RE NESAS Application Note

RX Family
How to Change Transfer Data Length During RSPl Communication Using a DTC

Introduction

This application note describes how to change the transfer data length during serial peripheral interface
(RSPI) communication using a data transfer controller (DTC), using the RX660 group as an example.

Target Devices
RX Family

Confirmed Devices
RX660 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

RO1AN7238EJ0100 Rev.1.00 Page 1 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Contents
1. SSL Signal When the RSPI Transfer Data Length Changes...........cccccccciiiiiice 4
1.1 SSL Signal Controlled by HAardWAare...........ceeee i s e e e e e s s s e e e e e e e s s nnnreneeeaeeeannnnnes 4
1.2 SSL Signal Generation Controlled by a General-Purpose POIcooiiiiiiiiiiiiii e 4
2. Hardware ConfigUIatioN............coviiiiiiiiiiiiiieieeeee e 5
3. Operation Confirmation CONAILIONSuuuuuuiuuuieiiiiiiiieieieereeee e 6
4. DeSCription Of SOMWAIEuiiiiiiiiie it e e e e e e e e e e e reeeaeeas 7
4.1 DeSCrPtioN Of OPEIALION.uiiieiiiiie ettt et e e s b e e e e st e e e s st b e e e e sabae e e e snbe e e e e sabreeeeas 11
4.1.1 Communication When the Transfer Data Length iS 24 BitS.........ccccovuiiiiiiiiiei e 11
4.1.2 Communication When the Transfer Data Length IS 16 BitS...........cccoiiiiiiiiiiiiiioiiiiieec e 12
4.2 Components Used for Firmware Integration Technology (FIT) Modules and Code Generation 13
4.2.1 Smart Configurator (SC) Settings for FIT Module COMPONENtccovviiiiiiiiiee e 13
4.2.2 SC Settings for Code Generation COMPONENTSouuiiiiiiiiee ittt e s e sbre e e s sbeeee e 14
4.2.2.1 Interrupt controller CONTIGUIATIONoiiiiiiiiei ittt e e sene e e e nnneee s 14
4.2.2.2 Data transfer controller configuration (DTC settings for data transmission (transfer data length is

W o1 C)) ST RPR 17
4.2.2.3 Data transfer controller configuration (DTC settings for data reception (transfer data length is

P2 o1 L= SRR 19
4.2.2.4 SPI operation mode (4-wire method) CoONfiQUrationooocciiiiiiieei i e 21
A T € 1= g 1T =4 o T o T [SRR 24
4.2.4 Adding Code to the SC-Generated COUE.coiuiiiiiiiiiie ettt e e sbeeee e 25
4.2.4.1 Additional processing to the SC-generated COUE..........coooiiiiiiiiiiiiie e 25
4.2.4.2 Constants added to the SC-generated COUE...........c.uviiiiieeiiiiiie e 26
4.2.4.3 Variables added to the SC-generated COUE.........oiiuiiiiiiie e 26
4.2.4.4 Functions added to the SC-generated COUEcoiuiiiiiiiiiii i 26
4.2.45 Adding code t0 the MaIN FOULINGeiiiiiiiiii ettt e e e e saeneee s 27
Adding code to the Config_RSPIO.N filEccoiiiiiii e 28
Adding code to the MaiN() FUNCLIONuuiiiiie et e e e e e e e e e e e e e s sbnaeeeeeas 28
4.2.4.6 Adding code to the IRQI iNterrupt hANAIET............c.uiiiiiie e 29
Adding code to the “Includes” and “Global variables and functions” sections in the Config_ICU_user.c file . 30
Adding code to the r_Config_ICU_irg9_interrupt () FUNCLIONccuiiiiiiiiiii e 31
4.2.4.7 Adding the set_16bit_data_transfer_mode() function to the Config_DTC.cfile..........ccccoiiieirniinncnns 32
Adding code to the Config_DTC.N filE ... 32
Adding code to the “Global variables and functions” section in the Config_DTC.cfile..........ccoociiiiiiinnnnins 33
set_16hit_data_transfer_mode() function added to the Config DTC.Cfile......cccoccveeiiiiiiiiiiiie e, 33
4.2.4.8 Adding the set_16bit_data_receive_mode() function to the Config DTC1.cfile......ccccccccerrinnnnnnn... 34
Adding code to the Config DTCLN i€uveiiiiei i e s e e e e s e aee s 34
Adding code to “Global variables and functions” in the Config_DTC1.Cfile.......cccoiiiiiiiii e, 35
set_16bit_data_receive_mode() function added to the Config DTCL.Cfile.....cccocvreeiiiiiiiiiiiie e 35
RO1AN7238EJ0100 Rev.1.00 Page 2 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.4.9 Adding code to the SPTIO interrupt RANAIErooeeeiiiie e 36
Code added to the r_Config_ RSPIO_callback_transmitend() funCtioN............ccuviiiiiiiiiiiii e 36
4.2.4.10 Adding code to the SPRIO interrupt handler.............cuvveiiiiiii e e 37
Code added to the r_Config RSPIO_callback_receiveend() fUNCLIONcoccviiieieeei e 37
4.2.4.11 Adding code to the SPCIO interrupt handler...............uvveiie i 38
Adding code to the “Includes” and “Global variables and functions” sections in the Config_RSPIO_user.c file
... 39
Code added to the r_Config RSPI0_communication_end_interrupt() functioncccocvveveeeiviiciiieneeeennn 40
LT [o 1] o T T o 0] [T PPN 42
5.1 Importing @ ProjeCt iNt0 €2 SEUOIOc.eecveeieeeiiieieieeeiece e e eeteeeteeete s ete s et e eeeeeteesteesreesaeesaeesneeanbeebesreeares 42
72 |] oo 1Yo =T d (o] [=Tox BT g1 (o TN 3 SRR 43
T N\ o] (=1 ST TTPPT R TPPPPP 44
6.1 Notes on Bit Manipulation INSITUCIONSceiiiiiii i e e e e s e e e e e s e e e e eeeaen 44
A =T (= =T g Lo =T o Tod U g 0= o | €= 45
REVISION HISTOMY ... eiiiii ittt e e e e e e s bbbttt e e e e e e e bbb e e et e e e e e e e annnneees 46
RO1AN7238EJ0100 Rev.1.00 Page 3 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

1. SSL Signal When the RSPI Transfer Data Length Changes

1.1 SSL Signal Controlled by Hardware
During RSPI communication, the transfer data length can be changed only after the current transfer finishes.

When the RSPI communication terminates, the SSL signal is negated by hardware control. Therefore, as
shown in Figure 1.1, assertion and negation of the SSL signal occur when the transfer data length changes.

If you want the SSL signal to remain asserted throughout the data communication, you need to control the
SSL signal by using a general-purpose port.

Assertion and negation of the SSL signal occur
when the transfer data length changes.

o] I -
rspex (L 1 T, S, JU L, T L UL, UL, UL
MOSI ——X Datalength X > Q Data length Y >< Data length Y > s
MISO ———X Datalength X) < Data length Y >< Data length Y > s

Figure 1.1 SSL Signal Controlled by Hardware When the Transfer Data Length Changes

1.2 SSL Signal Generation Controlled by a General-Purpose Port

In this application note, a general-purpose port is used to control the SSL signal by software rather than by
hardware.

Gorers | [

purpose port)
rspex 1L, 1 T, JUL, UL, UL JUL, TUT Ty
MOSI < Data length X > Q Data length Y >< Data length Y > S
MISO < Data length X > Q Data length Y >< Data length Y > ce

Figure 1.2 SSL Signal Controlled Using a General-Purpose Port
When the Transfer Data Length Changes

RO1AN7238EJ0100 Rev.1.00 Page 4 of 46
Jan.22.24 RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

2. Hardware Configuration

Figure 2.1 shows Hardware Configuration.

SW1 [—P{IRQ9

(General-purpose port)

RX660
(Master)
RSPCKA >
MOSIA >
MISOA |«
SSLA >

Figure 2.1 Hardware Configuration

SPI device
(Slave)

SPCK
MOSI

MISO
SSL

Table 2.1 shows RSPI Pins Used for Connecting RX660 and the SPI Slave Device.

Table 2.1 RSPI Pins Used for Connecting RX660 and the SPI Slave Device

Pin Name | I/O Port Used | Function

RSPCKA | Output | PA5 Clock I/0O

MOSIA Output | PAG6 Master transmit data I/O

MISOA Input PA7 Slave transmit data 1/0

SSLA Output | PA2 Slave selection output by general-purpose port control

In this application note, SW1 installed on the Renesas Starter Kit+ for RX660 (RSK) board is used to start
RSPI communication.

Table 2.2 shows External Pin Interrupt Assigned to SW1 Input.

Table 2.2 External Pin Interrupt Assigned to SW1 Input

Pin Name | Port Used Function
IRQ9 P91 Detects that SW1 is pressed and then starts RSPI
communication.

RO1AN7238EJ0100 Rev.1.00

Jan.22.24

RENESAS

Page 5 of 46

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

3. Operation Confirmation Conditions

Table 3.1 Operation Confirmation Conditions

Iltem Description
MCU used R5F56609HDFB (RX660 Group)
Operating frequency e Main clock: 24 MHz

e PLL: 240 MHz (Main clock, divided by 1, multiplied by 10)
System clock (ICLK): 120 MHz (PLL divided by 2)

Peripheral module clock A (PCLKA): 120 MHz (PLL divided by 2)
¢ Peripheral module clock B (PCLKB): 60 MHz (PLL divided by 4)

Operating voltage 3.3V

Integrated development Renesas Electronics

environment e2 studio Version 2024-01 (24.1.0)
C compiler Renesas Electronics

C/C++ Compiler Package for RX Family V.3.06.00

Compile options

-lang = c99

iodefine.h version Version 1.00

Endian order Little endian

Operating mode Single-chip mode

Processor mode Supervisor mode

Sample program version Version 1.00

Board used Renesas Starter Kit for RX660 (Product No.: RTK556609XXXXXXXXX)
RO1AN7238EJ0100 Rev.1.00 Page 6 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4. Description of Software

In this application note, when SW1 installed on RSK is pressed, 1-frame communication is performed using a
data length of 24 bits. Then, the transfer data length is changed to 16 bits and 8-frame communication is

performed.

