

silabs.com | Building a more connected world. Copyright © 2022 by Silicon Laboratories Rev. 1.2

QSG169: Bluetooth® Quick-Start Guide for
SDK v3.x and Higher

This document describes how to get started with Bluetooth
development using the Bluetooth software development kit (SDK)
v3.x and Simplicity Studio® 5 with a compatible wireless starter kit
(WSTK). If you have purchased an EFR32BG WSTK you can first
experiment with precompiled demos and an Android or iOS
smartphone app before continuing with your own application
development.

If you use Simplicity Studio 4 with Bluetooth SDK v2.x, find corresponding content in
QSG139: Bluetooth® SDK v2.x Quick Start Guide.

KEY POINTS

• Introducing the Bluetooth development
environment.

• Using the WSTK demos and Android or
iOS smartphone app to demonstrate Blue-
tooth features.

• Starting application development for Blue-
tooth devices with Simplicity Studio.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 1.2 | 2

1 Introduction

This document describes how to get started with Bluetooth development using Silicon Labs products. It introduces the features of the
Silicon Labs Bluetooth stack v3.x and the resources available to help with development. Application development is started using the
Silicon Labs development environment Simplicity Studio 5 and the Bluetooth Software Development Kit (SDK) v3.x, part of Gecko SDK.

Simplicity Studio 5 includes everything needed for IoT product development with Silicon Labs devices including a resource and project
launcher, software configuration tools, full IDE with GNU toolchain, and analysis tools. This document focuses on use and development
in the Simplicity Studio 5 environment. Alternatively, Gecko SDK may be installed manually by downloading or cloning the latest from
GitHub. See https://github.com/SiliconLabs/gecko_sdk for more information.

The SDK comes with a number of example application that you can then modify to create your own applications. If you are developing
with an EFR32BG device and have purchased a EFR32BG Wireless Starter Kit (WSTK), you can use precompiled demos and an Android
or iOS smartphone app to demonstrate Bluetooth software features.

This document describes the following:
• Bluetooth Stack features and components (see section 2 About the Bluetooth Stack)
• A description of the precompiled demos and example code available in the SDK (see section 3 About Demos and Examples)
• How to test prebuilt demo software with either an iOS or Android smartphone app (see section 4 Getting Started with Bluetooth Demo

Software)
• How to develop your own applications in Simplicity Studio (see section 5 Starting Application Development)
• A description of other tools that are useful in the development process (see section 6 Development Tools)

1.1 Prerequisites

Before beginning application development, you should have:
• Acquired a basic understanding of Bluetooth technology and terminology. UG103.14: Bluetooth LE Fundamentals provides a good

starting point if you have not yet learned about Bluetooth.
• Purchased an EFR32BG Wireless Starter Kit or other compatible target hardware.
• Created an account at Silicon Labs. You can register at https://siliconlabs.force.com/apex/SL_CommunitiesSelfReg?form=short.
• Downloaded Simplicity Studio 5 and the Silicon Labs Gecko SDK containing the Bluetooth SDK and become generally familiar with

the SSv5 Launcher perspective. SSv5 installation and getting started instructions along with a set of detailed references can be found
in the online Simplicity Studio 5 User’s Guide, available on https://docs.silabs.com/ and through the SSv5 help menu.

• Obtained a compatible compiler (See the Bluetooth SDK’s release notes for the compatible versions):
• Simplicity Studio comes with a free GCC C-compiler.
• IAR Embedded Workbench for ARM (IAR-EWARM) can also be used as the compiler for Silicon Labs Bluetooth projects. Once

IAR-EWARM is installed, the next time Simplicity Studio starts it will automatically detect and configure the IDE to use IAR-
EWARM.

To get a 30-day evaluation license for IAR-EWARM:
• Go to the Silicon Labs support portal at https://www.silabs.com/support.
• Scroll down to the bottom of the page, and click Contact Support
• If you are not already signed in, sign in.
• Click the Software Releases tab. In the View list select Development Tools. Click Go. In the results is a link to the IAR-EWARM

version named in the release notes.
• Download the IAR package (takes approximately 1 hour).
• Install IAR.
• In the IAR License Wizard, click Register with IAR Systems to get an evaluation license.
• Complete the registration and IAR will provide a 30-day evaluation license.
• Once IAR-EWARM is installed, the next time Simplicity Studio starts it will automatically detect and configure the IDE to use IAR-

EWARM.

https://github.com/SiliconLabs/gecko_sdk
https://siliconlabs.force.com/apex/SL_CommunitiesSelfReg?form=short
https://docs.silabs.com/
https://www.silabs.com/support

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 1.2 | 3

1.2 Support

You can access the Silicon Labs support portal at https://www.silabs.com/support through Simplicity Studio 5’s Welcome view under
Learn and Support. Use the support portal to contact Customer Support for any questions you might have during the development pro-
cess.

https://www.silabs.com/support

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 1.2 | 4

1.3 Documentation

Hardware-specific documentation may be accessed through links on the part Overview tab in Simplicity Studio 5.

SDK documentation, User’s Guides, and other references are available through the Documentation tab.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 1.2 | 5

The Bluetooth API reference is available online along with further useful documentation and code examples: https://docs.silabs.com/blue-
tooth/latest/

Training materials are available on the Silicon Labs website at https://www.silabs.com/support/training/bluetooth.

https://docs.silabs.com/bluetooth/latest/
https://docs.silabs.com/bluetooth/latest/
https://www.silabs.com/support/training/bluetooth

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 1.2 | 6

Key documentation for the Bluetooth SDK is summarized in the following figures.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 1.2 | 7

1.4 Gecko Platform

The Gecko Platform is a set of drivers and other lower layer features that interact directly with Silicon Labs chips and modules. Gecko
Platform components include EMLIB, EMDRV, RAIL Library, NVM3, and mbed TLS. For more information about Gecko Platform, see
release notes that can be found in Simplicity Studio’s Documentation tab.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 8

2 About the Bluetooth Stack

The v3.x Silicon Labs Bluetooth stack is an advanced Bluetooth 5-compliant protocol stack implementing the Bluetooth low energy stand-
ard. It supports multiple connections, concurrent central, peripheral, broadcaster, and observer roles. The v3.x Silicon Labs Bluetooth
stack is meant for Silicon Labs EFR32 SoCs and modules.

The Silicon Labs Bluetooth stack provides multiple APIs for the developer to access the Bluetooth functionality. Three modes are sup-
ported:
1. Standalone mode, where both the Bluetooth stack and the application run in an EFR32SoC or module. The application can be

developed with C programming language.

2. Network Co-Processor (NCP) mode, where the Bluetooth stack runs in an EFR32 and the application runs on a separate host MCU.

For this use case, the Bluetooth stack can be configured into NCP mode where the API is exposed over a serial inter- face such as
UART.

3. Radio Co-Processor (RCP) mode, where only the Link Layer of the Bluetooth stack runs on the EFR32, and the Host Layer of the

stack, as well as the application, runs on a separate host MCU or PC. In this use case, the Host Layer is developed by a third party,
since Silicon Labs’ Bluetooth stack is only built for EFR32 SoCs / modules. The Link Layer and the host layer communicate via HCI

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 9

(Host-Controller Interface), which is a standard interface between the two layers. The HCI can be accessed via UART following the
Bluetooth SIG's UART (H4) transport protocol or the Silicon Labs’ proprietary CPC (Co-Processor Communication) protocol.

2.1 Bluetooth Stack Features

The features of the Silicon Labs Bluetooth stack are listed in the following table.

