
 Application Note

R01AN6472EJ0220 Rev.2.20 Page 1 of 58
Nov.15.24

RZ/T2, RZ/N2
Quick Start Guide: Firmware Update
Introduction
This document describes the procedure for updating user application programs via Ethernet by using the
RZ/T2, RZ/N2 firmware update sample programs.

Target Device
RZ/T2M Group

RZ/T2L Group

RZ/N2L Group

RZ/T2H Group

Contents

1. Overview ... 3
1.1 Introduction .. 3
1.2 Features .. 3
1.3 Limitations ... 3
1.4 Package Contents ... 3
1.5 Related Documents ... 5
1.6 Explanation of Terms... 5

2. Firmware Update Mechanism .. 6
2.1 Operating Modes ... 6
2.2 Sample Program Configuration ... 7
2.3 Using External Flash Memory ... 7

3. Configuring the Firmware Update System ... 10
3.1 Update Program and SSBL Configuration .. 12
3.1.1 Update Program .. 12
3.1.2 SSBL ... 13
3.2 User Application Program Configuration ... 15
3.3 Concatenate Program and Parameter files ... 24
3.4 Program to QSPI Flash Memory ... 25

4. Applying Firmware Updates ... 31
4.1 Host PC Setup ... 31
4.1.1 Tool Setup ... 31
4.1.2 Network Adapter Settings .. 31
4.2 Update Procedure ... 33

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 2 of 58
Nov.15.24

4.2.1 Creating Update File ... 35
4.2.2 Applying Update .. 35

5. Sample Program .. 41
5.1 Update File Format .. 41
5.2 Communication Protocols of Update Program .. 43
5.2.1 START_UPDATE .. 44
5.2.2 FIRMWARE_DATA ... 44
5.2.3 ACK ... 44
5.2.4 NACK ... 44
5.3 Implementation Specifications of Update Program ... 46
5.3.1 Development Environment .. 46
5.3.2 File Structure ... 46
5.3.3 Functions ... 47
5.3.4 Flowchart of Update Program Processing .. 48
5.3.5 Memory Maps for RZ/T2M and RZ/T2L RSK+ .. 49
5.3.6 Memory Maps for RZ/N2L RSK+ .. 51
5.3.7 Memory Maps for EVB .. 52
5.3.8 How to Use NOR Flash in the RZ/N2L Project ... 54
5.4 Specifications of Tools Used with Sample Program ... 55
5.4.1 fwupdate_utility.py ... 55
5.4.2 fwupdate.py ... 57

Revision History .. 58

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 3 of 58
Nov.15.24

1. Overview
1.1 Introduction
This document describes the functions provided by the RZ/T2, RZ/N2 firmware update sample programs and
explains how to use the various tools.

This sample program package uses the Flexible Software Package for RZ/T2M, RZ/T2L, RZ/N2L and
RZ/T2H. For more information about FSP, please refer to RZ/T2, RZ/N2 Getting Started with Flexible
Software Package.

The sample program can update user application programs in the external flash memory on the boards, and
the outline of the sample program is as follows. For details, please refer to Chapters 2, 3 and 4.

• Upon system reset, a loader program called the Secondary Stage Boot Loader (SSBL) is initiated from
external flash.

• Based on the setting of a DIP switch, the SSBL will either load and start the user application, or an update
program.

• The update program receives a binary via ethernet and replaces the user application in the external flash.
• Preparation of the binary for the update and transfer to the board is done via Python script on the PC.
• The initial flashing of the firmware (SSBL, update program and user application) is handled by scripts and

sample program included in the package from the "RZ/T2, RZ/N2 Device Setup Guide for Flash boot "
Application Note.

1.2 Features
The sample program has the following features:

• It is possible to update via Ethernet user application programs written to the QSPI flash, OSPI flash and
NOR flash memory on Renesas Starter Kit+ for RZ/T2M, RZ/T2L and RZ/N2L.

• It is possible to update via Ethernet user application programs written to the QSPI flash, OSPI flash
memory on RZ/T2H Evaluation Board.

• If the update of a user application program fails, the user can redo the update as many times as
necessary until the update is successful.

• RZ/T2M and RZ/T2H Cortex®-R52 core can update applications that use dual cores.

1.3 Limitations
The sample program has the following limitations:

• It is not possible to update a user application program while a user application program is running.
• This version does not support RZ/T2H Cortex®-A55 core.

1.4 Package Contents
RZ/T2, RZ/N2 firmware update sample program package contains several files with software and tools. The
following table lists their contents.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 4 of 58
Nov.15.24

Table 1.1 Firmware Update Sample Program Package Contents

No. File Path Classification Remarks
1 RZT2M_RSK_FWUpdate_Rev220.zip Software Sample program code for RZ/T2M
2 RZT2M_RSK_FWUpdate.bin Software Programs and data for RZ/T2M

stored in the “Pre-built parameters
and programs” folder.
These files are used in Chapters 3
and 4 of this document as a
reference for building the
environment.
(The application's bin file was
generated by the IAR Compiler
project)

3 RZT2M_RSK_SSBL.bin Software
4 RZT2M_RSK_SSBL_xspi0.bin Software & data
5 parameter_RZT2M_bsp_LED_0.bin Data
6 parameter_RZT2M_bsp_LED_1.bin Data
7 initial_image_RZT2M_xspi0.bin Data
8 RZT2M_bsp_LED_0.bin Software
9 RZT2M_bsp_LED_1.bin Software
10 RZT2M_bsp_LED_x.zip Software
11 RZT2M_bsp_LED_x_CPU1.zip Software
12 RZT2L_RSK_FWUpdate_Rev220.zip Software Sample program code for RZ/T2L
13 RZT2L_RSK_FWUpdate.bin Software Programs and data for RZ/T2L

stored in the “Pre-built parameters
and programs” folder.
These files are used in Chapters 3
and 4 of this document as a
reference for building the
environment.
(The application's bin file was
generated by the IAR Compiler
project)

14 RZT2L_RSK_SSBL.bin Software
15 RZT2L_RSK_SSBL_xspi0.bin Software & data
16 parameter_RZT2L_bsp_LED_1.bin Data
17 parameter_RZT2L_bsp_LED_3.bin Data
18 initial_image_RZT2L_xspi0.bin Data
19 RZT2L_bsp_LED_1.bin Software
20 RZT2L_bsp_LED_3.bin Software
21 RZT2L_bsp_LED_x.zip Software
22 RZN2L_RSK_FWUpdate_Rev200.zip Software Sample program code for RZ/N2L
23 RZN2L_RSK_FWUpdate.bin Software Programs and data for RZ/N2L

stored in the “Pre-built parameters
and programs” folder.
These files are used in Chapters 3
and 4 of this document as a
reference for building the
environment.

24 RZN2L_RSK_SSBL.bin Software
25 RZN2L_RSK_SSBL_xspi0.bin Software & data
26 parameter_RZN2L_bsp_LED_0.bin Data
27 parameter_RZN2L_bsp_LED_3.bin Data
28 initial_image_RZN2L_xspi0.bin Data
29 RZN2L_bsp_LED_0.bin Software
30 RZN2L_bsp_LED_3.bin Software
31 RZN2L_bsp_LED_x.zip Software
32 RZT2H_EVB_FWUpdate_Rev220.zip Software Sample program code for RZ/T2H
33 RZT2H_EVB_FWUpdate.bin Software Programs and data for RZ/T2H

stored in the “Pre-built parameters
and programs” folder.
These files are used in Chapters 3
and 4 of this document as a
reference for building the
environment.
(The application's bin file was
generated by the IAR Compiler
project)

34 RZT2H_EVB_SSBL.bin Software
35 RZT2H_EVB_SSBL_xspi0.bin Software & data
36 parameter_RZT2H_bsp_LED_0.bin Data
37 parameter_RZT2H_bsp_LED_1.bin Data
38 initial_image_RZT2H_xspi0.bin Data
39 RZT2H_bsp_LED_0.bin Software
40 RZT2H_bsp_LED_1.bin Software
41 RZT2H_bsp_LED_x.zip Software
42 RZT2H_bsp_LED_x_CPU1.zip Software
43 fwupdate_utility.py Tool Update file generator tool
44 fwupdate.py Tool Update files send tool
45 r01an6472ej0220-rzt2-n2-fwupdate.pdf Document This document

RZ/T2, RZ/N2 Quick Start Guide:
Firmware Update

46 r01an6641ej0220-rzt2-n2-releasenote.pdf Document Release Note

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 5 of 58
Nov.15.24

1.5 Related Documents
Table 1.2 lists documents related to this document.

Table 1.2 Related Documents

Title Document Number
RZ/T2M Group Renesas Starter Kit+ for RZ/T2M User's Manual R20UT4939EG****
RZ/T2M Group Renesas Starter Kit+ for RZ/T2M Quick Start Guide R20UT4941EG****
RZ/T2, RZ/N2 Getting Started with Flexible Software Package R01AN6434EJ****
RZ/T2M Group User’s Manual: Hardware R01UH0916EJ****
RZ/T2, RZ/N2 Device Setup Guide for Flash boot R01AN6471EJ****
RZ/T2L Group Renesas Starter Kit+ for RZ/T2L User's Manual R20UT5164EJ****
RZ/T2L Group Renesas Starter Kit+ for RZ/T2L Quick Start Guide R20UT5235EJ****
RZ/T2L Group User’s Manual: Hardware R01UH0985EJ****
RZ/N2L Group Renesas Starter Kit+ for RZ/N2L User's Manual R20UT4984EG****
RZ/N2L Group Renesas Starter Kit+ for RZ/N2L Quick Start Guide R20UT4986EG****
RZ/N2L Group User’s Manual: Hardware R01UH0955EJ****
RZ/T2H Group RZ/T2H Evaluation Board User’s Manual R20UT5405EJ****
RZ/T2H and RZ/N2H Groups User’s Manual: Hardware R01UH1039EJ****

1.6 Explanation of Terms
The meanings of terms used in this document are indicated below.

Term Used in This Document Meaning of Term
Update program The program, contained in the sample program package, used to

update user application programs.
User application program Program that can be updated with this sample program package.
Update file The program to be updated.
Firmware update system The file containing the program to be updated.
SSBL Second stage boot loader, referred to as a loader program in

RZ/T2M Group Renesas Starter Kit+ for RZ/T2M User's Manual,
RZ/T2L Group Renesas Starter Kit+ for RZ/T2L User's Manual,
RZ/N2L Group Renesas Starter Kit+ for RZ/N2L User's Manual and
RZ/T2H Group RZ/T2H Evaluation Board User’s Manual.

Loader program SSBL, Second stage boot loader

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 6 of 58
Nov.15.24

2. Firmware Update Mechanism
The sample program can update user application programs written to the external flash memory on the
boards. Figure 2.1 illustrates the system structure of the sample program.

