

## PMIC with Ultra-Low IQ Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

MAX20366

### General Description

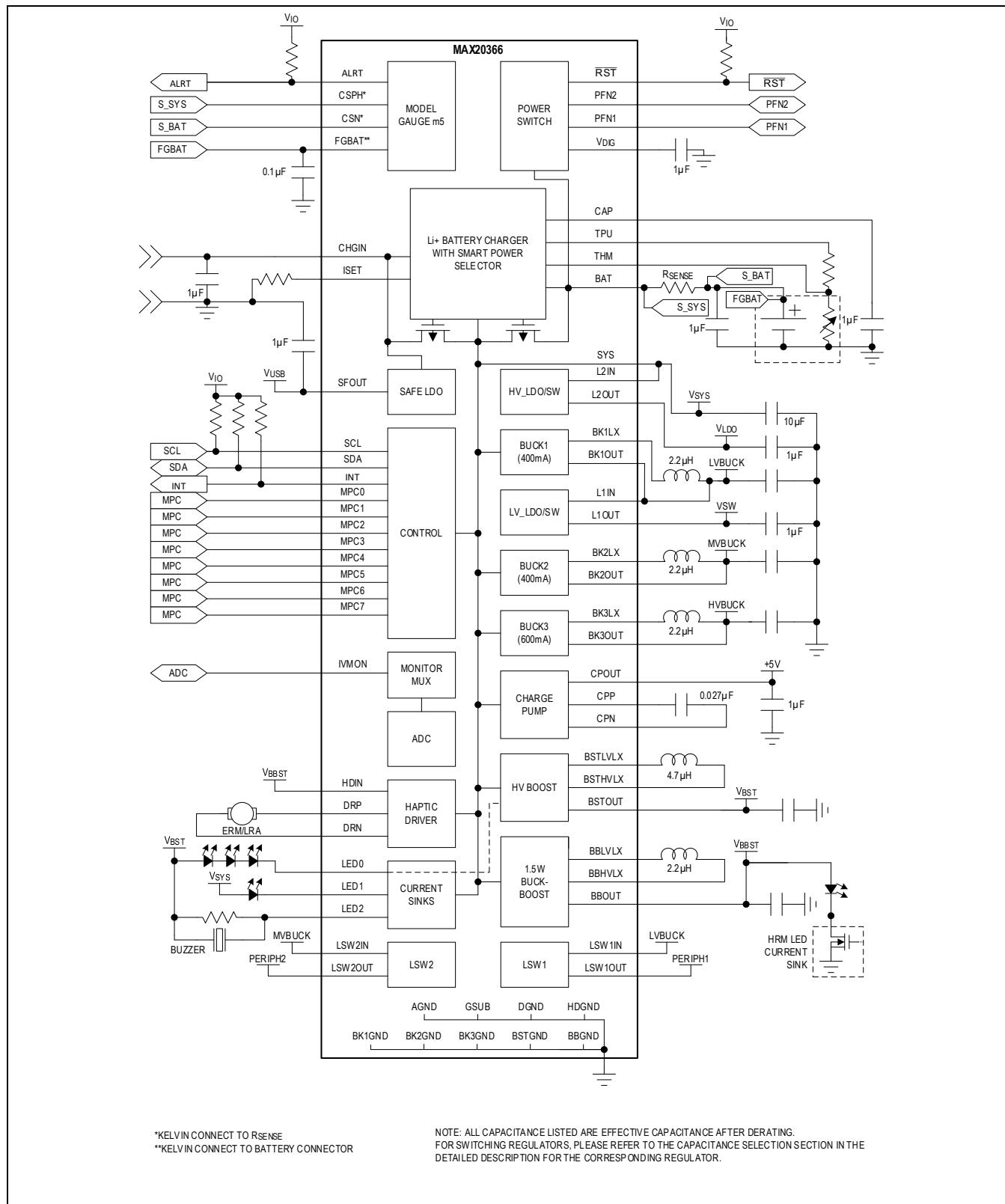
The MAX20366 is a highly integrated and programmable power management solution designed for ultra-low-power wearable applications. It is optimized for size and efficiency to enhance the value of the end product by extending battery life and shrinking the overall solution size. A flexible set of power-optimized voltage regulators, including multiple buck, boost and buck-boost converters, and linear regulators, provides a high level of integration and the ability to create a fully optimized power architecture. The quiescent current of each regulator is ultra-low targeted at extending battery life in always-on applications.

The MAX20366 includes a complete battery management solution with battery seal, charger, power path, and fuel gauge. Both thermal management and input protection are built into the charger. The device also includes a factory programmable button controller with multiple inputs that are customizable to fit specific product UX requirements.

Three integrated LED current sinks are included for indicator or backlighting functions, and an ERM/LRA driver with automatic resonance tracking is capable of providing sophisticated haptic feedback to the user. A low noise, 1.5W buck-boost converter provides a clean way to power LEDs commonly used in optical heart-rate systems. The device is configurable through an I<sup>2</sup>C interface that allows for programming various functions and reading the device status, including the ability to read temperature and supply voltages with the integrated ADC. This device is available in a 72-bump, 0.5mm pitch, 4.88mm x 4.19mm, wafer-level package (WLP) and operates over the -40°C to +85°C extended temperature range

### Applications

- Wearable Devices
- IoT


### Benefits and Features

- Extend Battery-Use Time Between Battery Charging
  - 2 x Micro-IQ, 400mA Buck Regulators (330nA IQ typ each)
    - 0.550V to 1.180V in 10mV Steps

- 0.550V to 2.125V in 25mV Steps
- 0.550V to 3.700V in 50mV Steps
- Micro-IQ, 600mA Buck Regulator (330nA IQ typ)
  - 0.550V to 1.180V in 10mV Steps
  - 0.550V to 2.125V in 25mV Steps
  - 0.550V to 3.700V in 50mV Steps
- Micro-IQ LV LDO/Load Switch (1µA IQ typ)
  - 1.0V to 2.0V Input Voltage
  - 50mA Output
  - 0.5V to 1.95V Output, 25mV Steps
- Micro-IQ LDO/Load Switch (1µA IQ typ)
  - 1.71V to 5.5V Input Voltage
  - 100mA Output
  - 0.9V to 4V, 100mV Steps
- Micro-IQ Buck-Boost Regulator (2µA IQ typ)
  - 1.5W Output
  - 2.6V to 5V in 50mV Steps
- Easy-to-Implement Li+ Battery Charging
  - Wide Fast Charge Current Range: 5mA to 500mA
  - 28V/-5.5V Tolerant Input
    - Programmable JEITA Current/Voltage Profiles
- Minimize Solution Footprint through High Integration
  - 3.3V or 5.0V Safe Output LDO
    - 15mA When CHGIN Present
  - ERM/LRA Haptic Driver
    - Automatic Braking (LRA Only)
    - Automatic Resonance Tracking (LRA Only)
- Supports a Wide Variety of Display Options
  - Micro-IQ Boost Regulator (2.4µA IQ typ)
    - 300mW Output
    - 5V to 20V in 250mV Steps
  - 3-Channel Current Sinks
    - 20V Tolerant
    - Programmable from 0.6mA to 30mA
- Optimize System Control
  - Programmable Push-Button Controller
  - Programmable Supply Sequencing
  - Factory Shelf Mode
  - On-Chip Voltage/Charge Current Monitor Mux and Analog-to-Digital Converter (ADC)

*[Ordering Information](#) appears at end of data sheet.*

## Simplified Block Diagram



---

**TABLE OF CONTENTS**

---

|                                                      |    |
|------------------------------------------------------|----|
| General Description .....                            | 1  |
| Applications .....                                   | 1  |
| Benefits and Features .....                          | 1  |
| Simplified Block Diagram .....                       | 2  |
| Absolute Maximum Ratings .....                       | 8  |
| Package Information .....                            | 8  |
| Electrical Characteristics .....                     | 8  |
| Typical Operating Characteristics .....              | 31 |
| Pin Configurations .....                             | 46 |
| Pin Descriptions .....                               | 47 |
| Detailed Description .....                           | 49 |
| Power Regulation .....                               | 50 |
| Dynamic Voltage Scaling .....                        | 50 |
| DVS Mode 0 (I <sup>2</sup> C DVS Mode) .....         | 50 |
| DVS Mode 1 (GPIO DVS Mode) .....                     | 50 |
| SPI DVS Mode (DVS Mode 2) .....                      | 51 |
| Dedicated DVS Interrupts .....                       | 52 |
| Buck Converter DVS Options .....                     | 52 |
| LDOs .....                                           | 52 |
| LDO Output Capacitance Selection .....               | 52 |
| LDO1 MPC0 Control .....                              | 52 |
| Internal Switchover for LDO2 Always-On Power .....   | 53 |
| Load Switches .....                                  | 53 |
| Boost Regulator .....                                | 53 |
| Boost Inductor Selection .....                       | 54 |
| Boost Capacitor Selection .....                      | 55 |
| Inductor Peak Current Limit .....                    | 55 |
| Boost Converter and LED0 Closed Loop Operation ..... | 55 |
| Buck-Boost Regulator .....                           | 55 |
| Buck-Boost Inductor Selection .....                  | 56 |
| Buck-Boost Output Capacitor Selection .....          | 56 |
| Architecture and Switching Phases .....              | 57 |
| Buck-Boost Mode .....                                | 58 |
| Buck-Only Mode .....                                 | 58 |
| Inductor Peak and Valley Current Limits .....        | 58 |
| Buck Regulators .....                                | 60 |

|                                                          |    |
|----------------------------------------------------------|----|
| Buck Inductor Selection .....                            | 60 |
| Buck Output Capacitor Selection .....                    | 61 |
| Inductor Peak and Valley Current Limits .....            | 61 |
| Adjustments to Manipulate Buck Switching Frequency ..... | 62 |
| High Power Buck Converter with LDO Mode .....            | 62 |
| Charge Pump .....                                        | 63 |
| Power Switch and Reset Control .....                     | 63 |
| PMIC Power Modes .....                                   | 76 |
| SEAL Mode .....                                          | 76 |
| OFF Mode .....                                           | 77 |
| ON Mode (Versions with HrvEn = 0) .....                  | 77 |
| Battery Recovery Mode (Versions with HrvEn = 1) .....    | 77 |
| ON Mode (Versions with HrvEn = 1) .....                  | 77 |
| Interrupt .....                                          | 77 |
| Power Sequencing .....                                   | 77 |
| System Load Switch .....                                 | 80 |
| Smart Power Selector .....                               | 80 |
| Input Limiter .....                                      | 81 |
| Invalid CHGIN Voltage Protection .....                   | 81 |
| CHGIN Input Current Limit .....                          | 81 |
| Thermal Limiting .....                                   | 81 |
| Battery Charger .....                                    | 81 |
| Adaptive Battery Charging .....                          | 81 |
| Fast Charge Current Setting .....                        | 81 |
| JEITA Monitoring with Charger Control .....              | 81 |
| Step Charging .....                                      | 82 |
| Battery Charger State Diagram .....                      | 83 |
| Battery or Pack Protector Presence Detection .....       | 84 |
| SAR ADC/Monitor Mux .....                                | 85 |
| Haptic Driver .....                                      | 86 |
| Eccentric Rotating Mass (ERM) .....                      | 86 |
| Linear Resonant Actuator (LRA) .....                     | 86 |
| LRA Braking .....                                        | 86 |
| Automatic Level Compensation .....                       | 86 |
| Haptic UVLO .....                                        | 87 |
| Driver Amplitude .....                                   | 87 |
| Vibration Timeout .....                                  | 87 |
| Overcurrent/Thermal Protection .....                     | 87 |

---

|                                                      |     |
|------------------------------------------------------|-----|
| Haptic Driver Lock .....                             | 87  |
| Interface Modes .....                                | 87  |
| Pure-PWM (PPWM).....                                 | 88  |
| Real-Time I <sup>2</sup> C (RTI <sup>2</sup> C)..... | 88  |
| External Triggered Stored Pattern (ETRG).....        | 88  |
| RAM Stored Haptic Pattern (RAMHP) .....              | 88  |
| Fuel Gauge .....                                     | 91  |
| MAX20361 Harvester Interaction.....                  | 91  |
| Harvester Thermistor Monitoring .....                | 91  |
| Register Map.....                                    | 92  |
| Applications Information.....                        | 191 |
| I <sup>2</sup> C Interface .....                     | 191 |
| Start, Stop, and Repeated Start Conditions.....      | 191 |
| Peripheral Address .....                             | 191 |
| Bit Transfer .....                                   | 192 |
| Single-Byte Write .....                              | 192 |
| Burst Write .....                                    | 192 |
| Single Byte Read .....                               | 193 |
| Burst Read.....                                      | 193 |
| Acknowledge Bits .....                               | 194 |
| I <sup>2</sup> C Security Functions .....            | 194 |
| Function Locking.....                                | 194 |
| Secure Writes with Fletcher-16 Checksum.....         | 194 |
| Default Bits .....                                   | 195 |
| Register Defaults .....                              | 197 |
| Ordering Information .....                           | 201 |

**LIST OF FIGURES**

|                                                                                               |     |
|-----------------------------------------------------------------------------------------------|-----|
| Figure 1. DVS Mode 1, GPIO Control .....                                                      | 51  |
| Figure 2. DVS Mode 2 SPI Timing .....                                                         | 51  |
| Figure 3. DVS Mode 2, SPI Control .....                                                       | 52  |
| Figure 4. Single-Byte and Burst-Mode SPI Access .....                                         | 52  |
| Figure 5. Minimum Effective Capacitance for HVBOOST Stability .....                           | 54  |
| Figure 6. Optimal Peak Current vs. Voltage Lookup Table .....                                 | 55  |
| Figure 7. Buck-Boost Required Minimum Output Capacitance .....                                | 57  |
| Figure 8. The Buck-Boost Regulator and Switching Phases .....                                 | 57  |
| Figure 9. Buck-Boost Inductor Current in Buck-Boost Mode .....                                | 58  |
| Figure 10. Buck-Boost Inductor Current in Buck-Only Mode .....                                | 58  |
| Figure 11. Minimum BBstlPSet2 Limit for a Given BBstlPSet1 Setting .....                      | 59  |
| Figure 12. Recommended BBstlPSet1 and BBstlPSet2 Settings .....                               | 60  |
| Figure 13. Buck Required Minimum and Maximum Capacitance to Guarantee Stability .....         | 61  |
| Figure 14. Optimal Peak Current Setting vs. Output Voltage .....                              | 62  |
| Figure 15. PwrRstCfg 0000, 0001 .....                                                         | 64  |
| Figure 16. PwrRstCfg 0010, 0011 .....                                                         | 65  |
| Figure 17. PwrRstCfg 0100, 0101 .....                                                         | 66  |
| Figure 18. PwrRstCfg 0110 .....                                                               | 67  |
| Figure 19. PwrRstCfg 0111 .....                                                               | 68  |
| Figure 20. PwrRstCfg 1000 .....                                                               | 69  |
| Figure 21. PwrRstCfg 1001, 1010 .....                                                         | 70  |
| Figure 22. PwrRstCfg 1011 .....                                                               | 71  |
| Figure 23. PwrRstCfg 1100 .....                                                               | 72  |
| Figure 24. Boot Sequence—Harvester Mode Disabled .....                                        | 75  |
| Figure 25. Boot Sequence—Harvester Mode Enabled .....                                         | 76  |
| Figure 26. Power Sequencing, HrvEn = 0 from OFF Mode .....                                    | 78  |
| Figure 27. Power Sequencing, HrvEn = 1 from BR Mode .....                                     | 79  |
| Figure 28. Power Sequencing, from SEAL Mode .....                                             | 80  |
| Figure 29. Sample JEITA Pre-Charge Profile .....                                              | 82  |
| Figure 30. Sample JEITA Fast Charge Profile .....                                             | 82  |
| Figure 31. Sample JEITA Maintain Charge Profile .....                                         | 82  |
| Figure 32. Battery Charger-State Diagram .....                                                | 84  |
| Figure 33. Read and Write Process for Haptic RAM .....                                        | 89  |
| Figure 34. Sample Pattern Stored in RAM .....                                                 | 91  |
| Figure 35. Diagram of Haptic Driver Output for Sample Pattern Stored Pattern .....            | 91  |
| Figure 36. I <sup>2</sup> C START, STOP, and REPEATED START Conditions .....                  | 191 |
| Figure 37. Write Byte Sequence .....                                                          | 192 |
| Figure 38. Burst Write Sequence .....                                                         | 193 |
| Figure 39. Read Byte Sequence .....                                                           | 193 |
| Figure 40. Burst Read Sequence .....                                                          | 194 |
| Figure 41. Acknowledge Bits .....                                                             | 194 |
| Figure 42. I <sup>2</sup> C Writes on PMIC Peripheral Address with Fletcher-16 Checksum ..... | 195 |

**LIST OF TABLES**

|          |                                    |     |
|----------|------------------------------------|-----|
| Table 1. | DVS Mode 1 Voltage Selection ..... | 50  |
| Table 2. | LDO1 MPC0 Control .....            | 53  |
| Table 3. | Recommended Inductors.....         | 56  |
| Table 4. | Recommended Inductors Buck.....    | 60  |
| Table 5. | PwrRstCfg Settings.....            | 72  |
| Table 6. | ADC Full-Scale Range.....          | 85  |
| Table 7. | RAMHP Pattern Storage Format ..... | 89  |
| Table 8. | Device Default Settings .....      | 195 |
| Table 9. | I2C Direct Register Defaults ..... | 197 |

## Absolute Maximum Ratings

(All voltages referenced to GSUB, unless otherwise noted) ....

CHGIN .....  
.....-6.0V to +30.0V

SYS, BAT, SDA, SCL, TPU, IVMON,  $\bar{RST}$ ,  $\bar{INT}$ , PFN\_, HDIN, L2IN, LSW\_IN, BOUT, FGBAT .....-0.3V to +6.0V

THM .....-0.3V to min( $V_{FGBAT}$  + 0.3V, +6.0V)

ALRT .....-0.3V to +17.0V

CAP, SFOUT .....-0.3V to min(| $V_{CHGIN}$ | + 0.3V, +6.0V)

L1IN, VDIG .....-0.3V to +2.2V

MPC\_, BK\_LX, BK\_OUT, BBLVLX, BSTLVLX, CPN-0.3V to ( $V_{SYS}$  + 0.3V)

DRP, DRN .....-0.3V to min( $V_{HDIN}$  + 0.3V, +6.0V)

BBHVLX .....-0.3V to min( $V_{BOUT}$  + 0.3V, +6.0V)

ISET .....-0.3V to min( $V_{BAT}$  + 0.3V,  $V_{SYS}$  + 0.3V, +6.0V)

L\_OUT .....-0.3V to ( $V_{L\_IN}$  + 0.3V)

LSW\_OUT .....-0.3V to ( $V_{LSW\_IN}$  + 0.3V)

CPP .....( $V_{CPN}$  - 0.3V) to ( $V_{CPN}$  + 6.0V)

CPOUT .....( $V_{CPP}$  - 0.3V) to min( $V_{CPP}$  + 6.0V, +12.0V)

BSTHVLX, BSTOUT, LED\_ .....-0.3V to +22.0V

BK\_GND, BSTGND, BBGND, HDGND, AGND, DGND .....-0.3V to +0.3V

CSN, CSPH .....-0.3V to ( $V_{FGBAT}$  + 0.3V)

Continuous Current into BK\_OUT, BK\_LX, BBLVLX, BBHVLX, BOUT, BSTLVLX, BSTHVLX, BSTOUT .....±660mA

Continuous Current into L\_IN, L\_OUT .....±250mA

Continuous Current into SW\_IN, SW\_OUT .....±140mA

Continuous Current into BAT, SYS, CHGIN .....±1000mA

Continuous Current into DRP, DRN, HDIN .....±600mA

Continuous Current into Any Other Terminal .....±100mA

Continuous Power Dissipation (Multilayer Board) ( $T_A$  = +70°C, derate 32.53mW/°C above +70°C.) .....2602mW

Operating Temperature Range .....-40°C to +85°C

Storage Temperature Range .....-65°C to +150°C

Soldering Temperature (reflow) .....+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Package Information

| 72 WLP                                |                                                |
|---------------------------------------|------------------------------------------------|
| Package Code                          | W724A4+1                                       |
| Outline Number                        | <a href="#">21-100373</a>                      |
| Land Pattern Number                   | Refer to <a href="#">Application Note 1891</a> |
| Thermal Resistance, Four Layer Board: |                                                |
| Junction-to-Ambient ( $\theta_{JA}$ ) | 30.74°C/W                                      |

For the latest package outline information and land patterns (footprints), go to [www.analog.com/packages](#). Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to [www.analog.com/thermal-tutorial](#).

## Electrical Characteristics

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A$  = -40°C to +85°C, unless otherwise noted. Typical values are at  $T_A$  = +25°C,  $V_{BAT}$  = 3.7V,  $V_{CHGIN}$  = 5.0V,  $C_{CHGIN\_EFF}$  = 1μF,  $C_{VDIG\_EFF}$  = 1μF,  $C_{CAP\_EFF}$  = 1μF,  $C_{SYS\_EFF}$  = 10μF,  $C_{BAT\_EFF}$  = 1μF,  $C_{BK\_OUT\_EFF}$  = 10μF,  $C_{L\_IN}$  = 1μF,  $C_{L\_OUT\_EFF}$  = 1μF,  $C_{BOUT\_EFF}$  = 8.8μF,  $C_{BSTOUT\_EFF}$  = 10μF,  $L_{BK\_OUT}$  = 2.2μH,  $L_{BOUT}$  = 2.2μH,  $L_{BSTOUT}$  = 4.7μH. Limits are 100% tested at  $T_A$  = +25°C.) (Note 1))

| PARAMETER                    | SYMBOL      | CONDITIONS                                                            | MIN | TYP  | MAX | UNITS |
|------------------------------|-------------|-----------------------------------------------------------------------|-----|------|-----|-------|
| <b>GLOBAL SUPPLY CURRENT</b> |             |                                                                       |     |      |     |       |
| CHGIN Input Current          | $I_{CHGIN}$ | $V_{CHGIN}$ = 5V, ON mode, Charger disabled, THM monitoring disabled, |     | 0.81 |     | mA    |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\text{\textmu F}$ ,  $C_{VDIG\_EFF} = 1\text{\textmu F}$ ,  $C_{CAP\_EFF} = 1\text{\textmu F}$ ,  $C_{SYS\_EFF} = 10\text{\textmu F}$ ,  $C_{BAT\_EFF} = 1\text{\textmu F}$ ,  $C_{BK\_OUT\_EFF} = 10\text{\textmu F}$ ,  $C_{L\_IN} = 1\text{\textmu F}$ ,  $C_{L\_OUT\_EFF} = 1\text{\textmu F}$ ,  $C_{BBOUT\_EFF} = 8.8\text{\textmu F}$ ,  $C_{BSTOUT\_EFF} = 10\text{\textmu F}$ ,  $L_{BK\_OUT} = 2.2\text{\textmu H}$ ,  $L_{BBOUT} = 2.2\text{\textmu H}$ ,  $L_{BSTOUT} = 4.7\text{\textmu H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER         | SYMBOL    | CONDITIONS                                                                                                                                                    | MIN  | TYP | MAX | UNITS         |
|-------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|---------------|
|                   |           | SFOUT disabled, LDO2 disabled, all other rails disabled                                                                                                       |      |     |     |               |
| BAT Input Current | $I_{BAT}$ | $V_{CHGIN} = 0\text{V}$ , SEAL mode, LDO2 disabled                                                                                                            | 0.25 |     |     | $\mu\text{A}$ |
|                   |           | $V_{CHGIN} = 0\text{V}$ , OFF mode, LDO2 enabled, L2IN connected to BAT, Fuel Gauge contribution not included                                                 | 1.50 |     |     |               |
|                   |           | $V_{CHGIN} = 0\text{V}$ , Battery Recovery (BR) mode, LDO2 disabled, Fuel Gauge contribution not included                                                     | 1.35 |     |     |               |
|                   |           | $V_{CHGIN} = 0\text{V}$ , ON mode, LDO2 disabled, all other rails disabled, Fuel Gauge contribution not included                                              | 1.50 |     |     |               |
|                   |           | $V_{CHGIN} = 0\text{V}$ , ON mode, LDO2 disabled, Buck1 enabled, all other rails disabled, Fuel Gauge contribution not included                               | 1.87 |     |     |               |
|                   |           | $V_{CHGIN} = 0\text{V}$ , ON mode, LDO2 disabled, Buck1 enabled, Buck2 enabled, all other rails disabled, Fuel Gauge contribution not included                | 2.19 |     |     |               |
|                   |           | $V_{CHGIN} = 0\text{V}$ , ON mode, LDO2 disabled, Buck1 enabled, Buck2 enabled, Buck3 enabled, all other rails disabled, Fuel Gauge contribution not included | 2.69 |     |     |               |