Feature EFR32[B|M]G1 EFR32[B|M]G12 EFR32[B|M]G13 EFR32[B|M]G21* EFR32[B|M]G22 EFR32[B|M]G24

Bluetooth version Bluetooth 5.3 Bluetooth 5.3 Bluetooth 5.3 Bluetooth 5.3 Bluetooth 5.3 Bluetooth 5.3

Concurrent
central,
peripheral,
broadcaster and
observer modes

✓ ✓ ✓ ✓ ✓ ✓

Simultaneous
connections ✓ (up to 8) ✓ (up to 32) ✓ (up to 8) ✓ (up to 32) ✓ (up to 8) ✓ (up to 32)

LE secure
connections ✓ ✓ ✓ ✓ ✓ ✓

LE Privacy 1.2
(peripheral) ✓ ✓ ✓ ✓ ✓ ✓

LE packet length
extensions ✓ ✓ ✓ ✓ ✓ ✓

LE dual topology ✓ ✓ ✓ ✓ ✓ ✓
Link Layer
Device Filtering
(central side only)

✓ ✓ ✓ ✓ ✓ ✓

LE Power Control ✓ ✓ ✓ ✓ ✓ ✓
Bluetooth 5
GATT caching ✓ ✓ ✓ ✓ ✓ ✓

Bluetooth 5 2M
PHY x ✓ ✓ ✓ ✓ ✓

Bluetooth 5 LE
Long Range x x ✓ ✓ ✓ ✓

Bluetooth 5
advertisement
sets and scan
event reporting

✓ ✓ ✓ ✓ ✓ ✓

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 10

Feature EFR32[B|M]G1 EFR32[B|M]G12 EFR32[B|M]G13 EFR32[B|M]G21* EFR32[B|M]G22 EFR32[B|M]G24

Bluetooth 5
extended
advertisements.

 x ✓ (up to 1650B) ✓ (up to 1650B) ✓ (up to 1650B) ✓ (up to 1650B) ✓ (up to 1650B)

Bluetooth 5
periodic
advertisements

 x ✓ (up to 1650B) ✓ (up to 1650B) ✓ (up to 1650B) ✓ (up to 1650B) ✓ (up to 1650B)

Bluetooth 5
periodic
advertising
synchronization

x ✓ ✓ ✓ ✓ ✓

Directed
advertising ✓ ✓ ✓ ✓ ✓ ✓

Adaptive
Frequency
Hopping

✓ ✓ ✓ ✓ ✓ ✓

L2CAP
Connection
Oriented
Channels

✓ ✓ ✓ ✓ ✓ ✓

CTE transmitter x x x x ✓ ✓

CTE receiver x x x x select part
numbers

select part
numbers

Maximum
throughput

700 kbps over
1M PHY

700 kbps over
1M PHY,
1300 kbps over
2M PHY

700 kbps over
1M PHY,
1300 kbps over
2M PHY

700 kbps over
1M PHY,
1300 kbps over
2M PHY

700 kbps over
1M PHY,
1300 kbps over
2M PHY

700 kbps over
1M PHY,
1300 kbps over
2M PHY

Encryption AES-128 AES-128 AES-128 AES-128 AES-128 AES-128

Pairing modes

Just works,
numeric
comparison,
passkey entry,
Out-Of-Band

Just works,
numeric
comparison,
passkey entry,
Out-Of-Band

Just works,
numeric
comparison,
passkey entry,
Out-Of-Band

Just works,
numeric
comparison,
passkey entry,
Out-Of-Band

Just works,
numeric
comparison,
passkey entry,
Out-Of-Band

Just works,
numeric
comparison,
passkey entry,
Out-Of-Band

Number of
simultaneous
bondings

Up to 13 with
PS Store, up to
32 with NVM3

Up to 13 with PS
Store, up to 32
with NVM3

Up to 13 with PS
Store, up to 32
with NVM3

Up to 32 Up to 32 Up to 32

Link Layer packet
size Up to 251 B Up to 251 B Up to 251 B Up to 251 B Up to 251 B Up to 251 B

ATT protocol
packet size Up to 250 B Up to 250 B Up to 250 B Up to 250 B Up to 250 B Up to 250 B

Supported
Bluetooth profiles
and services

All GATT
based profiles
and services
are supported

All GATT based
profiles and
services are
supported

All GATT based
profiles and
services are
supported

All GATT based
profiles and
services are
supported

All GATT based
profiles and
services are
supported

All GATT based
profiles and
services are
supported

Apple HomeKit x
Apple HomeKit
R15-compliant
implementation

Apple HomeKit
R15-compliant
implementation

Apple HomeKit
R15-compliant
implementation

Apple HomeKit
R15-compliant
implementation

Apple HomeKit
R15-compliant
implementation

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 11

Feature EFR32[B|M]G1 EFR32[B|M]G12 EFR32[B|M]G13 EFR32[B|M]G21* EFR32[B|M]G22 EFR32[B|M]G24

Host (NCP/RCP)
interfaces

4-wire UART
with RTS/CTS
control or 2-
wire UART
without
RTS/CTS,
GPIOs for
sleep and
wake-up
management

4-wire UART
with RTS/CTS
control or 2-wire
UART without
RTS/CTS,
GPIOs for sleep
and wake-up
management

4-wire UART
with RTS/CTS
control or 2-wire
UART without
RTS/CTS,
GPIOs for sleep
and wake-up
management

4-wire UART
with RTS/CTS
control or 2-wire
UART without
RTS/CTS,
GPIOs for sleep
and wake-up
management

4-wire UART
with RTS/CTS
control or 2-wire
UART without
RTS/CTS,
GPIOs for sleep
and wake-up
management

4-wire UART
with RTS/CTS
control or 2-wire
UART without
RTS/CTS,
GPIOs for sleep
and wake-up
management

Wi-Fi
Coexistence

Using Packet
Trace
Arbitration
(PTA)

Using Packet
Trace Arbitration
(PTA)

Using Packet
Trace Arbitration
(PTA)

Using Packet
Trace Arbitration
(PTA)

Using Packet
Trace Arbitration
(PTA)

Using Packet
Trace Arbitration
(PTA)

Non-volatile
memory

NVM3 or
Persistent
Store (PS)**

NVM3 or
Persistent Store
(PS)**

NVM3 or
Persistent Store
(PS)**

NVM3 NVM3 NVM3

* EFR32MR21 has the same feature set as xG21, but works only in the RCP mode. The SoC and NCP modes are not supported.

** Example applications in the SDK that are generated for these platforms will use PS by default.

2.2 Bluetooth Qualification

All products using Bluetooth technology must go through the Bluetooth SIG's Qualification Process, even if the product does not have the
Bluetooth logo or Bluetooth is not mentioned in the packaging and the documentation. In practice this means that, before you can sell a
Bluetooth-enabled product to the market, the product must be qualified as an End Product through the Bluetooth SIG. The qualification
listing has a Declaration Fee. There are online resources to learn more about the Bluetooth Qualification Process as well as tutorials on
the Launch Studio, which is the online tool used to complete the Bluetooth Qualification Process. If you need assistance to qualify your
device consider reaching out to your nearest Bluetooth Qualification Consultant.

When qualifying your end-product based on the Silicon Labs Bluetooth stack, you will integrate the pre-qualified components listed in the
table below, depending on which SDK version was used to build your application.

Bluetooth SDK version Component QDID
v2.13.x up to v3.1.x Link Layer (Bluetooth 5.2) Launch Studio Listing Details: 147971

“ Host stack (Bluetooth 5.2) Launch Studio Listing Details: 146950
V3.2.x and above Link Layer (Bluetooth 5.3) Launch Studio Listing Details: 178212

“ Host stack (Bluetooth 5.3) Launch Studio Listing Details: 175341

Note: According to Bluetooth SIG Qualification Program Reference Document (PRD), the Assessment Date of the tested Component
must be less than three years old at the time it is being imported into a Launch Studio project for a new End Product Listing (EPLs). After
the expiration of a Component QDID (Qualified Design ID), a newer SDK version than the one used for the outdated QDID should be
used in order to qualify your product. There can be also newer QDIDs than the ones listed in the table above if there are newer Component
versions. You can browse our valid Qualified Components and their Assessment Date by inserting Silicon Laboratories in the search bar
of Launch Studio. Contact the technical support in case there is a need to use an older SDK version.

The above software-based pre-qualified components are two out of the three components to integrate when proceeding with the "Quali-
fication Process with Required Testing". Despite the “Required Testing", customers do not need to do any additional testing, given that
the test reports are embedded in the pre-qualified components for the SIG to review.