The target devices are RZ/T2M, RZ/T2L, RZ/N2L or RZ/T2H. The target boards are the Renesas Starter Kit+
(hereinafter referred to as RSK+) for RZ/T2M, RZ/T2L, RZ/N2L or RZ/T2H Evaluation Board (hereinafter
referred to as EVB).

Update file

fwupdate_utility.py

Update file

fwupdate.py

RSK+ or EVB

E
ther interface

QSPI flash

User
program

RZ/T2x or RZ/N2x
device

Update
program

User program

Parameters for the user
application program

Update file

Update result

Figure 2.1 System Structure of Firmware Update Sample Program

The sample program updates user application programs through the following sequence of steps:

1. Using fwupdate_utility.py, the user creates an update file containing the user application program to be
applied as an update and information on its location in the external flash memory. Refer to 5.4.1 for
details of fwupdate_utility.py and to 5.1 for details of the update file.

2. The user starts the device in update mode.

3. Using fwupdate.py, the user sends the update file from the host PC to the device via an Ethernet

connection. Refer to 5.2 for the communication protocols used between the host PC and the board and
the packet format of the communication protocols.

4. When the update file is received by the device, the update program on the device extracts the user

application program and writes it to the external flash memory. Refer to 5.3 for details of the update
program.

2.1 Operating Modes
You can select the operating mode of the sample program by means of switch settings on the evaluation
board. Refer to Table 2.1 for the operating mode selection method.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 7 of 58
Nov.15.24

Table 2.1 Switches Used for Operating Mode Selection

Board Switch MCU Port MCU Pin Operating Mode
RZ/T2M RSK+ SW3-1 P11_0 Y18 OFF: Application mode

ON: Update mode
RZ/T2L RSK+ SW3-2 P04_1 F1 OFF: Application mode

ON: Update mode
RZ/N2L RSK+ SW3-1 P13_6 M13 OFF: Application mode

ON: Update mode
RZ/T2H EVB SW12-1 P35_3 V22 OFF: Application mode

ON: Update mode

The update program is launched at startup when update mode is selected as the operating mode, and the
user application program is launched at startup when application mode is selected. Therefore, the sample
program cannot perform an update while a user application program is running.

2.2 Sample Program Configuration
Operating mode checking and launching of the program corresponding to the operating mode is performed
by a loader program. In this document, the loader program is referred to as SSBL.

2.3 Using External Flash Memory
The sample program stores the programs that comprise the system in the external flash memory on the
evaluation board, then loads them into the RAM and runs them. Figure 2.2, Figure 2.3, Figure 2.4, Figure 2.5
and Figure 2.6 show how the Rev220 sample program utilizes the external flash memory. For information on
how the Rev200 sample program for the RZ/N2L uses external flash memory, please refer to 5.3.6.

The sample program updates the target user application program, but it does not update the loader program
and update program. Therefore, when updating fails, any number of update attempts may be performed until
the update succeeds.

In this sample program, you can configure whether the user application program area of the external flash
memory that can be updated by the update program is treated as one plane or divided into two planes. If the
user application program area of the external flash memory is treated as one plane, updating the user
application program will overwrite a user application program in the external flash memory. If the user
application program area is divided into two planes, updating the user application program area will update
the user application program area on one side of the two planes in the external flash memory and leave the
program before the update in the other user application program area.

Parameter for the loader

SSBL

0x60000000

0x60040000

0x63FFFFFF

Parameter for the user application
program (for CPU0/ for CPU1)

Plane Management Area

User Application Program

0x60040020

0x60040030

0x60000050

Update program
0x60007050

Updatable
area

Figure 2.2 xSPI0 Area Flash Memory Usage on RSK+

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 8 of 58
Nov.15.24

Parameter for the loader

SSBL

0x68000000

0x68040000

0x68FFFFFF

Parameter for the user application
program (for CPU0/ for CPU1)

Plane Management Area

User Application Program

0x68040020

0x68040030

0x68000050

Update program
0x68007050

Updatable
area

Figure 2.3 xSPI1 Area Flash Memory Usage on RSK+

Parameter for the loader

SSBL

0x70000000

0x70040000

0x71FFFFFF

Parameter for the user application
program (for CPU0/ for CPU1)

Plane Management Area

User Application Program

0x70040020

0x70040030

0x70000050

Update program
0x70007050

Updatable
area

Figure 2.4 External Bus Area Flash Memory Usage on RSK+

Parameter for the loader

SSBL

0x40000000

0x40040000

0x43FFFFFF

Parameter for the user application
program (for CPU0/ for CPU1)

Plane Management Area

User Application Program

0x40040020

0x40040030

0x40000050

Update program
0x40007050

Updatable
area

Figure 2.5 xSPI0 Area Flash Memory Usage on EVB

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 9 of 58
Nov.15.24

Parameter for the loader

SSBL

0x50000000

0x50040000

0x50FFFFFF

Parameter for the user application
program (for CPU0/ for CPU1)

Plane Management Area

User Application Program

0x50040020

0x50040030

0x50000050

Update program
0x50007050

Updatable
area

Figure 2.6 xSPI1 Area Flash Memory Usage on EVB

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 10 of 58
Nov.15.24

3. Configuring the Firmware Update System
The procedure for configuring a system for updating user application programs using elements supplied as
part of the sample program package is described below.

Table 3.1 shows the environment required for configuring the RZ/T2M RSK+. Table 3.2 shows the
environment required for configuring the RZ/T2L RSK+. Table 3.3 shows the environment required for
configuring the RZ/N2L RSK+. Table 3.4 shows the environment required for configuring the RZ/T2H EVB.

Table 3.1 Setup Environment for RZ/T2M RSK+

Name Remarks
Renesas Starter Kit+ for RZ/T2M RZ/T2M RSK+
USB cables 1 (Mini-B, type-A)

1 (Type-C, type-A)
Windows host PC IAR Embedded Workbench or e2 studio installed
parameter_generator.py Note Generation tool for the parameter for the loader and the

parameter for the user application program
device_setup.py Note Command sending tool for device setup
RZT2M_RSK_DeviceSetup.out.srec Note S-Record format device setup sample program

Note Included in the RZ/T2, RZ/N2 Device Setup sample program package.

Table 3.2 Setup Environment for RZ/T2L RSK+

Name Remarks
Renesas Starter Kit+ for RZ/T2L RZ/T2L RSK+
USB cables 1 (Mini-B, type-A)

1 (Type-C, type-A)
Windows host PC IAR Embedded Workbench or e2 studio installed
parameter_generator.py Note Generation tool for the parameter for the loader and the

parameter for the user application program
device_setup.py Note Command sending tool for device setup
RZT2L_RSK_DeviceSetup_usb.out.srec Note S-Record format device setup sample program

Note Included in the RZ/T2, RZ/N2 Device Setup sample program package.

Table 3.3 Setup Environment for RZ/N2L RSK+

Name Remarks
Renesas Starter Kit+ for RZ/N2L RZ/N2L RSK+
USB cables 1 (Mini-B, type-A)

1 (Type-C, type-A)
Windows host PC IAR Embedded Workbench or e2 studio installed
parameter_generator.py Note Generation tool for the parameter for the loader and the

parameter for the user application program
device_setup.py Note Command sending tool for device setup
RZN2L_RSK_DeviceSetup_qspi.out.srec Note S-Record format device setup sample program

Note Included in the RZ/T2, RZ/N2 Device Setup sample program package.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 11 of 58
Nov.15.24

Table 3.4 Setup Environment for RZ/T2H EVB

Name Remarks
RZ/T2H Evaluation Board RZ/T2H EVB
USB cables 1 (Mini-B, type-A)

1 (Type-C, type-A)
Windows host PC IAR Embedded Workbench or e2 studio installed
parameter_generator.py Note Generation tool for the parameter for the loader and the

parameter for the user application program
device_setup.py Note Command sending tool for device setup
RZT2H_EVB_DeviceSetup.out.srec Note S-Record format device setup sample program

Note Included in the RZ/T2H Device Setup sample program package.

Table 3.5 lists the user application program written during device setup for RZ/T2M. Table 3.6 lists the user
application program written during device setup for RZ/T2L. Table 3.7 lists the user application program
written during device setup for RZ/N2L. Table 3.8 lists the user application program written during device
setup for RZ/T2H Cortex®-R52.

Table 3.5 User Application Program Set Up for RZ/T2M

File Name Description
RZT2M_bsp_LED_0.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2M pack.
See section 3.2 for detailed creation instructions.
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED0: BSP_IO_PORT_19_PIN_6

parameter_RZT2M_bsp_LED_0.bin Parameter for the user application program
(RZT2M_bsp_LED_0.bin). This file is created after building
RZT2M_bsp_LED_0.bin.
See section 3.2 for detailed creation instructions.
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x60040030
RAM address where the program is loaded: 0x00000000

Table 3.6 User Application Program Set Up for RZ/T2L

File Name Description
RZT2L_bsp_LED_1.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2L pack.
See section 3.2 for detailed creation instructions.
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED0: BSP_IO_PORT_17_PIN_6

parameter_RZT2L_bsp_LED_1.bin Parameter for the user application program
(RZN2L_bsp_LED_1.bin). This file is created after building
RZN2L_bsp_LED_1.bin.
See section 3.2 for detailed creation instructions.
The following OSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x60040030
RAM address where the program is loaded: 0x00000000

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 12 of 58
Nov.15.24

Table 3.7 User Application Program Set Up for RZ/N2L

File Name Description
RZN2L_bsp_LED_0.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/N2L pack.
See section 3.2 for detailed creation instructions.
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED0: BSP_IO_PORT_18_PIN_2

parameter_RZN2L_bsp_LED_0.bin Parameter for the user application program
(RZN2L_bsp_LED_0.bin). This file is created after building
RZN2L_bsp_LED_0.bin.
See section 3.2 for detailed creation instructions.
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x6004D000
RAM address where the program is loaded: 0x00000000

Table 3.8 User Application Program Set Up for RZ/T2H Cortex®-R52

File Name Description
RZT2H_bsp_LED_0.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2H pack.
See section 3.2 for detailed creation instructions.
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED0: BSP_IO_PORT_23_PIN_1

parameter_RZT2H_bsp_LED_0.bin Parameter for the user application program
(RZT2H_bsp_LED_0.bin). This file is created after building
RZT2H_bsp_LED_0.bin.
See section 3.2 for detailed creation instructions.
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x40040030
RAM address where the program is loaded: 0x00000000

3.1 Update Program and SSBL Configuration
IAR Embedded Workbench for ARM is used as the development environment of the update program and
SSBL.

3.1.1 Update Program
Open the following workspace, select the update program project (RZ*_*_FWUpdate), and build the project.

RZ*_*_FWUpdate_Rev*\RZ*_*_FWUpdate.eww

In the default configuration, the update program is for xSPI0 boot mode and flash one plane. The
configurations of the update program can be changed with the following files.

