
 Application Note

R01AN7884EU0101 Rev.1.01 Page 1 of 70

Oct.08.25

Renesas RA Family

Implementing Production Programming Tools for
RA Cortex-M85 with Device Lifecycle Management

Introduction

Renesas RA Family MCUs implement boot mode, which provides access to built-in firmware that allows the

system configuration to be interrogated and updated. On RA8 MCUs, boot mode can be entered through a

serial port, USB virtual COM port or SWD/JTAG interface. The ability to connect to boot mode via

SWD/JTAG enhances convenience, whilst serial/USB connections retain compatibility with existing

production programming tools. In addition, to enter boot mode using the serial port or USB virtual COM port,

it is necessary to simply reset the MCU while keeping the MD pin on the device pulled low. When the MCU is

in boot mode, user code in flash/MRAM will not be active. An MCU in boot mode enumerates as a COM port

when accessed through either a serial port or a USB virtual COM port. Tools running on an external system,

such as a Windows PC, can then communicate with the MCU over this interface.

During software development or small prototype production runs, standard Renesas tools, such as the
Renesas Flash Programmer (RFP), may be used with boot mode. In such cases, the system developer may
not need to be aware of the full details of boot mode and how it works.

However, for companies who provide production programming tools—or users who plan to create their own
tools for production purposes—such tools may well be required to communicate with boot mode, particularly
for the RA8 MCU Family devices based on Cortex-M85 and Cortex-M33 that implement Device Lifecycle
Management (DLM) capabilities.

The full specification of the boot mode interface for these RA Family MCUs is detailed in Renesas Boot
Firmware application note, e.g. R01AN7140 (RA8M1), R01AN7823 (RA8P1), which is available for download
from the Renesas website. This application note expands on the boot mode interface specification to provide
more practical examples of how to interface with boot mode, from both the hardware and software
perspectives. It includes demonstration code in Python on RA8M1 and RA8P1 to illustrate how boot mode
access can be accomplished. The process for other RA8 MCUs is comparable to these two devices, users
can follow the guidelines and examples outlined in the application note.

Note: We do not guarantee any operations not described in this document.

Supported MCU Groups

At the time of the release, the supported MCU groups are:

• RA8M1 Group

• RA8D1 Group

• RA8T1 Group

• RA8E1 Group

• RA8E2 Group

• RA8P1 Group

• RA8T2 Group

• RA8D2 Group

• RA8M2 Group

Required Resources

Development tools and software

• Python v3.12 or later (https://www.python.org/downloads/)

• pySerial v3.5 (https://pyserial.readthedocs.io/en/latest/pyserial.html#installation)
• PyCryptodome (Installation — PyCryptodome 3.4.6 documentation)
• Renesas Flash Programmer v3.19.00 or later (https://www.renesas.com/rfp)

https://www.python.org/downloads/
https://pyserial.readthedocs.io/en/latest/pyserial.html#installation
https://pycryptodome-master.readthedocs.io/en/latest/src/installation.html
https://www.renesas.com/en/software-tool/renesas-flash-programmer-programming-gui

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 2 of 70

Oct.08.25

Hardware

• EK-RA8M1, Evaluation Kit for RA8M1 MCU Group (http://www.renesas.com/ra/ek-ra8m1)

• EK-RA8P1, Evaluation Kit for RA8P1 MCU Group (http://www.renesas.com/ra/ek-ra8p1)

• For demonstration purposes, this application note makes use of the RA8M1/P1 MCU and the EK-

RA8M1/P1 evaluation board. However, the available functionality will be the same on the other

supported MCU groups except when specifically noted.

• Workstation running Windows® 10/11

• Demonstration code should also work on other platforms that support Python and pySerial, but this

has not been tested.

• One USB device cable (type-A male to micro-B/type-C male) or

• One USB to TTL Serial 3.3-V UART Converter with four pieces of male to female jumper wire.

Prerequisites and Intended Audience

The intended audience is engineers creating production programming tools to use with Renesas RA Family
MCUs. Before using this application note and associated demonstration code, users should acquire the
following documentation for reference:

• Application note “Renesas Boot Firmware for (the MCU that is under consideration) Group”. E.g.
Renesas Boot Firmware for RA8M1 MCU Group (R01AN7140).

• The MCU User’s Manual: Hardware (for the MCU that is under consideration).

• Application note “Device Lifecycle Management for RA8 MCUs” (R01AN0785).

These documents are available on the Renesas website and are referenced in this application project.

http://www.renesas.com/ra/ek-ra8m1
http://www.renesas.com/ra/ek-ra8p1
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8m1-mcu-group
https://www.renesas.com/en/document/apn/device-lifecycle-management-ra8-mcus

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 3 of 70

Oct.08.25

Contents

1. Production Programming Concepts ... 5

1.1 Background ... 5

1.2 Typical Production Programming Flow.. 5

1.3 Flash Programming ... 6

1.4 Device Lifecycle Management .. 6

1.5 Secure / Non-secure /Non-secure Callable Regions .. 9

1.5.1 SAU Registers and Non-TrustZone-using Software ... 10

1.6 Production Programming Advanced Features ... 10

1.6.1 First Stage Bootloader (FSBL) Support .. 11

1.6.2 Secure Factory Programming (SFP) Support ... 11

1.7 Key considerations for migrating Production Programming from CM33 to CM85 11

2. MCU Hardware Setup for Boot Mode Use ... 11

2.1 Boot Mode Communication Interfaces Overview .. 11

2.2 Power .. 11

2.3 Clock .. 12

2.4 MCU System Mode Control Signals .. 12

2.5 Using the 2-wire Serial Communication .. 13

2.6 Using the Universal Serial Bus (USB) Communication ... 13

2.7 Using Serial Wire Debug Interface (SWD) .. 13

3. Connecting to Boot Mode .. 14

3.1 Boot mode operational phases .. 14

3.2 Initialization Phase... 16

3.2.1 Serial Settings ... 17

3.2.2 USB Settings ... 17

3.2.3 JTAG/SWD Settings .. 17

3.3 Communication Setting Phase .. 17

3.3.1 USB/UART Communication .. 17

3.3.2 JTAG/SWD Communication .. 19

4. Boot Mode Commands .. 19

4.1 Command Acceptable Phase .. 19

4.1.1 Command Packet Format ... 19

4.1.2 Data Packet ... 20

4.1.3 Summary of Boot Mode Commands ... 20

4.1.4 Boot Mode Firmware Operation .. 21

5. Typical Use Cases of Boot Mode Commands .. 22

5.1 Overview of Use cases .. 22

5.2 Signature Request Command ... 22

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 4 of 70

Oct.08.25

5.3 Inquiry Command .. 24

5.4 Initialize the MCU .. 25

5.4.1 Initialize Command .. 25

5.4.2 Check Whether Initialize Command is Disabled ... 26

5.4.3 Disable Initialize Command ... 28

5.5 TrustZone Boundary Region Setup ... 30

5.5.1 Operational Flow ... 30

5.5.2 Acquire the Boundary Information from an Application ... 30

5.5.3 TrustZone Boundary Request Command ... 31

5.5.4 TrustZone Boundary Setting Command .. 33

5.6 DLM Authentication Key Handling ... 35

5.6.1 Inject DLM Authentication Keys .. 35

5.6.2 Verify DLM Authentication Keys .. 39

5.7 DLM State, Protection Level and Authentication Level Handling .. 41

5.7.1 DLM State Request ... 41

5.7.2 DLM State Transition ... 42

5.7.3 Protection Level Request .. 44

5.7.4 Protection Level Transition .. 46

5.7.5 Authentication Level Request .. 48

5.7.6 Authentication Level Transition ... 49

6. Running the Python Example Code ... 54

6.1 Set up the Python Environment ... 54

6.2 Setting Up the Hardware ... 54

6.3 Running the First Demo Code ... 58

6.4 Running the Second Demonstration Code .. 62

6.4.1 Establishing the Connection (USB) ... 64

6.4.2 Checking Product Type Name, Current DLM State, Protection Level and Authentication Level 65

6.4.3 Configuring TrustZone Partition Boundaries ... 65

6.4.4 Injecting DLM AL Keys .. 66

6.4.5 Configuring Final Protection Level State ... 67

6.5 Testing Authenticated DLM Transitions .. 67

6.6 Disabling the Initialize Command .. 68

7. References .. 68

8. Website and Support ... 69

Revision History .. 70

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 5 of 70

Oct.08.25

1. Production Programming Concepts

This section introduces some of the concepts behind the operations required to perform production
programming of RA8 MCU Family devices based on Cortex-M85 and that implement Device Lifecycle
Management (DLM) capabilities.

