
reo1 [l =
PEoa I =
reoo [l -

P11

P713 Hl =

2 5
F308 P312 o P413 PA04 P15 &

000000000
19 o

P54/
s0A1

: P51
B ceiy

* I poos

B .5

* Bl psys
* I poos
= Il ps1a
* Il P14
= Il poos
* Il ps0
* Il poi2
* I Pood
* Il re07
* Il re0s
« Il Feo4

QO O |pa10

Fdi1

QO O |rars

J17

GHD

Figure 54. Hardware Setup using UART to USB Converter for EK-RA8P1

Once the physical communication mechanism is connected, whether serial or USB, ensure the board is
powered up and then press the Reset button to enter boot mode.

6.3 Running the First Demo Code

Unzip production programming demo cm85 dlm.zip to reveal two Python files and the \d1lm keys
folder which holds four DLM AL keys: two for RA8M1, two for RA8P1 which can be injected into the MCU.

RO1AN7884EU0101 Rev.1.01
Oct.08.25

Re Page 58 of 70
RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Implementing_Production_Programming_...

Name

[| dim_keys
bootmode_demonstration_code RA8.py

initialize_mcu_first.py

Figure 55. Python Demo Code and Sample DLM Keys

The first of the demonstration examples, initialize mcu first.py, is intended to ensure that the MCU
is correctly configured for production programming, running an Initialize command if required.

The full functionality of this code is described in Figure 56:

Establish connections to boot
firmware via USB or UART

Y
Identify the MCU type

h 4
Check current DLM state, PL and AL

Is DLM state CM? Transition from CM to OEM

Y

No
Y Check whether the MCU Initialize
Print warning message: Initialize Command is Disabled or not
command is not available in the DLM
state.
Initialize the MCU <€
Y >
Y
End
Figure 56. Operational Flow of the First Demo Code
RO1AN7884EU0101 Rev.1.01 Page 59 of 70

Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

To execute the example, open a command line prompt and navigate to the folder where the Python example
code is stored. Then enter:

python initialize mcu first.py

Figure 57 and Figure 58 shows sample output from running the demonstration with a USB connection to the
board.

C:\Workspace\82_AP\Production_Programming>python initialize mcu_first.py
Com port select
COM26 - RA USB Boot(CDC) (COM26)

COM3 - Intel(R) Active Management Technology - SOL (COM3)

Auto-selected COM26 for RA Boot mode USB CDC connection

Com port opened : COM26

Sending three ©x@@ to target to start Communication Setting Phase
Success: ACK received

Sending GENERIC code to target : ©x55

Checking for the Boot code sent back from target

Received :c6

CM85/CM33 boot code received

Sending Signature Request command:
b'\x01\x80\x81\x3a\xc5\xe3"
Signature Request - SUCCESS
Product Type Name: R7FA8M1AHECBD

Figure 57. Demonstration with USB Connection — Part 1

RO1AN7884EU0101 Rev.1.01 Page 60 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Sending DLM State Request command:
b'\x@1\x8e\x01\x2c\xd3\xe3"

Current DLM state is OEM

Sending Protection Level Request command:
b'\x@1\x86\x01\x73\x8c\xe3"

Current Protection Level (PL) is PL2

Sending Authentication Level Request command:
b'\x81\x88\xe1\x75\x8a\x83"'

Current Authentication Level (AL) is AL2

Sending MCU check whether Initialize command is disabled command:

b'\x01\x08\x02\x52\x01\xab\x03"'
Initialization is enabled

Sending MCU Initialize command:
b'\x81\x88\x83\x50\x84\ x84\ xa5\x0e3"
Initialize - SUCCESS

: After MCU Initialize is run, an MCU reset is

required before further boot mode operations.
RN NN R RN RN NN N R RN NN RNy

Figure 58. Demonstration with USB Connection — Part 2

Some Renesas evaluation boards might be distributed in the CM state. In this case, the demonstration code
will transition the DLM state from CM to OEM, then the Initialize command will be executed. In this case,
there is no need to check whether the Initialize command is disabled or not as the Initialize command cannot
be issued in the CM state and transitioning from CM to OEM is a one-way process.

After the demonstration example finishes running, follow the warning in the output to reset the board before
running the second demonstration example.