RZ*_*_FWUpdate_Rev*\src\fwupdate_cfg.h

For RZ/N2L only, if you use 16-bit bus boot mode, you also need to change the sample program project
settings by referring to Section 5.3.8.

The configuration of the update program is shown in Table 3.9.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 13 of 58
Nov.15.24

Table 3.9 Configurations for update program

Configuration items Configurable values Description
FWUPDATE_CFG_BOOT_
MODE_SELECT

BOOT_MODE_XSPI0 Default settings.
Specified when using in xSPI0
boot mode (x1 boot serial flash).

BOOT_MODE_XSPI1 Specified when using in xSPI1
boot mode (x1 boot serial flash).

BOOT_MODE_NOR Specified when using in 16-bit bus
boot mode (NOR flash).
Not supported on RZ/T2H.

FWUPDATE_CFG_FLASH
_MNG_AREA

FLASH_MNG_AREA_SINGLE_BANK Default settings.
Specify when using the user
application program area on the
external flash for one plane
management.

FLASH_MNG_AREA_DUAL_BANK Specify this when using the user
application program area of the
external flash for two plane
management.

3.1.2 SSBL
Open the following workspace, select the SSBL project (RZ*_*_SSBL), and build the project.

 RZ*_*_SSBL_Rev*\RZ*_*_SSBL.eww

In the default configuration, the update program is for xSPI0 boot mode, single core, and flash one plane.
The configurations of the SSBL can be changed with the following files.

RZ*_*_SSBL_Rev*\src\ssbl_cfg.h

For RZ/N2L only, if you use 16-bit bus boot mode, you also need to change the sample program project
settings by referring to Section 5.3.8.

[Only for dual core configuration] If you want to run the user application on CPU1, you will need SSBL that
has been changed to dual core settings.

The configuration of the update program is shown in Table 3.10.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 14 of 58
Nov.15.24

Table 3.10 Configurations for SSBL

Configuration items Configurable values Description
SSBL_CFG_BOOT_MODE
_SELECT

BOOT_MODE_XSPI0 Default settings.
Specified when using in xSPI0
boot mode (x1 boot serial flash).

BOOT_MODE_XSPI1 Specified when using in xSPI1
boot mode (x1 boot serial flash).

BOOT_MODE_NOR Specified when using in 16-bit bus
boot mode (NOR flash).
Not supported on RZ/T2H.

SSBL_CFG_OPERATING_
CORE_MODE

SINGLE_CORE Default settings.
Specify when using as a single
core.

DUAL_CORE Specify when using as a dual
core.

SSBL_CFG_FLASH_MNG_
AREA

FLASH_MNG_AREA_SINGLE_BANK Default settings.
Specify when using the user
application program area on the
external flash for one plane
management.

FLASH_MNG_AREA_DUAL_BANK Specify this when using the user
application program area of the
external flash for two plane
management.

After building SSBL (RZ*_RSK_SSBL.bin), generate parameter for the loader.

The SSBL program size (binary data size) must be a multiple of 512 bytes and no larger than 56KB for
RZ/T2M and RZ/T2L, no larger than 120KB for RZ/N2L and no larger than 52KB for RZ/T2H Cortex®-R52. If
the binary data size after the user program build is not a multiple of 512 bytes, add dummy data after the
binary data to adjust it to a multiple of 512 bytes. For information on how to adjust the binary data to 512-byte
units by adding project settings, refer to Section 3.3.7 in "RZ/T2, RZ/N2 Device Setup Guide for Flash boot".

Parameter for the loader is generated using the tool included in the device setup (parameter_generator.py).

The following shows an example of tool execution when xSPI0 address space flash is specified:

• External flash address where the program is stored (--src_addr): 0x60000050 or 0x40000050
• RAM address where the program is loaded (--dest_addr): 0x00102000

The following command generates RZT2M_RSK_SSBL_xspi0.bin in which the parameter for the loader and
the SSBL program are concatenated (for RZ/T2M):

python parameter_generator.py loader --mpu rzt2m --mode xspi0 --src_addr
60000050 --dest_addr 00102000 -i RZT2M_RSK_SSBL.bin -o
RZT2M_RSK_SSBL_xspi0.bin --concat_loader

The following command generates RZT2L_RSK_SSBL_xspi0.bin in which the parameter for the loader and
the SSBL program are concatenated (for RZ/T2L):

python parameter_generator.py loader --mpu rzt2l --mode xspi0 --src_addr
60000050 --dest_addr 00102000 -i RZT2L_RSK_SSBL.bin -o
RZT2L_RSK_SSBL_xspi0.bin --concat_loader

The following command generates RZN2L_RSK_SSBL_xspi0.bin in which the parameter for the loader and
the SSBL program are concatenated (for RZ/N2L):

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 15 of 58
Nov.15.24

python parameter_generator.py loader --mpu rzn2l --mode xspi0 --src_addr
60000050 --dest_addr 00102000 -i RZN2L_RSK_SSBL.bin -o
RZN2L_RSK_SSBL_xspi0.bin --concat_loader

The following command generates RZT2H_EVB_SSBL_xspi0.bin in which the parameter for the loader and
the SSBL program are concatenated (for RZ/T2H Cortex®-R52):

python parameter_generator.py loader --mpu rzt2h_r52 --mode xspi0 --src_addr
40000050 --dest_addr 00102000 -i RZT2H_EVB_SSBL.bin -o
RZT2H_EVB_SSBL_xspi0.bin --concat_loader

3.2 User Application Program Configuration
Create a user application program based on the Blinky sample application included in the Flexible Software
Package RZ/T2M, RZ/T2L, RZ/N2L or RZ/T2H pack. For more information about FSP, please refer to
RZ/T2, RZ/N2 Getting Started with Flexible Software Package.

Also refer to the sample project for the user application program included in this package.

Sample project for CPU0: RZ*_bsp_LED_x.zip

[Only for dual core configuration] Sample project for CPU1: RZ*_bsp_LED_x_CPU1.zip

When using a sample project for CPU1, be sure to unzip it to the same workspace or folder as the sample
project for CPU0.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 16 of 58
Nov.15.24

1. Create Blinky sample application.
See section 5.2 “Tutorial Blinky” in RZ/T2, RZ/N2 Getting Started with Flexible Software Package for the
creation instructions.
Project name example: RZT2M_bsp_LED_0
The project name is an example for RZ/T2M. For RZ/T2L, RZ/N2L and RZ/T2H Cortex®-R52, read its
MPU name instead.
Replace the LED number with the one you actually use. In the sample, LED0 is used for RZ/T2M, RZ/N2L
and RZ/T2H Cortex®-R52, and LED1 is used for RZ/T2L.

[Only for dual core configuration] For user application programs for CPU1, please note the following
settings.

• Select CPU1 by specifying "Core" when creating the project.

• An application for CPU0 is required. In the same workspace, select the application created earlier for
CPU0.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 17 of 58
Nov.15.24

2. Open the memory allocation configuration file and change the memory assignment.
The area that can be used by application programs varies depending on the device. Table 3.11 shows
the available areas.

Table 3.11 Operating area of user application program

Device Core Memory (address range)
RZ/T2M CPU0 ATCM (0x00000000 – 0x0007FFFF)

CPU1 SystemRAM (0x10000000 – 0x1017FFFF)
RZ/T2L CPU0 ATCM (0x00000000 – 0x0007FFFF)
RZ/N2L CPU0 ATCM (0x00000000 – 0x0001FFFF)
RZ/T2H Cortex®-R52 CPU0 ATCM (0x00000000 – 0x0007FFFF)

CPU1 SystemRAM (0x10000000 – 0x101FFFFF)

A modified example for EWARM and e2 studio of placing the start address of the user application
program at 0x00000000 in the ATCM is shown below.

Change the following files in the user application project.
EWARM: RZT2M_bsp_LED_0\script\fsp_ram_execution.icf
e2 studio: RZT2M_bsp_LED_0\script\fsp_ram_execution.ld
This is the file path when the project name is for RZT2M. For RZ/T2L, RZ/N2L and RZ/T2H Cortex®-R52,
read its MPU name instead.

[Only for dual core configuration] For the user application program for CPU1, it is located from
0x10000000 in SystemRAM. Please replace the address ranges below with values that correspond to
SystemRAM and check the settings.

2-1. Change the program entry address to 0x00000000.

Please note that there is a difference in the number of lines to be modified between RZ/T2M, RZ/T2L,
RZ/N2L and RZ/T2H Cortex®-R52. The only difference is the number of lines, the addresses and area
specifications that need to be changed are the same.

fsp_ram_execution.icf lines 471-472 before modifying:

define symbol __region_D_LOADER_STACK_start__ = LOADER_STACK_ADDRESS;

define symbol __region_D_LOADER_STACK_end__ = LOADER_STACK_END_ADDRESS;

fsp_ram_execution.icf lines 471-472 After modifying:

define symbol __region_D_LOADER_STACK_start__ = 0x00000000;

define symbol __region_D_LOADER_STACK_end__ = 0x00007FFF;

fsp_ram_execution.ld lines 143-159 before modifying:
 .loader_text LOADER_TEXT_ADDRESS : AT (LOADER_TEXT_ADDRESS)

 {

 *(.loader_text)

 /fsp/src/bsp/cmsis/Device/RENESAS/Source/.o(.text*)

 /fsp/src/bsp/mcu/all//bsp_irq_core.o(.text*)

 /fsp/src/bsp/mcu/all/bsp_clocks.o(.text)

 /fsp/src/bsp/mcu/all/bsp_irq.o(.text)

 /fsp/src/bsp/mcu/all/bsp_semaphore.o(.text)

 /fsp/src/bsp/mcu/all/bsp_register_protection.o(.text)

 /fsp/src/bsp/mcu/all/bsp_cache.o(.text)

 /fsp/src/r_ioport/r_ioport.o(.text)

 KEEP(*(.warm_start))

 } > LOADER_STACK

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 18 of 58
Nov.15.24

fsp_ram_execution.ld lines 459 After modifying:
 .loader_text 0x00000000 : AT (0x00000000)

 {

 *(.loader_text)

 /fsp/src/bsp/cmsis/Device/RENESAS/Source/.o(.text*)

 /fsp/src/bsp/mcu/all//bsp_irq_core.o(.text*)

 /fsp/src/bsp/mcu/all/bsp_clocks.o(.text)

 /fsp/src/bsp/mcu/all/bsp_irq.o(.text)

 /fsp/src/bsp/mcu/all/bsp_semaphore.o(.text)

 /fsp/src/bsp/mcu/all/bsp_register_protection.o(.text)

 /fsp/src/bsp/mcu/all/bsp_cache.o(.text)

 /fsp/src/r_ioport/r_ioport.o(.text)

 KEEP(*(.warm_start))

 } > ATCM

If you place your program in the ATCM, you must make the following changes to avoid build errors.