1.1 Background

With many Arm Cortex-M based MCUs from a variety of silicon manufacturers, it is often possible for most
production programming operations—in particular programming of an application image into flash memory—
to be carried out over a Serial Wire Debug (SWD) connection to the target MCU, as SWD is also used for
debugging purposes during the software development process.

For RA8 MCU family devices based on the Cortex-M85 that have DLM capabilities, the SWD interface can
be used to access the MCU boot mode. Accessing boot mode is necessary to carry out various device
configuration operations. In addition to SWD, boot mode can also be accessed via SCI/UART or USB. This
application note will demonstrate how to invoke and communicate with boot mode over both SCI/UART and
USB. The command sequence can be adapted for production programming tools that use the SWD
interface.

SCI/USB boot mode is entered when the MCU is reset with the MD pin on the device pulled low. In boot
mode, rather than any user code in flash being executed, a terminal-like interface is made available through
either a serial port (often referred to in Renesas documentation as SCI/UART) or a USB virtual COM port.
Tools running on an external system, such as a Windows PC, can then communicate with the MCU over this
interface.

Boot mode is also available on other RA Family MCUs based on Cortex-M23, Cortex-M4 and Cortex-M33
CPUs based MCUs that do not implement DLM capabilities. However, on such MCUs, the functionality
provided by boot mode is somewhat different and production programming can generally be carried out over
SWD without requiring any access to boot mode (although programming can also be done through boot
mode).

The example in this application demonstrates SCI/UART and USB for establishing communication, but to
minimize integration effort and maximize consistency across the ecosystem, we recommend that using
SWD/JTAG bootmode communication.

1.2 Typical Production Programming Flow

RA8 MCU Family devices based on Cortex-M85 with DLM capabilities are delivered from the factory in the
Chip Manufacturing (CM) or Original Equipment Manufacturer (OEM) state. A typical production
programming flow includes the following steps:

1. Establish the necessary hardware connections to enable the use of boot mode.

2. Reset the MCU into boot mode and establish communication from the host to the MCU over either

SCI/UART or USB or SWD. Then, check the current DLM state.

If the MCU is in the CM state, use the DLM state transition command to transition the DLM state from

CM to OEM. This step is explained in more detail later in this document.

3. If the MCU is not in the CM or OEM state—for example, if this is an evaluation board that has already

been used for other purposes—an “Initialize” command may be issued if the device is in the LCK_BOOT

or RMA states. At the end of the “Initialize” command, the MCU is changed to the OEM state and

Protection Level 2 (PL2) with the Code Flash, Data Flash (or MRAM on RA8P1) and Flash Option

settings erased. This step is explained in more detail later in this document.

4. Reset to normal operation and program the MCU’s flash memory over SWD.

• This can also be done through boot mode but would generally be much slower.

• This step is not demonstrated in this application note.

5. Reset MCU again into boot mode.

6. Set up the required “security related options” using boot mode operations. Details on how to perform

these steps are explained in section 4. Items are demonstrated in the example code:

a) Configure TrustZone partition boundaries.

b) Inject DLM/AL Keys.

c) Change to DLM/PL states.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 6 of 70

Oct.08.25

1.3 Flash Programming

Generally, RA8 MCUs provide three types of flash memory, with slight differences in the way they are erased
and programmed:

• Code Flash memory

• Data Flash memory

• Option Flash memory

With the RA8P1, the types of memory are:

• Code MRAM memory

• Extra MRAM memory

Although it is possible to program these flash memory areas through the boot mode interface, in many
production programming tools it may be preferable to carry out such programming over an SWD connection
while the MCU is in normal operating mode.

Note: If programming flash through the boot mode interface, the DLM state of the MCU must first be

changed from CM (factory default) to OEM.

For a particular MCU, details such as memory sizes and the mechanisms available to program each area are
detailed in the Flash Memory chapter of the corresponding "User's Manual: Hardware".

Example flash source code in Keil MDK flash driver format is available in our Device Family Packs (DFP) on
the Renesas RA Flexible Software Package (FSP) GitHub.

At the time of writing, the latest version is available as part of FSP 6.0.0 at:

• https://github.com/renesas/fsp/releases/download/v6.0.0/MDK_Device_Packs_v6.0.0.zip

Check the FSP GitHub for newer versions.

The Arm/Keil document for the code layout and functions of their flash driver format is available at:

• https://www.keil.com/pack/doc/CMSIS/Pack/html/algorithmFunc.html

Additional flash programming code is available for reference within the FSP drivers for each MCU group.

1.4 Device Lifecycle Management

Most RA8 family MCUs based on Arm Cortex-M85 CPUs adopt the concept of a device life cycle and
maintain the life cycle state inside the device. The DLM state is used to restrict access to the MCU's internal
resources through SWD/JTAG debugger and boot mode interfaces as the device lifecycle states progress.
The DLM state is only configurable through boot mode over an SCI/UART, USB or SWD/JTAG connection.
The set of boot mode commands that are possible are controlled by the current lifecycle state. Changing
lifecycle state is also only possible using a boot mode command. Note that a production programming tool
should always move a MCU into at least OEM (not leave it in the CM state).

Table 1 describes the DLM states that may be involved in the production programming stage.

https://github.com/renesas/fsp
https://github.com/renesas/fsp/releases/download/v6.0.0/MDK_Device_Packs_v6.0.0.zip
https://www.keil.com/pack/doc/CMSIS/Pack/html/algorithmFunc.html

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 7 of 70

Oct.08.25

Table 1. TrustZone-Enabled RA8 Family MCU Group Device Lifecycle States

Lifecycle Definition Protection

Level

Boot mode access

CM “Chip Manufacturing”

(Some MCUs may be delivered in this

state)

PL2 Available.

Cannot access code/data

flash area.

OEM “Original Equipment Manufacturer”

The device is owned by the customer.

PL2 or PL1

or PL0

Available.

LCK_BOOT “LoCKed BOOT interface”

The debug interface and the serial

programming interface and permanently

disabled.

PL0 Not available.

RMA_REQ “Return Material Authorization REQuest”

Request for RMA. The customer must

send the device to Renesas in this state.

PL0 Available.

Cannot access code/data

flash area.

RMA_ACK “Return Material Authorization

ACKnowledge”

Failure analysis in Renesas.

PL2 Available.

Cannot access code/data

flash area.

RMA_RET “Return Material Authorization

ACKnowledge”

The device is back to the customer. The

device does not boot.

PL0 Not available.

The three Protection levels are:

• PL2: The debugger connection is allowed, with no restriction on access to memories and peripherals.

• PL1: The debugger connection is allowed, with access to only non-secure memory regions and

peripherals.

• PL0: The debugger connection is not allowed.

Figure 1, Figure 2 and Figure 3 describe the possible transitions between DLM, PL and AL states.
Production programming tools need to be able to inject the keys required to allow authenticated DLM state
changes.

Figure 1. Device Lifecycle Management on RA8M1

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 8 of 70

Oct.08.25

Figure 2. Device Lifecycle Management on RA8P1

Figure 3. PL and AL states and transitions on RA8 MCU Groups

For production programming, the tool must move a device from CM to OEM for MCUs that are delivered from
the factory if the device is delivered in CM state. The tool may alternatively need to transit the DLM state
back to OEM using an “Initialize” command for MCUs that have been used in the past. At the end of the
sequence, the tool may also need to support locking down of the device—to prevent user’s proprietary code
and data being read back—by moving the DLM state into LCK_BOOT or moving to RMA_REQ state in case
of customers need Renesas support. Boot mode also provides a command to disable the “Initialize”
command, preventing future erasing of flash/MRAM and resetting of DLM state, Protection Level and
Authentication Level.

Authenticated transitions are possible using AL keys. These user-defined keys are injected during specific
device lifecycle states to allow authenticated regression back to that state.

The primary keys that most applications will use are:

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 9 of 70

Oct.08.25

• AL2_KEY

• The Authentication Level 2 Key can be injected when the MCU is in the OEM state. It can be used

when the MCU is in the OEM_PL1 or OEM_PL2 state to regress back to the OEM_PL2 state without

erasing flash memory. This key is used in green arrow of Figure 3.

• AL1_KEY

• The Authentication Level 1 Key can be injected when the MCU is in the OEM state. It can be used

when the MCU is in the OEM_PL0 state to regress back to the OEM_PL1 state without erasing flash

memory. This key is used in red arrow of Figure 3.