## INTERNAL SUPPLIES, UVLOS, AND BAT OCP

|                                                |                      |                                    |      |      |             |            |
|------------------------------------------------|----------------------|------------------------------------|------|------|-------------|------------|
| $V_{CCINT}$ OTP OK Threshold / Startup Voltage | $V_{CCINT\_OTP\_OK}$ | $V_{CCINT}$ rising (Note 2)        | 2.92 | 3.25 | $\text{V}$  |            |
|                                                |                      | $V_{CCINT}$ falling (Note 2)       | 2.60 | 2.90 |             |            |
| $V_{DIG}$ OTP OK Threshold                     | $V_{DIG\_OTP\_OK}$   | $V_{DIG}$ rising                   | 1.52 | 1.62 | $\text{V}$  |            |
|                                                |                      | $V_{DIG}$ falling                  | 1.41 | 1.51 |             |            |
| $V_{CCINT}$ UVLO Threshold (POR)               | $V_{CCINT\_UVLO}$    | $V_{CCINT}$ rising (Note 2)        | 2.20 | 2.45 | $\text{V}$  |            |
|                                                |                      | $V_{CCINT}$ falling (Note 2)       | 2.15 | 2.40 |             |            |
| $V_{CCINT}$ UVLO Threshold (POR) Hysteresis    | $V_{CCINT\_UVLO\_H}$ | (Note 2)                           | 50   |      | $\text{mV}$ |            |
| Internal $V_{DIG}$ Regulator                   | $V_{DIG}$            |                                    | 1.71 | 1.80 | 1.89        | $\text{V}$ |
| $V_{DIG}$ UVLO Threshold                       | $V_{DIG\_UVLO}$      | $V_{DIG}$ rising                   | 1.59 | 1.73 | $\text{V}$  |            |
|                                                |                      | $V_{DIG}$ falling                  | 1.51 | 1.61 |             |            |
| $V_{DIG}$ UVLO Threshold Hysteresis            | $V_{DIG\_UVLO\_H}$   |                                    | 100  |      | $\text{mV}$ |            |
| Internal CAP Regulator                         | $V_{CAP}$            | $V_{CHGIN} = 4.3\text{V}$ to 28.0V | 3.75 | 4.10 | 4.55        | $\text{V}$ |
| CAP Detect Threshold                           | $V_{CAP\_DET}$       | $V_{CHGIN} = V_{CAP}$ rising       | 3.15 | 3.40 | 3.60        | $\text{V}$ |
|                                                |                      | $V_{CHGIN} = V_{CAP}$ falling      | 2.60 | 2.80 | 3.00        |            |
| CAP Detect Threshold Hysteresis                | $V_{CAP\_DET\_H}$    |                                    | 600  |      | $\text{mV}$ |            |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                              | SYMBOL                  | CONDITIONS                                                                                     | MIN  | TYP  | MAX  | UNITS |
|----------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|------|------|------|-------|
| CHGIN Detect Threshold                 | $V_{CHGIN\_DET}$        | $V_{CHGIN}$ rising                                                                             | 4.00 | 4.15 | 4.30 | V     |
|                                        |                         | $V_{CHGIN}$ falling                                                                            | 3.20 | 3.30 | 3.40 |       |
| CHGIN Detect Threshold Hysteresis      | $V_{CHGIN\_DET\_H}$     |                                                                                                |      | 850  |      | mV    |
| CHGIN Detection Debounce Time          | $t_{CHGIN\_DET}$        | CHGIN insertion                                                                                |      | 108  |      | ms    |
|                                        |                         | CHGIN detachment                                                                               |      | 100  |      |       |
| SYS UVLO Threshold                     | $V_{SYS\_UVLO}$         | $V_{SYS}$ rising, $V_{SysUvlo} = 00$                                                           | 2.65 | 2.75 | 2.85 | V     |
|                                        |                         | $V_{SYS}$ falling, $V_{SysUvlo} = 00$                                                          | 2.60 | 2.70 | 2.80 |       |
|                                        |                         | $V_{SYS}$ falling, $V_{SysUvlo} = 01$                                                          | 2.80 | 2.90 | 3.00 |       |
|                                        |                         | $V_{SYS}$ falling, $V_{SysUvlo} = 10$                                                          | 2.90 | 3.00 | 3.10 |       |
|                                        |                         | $V_{SYS}$ falling, $V_{SysUvlo} = 11$                                                          | 3.10 | 3.20 | 3.30 |       |
| SYS UVLO Threshold Hysteresis          | $V_{SYS\_UVLO\_H}$      |                                                                                                |      | 50   |      | mV    |
| SYS UVLO Falling Debounce Time         | $t_{SYS\_UVLO\_FD}$     | $V_{SYS}$ falling                                                                              |      | 20   |      | μs    |
| BAT OCP Threshold                      | $I_{BAT\_OCP}$          | $IBatOc = 000$                                                                                 |      | 200  |      | mA    |
|                                        |                         | $IBatOc = 001$                                                                                 |      | 400  |      |       |
|                                        |                         | $IBatOc = 010$                                                                                 |      | 600  |      |       |
|                                        |                         | $IBatOc = 011$                                                                                 | 480  | 800  | 1120 |       |
|                                        |                         | $IBatOc = 100$                                                                                 | 600  | 1000 | 1400 |       |
|                                        |                         | $IBatOc = 101$                                                                                 | 720  | 1200 | 1680 |       |
|                                        |                         | $IBatOc = 110$                                                                                 | 840  | 1400 | 1960 |       |
|                                        |                         | $IBatOc = 111$                                                                                 | 960  | 1600 | 2240 |       |
| BAT OCP Threshold Hysteresis           | $I_{BAT\_OCP\_H}$       |                                                                                                |      | 7    |      | %     |
| BAT OCP Rising Debounce Time           | $t_{BAT\_OCP\_RD}$      | $I_{SYS}$ rising                                                                               |      | 50   |      | ms    |
| SYS Pulldown Resistance                | $R_{SYS\_PD}$           | Enabled for $t_{SYS\_PD}$ when transitioning to battery recovery (BR) mode                     |      | 10   |      | Ω     |
| SYS Pulldown Time                      | $t_{SYS\_PD}$           | $R_{SYS\_PD}$ is enabled on SYS for this time when transitioning to battery recovery (BR) mode |      | 30   |      | ms    |
| <b>OVP AND INPUT CURRENT LIMITER</b>   |                         |                                                                                                |      |      |      |       |
| CHGIN Overvoltage Threshold            | $V_{CHGIN\_OV}$         | $V_{CHGIN}$ rising                                                                             | 7.2  | 7.5  | 7.8  | V     |
| CHGIN Overvoltage Threshold Hysteresis | $V_{CHGIN\_OV\_H}$      |                                                                                                |      | 200  |      | mV    |
| CHGIN-SYS Valid Trip Point             | $V_{CHGIN\_SYS\_TP}$    | $V_{CHGIN} - V_{SYS}$ rising                                                                   | 30   | 145  | 290  | mV    |
| CHGIN-SYS Valid Trip Point Hysteresis  | $V_{CHGIN\_SYS\_TP\_H}$ |                                                                                                |      | 275  |      | mV    |
| Input Overcurrent Max Limit            | $I_{LIM\_MAX}$          | $t < t_{ILIM\_BLANK}$ , $ILimMax = 0$                                                          | 400  | 450  | 500  | mA    |
|                                        |                         | $t < t_{ILIM\_BLANK}$ , $ILimMax = 1$                                                          | 800  | 1000 | 1250 |       |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                     | SYMBOL                       | CONDITIONS                                                                 | MIN                             | TYP                             | MAX                             | UNITS |
|-----------------------------------------------|------------------------------|----------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-------|
| Input Current Limit                           | I <sub>LIM</sub>             | I <sub>LimCtl</sub> = 000                                                  | 50                              |                                 |                                 | mA    |
|                                               |                              | I <sub>LimCtl</sub> = 001                                                  | 90                              |                                 |                                 |       |
|                                               |                              | I <sub>LimCtl</sub> = 010                                                  | 150                             |                                 |                                 |       |
|                                               |                              | I <sub>LimCtl</sub> = 011                                                  | 200                             |                                 |                                 |       |
|                                               |                              | I <sub>LimCtl</sub> = 100                                                  | 300                             |                                 |                                 |       |
|                                               |                              | I <sub>LimCtl</sub> = 101                                                  | 400                             |                                 |                                 |       |
|                                               |                              | I <sub>LimCtl</sub> = 110                                                  | 400                             | 450                             | 500                             |       |
|                                               |                              | I <sub>LimCtl</sub> = 111                                                  | 900                             | 1000                            | 1100                            |       |
| Input Current-Limit Blanking Time             | t <sub>ILIM_BLANK</sub>      | I <sub>LimBlank</sub> = 00                                                 | 0.0                             |                                 |                                 | ms    |
|                                               |                              | I <sub>LimBlank</sub> = 01                                                 | 0.5                             |                                 |                                 |       |
|                                               |                              | I <sub>LimBlank</sub> = 10                                                 | 1.0                             |                                 |                                 |       |
|                                               |                              | I <sub>LimBlank</sub> = 11                                                 | 10.0                            |                                 |                                 |       |
| SYS Regulation Voltage                        | V <sub>SYS_REG</sub>         |                                                                            | V <sub>BAT_RE</sub><br>G + 0.14 | V <sub>BAT_RE</sub><br>G + 0.20 | V <sub>BAT_RE</sub><br>G + 0.26 | V     |
| SYS Regulation-Voltage Dropout                | V <sub>CHGIN_SYS_REG</sub>   |                                                                            | 40                              |                                 |                                 | mV    |
| CHGIN to SYS On Resistance                    | R <sub>CHGIN_SYS</sub>       |                                                                            | 0.37                            | 0.66                            |                                 | Ω     |
| Input Current Soft-Start Time                 | t <sub>ILIM_SFT</sub>        |                                                                            | 1                               |                                 |                                 | ms    |
| Thermal Shutdown Temperature                  | T <sub>CHG_SHDN</sub>        | T <sub>Shdn</sub> = 000                                                    | 50                              |                                 |                                 | °C    |
|                                               |                              | T <sub>Shdn</sub> = 001                                                    | 60                              |                                 |                                 |       |
|                                               |                              | T <sub>Shdn</sub> = 010                                                    | 70                              |                                 |                                 |       |
|                                               |                              | T <sub>Shdn</sub> = 011                                                    | 80                              |                                 |                                 |       |
|                                               |                              | T <sub>Shdn</sub> = 100                                                    | 90                              |                                 |                                 |       |
|                                               |                              | T <sub>Shdn</sub> = 101                                                    | 100                             |                                 |                                 |       |
|                                               |                              | T <sub>Shdn</sub> = 110                                                    | 110                             |                                 |                                 |       |
|                                               |                              | T <sub>Shdn</sub> = 111                                                    | 120                             |                                 |                                 |       |
| CHGIN Boot Retry Timeout                      | t <sub>CHG_RETRY_TMO</sub>   | ChgAlwTry = 1, Device Specific (see <a href="#">Table 8</a> )              | 0.5                             |                                 |                                 | s     |
| <b>BATTERY CHARGER</b>                        |                              |                                                                            |                                 |                                 |                                 |       |
| BAT to SYS On Resistance                      | R <sub>BAT_SYS</sub>         | $V_{BAT} = 4.2\text{V}$ , $I_{BAT} = 300\text{mA}$                         | 80                              | 140                             |                                 | mΩ    |
| Thermal Regulation Temperature                | T <sub>CHG_LIM</sub>         |                                                                            |                                 | T <sub>CHG_S</sub><br>HDN - 3   |                                 | °C    |
| BAT to SYS Switch On Threshold                | V <sub>BAT_SYS_ON</sub>      | $V_{SYS}$ falling, measured as $V_{BAT} - V_{SYS}$                         | 10                              | 19                              | 35                              | mV    |
| BAT to SYS Switch Off Threshold               | V <sub>BAT_SYS_OF_F</sub>    | $V_{SYS}$ rising, measured as $V_{BAT} - V_{SYS}$                          | -3                              | -1                              | 0                               | mV    |
| SYS to BAT Charge Current Reduction Threshold | V <sub>SYS_BAT_RE</sub><br>G | Measured as $V_{SYS} - V_{BAT}$ , SysMinVlt = 000, $V_{BAT} > 3.6\text{V}$ | 100                             |                                 |                                 | mV    |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                       | SYMBOL             | CONDITIONS         | MIN | TYP                    | MAX                    | UNITS |
|---------------------------------|--------------------|--------------------|-----|------------------------|------------------------|-------|
| Minimum SYS Voltage             | $V_{SYS\_LIM}$     | SysMinVlt = 000    |     | 3.6                    |                        | V     |
|                                 |                    | SysMinVlt = 001    |     | 3.7                    |                        |       |
|                                 |                    | SysMinVlt = 010    |     | 3.8                    |                        |       |
|                                 |                    | SysMinVlt = 011    |     | 3.9                    |                        |       |
|                                 |                    | SysMinVlt = 100    |     | 4.0                    |                        |       |
|                                 |                    | SysMinVlt = 101    |     | 4.1                    |                        |       |
|                                 |                    | SysMinVlt = 110    |     | 4.2                    |                        |       |
|                                 |                    | SysMinVlt = 111    |     | 4.3                    |                        |       |
| Charger Current Soft-Start Time | $t_{ICHG\_SFT}$    |                    |     | 1                      |                        | ms    |
| Precharge Current               | $I_{PCHG}$         | IPChg = 00         |     | $0.05 \times I_{FCHG}$ |                        | mA    |
|                                 |                    | IPChg = 01         |     | $0.09 \times I_{FCHG}$ | $0.10 \times I_{FCHG}$ |       |
|                                 |                    | IPChg = 10         |     | $0.20 \times I_{FCHG}$ | $0.11 \times I_{FCHG}$ |       |
|                                 |                    | IPChg = 11         |     | $0.30 \times I_{FCHG}$ |                        |       |
| Precharge Threshold             | $V_{BAT\_PCHG}$    | VPChg = 000        |     | 2.10                   |                        | V     |
|                                 |                    | VPChg = 001        |     | 2.25                   |                        |       |
|                                 |                    | VPChg = 010        |     | 2.40                   |                        |       |
|                                 |                    | VPChg = 011        |     | 2.55                   |                        |       |
|                                 |                    | VPChg = 100        |     | 2.70                   |                        |       |
|                                 |                    | VPChg = 101        |     | 2.85                   |                        |       |
|                                 |                    | VPChg = 110        |     | 3.00                   |                        |       |
|                                 |                    | VPChg = 111        |     | 3.15                   |                        |       |
| Precharge Threshold Hysteresis  | $V_{BAT\_PCHG\_H}$ |                    |     | 90                     |                        | mV    |
| Step-Charge Threshold           | $V_{BAT\_STPCHG}$  | ChgStepRise = 0000 |     | 3.80                   |                        | V     |
|                                 |                    | ChgStepRise = 0001 |     | 3.85                   |                        |       |
|                                 |                    | ChgStepRise = 0010 |     | 3.90                   |                        |       |
|                                 |                    | ChgStepRise = 0011 |     | 3.95                   |                        |       |
|                                 |                    | ChgStepRise = 0100 |     | 4.00                   |                        |       |
|                                 |                    | ChgStepRise = 0101 |     | 4.05                   |                        |       |
|                                 |                    | ChgStepRise = 0110 |     | 4.10                   |                        |       |
|                                 |                    | ChgStepRise = 0111 |     | 4.15                   |                        |       |
|                                 |                    | ChgStepRise = 1000 |     | 4.20                   |                        |       |
|                                 |                    | ChgStepRise = 1001 |     | 4.25                   |                        |       |
|                                 |                    | ChgStepRise = 1010 |     | 4.30                   |                        |       |
|                                 |                    | ChgStepRise = 1011 |     | 4.35                   |                        |       |
|                                 |                    | ChgStepRise = 1100 |     | 4.40                   |                        |       |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                        | SYMBOL               | CONDITIONS                                      | MIN              | TYP    | MAX    | UNITS |
|--------------------------------------------------|----------------------|-------------------------------------------------|------------------|--------|--------|-------|
|                                                  |                      | ChgStepRise = 1101                              |                  | 4.45   |        |       |
|                                                  |                      | ChgStepRise = 1110                              |                  | 4.50   |        |       |
|                                                  |                      | ChgStepRise = 1111                              |                  | 4.55   |        |       |
| Step-Charge Threshold Hysteresis                 | $V_{BAT\_STPCHG\_H}$ | ChgStepHys = 000                                | 100              |        |        | mV    |
|                                                  |                      | ChgStepHys = 001                                | 200              |        |        |       |
|                                                  |                      | ChgStepHys = 010                                | 300              |        |        |       |
|                                                  |                      | ChgStepHys = 011                                | 400              |        |        |       |
|                                                  |                      | ChgStepHys = 100                                | 500              |        |        |       |
|                                                  |                      | ChgStepHys = 101                                | 600              |        |        |       |
| Fast-Charge Current Reduction Due to Step Charge | $I_{FCHG\_STPCHG}$   | ChglStep = 000                                  | 0.2 x $I_{FCHG}$ |        |        | mA    |
|                                                  |                      | ChglStep = 001                                  | 0.3 x $I_{FCHG}$ |        |        |       |
|                                                  |                      | ChglStep = 010                                  | 0.4 x $I_{FCHG}$ |        |        |       |
|                                                  |                      | ChglStep = 011                                  | 0.5 x $I_{FCHG}$ |        |        |       |
|                                                  |                      | ChglStep = 100                                  | 0.6 x $I_{FCHG}$ |        |        |       |
|                                                  |                      | ChglStep = 101                                  | 0.7 x $I_{FCHG}$ |        |        |       |
|                                                  |                      | ChglStep = 110                                  | 0.8 x $I_{FCHG}$ |        |        |       |
|                                                  |                      | ChglStep = 111                                  | $I_{FCHG}$       |        |        |       |
| ISET Current Gain Factor                         | $K_{ISET}$           |                                                 | 2000             |        |        | A/A   |
| ISET Regulation Voltage                          | $V_{ISET}$           |                                                 | 1                |        |        | V     |
| BAT Fast-Charge Current Set Range                | $I_{FCHG}$           | $R_{ISET} = 400\text{k}\Omega$                  | 5                |        |        | mA    |
|                                                  |                      | $R_{ISET} = 40\text{k}\Omega$                   | 45               | 50     | 55     |       |
|                                                  |                      | $R_{ISET} = 4\text{k}\Omega$                    | 500              |        |        |       |
| Battery-Regulation Voltage                       | $V_{BAT\_REG}$       | ChgBatReg = 0000                                | 4.0500           |        |        | V     |
|                                                  |                      | ChgBatReg = 0001                                | 4.1000           |        |        |       |
|                                                  |                      | ChgBatReg = 0010                                | 4.1500           |        |        |       |
|                                                  |                      | $T_A = 25^\circ\text{C}$                        | 4.1853           | 4.2000 | 4.2147 |       |
|                                                  |                      | $T_A = -5^\circ\text{C}$ to $+50^\circ\text{C}$ | 4.1769           | 4.2000 | 4.2231 |       |
|                                                  |                      |                                                 | 4.1622           | 4.2000 | 4.2378 |       |
|                                                  |                      | ChgBatReg = 0100                                | 4.2500           |        |        |       |
|                                                  |                      | ChgBatReg = 0101                                | 4.3000           |        |        |       |
|                                                  |                      | ChgBatReg = 0110                                | 4.3500           |        |        |       |
|                                                  |                      | $T_A = 25^\circ\text{C}$                        | 4.3846           | 4.4000 | 4.4154 |       |
|                                                  |                      | $T_A = -5^\circ\text{C}$ to $+50^\circ\text{C}$ | 4.3758           | 4.4000 | 4.4242 |       |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                               | SYMBOL             | CONDITIONS                                      | MIN                         | TYP                | MAX                | UNITS        |
|---------------------------------------------------------|--------------------|-------------------------------------------------|-----------------------------|--------------------|--------------------|--------------|
|                                                         |                    |                                                 | 4.3604                      | 4.4000             | 4.4396             |              |
|                                                         |                    | $T_A = 25^\circ\text{C}$                        | 4.4344                      | 4.4500             | 4.4656             |              |
|                                                         |                    | $T_A = -5^\circ\text{C}$ to $+50^\circ\text{C}$ | 4.4255                      | 4.4500             | 4.4745             |              |
|                                                         |                    |                                                 | 4.4099                      | 4.4500             | 4.4901             |              |
|                                                         |                    | ChgBatReg = 1001                                |                             | 4.5000             |                    |              |
|                                                         |                    | ChgBatReg = 1010                                |                             | 4.5500             |                    |              |
|                                                         |                    | ChgBatReg = 1011                                |                             | 4.6000             |                    |              |
| Battery-Recharge Threshold                              | $V_{BAT\_RECHG}$   | ChgBatReChg = 00                                | 70                          |                    |                    | mV           |
|                                                         |                    | ChgBatReChg = 01                                | 120                         |                    |                    |              |
|                                                         |                    | ChgBatReChg = 10                                | 170                         |                    |                    |              |
|                                                         |                    | ChgBatReChg = 11                                | 220                         |                    |                    |              |
| Maximum Precharge Time                                  | $t_{PCHG}$         | PChgTmr = 00                                    | 30                          |                    |                    | min          |
|                                                         |                    | PChgTmr = 01                                    | 60                          |                    |                    |              |
|                                                         |                    | PChgTmr = 10                                    | 120                         |                    |                    |              |
|                                                         |                    | PChgTmr = 11                                    | 240                         |                    |                    |              |
| Maximum Fast-Charge Time                                | $t_{FCHG}$         | FChgTmr = 00                                    | 75                          |                    |                    | min          |
|                                                         |                    | FChgTmr = 01                                    | 150                         |                    |                    |              |
|                                                         |                    | FChgTmr = 10                                    | 300                         |                    |                    |              |
|                                                         |                    | FChgTmr = 11                                    | 600                         |                    |                    |              |
| Charge Done Qualification                               | $I_{CHG\_DONE}$    | $I_{ChgDone} = 00$                              | 0.050 x $I_{FCHG}$          |                    |                    | mA           |
|                                                         |                    | $I_{ChgDone} = 01$                              | 0.085 x $I_{FCHG}$          | 0.100 x $I_{FCHG}$ | 0.115 x $I_{FCHG}$ |              |
|                                                         |                    | $I_{ChgDone} = 10$                              |                             | 0.200 x $I_{FCHG}$ |                    |              |
|                                                         |                    | $I_{ChgDone} = 11$                              |                             | 0.300 x $I_{FCHG}$ |                    |              |
| Maximum Maintain Charge Time                            | $t_{MTCHG}$        | MtChgTmr = 00                                   | 0                           |                    |                    | min          |
|                                                         |                    | MtChgTmr = 01                                   | 15                          |                    |                    |              |
|                                                         |                    | MtChgTmr = 10                                   | 30                          |                    |                    |              |
|                                                         |                    | MtChgTmr = 11                                   | 60                          |                    |                    |              |
| Timer Accuracy                                          | $t_{CHG\_ACC}$     |                                                 | -10                         |                    | +10                | %            |
| Fast-Charge Timer Extend Current Threshold              | $I_{FCHG\_TEXT}$   | See [Figure 32]                                 |                             | 50                 |                    | % $I_{FCHG}$ |
| Fast-Charge Timer Suspend Current Threshold             | $I_{FCHG\_TSUS}$   | See [Figure 32]                                 |                             | 20                 |                    | % $I_{FCHG}$ |
| Battery Regulation Voltage Reduction Due to Temperature | $V_{BAT\_REG\_JT}$ | ChgCool/Room/WarmBatReg = 00                    | $V_{BAT\_RE}$<br>$G - 0.15$ |                    |                    | V            |
|                                                         |                    | ChgCool/Room/WarmBatReg = 01                    | $V_{BAT\_RE}$<br>$G - 0.1$  |                    |                    |              |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOP\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOP} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                                      | SYMBOL                                 | CONDITIONS                                                                                                                                                        | MIN                         | TYP    | MAX    | UNITS  |   |
|----------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|--------|--------|---|
|                                                                |                                        | ChgCool/Room/WarmBatReg = 10                                                                                                                                      | $V_{BAT\_RE}$<br>G - 0.05   |        |        |        |   |
|                                                                |                                        | ChgCool/Room/WarmBatReg = 11                                                                                                                                      |                             |        |        |        |   |
| Fast-Charge Current Reduction Due to Temperature               | I <sub>FCHG_JTA</sub>                  | ChgCool/Room/WarmIFChg = 000                                                                                                                                      | 0.20 x<br>I <sub>FCHG</sub> |        |        | mA     |   |
|                                                                |                                        | ChgCool/Room/WarmIFChg = 001                                                                                                                                      | 0.30 x<br>I <sub>FCHG</sub> |        |        |        |   |
|                                                                |                                        | ChgCool/Room/WarmIFChg = 010                                                                                                                                      | 0.40 x<br>I <sub>FCHG</sub> |        |        |        |   |
|                                                                |                                        | ChgCool/Room/WarmIFChg = 011                                                                                                                                      | 0.50 x<br>I <sub>FCHG</sub> |        |        |        |   |
|                                                                |                                        | ChgCool/Room/WarmIFChg = 100                                                                                                                                      | 0.60 x<br>I <sub>FCHG</sub> |        |        |        |   |
|                                                                |                                        | ChgCool/Room/WarmIFChg = 101                                                                                                                                      | 0.70 x<br>I <sub>FCHG</sub> |        |        |        |   |
|                                                                |                                        | ChgCool/Room/WarmIFChg = 110                                                                                                                                      | 0.80 x<br>I <sub>FCHG</sub> |        |        |        |   |
|                                                                |                                        | ChgCool/Room/WarmIFChg = 111                                                                                                                                      | I <sub>FCHG</sub>           |        |        |        |   |
| BAT UVLO Threshold                                             | V <sub>BAT_UVLO</sub>                  | V <sub>BAT</sub> rising, valid only when CHGIN is present, when $V_{BAT} < V_{BAT\_UVLO}$ the BAT to SYS switch opens and BAT is connected to SYS through a diode | 1.95                        | 2.05   | 2.15   | V      |   |
| BAT UVLO Threshold Hysteresis                                  | V <sub>BAT_UVLO_H</sub>                |                                                                                                                                                                   |                             | 50     |        | mV     |   |
| BAT Pulldown Resistance                                        | R <sub>BAT_PD</sub>                    | BatPD = 1                                                                                                                                                         |                             | 15     |        | kΩ     |   |
| <b>HARVESTER INTERACTION</b>                                   |                                        |                                                                                                                                                                   |                             |        |        |        |   |
| Harvester Interaction Comparator Quiescent Current             | I <sub>HARV_CMP_Q</sub>                | V <sub>BAT</sub> = 3.7V                                                                                                                                           |                             | 0.25   |        | µA     |   |
| Harvester Interaction Ideal BAT to SYS Diode Quiescent Current | I <sub>HARV_BAT_SYS_DIO_Q</sub>        | V <sub>BAT</sub> = 4.2V, I <sub>SYS</sub> = 0µA                                                                                                                   |                             | 0.65   |        | µA     |   |
|                                                                |                                        | V <sub>BAT</sub> = 4.2V, I <sub>SYS</sub> = 10mA                                                                                                                  |                             | 12     |        |        |   |
| Harvester Interaction SYS to BAT Diode Drop in POR / SEAL Mode | V <sub>HARV_SYS_BAT_DIO_PORS_EAL</sub> | POR condition, V <sub>BAT</sub> = 2.1V, I <sub>SYS</sub> = -20mA                                                                                                  |                             | 0.6    |        | V      |   |
| Harvester Interaction Battery Charging Stop Threshold          | V <sub>HARV_BAT_REG</sub>              | V <sub>BAT</sub> rising, T <sub>A</sub> =-18°C, +80°C                                                                                                             | HrvBatReg = 0000            | 3.9710 | 4.0500 | 4.0723 | V |
|                                                                |                                        |                                                                                                                                                                   | HrvBatReg = 0001            | 4.0200 | 4.1000 | 4.1226 |   |
|                                                                |                                        |                                                                                                                                                                   | HrvBatReg = 0010            | 4.0691 | 4.1500 | 4.1728 |   |
|                                                                |                                        |                                                                                                                                                                   | HrvBatReg = 0011            | 4.1181 | 4.2000 | 4.2231 |   |
|                                                                |                                        |                                                                                                                                                                   | HrvBatReg = 0100            | 4.1671 | 4.2500 | 4.2734 |   |
|                                                                |                                        |                                                                                                                                                                   | HrvBatReg = 0101            | 4.2161 | 4.3000 | 4.3237 |   |
|                                                                |                                        |                                                                                                                                                                   | HrvBatReg = 0110            | 4.2652 | 4.3500 | 4.3739 |   |
|                                                                |                                        |                                                                                                                                                                   | HrvBatReg = 0111            | 4.3142 | 4.4000 | 4.4242 |   |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                                                                   | SYMBOL                                 | CONDITIONS                                                                                                                                                                          | MIN                            | TYP                            | MAX    | UNITS  |
|---------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------|--------|
| Harvester Interaction<br>Battery Charging<br>Restart Threshold                              | $V_{HARV\_BAT\_R}$<br>ECHG             | $V_{BAT}$ falling                                                                                                                                                                   | HrvBatReg = 1000               | 4.3632                         | 4.4500 | 4.4745 |
|                                                                                             |                                        |                                                                                                                                                                                     | HrvBatReg = 1001               | 4.4122                         | 4.5000 | 4.5248 |
|                                                                                             |                                        |                                                                                                                                                                                     | HrvBatReg = 1010               | 4.4613                         | 4.5500 | 4.5750 |
|                                                                                             |                                        |                                                                                                                                                                                     | HrvBatReg = 1011               | 4.5103                         | 4.6000 | 4.6253 |
| Harvester Interaction<br>Battery Charging Stop<br>Threshold Reduction<br>Due to Temperature | $V_{HARV\_BAT\_R}$<br>EG_JTA           |                                                                                                                                                                                     | HrvBatReChg = 00               | $V_{HARV\_BAT\_REG}$<br>- 0.07 |        | V      |
|                                                                                             |                                        |                                                                                                                                                                                     | HrvBatReChg = 01               | $V_{HARV\_BAT\_REG}$<br>- 0.12 |        |        |
|                                                                                             |                                        |                                                                                                                                                                                     | HrvBatReChg = 10               | $V_{HARV\_BAT\_REG}$<br>- 0.17 |        |        |
|                                                                                             |                                        |                                                                                                                                                                                     | HrvBatReChg = 11               | $V_{HARV\_BAT\_REG}$<br>- 0.22 |        |        |
| Harvester Interaction<br>Ideal BAT-to-SYS Diode<br>Regulation                               | $V_{HARV\_BAT\_S}$<br>YS_DIO_REG       | $V_{BAT} = 4.2\text{V}$ , $I_{SYS} = 100\text{mA}$ , measured<br>as $V_{BAT} - V_{SYS}$                                                                                             | $V_{HARV\_BAT\_REG}$<br>- 0.15 |                                |        | mV     |
|                                                                                             |                                        |                                                                                                                                                                                     | $V_{HARV\_BAT\_REG}$<br>- 0.10 |                                |        |        |
|                                                                                             |                                        |                                                                                                                                                                                     | $V_{HARV\_BAT\_REG}$<br>- 0.05 |                                |        |        |
|                                                                                             |                                        |                                                                                                                                                                                     | $V_{HARV\_BAT\_REG}$<br>- 0.02 |                                |        |        |
| Harvester Interaction<br>Ideal BAT-to-SYS Diode<br>Load Transient                           | $V_{HARV\_BAT\_S}$<br>YS_DIO_LOADT_RAN | $V_{BAT} = 4.2\text{V}$ , $I_{SYS}$ = from -20mA to 1A in<br>1 $\mu\text{s}$ , measured as $V_{BAT} - V_{SYS}$                                                                      | 28                             |                                |        | mV     |
| Harvester Interaction<br>Ideal BAT-to-SYS Diode<br>Release Delay                            | $t_{HARV\_BAT\_SYS\_DIO\_REL}$         | $V_{BAT} = 4.2\text{V}$ , $I_{SYS}$ = from 1A to -1mA in<br>1 $\mu\text{s}$ , measured as the time from when<br>$I_{BAT}$ goes negative to when it rises above<br>-50 $\mu\text{A}$ | 165                            |                                |        | mV     |
| <b>SFOUT LDO</b>                                                                            |                                        |                                                                                                                                                                                     |                                |                                |        |        |
| SFOUT LDO Voltage                                                                           | $V_{SFOUT}$                            | $SFOUTVSet = 0$ (5V), $V_{CHGIN} = 6\text{V}$ ,<br>$I_{SFOUT} = 0\text{mA}$                                                                                                         | 4.85                           | 5.00                           | 5.15   | V      |
|                                                                                             |                                        | $SFOUTVSet = 0$ (5V), $V_{CHGIN} = 5\text{V}$ ,<br>$I_{SFOUT} = 15\text{mA}$                                                                                                        |                                | 4.90                           |        |        |
|                                                                                             |                                        | $SFOUTVSet = 1$ (3.3V), $V_{CHGIN} = 5\text{V}$ ,<br>$I_{SFOUT} = 0\text{mA}$                                                                                                       | 3.15                           | 3.30                           | 3.45   |        |
|                                                                                             |                                        | $SFOUTVSet = 1$ (3.3V), $V_{CHGIN} = 5\text{V}$ ,<br>$I_{SFOUT} = 15\text{mA}$                                                                                                      |                                | 3.29                           |        |        |
| SFOUT OVP Voltage                                                                           | $V_{SFOUT\_OV}$                        | SFOUT LDO is turned off if $V_{CHGIN}$ is<br>above $V_{CHGIN\_OV}$ threshold                                                                                                        | $V_{CHGIN\_OV}$                |                                |        | V      |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\text{\textmu F}$ ,  $C_{VDIG\_EFF} = 1\text{\textmu F}$ ,  $C_{CAP\_EFF} = 1\text{\textmu F}$ ,  $C_{SYS\_EFF} = 10\text{\textmu F}$ ,  $C_{BAT\_EFF} = 1\text{\textmu F}$ ,  $C_{BK\_OUT\_EFF} = 10\text{\textmu F}$ ,  $C_{L\_IN} = 1\text{\textmu F}$ ,  $C_{L\_OUT\_EFF} = 1\text{\textmu F}$ ,  $C_{BBOUT\_EFF} = 8.8\text{\textmu F}$ ,  $C_{BSTOUT\_EFF} = 10\text{\textmu F}$ ,  $L_{BK\_OUT} = 2.2\text{\textmu H}$ ,  $L_{BBOUT} = 2.2\text{\textmu H}$ ,  $L_{BSTOUT} = 4.7\text{\textmu H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                  | SYMBOL               | CONDITIONS                                                                                                  |                                                                            | MIN   | TYP   | MAX   | UNITS             |
|--------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|-------|-------|-------------------|
| SFOUT Thermal Limit                        | TSFOUT_LIM           |                                                                                                             |                                                                            | 150   |       |       | °C                |
| <b>THERMISTOR MONITOR</b>                  |                      |                                                                                                             |                                                                            |       |       |       |                   |
| THM Monitoring Quiescent Current           | $I_{THM\_Q}$         | VDIG to TPU switch closed, THM measurement running                                                          |                                                                            | 190   |       |       | μA                |
| Harvester Interaction THM Hot Threshold    | $V_{HRV\_THM\_HOT}$  | Device Specific (see JEITASet and HrvEn in <a href="#">Table 8</a> )                                        | $V_{THM}$ falling, JEITASet = 0, HrvEn = 1 and Harvester Actively Charging | 12.51 | 14.51 | 16.51 | %V <sub>DIG</sub> |
|                                            |                      |                                                                                                             | $V_{THM}$ falling, JEITASet = 1, HrvEn = 1 and Harvester Actively Charging | 21.53 | 23.53 | 25.53 |                   |
| THM Hot Threshold                          | $V_{THM\_HOT}$       | Device Specific (see JEITASet in <a href="#">Table 8</a> )                                                  | $V_{THM}$ falling, JEITASet = 0, No Harvester mode                         | 21.53 | 23.53 | 25.53 | %V <sub>DIG</sub> |
|                                            |                      |                                                                                                             | $V_{THM}$ falling, JEITASet = 1, No Harvester mode                         | 30.94 | 32.94 | 34.94 |                   |
| THM Warm Threshold                         | $V_{THM\_WARM}$      | Device Specific (see JEITASet in <a href="#">Table 8</a> )                                                  | $V_{THM}$ falling, JEITASet = 0                                            | 30.94 | 32.94 | 34.94 | %V <sub>DIG</sub> |
|                                            |                      |                                                                                                             | $V_{THM}$ falling, JEITASet = 1                                            | 48.20 | 50.20 | 52.20 |                   |
| THM Cool Threshold                         | $V_{THM\_COOL}$      | $V_{THM}$ rising                                                                                            |                                                                            | 57.61 | 59.61 | 61.61 | %V <sub>DIG</sub> |
| THM Cold Threshold                         | $V_{THM\_COLD}$      | $V_{THM}$ rising, No Harvester mode                                                                         |                                                                            | 71.73 | 73.73 | 75.73 | %V <sub>DIG</sub> |
| Harvester THM Cold Threshold               | $V_{HRV\_THM\_COLD}$ | Device Specific (see HrvEn in <a href="#">Table 8</a> )                                                     | $V_{THM}$ rising, HrvEn = 1 and Harvester Actively Charging                | 79.57 | 81.57 | 83.57 | %V <sub>DIG</sub> |
| THM Disable Threshold                      | $V_{THM\_DIS}$       | $V_{THM}$ rising                                                                                            |                                                                            | 90.94 | 92.94 | 94.94 | %V <sub>DIG</sub> |
| THM Threshold Hysteresis                   | $V_{THM\_H}$         |                                                                                                             |                                                                            |       | 60    |       | mV                |
| THM Input Leakage                          | $I_{THM\_LK}$        | $V_{THM} = 0\text{V}$ to 5.5V, Fuel Gauge contribution not included                                         |                                                                            | -1    |       | +1    | μA                |
| TPU Input Leakage                          | $I_{TPU\_LK}$        | VDIG to TPU switch disabled, $V_{TPU} = 0\text{V}$ to 5.5V                                                  |                                                                            | -1    |       | +1    | μA                |
| V <sub>DIG</sub> -to-TPU Switch Resistance | $R_{VDIG\_TPU}$      | 3mA through the switch                                                                                      |                                                                            | 3     | 10    |       | Ω                 |
| <b>IVMON MULTIPLEXER</b>                   |                      |                                                                                                             |                                                                            |       |       |       |                   |
| IVMON Multiplexer Output Ratio             | $V_{IVMON\_DIV\_RT}$ | No load on IVMON pin. Inputs: Charger Current, BAT, SYS, BK1OUT, BK2OUT, BK3OUT, L1OUT, L2OUT, SFOUT, BBOUT | IVMONRatioConfig = 00                                                      |       | 100.0 |       | %                 |
|                                            |                      |                                                                                                             | IVMONRatioConfig = 01                                                      |       | 50.0  |       |                   |
|                                            |                      |                                                                                                             | IVMONRatioConfig = 10                                                      |       | 33.3  |       |                   |
|                                            |                      |                                                                                                             | IVMONRatioConfig = 11                                                      |       | 25.0  |       |                   |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\text{\textmu F}$ ,  $C_{VDIG\_EFF} = 1\text{\textmu F}$ ,  $C_{CAP\_EFF} = 1\text{\textmu F}$ ,  $C_{SYS\_EFF} = 10\text{\textmu F}$ ,  $C_{BAT\_EFF} = 1\text{\textmu F}$ ,  $C_{BK\_OUT\_EFF} = 10\text{\textmu F}$ ,  $C_{L\_IN} = 1\text{\textmu F}$ ,  $C_{L\_OUT\_EFF} = 1\text{\textmu F}$ ,  $C_{BBOUT\_EFF} = 8.8\text{\textmu F}$ ,  $C_{BSTOUT\_EFF} = 10\text{\textmu F}$ ,  $L_{BK\_OUT} = 2.2\text{\textmu H}$ ,  $L_{BBOUT} = 2.2\text{\textmu H}$ ,  $L_{BSTOUT} = 4.7\text{\textmu H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                       | SYMBOL                      | CONDITIONS                                                                                                               | MIN                   | TYP   | MAX  | UNITS         |
|-------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|------|---------------|
| IVMON Multiplexer Output Impedance              | RIVMON_DIV                  | 10 $\mu\text{A}$ load on IVMON pin. Inputs Charger Current, BAT, SYS, BK1OUT, BK2OUT, BK3OUT, L1OUT, L2OUT, SFOUT, BBOUT | IVMONRatioConfig = 00 |       | 5.5  | k $\Omega$    |
|                                                 |                             | 1 $\mu\text{A}$ load on IVMON pin. Inputs Charger Current, BAT, SYS, BK1OUT, BK2OUT, BK3OUT, L1OUT, L2OUT, SFOUT, BBOUT  | IVMONRatioConfig = 01 |       | 31.0 |               |
|                                                 |                             |                                                                                                                          | IVMONRatioConfig = 10 |       | 28.0 |               |
|                                                 |                             |                                                                                                                          | IVMONRatioConfig = 11 |       | 24.0 |               |
| IVMON Input Leakage                             | IIVMON_LK                   | IVMON multiplexer disabled, pulldown resistance disabled, VIVMON = 0V to 5.5V                                            | -1                    |       | +1   | $\mu\text{A}$ |
| IVMON Multiplexer Off-State Pulldown Resistance | RIVMON_OFF                  | IVMON multiplexer disabled, pulldown resistance enabled                                                                  |                       | 59.0  |      | k $\Omega$    |
| <b>SAR ADC</b>                                  |                             |                                                                                                                          |                       |       |      |               |
| ADC Quiescent Current                           | I <sub>ADC_Q</sub>          | Conversion running                                                                                                       |                       | 930   |      | $\mu\text{A}$ |
| ADC HDIN Divider Resistance                     | R <sub>ADC_HDIN_DIV</sub>   | HDIN conversion running                                                                                                  |                       | 2.20  |      | M $\Omega$    |
| ADC IVMON Divider Resistance                    | R <sub>ADC_IVMON_DIV</sub>  | IVMON conversion running                                                                                                 |                       | 2.20  |      | M $\Omega$    |
| ADC CHGIN Divider Resistance                    | R <sub>ADC_CHGIN_DIV</sub>  | CHGIN conversion running                                                                                                 |                       | 1.10  |      | M $\Omega$    |
| ADC CPOUT Divider Resistance                    | R <sub>ADC_CPOUT_DIV</sub>  | CPOUT conversion running                                                                                                 |                       | 0.82  |      | M $\Omega$    |
| ADC BSTOUT Divider Resistance                   | R <sub>ADC_BSTOUT_DIV</sub> | BSTOUT conversion running                                                                                                |                       | 0.89  |      | M $\Omega$    |
| ADC HDIN Least Significant Bit                  | V <sub>ADC_HDIN_LSB</sub>   |                                                                                                                          |                       | 21.57 |      | mV            |
| ADC IVMON Least Significant Bit                 | V <sub>ADC_IVMON_LSB</sub>  |                                                                                                                          |                       | 21.57 |      | mV            |
| ADC CHGIN Least Significant Bit                 | V <sub>ADC_CHGIN_LSB</sub>  |                                                                                                                          |                       | 32.35 |      | mV            |
| ADC CPOUT Least Significant Bit                 | V <sub>ADC_CPOUT_LSB</sub>  |                                                                                                                          |                       | 32.35 |      | mV            |
| ADC BSTOUT Least Significant Bit                | V <sub>ADC_BSTOUT_LSB</sub> |                                                                                                                          |                       | 82.35 |      | mV            |
| ADC HDIN Absolute Sensing Worst-Case Accuracy   | V <sub>ADC_HDIN_Acc</sub>   | V <sub>HDIN</sub> = 2.6V                                                                                                 | -65                   |       | +65  | mV            |
|                                                 |                             | V <sub>HDIN</sub> = 5.5V                                                                                                 | -123                  |       | +123 |               |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                                  | SYMBOL                      | CONDITIONS                                                                               | MIN                     | TYP  | MAX  | UNITS              |
|------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------|-------------------------|------|------|--------------------|
| ADC IVMON Absolute Sensing Worst-Case Accuracy             | V <sub>ADC_IVMON_ACC</sub>  | V <sub>IVMON</sub> = 1.0V                                                                | -34                     | +34  | +123 | mV                 |
|                                                            |                             | V <sub>IVMON</sub> = 5.5V                                                                | -123                    | +123 | +178 |                    |
| ADC CHGIN Absolute Sensing Worst-Case Accuracy             | V <sub>ADC_CHGIN_ACC</sub>  | V <sub>CHGIN</sub> = 3.0V                                                                | -79                     | +79  | +178 | mV                 |
|                                                            |                             | V <sub>CHGIN</sub> = 8.0V                                                                | -178                    | +178 | +178 |                    |
| ADC CPOUT Absolute Sensing Worst-Case Accuracy             | V <sub>ADC_CPOUT_ACC</sub>  | V <sub>CPOUT</sub> = 5.0V                                                                | -118                    | +118 | +150 | mV                 |
|                                                            |                             | V <sub>CPOUT</sub> = 6.6V                                                                | -150                    | +150 | +150 |                    |
| ADC BSTOUT Absolute Sensing Worst-Case Accuracy            | V <sub>ADC_BSTOUT_ACC</sub> | V <sub>BSTOUT</sub> = 3.0V                                                               | -115                    | +115 | +465 | mV                 |
|                                                            |                             | V <sub>BSTOUT</sub> = 21.0V                                                              | -465                    | +465 | +465 |                    |
| ADC Conversion Time                                        | t <sub>ADC_CONV</sub>       | 1.1ms (typ) additional delay prior to each 1 <sup>st</sup> conversion                    | 82                      |      |      | μs                 |
| <b>HAPTIC DRIVER</b>                                       |                             |                                                                                          |                         |      |      |                    |
| Input Voltage                                              | V <sub>HDIN</sub>           |                                                                                          | 2.6                     | 5.5  |      | V                  |
| Quiescent Current                                          | I <sub>HD_Q</sub>           | V <sub>DRP</sub> / V <sub>DRN</sub> = 0V to V <sub>HDIN</sub>                            | 1.25                    |      |      | mA                 |
| HDIN UVLO Threshold                                        | V <sub>HDIN_UVLO</sub>      | V <sub>HDIN</sub> rising                                                                 | 2.65                    | 2.75 | 2.85 | V                  |
|                                                            |                             | V <sub>HDIN</sub> falling                                                                | 2.60                    | 2.70 | 2.80 |                    |
| HDIN UVLO Threshold Hysteresis                             | V <sub>HDIN_UVLO_H</sub>    |                                                                                          | 50                      |      |      | mV                 |
| H-Bridge PWM Output Frequency                              | f <sub>HD_PWM_OUT</sub>     |                                                                                          | 22.5                    | 25.0 | 27.5 | kHz                |
| H-Bridge PWM Output Duty-Cycle Resolution                  | D <sub>HD_PWM_OUT</sub>     | 7 bits                                                                                   | V <sub>HDIN</sub> / 128 |      |      | %V <sub>HDIN</sub> |
| H-Bridge Output-Impedance in Off State                     | R <sub>HD_OFF</sub>         | HptOffImp = 1                                                                            | 15                      |      |      | kΩ                 |
|                                                            |                             | HptOffImp = 0                                                                            | R <sub>HD_ON_LS</sub>   |      |      | Ω                  |
| H-Bridge Output Leakage in High-Z State                    | I <sub>HD_LK</sub>          | During back EMF detection, V <sub>DRP</sub> / V <sub>DRN</sub> = 0V to V <sub>HDIN</sub> | -1                      | +1   |      | μA                 |
| H-Bridge On Resistance                                     | R <sub>HD_ON_HS</sub>       | High-side pMOS switch on, 300mA load                                                     | 0.04                    | 0.18 | 0.50 | Ω                  |
|                                                            | R <sub>HD_ON_LS</sub>       | Low-side nMOS switch on, 300mA load                                                      | 0.04                    | 0.18 | 0.50 |                    |
| H-Bridge Overcurrent-Protection Threshold                  | I <sub>HD_OCP</sub>         | Rising current through high-side or low-side switch                                      | 600                     | 1000 | 1500 | mA                 |
| H-Bridge Overcurrent-Protection Threshold Hysteresis       | I <sub>HD_OCP_H</sub>       |                                                                                          | 130                     |      |      | mA                 |
| H-Bridge Thermal-Shutdown Temperature Threshold            | T <sub>HD_SHDN</sub>        | Rising temperature                                                                       | 150                     |      |      | °C                 |
| H-Bridge Thermal-Shutdown Temperature Threshold Hysteresis | T <sub>HD_SHDN_H</sub>      |                                                                                          | 25                      |      |      | °C                 |
| PPWM Mode Input Frequency                                  | f <sub>HD_PPWM_IN</sub>     |                                                                                          | 10                      | 250  |      | kHz                |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                             | SYMBOL                | CONDITIONS                                                                                                                                                       | MIN                         | TYP                        | MAX | UNITS            |
|-------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-----|------------------|
| LRA Resonance Frequency Tracking Range                | $f_{HD\_LRA}$         | See the <a href="#">Haptic Driver</a> section                                                                                                                    | max(200 k/IniGss[11:0],100) | min(800k /IniGss[1:0],100) |     | Hz               |
| Startup Latency                                       | $t_{HD\_START}$       | Time from enabling to vibration response                                                                                                                         | 6.5                         | 7.5                        |     | ms               |
| <b>BUCK1&amp;2</b>                                    |                       |                                                                                                                                                                  |                             |                            |     |                  |
| Input-Voltage Range                                   | $V_{IN}$              | Input voltage = $V_{SYS}$                                                                                                                                        | 2.7                         | 5.5                        |     | V                |
| Output-Voltage Range                                  | $V_{BK\_OUT}$         | 10mV step resolution                                                                                                                                             | 0.55                        | 1.18                       |     | V                |
|                                                       |                       | 25mV step resolution                                                                                                                                             | 0.55                        | 2.125                      |     |                  |
|                                                       |                       | 50mV step resolution                                                                                                                                             | 0.55                        | 3.7                        |     |                  |
| Quiescent-Supply Current                              | $I_{Q\_BK}$           | $I_{BK\_OUT} = 0$ , $V_{SYS} = 3.7\text{V}$ , $V_{BK\_OUT} = 1.2\text{V}$ , Buck_VStep = 25mV, Buck_FPWM = 0                                                     | 0.35                        | 0.70                       |     | $\mu\text{A}$    |
|                                                       | $I_{Q\_BK\_PWM}$      | $I_{BK\_OUT} = 0$ , $V_{SYS} = 3.7\text{V}$ , $V_{BK\_OUT} = 1.2\text{V}$ , Buck_FPWM = 1, L = 2.2 $\mu\text{H}$ , Buck_ISet = 175mA                             | 2                           |                            |     | mA               |
| Shutdown Supply Current with Active Discharge Enabled | $I_{SD\_BK}$          | Buck disabled, Buck_ActDsc = 1                                                                                                                                   | 60                          |                            |     | $\mu\text{A}$    |
| Output Average Voltage Accuracy                       | $ACC\_BK$             | Buck_IntegDis = 0, CCM operation, $V_{BK\_OUT} \leq 3.4\text{V}$                                                                                                 | -2.5                        | +2.5                       |     | %                |
| Peak-to-Peak Voltage Ripple                           | $V_{RPP\_BK}$         | $C_{BK\_OUT\_EFF} \geq 4\mu\text{F}$ , $I_{BK\_OUT} = 1\text{mA}$ , L = 2.2 $\mu\text{H}$ , Buck_Iset = 150mA, $V_{OUT} = 1.2\text{V}$ , $V_{SYS} = 3.7\text{V}$ | 10                          |                            |     | mV               |
| Nominal Peak Current Set Range                        | $I_{PSET\_BK}$        | 25mA step resolution                                                                                                                                             | 0                           | 375                        |     | mA               |
| Load Transient Response                               | $V_{LOAD\_TRANS\_BK}$ | 10 $\mu\text{A}$ to 300mA at 1A/ $\mu\text{s}$ , $C_{BK\_EFF} = 9\mu\text{F}$ , $V_{BK\_OUT} = 1.2\text{V}$                                                      | 70                          |                            |     | mV               |
| Load Regulation Error                                 | $V_{LOAD\_REG\_BK}$   | Buck_IAdptDis = 0, Buck_IntegDis = 0, $I_{BK\_OUT} = 500\text{mA}$                                                                                               | -0.5                        |                            |     | %                |
| Line Regulation Error                                 | $V_{LINE\_REG\_BK}$   | $V_{BK\_OUT} = 1.2\text{V}$ , $V_{SYS}$ from 2.7V to 5.5V, $I_{BK\_OUT} = 200\text{mA}$ , $C_{BK\_OUT} > 9\mu\text{F}$                                           | $\pm 5$                     |                            |     | mV               |
| Maximum Operative Output Current                      | $I_{BK\_MAX}$         | Load regulation error = -5%, Buck_IntegDis = 0                                                                                                                   | 400                         |                            |     | mA               |
| Valley Current Limit During Short-Circuit to GND      | $I_{SHRT\_BK}$        | $V_{BK\_OUT} = 0\text{V}$                                                                                                                                        | 1                           |                            |     | A                |
| Valley Current Limit During Startup                   | $I_{VLY\_BK\_STUP}$   | During startup before PGOOD = 1 condition is achieved                                                                                                            | 250                         |                            |     | mA               |
| BKLX Leakage Current                                  | $I_{LK\_BKLX}$        | Buck disabled                                                                                                                                                    | -1                          | +1                         |     | $\mu\text{A}$    |
| Active Discharge Current                              | $I_{ACTD\_BK}$        | $V_{BK\_OUT} = 0.7\text{V}$                                                                                                                                      | 8                           | 16                         | 28  | mA               |
| Passive Discharge Resistance                          | $R_{PSV\_BK}$         |                                                                                                                                                                  | 6                           | 10                         | 14  | $\text{k}\Omega$ |
| Full Turn-On Time                                     | $t_{ON\_BK}$          | Time from enable to PGOOD and full current capability. No load. 1                                                                                                | 10                          |                            |     | ms               |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                             | SYMBOL                      | CONDITIONS                                                                                                                              | MIN  | TYP   | MAX | UNITS |
|-------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|-------|-----|-------|
|                                                       |                             | Murata GRM155R60J226ME11 22 $\mu\text{F}$ output capacitor                                                                              |      |       |     |       |
| Efficiency                                            | EFFIC_BK                    | Buck_VSet = 1.2V, $I_{BK\_OUT} = 10\text{mA}$ , Inductor: Murata DFE201610E-2R2M                                                        |      | 86    |     | %     |
| BK3LX Rising/Falling Slew Rate                        | SLW_BK                      | Buck_LowEMI = 0                                                                                                                         |      | 3     |     | V/ns  |
|                                                       | SLW_BK_L                    | Buck_LowEMI = 1                                                                                                                         |      | 0.6   |     |       |
| Thermal Shutdown Threshold                            | TSHDN_BK                    | $I_{LOAD} > 20\text{mA}$                                                                                                                |      | 140   |     | °C    |
| <b>BUCK3</b>                                          |                             |                                                                                                                                         |      |       |     |       |
| Input-Voltage Range                                   | V <sub>IN</sub>             | Input voltage = VSYS                                                                                                                    | 2.7  | 5.5   |     | V     |
| Output-Voltage Range                                  | V <sub>BK3OUT</sub>         | 10mV step resolution                                                                                                                    | 0.55 | 1.18  |     | V     |
|                                                       |                             | 25mV step resolution                                                                                                                    | 0.55 | 2.125 |     |       |
|                                                       |                             | 50mV step resolution                                                                                                                    | 0.55 | 3.7   |     |       |
| Quiescent-Supply Current                              | I <sub>Q_BK3</sub>          | IBK3OUT = 0, VSYS = 3.7V, V <sub>BK3OUT</sub> = 3.3V, Buck3FPWM = 0                                                                     |      | 0.5   | 0.8 | μA    |
|                                                       | I <sub>Q_BK3_PWM</sub>      | IBK3OUT = 0, VSYS = 3.7V, V <sub>BK3OUT</sub> = 3.3V, Buck3FPWM = 1, L = 2.2 $\mu\text{H}$ , Buck3ISet = 175mA                          |      | 1.5   |     | mA    |
| Shutdown Supply Current with Active Discharge Enabled | I <sub>SD_BK3</sub>         | Buck3 disabled, Buck3ActDsc = 1                                                                                                         |      | 60    |     | μA    |
| Output Average-Voltage Accuracy                       | ACC_BK3                     | Buck3IntegDis = 0, CCM operation, V <sub>BK3OUT</sub> ≤ 3.4V                                                                            | -2.5 | +2.5  |     | %     |
| Peak-to-Peak Voltage Ripple                           | V <sub>RPP_BK3</sub>        | CBK3OUT_EFF ≥ 4 $\mu\text{F}$ , IBK3OUT = 1mA; L = 2.2 $\mu\text{H}$ ; Buck3ISet = 150mA, V <sub>OUT</sub> = 1.2V, VSYS = 3.7V          |      | 10    |     | mV    |
| Nominal Peak Current Set Range                        | I <sub>PSSET_BK3</sub>      | 25mA step resolution                                                                                                                    | 0    | 375   |     | mA    |
| Load Transient Response                               | V <sub>LOAD_TRANS_BK3</sub> | 10 $\mu\text{A}$ to 300mA at 1A/ $\mu\text{s}$ , CBK3EFF = 9 $\mu\text{F}$ , V <sub>BK3OUT</sub> = 1.2V                                 |      | 70    |     | mV    |
| Load Regulation Error                                 | V <sub>LOAD_REG_BK3</sub>   | Buck3IAdptDis = 0, Buck3IntegDis = 0, IBK3OUT = 500mA                                                                                   |      | -0.5  |     | %     |
| Line Regulation Error                                 | V <sub>LINE_REG_BK3</sub>   | V <sub>BK3OUT</sub> = 3.3V, VSYS from 5.5V to 3.4V, IBK3OUT = 300mA, C <sub>BK3OUT</sub> > 4 $\mu\text{F}$ , LDO mode assistant enabled |      | ±100  |     | mV    |
| Maximum Operative Output Current                      | I <sub>BK3_MAX</sub>        | Load regulation error = -5%, Buck3IntegDis = 0                                                                                          | 600  |       |     | mA    |
| Valley Current Limit During Short-Circuit to GND      | I <sub>SHRT_BK3</sub>       | V <sub>BK3OUT</sub> = 0V                                                                                                                |      | 1.8   |     | A     |
| Valley Current Limit During Startup                   | I <sub>VLY_BK3_STUP</sub>   | During startup before PGOOD = 1 condition is achieved                                                                                   |      | 250   |     | mA    |
| BK3LX Leakage Current                                 | I <sub>LK_BK3LX</sub>       | Buck3 disabled                                                                                                                          |      | 1     |     | μA    |
| Active Discharge Current                              | I <sub>ACTD_BK3</sub>       | V <sub>BK3OUT</sub> = 0.7V                                                                                                              | 8    | 16    | 28  | mA    |
| Passive Discharge Resistance                          | R <sub>PSV_BK3</sub>        |                                                                                                                                         | 6    | 10    | 14  | kΩ    |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                         | SYMBOL                              | CONDITIONS                                                                                                                   | MIN | TYP | MAX | UNITS |
|-----------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|
| Full Turn-On Time                 | $t_{ON\_BK3}$                       | Time from enable to PGOOD and full current capability. No load. 1 Murata GRM155R60J226ME11 22 $\mu\text{F}$ output capacitor |     | 10  |     | ms    |
| Efficiency                        | EFFIC_BK3                           | Buck3VSet = 3.3V, IBK3OUT = 250mA, Inductor: Murata DFE201610E-2R2M                                                          |     | 95  |     | %     |
| BK3LX Rising/Falling Slew Rate    | SLW_BK3                             | Buck3LowEMI = 0                                                                                                              |     | 3   |     | V/ns  |
|                                   | SLW_BK3_L                           | Buck3LowEMI = 1                                                                                                              |     | 0.6 |     |       |
| Thermal Shutdown Threshold        | TSHDN_BK3                           | ILOAD > 20mA                                                                                                                 |     | 140 |     | °C    |
| Supply vs. BOUT Dropout threshold | $V_{IN\_BOUT\_DR}$<br>$POUT\_TH\_F$ | Supply falling, Buck3VSet = 3.3V                                                                                             | 250 | 330 | 400 | mV    |