SW1 is connected to IRQ9. Table 4.1 shows Setting of IRQ9 (Used to Detect Pressing of SW1).
Table 4.1 Setting of IRQ9 (Used to Detect Pressing of SW1)

Item Settings
Detection type Falling edge
Digital filter setting PCLK/64

Table 4.2 and Table 4.3 show the RSPI settings for communication when the transfer data length is 24 bits

and 16 bits, respectively.

Table 4.2 RSPI Settings for Communication When the Transfer Data Length Is 24 Bits

Item Settings
RSPCK clock 125 kHz
Bit length 24 bits
Number of frames 1 frame
Format MSB first

RSPCK phase

Data variation on odd edge, data sampling on even edge.

RSPCK polarity

Low when idle

SSL polarity Active Low
SSL negation operation Keeps the SSL signal level from transfer end until next access start
RSLCK delay 1 RSPCK

SSL negation delay

1 RSPCK

Next access delay

1 RSPCK + 2 PCLK

RO1AN7238EJ0100 Rev.1.00 Page 7 of 46

Jan.22.24

RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Table 4.3 Settings for Communication When the Transfer Data Length Is 16 Bits

Item Settings
RSPCK clock 125 kHz
Bit length 16 bits
Number of frames 1 frame
Format MSB first

RSPCK phase

Data variation on odd edge, data sampling on even edge.

RSPCK polarity

Low when idle

SSL polarity Active Low

SSL negate operation Keeps the SSL signal level from transfer end until next access start
RSLCK delay 1 RSPCK

SSL negation delay 1 RSPCK

Next access delay

1 RSPCK + 2 PCLK

Table 4.4 shows RSPI Interrupts Used.

Table 4.4 RSPI Interrupts Used

Interrupt Description

SPTIO Transmit buffer empty interrupt
SPRIO Receive data full interrupt
SPEIO Error interrupt

SPCIO Communication end interrupt

RO1AN7238EJ0100 Rev.1.00

Jan.22.24

RENESAS

Page 8 of 46

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

In this application note, both data transmission and reception use the DTC.

Because the DTC settings differ depending on the transfer data length and whether data is to be sent or
received, the DTC settings are classified as follows.

DTC transfer A: DTC settings for data transmission (transfer data length: 24 bits)

DTC transfer B: DTC settings for data reception (transfer data length: 24 bits)

DTC transfer C: DTC settings for data transmission (transfer data length: 16 bits)

DTC transfer D: DTC settings for data reception (transfer data length: 16 bits)

Table 4.5 to Table 4.8 show the respective DTC settings.

Table 4.5 DTC Transfer A: DTC Settings for Data Transmission (Transfer Data Length: 24 Bits)

Item

Description

Activation Source

SPTIO interrupt

Transfer mode

Normal transfer

Transfer data size

32 bits

Interrupt settings

An interrupt request to the CPU is generated when specified data
transfer is completed.

Source address

Address fixed

Destination address

Address fixed

Source register (SAR)

0x3000 (RAM area address)

Destination register (DAR)

SPDR register address

Transfer count register A (CRA)

0x0001

Transfer count register B (CRB)

0x0000

Table 4.6 DTC Transfer B: DTC Settings for Data Reception (Transfer Data Length: 24 Bits)

Item

Description

Activation Source

SPRIO interrupt

Transfer mode

Normal transfer

Transfer data size

32 bits

Interrupt settings

An interrupt request to the CPU is generated when specified data
transfer is completed.

Source address

Address fixed

Destination address

Address fixed

Source register (SAR)

SPDR register address

Destination register (DAR)

0x2000 (RAM area address)

Transfer count register A (CRA) | 0x0001

Transfer count register B (CRB) | 0x0000
RO1AN7238EJ0100 Rev.1.00 Page 9 of 46
Jan.22.24 RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

Table 4.7 DTC Transfer C: DTC Settings for Data Transmission (Transfer Data Length: 16 Bits)

Item

Description

Activation Source

SPTIO interrupt

Transfer mode

Normal transfer

Transfer data size

16 bits

Interrupt settings

An interrupt request to the CPU is generated when specified data
transfer is completed.

Source address

Address fixed

Destination address

Address fixed

Source register (SAR)

Address of g_wl16_data

Destination register (DAR)

SPDR register address

Transfer count register A (CRA)

0x0008

Transfer count register B (CRB)

0x0000

Table 4.8 DTC Transfer D: DTC Settings for Data Reception (Transfer Data Length: 16 Bits)

Item

Description

Activation Source

SPRIO interrupt

Transfer mode

Normal transfer

Transfer data size

16 bits

Interrupt settings

An interrupt request to the CPU is generated when specified data
transfer is completed.

Source address

Address fixed

Destination address

Address incremented

Source register (SAR)

SPDR register address

Destination register (DAR)

Address of g_r16_data[0]

Transfer count register A (CRA) | 0x0008

Transfer count register B (CRB) | 0x0000
RO1AN7238EJ0100 Rev.1.00 Page 10 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.1 Description of Operation

4.1.1 Communication When the Transfer Data Length is 24 Bits
When SW1 is pressed, an IRQ9 interrupt request is generated. The IRQ9 interrupt handler changes the SSL

signal controlled by the general-purpose port (PA2) to the Low level, and then starts communication for 24-
bit transfer data length.

The communication for 24-bit transfer data length sends and receives one frame.
Figure 4.1 shows Timing Chart for Communication When the Transfer Data Length Is 24 Bits.
Data transmission:

Using an SPTIO interrupt as an activation source, DTC transfer A in Table 4.5 is performed to write 24-bit
data to the SPDR register (the DTC transfers 32 bits, of which the lower 24 bits will be valid data).

After DTC transfer A is performed, an SPTIO interrupt request to the CPU is generated.

The SPTIO interrupt handler disables the SPTIO interrupt (SPCR.SPTIE=0).

Data reception:

Using an SPRIO interrupt as an activation source, DTC transfer B in Table 4.6 is performed to read 24-bit
data from the SPDR register (the DTC transfers 32 bits, of which the lower 24 bits will be valid data).
After DTC transfer B is performed, an SPRIO interrupt request to the CPU is generated.

The SPRIO interrupt handler enables the SPCIO interrupt (SPCR3.SPCIE=1).

Communication completion processing:

The SPCIO interrupt handler changes the transfer data length to 16 bits, and then changes the DTC settings
according to DTC transfer C for sending 16-bit data (Table 4.7) and DTC transfer D for receiving 16-bit data
(Table 4.8). Then, communication for 16-bit transfer length starts.

SSL

(General-
purpose port)

RSPCK | | | | | | RJ_I—R

SPTIO
(Request to the —|
DTC or CPU)

SPRIO
_|

(Request to the
DTC or CPU)

SPCIO | 'l

(Request to the CPU)

MOSI — 24 bits

MISO E— 24 bits

An SPCIO interrupt request to
the CPU is generated. Then,
the interrupt handler changes
the transfer data length to 16
bits, changes the DTC
settings, and then starts
Note:)) communication for 16-bit

The SPTIO interrupt request shown aboveis transfer data length.
generated when a DTC transfer ends. However,
almost at the same time, another SPTIO interrupt

DTC transfer A writes 24-bit transmit data. Then,
an SPTI0 interrupt request to the CPU is
generated, and then the interrupt handler
disables the SPTIO interrupt (SPCR.SPTIE=0).

request (caused when the transmit buffer
becomes empty) is also generated.

In the above case, if the transmit buffer becomes
empty before SPTIO interrupts are disabled, an
SPTIO interrupt request is generated again.

DTC transfer B reads 24-bit
receive data. Then, an SPRIO
interrupt request to the CPU is
generated, and then the
interrupt handler enables the
SPCIO interrupt
(SPCR3.SPCIE=1).

Figure 4.1 Timing Chart for Communication When the Transfer Data Length Is 24 Bits

RO1AN7238EJ0100 Rev.1.00

Jan.22.24

RENESAS

Page 11 of 46

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.1.2 Communication When the Transfer Data Length Is 16 Bits

When communication for 24-bit transfer data length finishes, communication for 16-bit transfer data length
starts.

The communication for 16-bit transfer data length sends and receives eight frames.
Figure 4.2 shows Timing Chart for Communication When the Transfer Data Length is 16 Bits.
Data transmission:

Using an SPTIO interrupt as an activation source, DTC transfer C in Table 4.7 is performed to write 16-bit
data to the SPDR register.

When DTC transfer C activated by an SPTIO interrupt request has transferred eight frames, another SPTIO
interrupt request to the CPU is generated.

The SPTIO interrupt handler disables the SPTIO interrupt (SPCR.SPTIE=0).

Data reception:

Using an SPRIO interrupt as an activation source, DTC transfer D in Table 4.8 is performed to read 16-bit
data from the SPDR register.

When DTC transfer D activated by an SPRIO interrupt request has transferred eight frames, another SPRIO
interrupt request to the CPU is generated.

The SPRIO interrupt handler enables the SPCIO interrupt (SPCR3.SPCIE=1).

Communication completion processing:

The SPCIO interrupt handler changes the SSL signal controlled by the general-purpose port (PA2) to High
level, changes the transfer data length to 24 bits, and then changes the DTC settings according to DTC
transfer A for sending 24-bit data (Table 4.5) and DTC transfer B for receiving 24-bit data (Table 4.6).
Then, when SW1 is pressed, communication for 24-bit transfer data length starts as described in 4.1.1
Communication When the Transfer Data Length is 24 Bits.

SSL
(General-

l_
purpose port)
i 11| | 111 | 1) S 111] 1) | I

SPTIO
(Request to the mﬂ
DTC or CPU) 22
SPRIO
(Request to the
DTC or CPU) 22
SPCIO
(Request to the CPU)
mosi ———++< 16bits (1) »—< 16bits () — - +— 16 bits (7) Y—< 16 bits (8)
Miso —————< 16bits (1) »—< 16bits () Y— -+ +—< 16 bits (7) —< 16 bits (8)
- N An SPCIO int t
Write 16 bits of Write 16 bits of Write 16 bits of Write 16 bits of Write 16 bits of request to the CPU
transmit data (1) transmit data (2) transmit data (3) transmit data (4) g‘i‘_”cs?““ dafua 83) by is generated, and
by DTC transfer C | by DTC transfer C || by DTC transfer C by DTC transfer C Th ranssgr_l_ld then interrupt
Ihen, an handler drives the
T T interrupt request to SSL signal High

Read 16 bits of
receive data (1) by
DTC transfer D

Read 16 bits of
receive data (2) by
DTC transfer D

the CPU is
generated, and then
the interrupt handler
disables the SPTIO
interrupt.