Note that an AL key injected during production allows a user to change the DLM/PL state post-production if
and only if they have access to the original key.

1.5 Secure / Non-secure /Non-secure Callable Regions

Arm TrustZone technology is a core security technology developed by Arm and included as part of the v8-M
architecture. It is typically implemented on a wide range of Cortex-M85 based devices, including Renesas’
RA8 Family MCUs. The key point about TrustZone technology is that it provides and enforces a partition
between trusted and non-trusted portions of the system, which provides the designer of a product with a
building block towards producing a more secure MCU application. At a basic level, the way this partitioning is
implemented is by use of memory regions, which effectively covers code, data, and peripherals within the
overall memory map.

First, we have Secure memory regions. These are the trusted regions covering overall system boot as well
as trusted or protected IP such as key storage and data decryption.

Secondly, we have non-secure memory regions, which are used for our normal application code and data,
which do not require direct access to the trusted data. The important point here is that non-secure operations
are only allowed to access non-secure regions, thereby preventing unapproved access to trusted information
or operations.

Finally, we have Non-Secure Callable regions, which are used to provide a gateway between the secure and
non-secure worlds.

RA Cortex-M85 based MCUs with DLM implement a combination of hardware and software defined
attribution units is used to establish secure and non-secure memory regions. The Implementation Defined
Attribution Unit (IDAU), a fixed hardware component, and its companion Master Security Attribution Unit
(MSAU) for other bus masters, work in parallel with the software configurable Security Attribution Unit (SAU).
This parallel query system ensures the stricter security label is applied, guaranteeing that secure memory
remains protected even if one of the attribution units is misconfigured.

For more details, refer to The MCU User’s Manual: Hardware (for the MCU that is under consideration),
section Arm Security Features; or refer to Security Design using Arm TrustZone - Cortex M85 (R11AN0897).

https://www.renesas.com/en/document/apn/security-design-using-arm-trustzone-cortex-m85

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 10 of 70

Oct.08.25

Figure 4. TrustZone Configurations Example using RA8M1

The IDAU provides a fixed, hardware-defined security map for code, SRAM, peripheral regions, and MSAU
extended that map for other bus masters, which cannot be changed at runtime. Additional TrustZone
boundaries as Secure, NSC, Non-Secure regions will be programmed into the SAU through boot mode.
Therefore, as part of the production programming sequence, appropriate values for these registers need to
be configured by the tools.

When a secure application is built, Renesas tools generate a file (.rpd) that contains details of the required
split between Secure/Non-Secure memory. The .rpd file can be used by the production programming tool to
configure the appropriate values into the security attributes register through boot mode.

1.5.1 SAU Registers and Non-TrustZone-using Software

Renesas tools also generate the .rpd file for applications that do not use TrustZone technology. In most
cases, the SAU registers could theoretically be left set to the default (maximal) values that will be set by
running an Initialize command.

However, in some cases, this is not appropriate. Some applications need some areas of memory set to be
Non-Secure. Configuring the SAU regions is necessary for such use cases.

In general, to ensure correct application execution, we recommend always setting up security attributes as
part of the production programming process.

1.6 Production Programming Advanced Features

The Renesas RA8 MCU also provides security foundation to authenticate and protect the firmware during
production programming. For details on the commands to achieve these functionalities, please refer to the
boot firmware application note of the MCU. To review an example usage of these features in an application,
please refer to the application projects “Application Design using RA8 First Stage Bootloader (R11AN0774)
and RA8 Secure Factory Programming (R01AN7516)”.

https://www.renesas.com/en/document/apn/application-design-using-ra8-first-stage-bootloader-application-project
https://www.renesas.com/en/document/apn/ra8-secure-factory-programming

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 11 of 70

Oct.08.25

1.6.1 First Stage Bootloader (FSBL) Support

The FSBL, which is masked in ROM and can execute after reset to verify the OEM firmware programmed in
the on-chip flash. Due to its immutable nature, the FSBL provides a silicon-based Root of Trust (RoT).

To use the FSBL, the OEM firmware must be verified during production programming by the MCU boot
firmware using ECDSA. Production programming software must follow the proscribed order of operations (as
per the Boot Firmware documentation for the MCU) for injecting keys, programming the image and
authenticating the image using the code certificate, optionally a key certificate and OEM root public key.

1.6.2 Secure Factory Programming (SFP) Support

SFP supports image programming in ciphertext format in a non-secure environment. To use the SFP, the
production programming software must follow the proscribed order of operations (as per the Boot Firmware
documentation for the MCU) for injecting keys, programming the encrypted image and setting up the FSBL
(optional).

When using SFP, the encrypted data write boot mode command is used to program the application. The
encrypted data write command also changes the device to the specified state, PL0 or LCK_BOOT when
saving the data. Thus, a separate DLM or PL state setting command is not required in this case to lock down
the device after programming completes.

1.7 Key Considerations for Migrating Production Programming from CM33 to CM85

For users who are already familiar with production programming on CM33, please note that when
transitioning to CM85, it is important to understand the key differences between CM85 and CM33, and
update the Production Programming software accordingly:

• Add support for the new Device Lifecycle states not currently available on CM33, such as the OEM
state, which introduces Protection Level and Authentication Level configurations.

• Support functionality to inject the OEM root key and certificate for FSBL usage.

• Support for injecting Secure Factory Programming (SFP) files using the encrypted data write
command. Note that this feature is also available on certain CM33 MCUs, e.g. RA4L1 and RA4C1.

For some commands, the types of keys eligible for injection have been changed. Refer to the Boot Firmware
application note for details.

2. MCU Hardware Setup for Boot Mode Use

This section describes the hardware requirements for setting up the production environment, including the
power, clock, communication interface connections, and the signals that control the MCU operation mode.

2.1 Boot Mode Communication Interfaces Overview

Boot mode can then be accessed using one of the following communication methods:

• 2-wire serial communication (often referred to in Renesas documentation as SCI/UART)

• Universal Serial Bus (USB) communication (over a virtual COM port)

• Serial Wire Debug (SWD) Interface

• Multiplex SWD Interface and SCI/UART Interface on the SWD debug header

Communication with boot mode can be carried directly over SWD. In addition, Renesas has defined a
specification for reusing certain pins from an SWD debug header as UART pins. This enables production
programming tools to communicate over a single physical connector using either SWD (for communication
with boot mode and programming flash) or UART (for communication with boot mode).

The hardware requirements of these communication methods are described in the following sections. These
sections use the RA8M1 MCU group as an example. For production support, confirm details for the specific
MCU being used in the Hardware User’s Manual Section “Pin Functions”.

2.2 Power

The production hardware setup needs to provide proper power and ground to the MCU. The example
guidelines shown in Table 2 and Table 3 are based on the RA8M1 MCU.

Table 2. RA8M1 MCU Operating Voltage Range

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 12 of 70

Oct.08.25

Operating voltage VCC = 1.68 to 3.6 V

When using USB communication: VCC = 3.0 to 3.6V

Table 3. RA8M1 MCU Power Signals

Function

Name

Signal IO Comments

Power supply VCC, VCC2 Input Power supply pin. Connect it to the system power supply.

Connect this pin to VSS by a 0.1-μF capacitor. The

capacitor should be placed close to the pin.

VCC_DCDC Input Switching regulator power supply pin.

VLO I/O Switching regulator pin.

VCL Input Connect this pin to the VSS pin by the smoothing capacitor

used to stabilize the internal power supply. Place the

capacitor close to the pin.

VBATT Input Battery Backup power pin.

VSS,

VSS_DCDC

Input Ground pin. Connect it to the system power supply (0 V).

2.3 Clock

The clock signal is also mandatory for the MCU and the boot firmware to function. To use the boot mode
firmware, there are specific requirements on the main oscillator frequency. Table 4 shows the requirement
for the RA8 MCU.

Table 4. Clock Source for Boot Mode Operation

Clock Source RA8M1/D1/T1/E1/E2, RA8P1:

Main Oscillator Frequency of 8, 10, 12, 15, 16, 20, 24, 32, 48 MHz

can be used by boot mode firmware. Otherwise, HOCO will be used.

Table 5. Clock Signals

Function

Name

Signal IO Comments

Clock XTAL Output Pins for a crystal resonator. Input an external clock signal

through the EXTAL pin. EXTAL Input

* When performing USB communication with HOCO, Sub-OSC must be oscillating stably.