**LDO1 (TYPICAL VALUES ARE AT  $V_{L1IN}=1.2\text{V}$ ,  $V_{L1OUT}=1\text{V}$ )**

|                                                       |                      |                                                                                     |          |       |               |                  |
|-------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------|----------|-------|---------------|------------------|
| Input Voltage                                         | $V_{IN\_LDO1}$       | LDO mode                                                                            | 1        | 2     | V             |                  |
|                                                       |                      | Switch mode                                                                         | 0.7      | 2     |               |                  |
| Quiescent-Supply Current                              | $I_{Q\_LDO1}$        | LDO enabled, $I_{L1OUT} = 0$                                                        | 1.0      | 2.2   | $\mu\text{A}$ |                  |
|                                                       |                      | LDO enabled, $I_{L1OUT} = 0$ , switch mode                                          | 0.35     | 0.90  |               |                  |
|                                                       |                      | LDO enabled, $I_{L1OUT} = 0$ , $LDO1\_MPC0CNT = 1$ , MPC0 high                      | 0.7      | 1.5   |               |                  |
| Quiescent-Supply Current in Dropout                   | $I_{Q\_LDO1\_D}$     | $I_{L1OUT} = 0$ , $V_{L1IN} = 1.2\text{V}$ , LDO1VSet = 0x1D (1.225V)               | 2.4      | 4.2   | $\mu\text{A}$ |                  |
| Output Leakage                                        | $I_{LK\_L1OUT}$      | $V_{L1OUT} = \text{GND}$ , LDO1 disabled                                            | 0.015    | 2.5   | $\mu\text{A}$ |                  |
| Shutdown Supply Current with Active Discharge Enabled | $I_{SD\_LDO1}$       | LDO1 disabled, LDO1ActDsc = 1                                                       | 50       |       | $\mu\text{A}$ |                  |
| Maximum Output Current                                | $I_{L1OUT\_MAX}$     |                                                                                     | 50       |       | mA            |                  |
| Output-Voltage Range                                  | $V_{L1OUT}$          | 25mV step resolution                                                                | 0.50     | 1.95  | V             |                  |
| Output-Voltage Accuracy                               | ACC_LDO1             | $(V_{L1OUT} + 0.2\text{V}) \leq V_{L1IN} \leq 2\text{V}$ , $I_{L1OUT} = 1\text{mA}$ | -3.25    | +3.25 | %             |                  |
| Dropout Voltage                                       | $V_{DROP\_LDO1}$     | $V_{L1IN} = 1\text{V}$ , $I_{L1OUT} = 50\text{mA}$ , LDO1VSet = 1V                  |          | 70    | mV            |                  |
| Line-Regulation Error                                 | $V_{LINEREG\_LD01}$  | $V_{L1IN} = (V_{L1OUT} + 0.2\text{V})$ to 2V                                        | -0.4     | +0.4  | %/V           |                  |
| Load-Regulation Error                                 | $V_{LOADREG\_LD01}$  | $I_{L1OUT} = 100\mu\text{A}$ to 50mA                                                | 0.003    | 0.013 | %/mA          |                  |
| Line Transient                                        | $V_{LINETRAN\_LD01}$ | $V_{L1IN} = +1\text{V}$ to $+2\text{V}$ , 200ns rise time                           | $\pm 45$ |       | mV            |                  |
|                                                       |                      | $V_{L1IN} = +1\text{V}$ to $+2\text{V}$ , 1 $\mu\text{s}$ rise time                 | $\pm 25$ |       |               |                  |
| Load Transient                                        | $V_{LOADTRAN\_LD01}$ | $I_{L1OUT} = 0$ to 10mA, 200ns rise time                                            | 80       |       | mV            |                  |
|                                                       |                      | $I_{L1OUT} = 0\text{mA}$ to 50mA, 200ns rise time                                   | 130      |       |               |                  |
| Passive-Discharge Resistance                          | $R_{PD\_LDO1}$       |                                                                                     | 5        | 10    | 15            | $\text{k}\Omega$ |
| Active-Discharge Current                              | $I_{AD\_LDO1}$       |                                                                                     | 7        | 25    | 55            | mA               |
|                                                       | $R_{ON\_LDO1}$       | $V_{L1IN} = 1\text{V}$ , $I_{L1OUT} = 50\text{mA}$                                  |          | 1.1   |               | $\Omega$         |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\text{\textmu F}$ ,  $C_{VDIG\_EFF} = 1\text{\textmu F}$ ,  $C_{CAP\_EFF} = 1\text{\textmu F}$ ,  $C_{SYS\_EFF} = 10\text{\textmu F}$ ,  $C_{BAT\_EFF} = 1\text{\textmu F}$ ,  $C_{BK\_OUT\_EFF} = 10\text{\textmu F}$ ,  $C_{L\_IN} = 1\text{\textmu F}$ ,  $C_{L\_OUT\_EFF} = 1\text{\textmu F}$ ,  $C_{BBOUT\_EFF} = 8.8\text{\textmu F}$ ,  $C_{BSTOUT\_EFF} = 10\text{\textmu F}$ ,  $L_{BK\_OUT} = 2.2\text{\textmu H}$ ,  $L_{BBOUT} = 2.2\text{\textmu H}$ ,  $L_{BSTOUT} = 4.7\text{\textmu H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                               | SYMBOL              | CONDITIONS                                                                                                                    | MIN  | TYP   | MAX  | UNITS                      |
|-----------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------|------|-------|------|----------------------------|
| Switch Mode Resistance                  | $R_{ON\_LDO1\_0p7}$ | $V_{L1IN} = 0.7\text{V}$ , $I_{L1OUT} = 1\text{mA}$                                                                           |      |       | 2.7  |                            |
| Turn-On Time                            | $t_{ON\_LDO1}$      | $I_{L1OUT} = 0$ , time from 10%–90% of final value                                                                            |      | 0.38  |      | ms                         |
|                                         | $t_{ON\_LDO1\_SW}$  | $I_{L1OUT} = 0$ , time from 10%–90% of final value, switch mode                                                               |      | 0.065 |      |                            |
|                                         | $t_{ON\_LDO1}$      | $I_{L1OUT} = 0\text{mA}$ , $LDO1\_MPC0CNT = 1$ , time from MPC0 rising to 90% of L1OUT final value, $C_{L1OUT} = 10\text{nF}$ |      | 580   |      | ns                         |
| Short-Circuit Current Limit             | $I_{SHRT\_LDO1}$    | $V_{L1IN} = 1.2\text{V}$ , $V_{L1OUT} = \text{GND}$                                                                           | 400  | 1000  |      | mA                         |
|                                         |                     | $V_{L1IN} = 1.2\text{V}$ , $V_{L1OUT} = \text{GND}$ , switch mode                                                             | 305  | 1000  |      |                            |
| Thermal-Shutdown Temperature            | $T_{SHDN\_LDO1}$    |                                                                                                                               |      | 150   |      | °C                         |
| Thermal-Shutdown Temperature Hysteresis | $T_{SHDN\_LDO1\_H}$ |                                                                                                                               |      | 10    |      | °C                         |
| L1IN UVLO                               | $V_{UVLO\_LDO1}$    | $V_{L1IN}$ falling                                                                                                            | 0.53 | 0.77  |      | V                          |
|                                         |                     | $V_{L1IN}$ rising                                                                                                             |      | 0.78  | 1.00 |                            |
| Output Noise                            | $V_{NOISE\_LDO1}$   | 10Hz to 100kHz, $V_{L1IN} = 2\text{V}$ , $V_{L1OUT} = 1.8\text{V}$                                                            |      | 120   |      | $\mu\text{V}_{\text{RMS}}$ |
|                                         |                     | 10Hz to 100kHz, $V_{L1IN} = 2\text{V}$ , $V_{L1OUT} = 1.0\text{V}$                                                            |      | 95    |      |                            |
|                                         |                     | 10Hz to 100kHz, $V_{L1IN} = 2\text{V}$ , $V_{L1OUT} = 0.5\text{V}$                                                            |      | 70    |      |                            |