In addition to these two software components, you must also have integrated a qualified RF-PHY component in your end-product listing.
If you are designing with one of the Silicon Labs Bluetooth modules, then refer to the module datasheet for the appropriate component
QDID to use. If you are designing with an SoC then you may need to obtain your own RF-PHY qualification with the Bluetooth SIG,
depending on your hardware design. In the latter case, consult your nearest Bluetooth Qualification Consultant, or Silicon Labs through
the support portal, to understand if an existing Silicon Labs RF-PHY pre-qualification could be used.

https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-listing-fees/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/
https://www.bluetooth.com/develop-with-bluetooth/build/test-tools/launch-studio/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-consultants/
https://launchstudio.bluetooth.com/ListingDetails/105576
https://launchstudio.bluetooth.com/ListingDetails/104376
https://launchstudio.bluetooth.com/ListingDetails/141145
https://launchstudio.bluetooth.com/ListingDetails/137791
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=40972
https://launchstudio.bluetooth.com/Listings/Search
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-process-with-required-testing/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-process-with-required-testing/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-consultants/

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 12

Silicon Labs does not provide prequalified profiles. Customers must provide these with their end applications that implement the function-
ality as per the SIG profile specification.

2.3 The Bluetooth Stack APIs

This section briefly describes the different software APIs available for the developer when developing a Bluetooth application either in
SoC or NCP mode. In RCP mode the standard HCI is used, which is defined in the Bluetooth Core Specification and therefore is not
discussed here.

2.3.1 The BGAPI Bluetooth API

The BGAPI is the Bluetooth API provided by the Silicon Labs Bluetooth stack. It provides access to all the Bluetooth functionality imple-
mented by the Bluetooth stack, such as: the Generic Access Profile (GAP), connection manager, the security manager (SM), and GATT
client and server.

In addition to the Bluetooth APIs, the BGAPI also provides access to a few other functions like the Direct Test Mode (DTM) API for RF
testing purposes, the NVM (Non-Volatile Memory) API for reading and writing settings to and from the devices flash memory, the DFU
(Device Firmware Update) API for field firmware updates, and the System API for various system level functions.

2.3.2 CMSIS and emlib

The Cortex Microcontroller Software Interface Standard (CMSIS) is a common coding standard for all ARM Cortex devices. The CMSIS
library provided by Silicon Labs contains header files, defines (for peripherals, registers and bitfields), and startup files for all devices. In
addition, CMSIS includes functions that are common to all Cortex devices, like interrupt handling, intrinsic functions, etc. Although it is
possible to write to registers using hard-coded address and data values, it is recommended to use the defines to ensure portability and
readability of the code.

To simplify programming Wireless Geckos, Silicon Labs developed and maintains a complete C function library called emlib that provides
efficient, clear, and robust access to and control of all peripherals and core functions in the device. This library resides within the em_xxx.c
(for example, em_dac.c) and em_xxx.h files in the SDK.

The emlib documentation is available on https://docs.silabs.com.

2.3.3 The BGAPI Serial Protocol and BGLIB Host API

When configured in NCP (network co-processor) mode, the Bluetooth stack also implements the BGAPI serial protocol. This allows the
Bluetooth stack to be controlled over a serial interface such as UART from a separate host like an EFM32 microcontroller. The BGAPI
serial protocol provides exactly the same Bluetooth APIs over UART as the BGAPI API when used in a standalone mode. Additionally,
an extra command and an event are reserved for user messaging in case the interface should be extended with custom commands.

The BGAPI serial protocol is a lightweight, binary protocol that carries the BGAPI commands from the host to the Bluetooth stack and
responses and events from the Bluetooth stack back to the host.

The Bluetooth SDK delivers a ready-made BGAPI serial protocol parser implementation, called BGLIB. It implements the serial protocol
parser and C language function and events for all the APIs provided by the Bluetooth stack. The host code developed on top of BGLIB
can be written to be identical to the code for the Wireless Gecko, which allows easy porting of the application code from the Wireless
Gecko to a separate host or vice versa.

A Python based BGAPI serial protocol parser is also available here: https://pypi.org/project/pybgapi/

https://docs.silabs.com/
https://pypi.org/project/pybgapi/

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 13

Figure 2.1. BGAPI Serial Protocol Message Exchange

The BGAPI serial protocol packet structure is described in the following table.

Table 2-1. BGAPI Packet Structure

Byte Byte 0 Byte 1 Byte 2 Byte 3 Byte 4-255

Explanation Message type Minimum payload
length Message class Message ID Payload

Values 0x20: command 0x00 - 0xFF 0x00 - 0xFF 0x00 - 0xFF Specific to command,
response, or event

“ 0x20: response 0x00 - 0xFF 0x00 - 0xFF 0x00 - 0xFF Specific to command,
response, or event

“ 0xA0: event 0x00 - 0xFF 0x00 - 0xFF 0x00 - 0xFF Specific to command,
response, or event

2.3.4 GATT Configuration

Bluetooth applications usually need a GATT database. The structure of the GATT database can be defined in the Bluetooth application.
The Silicon Labs’ Bluetooth SDK provides two ways to define the GATT database:
• A static GATT database can be defined in compile time with the appropriate tools provided by the Bluetooth SDK. In this case the

database structure is stored in the ROM, which means faster start-up time and lower memory usage.
• A dynamic GATT database can be defined in runtime with the appropriate BGAPI commands. In this case the database structure is

stored in the RAM, which makes it more flexible. This is recommended in the NCP use case to avoid re-building the target code that
runs on the Wireless Gecko.

The Bluetooth Profile Toolkit GATT Builder

The Bluetooth Profile Toolkit is a simple XML-based API and description language used to describe (static) GATT-based services and
characteristics easily without the need to write them in code. The XML files can be easily written by hand based on the information
contained in UG118: Blue Gecko Bluetooth® Profile Toolkit Developer Guide. Use the Profile Toolkit GATT Builder if you are developing
outside of Simplicity Studio, and follow the instructions of UG118: Blue Gecko Bluetooth® Profile Toolkit Developer Guide to convert your
GATT database into C code.

The GATT Configurator

Simplicity Studio includes the GATT Configurator, a tool that allows building the (static) GATT database in a visual way, without hand
editing the XML file. It also automatically converts the database structure into C code upon saving. See section 6.1, The GATT Configu-
rator for summary information, and UG438: GATT Configurator User’s Guide for Bluetooth SDK v3.x for details. Open the GATT

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 14

Configurator in Simplicity Studio through the Project Configurator, Configuration Tools tab. Click Open and the GATT Configurator tool
opens the file gatt_configuration.btconf in a new tab.

Figure 2.2. Opening the Bluetooth GATT Configurator

gatt_configuration.btconf gives the trunk of the GATT database. It is located inside the config > btconf directory of your project. This file
can be edited using the GATT Configurator.

The contents of the additional xml files in the config > btconf folder will appear as Contributed Items in the GATT Configurator UI. See for
example the in_place_ota_dfu.xml file provided by the OTA DFU software component. If these files are edited through GATT Configurator,
they become a part of Custom BLE GATT and will be removed from the Contributed Items. Also, the contributed items (services and its
characteristics) will move from the xml file to gatt_configuration.btconf file.

Figure 2.3. Contributed Items in the GATT Configurator UI

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 15

Upon saving gatt_configuration.btconf, the GATT database developed with the GATT Configurator is converted to a .c file and an .h file
and included in the application project as a pre-build step when the firmware is compiled. Then the GATT can be accessed with the
Bluetooth stack GATT APIs or by a remote Bluetooth device.

Figure 2.4. Example of a Generic Access Service

Building a Dynamic GATT database

The GATT database can also be built dynamically from the application using the GATT database API class of the Bluetooth API if the
Dynamic GATT Database software component is installed in your project, or if this API class is explicitly initialized. For more information
see the Bluetooth API reference manual at https://docs.silabs.com/bluetooth/latest/ and the corresponding section of UG438: GATT Con-
figurator User’s Guide for Bluetooth SDK v3.x. In NCP mode it is also possible to take a static GATT database code on the host side and
turn it into dynamic API calls to transmit the database structure over UART. For more information see AN1259: Using the v3.x Silicon
Labs Bluetooth® Stack in Network Co-Processor Mode.

2.4 About the Bluetooth SDK

The Bluetooth SDK is a full software development kit that enables you to develop applications on top of the Bluetooth stack using C
programming language. The SDK also supports making standalone applications, where the Bluetooth stack and the application both run
in the Wireless Gecko, or the network co-processor (NCP) architecture, where the application runs on an external host and the Bluetooth
stack runs in the Wireless Gecko. SDK contents and folder structure are described in the following sections.

2.4.1 Libraries

The following libraries are delivered with the Bluetooth SDK and must be included in C application projects.