2.4 MCU System Mode Control Signals

As mentioned in section 1.1, SCI/USB boot mode is entered when the MCU is reset with the MD pin on the
device pulled low. Table 6 describes some more details on these two signals.

Table 6. General Signals for Accessing the Boot Mode

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 13 of 70

Oct.08.25

Function

Name

Signal IO Comments

Operating

mode control

MD Input Pin for setting the operating mode. The signal level on MD must

not be changed during operation mode transition on release

from the reset state. For the MCU groups covered in this

application note, the MD pin is P201.

MCU Reset

control

RES Input Reset signal input pin. The MCU enters the reset state when the

RES signal goes low.

2.5 Using the 2-wire Serial Communication

The Serial Communication Interface (SCI) hardware block used for UART communication has several
channels. For boot mode use, channel 9 is used to enumerate a COM port. Table 7 provides more details on
the UART signals.

 Table 7. UART Boot Mode Pins

Function Name Signal IO Comments

SCI (channel 9) RXD9 Input RA8M1/D1/T1/E1/E2, RA8P1: P208

TXD9 Output RA8M1/D1/T1/E1/E2, RA8P1: P209

2.6 Using the Universal Serial Bus (USB) Communication

USB communication with boot mode can be used by all the supported MCU groups. Table 8 describes the
details on the USB signals. The production programming fixture development team can refer to the Renesas
evaluation board schematic to provide the signal conditioning circuit for the USB connections.

Table 8. USB Interface and Configurations

Function

Name

Signal IO Comments

USB Full

Speed

VCC_USB Input USB Full-speed power supply pin. Connect this pin to VCC.

Connect this pin to VSS_USB through a 0.1 uF capacitor

placed close to the VCC_USB pin.

VSS_USB Input USB Full-speed ground pin. Connect this pin to VSS.

USB_DP I/O D+ pin of the USB on-chip transceiver. Connect this pin to

the D+ pin of the USB bus.

USB_DM I/O D- pin of the USB on-chip transceiver. Connect this pin to

the D- pin of the USB bus.

USB_VBUS

(P407)

Input USB cable connection monitor pin. Connect this pin to

VBUS of the USB bus. Designers should scale down the

5V VBUS input to the MCU’s operating VCC voltage range

with ESD projection. The VBUS pin status (connected or

disconnected) can be detected when the USB module is

operating as a function controller.

USB_VBUSEN Output VBUS (5V) supply enable signal for external power supply

chip.

2.7 Using Serial Wire Debug Interface (SWD)

For performance reasons, a production programming tool may prefer to program flash memory over an SWD
connection, rather than using the boot mode interface. For RA8 MCUs, using the debug connector can
conveniently support boot mode access as well as flash programming support over the SWD interface.

In addition, the SCI/UART boot access pins can be shared on the debug connector, allowing both the
SCI/UART and SWD interfaces to access boot mode through the debug connector. Renesas has
standardized on an extended configuration of the SWD header. This is achieved by reusing pins on the
standard debug connector as shown in Figure 5. Refer to the RA8 MCU Family Quick Design Guide
(R01AN7087) section “Emulator Support” for more details on the specification of this interface.

https://www.renesas.com/en/document/apn/ra8-mcu-quick-design-guide

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 14 of 70

Oct.08.25

Figure 5. Access the Boot Mode through the Multi-emulator Interface Header

The setup shown in Figure 5 allows the production programming tools to control whether the target MCU will
be accessed through serial communications or SWD, based on whether it pulls MD low or not when
asserting reset for boot mode access. If boot mode access is not in use, pins on the SWD header can be
used as SCI/UART RXD/TXD pins by the production programming tool hardware.

This configuration of the SWD header is also commonly used for debugging purposes, where boot mode
operations are also required (for example, to inject TrustZone partition boundaries).

3. Connecting to Boot Mode

This section explains the procedure to establish communications with the boot mode.

3.1 Boot mode operational phases

When the MCU is reset with MD pulled low, the MCU enters a sequence of operational phases, as shown in
Figure 6:

1. Initialization phase.

2. Communication setting phase.

3. Command acceptable phase

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 15 of 70

Oct.08.25

Figure 6. Boot Mode Operational Phases

Figure 7 shows this in more detail, in relation to the MCU DLM state.

The rest of this section examines how production programming tools can make the connection to boot mode,
moving the MCU through the Initialization and Communication setting phases, and then entering the
Command acceptance phase.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 16 of 70

Oct.08.25

Figure 7. Command Execution State Transition Diagram

3.2 Initialization Phase

Production programming tools do not need to carry out any actions during the Initialization phase. Once boot
mode is entered after release of the reset pin with MD in low state, the boot mode firmware initializes the
required hardware modules (including UART or USB) and then transits to the Communication setting phase.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 17 of 70

Oct.08.25

3.2.1 Serial Settings

When using serial communication to access the boot mode, the following default settings are in use:

Bit rate 9600 bps (minimum, until the baud rate setting command)

6Mbps (maximum)

Data length 8 bits (LSB first)

Parity bit None

Stop bit 1 bit

Communication is performed at 9600 bps until the baud rate setting command is invoked (in the Command
acceptable phase). After the baud rate setting command has completely successfully, communication is then
performed at the desired baud rate. The maximum bit rate that can be communicated with the device is
returned by “RMB” of the “signature request” command.

• If communication with the MCU is interrupted during an active boot mode session - for example, due to

cable disconnection, host-side timeout, or power loss - the MCU may enter an undefined state. Reset the

MCU and reenter the boot mode may be required under certain conditions. The production programming

tools should implement timeout handling and retry mechanisms to recover from communication failures

whenever possible.

• Communication with the boot firmware through UART is demonstrated in this application note. However,

the “Baud rate setting” command is not demonstrated. Refer to Boot Firmware application note, e.g.

R01AN7140 for more details of commands. For production use cases requiring custom baud rates, refer

to that document for implementation guidance.

3.2.2 USB Settings

When using USB communication to access the boot mode, the following settings are in use:

Transfer rate 12 Mbps (USB 2.0 Full Speed)

Device class Communication Device Class (CDC)

• SubClass: Abstract Control Mode (ACM)

• Protocol: Common AT commands

Vender ID 0x045B (Renesas)

Product ID 0x0261

Transfer mode Control (in/out)

Bulk (in, out)

Interrupt (in)

3.2.3 JTAG/SWD Settings

When using JTAG/SWD communication to access the boot mode, the following settings are in use:

Transfer rate 25MHz (maximum)

Data length 32 bits

Magic code A5h

3.3 Communication Setting Phase

There are 3 methods to communicate with the device in boot mode:

• USB and UART: These two interfaces are demonstrated in this application project.

• JTAG/SWD: This method is not demonstrated in the current application.

More information and signal timing visualization are available in “Communication Methods” and “General
Procedure” section in Boot Firmware application note.

3.3.1 USB/UART Communication

Once the system enters the Communication setting phase, boot mode polls the selected communication
interface looking for a sequence of 3 consecutive 0x00 characters being transmitted by the production
programming tools. When 3 consecutive 0x00 characters are received, boot mode sends an ‘ACK’ (another
0x00) back to the production programming tools to indicate that communication is being established.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 18 of 70

Oct.08.25

Figure 8 shows an example function, communication_setting(), that could be used within the

production programming tool to implement the Communication setting phase sequence. In this example, the
code will attempt to start communication with boot mode 20 times.

The production programming tools should hold MD low throughout this process.

Figure 8. Communication Setting – Making the initial connection

If no ACK is received, it can be because a previous boot mode connection is still active. This can be verified
using a boot mode Inquiry command. This is explained in section 5.3.

Once the production programming tools have received the ACK code, they should then transmit the “generic
code” (0x55) to which boot mode will reply with the “boot code”, as shown in Figure 9. For the MCUs
described in this application note, the boot code is 0xC6.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 19 of 70

Oct.08.25

Figure 9. Completing the connection - retrieving the boot code

In a real production programming tool, the boot code alone is not sufficient to completely identify the MCU
type being communicated with and the capabilities available through its boot mode. The “Signature”
command should be used to obtain additional details and determine such information.

3.3.2 JTAG/SWD Communication

This is enabled by setting a magic code in the JBMDR register during terminal reset and the MD pin level is
high. When JTAG/SWD communication is selected, boot firmware waits for the generic code without waiting
for 0x00 characters. Refer to the Boot Firmware application note for detailed procedures to enter and exit
Boot Firmware mode; production programming software should adhere to these steps to establish
communication.