Note that with the USB connection, the code has automatically identified the RA boot mode USB CDC
interface and automatically connected to it.

With a serial connection, it is necessary to enter the COM port to use manually. This is shown in partial
output in Figure 58.

RO1AN7884EU0101 Rev.1.01 Page 61 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with

Device Lifecycle Management

C:\Workspace\82_AP\Production_Programming>python initialize_mcu_first.py
Com port selection
COM4 - Silicon Labs CP21ex USB to UART Bridge (COM4)

COM3 - Intel(R) Active Management Technology - SOL (COM3)

Please enter com port to use : COM4

Com port opened : COM4

Sending three ©xe@0 to target to start Communication Setting Phase
Success: ACK received

Sending GENERIC code to target : ©x55

Checking for the Boot code sent back from target

Received :c6

CM85/CM33 boot code received

Figure 59. Demonstration with Serial Connection

6.4 Running the Second Demonstration Code

The second of the demonstration examples, bootmode demonstration code RA8.py, is intended to
show the main steps likely to be required for a real production programming sequence (except for
programming an application image into flash).

The full functionality of this code is described in Figure 60.

RO1AN7884EU0101 Rev.1.01 Page 62 of 70

Oct.08.25

RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Establish connections to boot
firmware via USB or UART

v

Identify the MCU

v

Check current DLM state

Warning user this demo
cannot be performed

Is DLM state OEM? Is DLM state CM?

Transition from CM to OEM

Yes

A
Check current PL and AL

Is PL state PL27? Transition to PL2

Request current TrustZone boundary

v

Set up new TrustZone boundary

v

Request new TrustZone boundary

v

Inject AL2 key

v

Verify AL2 key

v

Inject AL1 key

v

Verify AL2 key

v

Trasition from PL2 to PL1

v

Transition from PL1 to PLO

Figure 60. Operational Flow of the Second Demonstration Code

RO1AN7884EU0101 Rev.1.01 Page 63 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

To execute the example, ensure that you have reset the board, then enter the following command in the
previously opened command prompt:

python bootmode demonstration code RAS8.py

Below is sample output from running the demonstration with a USB connection to the board.
Establishing the Connection (USB)
6.4.1 Establishing the Connection (USB)

C: \Workspace\©2_AP\Production_Programming>python bootmode_demonstration_code RAS8.py

COM26 - RA USB Boot(CDC) (COM26)
COM3 - Intel(R) Active Management Technology - SOL (COM3)

Auto-selected COM26 for RA Boot mode USB CDC connection

Com port opened : COM26

Sending three @x@@ to target to start Communication Setting Phase
Success: ACK received

Sending GENERIC code to target : @x55

Checking for the Boot code sent back from target
Received :c6

CM85/CM33 boot code received

Figure 61. Establishing the Connection USB

If a serial connection is used, it will be necessary to enter the COM port manually, as shown in Figure 59.

RO1AN7884EU0101 Rev.1.01 Page 64 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.4.2 Checking Product Type Name, Current DLM State, Protection Level and
Authentication Level

Sending Signature Request command:
b'\x01\x00\x01\x3a\xc5\x03"'
Signature Request - SUCCESS
Product Type Name: R7FA8M1AHECBD

Sending DLM State Request command:

b'\x@1\xee\xe1l\x2c\xd3\xe3"
Current DLM state is OEM

Sending Protection Level Request command:
b'\x01\x00\x01\x73\x8c\x03"'

Current Protection Level (PL) is PL2

Sending Authentication Level Request command:
b’ \x01\x00\x01\x75\x8a\x03"

Current Authentication Level (AL) is AL2

Figure 62. Checking Product Type Name, Current DLM State, PL and AL
6.4.3 Configuring TrustZone Partition Boundaries

Requesting current TrustZone Boundary informati

Sending read boundary region command:

b’ \x@1\x00\x01\x4f\xbe\xe3'

Read boundary region - SUCCESS
- The secure code flash region size is 16352 KB
- The secure data flash region size is 63 KB

TrustZone Boundaries

Configuring device with :
- 512KB of Code Flash Secure region
- 4KB of Data Flash Secure region
Sending TrustZone boundary setup command:
b ' \x81\x80\x8b\x4e\x00\x00\x02\x00\x00\ x84\ x00\x00\x00\xe8\xal\xe3"