#### LDO2 (ALWAYS ON LDO, TYPICAL VALUES ARE AT $V_{L2IN} = +3.7\text{V}$ , $V_{L2OUT} = +3\text{V}$ )

|                                                       |                             |                                                                                                            |      |      |               |                  |
|-------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|------|------|---------------|------------------|
| Input Voltage                                         | $V_{IN\_LDO2}$              | LDO mode                                                                                                   | 1.71 | 5.5  | V             |                  |
|                                                       |                             | Switch mode                                                                                                | 1.2  | 5.5  |               |                  |
| Quiescent-Supply Current                              | $I_Q\_LDO2$                 | LDO enabled, $I_{L2OUT} = 0\text{\textmu A}$                                                               | 1.0  | 1.9  | $\mu\text{A}$ |                  |
|                                                       | $I_{Q\_LDO2\_SW}$           | LDO enabled, $I_{L2OUT} = 0\text{\textmu A}$ , switch mode                                                 | 0.35 | 0.9  |               |                  |
| Quiescent-Supply Current in Dropout                   | $I_{Q\_LDO2\_D}$            | $I_{L2OUT} = 0\text{\textmu A}$ , $V_{L2IN} = 2.9\text{V}$ , LDO2VSet = 0x15 (+3V)                         | 1.9  | 3.7  | $\mu\text{A}$ |                  |
| Shutdown-Supply Current with Active Discharge Enabled | $I_{SD\_LDO2}$              | LDO2 disabled, LDO2ActDSC = 1                                                                              | 55   |      | $\mu\text{A}$ |                  |
| Maximum Output Current                                | $I_{L2OUT\_MAX}$            | $V_{L2IN} > 1.8\text{V}$                                                                                   | 100  |      | mA            |                  |
|                                                       |                             |                                                                                                            | 50   |      |               |                  |
| Maximum Output Current when Supplied from $V_{CCINT}$ | $I_{L2OUT\_MAX\_V_{CCINT}}$ | $V_{BAT} > 3.2\text{V}$ , $V_{L2OUT} = 1.8\text{V}$ , LDO2Supply = internal (see <a href="#">Table 8</a> ) | 100  |      | $\mu\text{A}$ |                  |
| Internal-Supply Switch                                | $R_{ON\_L2IN}$              | LDO2Supply = internal (see <a href="#">Table 8</a> ), switch between $V_{CCINT}$ and $L2IN$                | 4.5  | 7.3  | 11            | $\text{k}\Omega$ |
| Output-Voltage Range                                  | $V_{L2OUT}$                 | 100mV step resolution                                                                                      | 0.9  | 4.0  |               | V                |
| Output-Voltage Accuracy                               | ACCLDO2                     | $V_{L2IN} = (V_{L2OUT} + 0.5\text{V})$ or higher, $I_{L2OUT} = 1\text{mA}$                                 | -2.7 | +2.7 |               | %                |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\text{\textmu F}$ ,  $C_{VDIG\_EFF} = 1\text{\textmu F}$ ,  $C_{CAP\_EFF} = 1\text{\textmu F}$ ,  $C_{SYS\_EFF} = 10\text{\textmu F}$ ,  $C_{BAT\_EFF} = 1\text{\textmu F}$ ,  $C_{BK\_OUT\_EFF} = 10\text{\textmu F}$ ,  $C_{L\_IN} = 1\text{\textmu F}$ ,  $C_{L\_OUT\_EFF} = 1\text{\textmu F}$ ,  $C_{BBOUT\_EFF} = 8.8\text{\textmu F}$ ,  $C_{BSTOUT\_EFF} = 10\text{\textmu F}$ ,  $L_{BK\_OUT} = 2.2\text{\textmu H}$ ,  $L_{BBOUT} = 2.2\text{\textmu H}$ ,  $L_{BSTOUT} = 4.7\text{\textmu H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                               | SYMBOL                 | CONDITIONS                                                                                  |                                        | MIN   | TYP   | MAX                        | UNITS |  |
|-----------------------------------------|------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|-------|-------|----------------------------|-------|--|
| Dropout Voltage                         | $V_{DROP\_LDO2}$       | $V_{L2IN} = 3.0\text{V}$ , LDO2VSet = 3.1V, $I_{L2OUT} = 100\text{mA}$                      |                                        | 100   |       | mV                         |       |  |
|                                         |                        | $V_{L2IN} = 1.85\text{V}$ , LDO2VSet = 1.9V, $I_{L2OUT} = 100\text{mA}$                     |                                        | 130   |       |                            |       |  |
| Line-Regulation Error                   | $V_{LINEREG\_LD\_O2}$  | $V_{L2IN} = (V_{L2OUT} + 0.5\text{V})$ to 5.5V, $V_{L2IN} \geq 1.8\text{V}$                 |                                        | -0.4  | +0.4  |                            | %/V   |  |
| Load-Regulation Error                   | $V_{LOADREG\_LD\_O2}$  | $+1.8\text{V} \leq V_{L2IN} \leq +5.5\text{V}$ , $I_{L2OUT} = 100\text{\textmu A}$ to 100mA |                                        | 0.002 | 0.007 |                            | %/mA  |  |
| Line Transient                          | $V_{LINETRAN\_LD\_O2}$ | $V_{L2IN} = 4\text{V}$ to 5V, 200ns rise time                                               |                                        | ±35   |       | mV                         |       |  |
|                                         |                        | $V_{L2IN} = 4\text{V}$ to 5V, 1μs rise time                                                 |                                        | ±25   |       |                            |       |  |
| Load Transient                          | $V_{LOADTRAN\_LD\_O2}$ | 200ns rise time                                                                             | $I_{L2OUT} = 0\text{mA}$ to 10mA       | 100   |       | mV                         |       |  |
|                                         |                        |                                                                                             | $I_{L2OUT} = 0\text{mA}$ to 100mA      | 200   |       |                            |       |  |
| Passive Discharge Resistance            | $R_{PD\_LDO2}$         |                                                                                             |                                        | 5     | 10    | 15                         | kΩ    |  |
| Active Discharge Current                | $I_{AD\_LDO2}$         | $V_{L2IN} = 3.7\text{V}$                                                                    |                                        | 8     | 22    | 40                         | mA    |  |
| Switch-Mode Resistance                  | $R_{ON\_LDO2}$         | $I_{L2OUT} = 100\text{mA}$ , switch mode                                                    | $V_{L2IN} = 2.7\text{V}$               | 0.4   | 0.7   | Ω                          |       |  |
|                                         | $R_{ON\_LDO2\_1p8}$    | $I_{L2OUT} = 100\text{mA}$ , switch mode                                                    | $V_{L2IN} = 1.8\text{V}$               | 0.65  | 1     |                            |       |  |
|                                         | $R_{ON\_LDO2\_sw}$     | $I_{L2OUT} = 5\text{mA}$ , switch mode                                                      | $V_{L2IN} = 1.2\text{V}$               | 1.5   | 2.3   |                            |       |  |
| Turn-On Time                            | $t_{ON\_LDO2}$         | $I_{L2OUT} = 0\text{mA}$ , time from 10% to 90% of final value                              | Switch mode                            | 1.5   |       | ms                         |       |  |
|                                         |                        |                                                                                             |                                        | 0.26  |       |                            |       |  |
| Short-Circuit Current Limit             | $I_{SHRT\_LDO2}$       | $V_{L2OUT} = \text{GND}$                                                                    | $V_{L2IN} = 5.5\text{V}$               | 225   | 460   | 650                        | mA    |  |
|                                         | $I_{SHRT\_LDO2\_SW}$   | $V_{L2OUT} = \text{GND}$                                                                    | $V_{L2IN} = 2.7\text{V}$ , switch mode | 210   | 350   | 540                        |       |  |
| Thermal-Shutdown Temperature            | $T_{SHDN\_LDO2}$       |                                                                                             |                                        | 150   |       | °C                         |       |  |
| Thermal-Shutdown Temperature Hysteresis | $T_{SHDN\_LDO2\_H}$    |                                                                                             |                                        | 20    |       | °C                         |       |  |
| L2IN UVLO                               | $V_{UVLO\_LDO2}$       | $V_{L2IN}$ falling                                                                          |                                        | 1.05  | 1.35  | V                          |       |  |
|                                         |                        | $V_{L2IN}$ rising                                                                           |                                        | 1.36  | 1.69  |                            |       |  |
| Output Noise                            | $V_{NOISE\_LDO2}$      | 10Hz to 100kHz, $V_{L2IN} = 5\text{V}$ , $V_{L2OUT} = 3.3\text{V}$                          |                                        | 150   |       | $\mu\text{V}_{\text{RMS}}$ |       |  |
|                                         |                        | 10Hz to 100kHz, $V_{L2IN} = 5\text{V}$ , $V_{L2OUT} = 2.5\text{V}$                          |                                        | 125   |       |                            |       |  |
|                                         |                        | 10Hz to 100kHz, $V_{L2IN} = 5\text{V}$ , $V_{L2OUT} = 1.2\text{V}$                          |                                        | 90    |       |                            |       |  |
|                                         |                        | 10Hz to 100kHz, $V_{L2IN} = 5\text{V}$ , $V_{L2OUT} = 0.8\text{V}$                          |                                        | 80    |       |                            |       |  |
| Output Leakage                          | $I_{LK\_L2OUT}$        | $V_{L2OUT} = \text{GND}$ , LDO2 disabled                                                    |                                        | -1    | +1    |                            | μA    |  |
| <b>BUCK-BOOST</b>                       |                        |                                                                                             |                                        |       |       |                            |       |  |
|                                         | $V_{BBIN}$             | Input voltage = $V_{SYS}$                                                                   |                                        | 2.7   | 5.5   |                            | V     |  |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                             | SYMBOL                   | CONDITIONS                                                                                                                                        | MIN  | TYP  | MAX  | UNITS            |
|-------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------------------|
| Input Voltage                                         |                          |                                                                                                                                                   |      |      |      |                  |
| Output Voltage Set Range                              | $V_{BBOUT}$              | 50mV step resolution, do not exceed the valid voltage range                                                                                       | 2.6  | 5.5  |      | V                |
| Quiescent Supply Current                              | $I_{Q\_BB}$              | $I_{BBOUT} = 0$ , $V_{BBOUT} = 5\text{V}$                                                                                                         | 2    | 4    |      | $\mu\text{A}$    |
| Shutdown Supply Current with Active Discharge Enabled | $I_{SD\_BB}$             | Buck-boost disabled, $BBstActDsc = 1$                                                                                                             | 60   |      |      | $\mu\text{A}$    |
| Maximum Output Operative Power                        | $P_{MAX\_BBOUT}$         | $BBstIAdptDis = 0$ , $V_{BBIN} \geq 3.2\text{V}$ , $V_{BBOUT} \geq 3.2\text{V}$ , 7.5% load regulation (Note 3)                                   | 1.5  |      |      | W                |
| Load-Regulation Error                                 | $LOAD\_REG\_E_{RR}$      | $BBstIAdptDis = 0$ , $BBstVSet > 3.3\text{V}$ , $P_{OUT} = 1.5\text{W}$                                                                           | -3.5 |      |      | %                |
| Average Output-Voltage Accuracy                       | $ACC\_BBOUT$             | $I_{BBOUT} = 1\text{mA}$ , $C_{BBOUT\_EFF} \geq 5\mu\text{F}$                                                                                     | -3   | 3    |      | %                |
| Maximum Output Current During Startup                 | $I_{LOAD\_MAX\_S_{TUP}}$ | $V_{BBIN} > 3\text{V}$ , $BBstIAdptDis = 0$                                                                                                       | 85   |      |      | $\text{mA}$      |
| Startup Time                                          | $t_{STUP}$               | $I_{LOAD} < I_{LOAD\_MAX\_S_{TUP}}$ , time from $V_{BBOUT} = 0\text{V}$ to final value                                                            | 13   |      |      | ms               |
| Input-Supply Current During Startup                   | $I_{BBIN\_S_{TUP}}$      | $V_{BBIN} = 3.6\text{V}$ , $V_{BBOUT} = 5\text{V}$ , $C_{BBOUT\_EFF} = 10\mu\text{F}$ , $I_{BBOUT} = 0$                                           | 10   |      |      | $\text{mA}$      |
| Output UVLO Threshold                                 | $V_{BBOUT\_UVLO}$        | Falling edge (50mV hysteresis)                                                                                                                    | 1.85 | 2.46 |      | V                |
| HVLX Leakage Current                                  | $I_{LK\_BBHVLX}$         |                                                                                                                                                   | -1   | +1   |      | $\mu\text{A}$    |
| LVLX Leakage Current                                  | $I_{LK\_BBLVLX}$         |                                                                                                                                                   | -1   | +1   |      | $\mu\text{A}$    |
| Passive Discharge Resistance                          | $R_{PSV\_BB}$            |                                                                                                                                                   | 5    | 10   | 17   | $\text{k}\Omega$ |
| Active Discharge Current                              | $I_{ACTD\_BB}$           | $V_{BBOUT} = 2.5\text{V}$                                                                                                                         | 5    | 20   | 50   | $\text{mA}$      |
| BBOUT Pulldown Current                                | $I_{PD\_BB\_E}$          | BBst Enabled; $BBstVSet = 4\text{V}$ ; $V_{BBOUT} = 4.1\text{V}$                                                                                  | 300  |      |      | nA               |
| Thermal Shutdown Temp                                 | $T_{SHDN\_BB}$           | $I_{LOAD} > 20\text{mA}$                                                                                                                          | 150  |      |      | $^\circ\text{C}$ |
| <b>HV BOOST</b>                                       |                          |                                                                                                                                                   |      |      |      |                  |
| Input-Voltage Range                                   | $V_{BSTIN}$              | Input voltage = $V_{SYS}$                                                                                                                         | 2.7  | 5.5  |      | V                |
| Output-Voltage Range                                  | $V_{BSTOUT}$             | 250mV step resolution                                                                                                                             | 5    | 20   |      | V                |
| Output-Voltage UVLO                                   | $V_{BSTOUT\_UVLO}$       | $V_{BSTOUT} - V_{SYS}$ falling                                                                                                                    | -2.7 | -2.2 | -1.6 | V                |
| Quiescent-Supply Current                              | $I_{Q\_BST}$             | $I_{BSTOUT} = 0$ , $V_{SYS} = 3.7\text{V}$ , $BstVSet = 5\text{V}$ , $T_A = 25^\circ\text{C}$                                                     | 2.4  | 9    |      | $\mu\text{A}$    |
|                                                       |                          | $I_{BSTOUT} = 0$ , $V_{SYS} = 3.7\text{V}$ , $BstVSet = 5\text{V}$                                                                                |      |      | 106  |                  |
| Output-Average Voltage Accuracy                       | $ACC\_BST$               | $I_{BSTOUT} = 1\text{mA}$ , $V_{HVOUT} < 13\text{V}$                                                                                              | -4   | +2   |      | %                |
| Peak-to-Peak Voltage Ripple                           | $V_{RPP\_BST}$           | $BstISet = 350\text{mA}$ , $BstVSet = 12\text{V}$ , $C_{BSTOUT\_EFF} = 10\mu\text{F}$ , $L_{BSTOUT} = 4.7\mu\text{H}$ , $I_{BSTOUT} = 1\text{mA}$ | 5    |      |      | $\text{mV}$      |
| Peak Current-Set Range                                | $I_{PSET\_BST}$          | 25mA step resolution                                                                                                                              | 100  | 475  |      | $\text{mA}$      |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                                       | SYMBOL                  | CONDITIONS                                                                                                             | MIN | TYP  | MAX  | UNITS            |
|-----------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------|-----|------|------|------------------|
| DC Load Regulation Error                                        | $V_{LOAD\_REG\_B\_ST}$  | $BstVSet = 12\text{V}$ , $I_{BSTOUT} = 25\text{mA}$ , $BstISet = 300\text{mA}$ , $BstIAdptEn = 1$                      |     | 0.3  |      | %                |
| DC Line Regulation Error                                        | $V_{LINE\_REG\_B\_ST}$  | $BstVSet = 6.5\text{V}$ , $V_{SYS}$ from 2.7V to 5.5V                                                                  |     | 4    |      | mV               |
| BSTOUT Pulldown Resistance                                      | $R_{BSTOUT}$            | -3% Load Regulation Error                                                                                              |     | 10   |      | $\text{M}\Omega$ |
| True Shutdown PMOS On-Resistance                                | $R_{ON\_TS}$            | $I_{BSTOUT} = 100\text{mA}$                                                                                            |     | 0.15 | 0.22 | $\Omega$         |
| Boost Freewheeling NMOS On-Resistance                           | $R_{ONBST\_FRW\_HL\_N}$ | $I_{BSTOUT} = 100\text{mA}$                                                                                            |     | 0.45 | 0.7  | $\Omega$         |
| Boost NMOS On-Resistance                                        | $R_{ONBST\_N}$          | $BstFETScale = 0$ , $I_{BSTOUT} = 100\text{mA}$                                                                        |     | 0.55 | 0.9  | $\Omega$         |
|                                                                 | $R_{ONBST\_NFS}$        | $BstFETScale = 1$ , $I_{BSTOUT} = 100\text{mA}$                                                                        |     | 1.1  | 1.8  |                  |
| Schottky Diode Forward Voltage                                  | $V_{BE\_SCHOTTK\_Y}$    | $I_{BSTOUT} = 100\text{mA}$ , $V_{BSTMVLX} - V_{BSTOUT}$                                                               | 0.2 | 0.4  | 0.6  | V                |
| Freewheeling On-Resistance                                      | $R_{ONBST\_FRW\_HL}$    | $I_{BSTOUT} = 100\text{mA}$                                                                                            |     | 50   | 80   | $\Omega$         |
| Minimum $t_{ON\_BST\_MIN}$                                      | $t_{ON\_BST\_MIN}$      |                                                                                                                        |     | 65   |      | ns               |
| Max Switching Frequency                                         | $FREQ\_BST\_M\_X$       | $V_{BSTMVLX}$ regulation error = -150mV, $BstISet = 100\text{mA}$ , $BstIAdptEn = 0$                                   | 1.7 | 3.5  | 5.5  | MHz              |
| Max Peak Current Setting Extra Budget with $BstIAdptEn = 1$     | $\Delta I_{P\_MAX}$     | $BstIAdptEn = 1$ , $V_{BSTMVLX}$ regulation error = -200mV                                                             | 150 | 250  | 450  | mA               |
| Short-Circuit Current Limit Difference vs. Peak Current Setting | $\Delta I_{BST\_SHRT}$  | $BstIAdptEn = 0$                                                                                                       | 130 | 200  | 250  | mA               |
| BSTMVLX Leakage                                                 | $I_{LK\_BSTMVLX}$       | Boost disabled                                                                                                         |     | 1    |      | $\mu\text{A}$    |
| BSTLVLX Leakage                                                 | $I_{LK\_BSTMVLX}$       | Boost disabled                                                                                                         |     | 1    |      | $\mu\text{A}$    |
| Passive Discharge Resistance                                    | $R_{BSTMPSV}$           |                                                                                                                        |     | 10   |      | $\text{k}\Omega$ |
| Linear BSTOUT Precharge Current                                 | $I_{L\_BSTMVLX\_PRCH}$  | $V_{BSTMVLX}$ from 0V to $V_{SYS} - 0.4\text{V}$                                                                       | 5   | 12.5 | 20   | mA               |
| Switching Precharge Inductor Current                            | $I_{SW\_BSTMVLX\_PRCH}$ | $V_{BSTMVLX}$ from $V_{SYS} - 0.4\text{V}$ to final regulation voltage                                                 |     | 13   |      | mA               |
| Full Turn-On Time                                               | $t_{ON\_BST\_MIN}$      | Time from enable to full current capability                                                                            |     | 100  |      | ms               |
| Efficiency                                                      | EFFIC_12                | $BstVSet = 12\text{V}$ , $I_{BSTMVLX} = 20\text{mA}$ , $BstISet = 300\text{mA}$ , Inductor = Murata DFE201610E-4R7M    |     | 85   |      | %                |
|                                                                 | EFFIC_15                | $BstVSet = 15\text{V}$ , $I_{BSTMVLX} = 2\text{mA}$ , $BstISet = 300\text{mA}$ , Inductor = Murata DFE201610E-4R7M     |     | 83   |      |                  |
|                                                                 | EFFIC_5                 | $BstVSet = 5\text{V}$ , $I_{BSTMVLX} = 10\mu\text{A}$ , $BstISet = 150\text{mA}$ , Inductor = Murata DFE201610E-4R7M   |     | 76   |      |                  |
|                                                                 | EFFIC_6P5               | $BstVSet = 6.5\text{V}$ , $I_{BSTMVLX} = 10\mu\text{A}$ , $BstISet = 150\text{mA}$ , Inductor = Murata DFE201610E-4R7M |     | 73   |      |                  |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                                                                   | SYMBOL             | CONDITIONS                                                                       | MIN  | TYP  | MAX | UNITS |
|---------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------|------|------|-----|-------|
| BHVLX Rising/Falling Slew Rate                                                              | SLW_BSTHVL_X       |                                                                                  |      | 2    |     | V/ns  |
| Thermal Shutdown Threshold                                                                  | TSHDN_BST          | $I_{LOAD} > 20\text{mA}$                                                         |      | 140  |     | °C    |
| <b>CHARGE PUMP</b>                                                                          |                    |                                                                                  |      |      |     |       |
| Input Voltage                                                                               | $V_{CPIN}$         | Input voltage = $V_{SYS}$                                                        | 2.7  | 5.5  |     | V     |
| Quiescent-Supply Current                                                                    | $I_{Q\_CP\_5V}$    | $I_{CPOUT} = 0\mu\text{A}$ , CPVSet = 5V                                         | 2    | 3.5  |     | μA    |
|                                                                                             | $I_{Q\_CP\_6.6V}$  | $I_{CPOUT} = 0\mu\text{A}$ , CPVSet = 6.6V                                       | 2.2  | 4.3  |     |       |
| CPOUT Output Voltage                                                                        | $V_{CPOUT}$        | CPVSet = 0, $I_{CPOUT} = 10\mu\text{A}$ , $V_{SYS} > 3.3\text{V}$                |      | 6.6  |     | V     |
|                                                                                             |                    | CPVSet = 1, $I_{CPOUT} = 10\mu\text{A}$                                          |      | 5    |     |       |
| Output Accuracy                                                                             | ACC_CP             | $I_{CPOUT} < 120\mu\text{A}$ , $V_{SYS} > 3.3\text{V}$                           | -3   |      | +3  | %     |
| Maximum Operative Output Current                                                            | $I_{CPOUT\_MAX}$   | $V_{SYS} > 3.3\text{V}$ , -5% load regulation error                              | 250  |      |     | μA    |
| Efficiency                                                                                  | EFF_CP             | CPVSet = 6.6V, $I_{OUT} = 10\mu\text{A}$ , $V_{SYS} = 3.7\text{V}$               |      | 79   |     | %     |
| Max Charge-Pump Frequency                                                                   | FREQ_CP            |                                                                                  | 89   | 100  | 114 | kHz   |
| Passive-Discharge Resistance                                                                | $R_{PSV\_CP}$      |                                                                                  |      | 10   |     | kΩ    |
| <b>LOAD SWITCHES 1 AND 2 (TYPICAL VALUES ARE AT <math>V_{LSW\_IN} = 1.2\text{V}</math>)</b> |                    |                                                                                  |      |      |     |       |
| Input Voltage                                                                               | $V_{SW\_IN}$       |                                                                                  | 0.65 | 5.50 |     | V     |
| Quiescent-Supply Current                                                                    | $I_{Q\_SW\_}$      | Load switch on, voltage protection enabled                                       | 0.80 | 1.20 |     | μA    |
|                                                                                             |                    | Load switch on, voltage protection disabled                                      | 0.26 | 0.45 |     |       |
| On-Resistance                                                                               | $R_{SW\_}$         | $V_{SYS} = 3\text{V}$ , $V_{SW\_IN} = 1.2\text{V}$ , $I_{SW\_OUT} = 50\text{mA}$ | 0.5  | 0.85 |     | Ω     |
| Startup Current                                                                             | $I_{SW\_START}$    | $V_{LSW\_IN} = 1.2\text{V}$ , $V_{LSW\_OUT} = 0\text{V}$ initially               | 50   | 108  |     | mA    |
| Voltage Protection Threshold                                                                | $V_{SW\_PROT}$     |                                                                                  | 130  | 260  |     | mV    |
|                                                                                             |                    |                                                                                  | 10   | 120  |     |       |
| Turn-On Time                                                                                | $t_{ON\_SW\_}$     | $V_{LSW\_IN} = 1.2\text{V}$ , 1μF output capacitance, 10% to 90% out             |      | 15   |     | μs    |
| Startup Time-Out Time                                                                       | $t_{STUP\_LSW}$    |                                                                                  |      | 5    |     | ms    |
| Startup Retry Time                                                                          | $t_{RETRY\_LSW\_}$ |                                                                                  |      | 5    |     | ms    |
| Passive Discharge Resistance                                                                | $R_{PSV\_LSW\_}$   |                                                                                  |      | 10   |     | kΩ    |
| Active Discharge Current                                                                    | $I_{ACTD\_LSW\_}$  |                                                                                  |      | 20   |     | mA    |
| Output Leakage                                                                              | $I_{LK\_LSW\_}$    |                                                                                  |      | 1    |     | μA    |
| <b>LED CURRENT SINKS</b>                                                                    |                    |                                                                                  |      |      |     |       |
| Maximum Input Voltage                                                                       | $V_{IN\_LED\_MAX}$ |                                                                                  |      | 20   |     | V     |
| Quiescent Current                                                                           | $I_{Q\_LED}$       | All LEDs on, $V_{SYS} = 3.7\text{V}$                                             | 245  | 370  |     | μA    |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\mu\text{F}$ ,  $C_{VDIG\_EFF} = 1\mu\text{F}$ ,  $C_{CAP\_EFF} = 1\mu\text{F}$ ,  $C_{SYS\_EFF} = 10\mu\text{F}$ ,  $C_{BAT\_EFF} = 1\mu\text{F}$ ,  $C_{BK\_OUT\_EFF} = 10\mu\text{F}$ ,  $C_{L\_IN} = 1\mu\text{F}$ ,  $C_{L\_OUT\_EFF} = 1\mu\text{F}$ ,  $C_{BBOUT\_EFF} = 8.8\mu\text{F}$ ,  $C_{BSTOUT\_EFF} = 10\mu\text{F}$ ,  $L_{BK\_OUT} = 2.2\mu\text{H}$ ,  $L_{BBOUT} = 2.2\mu\text{H}$ ,  $L_{BSTOUT} = 4.7\mu\text{H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                                                       | SYMBOL                   | CONDITIONS                                                                                                            | MIN  | TYP                    | MAX | UNITS         |
|---------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|------|------------------------|-----|---------------|
| Current Sink Setting Range                                                      | $I_{LED\_RNG}$           | $I_{LEDStep} = 0.6\text{mA}$ steps                                                                                    | 0.6  | 15                     |     | mA            |
|                                                                                 |                          | $I_{LEDStep} = 1\text{mA}$ steps                                                                                      | 1    | 25                     |     |               |
|                                                                                 |                          | $I_{LEDStep} = 1.2\text{mA}$ steps                                                                                    | 1.2  | 30                     |     |               |
| LED Current Accuracy                                                            | $ACC_{\_LED}$            | $I_{LED\_} = 13\text{mA}$ , $T_A = +25^\circ\text{C}$ , $V_{LED\_} = +0.7\text{V}$ to $+20\text{V}$                   | -2   | +2                     |     | %             |
|                                                                                 |                          | $I_{LED\_} = 13\text{mA}$ , $V_{LED\_} = +0.7\text{V}$ to $+20\text{V}$                                               | -5   | +5                     |     |               |
|                                                                                 |                          | $I_{LED\_} = 0.6\text{mA}$ to $30\text{mA}$ , $T_A = +25^\circ\text{C}$ , $V_{LED\_} = +0.7\text{V}$ to $+20\text{V}$ | -5   | +5                     |     |               |
|                                                                                 |                          | $I_{LED\_} = 0.6\text{mA}$ to $30\text{mA}$ , $V_{LED\_} = +0.7\text{V}$ to $+20\text{V}$                             | -6   | +6                     |     |               |
| LED Dropout Voltage                                                             | $V_{LED\_DROP}$          | $I_{LED\_SET} = 5\text{mA}$ , $I_{LED\_} = 0.9 \times 5\text{mA}$                                                     | 110  | 160                    |     | mV            |
|                                                                                 |                          | $I_{LED\_SET} = 25\text{mA}$ , $I_{LED\_} = 0.9 \times 25\text{mA}$                                                   | 145  | 215                    |     |               |
|                                                                                 |                          | $I_{LED\_SET} = 30\text{mA}$ , $I_{LED\_} = 0.9 \times 30\text{mA}$                                                   | 175  | 270                    |     |               |
| Leakage in Shutdown                                                             | $I_{LK_{\_LED}}$         | $V_{LED\_} = +20\text{V}$                                                                                             |      | 0.1                    |     | $\mu\text{A}$ |
| Open-LED Detection Threshold                                                    | $V_{LED\_DET}$           | LED_enabled, $I_{LEDStep} = 0.6\text{mA}$ steps, falling edge                                                         | 61   | 92                     | 140 | $\text{mV}$   |
| VBSTOUT Loop Max Voltage                                                        | $LED_{\_LOOP\_V}$<br>MAX | $5\text{V} < BstVSet < 15\text{V}$ , $LED_{\_BoostLoop} = 1$ , $V_{LED0} = \text{GND}$                                |      | $V_{BSTOU}$<br>$T + 5$ |     | $\text{V}$    |
| VLED0 Loop Regulation Voltage                                                   | $V_{LED0\_LOOP\_REG}$    | $LED_{\_BoostLoop} = 1$ , $LED0_{\_REFSEL} = 00$                                                                      | 190  | 200                    | 210 | mV            |
|                                                                                 |                          | $LED_{\_BoostLoop} = 1$ , $LED0_{\_REFSEL} = 01$                                                                      | 290  | 300                    | 310 |               |
|                                                                                 |                          | $LED_{\_BoostLoop} = 1$ , $LED0_{\_REFSEL} = 10$                                                                      | 385  | 400                    | 415 |               |
|                                                                                 |                          | $LED_{\_BoostLoop} = 1$ , $LED0_{\_REFSEL} = 11$                                                                      | 485  | 500                    | 515 |               |
| <b>FUEL GAUGE (REFER TO MAX17260 FOR DETAILS)/ POWER SUPPLY</b>                 |                          |                                                                                                                       |      |                        |     |               |
| FGBAT UVLO Threshold                                                            | $V_{FGBAT\_UVLO}$        | $V_{FGBAT}$ rising, $V_{CHGIN}$ present                                                                               | 2.25 | 2.28                   |     | $\text{V}$    |
|                                                                                 |                          | $V_{FGBAT}$ falling, $V_{CHGIN}$ present                                                                              | 2.16 | 2.19                   |     |               |
| Shutdown Supply Current                                                         | $I_{DD0}$                |                                                                                                                       |      | 0.5                    |     | $\mu\text{A}$ |
| Hibernate Supply Current                                                        | $I_{DD1}$                | Average current                                                                                                       |      | 5.5                    |     | $\mu\text{A}$ |
| Active Supply Current                                                           | $I_{DD2}$                | Average current not including thermistor measurement current                                                          |      | 12.5                   |     | $\mu\text{A}$ |
| Startup Voltage                                                                 | $V_{FGBATSU}$            |                                                                                                                       |      | 3.05                   |     | $\text{V}$    |
| <b>FUEL GAUGE (REFER TO MAX17260 FOR DETAILS)/ ANALOG-TO-DIGITAL CONVERSION</b> |                          |                                                                                                                       |      |                        |     |               |
| FGBAT Measurement Error                                                         | $V_{GERR}$               | $T_A = +25^\circ\text{C}$                                                                                             | -7.5 | +7.5                   |     | mV            |
|                                                                                 |                          | $-40^\circ\text{C} \leq T_A \leq +85^\circ\text{C}$                                                                   | -20  | 20                     |     |               |
| FGBAT Measurement Resolution                                                    | $V_{LSB}$                |                                                                                                                       |      | 78.125                 |     | $\mu\text{V}$ |
| FGBAT Measurement Range                                                         | $V_{FS}$                 |                                                                                                                       | 2.3  | 4.9                    |     | $\text{V}$    |
| Current-Measurement Offset Error                                                | $I_{OERR}$               | Long-term average without load current                                                                                |      | $\pm 1.5$              |     | $\mu\text{V}$ |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ C$  to  $+85^\circ C$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ C$ ,  $V_{BAT} = 3.7V$ ,  $V_{CHGIN} = 5.0V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ . Limits are 100% tested at  $T_A = +25^\circ C$ .) (Note 1))