Read 16 bits of
receive data (7) by
DTC transfer D

changes the
transfer data length
to 24 bis, and then
changes the DTC
setting.

(SPCR.SPTIE=0)

Read 16 bits of
receive data (8) by
DTC transfer D.
Then, an SPRIO
interrupt request to
the CPU is
generated, and then
the interrupt handler
enables the SPCIO
interrupt.
(SPCR3.SPCIE=1)

Read 16 bits of
receive data (6) by
DTC transfer D

Figure 4.2 Timing Chart for Communication When the Transfer Data Length is 16 Bits

RO1AN7238EJ0100 Rev.1.00
Jan.22.24

e Page 12 of 46
RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2 Components Used for Firmware Integration Technology (FIT) Modules and

Code Generation

Table 4.9 shows Components Used for FIT Modules and Code Generation.

Table 4.9 Components Used for FIT Modules and Code Generation

Component Category

Use

Board Support Packages (BSP) FIT module

Provides all codes from reset to the main()
function

Interrupt controller Code generation

ICU settings

Data transfer controller Code generation

DTC settings

SPI operation mode (4-wire method) | Code generation

RSPI settings

4.2.1 Smart Configurator (SC) Settings for FIT Module Component
This application note uses BSP modules that are automatically generated when a new project is created, but

the SC settings for the BSP are not changed.

Table 4.10 shows the major clock settings only.

Table 4.10 BSP Module Clock Settings

Iltem Settings

System clock settings Clock source: PLL circuit output 240 MHz
System clock (|C|_K) X1/2 oo 120 (MHz)
Peripheral module clock (PCLKA): X1/2 +-+eeveverenen 120 (MHz)
Peripheral module clock (PCLKB): X1/4 -« -« evevueeeene. 60 (MHz)
Peripheral module clock (PCLKD): X1/4-«-vevevevrenenen. 60 (MHz)
Bus clock (BCLK) XU/A cooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiii, 60 (MHz)
FlashlF clock (FCLK) XL/4 oooviiiiiiiiiiiiiiniiiiiiiiinn, 60 (MHz)

Sub-clock oscillator setting Operating

(Default setting. Sub-clocks are not used.)

HOCO clock setting Stop
LOCO clock setting Stop
IWDT-dedicated clock setting | Stop

RO1AN7238EJ0100 Rev.1.00
Jan.22.24

Page 13 of 46

RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.2 SC Settings for Code Generation Components
The first communication after the power is turned on uses 24 bits for the transfer data length.

Therefore, the SC settings described in this section apply to communication for 24-bit transfer data length.

Note that the settings necessary for communication for 16-bit transfer data length must be manually added to
the code generated by SC.

4.2.2.1 Interrupt controller configuration

(1) Open the [Components] tab, and then click the icon for adding a component.

] %l (=]
Software component configuration Generate Code Generate Report

eadli @R ~

ype ot K]

Vv (= Startup

v [= Generic
& rbsp

< >

Qverview Board | Clocks | System Pins | Interrupts

(2) Inthe [Software Component Selection] window, select [Interrupt Controller], and then click
[Next].

&) New Component O X

Software Component Selection |

Select component from those available in list

Category All v

Function All e

Filter ‘ ‘

Components - Short Name Type Version ~

#311C Communication Driver Interface Midd... r comms_i2c_rx Firmware Integra... 1.21
[EB Interrupt Controller Code Generator 23.0 I
1 JPEG Decoder for Renesas MCUS\ r_jpegd_rx Firmware Integra... 2.06

3 JPEG Encoder for Renesas MCUs. r_jpege_nx Firmware Integra.. 1.01

H# Low Power Consumption Code Generator 230
HIAEMDRY Nirivar r mamdns rv Firrwara Intanra 104

Show only latest version

Hide items that have duplicated functionality

Description

interrupt and IRQ External pin interrupts.

Interrupt Controller configures the interrupt Tests generated by ICU: Software interrupt, NMI pin

Download the latest FIT drivers and middleware

Configure general settings...

("" < Back Next > I| Finish Cancel

RO1AN7238EJ0100 Rev.1.00 Page 14 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

(3) Inthe window for adding the component, click [Finish].

& New Component O X

Add new configuration for selected component |

Interrupt Controller
Configuration name: | Config_ICU
Resource: Icu -

@ ok N> o

(4) Software component configuration
Assign the pin (P91) connected to SW1 of RSK to IRQ9.

0| &

Software component configuration Generate Code Generate Report

-
Components 23 175 =ik 3 IRQY setting ~
B . IRQ9 Detection type Falling edge &7 Digital filter :PCLK/64 ~ | [0.9375 (MHz)
type filter text | Priority |Level 14 b
¥ [Start
= tarup . IRQ10 setting
v (= Generic
& rbsp [irato Low level Neo filter 0
v & Drivers Level 15 (highest)
v (= Interrupt
& Config_ICU IRQ11 setting
[Jirati Low level No filter 0
Level 15 (highest)
IRQ12 setting
[Jirat2 Low level No filter 0
v
< >
Overview | Board | Clocks | System | Components | Pins | Interrupts
RO1AN7238EJ0100 Rev.1.00 Page 15 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

(5) Pin configuration

Open the [Pins] tab, select [Interrupt] from under [Hardware Resource], and then assign P91 to IRQ9
included in the pin functions.

Pin configuration Generate Code Generate Report

Hardware Resource + = J,az 5% Pin Function 2 ‘ ‘ _‘:H By 2
‘Type filter text ‘ |type filter text (* = any string, ? = any character) | All v
Al A Enabled Function Assignment A
_!. Digital power supply O IRQ3 # Not assighed
Clock O IRQ4 # Not assigned
&% Clock frequency accuracy measuremer O IRQ5 7 Not assigned
Operating mode control O IRQ6 7 Not assigned
-!. System control] IRQ7 # Not assigned
-# On-chip emulator [] IRQ8 # Not assigned
g Buses | IRQ9 # P91/TRDATA4/A17/SCK7/IRQ9 |
T wamn 7 Not assigned
~ 73 Multi-function timer pulse unit 3 [IRQ11 # Not assigned
w MTUO [l IRQ12 # Not assigned
w MTUT [l IRQ13 # Not assigned
o MTU? v T enaa 7 Nt accinnad v
< > < >
Pin Function Pin Number
Qverview Board Clocks | System Components | Pins Interrupts
RO1AN7238EJ0100 Rev.1.00 Page 16 of 46

Jan.22.24 RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.2.2 Datatransfer controller configuration (DTC settings for data transmission (transfer

data length is 24 bits))

(1) Open the [Components] tab, and then click the icon for adding a component.

For details about the selection window, see 4.2.2.1(1).

(2)
[Next].

Q New Component

Software Component Selection

Select component from those available in list

Category All

Function Al

In the [Software Component Selection] window, select [Data Transfer Controller], and then click

Filter |

~

Components Short Name Type

EE Data Operation Circuit

Code Generator

Version A
1.11.0

|EE Data Transfer Controller

Code Generator

1110 |

% Dead-time Compensation Counter
8 DMA Controller

Code Generator

Code Generator

1.11.0
1.8.0 >

Show only latest version
Hide items that have duplicated functionglity

Description

This software component provides conﬂgurains for DTC to perform data transfers.

Download the latest FIT drivers and middleware

Configure general settings...

(;7‘ < Back I Next > I Finish

In the window for adding the component, click [Finish].

®3)

Cancel

8 New Component

Add new configuration for selected component

Data Transfer Controller

Configuration name: | Config_DTC

Resource: DTC ~

@ < Back Next Cancel
RO1AN7238EJ0100 Rev.1.00 Page 17 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

(4) Software component configuration
In this application note, the items on the [Base setting] tab are specified as follows.

The setting in the red frame has been changed from the default.

q %l (]
Software component configuration Generate Code Generate Report
Comp... puy 1% = [+ :% Configure 2
L Base setting DTCO
v = Startup
v (= Generic |Transfer data read skip Enable =7 |
& rbsp
~ (= Drivers Address mode Full-address mode (32 bits) ~
¥ (= Interrupt
& Config_ICu DTC vector base address | 0x0001FC00 ‘
v (= DMA
& Config DTC
v
< >
Overview | Board Clocks | System | Components | Pins | Interrupts
The items on the [DTCOQ] tab are specified as follows.
The settings in the red frames have been changed from the defaults.
Software component configuration) =
P 9 Generate Code Generate Report
Comp... fug sy -] [+ % Configure @ ~

v Base setting DTCO

type filter text
» Activation source setting
Vv = Startuy|
= P Activation source RSPIO(SPTIO)

["] Chain transfer

v [=* Generic
& rbsp
Vv & Drivers Chain transfer setting
V¥ [Interrupt

& Config ICU Continuous Only when transfer counter is changed from 1 to 0 or 1 to CRAH
v (= DMA Transfer mode setting
W Config DTC (® Normal mode (O Repeat mode () Block mode

Transfer data size setting

() 8 bits () 16 bits

Interrupt setting
(® An interrupt request to the CPU is generated when specified data transfer is completed
(O An interrupt request to the CPU is generated each time DTC data transfer is performed

Overview | Board | Clocks | System | Components | Pins | Interrupts

ftw i %l S

> o component conﬂguratlon Generate Code Generate Report

Comp... g2y 173 =l :‘(‘ Block/Repeat area setting .
Transfer destination Transfer source

L
Wirite back setting
type filter text @ Enable Disable

v (= Startup

w (= Generic
& rbsp Source address 0x00003000 Address fixed 4
v (& Drivers Destination address 0x000D0104 Address fixed v
¥ [Interrupt
& Config_ICU Count 1
v (= DMA Block size 1

W& Config_DTC
Total transfer size l:l byte(s)

Overview |Board Clocks | System | Components | Pins | Interrupts

RO1AN7238EJ0100 Rev.1.00 Page 18 of 46
Jan.22.24 RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.2.3 Data transfer controller configuration (DTC settings for data reception (transfer

data length is 24 bits))

(1) Open the [Components] tab, and then click the icon for adding a component.

For details about the selection window, see 4.2.2.1(1).

(2) Inthe [Software Component Selection] window, select [Data Transfer Controller], and then click

[Next].
For details about the selection window, see 4.2.2.2 (2).