4. Boot Mode Commands

This section describes how production programming tools can interact with boot mode, after they have
retrieved the boot code and the MCU boot mode has entered the Command acceptable phase.

4.1 Command Acceptable Phase

Once in Command Acceptable Phase, the MCU’s boot mode expects to receive command packets from the
production programming tools, telling it which boot mode operation is to be carried out. Boot mode responds
back to the production programming tools using data packets. Some commands also require data packets to
be sent from the production programming tools back to boot mode providing additional information for use in
the operation.

Sequence diagrams showing the transmission of packets for each command can be found in Boot Firmware
application note, e.g. R01AN7140, R01AN7290.

4.1.1 Command Packet Format

Production programming tools send information for the required operation to the MCU’s boot mode in the
form of a command packet in format shown in Table 9.

Table 9. Command Packet

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 20 of 70

Oct.08.25

Symbol Size Value Description

SOH 1 byte 01h Start of command packet.

LNH 1 byte - Packet length (length of “CMD + Command information”) [High].

LNL 1 byte - Packet length (length of “CMD + Command information”) [Low].

CMD 1 byte - Command code, as described in section 4.1.3.

Command

information

0 to

255

bytes

- Command information. Examples:

• For Write command: Start/End address.

• For Baudrate setting command: UART baudrate.

SUM 1 byte - Sum data of “LNH + LNL + CMD + Command information” (expressed as

two’s complement).

For example: LNH + LNL + CMD + Command information (1) +

Command information (2) + … + Command information(n) + SUM = 00h.

ETX 1 byte 03h End of packet.

Note: If the host sends data that exceeds 261 bytes, subsequent operations are not guaranteed.

4.1.2 Data Packet

The production programming tools and the boot mode firmware send additional data to each other in the
format shown in Table 10.

Table 10. Data Packet

Symbol Size Value Description

SOD 1 byte 81h Start of data packet.

LNH 1 byte - Packet length (length of “RES + Data”) [High] (*1).

LNL 1 byte - Packet length (length of “RES + Data”) [Low] (*1).

RES 1 byte - Refer to Boot Firmware application note - section “RES: Response code”

for all the supported response codes.

Data (*3) - Transmit data. Examples:

• For Write data transmission: Write data.

• For Status transmission: Status code (STS), Status details (ST2) and

Failure address (ADR).

SUM 1 byte - Sum data of “LNH + LNL + RES + Data” (expressed as two's

complement).

For example: LNH + LNL + RES + Data(1) + Data(2) + ... + Data(n) +

SUM = 00h.

ETX 1 byte 03h End of packet.

*1: If the host sends a packet whose length is 0 byte or over 1025 bytes, the microcontroller returns a packet

with an indefinite RES value.

*2: If the host sends data that exceeds 1030 bytes, subsequent operations are not guaranteed.

*3: The size is 1-1024 bytes. As an exception, the maximum is 1040 bytes only for the Encrypted data write

command.

4.1.3 Summary of Boot Mode Commands

Table 11 is the summary of all the boot mode commands available on the MCUs described in this application
note. For the commands that are not demonstrated in this application project, refer to application note
R01AN7140 to understand the command format details, response, and error handling.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 21 of 70

Oct.08.25

Table 11. Boot Command Code Summary

Value Device Name Comment

RA8M1,

RA8D1, RA8T1,

RA8E1, RA8E2

RA8P1

71h ○ ○ DLM state transit command Demonstrated

2Ch ○ ○ DLM state request command Demonstrated

72h ○ ○ Protection level transit command Demonstrated

73h ○ ○ Protection level request command Demonstrated

75h ○ ○ Authentication level request command Demonstrated

30h ○ ○ Authentication command Demonstrated

28h ○ ○ Key setting command Demonstrated

2Ah ○ ○ User key setting command Not demonstrated

29h ○ ○ Key verify command Demonstrated

2Bh ○ ○ User key verify command Not demonstrated

50h ○ ○ Initialize command Demonstrated

4Eh ○ ○ Boundary setting command Demonstrated

4Fh ○ ○ Boundary request command Demonstrated

51h ○ ○ Parameter setting command Not demonstrated

52h ○ ○ Parameter request command Not demonstrated

4Ah ○ Lock bit setting command Not demonstrated

4Bh ○ Lock bit request command Not demonstrated

4Ch ○ ○ ARC configuration setting command Not demonstrated

4Dh ○ ○ ARC configuration request command Not demonstrated

00h ○ ○ Inquiry command Demonstrated

3Ah ○ ○ Signature request command Demonstrated

3Bh ○ ○ Area information request command Not demonstrated

34h ○ ○ Baudrate setting command Not demonstrated

12h ○ ○ Erase command Not demonstrated

13h ○ ○ Write command Not demonstrated

15h ○ ○ Read command Not demonstrated

18h ○ ○ CRC command Not demonstrated

2Eh ○ ○ OEM root public key setting command Not demonstrated

2Fh ○ OEM root public key verify command Not demonstrated

26h ○ ○ Code certificate update command Not demonstrated

27h ○ ○ Code certificate check command Not demonstrated

38h ○ SiP Flash various setting command Not demonstrated

39h ○ SiP Flash various request command Not demonstrated

36h ○ ○ External flash memory setting command Not demonstrated

1Ah ○ ○ Encrypted data write command Not demonstrated

4.1.4 Boot Mode Firmware Operation

When the boot mode firmware receives a command packet, it performs packet analysis:

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 22 of 70

Oct.08.25

• The boot mode firmware recognizes the start of the command packet by receiving SOH. If the boot mode

firmware receives something other than SOH, it waits until SOH is received.

• If ETX is not added to the received command packet, the boot mode firmware sends a “Packet error”.

• If the SUM of the received command packet is different from the sum value, the boot mode firmware

sends a “Checksum error”.

• If the received command packets of LNH and LNL are different from the values specified in the packet

format, the boot mode firmware sends a “Packet error”.

• If the CMD command in the received command packet is an undefined code, the boot mode firmware

sends an “Unsupported command error”.

• If the received command packets of LNH and LNL are different from the values specified in each

command, the boot mode firmware sends a “Packet error”.

• When an error described above occurs, the boot mode firmware does not process and returns to the

command waiting state.

When the packet analysis has successfully completed, the boot mode firmware executes command
processing. Refer to the explanation of each command for specific details.

When a command completes successfully, the boot mode firmware stays in the “Command acceptable
phase”.

5. Typical Use Cases of Boot Mode Commands

This section describes several typical use cases of the boot mode commands. The command format and
example code are provided.

5.1 Overview of Use cases

For more details on the use cases described in this section, refer to the section Command List in Boot
Firmware application note. Table 12 details the specific subsections from Boot Firmware that match the
following use cases from this application note.

Table 12. Boot Mode Command Use Cases

Section in this application note Corresponding section in Boot Firmware AN

Device Signature Command Signature Request Command

Boot Mode Inquiry Command Inquiry command

Initialize MCU Command Initialize command

Disable Initialize Command Parameter setting command

Check Whether Initialize Command is Disabled Parameter request command

Inject AL keys Key setting command

Verify AL keys Key verifying command

DLM State Request DLM state request command

DLM State Transition DLM state transition command

TrustZone Boundary Setting Command Boundary setting command

TrustZone Boundary Request Command Boundary request command

5.2 Signature Request Command

This command sends the information of the device signature to the host.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 23 of 70

Oct.08.25

Figure 10. Signature Request Command Packets

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 24 of 70

Oct.08.25

Figure 11. Signature Request Command Example Code

5.3 Inquiry Command

The Inquiry command checks whether a previous boot mode connection is still alive.

Figure 12. Inquiry Command Packet

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 25 of 70

Oct.08.25

Figure 13. Inquiry Command Example Code

5.4 Initialize the MCU

The commands introduced in this section are used to ensure that the MCU is in the OEM DLM state and
Protection Level is PL2 state to ready for other operations, such as flash programming.

5.4.1 Initialize Command

The Initialize command can be executed in the OEM state with PL2, PL1, PL0 of the Protection Level state. It
clears the User area, Data area, Config area, EEP config area, Boundary setting, and Key index (Wrapped
keys). In addition, the PL state transitions to PL2 from PL1 and PL0. Erase processing is performed
unaffected by the flash block protection settings (BPS, BPS_SEC). However, if PBPS and PBPS_SEC are
set, then the Initialize command cannot be processed. This command is typically not used in the production
programming environment unless the MCU has been previously used (for example, an evaluation board
being used for testing purposes).