fsp_ram_execution.icf lines 845 before modifying:

 place in D_LOADER_STACK_region { last block BTCM_END_block };

fsp_ram_execution.icf lines 845 After modifying:

 place in BTCM_region { last block BTCM_END_block };

fsp_ram_execution.ld lines 459 before modifying:
__ddsc_BTCM_END = (1 == _RZT_ORDINAL) && DEFINED(CR52_0) ? __AbtStackLimit : __ddsc_BTCM_START;

fsp_ram_execution.ld lines 459 After modifying:

__ddsc_BTCM_END = (1 == _RZT_ORDINAL) && DEFINED(CR52_0) ? __ddsc_BTCM_START :

__ddsc_BTCM_START;

2-2. Place program code and static variables with initial values in ATCM. Place uninitialized variables and
heap areas in ATCM or other space.
Please refer to the following files for setting examples.
Modifications may be required depending on the processing and size of the user application.
EWARM: RZ*_bsp_LED_x\script\fsp_ram_execution.icf
e2 studio: RZ*_bsp_LED_x\script\fsp_ram_execution.ld

[Only for dual core configuration] For the user application program for CPU1, please refer to the
following file as a setting example.
EWARM: RZ*_bsp_LED_x_CPU1\script\fsp_ram_execution.icf
e2 studio: RZ*_bsp_LED_x_CPU1\script\fsp_ram_execution.ld

3. Open the following file and modify the initialization process.

RZT2M_bsp_LED_0\rzt\fsp\src\bsp\cmsis\Device\RENESAS\Source\startup_core.c
This is the file path for RZ/T2M. For RZ/T2L, RZ/N2L and RZ/T2H Cortex®-R52 read its MPU name
instead.

[Only for dual core configuration] For user application programs for CPU1, the changes described here
are not required.

Delete the following code.
Please note that there is a difference in the number of lines to be deleted between RZ/T2M, RZ/T2L,
RZ/N2L and RZ/T2H Cortex®-R52. The only difference is the number of lines, the processing that needs
to be deleted is the same.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 19 of 58
Nov.15.24

startup_core.c before modifying:
Lines 150-204

/***

**********//**

 * After boot processing, LSI starts executing here.

**

************/

BSP_TARGET_ARM BSP_ATTRIBUTE_STACKLESS void system_init (void)

{

 __asm volatile (

 "set_hactlr: \n"

 " MOVW r0, %[bsp_hactlr_bit_l] \n" /* Set HACTLR bits(L) */

 " MOVT r0, #0 \n"

 " MCR p15, #4, r0, c1, c0, #1 \n" /* Write r0 to HACTLR */

 ::[bsp_hactlr_bit_l] "i" (BSP_HACTLR_BIT_L) : "memory");

 __asm volatile (

 "set_hcr: \n"

 " MRC p15, #4, r1, c1, c1, #0 \n" /* Read Hyp Configuration Register */

 " ORR r1, r1, %[bsp_hcr_hcd_disable] \n" /* HVC instruction disable */

 " MCR p15, #4, r1, c1, c1, #0 \n" /* Write Hyp Configuration Register */

 ::[bsp_hcr_hcd_disable] "i" (BSP_HCR_HCD_DISABLE) : "memory");

 __asm volatile (

 "set_vbar: \n"

 " LDR r0, =__Vectors \n"

 " MCR p15, #0, r0, c12, c0, #0 \n" /* Write r0 to VBAR */

 ::: "memory");

#if (0 == BSP_CFG_CORE_CR52) || (1 == BSP_FEATURE_BSP_HAS_CR52_CPU1_LLPP)

 __asm volatile (

 "LLPP_access_enable: \n"

 /* Enable PERIPHPREGIONR (LLPP) */

 " MRC p15, #0, r1, c15, c0,#0 \n" /* PERIPHPREGIONR */

 " ORR r1, r1, #(0x1 << 1) \n" /* Enable PERIPHPREGIONR EL2 */

 " ORR r1, r1, #(0x1) \n" /* Enable PERIPHPREGIONR EL1 and EL0 */

 " DSB \n" /* Ensuring memory access complete */

 " MCR p15, #0, r1, c15, c0,#0 \n" /* PERIPHREGIONR */

 " ISB \n" /* Ensuring Context-changing */

 ::: "memory");

#endif

 __asm volatile (

 "cpsr_save: \n"

 " MRS r0, CPSR \n" /* Original PSR value */

 " BIC r0, r0, %[bsp_mode_mask] \n" /* Clear the mode bits */

 " ORR r0, r0, %[bsp_svc_mode] \n" /* Set SVC mode bits */

 " MSR SPSR_hyp, r0 \n"

 ::[bsp_mode_mask] "i" (BSP_MODE_MASK), [bsp_svc_mode] "i" (BSP_SVC_MODE) : "memory");

 __asm volatile (

 "exception_return: \n"

 " LDR r1, =stack_init \n"

 " MSR ELR_hyp, r1 \n"

 " ERET \n" /* Branch to stack_init and enter EL1 */

 ::: "memory");

}

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 20 of 58
Nov.15.24

startup_core.c after modifying:
Lines 150-204

startup_core.c before modifying:
Lines 268-273

#if __FPU_USED

 /* Initialize FPU and Advanced SIMD setting */

 bsp_fpu_advancedsimd_init();

#endif

startup_core.c after modifying:
Lines 268-273

Change the code shown before modifying in startup_core.c to the code shown after modifying.
Please note that there is a difference in the number of lines to be modified between RZ/T2M, RZ/T2L,
RZ/N2L and RZ/T2H Cortex®-R52. The only difference is the number of lines, the processing that needs
to be changed is the same.

startup_core.c before modifying:
Lines 235-236

BSP_TARGET_ARM BSP_ATTRIBUTE_STACKLESS void stack_init (void)

{

startup_core.c after modifying:
Lines 235-256

BSP_TARGET_ARM BSP_ATTRIBUTE_STACKLESS void system_init (void)

{

 __asm volatile (

 "set_vbar: \n"

 " LDR r0, =__Vectors \n"

 " MCR p15, #0, r0, c12, c0, #0 \n" /* Write r0 to VBAR */

 ::: "memory");

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 21 of 58
Nov.15.24

4. Change the project settings to output the user application program in binary format. Select the project
option and select the output converter in the category list.

EWARM:
Select the project option and select the output converter in the category list.
Check [Generate additional output] on the Output tab, select [Raw binary] and enter the output file name.

e2 studio:
Select the project properties and select Settings under C/C++ Build.
Select "Cross ARM GUN Create Flash Image" on the "Tool Setting" tab and change the Output file format
to "Raw binary".

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 22 of 58
Nov.15.24

5. Open the following file and change the sample processing.
RZT2M_bsp_LED_0\src\hal_entry.c
This is the file path for RZ/T2M. For RZ/T2L, RZ/N2L and RZ/T2H Cortex®-R52 read its MPU name
instead.

Add processing as a user application program to the opened file.
The generated code contains the processing to blink the LED.
The code for RZT2M is below, but RZ/T2L, RZ/N2L and RZ/T2H Cortex®-R52 also include the process of
blinking the LED.
hal_entry.c lines 50-67:

 /* This code uses BSP IO functions to show how it is used.*/

 /* Turn off LEDs */

 for (uint32_t i = 0; i < leds.led_count; i++)

 {

 R_BSP_PinClear((bsp_io_region_t) leds.p_leds[i][1], (bsp_io_port_pin_t) leds.p_leds[i][0]);

 }

 while (1)

 {

 /* Toggle board LEDs */

 for (uint32_t i = 0; i < leds.led_count; i++)

 {

 R_BSP_PinToggle((bsp_io_region_t) leds.p_leds[i][1], (bsp_io_port_pin_t) leds.p_leds[i][0]);

 }

 /* Delay */

 R_BSP_SoftwareDelay(delay, bsp_delay_units);

 }

The LED is defined in the following file. Blinks the LED defined here.
RZT2M_bsp_LED_0\rzt\board\rzt2m_rsk\board_leds.c
This is the file path for RZ/T2M. For RZ/T2L, RZ/N2L and RZ/T2H Cortex®-R52 read its MPU name
instead.
board_leds.c lines 37-48:

static const uint32_t g_bsp_prv_leds[][2] =

{

 #if defined(BSP_CFG_CORE_CR52)

 #if (0 == BSP_CFG_CORE_CR52)

 {(uint32_t) BSP_IO_PORT_19_PIN_6, (uint32_t) BSP_IO_REGION_SAFE}, ///< LED0(Green)

 {(uint32_t) BSP_IO_PORT_19_PIN_4, (uint32_t) BSP_IO_REGION_SAFE} ///< LED1(Yellow)

 #elif (1 == BSP_CFG_CORE_CR52)

 {(uint32_t) BSP_IO_PORT_20_PIN_0, (uint32_t) BSP_IO_REGION_SAFE}, ///< LED2(Red)

 {(uint32_t) BSP_IO_PORT_23_PIN_4, (uint32_t) BSP_IO_REGION_SAFE} ///< LED3(Red)

 #endif

 #endif

};

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 23 of 58
Nov.15.24

6. Build the project.

EWARM:
Select [Project]-[Rebuild All] from the EWARM menu.

e2 studio:
Select [Project]-[Build All] from the e2 studio menu.

7. After the build is completed, the extension bin file is generated.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 24 of 58
Nov.15.24

8. Generates parameter for the user application program (RZT2M_bsp_LED_0.bin, RZT2L_bsp_LED_1.bin,
RZN2L_bsp_LED_0.bin or RZT2H_bsp_LED_0.bin).

The parameter is generated using the tool included in the device setup (parameter_generator.py).

The following shows an example of tool execution when xSPI0 address space flash is specified:
 External flash address where the program is stored (--src_addr): 0x60040030, 0x6004D000 or

0x40040030
 RAM address where the program is loaded (--app_start_addr): 0x00000000

[Only for dual core configuration] For the user application program for CPU1, set the load destination
address (--dest_addr) to 0x10000000 of the SystemRAM.

The following command generates parameter_RZT2M_bsp_LED_0.bin (for RZ/T2M):

python parameter_generator.py userapp --src_addr 60040030 --app_start_addr
00000000 -i RZT2M_bsp_LED_0.bin -o parameter_RZT2M_bsp_LED_0.bin

The following command generates parameter_RZT2L_bsp_LED_1.bin (for RZ/T2L):

python parameter_generator.py userapp --src_addr 60040030 --app_start_addr
00000000 -i RZT2L_bsp_LED_1.bin -o parameter_RZT2L_bsp_LED_1.bin

The following command generates parameter_RZN2L_bsp_LED_0.bin (for RZ/N2L):
python parameter_generator.py userapp --src_addr 6004D000 --app_start_addr
00000000 -i RZN2L_bsp_LED_0.bin -o parameter_RZN2L_bsp_LED_0.bin

The following command generates parameter_RZT2H_bsp_LED_0.bin (for RZ/T2H Cortex®-R52):

python parameter_generator.py userapp --src_addr 40040030 --app_start_addr
00000000 -i RZT2H_bsp_LED_0.bin -o parameter_RZT2H_bsp_LED_0.bin

3.3 Concatenate Program and Parameter files
Use fwupdate_utility.py to concatenate the Update program, SSBL including the parameter for the loader,
and the parameter for the user application program. The concatenated data is programmed at the beginning
of the external flash. See Table 5.13, Table 5.17 and Table 5.20 for memory maps of the concatenated data.