(3) Inthe window for adding the component, click [Finish].

Q New Component

Add new configuration for selected component

Data Transfer Controller

Configuration name: “Co nfig_DTC1

Resource: DTC

@ < Back Next > Cancel

(4) Software component configuration
In this application note, the items on the [Base setting] tab are specified as follows.

The setting in the red frame has been changed from the default.

=

Software component configuration Generate Code Generate Report

Comp... fxy .y = |+ % Configure)
% W

type filter text

v (= Startup

Base setting DTCO

Transfer data read skip :Enable e VI

Vv (= Generic
& rbsp
v (= Drivers

Address mode Full-address mode (32 bits) N

v (= Interrupt
& Config_ICU DTC vector base address | 0x0001FCO0 ‘
v = DMA
& Config DTC
« Config DTC1

<

Overview | Board | Clocks | System | Components | Pins| Interrupts

RO1AN7238EJ0100 Rev.1.00

Jan.22.24 RENESAS

Page 19 of 46

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

The items on the [DTCOQ] tab are specified as follows.

The settings in the red frames have been changed from the defaults.

Software component configuration

Comp... 3y |3 B [3

e
type filter text

v (= Startup
v

(= Generic
@ rbsp
v (% Drivers

Vv (= Interrupt
& Config_ICU

v &> DMA
g Config_DTC
g Config DTC1

%l

Generate Code Generate Report

Configure €)) [Eo
Base setting DTCO
Activation source setting
Activation source RSPIO(SPRIO) v
[chain transfer
Chain transfer setting
Continuous Only when transfer counter is changed from 1 to 0 or 1 to CRAH
Transfer mode setting
(® Normal mode @) Repeat mode (O Block mode
Transfer data size setting
(O 8 bits (16 bits (®) 32 bits
Interrupt setting
(® An interrupt request to the CPU is generated when specified data transfer is completed
(O An interrupt request to the CPU is generated each time DTC data transfer is performed v

Overview |Board Clocks | System Components | Pins | Interrupts

Software component configuration

Comp... px3 % =Nk
L
type filter text
w (= Startup
v (= Generic
& rbsp
{5 Drivers
v (& Interrupt
& Config_ICU
v = DMA
@ Config_ DTC
g Config DTC1

% (=

Generate Code Generate Report

Block/Repeat area setting ~
Transfer destinatior Transfer s
Write back setting
(®) Enable () Disable
Transfer address and count setting
Source address 0x000D0104 Address fixed =
Destination address 0x00002000 Address fixed i
Count 1
Block size 1
Total transfer size 4 byte(s)
v

Overview Board Clocks System Components Pins| Interrupts

RO1AN7238EJ0100 Rev.1.00
Jan.22.24

RENESAS

Page 20 of 46

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.2.4 SPl operation mode (4-wire method) configuration

(1) Open the [Components] tab, and then click the icon for adding a component.
For details about the selection window, see 4.2.2.1(1).

(2) Inthe [Software Component Selection] window, select [SPI Operation Mode (4-wire method)],
and then click [Next].

Q New Component O X

Software Component Selection |

Select component from those available in list

Category All he
Function | All he
Filter ‘ ‘
Components - Short Name Type Version A
2 SPI Clock Synchronous Mode (3-wire me... Code Generator 1.12.0
SPI Operation Mode (4-wire method) Code Generator 1.10.0 I

£ TCP/IP protocol stack [M3S-T4-Tiny] - ... r_td_driver_rx Firmware Integra... 1.09
H#TCp/p protocol stack [M3S-T4-Tiny] forR... rt4 rx Firmware Integra... 2.10 v
Show only latest version
Hide items that have duplicated functionali

Description

This component provides SPI operation mode §f RSPI. Generally, it includes the following transfer ~

modes: Slave transmit/receive, Slave transmit, Slave receive, Master transmit/receive, Master transmit,
Multi-Master transmit/receive... and Multi-Master\transmit. But regarding to each device, supported
transfer mndes mav differ

Download the latest FIT drivers and middleware

Configure general settings...

< Back I Next > I| Finish Cancel

(3) Inthe window for adding the component, select [Master transmit/receive] for [Operation], and
then click [Finish].

8 New Component O X

Add new configuration for selected component tb‘
SPI Operation Mode (4-wire method)
Configuration name: | Config_RSPIO ‘
Pperation: Master transmit/receive ~ I
Resource: RSPIO e

(?‘,‘ < Back Next > Cancel

RO1AN7238EJ0100 Rev.1.00 Page 21 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

(4) Software component configuration
In this application note, the items are specified as follows.
The settings in red frames have been changed from the defaults.

%l &

Software component configuration

» -+
3

Compo... x5
L
type filter text
~ [Startup
v (= Generic
& r_bsp
v = Drivers
v (= Interrupt
@ Config_ICU
v 5 DMA
@ Config DTC
@ Config DTC1
+ (= Communications
& Config_RSPIO

Generate Code Generate Report

Configure ~

Transmit/receive data buffer setting

Buffer access width | 32 bits (Buffer accessed in longwords) >
Data format setting

Byte swap (®) Disabled () Enabled

Parity bit Does not add the parity bit to transmit data and does not check the parity bit of receive data v

Transfer data invert setting

) Inverted
RSPCK delay setting

(®) Inserts delays (O Does not insert delays

Transfer speed setting

Base bit rate 1000 (kbps) 1000, Error: 0%)

(Actual value:

<

Overview Board | Clocks System | Components | Pins| Interrupts

Software component configuration

%l <
Generate Code Generate Report

Compo... fxg 7 =0 % Output timing setting A
% Period from beginning of SSL signal assertion to RSPCK oscillation (RSPCK delay) SPCKD |1 RSPCK i
C
type filter text Period from transmission of last RSPCK edge to negation of SSL signal (SSL negation delay) SSLND |1 RSPCK ~
v (= Startup SSL signal non-active period after termination of a serial transfer (next-access delay) SPND |1 RSPCK + 2 PCLK
v (= Generic
& rbsp Auto-stop function setting
Vv & Drivers [] Enable auto-stop function
Vv (= Interrupt
@ Config ICU Pin control setting
v (= DMA
& Config DTC MOSI idle value (MOSI output during SSL negation period) Final data from previous transfer ~
@ Config DTC1 Use SSLAD Active low v
Vv (= Communications
& Config_RSPIO [JUse ssLa1 Active low
[[JUse ssLA2 Active low
[JUse ssLa3 Active low
Output pin mode selection (RSPCK, SSL, MOSI/MISO) CMOS output .
< >
Overview |Board Clocks | System Components | Pins | Interrupts
Software component configuration o) =
Generate Code Generate Report
Compo... 2y . =3 Loopback mode selection Normal mode M
W Data handling setting
type filter text
| Transfer data handling Data handled by DTC he
~ [Startup
v (& Generic Interrupt setting
@ rbsp
~ &= Drivers SPTIO priority Level 15 (highest) 4
¥ & Interrupt SPRID priority Level 15 (highest) v
@ Config_ICU
v & DMA Enable communication end interrupt (SPCIO)
@ Config DTC Priority Level 15 (highest) v
@ Config DTC1 X
]
v & Communications Enable error interrupt (SPEIQ)
& Config RSPIO SPEIO, SPIIO priority (Group ALO) Level 15 (highest) N
Callback function setting
[“ Transmission end Reception end Error detection
v
<

Overview |Board | Clocks | System | Components | Pins | Interrupts

RO1AN7238EJ0100 Rev.1.00
Jan.22.24

e Page 22 of 46
RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

; i1c! @
Software component configuration Generate Code Generate Report
Compo.. el (% (0 (@3 Command setting A
. Number of commands, number of frames | Number of commands: 1, number of transfer frames: 1 bl
N
type filter text Command0
¥ & Startup Data length 24 bits -
¥ (= Generic
@ rbsp Format MSB-first bad
~ &= Dri .
= Drivers RSPCK phase Data variation on odd edge, data sampling on even edge =
¥ (= Interrupt
@ Config_Icu RSPCK polarity Low when idle ~
¥ = DMA
= & Conflg DTC Bit rate selection Base bit rate / 8 =
g Config DTC1 S5L signal assertion SSLO >
v (= Communications - - =
& Config_RSPI0 SSL negation operation Keeps the SSL signal level fram transfer end until next access start >
RSPCK delay 1 RSPCK »
S5L negation delay 1 RSPCK b
Next-access delay 1 RSPCK + 2 PCLK. ~
v
< >

Overview | Board | Clocks | System Components | Pins | Interrupts

(5) Pin configuration

Open the [Pins] tab, select [RSPI0] from the hardware resources, and then assign the pins to be used for

RSPI.
In this application note, pins that are open on the RSK are assigned.
Note that the SSLAO pin is not used.

The settings in the red frame have been changed from the defaults.

Pin configuration %l =
Generate Code Generate Report
Hardware Resource 4 |= l% 4% Pin Function U [T
‘Type filter text ‘ ‘type filter text (* = any string, ? = any character) ‘ All £
~ 5§ CAN FD module 2 Enabled Function Assignment Pin Number Direction
w¢ CANFDO MISOA #_PAT/AT/MISOA-B/IRQ7 7 88 (B) 10
~ 51 Serial peripheral interface MOSIA 7 PAG/A6/MTIC5V/MTCLKB/TMCI3/POE10#/MTIOC3D/ { 89 (B) 10
o A RSPCKA 7 PA5/A5/MTIOCEB/RSPCKA-B/IRQS 90 (B) 10
~ Bl 12-bit A/D converter SSLAO 7 PA4/A4/MTIC5U/MTCLKA/TMRIO/MTIOCAC/MTIOCT¢ { 92 (B) 10
. S12ADO SSLA1 7 Not assigned 7 Notassigned None
5. 12-bit D/A converter SSLA2 # Not assigned 7 Not assigned None
v %, Comparator C SSLA3 # Not assigned 7 Notassigned None
w CMPCO
w CMPCI
w CMPC2
w CMPC3
m, Realtime clock
v #[‘5 Remote control signal receiver (
W REMCO
. Analoa nower sunolv v
< > < >

Pin Function Pin Number

Overview | Board | Clocks | System | Components | Pins| Interrupts

RO1AN7238EJ0100 Rev.1.00 Page 23 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.3 Generating Code

When all the SC settings are complete, click [Generate Code] to generate code.