Library Explanation Mandatory

libbluetooth.a Bluetooth stack library Yes

librail_efr32xg1_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG1 platform

librail_efr32xg12_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG12 platform

librail_efr32xg13_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG13 platform

librail_efr32xg14_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG14 platform

librail_efr32xg21_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG21 platform

librail_efr32xg22_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG22 platform

librail_efr32xg24_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG24 platform

librail_efr32xg1_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG1 platform

https://docs.silabs.com/bluetooth/latest/

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 16

Library Explanation Mandatory

librail_efr32xg12_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG12 platform

librail_efr32xg13_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG13 platform

librail_efr32xg14_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG14 platform

librail_efr32xg21_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG21 platform

librail_efr32xg22_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG22 platform

librail_efr32xg24_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG24 platform

libpsstore.a PSStore library Yes, on series 1

binapploader.o Apploader for OTA updates No

libcoex.a Wi-Fi and Bluetooth coexistence No

libnvm3_CM33_gcc.a /
libnvm3_CM33_iar.a - Yes, on series 2

2.4.2 Include Files

The following files are delivered with the Bluetooth SDK and must be included in C application projects.

Library Explanation When needed

bg_gattdb_def.h Bluetooth GATT database structure definition. Included automatically.

sl_bt_version.h Bluetooth stack version in plain text. The boot event
reports the same version values as this file has.

For convenient access to Bluetooth SDK
version Information. Not mandatory for
application development.

sl_bt_ll_config.h Bluetooth Link Layer configuration data type
definitions. Included by sl_bt_stack_config.h. Included automatically.

sl_bt_stack_config.h Bluetooth stack configuration data type definitions.
Included by sl_bluetooth_config.h. Included automatically.

sl_bluetooth_config.h Bluetooth configuration. Included automatically if application is
generated with the Project Configurator.

sl_bt_types.h Bluetooth API data type definitions. Included automatically.

sl_bt_stack_init.h Bluetooth feature and API initialization functions on
SoC.

Included automatically if application is
generated with the Project Configurator.

sl_bt_api.h
Bluetooth API declarations with comprehensive
documentation. This is the single file for Bluetooth API
in SoC or NCP mode.

Included automatically if application is
generated with the Project Configurator.

sli_bt_api.h Bluetooth API library in plain source code for NCP host
applications.

Included automatically if application is
generated with the Project Configurator.

sl_bt_ncp_host_api.c Bluetooth API library in plain source code for NCP host
applications.

Included automatically if application is
generated with the Project Configurator.

sl_bt_ncp_host.h An adaptation layer between host application and
Bluetooth API serial protocol.

Included automatically if application is
generated with the Project Configurator.

sl_bt_ncp_host.c An adaptation layer between host application and
Bluetooth API serial protocol.

Included automatically if application is
generated with the Project Configurator.

sl_bt_rtos_adaptation.h An adaptation layer for running Bluetooth in Micrium
OS on SoC.

Included automatically if application is
generated with the Project Configurator.

sl_bt_rtos_adaptation.c An adaptation layer for running Bluetooth in Micrium
OS on SoC.

Included automatically if application is
generated with the Project Configurator.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About the Bluetooth Stack

silabs.com | Building a more connected world. Rev. 1.2 | 17

2.4.3 Platform Components

The following components are delivered with the Bluetooth SDK. The platform components are under the platform folder.

Folder Explanation

bootloader Gecko Bootloader source code and project files.
CMSIS Silicon Laboratories CMSIS-CORE device headers. (1)
common Silicon Labs status codes
Device EFR32BG and EFR32MG device files. (2)

emdrv
A set of function-specific high-performance drivers for EFR32 on-chip peripherals. Drivers are typically
DMA based and are using all available low-energy features. For most drivers, the API offers both
synchronous and asynchronous functions. (3)

emlib A low-level peripheral support library that provides a unified API for all EFM32, EZR32 and EFR32 MCUs
and SoCs from Silicon Laboratories. (4)

Halconfig Peripheral configuration
Hwconf_data Gather chip-specific hardware configuration
micrium_os Micrium OS
middleware Display driver for WSTK development kits (5)
radio Silicon Labs RAIL (Radio Abstraction Interface Layer) library
service Sleeptimer driver and configuration file. Used by the Bluetooth LE stack.

(1) https://docs.silabs.com/mcu/latest/bgm21/group-Parts

(2) https://docs.silabs.com/mcu/latest/bgm21/group-Parts

(3) https://docs.silabs.com/mcu/latest/bgm21/group-emdrv

(4) https://docs.silabs.com/mcu/latest/bgm21/group-emlib

(5) https://docs.silabs.com/mcu/latest/bgm21/group-emlib

https://docs.silabs.com/mcu/latest/bgm21/group-Parts
https://docs.silabs.com/mcu/latest/bgm21/group-Parts
https://docs.silabs.com/mcu/latest/bgm21/group-emdrv
https://docs.silabs.com/mcu/latest/bgm21/group-emlib
https://docs.silabs.com/mcu/latest/bgm21/group-emlib

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About Demos and Examples

silabs.com | Building a more connected world. Rev. 1.2 | 18

3 About Demos and Examples

3.1 Bluetooth SDK Examples

Because starting application development from scratch is difficult, the Bluetooth SDK comes with a number of built-in demos and exam-
ples covering the most frequent use cases, as shown in the following figure. Demos are pre-built application images that you can run
immediately. Software examples (example projects) can be modified before building the application image. Demos with the same name
as Software examples are built from their respective example. Click View Project Documentation to see additional information about
some examples. This is also displayed on a readme tab when you create a project based on the example.

Use the Demos and Example Projects switches to filter on only examples or only demos. Demos are also noted by the blue Demo tag
in the upper left of the card. The Solution Examples switch is provided for future use.

Note: The demos and examples you see are determined by the part selected. If you are using a custom solution with more than one
part, click on the part you are working with to see only the items applicable to that part.

To download and run a demo on your device, click RUN on the desired demo card. The demo automatically downloads to the selected
device. See section 4 Getting Started with Bluetooth Demo Software for more information about testing the demos.

Software examples include a configurable GATT database and configurable components. See section 5 Starting Application Develop-
ment.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About Demos and Examples

silabs.com | Building a more connected world. Rev. 1.2 | 19

3.1.1 Demo/Example Descriptions

The following examples are provided as part of the Bluetooth SDK. Examples with (*) in their names have a matching pre-built demo.
• Silicon Labs Gecko Bootloader examples (see UG266: Silicon Labs Gecko Bootloader User’s Guide for GSDK 3.2 and Lower or

UG489: Silicon Labs Gecko Bootloader User’s Guide for GSDK 4.0 and Higher, and AN1086: Using the Gecko Bootloader with Silicon
Labs Bluetooth Applications)

• Bluetooth Examples
• Bluetooth – RCP(*): Radio Co-Processor (RCP) target application. Runs the Bluetooth Controller (i.e. the Link Layer only) and

provides access to it using the standard HCI (Host-Controller Interface) over a UART connection.
• Bluetooth – RCP CPC(*): Radio Co-Processor (RCP) target application. Runs the Bluetooth Controller (i.e. the Link Layer only)

and provides access to it using the standard HCI (Host-Controller Interface) over CPC (Co-Processor Communication) protocol
through a UART connection.

• Bluetooth – NCP(*): Network Co-Processor (NCP) target application. Runs the Bluetooth stack dynamically and provides access
to it via the Bluetooth API (BGAPI) using a UART connection. NCP mode makes it possible to run your application on a host
controller or PC.

• Bluetooth – NCP Host: Reference implementation of an NCP (Network Co-Processor) host, which typically runs on a central
MCU without radio. It can connect to an NCP target via UART to access the Bluetooth stack of the target and to control it using
BGAPI.

• Bluetooth AoA – NCP Locator(*): Network Co-Processor (NCP) target application extended with CTE Receiver support. It ena-
bles Angle of Arrival (AoA) calculation. Use this application with Direction Finding host examples.

• Bluetooth AoA –Asset Tag(*): Demonstrates a CTE (Constant Tone Extension) transmitter that can be used as an asset tag in
a Direction Finding setup estimating Angle of Arrival (AoA).

• Bluetooth – SoC Application OTA DFU: A minimal project structure that serves as a starting point for custom Bluetooth appli-
cations providing Over-the-Air device firmware update in the user application runtime.