Open a command prompt on the host PC and run the following command.

[Only for dual core configuration] You must specify both the user application parameters for CPU0 (--
param_cpu0) and the user application parameters for CPU1 (--param_cpu1).

The following command will generate initial_image_RZT2M_xspi0.bin (for RZ/T2M):

python fwupdate_utility setupfile --param_loader RZT2M_RSK_SSBL_xspi0.bin --
param_cpu0 parameter_RZT2M_bsp_LED_0.bin --update_prog
RZT2M_RSK_FWUpdate.bin -o initial_image_RZT2M_xspi0.bin

The following command will generate initial_image_RZT2L_xspi0.bin (for RZ/T2L):

python fwupdate_utility setupfile --param_loader RZT2L_RSK_SSBL_xspi0.bin --
param_cpu0 parameter_RZT2L_bsp_LED_1.bin --update_prog
RZT2L_RSK_FWUpdate.bin -o initial_image_RZT2L_xspi0.bin

The following command will generate initial_image_RZN2L_xspi0.bin (for RZ/N2L):

python fwupdate_utility setupfile --param_loader RZN2L_RSK_SSBL_xspi0.bin --
param_cpu0 parameter_RZN2L_bsp_LED_0.bin --update_prog
RZN2L_RSK_FWUpdate.bin -o initial_image_RZN2L_xspi0.bin

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 25 of 58
Nov.15.24

The following command will generate initial_image_RZT2H_xspi0.bin (for RZ/T2H Cortex®-R52):

python fwupdate_utility setupfile --param_loader RZT2H_EVB_SSBL_xspi0.bin --
param_cpu0 parameter_RZT2H_bsp_LED_0.bin --update_prog
RZT2H_EVB_FWUpdate.bin -o initial_image_RZT2H_xspi0.bin

3.4 Program to QSPI Flash Memory
Programming the update program and user application program are accomplished using device setup tool
and sample program. Refer to chapter 2 in RZ/T2, RZ/N2 Device Setup Guide for Flash boot for the
procedure.

1. Write program files to external flash on RSK+ or EVB using device_setup.py. Open a command prompt
on the host PC and run the following command.

The programmable area changes depending on the set boot mode. Please check 5.3.5 and 5.3.7 for
boot modes and corresponding memory maps.
The initial image file (initial_image_RZ*_xspi0.bin) is programmed at the top of the external. The user
application (RZ*_bsp_LED_*.bin) is programmed with the flash address specified during parameter
generation.

RZ/T2M:

> python device_setup.py writeflash --port COM4 --addr 60000000 -i
initial_image_RZT2M_xspi0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 60040030 -i
RZT2M_bsp_LED_0.bin
writeflash : Setup success.

RZ/T2L:

> python device_setup.py writeflash --port COM4 --addr 60000000 -i
initial_image_RZT2L_xspi0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 60040030 -i
RZT2L_bsp_LED_1.bin
writeflash : Setup success.

RZ/N2L:

> python device_setup.py writeflash --port COM4 --addr 60000000 -i
initial_image_RZN2L_xspi0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 6004D000 -i
RZN2L_bsp_LED_0.bin
writeflash : Setup success.

RZ/T2H:

> python device_setup.py writeflash --port COM4 --addr 40000000 -i
initial_image_RZT2H_xspi0.bin
writeflash : Setup success.
> python device_setup.py writeflash --port COM4 --addr 40040030 -i
RZT2H_bsp_LED_0.bin
writeflash : Setup success.

2. Set SW on the RSK+ board to the following, User DIP Switch SW3-1 to OFF and press the reset button
S3. Or set SW14 on the EVB to the following, User DIP Switch SW12-1 to OFF and press the reset

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 26 of 58
Nov.15.24

button SW13.
After that, to confirm that the user application program starts and User LED0 on the board blinks.

RZ/T2M:
SW Setting Description
SW4.1 ON xSPI0 boot mode (x1 boot Serial flash)
SW4.2 ON
SW4.3 ON
SW4.4 ON JTAG Authentication by Hash is disabled.
SW4.5 OFF ATCM 1 wait
SW6.1 ON Enable LED0

RZ/T2L:
SW Setting Description
SW4.1 ON xSPI0 boot mode (x1 boot Serial flash)
SW4.2 ON
SW4.3 ON
SW4.4 OFF ATCM wait cycle = 1 wait.
SW4.5 ON JTAG Authentication by Hash is disabled.

RZ/N2L:
SW Setting Description
SW4.1 ON xSPI0 boot mode (x1 boot Serial flash)
SW4.2 ON
SW4.3 ON
SW4.4 ON JTAG Authentication by Hash is disabled.

RZ/T2H Cortex®-R52:
SW Setting Description
SW14.1 ON xSPI0 boot mode (x1 boot Serial flash)
SW14.2 ON
SW14.3 ON
SW14.4 OFF Cortex®-R52 CPU0 ATCM 1 wait
SW14.5 OFF Cortex®-R52 CPU1 ATCM 1 wait
SW14.6 OFF Supply voltage of boot peripheral is 3.3 V
SW14.7 ON JTAG Authentication by Hash is disabled.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 27 of 58
Nov.15.24

Figure 3.1 Location of User LEDs (LED0) for RZ/T2M

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 28 of 58
Nov.15.24

Figure 3.2 Location of User LEDs (LED1) for RZ/T2L

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 29 of 58
Nov.15.24

Figure 3.3 Location of User LEDs (LED0) for RZ/N2L

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 30 of 58
Nov.15.24

Figure 3.4 Location of User LEDs (LED0) for RZ/T2H

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 31 of 58
Nov.15.24

4. Applying Firmware Updates
The procedure for updating user application programs using the firmware update system configured as
described in section 3 is as follows.

First, set up the host PC as described in 4.1, and then update the program or programs as described in 4.2.

4.1 Host PC Setup
4.1.1 Tool Setup
Copy fwupdate_utility.py and fwupdate.py to a location of your choice on the host PC.

Next, install Python 3.8 on the host PC.

To install Python 3.8, download the Python 3.8 installer from the URL below and run it.

https://www.python.org/downloads/windows/

The tools fwupdate_utility.py and fwupdate.py are intended to be run on a Windows system with Python 3.8
installed. Their operation has been confirmed on systems running Windows 10.

Run the following command to view help on using fwupdate_utility.py:

fwupdate_utility.py -h

Run the following command to view help on using fwupdate.py:

fwupdate.py -h

4.1.2 Network Adapter Settings
In order to use fwupdate.py to send update files to a RZ/T2M, RZ/T2L, RZ/N2L or RZ/T2H device, the host
PC and the device must be connected to the same network. Table 4.1 lists the address settings for the
device and the host PC.

Table 4.1 Update Environment Address Settings

Device IP Address Net Mask
RZ/T2M, RZ/T2L, RZ/N2L or
RZ/T2H device

192.168.10.100 255.255.255.0

Host PC 192.168.10.10 255.255.255.0

https://www.python.org/downloads/windows/

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 32 of 58
Nov.15.24

Example host PC network adapter settings are shown below (example of settings on Windows 10).

1. Open the network adapter properties window on the host PC.

2. Select Internet Protocol Version (TCP/IPv4) and open the properties window.

3. In the Use following IP address section, enter settings for the IP address and subnet mask, then click the

OK button.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 33 of 58
Nov.15.24

4.2 Update Procedure
The procedure for updating the user application program using the firmware update system configured on
the RSK+ is described below. If your system has not yet been configured as described in section 3, first
complete the system configuration before proceeding.

Table 4.2 shows the environment required to update programs on the RZ/T2M, RZ/T2L, RZ/N2L or RZ/T2H
Cortex®-R52.

Table 4.2 Update Environment

Name Remarks
Evaluation board RZ/T2M RSK+, RZ/T2L RSK+, RZ/N2L RSK+ or RZ/T2H EVB
USB cable 1 (Type-C, type-A)
Ether cable
Host PC Operation confirmed on Windows 10.
fwupdate_utility.py Update file generator tool
fwupdate.py Update files send tool

Table 4.3 lists the user application programs to be updated for RZ/T2M. Table 4.4 lists the user application
programs to be updated for RZ/T2L. Table 4.5 lists the user application programs to be updated for RZ/N2L.
Table 4.6 lists the user application programs to be updated for RZ/T2H Cortex®-R52.

Table 4.3 User Application Programs to be Updated for RZ/T2M

File Name Description
RZT2M_bsp_LED_1.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2M pack.
See section 3.2 for detailed creation instructions. Note
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED1: BSP_IO_PORT_19_PIN_4

parameter_RZT2M_bsp_LED_1.bin Parameter for the user application program
(RZT2M_bsp_LED_1.bin). This file is created after building
RZT2M_bsp_LED_1.bin.
See section 3.2 for detailed creation instructions. Note
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x60050000
RAM address where the program is loaded: 0x00000000

Note The explanation of 3.2 is about RZT2M_bsp_LED_0, but please replace the file name and address
with the user application program to be updated.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 34 of 58
Nov.15.24

Table 4.4 User Application Programs to be Updated for RZ/T2L

File Name Description
RZT2L_bsp_LED_3.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2L pack.
See section 3.2 for detailed creation instructions. Note
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED3: BSP_IO_PORT_18_PIN_1

parameter_RZT2L_bsp_LED_3.bin Parameter for the user application program
(RZT2L_bsp_LED_3.bin). This file is created after building
RZT2L_bsp_LED_3.bin.
See section 3.2 for detailed creation instructions. Note
The following OSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x60050000
RAM address where the program is loaded: 0x00000000

Note The explanation of 3.2 is about RZT2M_bsp_LED_0, but please replace the file name and address
with the user application program to be updated.