Pin configuration %l =
Generate Code |Generate Report
Hardware Resource 4 [= |% g% Pin Function a ‘ *:] ‘ o] ‘ By e
‘Type filter text ‘ ‘type filter text (* = any string, ? = any character) ‘ All b3
v 55 CAN FD module 2 Enabled Function Assignment Pin Number Direction
W CANFDO MISOA 7 PAT/AT/MISOA-B/IRQ7 7 88 (B) 10
v i Serial peripheral interface MOSIA 7 PA6/A6/MTIC5V/MTCLKB/TMCI3/POE10#/MTIOC3D/ # 89 (B) 10
__ @(RsPI0 RSPCKA 7 PAS/A5/MTIOCEB/RSPCKA-B/IRQS 790 (B) 10
¥ by, 12-bit A/D converter SSLAO 7 PA4/A4/MTICSU/MTCLKA/TMRIO/MTIOCAC/MTIOCTC # 92 (B) 10
W S12ADO [sSLA1 7 Not assigned 7 Not assigned None
b, 12-bit D/A converter O SSLA2 7 Not assigned 7 Not assigned None
v i Comparator C] ssia3 # Not assigned 7 Notassigned None
w CMPCO
w CMPCI
w CMPC2
w CMPC3
% Realtime clock
v ﬁ{g Remote control signal receiver (
w' REMCO
. Analoa nower sunnlv v
< > < >

Pin Function Pin Number

Overview | Board | Clocks | System | Components | Pins| Interrupts

When the following dialog box appears, click [Proceed].

Q Code Generating

Configuration must be saved before generating code.

Proceed with save and generate?

["] Always save and generate without asking?

Proceed Cancel

RO1AN7238EJ0100 Rev.1.00
Jan.22.24

RENESAS

Page 24 of 46

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.4 Adding Code to the SC-Generated Code

You can add user code between the following lines in a source file or header file:
/* Start user ... */
/* End user ... */

4.2.4.1 Additional processing to the SC-generated code

To the code generated by SC, add the processing that is necessary for 16-bit data transfer (such as
changing the transfer data length and DTC settings) and the IRQ9 interrupt handler to be run after SW1 is
pressed.

Table 4.11 shows Additions to SC-Generated Code.

Table 4.11 Additions to SC-Generated Code

Folder File Changed or Added Function Description

src data_length_change_s | void main(void) The processing to drive the SSL signal High
ample_for_rspi_dtc.c using general-purpose port control, clear the
- - 24-bit communication completion check flag
(g_length_check), and enable IRQ9 was
added.

src\sm_gen\ Config_ICU_user.c static void The processing to initialize transmit data,

)) ; ; ; initialize the receive data storage RAM, start
Config_ICU r_Config_ICU_irq9_interrupt(void ini : '
9- - 9-I-EaE- p(void) the DTC, assert the SSL signal, and start

RSPI communication was added.

src\sm_gen\ Config_DTC.c void set_16bit_data_transfer_mode(void) | The void set_16bit_data_transfer_mode
Config_DTC (void) function was added. This function sets

the DTC transfer information shown in

Table 4.7 DTC Transfer C: DTC Settings for
Data Transmission (Transfer Data Length: 16
Bits).

Config_DTC.h - The prototype declaration of the void
set_16bit_data_transfer_mode(void) function
was added.

The value of the transfer count register A
(CRA) to be specified for this function was
added as a macro constant.

src\sm_gen\ Config_DTC1.c void set_16bit_data_receive_mode(void) | The void set_16bit_data_receive_mode(void)
Config_DTC1 function was added. This function sets the

- DTC transfer information shown in Table 4.8
DTC Transfer D: DTC Settings for Data
Reception (Transfer Data Length: 16 Bits).

Config_DTC1.h - The prototype declaration of the void
set_16bit_data_receive_mode(void) function
was added.

The value of the transfer count register A
(CRA) to be specified for this function was
added as a macro constant.

src\sm_gen\ Config_RSPIO_user.c static void The following processing was added:

Config_RSPIO r_Config_RSPIO_communication_end_int | ¢ Vhen 24-bit communication is complete
- . Processing to change the transfer data length
errupt(void)

to 16 bits, change the DTC settings, start the

DTC, and start RSPl communication

e When communication of 16 bits x 8 frames
is complete

Processing to negate the SSL signal, change

the transfer data length to 24 bits, and

change the DTC settings

static void The processing to disable SPTIO interrupts

r_Config_RSPIO_callback_transmitend(void) was added.

static void The processing to enable SPCIO interrupts

r_Config_RSPIO_callback_receiveend(void) was added.

Config_RSPIO0.h - The macro definition of the general-purpose
port used for SSL control was added.

RO1AN7238EJ0100 Rev.1.00 Page 25 of 46
Jan.22.24 RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.4.2 Constants added to the SC-generated code

Table 4.12 shows List of Constants Added to the SC-Generated Code.

Table 4.12 List of Constants Added to the SC-Generated Code

Constant Name

Setting

Description

SSL_PORT_PODR_BIT

PORTA.PODR.BIT.B2

PODR register bits of the general-purpose port
used for SSL control

SSL_PORT_PDR_BIT

PORTA.PDR.BIT.B2

PDR register bits of the general-purpose port
used for SSL control

CRA_16BIT_TRANSFER

0x0008

Value of the DTC transfer count register A
(CRA) for 16-bit transmission

CRA_16BIT_RECEIVE

0x0008

Value of the DTC transfer count register A
(CRA) for 16-bit reception

4.2.4.3 Variables added to the SC-generated code

Table 4.13 shows List of Variables Added to the SC-Generated Code.

Table 4.13 List of Variables Added to the SC-Generated Code

Type Variable Name | Description Functions Using the Variable
Transfer data length check flag | main()
0: Transfer data length is 24 r_Config_ICU_irq9_interrupt()
volatile uint8_t | g_length_check bits r_Config_RSPI0_communication_e
1: Transfer data length is 16 nd_interrupt()
bits
vplatlle g_w24_data Stores 24-bit transmit data r_Config_ICU_irgS_interrupt(
uint32_t
vplatlle g_r24 data Stores 24-bit receive data r_Config_ICU_irqd_interrupt()
uint32_t
volatile . . r_Config_ICU_irq9_interrupt()
uintl6 t g_w16_data Stores 16-bit transmit data set_16bit_data_transfer_mode()
volatile . . r_Config_ICU_irq9_interrupt()
Uint16_t g_rl6_data[8] Stores 16-bit receive data set_16bit_data,_receive_mode()

4.2.4.4 Functions added to the SC-generated code

Table 4.14 shows List of Functions Added to the SC-Generated Code.

Table 4.14 List of Functions Added to the SC-Generated Code

Type | Variable Name Argument | Description
Sets DTC transfer information for 16-bit
. . . transmission as shown in Table 4.7 DTC Transfer
void | set_16bit_data_transfer_mode | void C: DTC Settings for Data Transmission (Transfer
Data Length: 16 Bits)
Sets DTC transfer information for 16-bit reception
void | set 16bit data receive mode | void as shown in Table 4.8 DTC Transfer D: DTC
— — - - Settings for Data Reception (Transfer Data
Length: 16 Bits).
RO1AN7238EJ0100 Rev.1.00 Page 26 of 46
Jan.22.24 RENESAS

How to Change Transfer Data Length During RSPl Communication Using a DTC

RX Family
4.2.45 Adding code to the main routine

Add code to the main() function of the main routine in the data_length_change_sample_for_rspi_dtc.c file.

Figure 4.3 shows Outline Flow of the main() Function.
N)

w main
\+/
‘ Initialize the SSL signal ‘ The SSL signal is output High by general-purpose
port control

Clear the transfer data
length check flag

‘ ‘ R_Config ICU_IRQ9_Start() ‘ ‘ Call the function that is automatically generated by SC
= = = (Enable IRQ9 interrupt)

—i

Figure 4.3 Outline Flow of the main() Function

RO1AN7238EJ0100 Rev.1.00
Jan.22.24 RENESAS

Page 27 of 46

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Add code to the Config_ RSPI0.h file.

Adding code to the Config RSPIO.h file

/* Start user code for function. Do not edit comment generated here */

/***

Macro definitions
***/
#define SSL_PORT_PODR_BIT (PORTA.PODR.B|T.BZ) — Genera|_purpose port PA2 controls the
#define SSL_PORT_PDR_BIT (PORTA.PDR.BIT.B2) SSL signal.

/* End user code. Do not edit comment generated here */

Add code to the main routine.

Adding code to the main() function

#include "r_smc_entry.h" « Includes the header files automatically created by SC.

volatile uint8_t g_length_check; «— Definition of the transfer data length check flag
void main(void);

void main(void)
{

[* Set General-purpose port for SSL control */

SSL_PORT_PODR_BIT = 1U; « The SSL signal is output High by general-purpose port control.
SSL_PORT_PDR_BIT = 1U;

g_length_check = 0U; « Clears the transfer data length check flag.
R_Config_ICU_IRQ9_Start(); «— Enables IRQ9.

while(1U){
/* do nothing */
}

RO1AN7238EJ0100 Rev.1.00 Page 28 of 46
Jan.22.24 RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.4.6 Adding code to the IRQ9 interrupt handler
Add code to the r_Config_ICU_irg9_interrupt() function, which is the IRQ9 interrupt handler.
Figure 4.4 shows Outline Flow of the r_Config_ICU_irg9_interrupt() Function.

é r_Config_ICU_irq9_interrupt()

Is the RSPI idle?

g_lengh_check ==0?

Is the transfer data length set to 24 bits?

Initialize 24-bit transmit data
Initialize the 24-bit receive data storage RAM
Initialize 16-bit transmit data
Initialize the 16-bit receive data storage RAM

\ \ R_Config DTC_Start()

\ \ R_Config DTCL_Start()

\ \ R_Config RSPIO_Start()

Assert the SSL signal

| R_Config RSPIO_Send_Receive() | |

>

p
S End

~

/

Calls the function of SC-generated code
(Enables DTC transfer requests on SPTIO interrupts)

Calls the function of SC-generated code
(Enables DTC transfer requests on SPRIO interrupts)

Calls the function of SC-generated code
(Enables RSPI-related interrupts for the ICU
register (the RSPI register does not enable
interrupts), clears the RSPI status flag)

Calls the function of SC-generated code
(Enables interrupts for the RSPI register, start
communication)

Figure 4.4 Outline Flow of the r_Config_ICU_irq9_interrupt() Function

RO1AN7238EJ0100 Rev.1.00
Jan.22.24

Page 29 of 46

RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Add code to the “Includes” and “Global variables and functions” sections in the Config_ICU_user.c file.