• Bluetooth – SoC Application OTA DFU FreeRTOS: Demonstrates the integration of FreeRTOS into Bluetooth applications.
RTOS is added to the Bluetooth - SoC Application OTA DFU sample application that realizes over-the-air device firmware updates
in user application scope.

• Bluetooth – SoC Application OTA DFU MicriumOS: Demonstrates the integration of MicriumOS into Bluetooth applications.
RTOS is added to the Bluetooth - SoC Application OTA DFU sample application that realizes over-the-air device firmware updates
in user application scope.

• Bluetooth – SoC Blinky(*): The classic blinky example using Bluetooth communication. Demonstrates a simple two-way data
exchange over GATT. This can be tested with the EFR Connect mobile app.

• Bluetooth – SoC Certificate Based Authentication and Pairing: Demonstrates Certificate-Based Authentication and Pairing
over Bluetooth LE.

• Bluetooth – SoC CSR Generator: Certificate-generating firmware example. Software generates the device EC key pair, the
signing request for the device certificate, and other related data. The generated data can be read out by the Central Authority.
See Bluetooth – SoC Certificate Based Authentication and Pairing.

• Bluetooth – SoC DTM: This example implements the direct test mode (DTM) application for radio testing. DTM commands can
be called via UART. See AN1267: Radio Frequency Physical Layer Evaluation in Bluetooth® SDK v3.x for more information.

• Bluetooth – SoC Empty: A minimal project structure that serves as a starting point for custom Bluetooth applications. The appli-
cation starts advertising after boot and restarts advertising after a connection is closed.

• Bluetooth – SoC Interoperability Test(*): A test procedure containing several test cases for Bluetooth Low Energy communica-
tion. This sample app (also provided as a demo) is meant to be used with the EFR Connect mobile app, through the "Interopera-
bility Test" tile on the Develop view of the app.

• Bluetooth – SoC Thermometer(*): Implements a GATT Server with the Health Thermometer Profile, which enables a Client
device to connect and get temperature data. Temperature is read from the Si7021 digital relative humidity and temperature sensor
of the WSTK or of the Thunderboard.

• Bluetooth – SoC Thermometer Client: Implements a GATT Client that discovers and connects with up to four Bluetooth LE
devices advertising themselves as Thermometer Servers. It displays the discovery process and the temperature values received
via UART.

Note: Some radio boards will exhibit random pixels in the display when this example is running because they have a shared pin
for sensor- and display-enabled signals.

• Bluetooth – SoC Thermometer FreeRTOS: Demonstrates the integration of FreeRTOS into Bluetooth applications. RTOS is
added to the Bluetooth - SoC Thermometer sample app.

• Bluetooth – SoC Thermometer Micrium OS: Demonstrates the integration of Micrium RTOS into Bluetooth applications. RTOS
is added to the Bluetooth - SoC Thermometer sample app.

• Bluetooth – SoC Throughput(*): Tests the throughput capabilities of the device and can be used to measure throughput between
two EFR32 devices, as well as between a device and a smartphone using the EFR Connect mobile app, through the Throughput
demo tile.

https://www.silabs.com/documents/login/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/login/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1267-bt-rf-phy-evaluation-using-dtm-sdk-v3x.pdf

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About Demos and Examples

silabs.com | Building a more connected world. Rev. 1.2 | 20

• Bluetooth – SoC Voice(*): Voice over Bluetooth Low Energy sample application. It is supported by Thunderboard Sense 2 and
Thunderboard EFR32BG22 boards and demonstrates how to send voice data over GATT, which is acquired from the on-board
microphones.

• Bluetooth – SoC iBeacon(*): Sends non-connectable advertisements in iBeacon format. The iBeacon Service gives Bluetooth
accessories a simple and convenient way to send iBeacons to smartphones. This example can be tested together with the EFR
Connect mobile app.

• Bluetooth – SoC Thunderboard Sense 2(*), and Thunderboard EFR32BG22(*): Demonstrate the features of the Thunderboard
Kit. These can be tested with the EFR Connect mobile app.

• Dynamic Multiprotocol Examples (see AN1134: Dynamic Multiprotocol Development with Bluetooth and Proprietary Protocols on
RAIL for more information)
• Bluetooth RAIL DMP – SoC Empty FreeRTOS: A minimal project structure, used as a starting point for custom Bluetooth +

Proprietary DMP (Dynamic Multiprotocol) applications. It runs on top of FreeRTOS and multiprotocol RAIL.
• Bluetooth RAIL DMP – SoC Empty Micrium OS: A minimal project structure, used as a starting point for custom Bluetooth +

Proprietary DMP (Dynamic Multiprotocol) applications. It runs on top of Micrium OS and multiprotocol RAIL.
• Bluetooth RAIL DMP – SoC Empty Standard FreeRTOS: A minimal project structure, used as a starting point for custom Blue-

tooth + Standard DMP (Dynamic Multiprotocol) applications. It runs on top of FreeRTOS and multiprotocol RAIL utilizing
IEE802.15.4 standard protocol.

• Bluetooth RAIL DMP – SoC Empty Standard Micrium OS: A minimal project structure, used as a starting point for custom
Bluetooth + Standard DMP (Dynamic Multiprotocol) applications. It runs on top of Micrium OS and multiprotocol RAIL, utilizing
IEE802.15.4 standard protocol.

• Bluetooth RAIL DMP – SoC Light RAIL FreeRTOS(*): A Dynamic Multiprotocol reference application demonstrating a light bulb
that can be switched both via Bluetooth and via a Proprietary protocol. Can be tested with the EFR Connect mobile app and the
RAIL – SoC Switch sample app.

• Bluetooth RAIL DMP – SoC Light RAIL Micrium OS: A Dynamic Multiprotocol reference application demonstrating a light bulb
that can be switched both via Bluetooth and via a Proprietary protocol. Can be tested with the EFR Connect mobile app and the
RAIL – SoC Switch sample app.

• Bluetooth RAIL DMP – SoC Light Standard FreeRTOS(*): A Dynamic Multiprotocol reference application demonstrating a light
bulb that can be switched both via Bluetooth and via a standard protocol. Can be tested with the EFR Connect mobile app and
the RAIL – SoC Switch Standards sample app.

• Bluetooth RAIL DMP – SoC Light Standard Micrium OS(*): A Dynamic Multiprotocol reference application demonstrating a
light bulb that can be switched both via Bluetooth and via a standard protocol. Can be tested with the EFR Connect mobile app
and the RAIL – SoC Switch Standards sample app.

• NCP Host Examples (located in <GSDK install location>\app\bluetooth\example_host)
• bt_host_empty: Minimal host-side project structure, used as a starting point for NCP host applications. Use it with the Bluetooth

– NCP target application flashed to the radio board.
• bt_host_ota_dfu: Demonstrates how to perform an OTA DFU on a Silicon Labs Bluetooth Device. It requires a WSTK with a

radio board flashed with NCP firmware to be used as the GATT client that performs the OTA.
• bt_host_uart_dfu: Demonstrates how to perform a UART DFU on a Silicon Labs Bluetooth Device running NCP firmware.
• bt_host_voice: On a WSTK programmed with NCP firmware, it to connects to the Bluetooth – SoC Voice example, sets the

correct configuration on it, receives audio via Bluetooth, and stores audio data into a file.
• bt_aoa_host_locator: A locator host sample app that works together with a Bluetooth AoA – NCP Locator target app. It receives

IQ samples from the target and estimates the Angle of Arrival (AoA). For more information see QSG175: Application Development
with Silicon Labs’ RTL Library.

• bt_host_positioning: Connects to multiple bt_aoa_host_locator sample apps (via MQTT) and estimates a position from Angles
of Arrival (AoA). For more information, see QS175: Application Development with Silicon Labs’ RTL Library.

• bt_host_positioning_gui: Connects to the bt_host_positioning sample app (via MQTT), reads out the position estimations and
displays the tags and locators on a 3D GUI. This sample app is python based. For more information, see QSG175: Application
Development with Silicon Labs’ RTL Library.

• bt_host_throughput: Tests the throughput capabilities of the device in NCP mode and can be used to measure throughput
between two devices as well as between a device and a smartphone.

• bt_host_cpc_hci_bridge: A background application to be run when HCI interface is exposed via CPC. This application retrieves
the HCI commands/events from the CPC messages and forwards them toward the Bluetooth host running on the PC. Similarly, it
forwards the HCI commands from the host toward the target over CPC.