The Initialize command takes the current DLM state as an input parameter. So, prior to executing the
Initialize command, the production programming tools need to acquire the current DLM state using the DLM
State Request Command (see demonstration in section 5.7.1).

Figure 14. Initialize Command Packets

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 26 of 70

Oct.08.25

Figure 15. Initialize Command Example Code

Note: In the example code, INITIALIZE_DELAY is set 5 seconds. The command response time specified

in the “AC Characteristics” section in Boot Firmware documentation. Users can safely adjust this value to
compatible with the specific hardware set up used, as long as the hardware still responds correctly.

5.4.2 Check Whether Initialize Command is Disabled

For a non-factory fresh device (for example, a device previously used for development/testing purposes), it is
possible that boot mode Initialize command might have been disabled (and other changes made). Checking
whether the MCU Initialize command is disabled or not can be achieved by using the Parameter Request
command.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 27 of 70

Oct.08.25

Figure 16. Command Packet: Check whether Initialize Command is Disabled

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 28 of 70

Oct.08.25

Figure 17. Example Code: Check whether Initialize Command is Disabled

5.4.3 Disable Initialize Command

As part of the final production programming process, the Initialize command can be disabled if required.

NOTE: This step is non-reversable, so exercise with caution!

This command is included in the bootmode_demonstration_code_RA8.py code, but the section of the

code is not enabled due to the risk of locking up the MCU during the development of tools for production
programming. Refer to section 6.6 for details on enabling this command in the demonstration code.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 29 of 70

Oct.08.25

Figure 18. Disable the ‘Initialize Command’ Command Packet

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 30 of 70

Oct.08.25

Figure 19. Example Code: Disable the ‘Initialize Command’

5.5 TrustZone Boundary Region Setup

This section explains the operational flow of the TrustZone boundary setup and introduces the command
packet and the example code.

5.5.1 Operational Flow

The recommended flow when setting up the TrustZone partition boundary regions is:

1. Acquire the TrustZone partition boundary information from the application.

2. Check DLM state and AL as necessary. The TrustZone partition boundaries can only be set up in OEM

with PL2 state.

3. Set up boundaries.

4. Verify the boundaries set up properly.

5.5.2 Acquire the Boundary Information from an Application

The security attribute regions information is stored in a .rpd file generated as a post-build step in an RA
project in e2 studio, or a RASC-generated EWARM / MDK project. Table 13 shows how to find the .rpd file
based on the IDE.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 31 of 70

Oct.08.25

Table 13. The . rpd File Location Based on IDE

IDE Location of the .rpd file

e2 studio Secure project root folder: <secure_project_name>\Debug\<secure_project_name>. rpd

EWARM Secure project root folder:

<secure_project_name>\Debug\exe\<secure_project_name>.rpd

MDK Secure project root folder: <secure_project_name>\Objects\<secure_project_name>.rpd

The format of the .rpd file is identical across the IDEs. Figure 20 shows the contents of the rpd file.

Figure 20. Obtain the IDAU Region Size using EWARM

The FLASH_S_SIZE is the size of the Secure Code Flash region. The production programming tools need to
convert this value to KB (kilobytes) and then assign this value to the CFS as shown in Figure 23.

The DATA_FLASH_S_SIZE is the size of the Secure Data Flash region. The production programming tools
needs to convert this value to KB and then assign this value to DFS as shown in Figure 23.

Production programming tools can ignore the other fields.

5.5.3 TrustZone Boundary Request Command

Reading the configured security attribute regions setup can be achieved using the command in Figure 21.
The example code to perform this function is shown in Figure 22.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 32 of 70

Oct.08.25

Figure 21. Command Packet for Reading Security Region Setup

Figure 22. Example Code: Request TrustZone Boundary

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 33 of 70

Oct.08.25

5.5.4 TrustZone Boundary Setting Command

Figure 23 is the command packet for setting up the TrustZone boundary. The new stored boundary setting
becomes effective after resetting the device.

Figure 23. Command Packet for TrustZone Boundary Setup

Figure 24 shows the example code for setting up the TrustZone boundary cover for both RA8x1 and RA8P1
Groups.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 34 of 70

Oct.08.25

Figure 24. Example Command Setting up TrustZone Boundary

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 35 of 70

Oct.08.25

5.6 DLM Authentication Key Handling

DLM Authentication keys are stored in dedicated, non-user-accessible memory within the MCU, with one slot
dedicated to each Authentication Level transition. Therefore, when injecting the key, it is necessary to specify
which target AL key, so that the key is placed into the correct slot.

Key injection for AL2 and AL1 states is demonstrated in this application note. Injection of the RMA key can
follow similar sequence but is not demonstrated in this application note.

Note: The injection of user keys is very similar to AL keys, except that additional address information is

required in the corresponding command, as these keys are stored in user flash.

Keys can be generated using the following systems:

• The “Security Key Management Tool”

• The Renesas Device Lifecycle Management server available from the Renesas website

The procedure for generating the DLM Authentication keys is described in R11AN0785.

5.6.1 Inject DLM Authentication Keys

Injecting a DLM AL key requires a two-stage sequence, as shown in Figure 25.

Figure 25. DLM Key Injection Flow

https://www.renesas.com/en/document/apn/device-lifecycle-management-ra8-mcus

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 36 of 70

Oct.08.25

Figure 26. DLM Key Injection Command Packet

Figure 27. DLM Key Injection Data Packet

To properly prepare for the DLM key injection, the production programming tools need to understand
the .rkey file format. The .rkey file is also base64 encoded, so the production programming tools need to first
decode the data prior to accessing the fields. Once the .rkey file is decoded, the .rkey file data fields can then
be accessed. The format of the fields is shown in Figure 28, and is further explained in the user manual of
Secure Key Management Tool.

Key Data is stored in order and size shown in Figure 28. The byte order is big-endian.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 37 of 70

Oct.08.25

Figure 28. DLM Key Data Structure

The demonstration code for DLM Authentication key injection is included in function
command_inject_dlm_key(). The main operations carried out by this function are:

• Read the AL2 or AL1 key file (.rkey) to an array.

• Decode the base64 array so all the data fields can be accessed.

• Parse the .rkey file for the field of magic code, key type, w-ufpk, initialization vector, and the encrypted

DLM key to ensure valid content.

• Issue DLM AL Key Injection command packet and verify the response.

• Issue DLM AL Key Injection data packet and verify the response using the decoded key data.

Figure 29 and Figure 30 show the example code.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 38 of 70

Oct.08.25

Figure 29. Example Code: DLM Key Injection – Part 1

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 39 of 70

Oct.08.25

Figure 30. Example Code: DLM Key Injection – Part 2

5.6.2 Verify DLM Authentication Keys

After injecting the DLM AL keys, the production programming tools should invoke a verify command to
confirm correct injection. Figure 31 shows the command packet information for verifying the DLM AL keys.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 40 of 70

Oct.08.25

Figure 31. DLM Key Verify Command Packet

Figure 32. DLM Authentication Key Verify Command Example Code

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 41 of 70

Oct.08.25

5.7 DLM State, Protection Level and Authentication Level Handling

This section explains the DLM state, Protection Level (PL) and Authentication Level (AL) request command
and the non-authenticated DLM state, PL and AL transition command.

5.7.1 DLM State Request

The state request command is demonstrated in the included example code. Figure 33 shows the state
request command packet format. Figure 34 shows the example code.

Figure 33. DLM State Request Command Packet

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 42 of 70

Oct.08.25

Figure 34. DLM State Request Command Example Code

5.7.2 DLM State Transition

This section covers the non-authenticated DLM state transition. Authenticated transitions are not generally
required in production programming tools.

The recommended flow when performing DLM state transition is described in Figure 35. The current DLM
state is a required parameter for the DLM state transition command and should be acquired first.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 43 of 70

Oct.08.25

Figure 35. Recommended Flow for Performing DLM State Transition

Figure 36. DLM State Transition Command Packet

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 44 of 70

Oct.08.25

Figure 37. Example Code for DLM State Transition Command

5.7.3 Protection Level Request

The PL request command is demonstrated in the included example code. Figure 38 shows the PL request
command packet format. Figure 39 shows the example code.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 45 of 70

Oct.08.25

Figure 38. Protection Level Request Command Packet

Figure 39. Protection Level Request Command Example Code

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 46 of 70

Oct.08.25

5.7.4 Protection Level Transition

This section covers the non-authenticated PL transition. Authenticated transitions are not generally required
in production programming tools.