Adding code to the “Includes” and “Global variables and functions” sections in the
Config ICU user.c file

ettt *kkkkk *% *kkkkkkkkkhhhhhhkkkkkkkkhhhkhhhhhhhhhrrrkikkxx *kkkkkkkhkhhhhkkkkkkkkkkkhhhhhhhhhhhhhhxx

Includes

*hkhkkkhkkhhkhhhkhhkhhhkrkhhkkdrrhrrrhrx *% *kkkkk *% *hkhkkkhkkdkhkhhrkhhkhhkkhhkkdhrhrrrhrx *% *kkkkkkhkkk /

#include "r_cg_macrodriver.h"
#include "Config_ICU.h"
/* Start user code for include. Do not edit comment generated here */
|#include "r smc_entry.h" | «— Includes the header files automatically created by SC.
/* End user code. Do not edit comment generated here */
#include "r_cg_userdefine.h"

/***

Global variables and functions

*hkhkkkhkkhhkhhrkhhkhhkrkhrkkdrrhrrkhrx *% K*kkkkk *% *hkhkkkhkkhhkhhrkhhkhhkkhhkkdrrhrrrhrx *% *kkkkkkhkkk /

/* Start user code for global. Do not edit comment generated here */

[extern volatile uint8_t g_length_check; | — extern statement of the transfer data length check
flag

#pragma address (g_w24_data=0x03000V) — Defines the addresses according to the source

#pragma address (g_r24_data=0x02000U) address and destination address specified in

4.2.2.2and 4.2.2.3.

volatile uint32_t g_w24_data;

volatile uint32_t g_r24_data; « Defines the variables for 24-bit transmit, 24-bit
volatile uintl6_t g w16 _data; receive data storage RAM, 16-bit transmit data,
volatile uintl6 t g r16 datal[8]; and 16-bit receive data storage RAM.

/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 30 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Add code to the r_Config_ICU_irg9_interrupt() function.

Adding code to the r_Config_ICU _irg9_interrupt () function

static void r_Config_ICU _irq9_interrupt(void)
{
/* Start user code for r_Config_ICU_irq9_interrupt. Do not edit comment generated here */
uint32_ti;
/* do nothing */
}
else
{ I . .
If (OU == g_length_check) — Che<_:ks whether the initial setting of the transfer data length is
{ 24 bits.
g_w24 data = 0x123456U;
g_r24 data = OXFFFFFFFFU; « Initializes the RAM areas that store 24-bit
transmit data, 24-bit receive data, 16-bit
g_wl6_data = Ox789AU; transmit data, and 16-bit receive data.
for (i=0U; i<8U; i++)
{
g_rl6_data[i] = OXFFFFU;
}
R_Config_DTC_Start(); .
- 9 T 0 . «— Enables DTC transfer requests on SPTIO interrupts or
R_Config_DTC1_Start(); ;
R_Config_RSPI0_Start(); SPRIO interrupts. . .
= — = ! Enables RSPI-related interrupts for the ICU register.
(Interrupts for the RSPI register are not enabled.)
Clears the RSPI status flag.
[* SSL assert */
SSL_PORT_PODR_BIT = 0U; « Asserts the SSL signal.
R_Config_RSPI0O_Send_Receive(NULL, 24U, NULL); < Enables interrupts for the RSPI
} register, start communication
}
/* End user code. Do not edit comment generated here */
}
RO1AN7238EJ0100 Rev.1.00 Page 31 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.4.7 Adding the set_16bit_data_transfer_mode() function to the Config_DTC.c file

The set_16bit_data_transfer_mode() function has been added to the Config_DTC.c file.

This function sets DTC transfer information for 16-bit transmission as shown in Table 4.7 DTC Transfer C:
DTC Settings for Data Transmission (Transfer Data Length: 16 Bits).

Figure 4.5 shows Outline Flow of the set_16bit_data_transfer_mode() Function.

(/ set_16bit_data_transfer_mode())

For details about the settings,

Set the DTC transfer
information as follows: see Table 4.7 DTC Transfer C:
MRA=0x10 DTC Settings for Data
MRB=0x00 Transmission (Transfer Data
SAR=&g_w16_data .
DAR=0x000D0104 Length: 16 Bits).
CRA=0x0008
CRB=0x0000

DTC module operation

L

’~ ™
(End)
- /

Figure 4.5 Outline Flow of the set_16bit_data_transfer_mode() Function

Add the prototype declaration and constant definition of the set_16bit_data_transfer_mode() function to the
Config_DTC.h file.

Adding code to the Config DTC.h file

/* Start user code for function. Do not edit comment generated here */

void set_16bit_data_transfer_mode(void); «— Prototype declaration
#define CRA_16BIT_TRANSFER (Ox0008U) <« Value of the CRA register for 16-bit transmission

/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 32 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Add the extern statement of the transmit data storage variable for 16-bit communication to the “Global
variables and functions” section in the Config_DTC.c file.

Adding code to the “Global variables and functions” section in the Config DTC.c file

/********)\'**

Global variables and functions

xxxxxx *% *hkkkkkkkk * Kkkkk * Fkkkk * *kkkk *% *kk * *% *% * * * * * /

#pragma address dtc_vector39=0x0001FC9CUL

volatile uint32_t dtc_vector39;

volatile st_dtc_data_t dtc_transferdata_vector39;

[* Start user code for global. Do not edit comment generated here */

extern volatile uintl6_tg w16 data; « extern statement of the transmit data storage
variable for 16-bit communication

/* End user code. Do not edit comment generated here */

The following shows the set_16bit_data_transfer_mode() function added to the Config_DTC.c file.

set_16bit_data_transfer_mode() function added to the Config_DTC.c file

/* Start user code for adding. Do not edit comment generated here */

/ * * * * * * * * * * * *

* Function Name: set_16bit_data_transfer_mode

* Description : This function initializes the DTC module for 16bit transmission.
* Arguments : None

* Return Value : None

void set_16bit_data_transfer_mode(void)
{
[* Set DTC transfer data */
dtc_transferdata_vector39.mra_mrb =((uint32_t)(_00_DTC_WRITE_BACK_ENABLE |
_00_DTC_SRC_ADDRESS_FIXED |
_10_DTC_TRANSFER_SIZE_16BIT |
_00_DTC_TRANSFER_MODE_NORMAL)<<24U) |
((uint32_t)(_00_DTC_DST_ADDRESS_FIXED |
_00_DTC_INTERRUPT_COMPLETED)<<16U);
dtc_transferdata_vector39.sar = (uint32_t) &g w16 _data;
dtc_transferdata_vector39.dar = _000D0104 DTCO_DST_ADDRESS;
dtc_transferdata_vector39.cra_crb = (uint32_t)(CRA_16BIT_TRANSFER) << 16U;

/* Enable DTC module start */
DTC.DTCST.BYTE=_01_DTC_MODULE_START;
}

/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 33 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.4.8 Adding the set_16bit_data_receive_mode() function to the Config_DTC1.c file
The set_16bit_data_receive_mode() function has been added to the Config_DTCL1.c file.

This function sets DTC transfer information for 16-bit reception to the settings in Table 4.8 DTC Transfer D:
DTC Settings for Data Reception (Transfer Data Length: 16 Bits).

Figure 4.6 shows Outline Flow of the set_16bit_data_receive_mode() Function.

e) . ™
(\ set_16bit_data_receive_mode() /}w

Set the DTC transfer For details about the settings,
information as follows: see Table 4.8 DTC Transfer D:
mggfgx(l)g DTC Settings for Data
SAR=0XO_0(;(D0104 Reception (T.ransfer Data
DAR=&g_r16_data[0] Length: 16 Bits).
CRA=0x0008
CRB=0x0000

Activate the DTC module
/4|7‘\
(End)
\ J

Figure 4.6 Outline Flow of the set_16bit_data_receive_mode() Function

Add the prototype declaration and constant definition of the set_16bit_data_receive_mode() function to the
Config_DTC1.h file.

Adding code to the Config DTC1.h file

/* Start user code for function. Do not edit comment generated here */

void set_16bit_data_receive_mode(void); < Prototype declaration

#define CRA_16BIT_RECEIVE (0x0008U) «— Value of the CRA register for 16-bit reception
/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 34 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Add the extern statement of the receive data storage variable for 16-bit communication to “Global variables
and functions” in the Config_DTC1.c file.

Adding code to “Global variables and functions” in the Config DTC1.c file

/***

Global variables and functions
***/
#pragma address dtc_vector38=0x0001FC98UL

volatile uint32_t dtc_vector38;

volatile st_dtc_data_t dtc_transferdata_vector38;

[* Start user code for global. Do not edit comment generated here */
extern volatile uint16_t g_r16_data[8]; «— extern statement of the receive data storage
- variable for 16-bit communication

/* End user code. Do not edit comment generated here */

The following shows how the set_16bit_data_receive_mode() function is added to the Config DTC1.c file.

set_16bit_data_receive_mode() function added to the Config DTCL1.c file

/* Start user code for adding. Do not edit comment generated here */

/ * * * * * * * * * * * *

* Function Name: set_16bit_data_receive_mode

* Description : This function initializes the DTC module for 16bit reception.
* Arguments : None

* Return Value : None

void set_16bit_data_receive_mode(void)

{
/* Set DTC transfer data */

dtc_transferdata_vector38.mra_mrb = ((uint32_t)(_00_DTC_WRITE_BACK_ENABLE |
_00_DTC_SRC_ADDRESS_FIXED |
_10 DTC_TRANSFER_SIZE_16BIT |
_00_DTC_TRANSFER_MODE_NORMAL)<<24U) |
((uint32_t)(_08_DTC_DST_ADDRESS_INCREMENTED |
_00_DTC_REPEAT_DST_SIDE |
_00_DTC_INTERRUPT_COMPLETED)<<16U);

dtc_transferdata_vector38.sar = 000D0104 DTCO_SRC_ADDRESS;

dtc_transferdata_vector38.dar = (uint32_t) &g_r16_data[0];

dtc_transferdata_vector38.cra_crb = (uint32_t)(CRA _16BIT_RECEIVE) << 16U;

/* Enable DTC module start */
DTC.DTCST.BYTE=_01_DTC_MODULE_START;

}

/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 35 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.49 Adding code to the SPTIO interrupt handler
Code has been added to the SPTIO interrupt callback function (r_Config_RSPIO_callback_transmitend()).
Figure 4.7 shows Outline Flow of the r_Config_ RSPIO_callback_transmitend() Function.