3.2 Other Bluetooth Functionality Examples

The Bluetooth SDK provides examples that demonstrate basic Bluetooth features (such as a simple Bluetooth server, Bluetooth client,
OTA DFU) and serve as a starting point for your (RCP, NCP, SoC, RTOS or DMP based) development. Often, however, developers need
guidance on how to use additional Bluetooth features (such as extended advertisements, and so on). Also, it may be very useful to see
full solution examples that cover a common use case and demonstrate how to integrate peripheral programming with Bluetooth.

https://www.silabs.com/documents/public/application-notes/an1134-bluetooth-rail-dynamic-multiprotocol.pdf
https://www.silabs.com/documents/public/application-notes/an1134-bluetooth-rail-dynamic-multiprotocol.pdf

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About Demos and Examples

silabs.com | Building a more connected world. Rev. 1.2 | 21

To satisfy these needs, additional examples are provided in repositories on GitHub. The repositories have detailed readme files that
instruct the developer on how to set up the project. To make the setup even easier, some repositories also provide .slcp files that make
it possible to automatically generate the project with Simplicity Studio. Currently, the following Bluetooth-related repositories are available:
• Bluetooth Stack Features

This repository demonstrates the different features of the Bluetooth stack. Each example focuses on one feature, and only a minimal
application logic is added to demonstrate it. This repository provides .slcp files. The repository is available here: https://github.com/Sil-
iconLabs/bluetooth_stack_features.

• Bluetooth Applications

This repository provides full application examples, which demonstrate how to add Bluetooth communication to an application that
provides solution for a real problem. It is worth checking this repository both to learn how a full Bluetooth application should look like,
and also because you might find an example that is already very similar to the one you want to implement. The repository is available
here: https://github.com/SiliconLabs/bluetooth_applications

• Python-Based NCP Host Examples

Python-based NCP host examples can be accesssed at https://github.com/SiliconLabs/pybgapi-examples. These examples are
meant to be used with PyBGAPI (https://pypi.org/project/pybgapi/), which enables implementing NCP host codes using Python.

Note: The examples in these repos are not maintained to the same degree as are the examples provided with the SDK. If you find an
issue, report it on https://community.silabs.com/.

To generate GitHub example projects with Simplicity Studio (only applicable to repositories with slcp files):
1. Open Simplicity Studio and navigate to Window > Preferences > Simplicity Studio > External Repos.
2. Click Add.
3. In the URI field enter the repository’s HTTPS clone address, for example https://github.com/SiliconLabs/bluetooth_stack_features.git

Alternatively, clone the repository onto your hard drive, and provide the path to the .git folder in your local repository, for example
C:\MyRepositories\bluetooth_stack_features\.git.

4. Enter an arbitrary name (such as ‘Bluetooth Stack Features’) and description for the repository, which will be displayed later.
5. Click Next. If you have entered the repository’s clone address, Simplicity Studio will clone the repository for you.
6. Click Finish, then click Apply and Close.
7. If you are not on the Launcher perspective, open it from the Perspectives toolbar in the upper-right corner.
8. Select your board in the Debug Adapters view or in the My Products view.
9. On the General card, verify the Gecko SDK version and change if necessary.

Note: Bluetooth stack feature examples are currently compatible with Gecko SDK v4.1 only!
10. Go to the Example Projects & Demos tab.
11. Now you should see your repository listed under the Provider filtering class. Select this filter.

Note: The repository only shows up if it contains at least one example that is compatible with your device.
12. All the examples contained in the repository that are compatible with your device are displayed. Click Create on any of them to create

a new example project. The example project installs all the software components necessary to demonstrate the given feature, and
all the needed code is automatically copied into your project. Additional configuration might be needed, so read the readme file of
the example carefully.

https://github.com/SiliconLabs/bluetooth_stack_features
https://github.com/SiliconLabs/bluetooth_stack_features
https://github.com/SiliconLabs/bluetooth_applications
https://github.com/SiliconLabs/pybgapi-examples
https://pypi.org/project/pybgapi/
https://community.silabs.com/
https://github.com/SiliconLabs/bluetooth_stack_features.git

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 About Demos and Examples

silabs.com | Building a more connected world. Rev. 1.2 | 22

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Getting Started with Bluetooth Demo Software

silabs.com | Building a more connected world. Rev. 1.2 | 23

4 Getting Started with Bluetooth Demo Software

The Blue Gecko Bluetooth Wireless Starter Kit is meant to help you evaluate Silicon Labs’ Bluetooth modules and get you started with
your own software development. The kits come in different versions with different module radio boards. See https://www.silabs.com/prod-
ucts/development-tools/wireless/bluetooth/bluegecko-bluetooth-low-energy-module-wireless-starter-kit for details on the current configu-
rations.

To get started with Bluetooth demo software, you should have downloaded Simplicity Studio 5 (SSv5) and the Bluetooth SDK v3.x as
described in the Simplicity Studio 5 User’s Guide, available online and through the SSv5 help menu. The Bluetooth SDK comes with
some prebuilt demos that can be flashed to your EFR32 device and tested using a Smartphone. This section describes how to test three
prebuilt demos on both Android and iOS devices:
• NCP Empty demo
• iBeacon demo
• Health Thermometer demo

4.1 Prepare the Mainboard
1. Connect a Bluetooth Module Radio Board to the mainboard as shown in the following figure.
2. Connect the mainboard to a PC using the Mainboard USB connector.
3. Turn the Power switch to "AEM" position.

Note: At this stage you might be prompted to install the drivers for the mainboard, but you can skip this for now.

4. Check that the blue USB Connection Indicator LED turns on or starts blinking.
5. Check that the mainboard LCD display turns on and displays a Silicon Labs logo.

Before starting to test the demo application note the following parts on the mainboard
• Temperature & Humidity Sensor
• PB0 button
• LED0

https://www.silabs.com/products/development-tools/wireless/bluetooth/bluegecko-bluetooth-low-energy-module-wireless-starter-kit
https://www.silabs.com/products/development-tools/wireless/bluetooth/bluegecko-bluetooth-low-energy-module-wireless-starter-kit
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Getting Started with Bluetooth Demo Software

silabs.com | Building a more connected world. Rev. 1.2 | 24

4.2 Flash the Demo

• With your device connected as described above, open SSv5.
• Select your device in the Debug Adapters view.
• On the Example Projects & Demos tab, click RUN on the demo of choice.

4.3 Test the Bluetooth Demos Using an Android or iOS Smartphone

4.3.1 Testing the NCP Demo

Load the NCP demo on the target:
1. Open Simplicity Studio with a mainboard and radio board connected and select the corresponding debug adapter.
2. On the OVERVIEW tab, under “General Information”, select the Gecko SDK Suite if it is not selected. On the Example Projects &

Demos tab, find the Bluetooth - NCP demo and click RUN. This flashes the demo to your device, but it does not start advertising
automatically.

At this point, BGAPI 3.x commands can be sent to the kit. Starting with Bluetooth SDK version 3.1.0, Silicon Labs introduced a new tool,
the Bluetooth NCP Commander, that can be used to send BGAPI 3.x commands to the kit, using UART. Connections, advertising and
other standard Bluetooth Low Energy operation can be controlled via this tool.

Bluetooth NCP Commander

Bluetooth NCP Commander can be opened through the Project Configurator’s Configuration Tools tab, or from the Simplicity Studio Tools
menu.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Getting Started with Bluetooth Demo Software

silabs.com | Building a more connected world. Rev. 1.2 | 25

1. Launch Bluetooth NCP Commander and then establish the virtual UART connection to the kit using the JLink adapter:

2. Click Connect. If everything works correctly you should see the result of the “sl_bt_system_get_identity_address” command dis-

played in green:

3. Unlike SoC examples, the NCP demo does not have a built-in GATT database and it expects the host to build the GATT database

using the dynamic GATT database BGAPI commands. To create a basic GATT database, select the Local GATT menu, and click

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Getting Started with Bluetooth Demo Software

silabs.com | Building a more connected world. Rev. 1.2 | 26

Create Basic GATT. This triggers a series of BGAPI commands that will build a basic database. You can modify this GATT database
as you want. You can also change the device name here by changing the value of the Device Name characteristic.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Getting Started with Bluetooth Demo Software

silabs.com | Building a more connected world. Rev. 1.2 | 27

4. To start advertising your device so that other devices can discover it and connect to it, select the ‘Advertise’ menu, click the ‘+’ button
(Create Set) to create an advertiser set.