| PARAMETER                                                       | SYMBOL           | CONDITIONS                                                                           | MIN                    | TYP     | MAX  | UNITS        |
|-----------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------|------------------------|---------|------|--------------|
| Current-Measurement Error                                       | $I_{GERR}$       |                                                                                      | -1                     |         | +1   | % of Reading |
| Current-Measurement Resolution                                  | $I_{LSB}$        |                                                                                      | 1.5625                 |         |      | $\mu V$      |
| Current-Measurement Range                                       | $I_{FS}$         |                                                                                      | $\pm 51.2$             |         |      | $mV$         |
| Internal Temperature-Measurement Error                          | $T_{I_{GERR}}$   | $-40^\circ C \leq T_A \leq +85^\circ C$                                              |                        | $\pm 1$ |      | $^\circ C$   |
| Internal Temperature-Measurement Resolution                     | $T_{I_{LSB}}$    |                                                                                      | 0.00391                |         |      | $^\circ C$   |
| <b>FUEL GAUGE (REFER TO MAX17260 FOR DETAILS)/ INPUT/OUTPUT</b> |                  |                                                                                      |                        |         |      |              |
| External Thermal Resistance                                     | $R_{EXT10}$      | Config.R100 = 0                                                                      | 10                     |         |      | $k\Omega$    |
|                                                                 | $R_{EXT100}$     | Config.R100 = 1                                                                      | 100                    |         |      |              |
| Output Drive Low, ALRT, SDA                                     | $V_{OL}$         | $I_{OL} = 4mA$ , $V_{FGBAT} = 2.3V$                                                  |                        | 0.4     |      | $V$          |
| Input Logic High, $\overline{ALRT}$ , SCL, SDA                  | $V_{IH}$         |                                                                                      | 1.5                    |         |      | $V$          |
| Input Logic Low, $\overline{ALRT}$ , SCL, SDA                   | $V_{IL}$         |                                                                                      |                        | 0.5     |      | $V$          |
| Battery-Detach Detection Threshold                              | $V_{DET}$        | Measured as a fraction of $V_{FGBAT}$ on THM rising                                  | 91.0                   | 96.2    | 99.0 | %            |
| Battery-Detach Detection Threshold Hysteresis                   | $V_{DET-HYS}$    | Measured as a fraction of $V_{FGBAT}$ on THM falling                                 |                        | 1.6     |      | %            |
| Battery-Detach Comparator Delay                                 | $t_{OFF}$        | THM step from 70% to 100% of $V_{FGBAT}$ ( $AlrtP = 0$ , $EnAIN = 1$ , $FTHRm = 1$ ) |                        | 100     |      | $\mu s$      |
| <b>FUEL GAUGE (REFER TO MAX17260 FOR DETAILS)/ LEAKAGE</b>      |                  |                                                                                      |                        |         |      |              |
| Leakage Current, CSN, CSPH, $\overline{ALRT}$                   | $I_{LEAK}$       | $V_{ALRT} < 15V$                                                                     | -1                     |         | +1   | $\mu A$      |
| <b>FUEL GAUGE (REFER TO MAX17260 FOR DETAILS)/ TIMING</b>       |                  |                                                                                      |                        |         |      |              |
| Time-Base Accuracy                                              | $t_{ERR}$        | $T_A = +25^\circ C$                                                                  | -1                     |         | +1   | %            |
| THM Precharge Time                                              | $t_{PRE}$        |                                                                                      | 8.48                   |         |      | ms           |
| <b>FUEL GAUGE (REFER TO MAX17260 FOR DETAILS)/ DIGITAL</b>      |                  |                                                                                      |                        |         |      |              |
| SDA, SCL, MPC_-, PFN_-, RST, INT Input-Leakage Current          | $I_{LK\_IO}$     | Input pullup/pulldown resistances disabled, $V_{IO} = 0V$ to 5.5V                    | -1                     |         | +1   | $\mu A$      |
| SDA, SCL, MPC_ Input-Logic High                                 | $V_{IO\_IH}$     |                                                                                      | 1.4                    |         |      | $V$          |
| SDA, SCL, MPC_ Input-Logic Low                                  | $V_{IO\_IL}$     |                                                                                      |                        | 0.4     |      | $V$          |
| PFN_ Input-Logic High                                           | $V_{PFN\_IH\_C}$ | OFF/SEAL mode                                                                        | $0.7 \times V_{CCINT}$ |         |      | $V$          |

( $V_{BAT} = V_{FGBAT} = V_{SYS\_UVLO}$  (falling) to +5.5V,  $V_{CHGIN}$  = unconnected or  $V_{CHGIN\_DET}$  to +28.0V,  $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ , unless otherwise noted. Typical values are at  $T_A = +25^\circ\text{C}$ ,  $V_{BAT} = 3.7\text{V}$ ,  $V_{CHGIN} = 5.0\text{V}$ ,  $C_{CHGIN\_EFF} = 1\text{\textmu F}$ ,  $C_{VDIG\_EFF} = 1\text{\textmu F}$ ,  $C_{CAP\_EFF} = 1\text{\textmu F}$ ,  $C_{SYS\_EFF} = 10\text{\textmu F}$ ,  $C_{BAT\_EFF} = 1\text{\textmu F}$ ,  $C_{BK\_OUT\_EFF} = 10\text{\textmu F}$ ,  $C_{L\_IN} = 1\text{\textmu F}$ ,  $C_{L\_OUT\_EFF} = 1\text{\textmu F}$ ,  $C_{BBOUT\_EFF} = 8.8\text{\textmu F}$ ,  $C_{BSTOUT\_EFF} = 10\text{\textmu F}$ ,  $L_{BK\_OUT} = 2.2\text{\textmu H}$ ,  $L_{BBOUT} = 2.2\text{\textmu H}$ ,  $L_{BSTOUT} = 4.7\text{\textmu H}$ . Limits are 100% tested at  $T_A = +25^\circ\text{C}$ .) (Note 1))

| PARAMETER                                      | SYMBOL                     | CONDITIONS                                                                                  | MIN               | TYP                    | MAX | UNITS         |
|------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|-------------------|------------------------|-----|---------------|
| PFN_Input-Logic Low                            | $V_{PFN\_IL\_C}$           | OFF/SEAL mode                                                                               |                   | $0.3 \times V_{CCINT}$ |     | V             |
| PFN_Input-Logic High                           | $V_{PFN\_IH\_T}$           | ON mode                                                                                     | 1.4               |                        |     | V             |
| PFN_Input-Logic Low                            | $V_{PFN\_IL\_T}$           | ON mode                                                                                     |                   |                        | 0.4 | V             |
| MPC_, PFN_Input-Pullup Resistance              | $R_{IO\_PU}$               | Pullup resistance to $V_{CCINT}$ (Note 2)                                                   |                   | 170                    |     | k $\Omega$    |
| MPC_, PFN_Input-Pulldown Resistance            | $R_{IO\_PD}$               |                                                                                             |                   | 170                    |     | k $\Omega$    |
| MPC_Output Logic-High                          | $V_{IO\_OH}$               | $I_{OH} = 1\text{mA}$ , MPC_ configured as push-pull output, pullup voltage is $V_{BK1OUT}$ | $V_{BK1OU} - 0.4$ |                        |     | V             |
| SDA, MPC_, PFN_, RST, INT Output Logic Low     | $V_{IO\_OL}$               | $I_{OL} = 4\text{mA}$                                                                       |                   |                        | 0.4 | V             |
| MPC6 Harvester Disable Pullup Resistor         | $R_{MPC6\_HARV\_DIS\_RPU}$ | Harvester interaction enabled, pull-up resistor to $V_{CCINT}$ (Note 2)                     |                   | 4                      |     | k $\Omega$    |
| SCL Clock Frequency                            | $f_{SCL}$                  | (Note 4)                                                                                    | 0                 |                        | 400 | kHz           |
| Bus Free-Time Between STOP and START Condition | $t_{BUF}$                  |                                                                                             | 1.3               |                        |     | $\mu\text{s}$ |
| Hold Time for a Repeated START Condition       | $t_{HD\_STA}$              |                                                                                             | 0.6               |                        |     | $\mu\text{s}$ |
| Setup Time for a Repeated START Condition      | $t_{SU\_STA}$              |                                                                                             | 0.6               |                        |     | $\mu\text{s}$ |
| Low Period of SCL Clock                        | $t_{LOW}$                  | (Note 5)                                                                                    | 1.3               |                        |     | $\mu\text{s}$ |
| High Period of SCL Clock                       | $t_{HIGH}$                 |                                                                                             | 0.6               |                        |     | $\mu\text{s}$ |
| Data-Hold Time                                 | $t_{HD\_DAT}$              | (Note 6, 7)                                                                                 | 0                 |                        | 0.9 | $\mu\text{s}$ |
| Data-Setup Time                                | $t_{SU\_DAT}$              |                                                                                             | 100               |                        |     | ns            |
| Setup Time for STOP Condition                  | $t_{SU\_STO}$              |                                                                                             | 0.6               |                        |     | $\mu\text{s}$ |
| Spike Pulse Widths Suppressed by Input Filter  | $t_{SP}$                   | (Note 8)                                                                                    | 50                |                        |     | ns            |
| <b>SPI</b>                                     |                            |                                                                                             |                   |                        |     |               |
| SCLK Frequency                                 | $f_{SCLK}$                 |                                                                                             |                   |                        | 10  | MHz           |
| CS Setup Time                                  | $t_{CS}$                   |                                                                                             | 10                |                        |     | ns            |
| CS Hold Time                                   | $t_{CH}$                   |                                                                                             | 100               |                        |     | ns            |
| CS Pulse-Width High                            | $t_{IDLE}$                 |                                                                                             | 60                |                        |     | ns            |
| DIN Setup Time                                 | $t_{DS}$                   |                                                                                             | 10                |                        |     | ns            |
| DIN Hold Time                                  | $t_{DH}$                   |                                                                                             | 20                |                        |     | ns            |
| SCLK Pulse-Width Low                           | $t_{LOW\_SPI}$             |                                                                                             | 20                |                        |     | ns            |
| SCLK Pulse-Width High                          | $t_{HIGH\_SPI}$            |                                                                                             | 20                |                        |     | ns            |

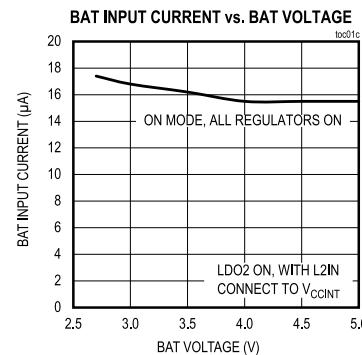
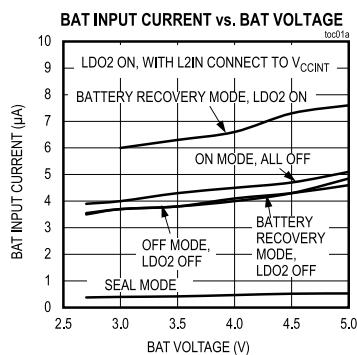
**Note 1:** All devices are 100% production tested at  $T_A = +25^\circ\text{C}$ . Limits over the operating temperature range are guaranteed by design.

**Note 2:**  $V_{\text{CCINT}}$  is an internal supply generated from either BAT or CAP. Its voltage is determined by the following: IF: [  $(V_{\text{CHGIN}} > V_{\text{CHGIN\_DET}} \text{ AND } V_{\text{CAP}} > V_{\text{CAP\_DET}}) \text{ OR } V_{\text{CAP}} > (V_{\text{BAT}} + V_{\text{THSWOVER}})$  ]  
THEN:  $V_{\text{CCINT}} = V_{\text{CAP}}$   
ELSE:  $V_{\text{CCINT}} = V_{\text{BAT}}$   
where  $V_{\text{THSWOVER}} = 0\text{mV}–300\text{mV}$

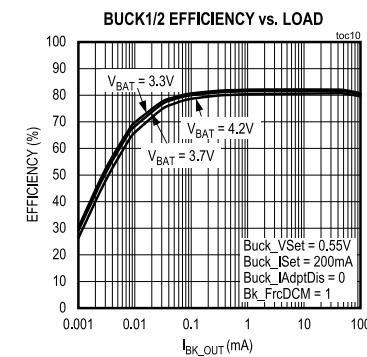
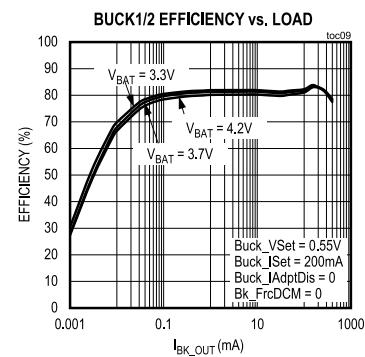
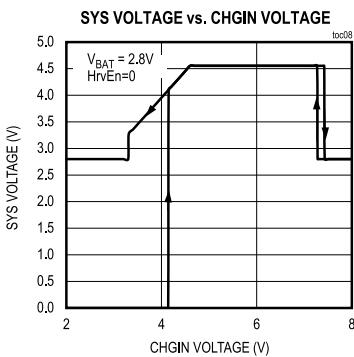
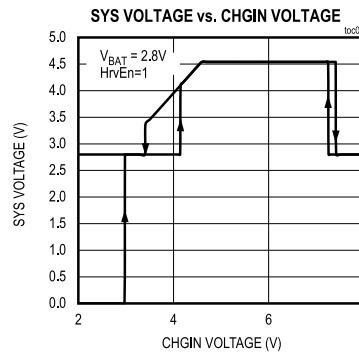
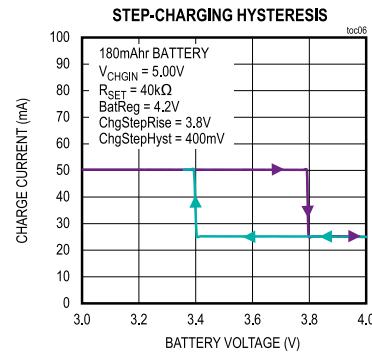
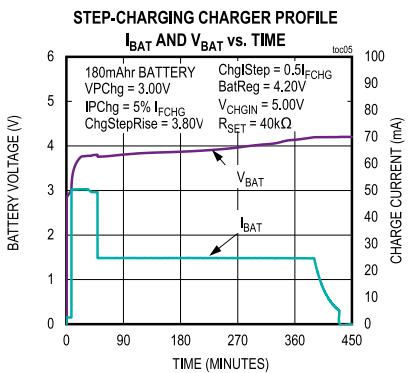
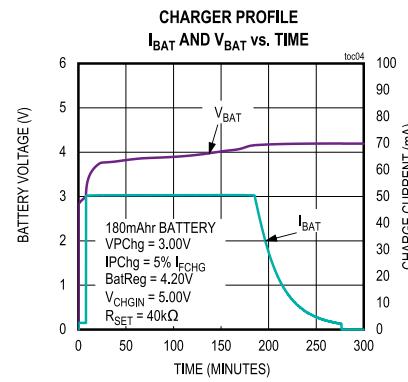
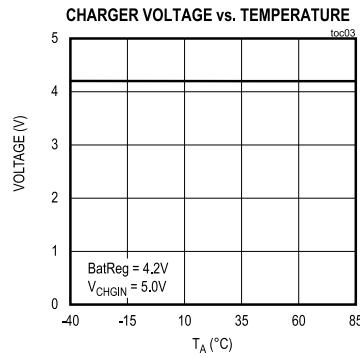
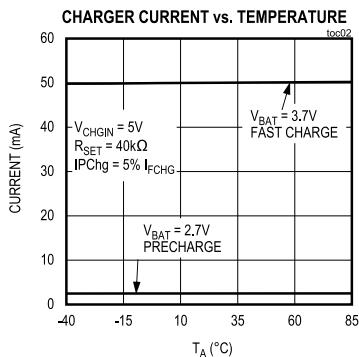
**Note 3:** Guaranteed by design, not production tested.

**Note 4:** Timing must be fast enough to prevent the Fuel Gauge from entering shutdown mode due to bus low for a period greater than the shutdown timer setting.

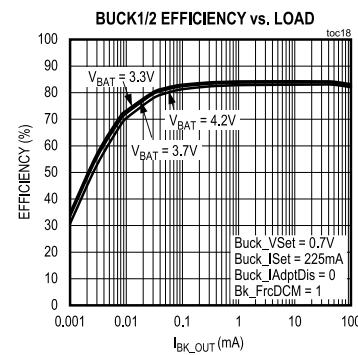
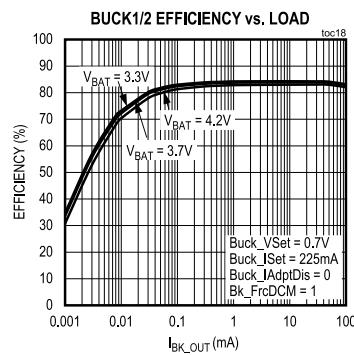
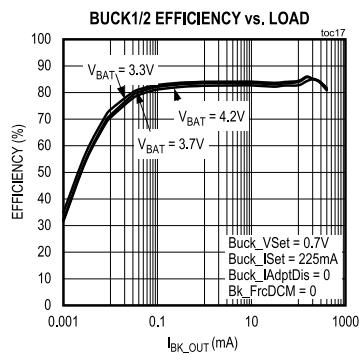
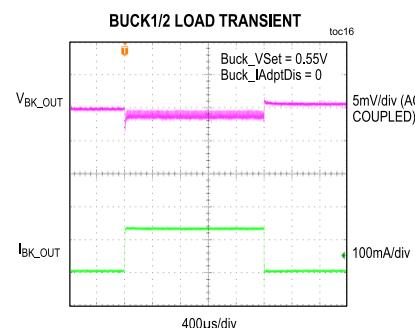
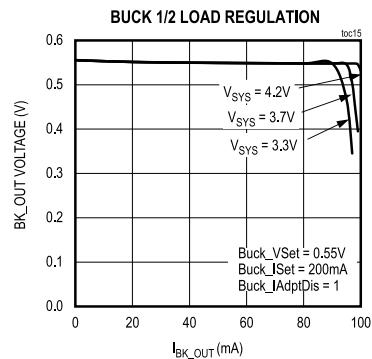
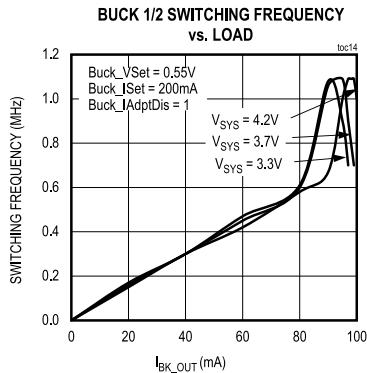
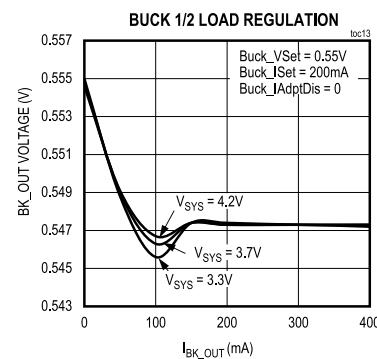
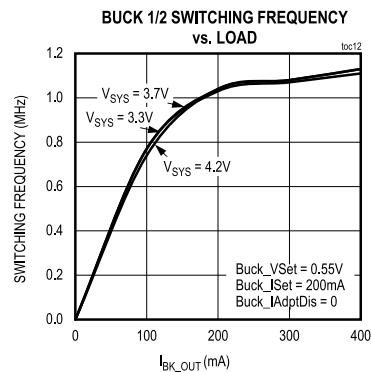
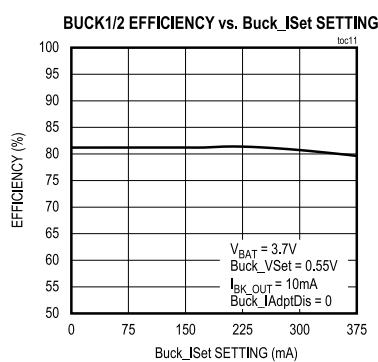
**Note 5:** The SCL waveform must meet the minimum clock low time plus the rise/fall times.



**Note 6:** The maximum  $t_{\text{HD\_DAT}}$  has only to be met if the device does not stretch the low period ( $t_{\text{LOW}}$ ) of the SCL signal.

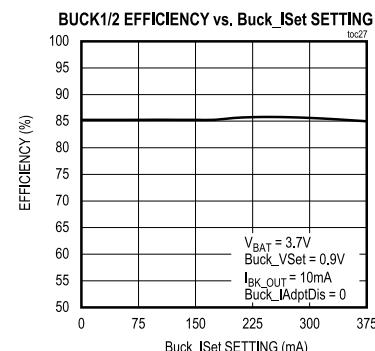
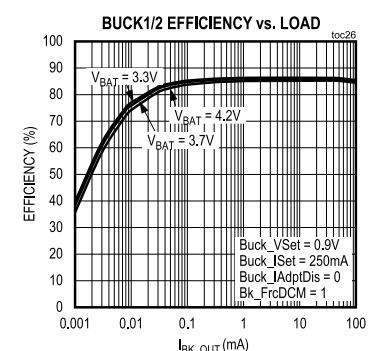
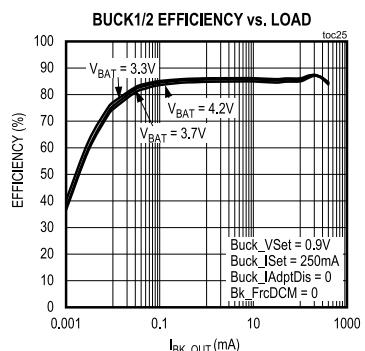
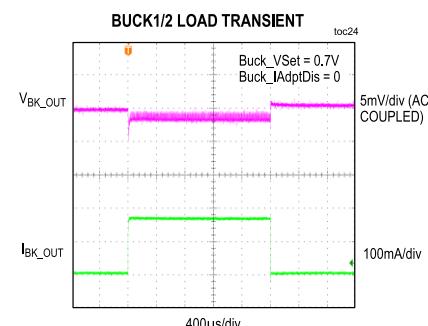
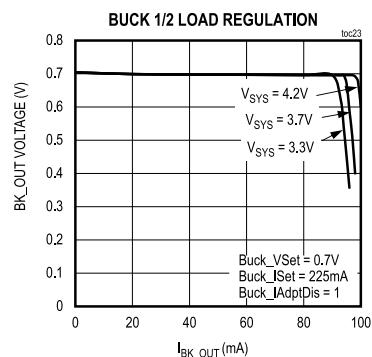
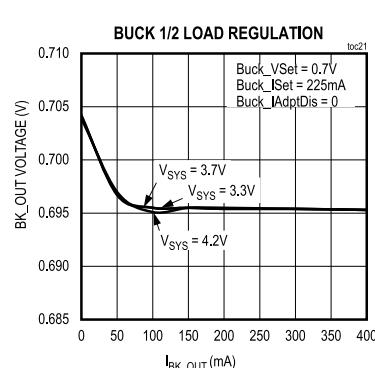
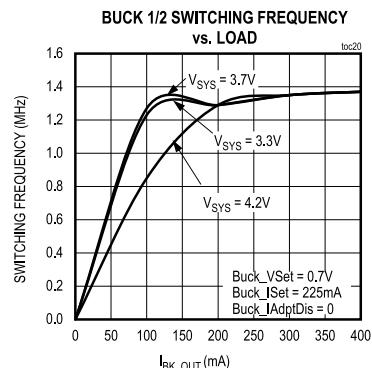
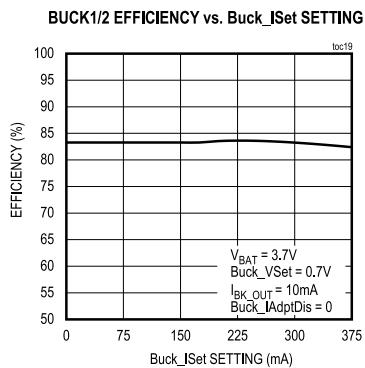
**Note 7:** This device internally provides a hold time of at least 100ns for the SDA signal (refer to the minimum  $V_{\text{IH}}$  of the SCL signal) to bridge the undefined region of the falling edge of SCL.










**Note 8:** Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.

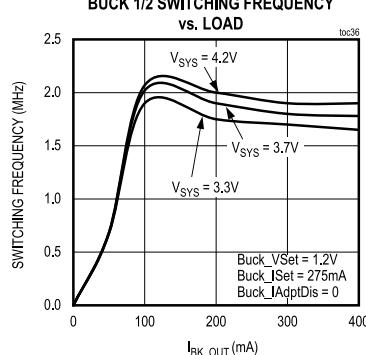
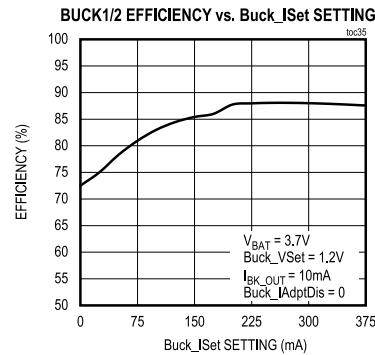
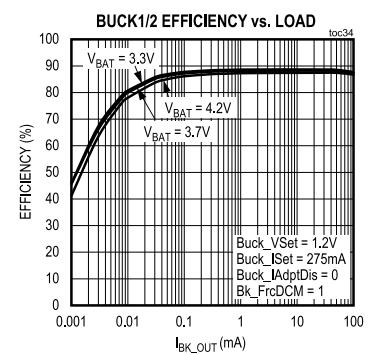
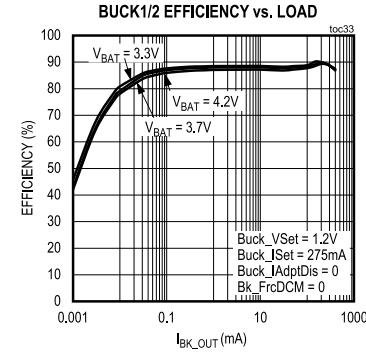
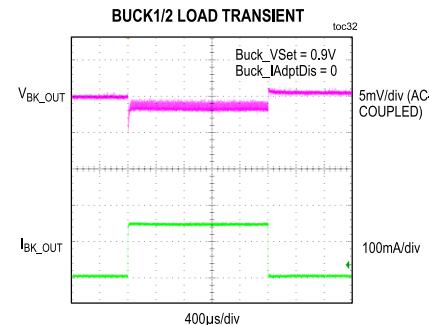
## Typical Operating Characteristics

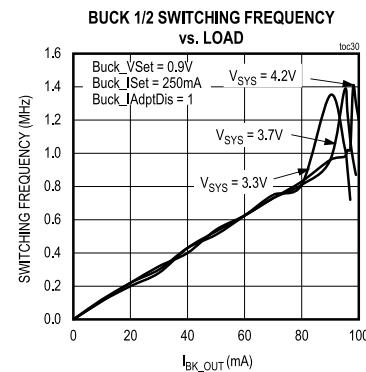
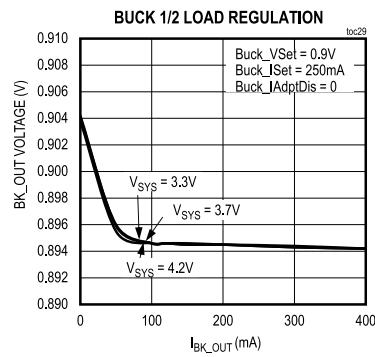
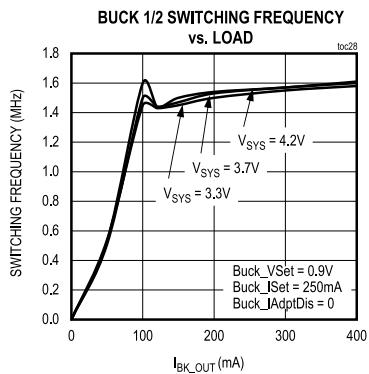









( $V_{\text{BAT}} = 3.7\text{V}$ ,  $C_{\text{CHGIN\_EFF}} = 1\mu\text{F}$ ,  $C_{\text{VDIG\_EFF}} = 1\mu\text{F}$ ,  $C_{\text{CAP\_EFF}} = 1\mu\text{F}$ ,  $C_{\text{SYS\_EFF}} = 10\mu\text{F}$ ,  $C_{\text{BAT\_EFF}} = 1\mu\text{F}$ ,  $C_{\text{BK\_OUT\_EFF}} = 10\mu\text{F}$ ,  $C_{\text{L\_IN}} = 1\mu\text{F}$ ,  $C_{\text{L\_OUT\_EFF}} = 1\mu\text{F}$ ,  $C_{\text{BBOUT\_EFF}} = 8.8\mu\text{F}$ ,  $C_{\text{BSTOUT\_EFF}} = 10\mu\text{F}$ ,  $L_{\text{BK\_OUT}} = 2.2\mu\text{H}$ ,  $L_{\text{BBOUT}} = 2.2\mu\text{H}$ ,  $L_{\text{BSTOUT}} = 4.7\mu\text{H}$ ,  $T_A = +25^\circ\text{C}$ , unless otherwise noted.)