Table 4.5 User Application Programs to be Updated for RZ/N2L

File Name Description
RZN2L_bsp_LED_3.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/N2L pack.
See section 3.2 for detailed creation instructions. Note
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED3: BSP_IO_PORT_17_PIN_3

parameter_RZN2L_bsp_LED_3.bin Parameter for the user application program
(RZN2L_bsp_LED_3.bin). This file is created after building
RZN2L_bsp_LED_3.bin.
See section 3.2 for detailed creation instructions. Note
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x60050000
RAM address where the program is loaded: 0x00000000

Note The explanation of 3.2 is about RZT2M_bsp_LED_0, but please replace the file name and address
with the user application program to be updated.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 35 of 58
Nov.15.24

Table 4.6 User Application Programs to be Updated for RZ/T2H Cortex®-R52

File Name Description
RZT2H_bsp_LED_1.bin A user application program based on the Blinky sample application

included in the Flexible Software Package RZ/T2H pack.
See section 3.2 for detailed creation instructions. Note
The program is assigned from 0x00000000 in the ATCM area.
The following LEDs will light up at startup.
User LED1: BSP_IO_PORT_32_PIN_2

parameter_RZT2H_bsp_LED_1.bin Parameter for the user application program
(RZT2H_bsp_LED_1.bin). This file is created after building
RZT2H_bsp_LED_1.bin.
See section 3.2 for detailed creation instructions. Note
The following QSPI flash addresses are set in the parameter file.
External flash address where the program is stored: 0x40050000
RAM address where the program is loaded: 0x00000000

Note The explanation of 3.2 is about RZT2H_bsp_LED_0, but please replace the file name and address
with the user application program to be updated.

4.2.1 Creating Update File
Use fwupdate_utility.py to create the update file (RZT2M_bsp_LED_1.bin.fwup,
RZT2L_bsp_LED_3.bin.fwup, RZN2L_bsp_LED_3.bin.fwup or RZT2H_bsp_LED_1.bin.fwup). Open a
command prompt on the host PC and run the following command.

[Only for dual core configuration] For user application programs for CPU1, specify "1" for the CPU
specification option (--cpu).

The following command will generate RZT2M_bsp_LED_1.bin.fwup (for RZ/T2M):

python fwupdate_utility.py updatefile --cpu 0 --param
parameter_RZT2M_bsp_LED_1.bin --write_addr 60050000 -i RZT2M_bsp_LED_1.bin -
o RZT2M_bsp_LED_1.bin.fwup

The following command will generate RZT2L_bsp_LED_3.bin.fwup (for RZ/T2L):

python fwupdate_utility.py updatefile --cpu 0 --param
parameter_RZT2L_bsp_LED_3.bin --write_addr 60050000 -i RZT2L_bsp_LED_3.bin -
o RZT2L_bsp_LED_3.bin.fwup

The following command will generate RZN2L_bsp_LED_3.bin.fwup (for RZ/N2L):

python fwupdate_utility.py updatefile --cpu 0 --param
parameter_RZN2L_bsp_LED_3.bin --write_addr 60050000 -i RZN2L_bsp_LED_3.bin -
o RZN2L_bsp_LED_3.bin.fwup

The following command will generate RZT2H_bsp_LED_1.bin.fwup (for RZ/T2H Cortex®-R52):

python fwupdate_utility.py updatefile --cpu 0 --param
parameter_RZT2H_bsp_LED_1.bin --write_addr 40050000 -i RZT2H_bsp_LED_1.bin -
o RZT2H_bsp_LED_1.bin.fwup

4.2.2 Applying Update
Connect the host PC to the RSK+ or the EVB with an Ethernet cable. Ethernet uses ETH0 for RZ/T2M,
RZ/N2L and RZ/T2H, and ETH2 for RZ/T2L. The host PC must be set up as described in 4.1 beforehand.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 36 of 58
Nov.15.24

Set the User DIP Switch to ON. Use SW3-1 for RZ/T2M and RZ/N2L, SW3-2 for RZ/T2L or SW12-1 for
RZ/T2H. Reset the device to boot with the update.

Figure 4.1 Location of User DIP Switch (SW3-1), ETH0 and User LEDs (LED1) for RZ/T2M

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 37 of 58
Nov.15.24

Figure 4.2 Location of User DIP Switch (SW3-2), ETH2 and User LEDs (LED3) for RZ/T2L

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 38 of 58
Nov.15.24

Figure 4.3 Location of User DIP Switch (SW3-1), ETH0 and User LEDs (LED3) for RZ/N2L

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 39 of 58
Nov.15.24

Figure 4.4 Location of User DIP Switch (SW12-1), ETH2 and User LEDs (LED2) for RZ/T2H

1. Set the User DIP Switch to ON. Use SW3-1 for RZ/T2M and RZ/N2L, SW3-2 for RZ/T2L or SW12-1 for
RZ/T2H. After setting, press the reset button S3 on RSK+ or reset button SW13 on EVB.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 40 of 58
Nov.15.24

2. Use fwupdate.py to transfer the update file to the device. Open a command prompt on the host PC and
run the following command.

The following command will transfer RZT2M_bsp_LED_1.bin.fwup (for RZ/T2M):

python fwupdate.py --ip_address 192.168.10.100 --udp_port 10001 --tcp_port
10000 -i RZT2M_bsp_LED_1.bin.fwup

The following command will transfer RZT2L_bsp_LED_3.bin.fwup (for RZ/T2L):

python fwupdate.py --ip_address 192.168.10.100 --udp_port 10001 --tcp_port
10000 -i RZT2L_bsp_LED_3.bin.fwup

The following command will transfer RZN2L_bsp_LED_3.bin.fwup (for RZ/N2L):

python fwupdate.py --ip_address 192.168.10.100 --udp_port 10001 --tcp_port
10000 -i RZN2L_bsp_LED_3.bin.fwup

The following command will transfer RZT2H_bsp_LED_1.bin.fwup (for RZ/T2H Cortex®-R52):

python fwupdate.py --ip_address 192.168.10.100 --udp_port 10001 --tcp_port
10000 -i RZT2H_bsp_LED_1.bin.fwup

3. When the device receives the update file and successfully updates the user application program, the
following result is displayed at the command prompt:

192.168.10.100 Update success.

4. Set the User DIP Switch to OFF. Use SW3-1 for RZ/T2M and RZ/N2L, SW3-2 for RZ/T2L or SW12-1 for

RZ/T2H. After setting, press reset button S3 on RSK+ or reset button SW13 on EVB to launch the
updated user application program. For RZT2M and RZT2H, User LED1 on the board blinks, for RZ/T2L
and RZ/N2L, User LED3 on the board blinks.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 41 of 58
Nov.15.24

5. Sample Program
This package is provided as a set of sample program projects including source codes and tool body files in
the execution format. This sample program projects and tools can be modified for each user environment.

In this section, the external specifications of the update program included in the sample program package
are described in 5.1 and 5.2, and the implementation specifications of the update program are described in
5.3. In addition, the specifications of the tools used with the sample program are described in 5.4.

5.1 Update File Format
Figure 5.1 shows the update file format that can be handled by the update program.

User program

Update infomation

CRC

n byte

72 byte

4 byte

CRC calculation range

Parameter for the user application program 16 byte

Figure 5.1 Update File Format

At the start of the update file is information such as the size of the user application program and the write
destination address in the external flash memory, stored in the form of a 72-byte update information block.
Table 5.1 shows the format of the file information. The unit of the Offset and Size values listed in Table 5.1 is
bytes.

The byte order of each field in the Update information shall be little-endian.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 42 of 58
Nov.15.24

Table 5.1 Update Information Format

Offset Field Size Description
0 Magic Number 4 Magic number

Set ASCII code (0x75706469) for "updi"
4 Reserved 8 Fixed 0
12 Write Address 4 When fwupdate_utility.py is executed, set the external flash address

to which the firmware specified by the "--write_addr" option is written.
16 Reserved 4 Fixed 0
20 Image Size 4 Total size of parameters for the user application program and the

User application program.
24 Reserved 4 Fixed 0
28 Update Target 4 Information required at Update is set in a bit field.

Each bit has the following meaning.
bit Description
0 CPU to run the program to be updated.

 0：CPU0
 1：CPU1

1 With or without parameter file input.
 0：Without parameter file
 1：With parameter file

32 TLV Length 4 Total byte size of TLV field.
Fixed 0x00000024

36 TLV field 36 Field consisting of Type&Length and Value
Offset Field Size Description
0 Type&Length 4 Fixed 0x60000008
4 Value 32 Product name

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 43 of 58
Nov.15.24

5.2 Communication Protocols of Update Program
Figure 5.2 illustrates the communication protocols of the update program running on the device when
receiving an update file. The control packets included in the communication protocols are sent and received
via UDP and TCP communication.

fwupdate.py Update program

START_UPDATE (UDP communication)

ACK (UDP communication)

FIRMWARE_DATA (TCP communication)

ACK or NACK (TCP communication)

Figure 5.2 Communication Protocols of Update Program

Table 5.2 shows the format of the control packets sent and received by the update program. Note that the
unit of the Offset and Size values shown below is bytes.

Table 5.2 Control Packet Format

Offset Field Size Value
0 Command Code 1 Command code
1 Dummy 3 Dummy (For alignment adjustment)
4 Payload size 4 Size of payload: n (little-endian)
8 Payload n Data of various types is stored here.

Table 5.3 lists the command codes of the control packets sent and received by the update program. The
contents of the packets corresponding to each command code are described in 5.2.1 to 5.2.4.

Table 5.3 Command Codes

Command Code Value Description
START_UPDATE 0x11 Reports start of firmware update.
FIRMWARE_DATA 0x12 Sends update file.
ACK 0x81 Firmware update acknowledgement response
NACK 0x82 Firmware update negative acknowledgement response

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 44 of 58
Nov.15.24

5.2.1 START_UPDATE
This firmware update start notification is received by the update program. The update program can receive
this packet as a UDP broadcast or unicast.

Table 5.4 Contents of START_UPDATE Packet

Offset Field Size Value
0 Command Code 1 0x11
1 Dummy 3 Dummy
4 Payload size 4 0x00000000

5.2.2 FIRMWARE_DATA
This is the form in which the update program receives the update file. The update program receives this
packet via TCP communication.

Table 5.5 Contents of FIRMWARE_DATA

Offset Field Size Value
0 Command Code 1 0x12
1 Dummy 3 Dummy
4 Payload size 4 n
8 Payload n Update file data

5.2.3 ACK
This acknowledge response is sent by the update program when a command is received successfully. It is
sent via UDP in response to a START_UPDATE packet and via TCP in response to a FIRMWARE_DATA
packet.

Table 5.6 Contents of ACK

Offset Field Size Value
0 Command Code 1 0x81
1 Dummy 3 Dummy
4 Payload size 4 0x00000000

5.2.4 NACK
This negative acknowledge response is sent by the update program when an error occurs when receiving a
command. The update program sends this packet via TCP communication.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 45 of 58
Nov.15.24

Table 5.7 Contents of NACK

Offset Field Size Value
0 Command Code 1 0x82
1 Dummy 3 Dummy
4 Payload size 4 0x00000001
8 Error code 1 Error code

• Exceeding the maximum update file
size: 0x01

• Update file verification failure: 0x02
• User application write failure: 0x03
• Parameter information writing failure:

0x04
• Key installation failure: 0x05
• Booting surface switching failure:

0x06
• Version update failure: 0x07

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 46 of 58
Nov.15.24

5.3 Implementation Specifications of Update Program
5.3.1 Development Environment
Refer to RZ/T2, RZ/N2 Getting Started with Flexible Software Package.