Set up boundary region - SUCCESS

Requesting updated TrustZone Boundary information

Sending read boundary region command:

b’ \x01\x08\x01\x4f\xbe\xe3'

Read boundary region - SUCCESS
- The secure code flash region size is 512 KB
- The secure data flash region size is 4 KB

Figure 63. Configuring TrustZone Partition Boundaries

RO1AN7884EU0101 Rev.1.01 Page 65 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.4.4 Injecting DLM AL Keys

Injecting DLM - AL2 Key

Start Processing ALZ rkey file
Base64 Decoding key

Key Type = " DLM Authentication Key '
Finished : Processing rkey file.

Sending DLM key injection command packet:
b*\x81\x08\x82\x28\x81\xd5\x83"

DLM key injection command packet - SUCCESS

Sending DLM key injection data packet:

b \x81\x88 \x55\x28\x068\ 08\ x80\x00\ x2a \ x84\ x34 \ xca\x97 \xde\ x31\ %32\ x79\x38\x9d\ xd8\ xf1\x55\x23\xdb\x2a\x
8AAXINxca\XO7 \xdB\x3 1\ 32\ %79\ %38\ x0d \ xdB\xF 1\ x55\x23 \xdb\xe2\ x83 \xad\ x93\ x9c\ xed \ xcc\xcB\x56 \xfe\x67\x
B\ xb5\x9c\ ¥36\X6T\ X309\ x7 3\ O\ Nab\xFfe\x76 \xea \ 54 \xac\ x84\ x2 3\ X0\ xFfe\ x5\ X711\ a8\ B\ X5\ Xx94 \ x84\ x 78\ x
Se\x48\xaf \x2e\xdf\xFff\xb7\xac\x49\xf7\x56\xbb\x63"

DLM key injection data packet - SUCCESS

Injecting AL2 key is successful

Sending DLM AL2 key verify command:
b \x01\x00\x82\x20\x01\xd4\x63"
Verifying injected AL2 key is successful

Start Processing ALl rkey file
Base64 Decoding key

Key Type = ° DLM Authentication Key '
Finished : Processing rkey file.

Sending DLM key injection command packet:
b’ \x81\x00\x02\x28\x02\xd4\x03"

DLM key injection command packet - SUCCESS

Sending DLM key injection data packet:

b Ax81\x80\x55\x28\x00\x00\ x00\ X008\ x2a \ x84\ x34\xca\x97 \xde\ x3 1\ X3 2\ x72\ %38\ x9d \ xd 8\ xT1\x55\x23\xdb\x2a\x
8A\x34\xca\ ¥97 \XdO\x31\x32\ x79\ %38\ x9d \ xd8 \ xF 1\ %55\ %23\ xdb\ x5b\ %90\ x91 \ x3b\ xcF\ xd42\ xef\ xde\xce\xfc\xb5\x
cS\xd3\x7F\xb8\xa5\xa3\xc5\ x9c\x4a\x51 \x7a\xBa \ 06\ xed \ xFF i xcc\ %35\ %34\ x2 7\ x 78\ %88\ xb3\ x95\ xeb\ x56\ xaf\x
32\xea\xc8\xd2\x70\x9a\x8F \x19\x6e\x63\x6F \x0b\x63 "

DLM key injection data packet - SUCCESS

Injecting AL1 key is successful

Sending DLM AL1 key verify command:
b* \x@1\x8e\x82\x29\x82\xd3\xe3"
[Verifying injected ALl key is successful

Figure 64. Injecting DLM AL Keys

If the Python code is modified to change the value of DEBUG_OUTPUT_ ENABLE from O to 1, then additional
details will be displayed as the content of the .rkey file is processed.

RO1AN7884EU0101 Rev.1.01 Page 66 of 70
Oct.08.25

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.4.5 Configuring Final Protection Level State

rrent DLM

Sending P

Figure 65. Configuring Protection Level State

6.5 Testing Authenticated DLM Transitions

Authenticated DLM transitions are not generally required to be supported in production programming tools,
as such transitions are generally only required during product development, or for in-field debug.

This means that the example code simply uses the DLM key verify command to check that keys have been
injected correctly.