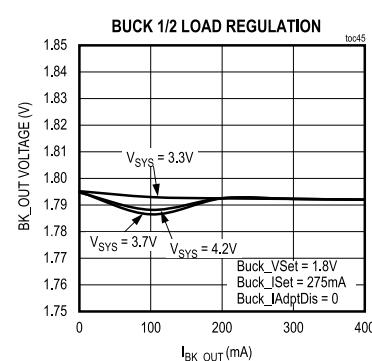
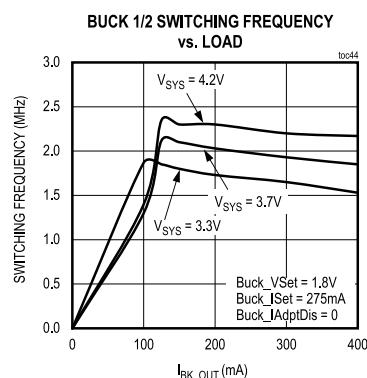
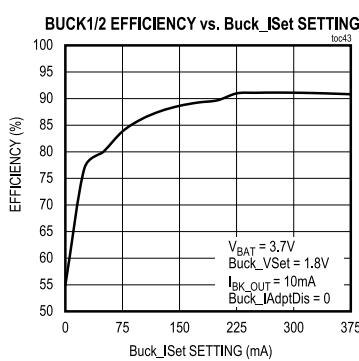
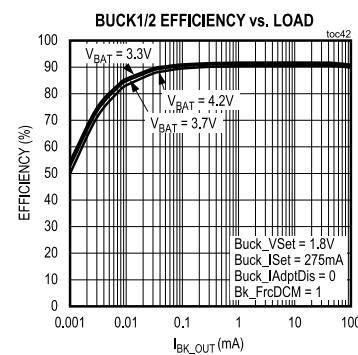
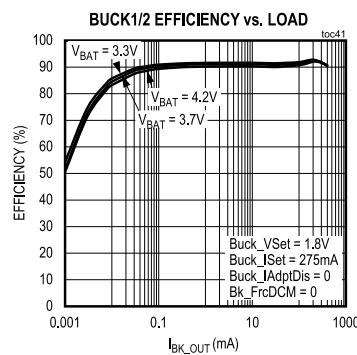
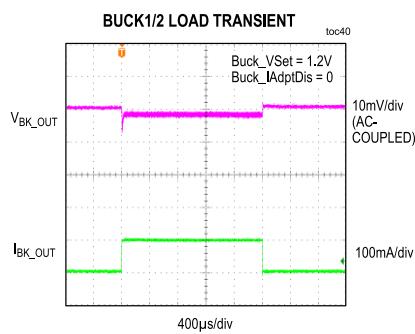
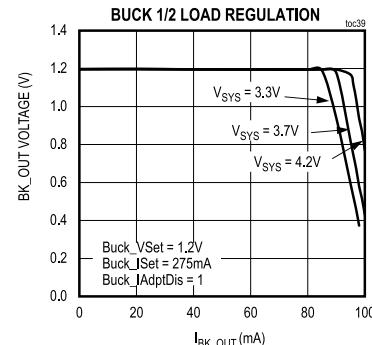
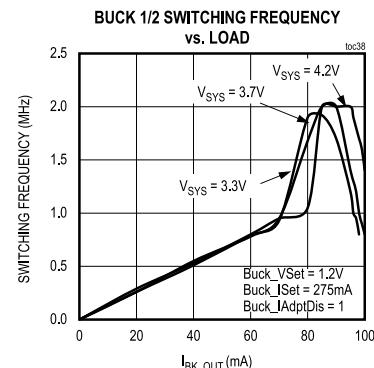
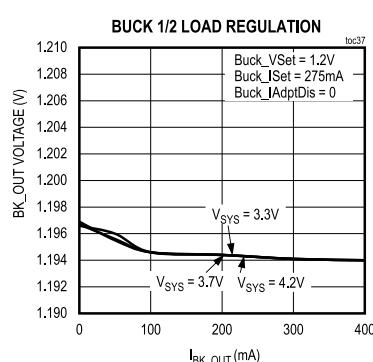








( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)



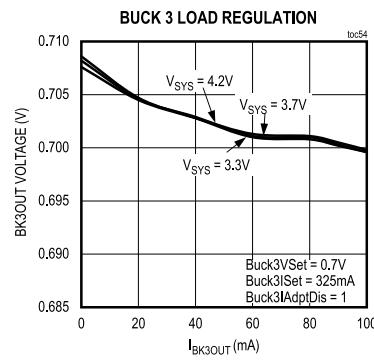
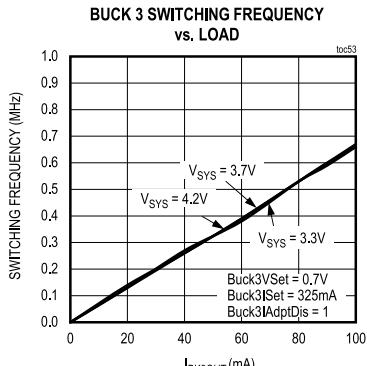
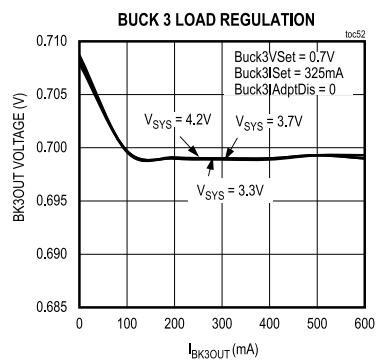
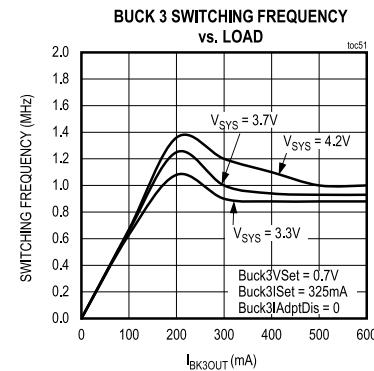
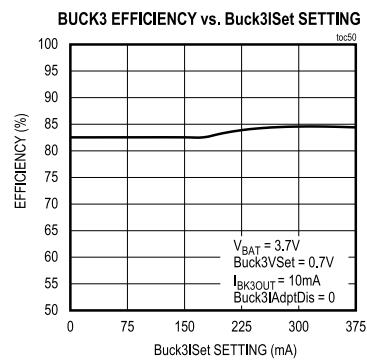
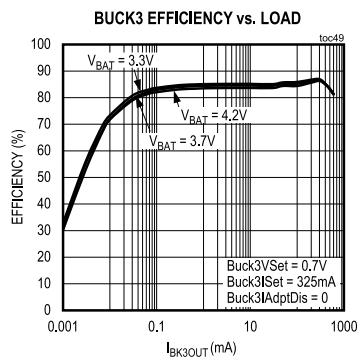
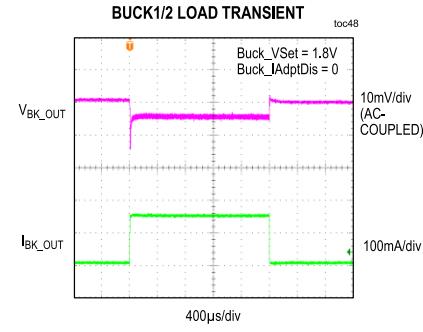
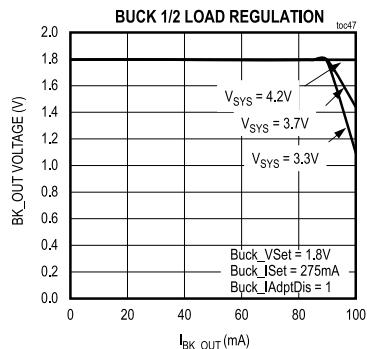
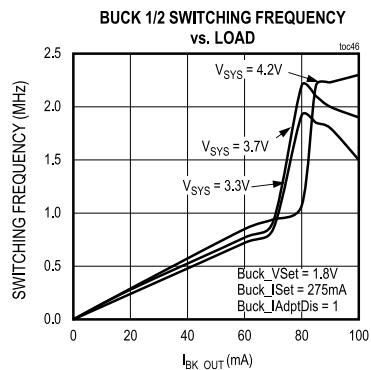









( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

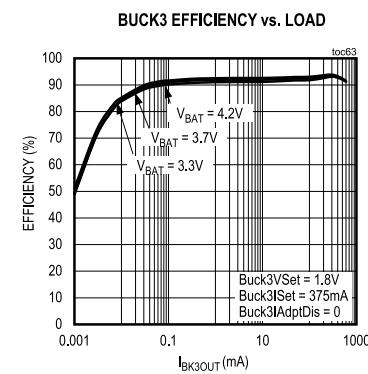
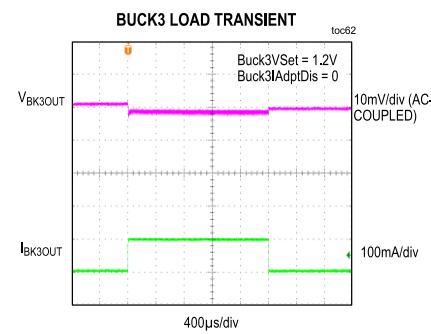
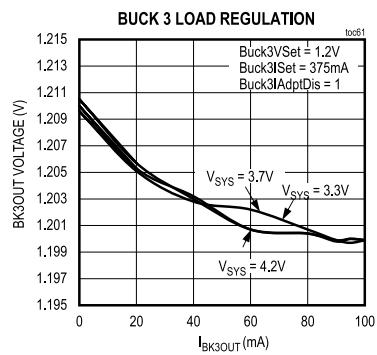
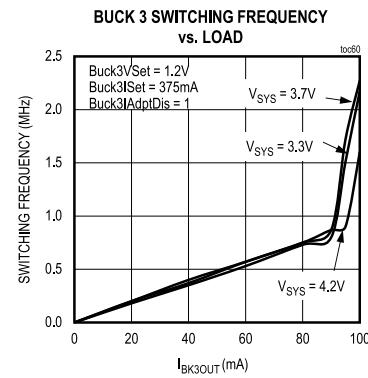
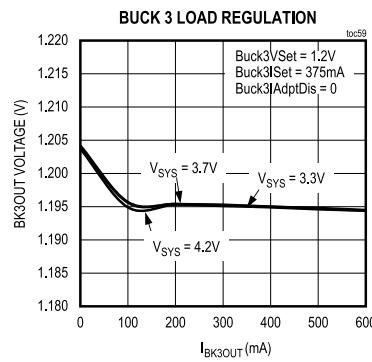
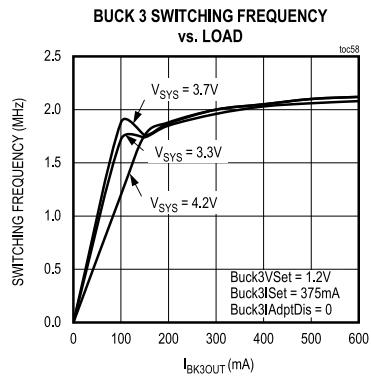
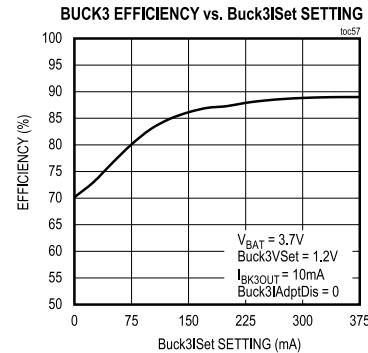
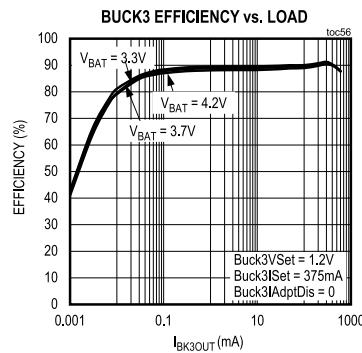
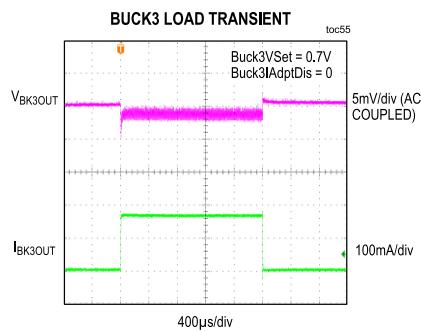











( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

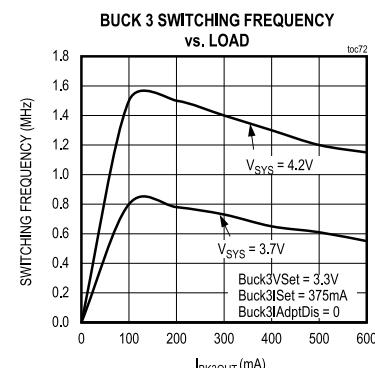
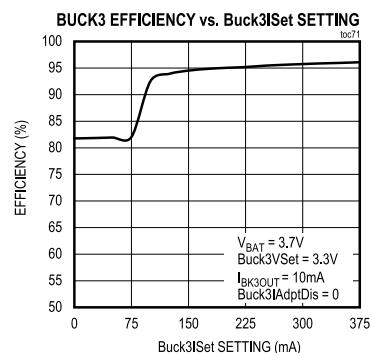
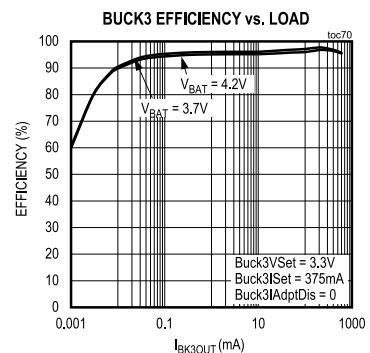
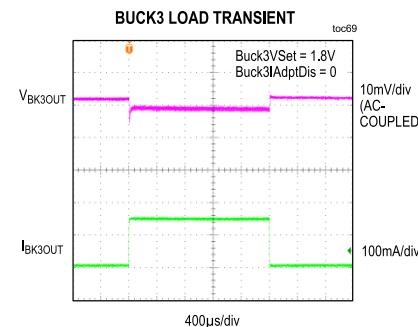
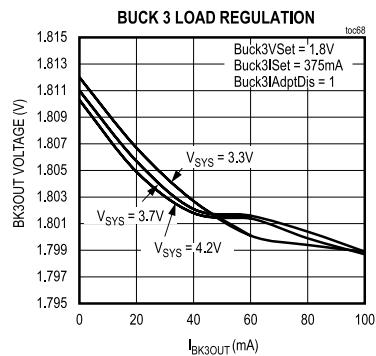
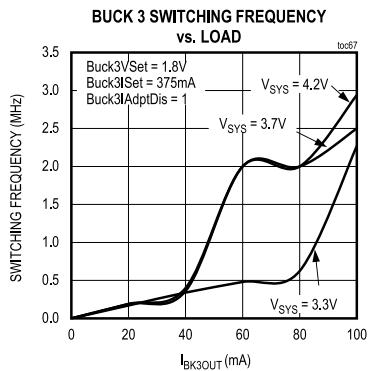
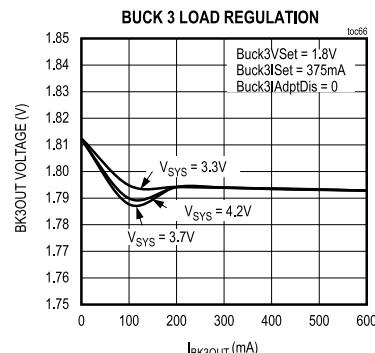
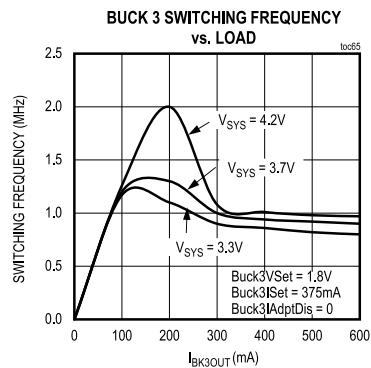
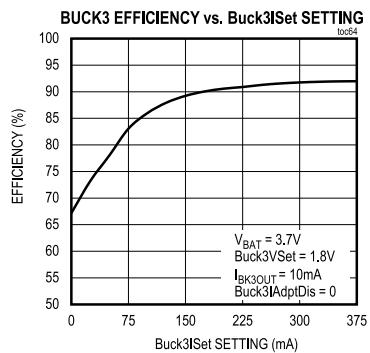











( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

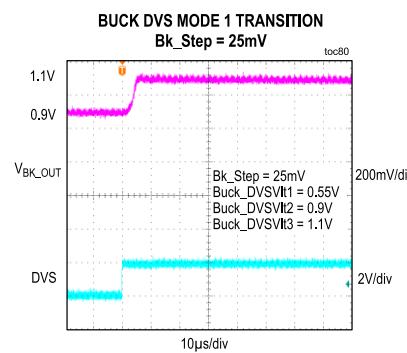
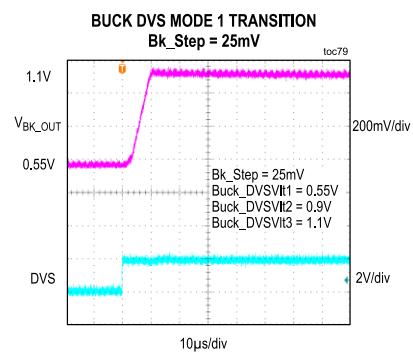
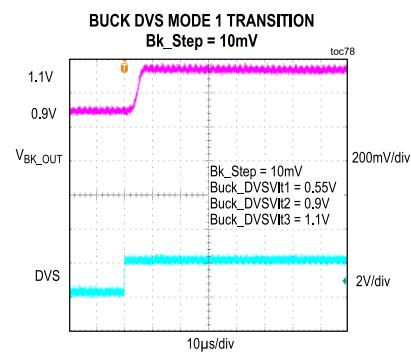
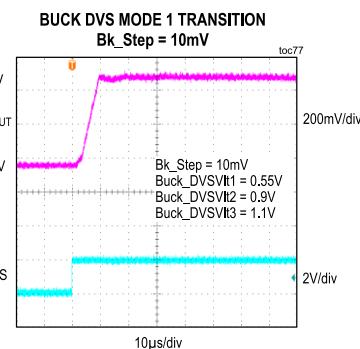
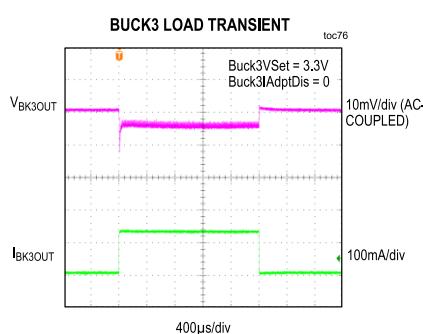
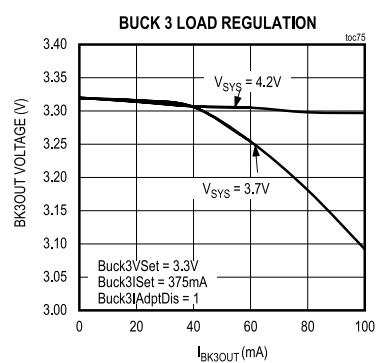
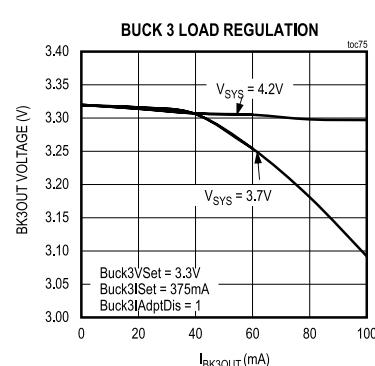
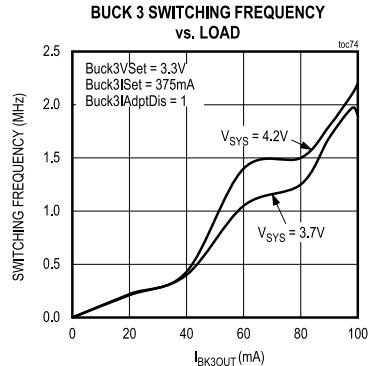
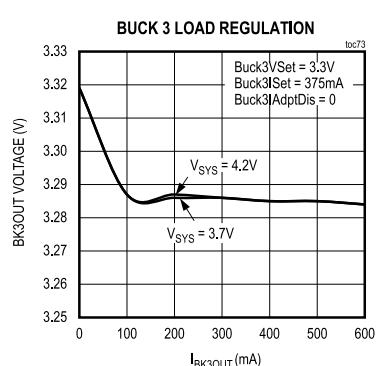











( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

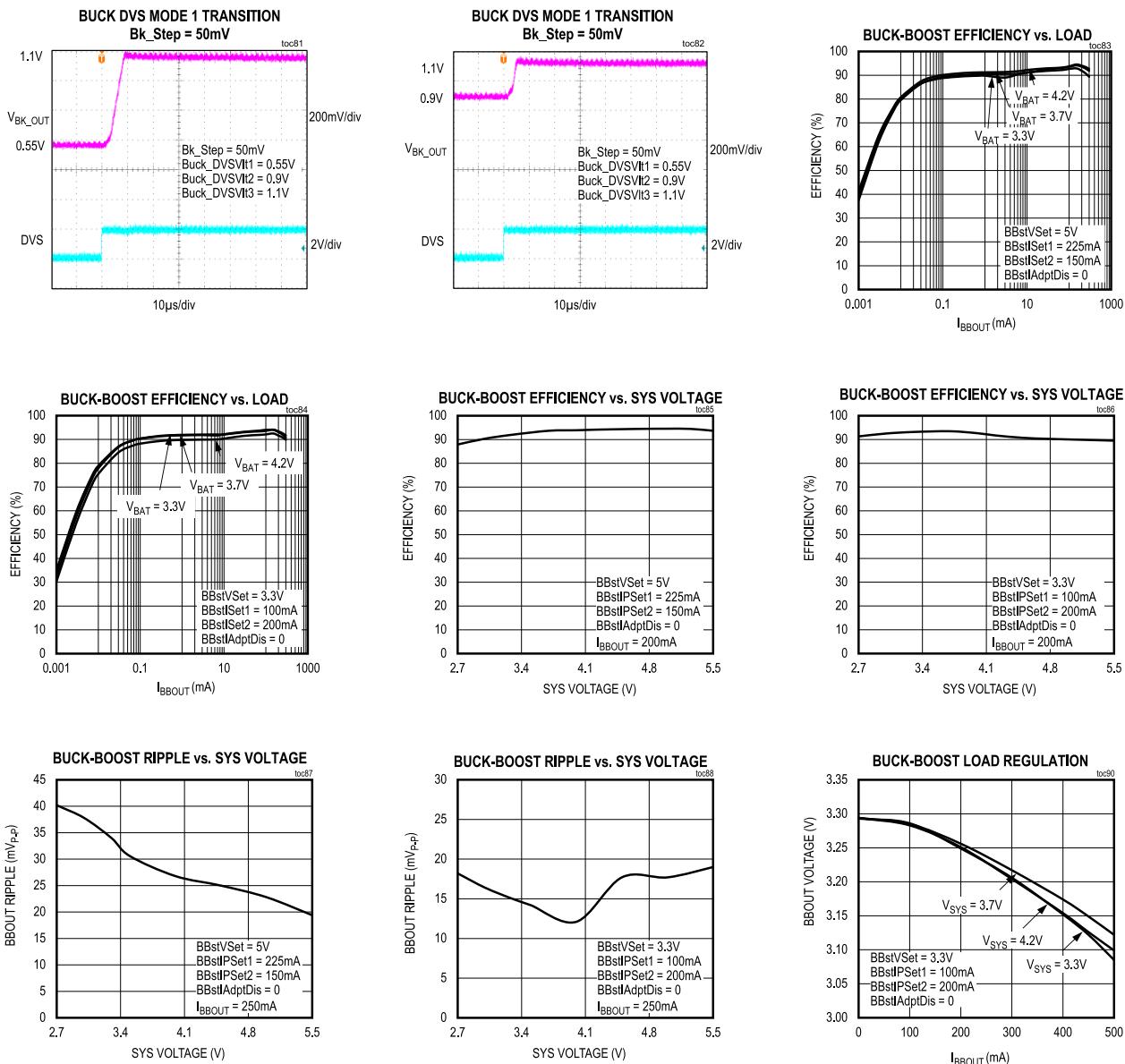











( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

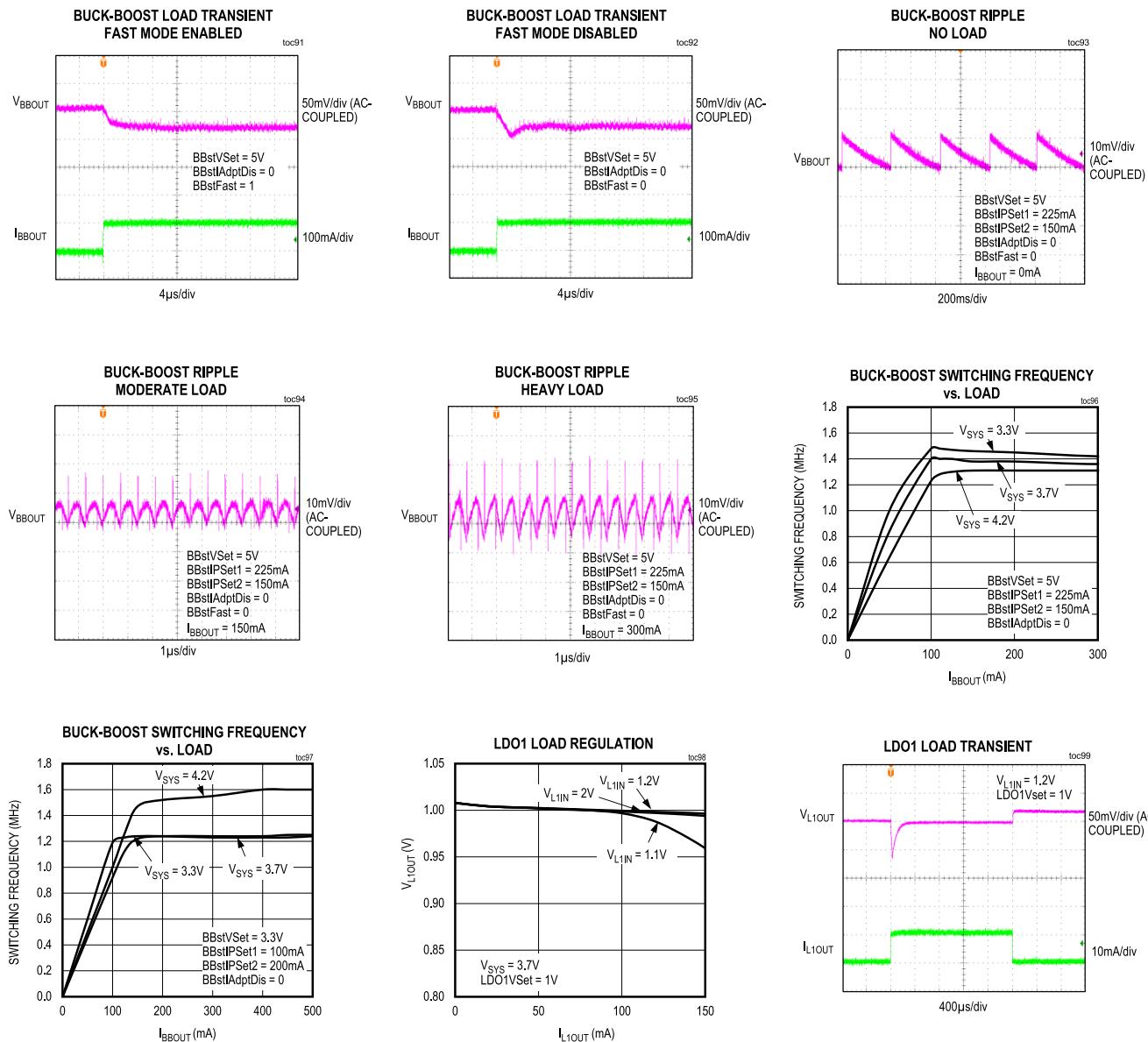











( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

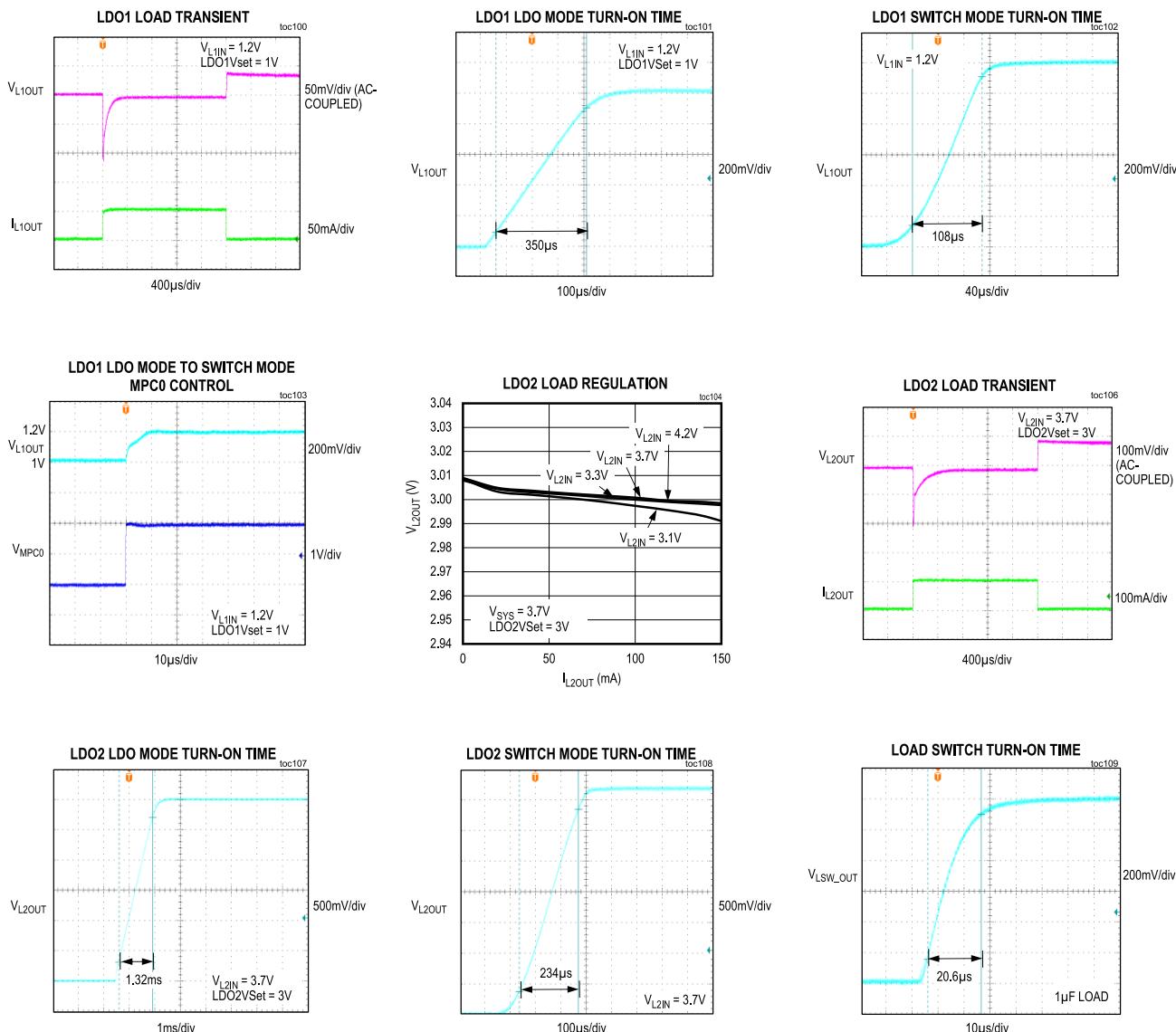



( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

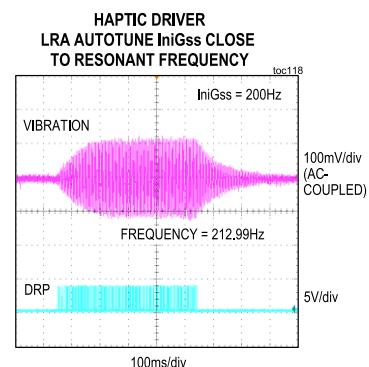
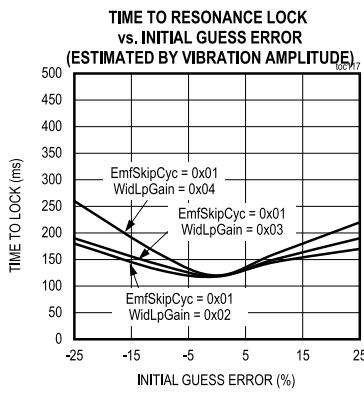
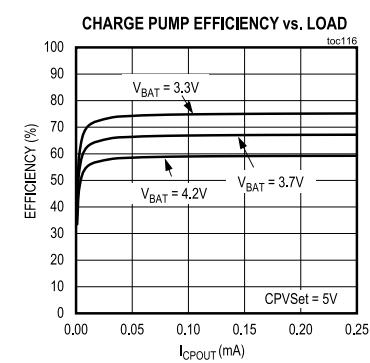
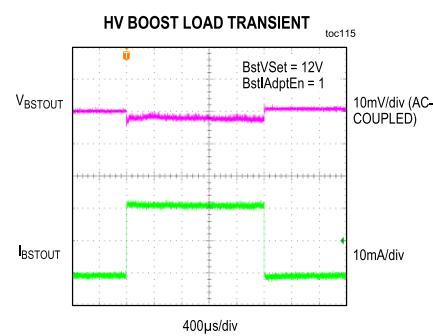
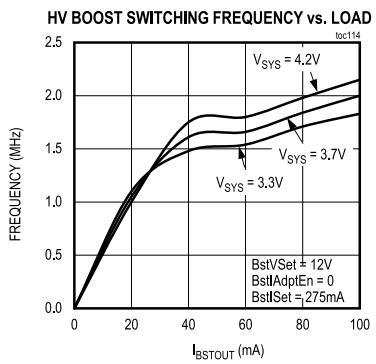
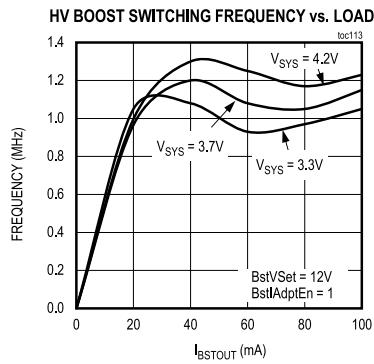
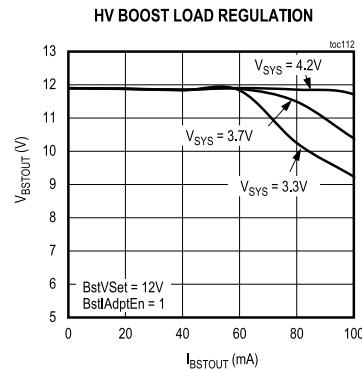
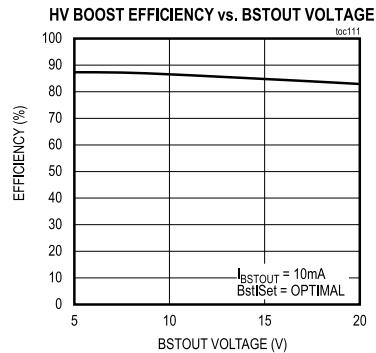
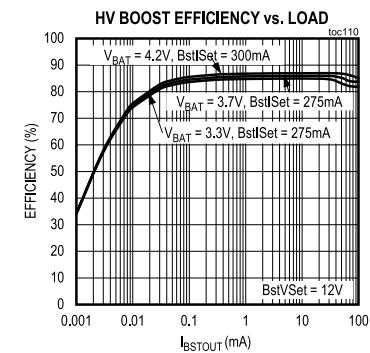



( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

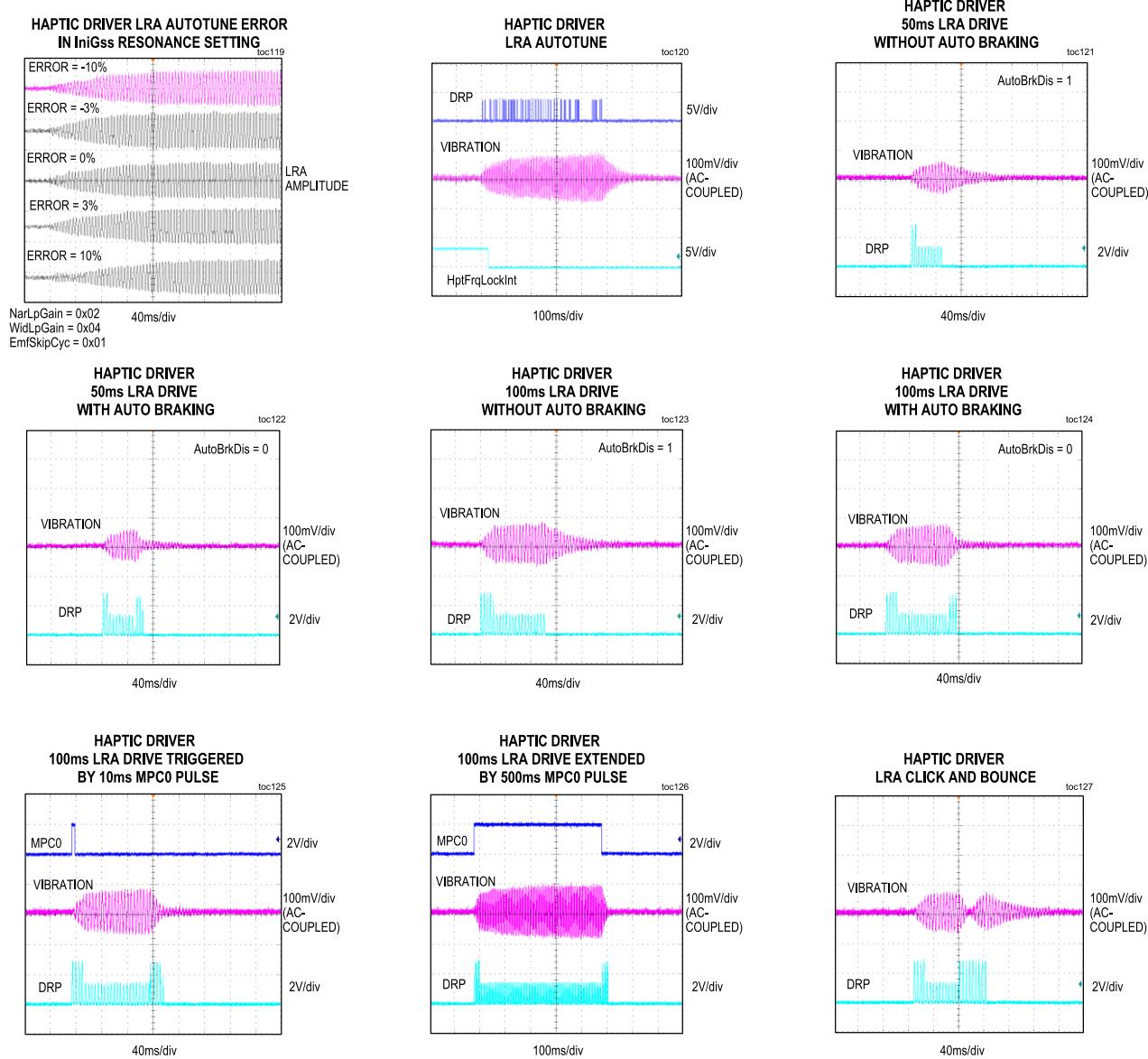



( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

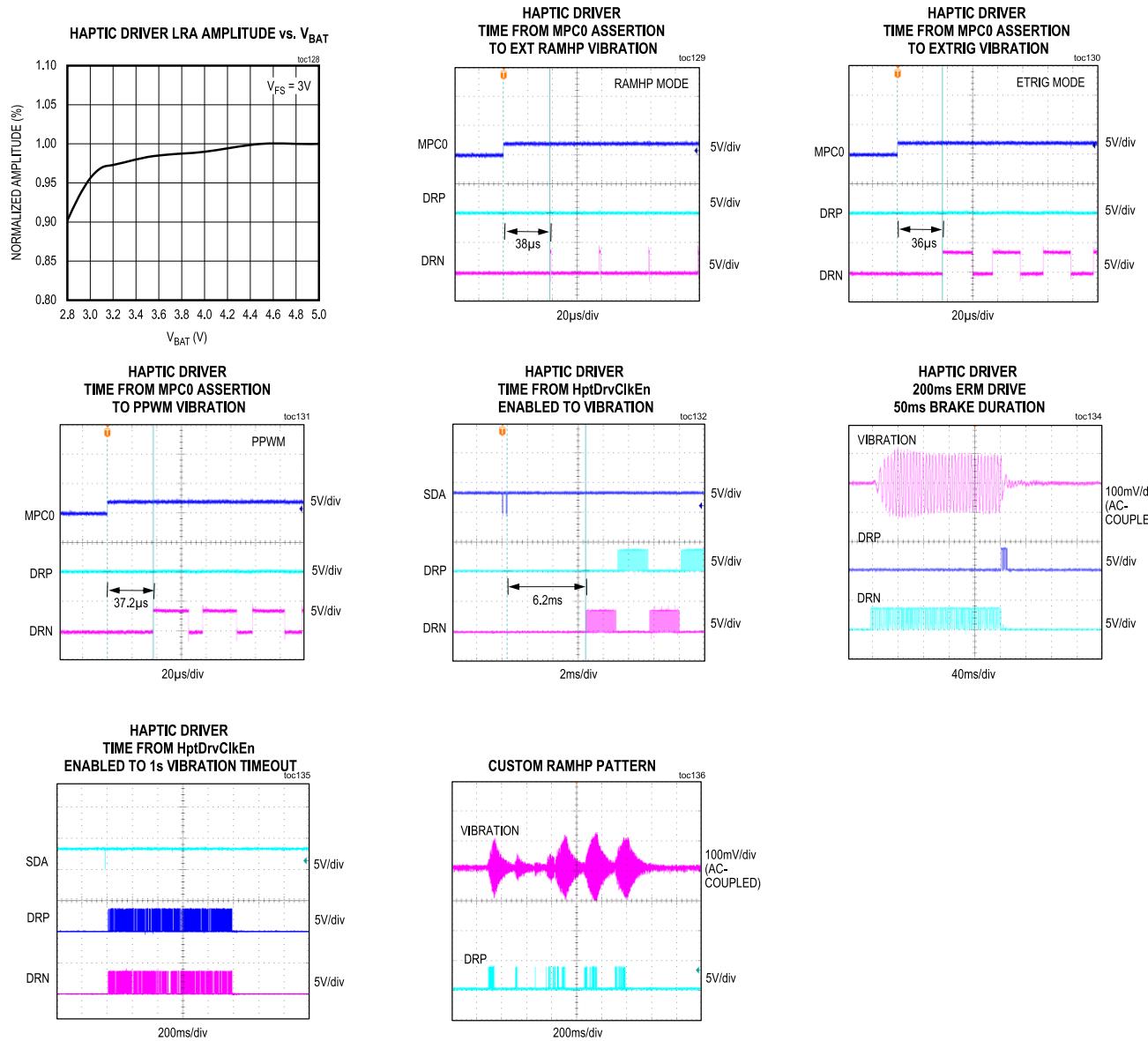











( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)



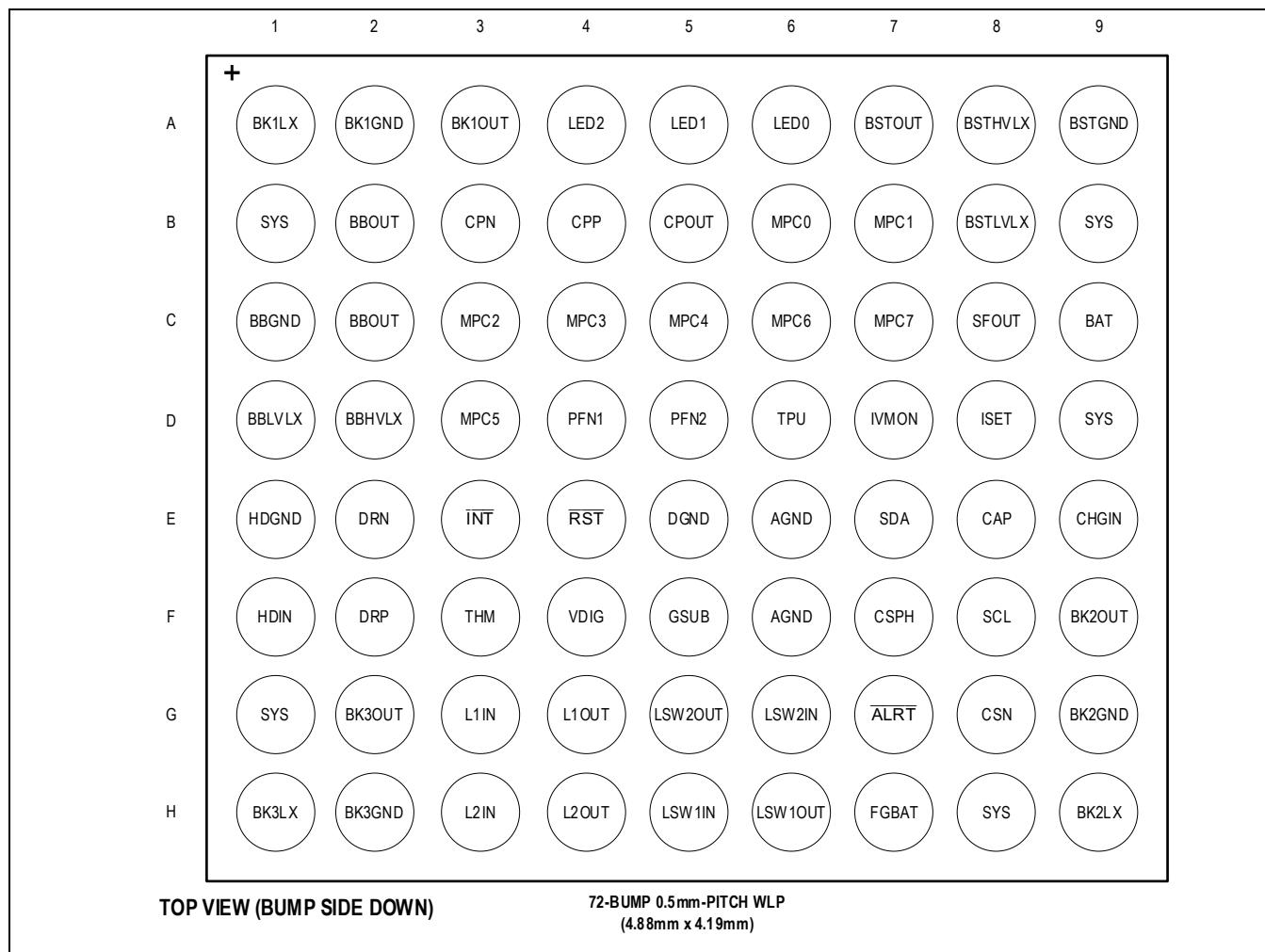

( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)




( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)



( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)




( $V_{BAT} = 3.7V$ ,  $C_{CHGIN\_EFF} = 1\mu F$ ,  $C_{VDIG\_EFF} = 1\mu F$ ,  $C_{CAP\_EFF} = 1\mu F$ ,  $C_{SYS\_EFF} = 10\mu F$ ,  $C_{BAT\_EFF} = 1\mu F$ ,  $C_{BK\_OUT\_EFF} = 10\mu F$ ,  $C_{L\_IN} = 1\mu F$ ,  $C_{L\_OUT\_EFF} = 1\mu F$ ,  $C_{BBOUT\_EFF} = 8.8\mu F$ ,  $C_{BSTOUT\_EFF} = 10\mu F$ ,  $L_{BK\_OUT} = 2.2\mu H$ ,  $L_{BBOUT} = 2.2\mu H$ ,  $L_{BSTOUT} = 4.7\mu H$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)



## Pin Configurations

MAX20366



## Pin Descriptions

| PIN | NAME    | FUNCTION                                                                                                                                 |
|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| A1  | BK1LX   | Buck 1 Regulator Switch. Connect a 1 $\mu$ H or 2.2 $\mu$ H inductor to BK1OUT.                                                          |
| A2  | BK1GND  | Buck 1 Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                           |
| A3  | BK1OUT  | Buck 1 Regulator Output. Bypass with effective capacitance to GND. Refer to the <a href="#">Buck Output Capacitor Selection</a> section. |
| A4  | LED2    | Current Sink Output 2                                                                                                                    |
| A5  | LED1    | Current Sink Output 1                                                                                                                    |
| A6  | LED0    | Current Sink Output 0                                                                                                                    |
| A7  | BSTOUT  | Boost Regulator Output. Bypass with effective capacitance to GND. Refer to the <a href="#">Boost Regulator</a> section.                  |
| A8  | BSTHVLX | Boost Regulator Switch. Connect through a 2.2 $\mu$ H or 4.7 $\mu$ H inductor to BSTLVLEX.                                               |
| A9  | BSTGND  | Boost Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                            |

|                          |        |                                                                                                                                                                                                         |
|--------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B1, B9,<br>D9, G1,<br>H8 | SYS    | System Load Connection. All SYS bumps must be connected on the PCB using a low-impedance trace or SYS plane. Bypass the common node with a minimum 10 $\mu$ F real capacitance (after derating) to GND. |
| B2, C2                   | BBOUT  | Buck-Boost Regulator Output. Bypass with effective capacitance to GND. Refer to the <a href="#">Buck-Boost Output Capacitor Selection</a> section.                                                      |
| B3                       | CPN    | Charge Pump Capacitor Negative Terminal. Connect 22nF (min), 33nF (max) capacitor to CPP.                                                                                                               |
| B4                       | CPP    | Charge Pump Capacitor Positive Terminal. Connect 22nF (min), 33nF (max) capacitor to CPN.                                                                                                               |
| B5                       | CPOUT  | Charge Pump Output. Bypass with 1 $\mu$ F capacitor to GND.                                                                                                                                             |
| B6                       | MPC0   | Multipurpose Control I/O 0. LDO1 direct control option.                                                                                                                                                 |
| B7                       | MPC1   | Multipurpose Control I/O 1. FAST control option for buck-boost.                                                                                                                                         |
| B8                       | BSTVLX | Boost Regulator Switch. Connect through a 3.3 $\mu$ H or 4.7 $\mu$ H inductor to BSTHVLX.                                                                                                               |
| C1                       | BBGND  | Buck-Boost Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                                                                                      |
| C3                       | MPC2   | Multipurpose Control I/O 2                                                                                                                                                                              |
| C4                       | MPC3   | Multipurpose Control I/O 3                                                                                                                                                                              |
| C5                       | MPC4   | Multipurpose Control I/O 4                                                                                                                                                                              |
| C6                       | MPC6   | Multipurpose Control I/O 6                                                                                                                                                                              |
| C7                       | MPC7   | Multipurpose Control I/O 7                                                                                                                                                                              |
| C8                       | SFOUT  | Safe Out LDO. Bypass with 1 $\mu$ F real capacitor (after derating) to GND.                                                                                                                             |
| C9                       | BAT    | Battery Connection. Connect to a positive battery terminal. Bypass with a minimum 1 $\mu$ F real capacitor (after derating) to GND.                                                                     |
| D1                       | BBLVLX | Buck-Boost Regulator Switch LV Side. Connect through 2.2 $\mu$ H inductor to BBHVLX.                                                                                                                    |
| D2                       | BBHVLX | Buck-Boost Regulator Switch HV Side. Connect through 2.2 $\mu$ H inductor to BBLVLX.                                                                                                                    |
| D3                       | MPC5   | Multipurpose Control I/O 5                                                                                                                                                                              |
| D4                       | PFN1   | Configurable Power Mode Control Pin (e.g., KIN )                                                                                                                                                        |
| D5                       | PFN2   | Configurable Power Mode Control Pin (e.g., KOUT )                                                                                                                                                       |
| D6                       | TPU    | Battery Temperature Thermistor Measurement Pullup. Internally connected to VDIG during battery temperature thermistor measurement. Do not exceed 2mA load on TPU.                                       |
| D7                       | IVMON  | Voltages and Charging Current Monitor Multiplexer Output.                                                                                                                                               |
| D8                       | ISET   | External Resistor Connection for Battery Charge Current Level Setting. Do not connect any capacitance on this pin. Maximum allowed capacitance: $C_{ISET} < (5\mu s / R_{ISET}) \text{ pF}$ .           |
| E1                       | HDGND  | Haptic Driver Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                                                                                   |
| E2                       | DRN    | Haptic Driver Negative Output                                                                                                                                                                           |
| E3                       | INT    | Interrupt Open-Drain Output. Active-low.                                                                                                                                                                |
| E4                       | RST    | Reset Open-Drain Output. Active-low.                                                                                                                                                                    |
| E5                       | DGND   | Digital Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                                                                                         |
| E6, F6                   | AGND   | Analog Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                                                                                          |
| E7                       | SDA    | I <sup>2</sup> C Serial Data Input/Open-Drain Output                                                                                                                                                    |
| E8                       | CAP    | Internal Reference Supply. Bypass with 1 $\mu$ F real capacitor (after derating) to GND.                                                                                                                |
| E9                       | CHGIN  | +28V/-5.5V Protected Charger Input. Bypass with 1 $\mu$ F real capacitance (after derating) to GND.                                                                                                     |

|    |         |                                                                                                                                                                                                                                                                 |
|----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1 | HDIN    | Haptic Driver H-Bridge Supply. Connect using a low-impedance trace to SYS for normal operation or to BBOUT when a higher drive voltage is required. Bypass with a local capacitor to GND if the trace up to SYS or BBOUT bypass capacitors is longer than 10mm. |
| F2 | DRP     | Haptic Driver Positive Output                                                                                                                                                                                                                                   |
| F3 | THM     | Battery Temperature Thermistor Measurement Connection                                                                                                                                                                                                           |
| F4 | VDIG    | Internal Reference Supply. Bypass with 1 $\mu$ F real capacitor (after derating) to GND.                                                                                                                                                                        |
| F5 | GSUB    | Substrate Connection. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                                                                                                                                           |
| F7 | CSPH    | Fuel Gauge Sense Resistor Positive Sense Point. Kelvin connect to the system side of the sense resistor.                                                                                                                                                        |
| F8 | SCL     | I <sup>2</sup> C Serial Clock Input                                                                                                                                                                                                                             |
| F9 | BK2OUT  | Buck 2 Regulator Output. Bypass with effective capacitance to GND. Refer to the <a href="#">Buck Output Capacitor Selection</a> section.                                                                                                                        |
| G2 | BK3OUT  | Buck 3 Regulator Output. Bypass with effective capacitance to GND. Refer to the <a href="#">Buck Output Capacitor Selection</a> section.                                                                                                                        |
| G3 | L1IN    | LDO 1 Input. Bypass with 1 $\mu$ F capacitor to GND.                                                                                                                                                                                                            |
| G4 | L1OUT   | LDO 1 Output. Bypass with 1 $\mu$ F real capacitor (after derating) to GND.                                                                                                                                                                                     |
| G5 | LSW2OUT | Load Switch 2 Output                                                                                                                                                                                                                                            |
| G6 | LSW2IN  | Load Switch 2 Input                                                                                                                                                                                                                                             |
| G7 | ALRT    | Alert Output. The ALRT pin is an open-drain active-low output that provides fuel-gauge alerts. Connect to GND if not used                                                                                                                                       |
| G8 | CSN     | Fuel Gauge Resistor Sense Point. Kelvin connect to the cell-side of the sense resistor.                                                                                                                                                                         |
| G9 | BK2GND  | Buck 2 Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                                                                                                                                                  |
| H1 | BK3LX   | Buck 3 Regulator Switch. Connect a 2.2 $\mu$ H inductor to BK3OUT.                                                                                                                                                                                              |
| H2 | BK3GND  | Buck 3 Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.                                                                                                                                                  |
| H3 | L2IN    | LDO 2 Input. Bypass with 1 $\mu$ F capacitor to GND.                                                                                                                                                                                                            |
| H4 | L2OUT   | LDO 2 Output. Bypass with 1 $\mu$ F real capacitor (after derating) to GND.                                                                                                                                                                                     |
| H5 | LSW1IN  | Load Switch 1 Input                                                                                                                                                                                                                                             |
| H6 | LSW1OUT | Load Switch 1 Output                                                                                                                                                                                                                                            |
| H7 | FGBAT   | Fuel Gauge Power Supply and Battery Voltage Sense Input. Connect to the positive terminal of a battery cell. Bypass with a 0.1 $\mu$ F real capacitor (after derating) to GND.                                                                                  |
| H9 | BK2LX   | Buck 2 Regulator Switch. Connect a 1 $\mu$ H or 2.2 $\mu$ H inductor to BK2OUT.                                                                                                                                                                                 |

## Detailed Description

The MAX20366 is a highly integrated and programmable power management solution designed for ultra-low-power wearable applications. It is optimized for size and efficiency to enhance the value of the end product by extending battery life and shrinking the overall solution size. A flexible set of power-optimized voltage regulators, including multiple buck, boost and buck-boost converters, and linear regulators, provides a high level of integration and the ability to create a fully optimized power architecture. The quiescent current of each regulator is ultra-low targeted at extending battery life in always-on applications.

The MAX20366 includes a complete battery management solution with battery seal, charger, power path, and fuel gauge. Both thermal management and input protection are built into the charger. The device also includes a factory programmable button controller with multiple inputs that are customizable to fit specific product UX requirements.

Three integrated LED current sinks are included for indicator or backlighting functions, and an ERM/LRA driver with automatic resonance tracking is capable of providing sophisticated haptic feedback to the user. A low noise, 1.5W buck-boost converter provides a clean way to power LEDs commonly used in optical heart-rate systems. The device is configurable through an I<sup>2</sup>C interface that allows for programming various functions and reading device status, including the ability to read temperature and supply voltages with the integrated ADC.

## Power Regulation

The MAX20366 features three high-efficiency, low-quiescent current buck regulators (see the [Buck Regulators](#) section), a buck-boost regulator (see the [Buck-Boost Regulator](#) section), two low-quiescent current, low-dropout linear regulators (LDOs) (see the [LDOs](#) section), a low-quiescent current charge pump (see the [Charge Pump](#) section), a low-quiescent current, high voltage boost (see the [Boost Regulator](#) section), and two dedicated load switches (see the [Load Switches](#) section). Excellent light-load efficiency allows the switching regulators to run continuously without significant energy cost. The buck, buck-boost, and boost regulators can operate in a fixed peak current mode for low-current applications or an adaptive peak-current mode to improve load regulation, extend the high-efficiency range, and minimize capacitor size when more current is required.

## Dynamic Voltage Scaling

All of MAX20366 regulators feature dynamic voltage scaling (DVS) to scale the output voltage without disabling the converter. The regulator output voltages are set by direct I<sup>2</sup>C writes to the corresponding VSet register. In addition to I<sup>2</sup>C DVS, the buck and buck-boost regulators feature two additional control methods for applications where timing is critical: GPIO DVS and SPI DVS. Note that the output-voltage slew rate remains the same in all DVS modes.

Buck DVS transitions maximize the output-voltage slew rate while controlling inrush current for devices that require fast voltage transitions. The other regulators minimize inrush current by limiting the output-voltage slew rate. A typical DVS transition on a buck regulator has a rise time of 10 $\mu$ s.

### DVS Mode 0 (I<sup>2</sup>C DVS Mode)

DVS Mode 0 configures the regulator outputs to be controlled by I<sup>2</sup>C. If Buck\_DVSCfg or BBstDVSCfg = 00000 (see these bits: Buck1DVSCfg, Buck2DVSCfg, Buck3DVSCfg, BBstDVSCfg), the output voltage of that regulator is controlled by I<sup>2</sup>C writes to the Buck\_VSet or BBstVSet bitfield (see these bits: Buck1VSet, Buck2VSet, Buck3VSet, BBstVset). Note that a regulator in I<sup>2</sup>C DVS mode must be unlocked before modifying the output voltage. Regulators are unlocked by setting their lock mask bit to 0 in LockMsk (see bit: LockMsk) and writing the unlock password 0x55 to the LockUnlock register (see register: LockUnlock).