5. To populate the advertisement payload with the device name set the Advertising Data Type to Generated data.

6. Click Start to start advertising.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Getting Started with Bluetooth Demo Software

silabs.com | Building a more connected world. Rev. 1.2 | 28

Testing with the Smartphone App
1. On the master side (smartphone), install the EFR Connect app from the Google Play Store or the App Store, and open it. To find

your advertising device, tap the Develop tab, and tap Bluetooth Browser. This shows all advertising devices nearby. Connect to
your device by tapping Connect next to "Silabs Example”. Its GATT database is automatically discovered and displayed. Tap any
service to list its characteristics and tap any characteristic to read its value.

4.1 Testing on Android Smartphone

4.2 Testing on iOS Smartphone

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Getting Started with Bluetooth Demo Software

silabs.com | Building a more connected world. Rev. 1.2 | 29

4.3.2 Testing the iBeacon Demo

Bluetooth beacons are unconnectable advertisements that help you locate a device, determine your own position, or get minimal infor-
mation about an asset the beaconing device is attached to.

After flashing the iBeacon demo to your device, you can find the beacon signal with the Bluetooth Browser in the EFR Connect app.
Start EFR Connect, tap the Develop tab, and tap Bluetooth Browser. To filter beacons, tap , and select the beacon types you
want to be displayed. The app provides you with basic information about the beacon, like RSSI - which can help determine the distance
of the beacon. Tap the beacon to get more information about the data it provides.

4.3 Testing on Android Smartphone

4.4 Testing on iOS Smartphone

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Getting Started with Bluetooth Demo Software

silabs.com | Building a more connected world. Rev. 1.2 | 30

4.3.3 Testing the Health Thermometer Demo

While the NCP Empty demo implements a minimal GATT database with basic static information like device name, the Health Thermom-
eter demo extends this database with live temperature measurements.

After flashing the Health Thermometer demo to your device, start EFR Connect, tap the Demo tab, and tap Health Thermometer. Find
your device advertising as Thermometer Example in the device list and tap it to connect. The smartphone app automatically finds the
Temperature measurement characteristic of the device, reads its value periodically, and displays the value on the screen of the phone.

Try touching the temperature sensor located on the mainboard (see section 4.1 Prepare the). You should be able to see the temperature
changing.

4.5 Testing on Android Smartphone

4.6 Testing on iOS Smartphone

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Starting Application Development

silabs.com | Building a more connected world. Rev. 1.2 | 31

5 Starting Application Development

Developing a Bluetooth application consists of two main steps: defining the GATT database structure and defining the event handlers for
events such as connection_opened, connection_closed, and so on.

The most common starting point for application development is the SoC Empty example. This project contains a simple GATT database
(including the Generic Access service, Device Information service, and OTA service) and a while loop that handles some events raised
by the stack. You can extend both the GATT database and the event handlers of this example according to your needs.

Note: Beginning with Bluetooth SDK version 2.7.0.0, all devices must be loaded with the Gecko Bootloader as well as the application.
While you are getting started, the easiest way to do this is to load any of the precompiled demo images that come with the
bootloader configured as part of the image. When you flash your application it overwrites the demo application, but the bootloader
remains. Subsequently you may wish to build your own bootloader, as described in UG266: Silicon Labs Gecko Bootloader
User’s Guide for GSDK 3.2 and Lower or UG489: Silicon Labs Gecko Bootloader User’s Guide for GSDK 4.0 and Higher.

New Project creation is done through three dialogs:
• Target, SDK, and Toolchain
• Examples
• Configuration

An indicator at the top of the dialog shows you where you are.

You can start a project from different locations in the Launcher Perspective, as described in the Simplicity Studio 5 User's Guide. While
you are getting started, we suggest starting from the File menu, as that takes you through all three of the above dialogs.
1. Select New >> Silicon Labs Project Wizard.
2. Review your SDK and toolchain. If you wish to use IAR instead of GCC, be sure to change it here. Once you have created a project

it is difficult to change toolchains. Click NEXT.
3. On the Example Project Selection dialog, filter on Bluetooth and select Bluetooth - SoC Empty. Click NEXT.

On the Project Configuration dialog, rename your project if you wish. Note that if you change any linked resource, it is changed for any
other project that references it. While you are getting started the default choice to include project files but link to the SDK is best. Click
FINISH. If the example has documentation, the project opens on a readme tab. Note that a Simplicity IDE perspective control is now
included in the upper right of the screen.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Starting Application Development

silabs.com | Building a more connected world. Rev. 1.2 | 32

5.1 GATT Database

A visual GATT Configurator is available on the gatt_configuration.btconf tab when you create the project, to help you create your own
GATT database with a few clicks.

You can create your own database at this point, or return to it later either by double-clicking the gatt_configuration.btconf file under your
project in Project Explorer, or through the Project Configurator’s Advanced > GATT Configurator component. For more information, see
section 6.1 The GATT Configurator.

A reference for each characteristic is generated and defined in gatt_db.h. You can use this reference in your code to read / write the
values of the characteristics in the local GATT database with sl_bt_gatt_server_read_attribute_value() /
sl_bt_gatt_server_write_attribute_value() commands.

You can also build the GATT database from the application using the GATT database API. In this case you need to install the Dynamic
GATT Database software component on the Project Configurator Software Components tab.

You will find the event handlers in the main loop in app.c. You can extend this list with further event handlers. The full list of events – and
stack commands – can be found in the Bluetooth Software API Reference Manual.

5.2 Component Configuration

Bluetooth SDK v3.x projects are based on a Gecko Platform component-based architecture. Software features and functions can be
installed and configured through Simplicity Studio’s Component Editor. When you install a component, the installation process will:
1. Copy the corresponding SDK files from the SDK folder into the project folder.
2. Copy all the dependencies of the given component into the project folder.
3. Add new include directories to the project settings.
4. Copy the configurations files into the /config folder.
5. Modify the corresponding auto-generated files to integrate the component into the application.

https://docs.silabs.com/

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Starting Application Development

silabs.com | Building a more connected world. Rev. 1.2 | 33

Additionally, “init” type software components will implement the initialization code for a given component, utilizing their corresponding
configuration file as input.

Some software components (like OTA DFU) will fully integrate into the application to perform a specific task without the need of any
additional code, while other components provide an API to be used in the application.

Note: All EFR32 parts have a unique RSSI offset. In addition, board, antenna and enclosure design can also impact RSSI. When
creating a new project, install the RAIL Utility, RSSI component. This feature includes the default RSSI Offset Silicon Labs has
measured for each part. This offset can be modified if necessary, after RF testing of your complete product.

To see the component library, click the <project-name>.slcp tab of your project, and click Software Components. A number of filters
as well as a keyword search are available to help you explore the various component categories. Note that components for all SDKs
are presented.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Starting Application Development

silabs.com | Building a more connected world. Rev. 1.2 | 34

Components installed in the project are checked (1) and can be uninstalled. Configurable components are indicated by a gear symbol
(2).

Click Configure to open the Component Editor and see a configurable component’s parameters.

1 2

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Starting Application Development

silabs.com | Building a more connected world. Rev. 1.2 | 35

As you change component configurations, your changes are automatically saved and project files are automatically generated. You can
see generation progress in the lower right corner of the Simplicity IDE. Wait until generation is complete before building the application
image.

5.3 Building and Flashing

To build and debug your project click Debug (bug icon) on the Simplicity IDE It will build and download your project and open up the
Debug perspective. Click Play (next to Debug) to start running you project on the device.

5.4 Enabling Field Updates

Deploying new firmware for devices in the field can be done by UART DFU (Device Firmware Update) or, for SoC applications, OTA
DFU. For more information on each of these methods refer to AN1086: Using the Gecko Bootloader with the Silicon Labs Bluetooth
Applications.

https://www.silabs.com/documents/login/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/login/application-notes/an1086-gecko-bootloader-bluetooth.pdf

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 36

6 Development Tools

6.1 The GATT Configurator

Every Bluetooth connection has a GATT client and a GATT server. The server holds a GATT database: a collection of Characteristics
that can be read and written by the client. The Characteristics are grouped into Services, and the group of Services determines a Bluetooth
Profile.