However, if required, it is possible to test that the injected keys do indeed allow authenticated DLM/PL
transitions by referring Authenticated Transition using RFP section from Application Note R11ANQ785 to
perform the authenticated transitions using the Renesas Flash Programmer:

e This step is typically not needed in a production programming environment. Perform PLO to PL1 or PL2
transition following case 1 or case 3.
The plaintext raw AL2 key value for the example AL2.rkey and AL2 RA8P1.rkey filesis
“000102030405060708090A0BOCODOEOF”. This value needs to be used when transitioning from the
PLO state to the PL1 or PL2 state.

e Perform PL1 to PL2 transition following case 2.
The plaintext raw AL1 key value for the example AL1.rkey and AL1 RA8P1.rkey filesis
“010102030405060708090A0BOCODOEOF”. This value needs to be used when transitioning from the
PL1 state to the PL2 state.

Note: Unlike using the “Initialize” command, the Code Flash, Data Flash, and TrustZone partition boundary
settings are preserved in this process.

RO1AN7884EU0101 Rev.1.01 Page 67 of 70
Oct.08.25 RENESAS

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

6.6 Disabling the Initialize Command

The bootmode demonstration code RA8.py example contains a function called

command disable initialize (), which will cause the ‘Initialize’ boot mode command to be disabled.
Executing command disable initialize () prevents the DLM state from being reset to the OEM state
using the ‘Initialize’ command in the future.

This action may be required during a real production programming run, but not while doing testing.
Therefore, the calling of this function is disabled by default. To enable the call, change the value of
INVOKE DISABLE INITIALIZE COMMAND fromO to 1.

Once changing the value of INVOKE DISABLE INITIALIZE COMMAND from O to 1, as an extra level of
protection, it will still be necessary to enter YES when prompted for the call to

command disable initialize ()to be made. When INVOKE DISABLE INITIALIZE COMMAND is set
to 1, the demonstration code will display the following prompt before ending:

WARNING

g 'command disable initialize will prevent the 1!

ze command from working in the future. 1

Enter YES if you are really sure you want to do this: YES
'You entered YES - calling function

Sending Disable Initialize command:
b " \x81\x868\x83\x51\x81\x88\xab\x83"

Warning : After MCU Initialize is disabled, it can never be re-enabled.
Disable Initialize command - SUCCESS

Figure 66. Disable the Initialize Command

The next time that initialize mcu first.py is run, the system will report that the Initialize command is
disabled. In this case, the only way to partially recover the board is to use the injected AL keys to move the
PL state back to PL2 as explained in section 6.5.

7. References

e Renesas RA Family Device Lifecycle Management for RA8 MCUs (R11ANQ0785)

e Renesas RA Family Renesas Boot Firmware for RA8M1 MCU Group (RO1AN7140)
¢ Renesas RA Family Renesas Boot Firmware for RA8D1 MCU Group (RO1AN7290)
e Renesas RA Family Renesas Boot Firmware for RA8T1 MCU Group (R0O1AN7291)
e Renesas RA Family Renesas Boot Firmware for RASE1 MCU Group (RO1AN7535)
e Renesas RA Family Renesas Boot Firmware for RASE2 MCU Group (RO1AN7547)
e Renesas RA Family Renesas Boot Firmware for RA8P1 MCU Group (RO1AN7823)
e Renesas RA Family Renesas Boot Firmware for RA8T2 MCU Group

e Renesas RA Family RA8M1 User’'s Manual: Hardware (R01UH0994)

¢ Renesas RA Family RA8D1 User’'s Manual: Hardware (RO1UHQ0995)

e Renesas RA Family RA8T1 User’'s Manual: Hardware (RO1UH1016)

e Renesas RA Family RA8E1 User's Manual: Hardware (RO1UH1129)

e Renesas RA Family RA8E2 User’s Manual: Hardware (R01UH1130)

o Renesas RA Family RA8P1 User’s Manual: Hardware (RO1UH1064)

e Renesas RA Family RA8T2 User’s Manual: Hardware (RO1UH1067)

¢ Renesas RA Family RA8 Quick Design Guide (RO1AN7087)

e Security Key Management Tool User's Manual (R20UT5349)