< r_Config_RSPIO_callback _transmitend()>

Disable SPTIO interrupts

.

4 N

End

Figure 4.7 Outline Flow of the r_Config_RSPIO_callback_transmitend() Function

Code has been added to the r_Config_ RSPIO_callback_transmitend() function of the Config_ RSPIO_user.c
file.

Code added to the r_Config_ RSPIO_callback_transmitend() function

/* Start user code for r_Config_RSPIO_callback transmitend. Do not edit comment generated here */

/* Disable Transmit buffer empty interrupt */
RSPIO.SPCR.BIT.SPTIE = 0U; « Disables SPTIO interrupts.
/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 36 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.4.10 Adding code to the SPRIO interrupt handler
Code has been added to the SPRIO interrupt callback function (r_Config_RSPIO_callback_receiveend()).

Figure 4.8 shows Outline Flow of the r_Config_ RSPIO_callback_reveiveend() Function.

< r_Config_RSPIO_caIIback_receiveend()>

Enables SPCIO interrupts

.

4 N

End

Figure 4.8 Outline Flow of the r_Config_RSPIO_callback_reveiveend() Function

Code has been added to the r_Config_ RSPIO_callback_receiveend() function of the Config_ RSPI0_user.c
file.

Code added to the r_Config_ RSPIO_callback_receiveend() function

/* Start user code for r_Config_RSPIO_callback transmitend. Do not edit comment generated here */

/* Enable communication end interrupt */
RSPI0.SPCR3.BIT.SPCIE = 1U; < Enables SPCIO interrupts.
/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 37 of 46

Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

4.2.4.11 Adding code to the SPCIO interrupt handler

Code has been added to the SPCIO interrupt callback function
(r_Config_RSPI0_communication_end_interrupt()).

Figure 4.9 shows Outline Flow of the r_Config_ RSPIO_communication_end_interrupt() Function.

Q_Config_RSPlO_communication_end_interrupt())

Disable SPCIO interrupts

No (the transfer data length is 24 bits)

g_length_check ==1?

Yes (the transfer data length is 16 bits) v

‘ Disable all RSPl interrupts on the ICU side ‘

Negate the SSL signal

R_Config DTC_Create()

Call the function of SC-generated code

(Set the DTC transfer information for DTC RSPI0.SPCR.BIT.SPE =0 ‘ Disable the RSPI feature

transfer A)

Call the function of SC-generated code | |

(Set the DTC transfer information for DTC ‘ ‘ R_Config DTC1_Create() ‘ ‘ Change the data length set in the
transfer B) RSPI0.SPDCR register and
Call the function of SC-generated code RSPI0.SPCMDO register to 16 bits

(Configure the RSPI for communication with ‘ ‘ R_Config_RSPIO_Create() ‘
the transfer data length set to 24 bits) — =

‘ ‘ set_leit_data_transfer_mode()‘ ‘

g_length_check =0

‘ ‘ set_16bit_data_receive_mode()‘ ‘

Call the function of SC-generated code
(Enable DTC transfer requests on SPTIO
interrupts)

Call the function of SC-generated code
(Enable DTC transfer requests on SPRIO
interrupts)

R_Config_DTC_Start()

R_Config DTC1_Start()

Call the function of SC-generated code
(Enable RSPI-related interrupts for the ICU
register (the RSPI register does not enable
interrupts), clear the RSPI status flag)

|| R_Config RSPI0_Start()

- - Call the function of SC-generated code
‘ ‘ R_Config RSPI0_Send_Receive() ‘ ‘ (Enable interrupts for the RSP register,
start communication)

g_length_check =1

A

End

Figure 4.9 Outline Flow of the r_Config_RSPIO_communication_end_interrupt() Function

RO1AN7238EJ0100 Rev.1.00 Page 38 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Add the definition statement to the “Includes” and “Global variables and functions” sections in the
Config_RSPIO_user.c file.

Adding code to the “Includes” and “Global variables and functions” sections in the
Config RSPIO user.c file

/***

Includes

*hkhkkkhkkhhkhhrkhhkhhkrkhhrkkdrrhrrrhrx *% *kkkkk *% *hkhkkkhkkdhkkhhrkhhkhhkkhhkkdhrhrrrhrx *% *kkhkkkhkkk /

#include "r_cg_macrodriver.h"

#include "Config_RSPI0.h"

[* Start user code for include. Do not edit comment generated here */

#include "r smc_entry.h" « Includes the header files automatically created by SC
/* End user code. Do not edit comment generated here */

#include "r_cg_userdefine.h"

/***

Global variables and functions

*hkhkkkhkkhhkhhrkhhkhhkrkhhkkdrrhrrrhrx *% *kkkkk *% *hkhkkkhkkhhkhhrkhhkhhkkhhkkdrrhrrrhrx *% *kkkkkkhkkk /

[* Start user code for global. Do not edit comment generated here */
Iextern volatile uint8_t g_length_check; «— extern statement of the transfer data length check flag

/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 39 of 46
Jan.22.24 RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

Code has been added to the r_Config_ RSPI0O_communication_end_interrupt() function of the

Config_RSPIO_user.c file.

Code added to the r_Config_ RSPI0_communication_end_interrupt() function

*/

[* Disable communication end interrupt */

RSPI0.SPCR3.BIT.SPCIE = 0U;

[* Processing when 16bit x 8frames is received */
If (LU == g_length_check)

{

/* Start user code for r_Config_ RSPI0_communication_end_interrupt. Do not edit comment generated here

{
/*SSL negate */ — This processing negates the SSL signal and resets the
SSL_PORT_PODR_BIT = 1U; transfer data length to 24 bits after completion of 16-bit
communication.
/* Return DTC and RSPI settings to dgfault settings (for 24-bit settings) */
R_Config_DTC_Create();
R_Config DTC1_Create();
R_Config_RSPIO_Create();
This processing starts communication with the transfer
g_length_check = 0U; data length changed to 16 bits after completion of 24-
} bit communication.
else !

[* Processing when 24bit x 1frame is received */
[* Disable RSPI interrupts */

IEN(RSPIO,SPTIO) = 0U;

IEN(RSPIO,SPRIO) = 0U;

EN(RSPI0,SPEIO) = 0U;

EN(RSPIO0,SPII0) = 0U;

IEN(RSPIO, SPCIO0) = 0U;

/* Disable RSPI function */
RSPI0.SPCR.BIT.SPE = 0U;

[* Change RSPI settings for 16bit length */

RSPI0.SPDCR.BIT.SPLW = 0U;

RSPI0.SPDCR.BIT.SPBYT = 0U;

RSPI0.SPDCR.BIT.SPFC = 0x00U;

RSPI0.SPCMDO0.WORD = _0001_RSPI_RSPCK_SAMPLING_EVEN |
_0000_RSPI_RSPCK_POLARITY_LOW |
_000C_RSPI_BASE_BITRATE_8 |
_0000_RSPI_SIGNAL_ASSERT_SSLO |
_0080_RSPI_SSL_KEEP_ENABLE |
_OF00_RSPI_DATA LENGTH_BITS_16 |
_0000_RSPI_MSB_FIRST |
_0000_RSPI_NEXT_ACCESS_DELAY_DISABLE |
_0000_RSPI_NEGATION_DELAY_DISABLE |
_0000_RSPI_RSPCK_DELAY_DISABLE;

RO1AN7238EJ0100 Rev.1.00

Jan.22.24

RENESAS

Page 40 of 46

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

/* Change DTC settings for 16bit x 8frames */
set_16bit_data_transfer_mode();
set_16bit_data receive_mode();

I* DTC, RSPI start */

R_Config_DTC_Start();

R_Config_DTC1_Start();

R_Config_RSPI0_Start();
R_Config_RSPI0_Send_Receive(NULL, 16U, NULL);

g_length_check = 1U;

}

/* End user code. Do not edit comment generated here */

RO1AN7238EJ0100 Rev.1.00 Page 41 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

5. Importing a Project

The sample programs are distributed in e? studio project format. This section shows how to import a project
into e? studio or CS+. After importing the sample project, make sure to confirm build and debugger setting.

5.1 Importing a Project into e? studio
To use sample programs in e? studio, follow the steps below to import them into e? studio.

In projects managed by e? studio, do not use space codes, multibyte characters, and symbols such as "$",
"#", "%" in folder names or paths to them.

(Note that depending on the version of e? studio you are using, the interface may appear somewhat different
from the screenshots below.)

& work - & studio

Edlt Source Refactor Mavigate Search Project RenesasViews Rul

New AltShift=N > L, Configurations
Open File..
§ SR R
([} Open Projects from File System... g . & Import [m} *
Recent Files >
Select
Close Editor Cirl+W . b
Create new projects from an archive file or directory. H
Flace All Editnrs CirlaGhitta i

Start the e? studio and select the
File >> [Import...]

Select an import wizard:

type filter text

Select [Existing Projects into Workspace].

~ (= General

Revert
o I Archive File
Move... P45 Existing Projects into Workspace |
Renamme... T e System
[T] Preferences
&7 Refresh Fs

() Projects from Fplder or Archive

123 Rename & Impprt Existing C/C++ Project into Workspace
Corlep Ta® Renesas CCRX project conversion to Renesas GCC RX

Ta® Renesas CS+ Pfoject for CATBKOR/CATBKD

T Renesas C5+ Pfoject for CC-RX and CC-RL

Convert Line Delimiters J¢

i Export.. @ Renesas GitHul FreeRTOS (with T libraries) Project
@ Sample Projectf on Renesas Website
Properties Alt+Enter 5 CiCes
Switch Workspace > f—" ICDf?”GE”?’“‘” .
Restart
Exit
|
Y
@ < Back | Next > | Finish Cancel
& Import O %
Import Projects - — Select [Select root directory:].
Select a directory to search for existing Eclipse projects. i /

elﬁct root directory: || C¥application note¥sample project || Browse. l

(O Select archive file: Browse...
Projects:
sample_project (C:¥application_note¥sample_projeck) Select All
—_— Specn‘y the directory Wh_lch stored the project to
= import (e.g. sample_project).
== Each application note has its own project name.