If you are implementing a GATT server (typically on the peripheral device), you have to define a GATT database structure. Clients
(typically the central device) can also have a GATT database, even if no device will query it, so you can keep the default database
structure in your code. This structure can either be designed in runtime using the dynamic GATT API or in compile-time using the GATT
Configurator. For an SoC application, implementing a static GATT database with the GATT Configurator is recommended, because it
ensures faster startup and lower memory consumption than you can achieve with dynamic GATT configuration.

The GATT Configurator is a simple-to-use tool to help you build your own GATT database. A list of project Profiles/Services/Character-
istics/Descriptors is shown on the left and details about the selected item is shown on the right. An options menu is provided above the
Profiles list.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 37

The GATT Configurator menu is:

1) Add an item.
2) Duplicate the selected item.
3) Move the selected item up.
4) Move the selected item down.
5) Import a GATT database.
6) Add Predefined.
7) Delete the selected item.

To add a custom service, click the Profile (Custom BLE GATT), and then click Add (1). To add a custom characteristic, select a service
and then click Add (1). To add a predefined service/characteristic click Add Predefined (6). To learn more about the configurator see
UG438: GATT Configurator User’s Guide for Bluetooth SDK v3.x.

You can find a detailed description of any Profile/Service/Characteristic/Descriptor on https://www.bluetooth.com/specifications/gatt.

Characteristics are generally complex structures of fields. If you want to know what fields a characteristic has, visit https://www.blue-
tooth.com/specifications/gatt/characteristics.

2 3 4 5 6 7 1

https://www.silabs.com/documents/public/user-guides/ug438-gatt-configurator-users-guide-sdk-v3x.pdf
https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt/characteristics
https://www.bluetooth.com/specifications/gatt/characteristics

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 38

6.2 The Pin Tool

Simplicity Studio 5 offers a Pin Tool that allows you to easily configure new peripherals or change the properties of existing ones. In the
Project Configurator SOFTWARE COMPONENTS tab, expand the Advanced Configurators group and open the Pin Tool. The graphical
view differs based on the chip.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 39

For example, you can reassign the pins used for USART communication to the appropriate layout for a custom board design by selecting
the desired pin in the list and then selecting its functionality from the drop-down list.

After clicking the selected item, the layout will be updated. After saving the file, the configuration source codes will be automatically
generated. For more information see the Simplicity Studio 5 User's Guide.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 40

6.3 Multi-Node Energy Profiler

Multi-Node Energy profiler is an add-on tool, with which you can easily measure the energy consumption of your device in runtime. You
can easily find peak and average consumption, and check for sleep mode current.

Note: The SDK sample apps for EFR32BG22 enable EM2 debug (see init_mcu.c), which adds current consumption overhead compared
to the datasheet values.

To profile the current project, click Tools in the menu bar and select Energy Profiler or right-click on the <project>.slcp file in the Project
Explorer view and select Profile as / Simplicity Energy Profiler target. This automatically builds your project, uploads it to the device,
and starts Energy Profiler. A new Energy Profiler perspective appears, shown in the following figure.

See UG343: Multi-Node Energy Profiler User’s Guide for details on how to use this tool. You can switch easily between Simplicity IDE
and Energy Profiler perspectives using the Perspective buttons in the upper right corner of your current perspective.

You can see peaks in the energy consumption diagram. Pause profiling by clicking Play, click one of the peaks, and zoom in with time
axis (y-axis) zoom until you see three distinguishable peaks. These represent the three advertisement packets sent on the three adver-
tisement channels. You can also see the three corresponding Tx events in the Rx/Tx bar below, provided that you enabled Rx/Tx view in
the upper right corner. Note that the maximum consumption may now be greater than it appeared on the diagram before you zoomed in.
This is because in zoomed-out mode, the displayed values are averaged. If you need exact values, always zoom in.

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 41

To measure average consumption, simply click and drag your mouse over a time interval. A new window appears in the upper right corner
showing consumption information for the given interval. Bluetooth communication typically has a periodicity: the advertisement or the
connection interval. It is recommended to measure average over an advertisement or connection interval to obtain a proper average
consumption. Overall average is measured as well, but this is influenced by transient events.

Multi-node Energy Profiler is also able to simultaneously measure the consumption of multiple devices. To start measuring a new device
click the Quick Access menu (upper left corner) and select Start Energy Capture. To stop measuring, click the Quick Access menu, and
select End/Save session.

To learn more about how to use this tool, see the Simplicity Studio 5 User's Guide.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 42

6.4 Network Analyzer

Silicon Labs Network Analyzer is a free-of-charge packet capture and debugging tool that can be used to debug Bluetooth connectivity
between Wireless Geckos and other Bluetooth devices. It significantly accelerates the network and application development process with
graphical views of network traffic, activity, and duration.

The Packet Trace application captures the packets directly from the Packet Trace Interface (PTI) available on the Wireless Gecko SoCs
and modules. It therefore provides a more accurate capture of the packets compared to air-based capture.

Figure 6.1. Bluetooth Traffic Capture with Packet Trace

See AN1317: Using Network Analyzer with Bluetooth® Mesh and Low Energy for more information.

6.5 Simplicity Commander

Simplicity Commander is a simple flashing tool, which can be used to flash firmware images, erase flash, lock and unlock debug access,
and write-protect flash pages via the J-Link interface. Both GUI and CLI (Command Line Interface) are available. See UG162: Simplicity
Commander Reference Guide for more information.

Figure 6.2. Simplicity Commander

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 43

6.6 Bluetooth NCP Commander

The Bluetooth NCP Commander application can be used to test and evaluate Bluetooth SoCs and modules, and it can be used to control
the Bluetooth hardware using the BGAPI Serial Protocol (NCP) over a Serial/UART interface. It also supports building a GATT database
dynamically on the target device. See AN1259: Using the Silicon Labs v3.x Bluetooth® Stack in Network Co-Processor Mode for more
information.

Figure 6.3. NCP Commander Application

Bluetooth NCP Commander is also available as a standalone application, located in:

C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\ncp_commander

To find the standalone version on MAC, find Simplicity Studio, right-click and select Show Package Content. The NCP commander can
be found under:

developer\adapter_packs\ncp_commander

 QSG169: Bluetooth® Quick-Start Guide for SDK v3.x and Higher
 Development Tools

silabs.com | Building a more connected world. Rev. 1.2 | 44

6.7 IAR Embedded Workbench

IAR’s Embedded Workbench can also be used as an IDE for developing and debugging Bluetooth applications. You must use the version
of IAR that is compatible with the SDK version. See the SDK's release notes for compatible version information.

Figure 6.4. IAR Embedded Workbench

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	1.1 Prerequisites
	1.2 Support
	1.3 Documentation
	1.4 Gecko Platform

	2 About the Bluetooth Stack
	2.1 Bluetooth Stack Features
	2.2 Bluetooth Qualification
	2.3 The Bluetooth Stack APIs
	2.3.1 The BGAPI Bluetooth API
	2.3.2 CMSIS and emlib
	2.3.3 The BGAPI Serial Protocol and BGLIB Host API
	2.3.4 GATT Configuration

	2.4 About the Bluetooth SDK
	2.4.1 Libraries
	2.4.2 Include Files
	2.4.3 Platform Components

	3 About Demos and Examples
	3.1 Bluetooth SDK Examples
	3.1.1 Demo/Example Descriptions

	3.2 Other Bluetooth Functionality Examples

	4 Getting Started with Bluetooth Demo Software
	4.1 Prepare the Mainboard
	4.2 Flash the Demo
	4.3 Test the Bluetooth Demos Using an Android or iOS Smartphone
	4.3.1 Testing the NCP Demo
	4.3.2 Testing the iBeacon Demo
	4.3.3 Testing the Health Thermometer Demo

	5 Starting Application Development
	5.1 GATT Database
	5.2 Component Configuration
	5.3 Building and Flashing
	5.4 Enabling Field Updates

	6 Development Tools
	6.1 The GATT Configurator
	6.2 The Pin Tool
	6.3 Multi-Node Energy Profiler
	6.4 Network Analyzer
	6.5 Simplicity Commander
	6.6 Bluetooth NCP Commander
	6.7 IAR Embedded Workbench