RO1AN7884EU0101 Rev.1.01 Page 68 of 70
Oct.08.25 RENESAS

https://www.renesas.com/en/document/apn/device-lifecycle-management-ra8-mcus
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8m1-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8d1-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8t1-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8e1-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8e2-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8p1-mcu-group
https://www.renesas.com/en/document/mah/ra8m1-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8d1-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8t1-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8e1-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8e2-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8p1-group-users-manual-hardware
https://www.renesas.com/en/document/apn/ra8-mcu-quick-design-guide
https://www.renesas.com/en/document/mat/security-key-management-tool-users-manual

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

8. Website and Support

Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
RO1AN7884EU0101 Rev.1.01 Page 69 of 70

Oct.08.25 RENESAS

https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

Revision History

Description
Rev. Date Page Summary
1.00 Jun.30.25 — First release of this document.
1.01 Oct.08.25 — Update minor contents.

RO1AN7884EU0101 Rev.1.01

Oct.08.25

RENESAS

Page 70 of 70

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice

1.

10.

1.

12.

13.
14,

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)
Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Production Programming Concepts
	1.1 Background
	1.2 Typical Production Programming Flow
	1.3 Flash Programming
	1.4 Device Lifecycle Management
	1.5 Secure / Non-secure /Non-secure Callable Regions
	1.5.1 SAU Registers and Non-TrustZone-using Software

	1.6 Production Programming Advanced Features
	1.6.1 First Stage Bootloader (FSBL) Support
	1.6.2 Secure Factory Programming (SFP) Support

	1.7 Key C onsiderations for M igrating Production Programming from CM33 to CM85

	2. MCU Hardware Setup for Boot Mode Use
	2.1 Boot Mode Communication Interfaces Overview
	2.2 Power
	2.3 Clock
	2.4 MCU System Mode Control Signals
	2.5 Using the 2-wire Serial Communication
	2.6 Using the Universal Serial Bus (USB) Communication
	2.7 Using Serial Wire Debug Interface (SWD)

	3. Connecting to Boot Mode
	3.1 Boot mode operational phases
	3.2 Initialization Phase
	3.2.1 Serial Settings
	3.2.2 USB Settings
	3.2.3 JTAG/SWD Settings

	3.3 Communication Setting Phase
	3.3.1 USB/UART Communication
	3.3.2 JTAG/SWD Communication

	4. Boot Mode Commands
	4.1 Command Acceptable Phase
	4.1.1 Command Packet Format
	4.1.2 Data Packet
	4.1.3 Summary of Boot Mode Commands
	4.1.4 Boot Mode Firmware Operation

	5. Typical Use Cases of Boot Mode Commands
	5.1 Overview of Use cases
	5.2 Signature Request Command
	5.3 Inquiry Command
	5.4 Initialize the MCU
	5.4.1 Initialize Command
	5.4.2 Check Whether Initialize Command is Disabled
	5.4.3 Disable Initialize Command

	5.5 TrustZone Boundary Region Setup
	5.5.1 Operational Flow
	5.5.2 Acquire the Boundary Information from an Application
	5.5.3 TrustZone Boundary Request Command
	5.5.4 TrustZone Boundary Setting Command

	5.6 DLM Authentication Key Handling
	5.6.1 Inject DLM Authentication Keys
	5.6.2 Verify DLM Authentication Keys

	5.7 DLM State, Protection Level and Authentication Level Handling
	5.7.1 DLM State Request
	5.7.2 DLM State Transition
	5.7.3 Protection Level Request
	5.7.4 Protection Level Transition
	5.7.5 Authentication Level Request
	5.7.6 Authentication Level Transition

	6. Running the Python Example Code
	6.1 Set up the Python Environment
	6.2 Setting Up the Hardware
	6.3 Running the First Demo Code
	6.4 Running the Second Demonstration Code
	6.4.1 Establishing the Connection (USB)
	6.4.2 Checking Product Type Name, Current DLM State, Protection Level and Authentication Level
	6.4.3 Configuring TrustZone Partition Boundaries
	6.4.4 Injecting DLM AL Keys
	6.4.5 Configuring Final Protection Level State

	6.5 Testing Authenticated DLM Transitions
	6.6 Disabling the Initialize Command

	7. References
	8. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