Options

[] Search for n¥fted projects

Select [Copy projects into workspace]

W T T S S e e when copying a project to workspace.
[Hide projects that already exist in the workspace

Working sets

[]Add project to working sets New...

Select [Add project to working sets]
when using the working sets.

Y

@ < Back Next | EEr | -

Figure 5.1 Importing a Project into e? studio

RO1AN7238EJ0100 Rev.1.00 Page 42 of 46
Jan.22.24 RENESAS

RX Family

How to Change Transfer Data Length During RSPl Communication Using a DTC

5.2 Importing a Project into CS+

To use sample programs in CS+, follow the steps below to import them into CS+.

In projects managed by CS+, do not use space codes,
"%" in folder names or paths to them.

multibyte characters, and symbols such as "$", "#",

(Note that depending on the version of CS+ you are using, the interface may appear somewhat different from

the screenshots below.)

Select a project (e.g. sample_project).
Each application note has its own

@ s+ for CC - [Start]
File Edit View Project Build Debug Tool Window Help
@gsml\.} Ha X 5@~/ pa s - @ @ 4 T N @@ 6" @5
DRP3A S
oj 2X @, start
£ Qqa@ Learn About CS+
‘ g We recommend reading the tutorial to find out what can be done in CS+.
The tutorial contains the information on how to effectively use CS+.
Start the CS+, and select
o= -)) . .
[Open Existing MCU Simulator / e* studio / CubeSuite / High-performance
Embedded Workshop / PM+ Project]
& Open Project x
Open Existing Project
1+ <« Windows (C:) > application_note » sample_project v & | Searchsample project p
Open Existing MCU Simulator Onli
The project created with the MC! Organize + New folder = m 0
Support version: ~ Y .
MO Simlator Orline = This PC A Name Date modified Type Size
output by the MCU . .
)5 opters Sresaaorop{ B 30 Objects Select a rcpc file, and then click the button
[Desktop [Open]
[E Documents -
Open Sample Project " Lzsh 112 13PM__Filefelder
Many sample projects that can b 2 [1 semple_projectrcpe 1172 A0PM RCPC File 21 k8]
RH850 RL78 RX EMU“
RH850_F1L_Tutorial_Analysis & Pictures
RHB850_F1L_Tutorial_Basic_Of
GO RH850_MuliCore_CTH_Tutori & Videos
RH850_MutiCore_E 1x_Tutor 5 Windows (C)
= MU1-h (D)
o

File name: | sample_project.repe

V\ Project File for MCU Simulatg
[o Je—=
ancel

project name.

Check [Project File for MCU Simulator

Project Convert Settings

Online / 2 studio (*.rcpc)].

Project
Project Convert Settings
(@ Degfription o
3 — Project
———
sever: @E Description._
R -
Vihen
place T
[Wati
Ifyou
each

Project settings
New microcontroller

Microconisoller

Update..

| | Product Name:REF572NNHxBD
Onchip ROM size[KBytes] 4096

Onchip RAM size([Byles] 1048576

Additional Infomation: Pack age=PLEGDZ24GA-A

New project

Select [Empty Application(CC-RX)] in [Kind of
project:], and then specify the project name and
place, and select whether to backup.

Kind of project: Empty Application(CC-RX)

Project name: sample_project

[0 Cregte on a different place from the source project

[]

Copy all iles in the folder of

Backup the project composition files after conversion

=

Cancel Help

Figure 5.2 Importing a Project into CS+

RO1AN7238EJ0100 Rev.1.00
Jan.22.24

Page 43 of 46

RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

6. Notes

6.1 Notes on Bit Manipulation Instructions

If the target of bit manipulation is an 8-bit I/O register, depending on the code of the C language, bit
manipulation instructions that involve memory access may not be output.

Refer to “C language code example” shown below. In this example, a variable is used on the right side of the
expression for bit manipulation on a general-purpose port. If this code is compiled, it may be expanded to the
instructions shown in “Instruction expansion example”.

In this case, if there is an interrupt that changes the settings of other bits of the same 1/O register and the
interrupt occurs around the time at which A3 occurs, the changes made by the interrupt are not applied.

C language code example:
unsigned char i;

i=1;
PORTD.PODR.BIT.B6 =i

Instruction expansion example:

Al : mov.l #0x8c02d, r14
A2 : mov.b [r14], r15
A3 : bset #6, r15

A4 : mov.b r15, [r14]

A possible solution is to use an immediate value (instead of a variable) on the right side of the expression as
shown below. This solution allows you to output bit manipulation instructions that involve memory access
(with CC-RX V2.06 or later).

if(0 ==)

{

PORTD.PODR.BIT.B6 = 0;
}
else
{

PORTD.PODR.BIT.B6 = 1;
}

This problem may also be prevented by using intrinsic functions provided by the CC-RX compiler.
For detalils, refer to the “CC-RX Compiler User's Manual” (R20UT3248).

RO1AN7238EJ0100 Rev.1.00 Page 44 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

7. Reference Documents
User’'s Manual: Hardware
RX660 Group User's Manual: Hardware (RO1UH0937)

(The latest version can be downloaded from the Renesas Electronics website.)

Application Note
RX Family Board Support Package Module Using Firmware Integration Technology (RO1AN1685)

(The latest version can be downloaded from the Renesas Electronics website.)

User’s Guide: Smart Configurator
Smart Configurator User’s Guide: e? studio (R20AN0451)

(The latest version can be downloaded from the Renesas Electronics website.)

User’s Manual: Compiler
CC-RX Compiler User's Manual (R20UT3248)

(The latest version can be downloaded from the Renesas Electronics website.)

User’'s Manual: RSK
Renesas Starter Kit for RX660 User's Manual (R20UT5017)

(The latest version can be downloaded from the Renesas Electronics website.)

Schematic Diagram: RSK
Renesas Starter Kit for RX660 CPU Board Schematics (R20UT5016)

(The latest version can be downloaded from the Renesas Electronics website.)

RO1AN7238EJ0100 Rev.1.00 Page 45 of 46
Jan.22.24 RENESAS

RX Family How to Change Transfer Data Length During RSPl Communication Using a DTC

Revision History

Description
Rev. Date Page Summary
1.00 Jan. 22, 2024 — First edition issued
RO1AN7238EJ0100 Rev.1.00 Page 46 of 46

Jan.22.24 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. SSL Signal When the RSPI Transfer Data Length Changes
	1.1 SSL Signal Controlled by Hardware
	1.2 SSL Signal Generation Controlled by a General-Purpose Port

	2. Hardware Configuration
	3. Operation Confirmation Conditions
	4. Description of Software
	4.1 Description of Operation
	4.1.1 Communication When the Transfer Data Length is 24 Bits
	4.1.2 Communication When the Transfer Data Length Is 16 Bits

	4.2 Components Used for Firmware Integration Technology (FIT) Modules and Code Generation
	4.2.1 Smart Configurator (SC) Settings for FIT Module Component
	4.2.2 SC Settings for Code Generation Components
	4.2.2.1 Interrupt controller configuration
	(1) Open the [Components] tab, and then click the icon for adding a component.
	(2) In the [Software Component Selection] window, select [Interrupt Controller], and then click [Next].
	(3) In the window for adding the component, click [Finish].
	(4) Software component configuration
	(5) Pin configuration

	4.2.2.2 Data transfer controller configuration (DTC settings for data transmission (transfer data length is 24 bits))
	(1) Open the [Components] tab, and then click the icon for adding a component.
	(2) In the [Software Component Selection] window, select [Data Transfer Controller], and then click [Next].
	(3) In the window for adding the component, click [Finish].
	(4) Software component configuration

	4.2.2.3 Data transfer controller configuration (DTC settings for data reception (transfer data length is 24 bits))
	(1) Open the [Components] tab, and then click the icon for adding a component.
	(2) In the [Software Component Selection] window, select [Data Transfer Controller], and then click [Next].
	(3) In the window for adding the component, click [Finish].
	(4) Software component configuration

	4.2.2.4 SPI operation mode (4-wire method) configuration
	(1) Open the [Components] tab, and then click the icon for adding a component.
	(2) In the [Software Component Selection] window, select [SPI Operation Mode (4-wire method)], and then click [Next].
	(3) In the window for adding the component, select [Master transmit/receive] for [Operation], and then click [Finish].
	(4) Software component configuration
	(5) Pin configuration

	4.2.3 Generating Code
	4.2.4 Adding Code to the SC-Generated Code
	4.2.4.1 Additional processing to the SC-generated code
	4.2.4.2 Constants added to the SC-generated code
	4.2.4.3 Variables added to the SC-generated code
	4.2.4.4 Functions added to the SC-generated code
	4.2.4.5 Adding code to the main routine
	Adding code to the Config_RSPI0.h file
	Adding code to the main() function
	4.2.4.6 Adding code to the IRQ9 interrupt handler
	Adding code to the “Includes” and “Global variables and functions” sections in the Config_ICU_user.c file
	Adding code to the r_Config_ICU_irq9_interrupt () function
	4.2.4.7 Adding the set_16bit_data_transfer_mode() function to the Config_DTC.c file
	Adding code to the Config_DTC.h file
	Adding code to the “Global variables and functions” section in the Config_DTC.c file
	set_16bit_data_transfer_mode() function added to the Config_DTC.c file
	4.2.4.8 Adding the set_16bit_data_receive_mode() function to the Config_DTC1.c file
	Adding code to the Config_DTC1.h file
	Adding code to “Global variables and functions” in the Config_DTC1.c file
	set_16bit_data_receive_mode() function added to the Config_DTC1.c file
	4.2.4.9 Adding code to the SPTI0 interrupt handler
	Code added to the r_Config_RSPI0_callback_transmitend() function
	4.2.4.10 Adding code to the SPRI0 interrupt handler
	Code added to the r_Config_RSPI0_callback_receiveend() function
	4.2.4.11 Adding code to the SPCI0 interrupt handler
	Adding code to the “Includes” and “Global variables and functions” sections in the Config_RSPI0_user.c file
	Code added to the r_Config_RSPI0_communication_end_interrupt() function

	5. Importing a Project
	5.1 Importing a Project into e2 studio
	5.2 Importing a Project into CS+

	6. Notes
	6.1 Notes on Bit Manipulation Instructions

	7. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