5.3.2 File Structure
Table 5.8 and Table 5.9 list the main files contained in the firmware update sample program project.

Table 5.8 File Structure of Update Program

Folder Name File Name Description
RZ*_*_FWUpdate_Rev*\

├ *.jlink, *.launch, *project,
*.eww, *.ewd, *.ewp Project files

├ *.pincfg, *.xml, *.ipcf Flexible Software Package Files
├ rz*_cfg.txt
├ rz*\
├ rz*_cfg\
├ rz*_get\
├ script\ *.ld, *.icf Memory allocation
└ src\ *.c, *.h Update program source code folder

Table 5.9 File Structure of SSBL

Folder Name File Name Description
RZ*_*_SSBL_Rev*\

├ *.jlink, *.launch, *project,
*.eww, *.ewd, *.ewp Project files

├ *.pincfg, *.xml, *.ipcf Flexible Software Package Files
├ rz*_cfg.txt
├ rz*\
├ rz*_cfg\
├ rz*_get\
├ script\ *.ld, *.icf Memory allocation
└ src\ *.c, *.h SSBL Source code folder

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 47 of 58
Nov.15.24

5.3.3 Functions
Table 5.10 lists the main functions defined in the update program, and Table 5.11 lists the main functions
defined in the SSBL.

Table 5.10 Functions of Update Program

File Name Function Name Description
fwupdate.c firmware_update Main routine of firmware update

processing
check_updatefile Update file confirmation processing
write_user_application Write user applications to flash
write_param_info Write parameter for the user application

program to flash
change_flash_mng_area Update plane management area
packet_handler Packet analysis and firmware update

control processing
crc32.c calc_crc32 CRC32 calculation
fwupdate_thread_entry.c fwupdate_thread_entry Firmware update thread processing
net_thread_entry.c net_thread_entry FreeRTOS TCP
tcp_svr_thread_entry.c tcp_svr_thread_entry
udp_svr_thread_entry.c udp_svr_thread_entry
flash.c write_to_qspi_area QSPI flash memory driver

read_to_qspi_area
write_to_ospi_area OSPI flash memory driver
read_to_ospi_area
write_to_nor_area NOR flash memory driver
read_to_nor_area

Table 5.11 Functions of SSBL

File Name Function Name Description
ssbl.c second_application_boot_loader Main routine of loader program

load_user_application Load the user application program
load_update_program Load the update program

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 48 of 58
Nov.15.24

5.3.4 Flowchart of Update Program Processing
Figure 5.3 is a flowchart showing the processing of the update program.

START

(1) Receive update file

(3) Write user application program and
parameter

(8) Send result (Success) (9) Send result (Failure)

(2) Check update file

(4) Check write result

End

Pass

Fail

(5) Is the flash a one plane use?
No, two plane

Yes, one plane (6) set plane management area

Pass

Fail

(7) Check write result

Pass

Fail

Figure 5.3 Flowchart of Update Program Processing

Details of the update program processing flowchart are described below.

(1) Receive Update File
Related function: packet_handler (fwupdate.c)
UDP and TCP communication are used to receive the update file. Refer to 5.2 for the communication
protocols used during update file reception.

(2) Check Update File

Related function: check_updatefile (fwupdate.c)
The CRC of the update file is used to confirm that the file information and user application program data
in the update file are not corrupt. The CRC of the file information area and user application program area
is calculated using CRC32, and the result is compared to the CRC of the update file to confirm that there
are no defects in the update file. If the comparison result is a match, processing jumps to (3) Write User
Application Program and Parameter, and if the result is a mismatch, processing jumps to (9) Send Result
(Failure).

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 49 of 58
Nov.15.24

(3) Write User Application Program and Parameter
Related function: write_user_application, write_param_info (fwupdate.c)
The user application program is written to the external flash memory. The Write Address contained in the
update information of the update file is used as the write address. The Image Size contained in the file
information of the update file minus the fixed length parameter size is used as the size of the user
application program to be written.

(4) Check Write Result

Related function: write_to_qspi_area, write_to_ospi_area, write_to_nor_area (flash.c)
The data written to the external flash memory is read from the flash memory and checked against the
original write data in the RAM to confirm that they match. The write result is success if they match and
failure if they do not match. If the write result is success, processing jumps to (5) Is the Flash a One Plain
Use?, and if the write result is failure, processing jumps to (9) Send Result (Failure).

(5) Is the Flash a One Plain Use?

Related function: firmware_update (fwupdate.c)
Whether the flash is one-plane use or not is set in the firmware update configuration. If the flash is one-
plane use, processing jumps to (8) Send Result (Success), and if the flash is two-plane use, processing
jumps to (6) Set Plane Management Area.

(6) Set Plane Management Area

Related function: change_flash_mng_area (fwupdate.c)
Update the settings in the Plane Management Area on the flash to switch the startup plane at the next
startup.

(7) Check Write Result

Related function: write_to_qspi_area, write_to_ospi_area, write_to_nor_area (flash.c)
The data written to the external flash memory is read from the flash memory and checked against the
original write data in the RAM to confirm that they match. The write result is success if they match and
failure if they do not match. If the write result is success, processing jumps to (8) Send Result (Success),
and if the write result is failure, processing jumps to (9) Send Result (Failure).

(8) Send Result (Success)

Related function: packet_handler (fwupdate.c)
An ACK packet is transmitted.

(9) Send Result (Failure)

Related function: packet_handler (fwupdate.c)
A NACK packet is transmitted. In addition, an error code is appended indicating a file error, if an error
occurred in (2) Check Update File, or indicating a write error, if an error occurred in (4) and (7) Check
Write Result.

5.3.5 Memory Maps for RZ/T2M and RZ/T2L RSK+
Table 5.12, Table 5.13, Table 5.14 and Table 5.15 show memory maps for the sample program using RSK+.

In the table the Update Target column indicates memory areas that can be updated using the update
program. Areas with a check mark () in the Update Target column can be updated using the update
program. Areas with a check mark () in the Initial Image column can be concatenated using
fwupdate_utility.py.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 50 of 58
Nov.15.24

Table 5.12 Memory Map

Memory Type Address Size Description
ATCM 0x00000000 - 0x0003FFFF 190 KB Update program area
System RAM 0x10000000 - 0x1017FFFF 1.5 MB Update program RAM area
External Memory
(xSPI0 Flash)

0x60000000 - 0x63FFFFFF 64 MB User application program area

External Memory
(xSPI1 Flash)

0x68000000 - 0x68FFFFFF 16 MB User application program area

External Memory
(NOR Flash CS0)

0x70000000 - 0x71FFFFFF 32 MB User application program area

Table 5.13 Memory Map for the xSPI0 Flash in xSPI0 Boot Mode

Memory
Type Address Size Description

Initial
Image

Update
Target

xSPI0 Flash
(64MB)

0x60000000 - 0x6000004F 80 Byte Area for the parameter for
the loader

 −

0x60000050 - 0x6000704F 28 KB SSBL area  −
0x60007050 - 0x6003FFFF 227 KB Update program area  −
0x60040000 - 0x6004000F 16 Byte Area for the parameter for

the user application
program (CPU0)

 

0x60040010 - 0x6004001F 16 Byte Area for the parameter for
the user application
program (CPU1)

 

0x60040020 - 0x6004002F 16 Byte Plane management area  
0x60040030 - 0x63FFFFFF 63 MB Area for User application

program
− 

Table 5.14 Memory Map for the xSPI1 Flash in xSPI1 Boot Mode

Memory
Type Address Size Description

Initial
Image

Update
Target

xSPI1 Flash
(16MB)

0x68000000 - 0x6800004F 80 Byte Area for the parameter for
the loader

 −

0x68000050 - 0x6800704F 28 KB SSBL area  −
0x68007050 - 0x6803FFFF 227 KB Update program area  −
0x68040000 - 0x6804000F 16 Byte Area for the parameter for

the user application
program (CPU0)

 

0x68040010 - 0x6804001F 16 Byte Area for the parameter for
the user application
program (CPU1)

 

0x68040020 - 0x6804002F 16 Byte Plane management area  
0x68040030 - 0x68FFFFFF 15 MB Area for User application

program
− 

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 51 of 58
Nov.15.24

Table 5.15 Memory Map for the NOR CS0 Flash in 16-bit Bus Boot Mode

Memory
Type Address Size Description

Initial
Image

Update
Target

NOR Flash
CS0
(32MB)

0x70000000 - 0x7000004F 80 Byte Area for the parameter for
the loader

 −

0x70000050 - 0x7000704F 28 KB SSBL area  −
0x70007050 - 0x7003FFFF 227 KB Update program area  −
0x70040000 - 0x7004000F 16 Byte Area for the parameter for

the user application
program (CPU0)

 

0x70040010 - 0x7004001F 16 Byte Area for the parameter for
the user application
program (CPU1)

 

0x70040020 - 0x7004002F 16 Byte Plane management area  
0x70040030 - 0x71FFFFFF 31 MB Area for User application

program
− 

5.3.6 Memory Maps for RZ/N2L RSK+
Table 5.16, Table 5.17 and Table 5.18 show memory maps for the sample program using RZ/N2L RSK+.

In the table the Update Target column indicates memory areas that can be updated using the update
program. Areas with a check mark () in the Update Target column can be updated using the update
program. Areas with a check mark () in the Initial Image column can be concatenated using
fwupdate_utility.py.

Table 5.16 Memory Map

Memory Type Address Size Description
ATCM 0x00000000 - 0x0003FFFF 190 KB Update program area
System RAM 0x10000000 - 0x1017FFFF 1.5 MB Update program RAM area
External Memory
(xSPI0 Flash)

0x60000000 - 0x63FFFFFF 64 MB User application program area

External Memory
(NOR Flash CS0)

0x70000000 - 0x71FFFFFF 32 MB User application program area

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 52 of 58
Nov.15.24

Table 5.17 Memory Map for the xSPI0 Flash in xSPI0 Boot Mode

Memory
Type Address Size Description

Initial
Image

Update
Target

xSPI0 Flash
(64MB)

0x60000000 - 0x6000004F 80 Byte Area for the parameter for
the loader

 −

0x60000050 - 0x6000704F 28 KB SSBL area  −
0x60007050 - 0x6000705F 16 Byte Area for the parameter for

the user application
program (CPU0)

 

0x60007060 - 0x6000706F 16 Byte Area for the parameter for
the user application
program (CPU1)

 

0x60007070 - 0x6000707F 16 Byte Plane management area  
0x60007080 - 0x6004CC7F 279 KB Update program area  −
0x6004CC80 -
0x6004CFFF

0.875
KB

Reserved − −

0x6004D000 - 0x63FFFFFF 63 MB Area for User application
program

− 

Table 5.18 Memory Map for the NOR CS0 Flash in 16-bit Bus Boot Mode

Memory
Type Address Size Description

Initial
Image

Update
Target

NOR Flash
CS0
(32MB)

0x70000000 - 0x7000004F 80 Byte Area for the parameter for
the loader

 −

0x70000050 - 0x7000704F 28 KB SSBL area  −
0x70007050 - 0x7000705F 16 Byte Area for the parameter for

the user application
program (CPU0)

 

0x70007060 - 0x7000706F 16 Byte Area for the parameter for
the user application
program (CPU1)

 

0x70007070 - 0x7000707F 16 Byte Plane management area  
0x70007080 - 0x7004CC7F 279 KB Update program area  −
0x7004CC80 -
0x7004CFFF

0.875 KB Reserved − −

0x7004D000 - 0x71FFFFFF 31 MB Area for User application
program

− 

5.3.7 Memory Maps for EVB
Table 5.19, Table 5.20 and Table 5.21 show memory maps for the sample program using EVB.

In table the Update Target column indicates memory areas that can be updated using the update program.
Areas with a check mark () in the Update Target column can be updated using the update program. Areas
with a check mark () in the Initial Image column can be concatenated using fwupdate_utility.py.