The recommended flow when performing PL transition is described in Figure 40. The current DLM state, PL
and AL are necessary for the PL transition command and should be acquired first.

Figure 40. Recommended Flow for Performing Protection Level Transition

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 47 of 70

Oct.08.25

Figure 41. Protection Level Transition Command Packet

Figure 42. Example Code for Protection Level Transition Command – part 1

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 48 of 70

Oct.08.25

Figure 43. Example Code for Protection Level Transition Command – part 2

5.7.5 Authentication Level Request

The AL request command is demonstrated in the included example code. Figure 44 shows the AL request
command packet format. Figure 45 shows the example code.

Figure 44. Authentication Level Request Command Packet

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 49 of 70

Oct.08.25

Figure 45. Authentication Request Command Example Code

5.7.6 Authentication Level Transition

This section covers the AL transition. Authenticated transitions are not generally required in production
programming tools.

The recommended flow when performing AL transition is described in Figure 46. The current DLM state and
AL are necessary for the AL transition command and should be acquired first.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 50 of 70

Oct.08.25

Figure 46. Recommended Flow for Performing Authentication Level Transition

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 51 of 70

Oct.08.25

Figure 47. Authentication Level Transition Command Packet

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 52 of 70

Oct.08.25

Figure 48. Example Code for Authentication Level Transition Command – Part 1

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 53 of 70

Oct.08.25

Figure 49. Example Code for Authentication Level Transition Command – Part 2

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 54 of 70

Oct.08.25

6. Running the Python Example Code

Many of the typical boot mode commands are implemented in the included example code, which can be
used as a starting point for writing a complete production programming tool. The code snippets provided in
earlier sections are taken from the examples.

6.1 Set up the Python Environment

To execute the demonstration code supplied along with this application note, it is necessary to install the
following software packages first. Follow the links below to acquire and install the software needed:

• Install Python:

• Python 3.10 or later (https://www.python.org/downloads/)

• Install the pySerial package
• pySerial 3.5 (https://pyserial.readthedocs.io/en/latest/pyserial.html#installation)

• Install PyCryptodome package

• PyCryptodome (Installation — PyCryptodome 3.4.6 documentation)

6.2 Setting Up the Hardware

The demonstration code works with all the MCU groups covered in this application project. The example
shown here uses an RA8M1/RA8P1 MCU fitted to an EK-RA8M1/EK-RA8P1 evaluation board.

To cause the RA8M1 MCU to enter boot mode on reset, first ensure that a jumper has been placed on the
MD (“BOOT MODE”) jumper, in this case J16, as shown in Figure 50.

Figure 50. Shunt the MD Pin Jumper on EK-RA8M1

Shunt on Boot Mode Jumper (J16)

https://www.python.org/downloads/
https://pyserial.readthedocs.io/en/latest/pyserial.html#installation
https://pycryptodome-master.readthedocs.io/en/latest/src/installation.html

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 55 of 70

Oct.08.25

To cause the RA8P1 MCU to enter boot mode on reset, first ensure that a jumper has been placed on the
MD (“BOOT MODE”) jumper, in this case J16 pins 1-2, as shown in Figure 51.

Figure 51. Shunt the MD Pin Jumper on EK-RA8P1

Next, decide whether the serial or USB interface will be used for boot mode communication.

If the USB interface is used:

• Using a USB micro to B cable, connect J11 (USB FS) from the EK-RA8M1/EK-RA8P1 to the

development PC to provide USB Device connection.

• See Table 8 for more general details on the USB connection.

Shunt on Boot Mode Jumper (J16 pins 1-2)

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 56 of 70

Oct.08.25

Figure 52. Hardware Setup using USB Full Speed Port

If the serial interface is used:

• Connect the four pins in Table 14 on the UART to USB converter to the EK-RA8M1 and connect the

other end of the converter to the PC’s USB port. Note that there may be variations on the voltage output

from the converter cable. For the FTDI cable demonstrated in Figure 53, the voltage supply to the MCU

is 5V. Another converter may output 3.3V, so the production programming tool should take this into

consideration when setting up the hardware.

• See Table 7 for more details of the serial interface.

Table 14. Connection through the UART Interface

UART to USB Converter EK-RA8M1 EK-RA8P1

RX J51: Pin 20 (MCU P209 (TXD9)) J2: Pin 21 (MCU P209 (TXD9))

TX J51: Pin 16 (MCU P208 (RXD9)) J2: Pin 37 (MCU P208 (RXD9))

+5V (FTDI cable power

output voltage. Check the

voltage output on the

converter used.)

J51: Pin 01

(If +3.3V is provided from the

converter, then connect to Pin 02 of

J51). If the production programming

board has stable power supply, then

this pin connection is not needed.

J1: Pin 08

(If +3.3V is provided from the

converter, then connect to Pin 01 of

J2). If the production programming

board has stable power supply, then

this pin connection is not needed.

GND J51: Pin 50 (MCU Ground) J2: Pin 39 (MCU Ground)

J11 USB FS

Shunt on J16 (pull MD
pin to low)

Reset Button

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 57 of 70

Oct.08.25

Figure 53. Hardware Setup using UART to USB Converter for EK-RA8M1

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 58 of 70

Oct.08.25

Figure 54. Hardware Setup using UART to USB Converter for EK-RA8P1

Once the physical communication mechanism is connected, whether serial or USB, ensure the board is
powered up and then press the Reset button to enter boot mode.

6.3 Running the First Demo Code

Unzip production_programming_demo_cm85_dlm.zip to reveal two Python files and the \dlm_keys

folder which holds four DLM AL keys: two for RA8M1, two for RA8P1 which can be injected into the MCU.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 59 of 70

Oct.08.25

Figure 55. Python Demo Code and Sample DLM Keys

The first of the demonstration examples, initialize_mcu_first.py, is intended to ensure that the MCU

is correctly configured for production programming, running an Initialize command if required.

The full functionality of this code is described in Figure 56:

Figure 56. Operational Flow of the First Demo Code

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 60 of 70

Oct.08.25

To execute the example, open a command line prompt and navigate to the folder where the Python example
code is stored. Then enter:

python initialize_mcu_first.py

Figure 57 and Figure 58 shows sample output from running the demonstration with a USB connection to the
board.

Figure 57. Demonstration with USB Connection – Part 1

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 61 of 70

Oct.08.25

Figure 58. Demonstration with USB Connection – Part 2

Some Renesas evaluation boards might be distributed in the CM state. In this case, the demonstration code
will transition the DLM state from CM to OEM, then the Initialize command will be executed. In this case,
there is no need to check whether the Initialize command is disabled or not as the Initialize command cannot
be issued in the CM state and transitioning from CM to OEM is a one-way process.

After the demonstration example finishes running, follow the warning in the output to reset the board before
running the second demonstration example.

Note that with the USB connection, the code has automatically identified the RA boot mode USB CDC
interface and automatically connected to it.

With a serial connection, it is necessary to enter the COM port to use manually. This is shown in partial
output in Figure 58.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 62 of 70

Oct.08.25

Figure 59. Demonstration with Serial Connection

6.4 Running the Second Demonstration Code

The second of the demonstration examples, bootmode_demonstration_code_RA8.py, is intended to

show the main steps likely to be required for a real production programming sequence (except for
programming an application image into flash).

The full functionality of this code is described in Figure 60.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 63 of 70

Oct.08.25

Figure 60. Operational Flow of the Second Demonstration Code

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 64 of 70

Oct.08.25

To execute the example, ensure that you have reset the board, then enter the following command in the
previously opened command prompt:

python bootmode_demonstration_code_RA8.py

Below is sample output from running the demonstration with a USB connection to the board.

Establishing the Connection (USB)

6.4.1 Establishing the Connection (USB)

Figure 61. Establishing the Connection USB

If a serial connection is used, it will be necessary to enter the COM port manually, as shown in Figure 59.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 65 of 70

Oct.08.25

6.4.2 Checking Product Type Name, Current DLM State, Protection Level and
Authentication Level

Figure 62. Checking Product Type Name, Current DLM State, PL and AL

6.4.3 Configuring TrustZone Partition Boundaries

Figure 63. Configuring TrustZone Partition Boundaries

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 66 of 70

Oct.08.25

6.4.4 Injecting DLM AL Keys

Figure 64. Injecting DLM AL Keys

If the Python code is modified to change the value of DEBUG_OUTPUT_ENABLE from 0 to 1, then additional

details will be displayed as the content of the .rkey file is processed.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 67 of 70

Oct.08.25

6.4.5 Configuring Final Protection Level State

Figure 65. Configuring Protection Level State

6.5 Testing Authenticated DLM Transitions

Authenticated DLM transitions are not generally required to be supported in production programming tools,
as such transitions are generally only required during product development, or for in-field debug.