Table 5.19 Memory Map

Memory Type Address Size Description
ATCM 0x00000000 - 0x0007FFFF 512 KB Update program area
System RAM 0x10000000 - 0x101FFFFF 2.0 MB Update program RAM area
External Memory
(xSPI0 Flash CS0)

0x40000000 - 0x43FFFFFF 64 MB User application program area

External Memory
(xSPI1 Flash CS0)

0x50000000 - 0x50FFFFFF 16 MB User application program area

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 53 of 58
Nov.15.24

Table 5.20 Memory Map for the xSPI0 Flash in xSPI0 Boot Mode

Memory
Type Address Size Description

Initial
Image

Update
Target

xSPI0 Flash
CS0
(64MB)

0x40000000 - 0x4000004F 80 Byte Area for the parameter for
the loader

 −

0x40000050 - 0x4000704F 28 KB SSBL area  −
0x40007050 - 0x4003FFFF 227 KB Update program area  −
0x40040000 - 0x4004000F 16 Byte Area for the parameter for

the user application
program (CPU0)

 

0x40040010 - 0x4004001F 16 Byte Area for the parameter for
the user application
program (CPU1)

 

0x40040020 - 0x4004002F 16 Byte Plane management area  
0x40040030 - 0x43FFFFFF 63 MB Area for User application

program
− 

Table 5.21 Memory Map for the xSPI1 Flash in xSPI1 Boot Mode

Memory
Type Address Size Description

Initial
Image

Update
Target

xSPI1 Flash
CS0
(16MB)

0x50000000 - 0x5000004F 80 Byte Area for the parameter for
the loader

 −

0x50000050 - 0x5000704F 28 KB SSBL area  −
0x50007050 - 0x5003FFFF 227 KB Update program area  −
0x50040000 - 0x5004000F 16 Byte Area for the parameter for

the user application
program (CPU0)

 

0x50040010 - 0x5004001F 16 Byte Area for the parameter for
the user application
program (CPU1)

 

0x50040020 - 0x5004002F 16 Byte Plane management area  
0x50040030 - 0x50FFFFFF 15 MB Area for User application

program
− 

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 54 of 58
Nov.15.24

5.3.8 How to Use NOR Flash in the RZ/N2L Project
The firmware update sample program project for RZ/N2L must be configured to use the external flash.

By default, the setting to use QSPI flash is enabled; to use NOR flash, the following settings are required.

1. Start FSP Configuration.
For GCC version, use e2 studio.
For IAR version, use FSP Smart Configurator.
For details, Refer to RZ/T2, RZ/N2 Getting Started with Flexible Software Package.

2. Select "RSK + RZN2L_NOR" in pin settings and enable Generate data check.

3. Click Generate Project Content (green play icon).
Sample program code is generated that can use the NOR flash.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 55 of 58
Nov.15.24

5.4 Specifications of Tools Used with Sample Program
5.4.1 fwupdate_utility.py
The tool fwupdate_utility.py is used to create update files or initial image file.

Using fwupdate_utility.py, you can create an update file by specifying the user application program to be
updated and the write destination address on the device. The specified address is stored in the file
information of the update file.

The initial image file specifies each file that needs to be written during initial setup, and outputs them all in
one file. Creating an initial configuration file makes it easier to write to flash during initial setup.

The command format of fwupdate_utility.py is as follows:

python fwupdate_utility.py < command > < options >

Table 5.22 lists the commands, and Table 5.23 and Table 5.24 lists the options corresponding to each
command.

Table 5.22 Commands of fwupdate_utility.py

Commands Description
updatefile Create the update file.
setupfile Create the initial image file to concatenate the Update program, the SSBL

including the parameter for the loader, and parameter for the user
application program.

Table 5.23 Options for updatefile command

Option Required/Optional Description
-i < file name > Required Specify the file name of the user application program

to be updated as the < file name > string.
-o < file name > Required Specify the file name of the update file to be output

as the < file name > string.
--write_addr < address > Required Specify the address in the RZ/T2M, RZ/T2L, RZ/N2L

or RZ/T2H external flash memory to write the user
application program to be updated to as the <
address > string. Specify the address as eight digits
of hexadecimal notation.
Example: 00100000

--param <file name> Required Specify the parameter file name of the user
application program to be updated as the < file name
> string.

--cpu <0 or 1> Optional Specifies the CPU on which the user application
program to be updated runs.
If this option is omitted, it is assumed that "CPU0" is
specified.

-h Optional Specify this option to display help on using this tool.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 56 of 58
Nov.15.24

Table 5.24 Options for setupfile command

Option Required/Optional Description
--param_loader < file name > Required Specify the file name of the loader parameter

information to be set on the device as the < file name
> string.

This option is an option to specify the loader
parameter file (loader program combined) that is
generated by enabling the "--concat_loader" option
of the parameter information generation tool
(parameter_generator.py).

--param_cpu0 < file name > Required Specify the file name of the user application
parameters for CPU0 to be set on the device as the
< file name > string.

--update_prog < address > Required Specify the file name of the update program to be set
on the device as the < file name > string.

-o <file name> Required Specify the file name of the initial image file to be
output as the < file name > string.

--ssbl <file name> Optional Specify the file name of the SSBL to be set on the
device as the < file name > string.

This option is only used if you specify the following
file with the "--param_loader" option:
- Loader parameter file generated using the
parameter information generation tool
(parameter_generator.py) without specifying the "--
concat_lodaer" option

--param_cpu1 <file name> Optional Specify the file name of the user application
parameters for CPU1 to be set on the device as the
< file name > string.

-h Optional Specify this option to display help on using this tool.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 57 of 58
Nov.15.24

5.4.2 fwupdate.py
The tool fwupdate.py is used to send an update file to the device.

Using fwupdate.py, you can send an update file to the device via Ethernet by specifying the update file, the
port number to be used for communication, and the IP address of the transfer destination device. Afterward,
the tool receives the update result from the device and outputs it to the console.

The command format of fwupdate.py is as follows:

python fwupdate.py < options >

Some of the options of fwupdate.py are required and some may be omitted. Table 5.25 lists the required
options and Table 5.26 lists the optional options.

Table 5.25 Required Options of fwupdate.py

Option Description
--udp_port < port number > Specify the port number to be used by fwupdate.py for UDP transmission

and reception as the < port number > string.
--tcp_port < port number > Specify the port number to be used by fwupdate.py for TCP transmission

and reception as the < port number > string.
-i < file name > Specify the update file to be sent to the device as the < file name > string.

Table 5.26 Optional Options of fwupdate.py

Option Description
--ip_address < IP address > Specify the IP address of the device with the user application program to

be updated as the < IP address > string. When attempting to update the
user application program, START_UPDATE is unicast to < IP address > if
this option is specified, and it is broadcast if the option is not specified.

-h Specify this option to display help on using this tool.

RZ/T2, RZ/N2 Quick Start Guide: Firmware Update

R01AN6472EJ0220 Rev.2.20 Page 58 of 58
Nov.15.24

Revision History

Rev. Date
Description
Page Summary

1.00 Jul 8, 2022 - First edition issued
1.10 Oct 21, 2022 - RZ/N2L is supported
1.20 Apr 28, 2023 - RZ/T2L is supported
2.00 Apr 10, 2024 p3,

p11-p35
Support for updating applications that use dual cores on
RZ/T2M.

p9-p27,
p42-p53

Updated FSP for RZ/T2M and RZ/T2L sample projects to
RZ/T2 FSP v2.0.0.

Changed command specification from fwupdate_utility.py
V2.00 and added a command to create an initial image.

2.10 Jun 14, 2024 - Updated FSP for RZ/N2L sample projects to RZ/N2 FSP
v2.0.0.

2.20 Nov 15, 2024 - RZ/T2H Cortex®-R52 core is supported.

Updated FSP for RZ/T2M and RZ/T2L sample projects to
RZ/T2 FSP v2.2.0.

p7, p8,
p50, p51

Changed the memory layout of the external flash in the sample
program for RZ/T2M and RZ/T2L.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Introduction
	1.2 Features
	1.3 Limitations
	1.4 Package Contents
	1.5 Related Documents
	1.6 Explanation of Terms

	2. Firmware Update Mechanism
	2.1 Operating Modes
	2.2 Sample Program Configuration
	2.3 Using External Flash Memory

	3. Configuring the Firmware Update System
	3.1 Update Program and SSBL Configuration
	3.1.1 Update Program
	3.1.2 SSBL

	3.2 User Application Program Configuration
	3.3 Concatenate Program and Parameter files
	3.4 Program to QSPI Flash Memory

	4. Applying Firmware Updates
	4.1 Host PC Setup
	4.1.1 Tool Setup
	4.1.2 Network Adapter Settings

	4.2 Update Procedure
	4.2.1 Creating Update File
	4.2.2 Applying Update

	5. Sample Program
	5.1 Update File Format
	5.2 Communication Protocols of Update Program
	5.2.1 START_UPDATE
	5.2.2 FIRMWARE_DATA
	5.2.3 ACK
	5.2.4 NACK

	5.3 Implementation Specifications of Update Program
	5.3.1 Development Environment
	5.3.2 File Structure
	5.3.3 Functions
	5.3.4 Flowchart of Update Program Processing
	5.3.5 Memory Maps for RZ/T2M and RZ/T2L RSK+
	5.3.6 Memory Maps for RZ/N2L RSK+
	5.3.7 Memory Maps for EVB
	5.3.8 How to Use NOR Flash in the RZ/N2L Project

	5.4 Specifications of Tools Used with Sample Program
	5.4.1 fwupdate_utility.py
	5.4.2 fwupdate.py

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Corporate Headquarters
	Contact information
	Trademarks