This means that the example code simply uses the DLM key verify command to check that keys have been
injected correctly.

However, if required, it is possible to test that the injected keys do indeed allow authenticated DLM/PL
transitions by referring Authenticated Transition using RFP section from Application Note R11AN0785 to
perform the authenticated transitions using the Renesas Flash Programmer:

• This step is typically not needed in a production programming environment. Perform PL0 to PL1 or PL2

transition following case 1 or case 3.

The plaintext raw AL2 key value for the example AL2.rkey and AL2_RA8P1.rkey files is

“000102030405060708090A0B0C0D0E0F”. This value needs to be used when transitioning from the

PL0 state to the PL1 or PL2 state.

• Perform PL1 to PL2 transition following case 2.

The plaintext raw AL1 key value for the example AL1.rkey and AL1_RA8P1.rkey files is

“010102030405060708090A0B0C0D0E0F”. This value needs to be used when transitioning from the

PL1 state to the PL2 state.

Note: Unlike using the “Initialize” command, the Code Flash, Data Flash, and TrustZone partition boundary

settings are preserved in this process.

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 68 of 70

Oct.08.25

6.6 Disabling the Initialize Command

The bootmode_demonstration_code_RA8.py example contains a function called

command_disable_initialize(), which will cause the ‘Initialize’ boot mode command to be disabled.

Executing command_disable_initialize() prevents the DLM state from being reset to the OEM state

using the ‘Initialize’ command in the future.

This action may be required during a real production programming run, but not while doing testing.
Therefore, the calling of this function is disabled by default. To enable the call, change the value of
INVOKE_DISABLE_INITIALIZE_COMMAND from 0 to 1.

Once changing the value of INVOKE_DISABLE_INITIALIZE_COMMAND from 0 to 1, as an extra level of

protection, it will still be necessary to enter YES when prompted for the call to

command_disable_initialize()to be made. When INVOKE_DISABLE_INITIALIZE_COMMAND is set

to 1, the demonstration code will display the following prompt before ending:

Figure 66. Disable the Initialize Command

The next time that initialize_mcu_first.py is run, the system will report that the Initialize command is

disabled. In this case, the only way to partially recover the board is to use the injected AL keys to move the
PL state back to PL2 as explained in section 6.5.

7. References

• Renesas RA Family Device Lifecycle Management for RA8 MCUs (R11AN0785)

• Renesas RA Family Renesas Boot Firmware for RA8M1 MCU Group (R01AN7140)

• Renesas RA Family Renesas Boot Firmware for RA8D1 MCU Group (R01AN7290)

• Renesas RA Family Renesas Boot Firmware for RA8T1 MCU Group (R01AN7291)

• Renesas RA Family Renesas Boot Firmware for RA8E1 MCU Group (R01AN7535)

• Renesas RA Family Renesas Boot Firmware for RA8E2 MCU Group (R01AN7547)

• Renesas RA Family Renesas Boot Firmware for RA8P1 MCU Group (R01AN7823)

• Renesas RA Family Renesas Boot Firmware for RA8T2 MCU Group

• Renesas RA Family RA8M1 User’s Manual: Hardware (R01UH0994)

• Renesas RA Family RA8D1 User’s Manual: Hardware (R01UH0995)

• Renesas RA Family RA8T1 User’s Manual: Hardware (R01UH1016)

• Renesas RA Family RA8E1 User’s Manual: Hardware (R01UH1129)

• Renesas RA Family RA8E2 User’s Manual: Hardware (R01UH1130)

• Renesas RA Family RA8P1 User’s Manual: Hardware (R01UH1064)

• Renesas RA Family RA8T2 User’s Manual: Hardware (R01UH1067)

• Renesas RA Family RA8 Quick Design Guide (R01AN7087)

• Security Key Management Tool User’s Manual (R20UT5349)

https://www.renesas.com/en/document/apn/device-lifecycle-management-ra8-mcus
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8m1-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8d1-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8t1-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8e1-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8e2-mcu-group
https://www.renesas.com/en/document/apn/renesas-boot-firmware-ra8p1-mcu-group
https://www.renesas.com/en/document/mah/ra8m1-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8d1-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8t1-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8e1-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8e2-group-users-manual-hardware
https://www.renesas.com/en/document/mah/ra8p1-group-users-manual-hardware
https://www.renesas.com/en/document/apn/ra8-mcu-quick-design-guide
https://www.renesas.com/en/document/mat/security-key-management-tool-users-manual

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 69 of 70

Oct.08.25

8. Website and Support

Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

RA Product Information renesas.com/ra

Flexible Software Package (FSP) renesas.com/ra/fsp

RA Product Support Forum renesas.com/ra/forum

Renesas Support renesas.com/support

https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Implementing Production Programming Tools for RA Cortex-M85 with
Device Lifecycle Management

R01AN7884EU0101 Rev.1.01 Page 70 of 70

Oct.08.25

Revision History

Rev. Date

Description

Page Summary

1.00 Jun.30.25 — First release of this document.

1.01 Oct.08.25 — Update minor contents.

© 2025 Renesas Electronics Corporation. All rights reserved.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states

of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in

terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Production Programming Concepts
	1.1 Background
	1.2 Typical Production Programming Flow
	1.3 Flash Programming
	1.4 Device Lifecycle Management
	1.5 Secure / Non-secure /Non-secure Callable Regions
	1.5.1 SAU Registers and Non-TrustZone-using Software

	1.6 Production Programming Advanced Features
	1.6.1 First Stage Bootloader (FSBL) Support
	1.6.2 Secure Factory Programming (SFP) Support

	1.7 Key C onsiderations for M igrating Production Programming from CM33 to CM85

	2. MCU Hardware Setup for Boot Mode Use
	2.1 Boot Mode Communication Interfaces Overview
	2.2 Power
	2.3 Clock
	2.4 MCU System Mode Control Signals
	2.5 Using the 2-wire Serial Communication
	2.6 Using the Universal Serial Bus (USB) Communication
	2.7 Using Serial Wire Debug Interface (SWD)

	3. Connecting to Boot Mode
	3.1 Boot mode operational phases
	3.2 Initialization Phase
	3.2.1 Serial Settings
	3.2.2 USB Settings
	3.2.3 JTAG/SWD Settings

	3.3 Communication Setting Phase
	3.3.1 USB/UART Communication
	3.3.2 JTAG/SWD Communication

	4. Boot Mode Commands
	4.1 Command Acceptable Phase
	4.1.1 Command Packet Format
	4.1.2 Data Packet
	4.1.3 Summary of Boot Mode Commands
	4.1.4 Boot Mode Firmware Operation

	5. Typical Use Cases of Boot Mode Commands
	5.1 Overview of Use cases
	5.2 Signature Request Command
	5.3 Inquiry Command
	5.4 Initialize the MCU
	5.4.1 Initialize Command
	5.4.2 Check Whether Initialize Command is Disabled
	5.4.3 Disable Initialize Command

	5.5 TrustZone Boundary Region Setup
	5.5.1 Operational Flow
	5.5.2 Acquire the Boundary Information from an Application
	5.5.3 TrustZone Boundary Request Command
	5.5.4 TrustZone Boundary Setting Command

	5.6 DLM Authentication Key Handling
	5.6.1 Inject DLM Authentication Keys
	5.6.2 Verify DLM Authentication Keys

	5.7 DLM State, Protection Level and Authentication Level Handling
	5.7.1 DLM State Request
	5.7.2 DLM State Transition
	5.7.3 Protection Level Request
	5.7.4 Protection Level Transition
	5.7.5 Authentication Level Request
	5.7.6 Authentication Level Transition

	6. Running the Python Example Code
	6.1 Set up the Python Environment
	6.2 Setting Up the Hardware
	6.3 Running the First Demo Code
	6.4 Running the Second Demonstration Code
	6.4.1 Establishing the Connection (USB)
	6.4.2 Checking Product Type Name, Current DLM State, Protection Level and Authentication Level
	6.4.3 Configuring TrustZone Partition Boundaries
	6.4.4 Injecting DLM AL Keys
	6.4.5 Configuring Final Protection Level State

	6.5 Testing Authenticated DLM Transitions
	6.6 Disabling the Initialize Command

	7. References
	8. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