### DVS Mode 1 (GPIO DVS Mode)

In DVS Mode 1, two MPC inputs select the regulator output from four programmed values. To configure a regulator output for GPIO mode, set the corresponding Buck\_DVSCfg or BBstDVSCfg bits (see bits: Buck1DVSCfg, Buck2DVSCfg, Buck3DVSCfg, BBstDVSCfg) to any value between 00001 and 11100. Each code selects a different pair of MPC\_pins to control the regulator. See the DVS Cfg register descriptions (refer to bits: Buck1DVSCfg, Buck2DVSCfg, Buck3DVSCfg, BBstDVSCfg) for details on which MPC inputs are used for a code. In each case, the first MPC listed controls the lower bit and the second MPC controls the higher bit.

The four xxxDVSVlt\_ bitfields (see bits: Buck1DVSVlt0, Buck1DVSVlt1, Buck1DVSVlt2, Buck1DVSVlt3, Buck2DvsVlt0, Buck2DvsVlt1, Buck2DvsVlt2, Buck2DvsVlt3, Buck3DvsVlt0, Buck3DvsVlt1, Buck3DvsVlt2, Buck3DvsVlt3, BBstDvsVlt0, BBstDvsVlt1, BBstDvsVlt2, BBstDvsVlt3) are loaded with the corresponding regulator's factory default voltage when the MAX20366 first powers on. After the startup process, each 6-bit output voltage level can be programmed using the I<sup>2</sup>C for each converter in the Buck\_DVSVlt\_ and BBstDVSVlt\_ bitfields. As the MPC inputs change, the regulator output adjusts to the newly selected level as illustrated in [Figure 1](#). Voltage levels are selected as shown in [Table 1](#).

**Table 1. DVS Mode 1 Voltage Selection**

| GPIO1 | GPIO0 | DVS VOLTAGE |
|-------|-------|-------------|
| 0     | 0     | Vlt0        |
| 0     | 1     | Vlt1        |

|   |   |      |
|---|---|------|
| 1 | 0 | Vlt2 |
| 1 | 1 | Vlt3 |

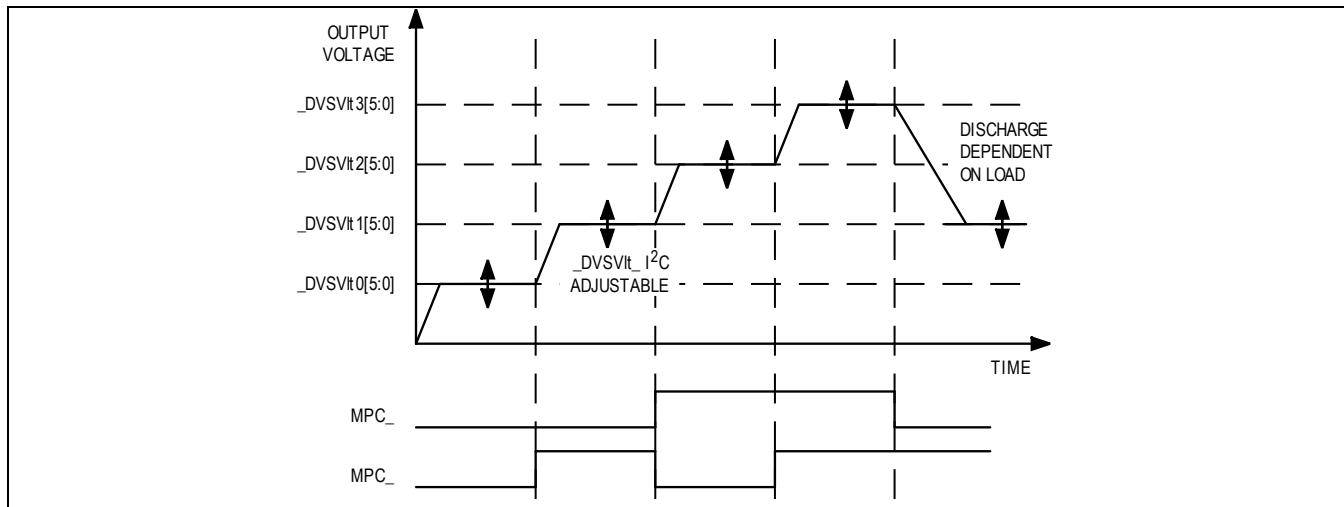



Figure 1. DVS Mode 1, GPIO Control

### SPI DVS Mode (DVS Mode 2)

In DVS Mode 2, the regulator voltages are changed by writing command bytes to a 3-wire SPI interface. The SPI interface uses MPC0–MPC2. MPC0 becomes the active-low chip select pin CS, MPC1 becomes the clock SCLK with polarity 0, and MPC2 becomes the data input pin DIN. Data is clocked in on the SCLK rising edge. The maximum SPI clock frequency is 8MHz. A command byte comprises two address bits (ADD[1:0]) that select the regulator and six voltage bits (VLT[5:0]) that set the voltage. [Figure 2](#) shows how data is clocked in SPI mode.

The output voltage is latched on the 8<sup>th</sup> rising edge of the clock. Note that voltages set by the SPI interface are mirrored in the Buck\_SPIVlt and BBstSPIVlt bitfields for each converter and readback must be done over I<sup>2</sup>C. [Figure 3](#) shows two regulators controlled in DVS Mode 2.

The DVS SPI interface supports single-byte and burst-mode data transfer. In single-byte mode, CS goes high after each command byte is transferred. In burst-mode, all command bytes are written to the MAX20366 before CS returns high. Figure 4 shows how data is written in both modes.

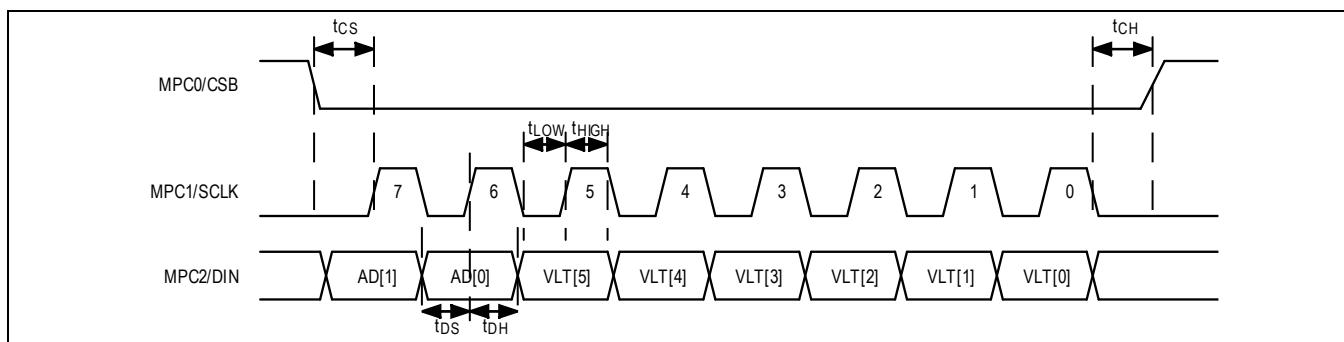



Figure 2. DVS Mode 2 SPI Timing

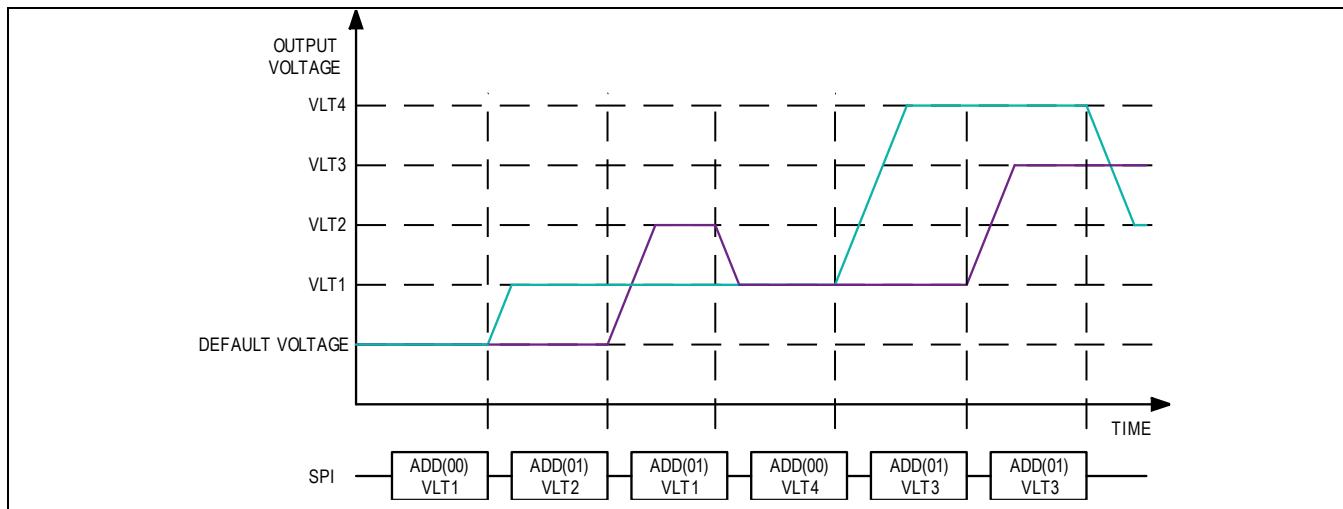



Figure 3. DVS Mode 2, SPI Control

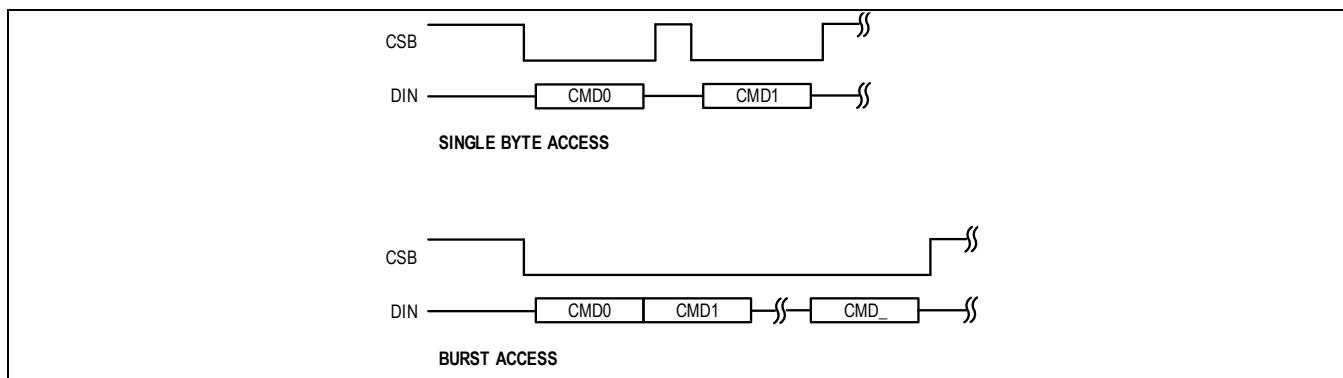



Figure 4. Single-Byte and Burst-Mode SPI Access

### Dedicated DVS Interrupts

To quickly alert a host processor when a DVS transition is complete, the MAX20366 features the option to configure the MPC0–MPC6 pins as dedicated PGOOD interrupts. To configure the dedicated interrupt, write the desired BK\_MPC\_Sel bit(s) in registers 0x70–0x72. Additionally, interrupts signalling changes in the haptic driver, ADC, and USBOk statuses are available as dedicated MPC interrupts as well.

### Buck Converter DVS Options

The MAX20366 buck converters feature two DVS valley current settings that can be selected using the Buck\_DVSCur bits. Both 500mA and 1A settings are available. The 500mA valley-current setting offers a slightly slower transition time while minimizing the voltage overshoot that can occur due to demagnetization of the inductor at the end of the transition. The 1A valley-current setting offers the fastest DVS transition time, but can exhibit overshoot due to inductor demagnetization. Care should be taken that the overshoot is not potentially damaging to downstream devices.

### LDOs

#### LDO Output Capacitance Selection

The LDOs on MAX20366 are designed to operate with a minimum of 1 $\mu$ F of real capacitance on the output. Pay attention to capacitance derating with DC voltage bias and other factors when making your capacitor selection.

#### LDO1 MPC0 Control

Both of the LDOs on MAX20366 can be enabled using an MPC input and are configurable as load switches. The low voltage LDO1 offers an additional, on-the-fly configuration option. Setting the LDO1\_MPC0CNT (see bit: LDO1\_MPC0CNT) bit to 1 configures LDO1 to be controlled by MPC0 based on the state of LDO1\_MPC0CNF (see bit: LDO1\_MPC0CNF). If LDO1\_MPC0CNF = 0, MPC0 changes LDO1 between LDO mode and switch mode. If

LDO1\_MPC0CNF = 1, then MPC0 enables or disables LDO1 in switch mode. See [Table 2](#) for LDO1 MPC0 control detail. Using this MPC control allows the state of LDO1 to be changed much more quickly than through I<sup>2</sup>C writes on the order of microseconds. Rapid control of LDO1 supports applications that require minimal delays. For example, quickly increasing the LDO1 output voltage by changing from LDO mode to switch mode reduces the time required for an application processor to transition from a low-power sleep mode to a higher-voltage active state.

**Table 2. LDO1 MPC0 Control**

| LDO1En | LDO1_MPC0CNF | LDO1_MPC0CNT | MPC0 CONTROL                         |
|--------|--------------|--------------|--------------------------------------|
| 00     | 1            | 1            | MPC0 control switch mode on/off      |
| 01     | 0            | 1            | MPC0 control LDO mode or switch mode |
|        | 1            | 1            |                                      |
| 10     | 1            | 1            | MPC0 control switch mode on/off      |
| 11     | 1            | 1            | MPC0 control switch mode on/off      |

### Internal Switchover for LDO2 Always-On Power

In order to power LDO2 when no battery voltage is present, an internal switchover circuit is available. This switchover circuit requires that the LDO be bypassed at the L2IN node by 1 $\mu$ F of capacitance. The L2IN node must otherwise be left unconnected. The switchover circuit automatically powers the LDO from a regulated voltage off of CHGIN so that it is powered even if no battery is present. This option can be enabled by default at the factory or left disabled by default. Either way, the behavior is programmable by I<sup>2</sup>C after startup. This function is intended to support an output voltage of 1.8V or lower and a load current of 100 $\mu$ A (max) or smaller. The  $R_{ON\_L2IN}$  specification in the electrical characteristics table is used to generate the worst-case output-power capability based on the minimum input voltage from V<sub>CCINT</sub> (see Note 2), maximum output voltage of LDO2, and the maximum on-resistance.

### Load Switches

The MAX20366 load switches allow a system to disconnect loads when inactive to reduce quiescent current. To limit inrush on enabled, each load switch initially behaves as a constant current source with the value  $I_{SW\_START}$ . Current mode remains until the switch output is charged to meet the condition  $V_{SW\_IN} - V_{SW\_OUT} < V_{SW\_PROT}$ . Once the condition is met, the switch turns fully on and connects LSW\_IN to LSW\_OUT. If this condition is not met within the startup time-out  $t_{STUP\_LSW}$ , the switch attempts to turn on after a retry delay  $t_{RTRY\_LSW}$ .

Both switches feature optional voltage protection to prevent overcurrent. A protection comparator monitors the difference between the input and output voltages. If the difference exceeds  $V_{SW\_PROT}$ , the switch is opened to protect downstream circuitry. The comparator can be disabled with the LSW\_LowIq bit to reduce quiescent current if the upstream power supply has its own overcurrent protection.

### Boost Regulator

The MAX20366 includes a high-voltage boost converter that supports output voltages up to 20V for powering display backlight LEDs, piezo buzzers, or other system components requiring high supply voltages. In order to maximize the ease of implementation, the peak current settings of the boost regulator are automatically adjusted to the most optimal settings for a given output voltage when BstlSetLookUpDis = 0 (see bit: BstlSetLookUpDis). If a different peak current setting is desired, the BstlSetLookUpDis = 1 (see bit: BstlSetLookUpDis) setting must be selected. In order to maintain stability, the boost must meet minimum capacitance requirements. [Figure 5](#) below shows the required effective capacitance for a given output voltage to guarantee stability.

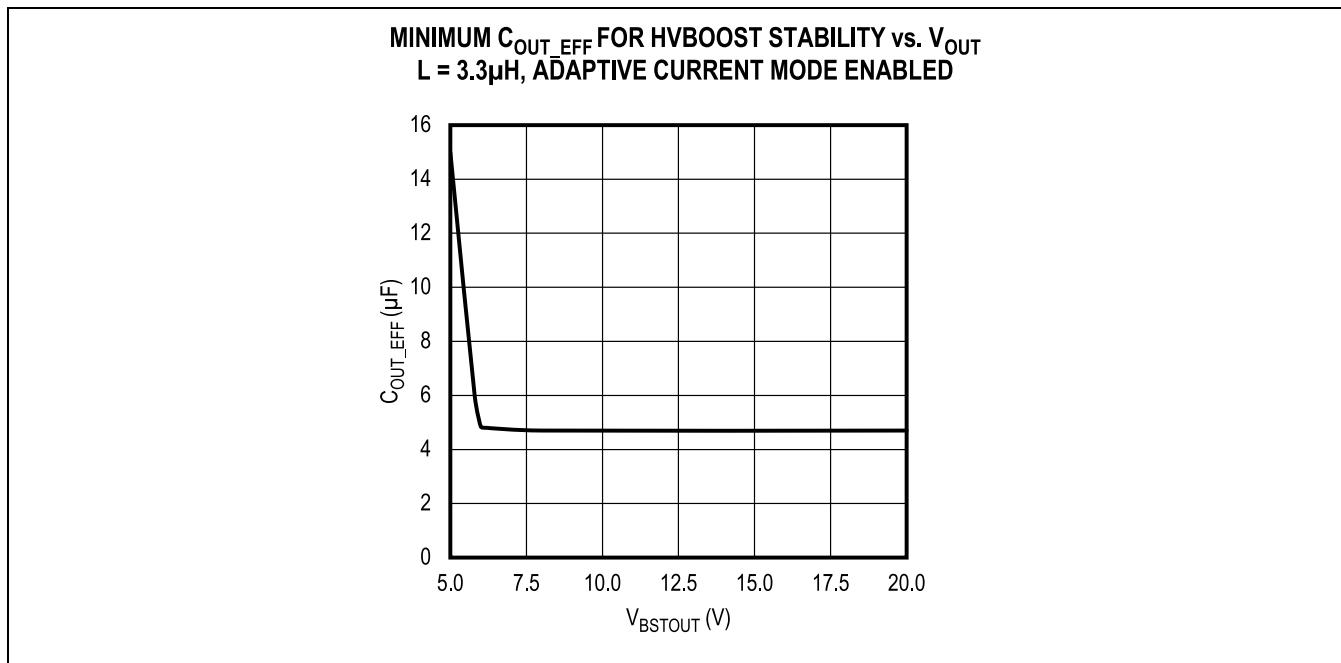



Figure 5. Minimum Effective Capacitance for HVBOOST Stability

### Boost Inductor Selection

Inductor selection for the MAX20366 high-voltage boost converter should be optimized for the intended application. A  $4.7\mu H$  inductor value is recommended for this boost; however,  $3.3\mu H$  and  $2.2\mu H$  inductors can be used for the tradeoff of efficiency. Aside from the inductor value physical size, DC resistance (DCR), maximum average current, and saturation current are the primary factors to consider. The maximum average inductor current is obtained using the following equation:

$$I_{L\_MAX} = \frac{V_{OUT\_MAX} \times I_{OUT\_MAX}}{\eta \times V_{IN\_MIN}}$$

where,

$V_{OUT\_MAX}$  = Maximum expected operating voltage

$I_{OUT\_MAX}$  = Maximum expected output current

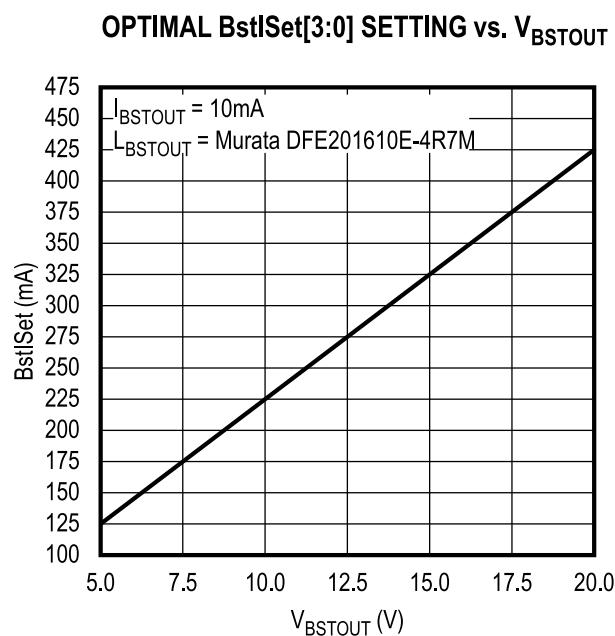
$V_{IN\_MIN}$  = Minimum expected operating input voltage

$\eta$  = Expected worst-case efficiency in the minimum input voltage and maximum output power case (see the [Typical Operating Characteristics](#) section for help in estimating efficiency)

The average inductor current calculated above dictates the required maximum average current for temperature rise on the inductor. In order to determine the required inductor saturation current, the peak current must be calculated. The peak current for this converter can be calculated as:

$$I_{L\_PEAK\_CCM} = I_{L\_MAX} + \frac{1.15 \times BstlSet}{2} + 100mA \quad \text{and} \quad I_{L\_PEAK\_DCM} = BstlSet + 100mA$$

where  $BstlSet$  is the peak current setting set as described in the Boost Inductor Peak Current section (also see bit:  $BstlSet$ ).


When selecting an inductor, one primary factor in achieving high efficiency is the DCR of the inductor. For maximum efficiency, select an inductor with the lowest DCR possible in the required package size. Another factor to consider is magnetic losses. Generally magnetic losses are lower in inductors with larger physical size and/or higher saturation current ratings. In most cases, ferrite inductors should be avoided as they tend to exhibit poor AC characteristics, especially in DCM.

**Boost Capacitor Selection**

The high-voltage boost is designed to operate with a minimum of  $4.8\mu\text{F}$  of real capacitance on the output. Pay attention to capacitance derating with DC voltage bias and other factors when making your capacitor selection.

**Inductor Peak Current Limit**

The boost regulator monitors the maximum value of the inductor current each switching cycle to control the end of the On phase. The peak current can be fixed to the value  $\text{BstlSet}$  ( $\text{BstlAdptEn} = 0$ ) or allowed to change based on load requirements ( $\text{BstlAdptEn} = 1$ ) (see bits:  $\text{BstlSet}$ ,  $\text{BstlAdptEn}$ ). It is strongly recommended to leave  $\text{BstlAdptEn} = 1$  as the setting as this greatly improves load regulation and extends the range over which the converter achieves high efficiency. Peak current is set in the  $\text{BstlSet}$  register. In order to maximize the ease of implementation, the peak current settings of the boost regulator are automatically adjusted to the settings shown in [Figure 6](#) when  $\text{BstlSetLookUpDis} = 0$  (see bit:  $\text{BstlSetLookUpDis}$ ). These are the optimal settings for a given output voltage. If a different peak current setting is desired the  $\text{BstlSetLookUpDis} = 1$  (see bit:  $\text{BstlSetLookUpDis}$ ) setting must be selected; only then will the  $\text{BstlSet}$  register have any effect.



*Figure 6. Optimal Peak Current vs. Voltage Lookup Table*

**Boost Converter and LED0 Closed Loop Operation**

The boost regulator has a feature allowing it to work in closed loop with the LED current sink LED0. The intent is to allow LEDs that are driven by LED0 and the boost to be run as efficiently as possible. When  $\text{LED_BoostLoop} = 1$  (see bit:  $\text{LED_BoostLoop}$ ), the boost voltage is adjusted in order to regulate the voltage at LED0 to the value set by  $\text{LED0_REFSEL}$  (see bit:  $\text{LED0_REFSEL}$ ). This allows the headroom at the LED0 current sink to be minimized, and as a result, the efficiency of driving the LEDs is maximized. The boost regulation circuit can only act to increase the voltage from the initial setting and has a 5V range of adjustability.

**Buck-Boost Regulator**

The MAX20366 buck-boost regulator provides a low-ripple voltage rail that can be used for voltage regulation near or above the battery voltage. The buck-boost is sized to be ideal in powering LEDs used in photoplethysmography (PPG) systems. This includes PPG systems with short wavelength LEDs that require large forward voltage drops. The buck-boost topology as well as the dynamic voltage scaling capabilities allow the user to adjust the output voltage to accommodate as little headroom on the LED current sink as possible to maximize efficiency.

Several other controls help to optimize the efficiency and output noise of the regulator. These include peak current control and automatic peak and valley current adjustment. Additionally, the Buck-Boost regulator can operate in buck-only mode to increase efficiency when  $V_{BBOUT}$  is much lower than  $V_{SYS}$ .

### Buck-Boost Inductor Selection

Inductor selection for the MAX20366 should be optimized for the intended application. A  $2.2\mu\text{H}$  inductor value is required for this buck-boost. Aside from the inductor value physical size, DC resistance (DCR), maximum average current, and saturation current are the primary factors to consider. The maximum average inductor current is obtained using the following equation:

$$I_{L\_MAX} = \frac{V_{OUT\_MAX} \times I_{OUT\_MAX}}{\eta \times V_{IN\_MIN}}$$

where,

$V_{OUT\_MAX}$  = Maximum expected operating voltage

$I_{OUT\_MAX}$  = Maximum expected output current

$V_{IN\_MIN}$  = Minimum expected operating input voltage

$\eta$  = Expected worst-case efficiency in the minimum input voltage and maximum output power case (see the [Typical Operating Characteristics](#) section for help in estimating efficiency).

The average inductor current calculated above dictates the required maximum average current for temperature rise on the inductor. In order to determine the required inductor saturation current, the peak current must be calculated. The worst case peak current for this converter can be calculated as the higher value between:

$$I_{L\_PEAK\_CCM} = I_{L\_MAX} + \frac{1.15 \times (BBstlPSet1 + BBstlPSet2)}{2} + 100\text{mA}$$

and

$$I_{L\_PEAK\_DCM} = 1.15 \times (BBstlPSet1 + BBstlPSet2) + 100\text{mA}$$

If  $I_{L\_PEAK}$  is expected to occur when  $V_{IN}$  is lower than  $V_{OUT}$  by at least 100mV, a less pessimistic assumption can be taken as the lower of the below:

$$I_{L\_PEAK\_CCM} = I_{L\_MAX} + \frac{1.15 \times BBstlPSet1}{2} + 100\text{mA} \text{ and } I_{L\_PEAK\_DCM} = 1.15 \times BBstlPSet1 + 100\text{mA}$$

where BBstlPSet1 and BBstlPSet2 are the peak current settings.

When selecting an inductor, one primary factor in achieving high efficiency is the DCR of the inductor. For maximum efficiency, select an inductor with the lowest DCR possible in the required package size. Another factor to consider is magnetic losses. Generally magnetic losses are lower in inductors with larger physical size and/or higher saturation current ratings. In most cases, ferrite inductors should be avoided as they tend to exhibit poor AC characteristics, especially in DCM. Refer to [Table 3](#) for inductor recommendations for a given optimization parameter.

**Table 3. Recommended Inductors**

| OPTIMIZATION PARAMETERS | VENDOR | PART NUMBER     |
|-------------------------|--------|-----------------|
| Efficiency              | Murata | DFE201610E-2R2M |
| Size                    | Murata | DFE18SBN2R2MEL  |

### Buck-Boost Output Capacitor Selection

The buck-boost is designed to be compatible with small case-size ceramic capacitors. As such, the device has low output capacitance requirements to accommodate the steep voltage derating of 0603 and 0402 (imperial) case-size capacitors. The sample derating curve in [Figure 7](#) shows the required minimum capacitance for the  $V_{BBOUT}$  node.

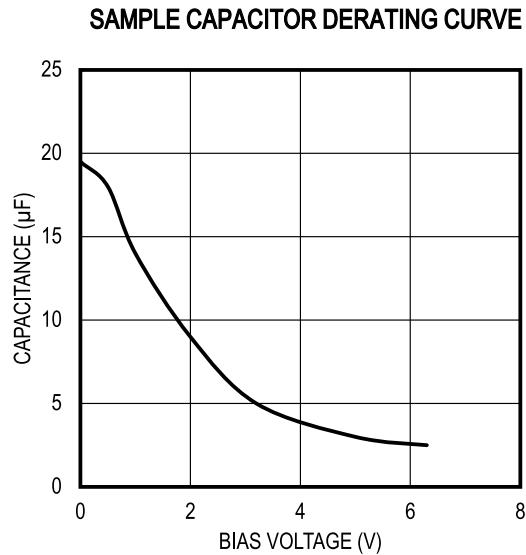



Figure 7. Buck-Boost Required Minimum Output Capacitance

### Architecture and Switching Phases

The buck-boost comprises a typical noninverting buck-boost topology. [Figure 8](#) illustrates the regulator's basic structure with arrows depicting the current flow in each switching phase. Depending on the register settings and input-to-output voltage relationship, the buck-boost sequences through the below switching phases in a particular order to deliver charge to the output. At most two switches are on in any given phase.

- Phase 1: MP1 on, MP2 on. Inductor charges.
- Phase 2: MP1 on, MN2 on. Inductor charges.
- Phase 3: MN1 on, MP2 on. Inductor discharges.
- Phase 4: MN1 on, MN2 on. Freewheeling.

The buck-boost features a frequency comparator to monitor its switching frequency. Switching frequency increases as the load current increases. Under light loads, the buck-boost optimizes its feedback loop for low quiescent current. When load requirements increase the switching frequency to the  $f_{HIGH}$  threshold, the low-quiescent current mode is disabled to improve response time. The transition above this threshold generates a discontinuity in the output-voltage ripple. If the transition occurs at a sensitive current causing noise on the output at a critical frequency, adjustment of the  $f_{HIGH}$  threshold is recommended with the trade-off of a slight decrease in light load efficiency. The  $f_{HIGH}$  threshold is set by the BBFHighSh setting in the BBstCfg1 register (see register: BBstCfg1). Hysteresis prevents the buck-boost regulator from resuming the low-quiescent current mode until the switch frequency decreases to  $f_{HIGH}/4$ .

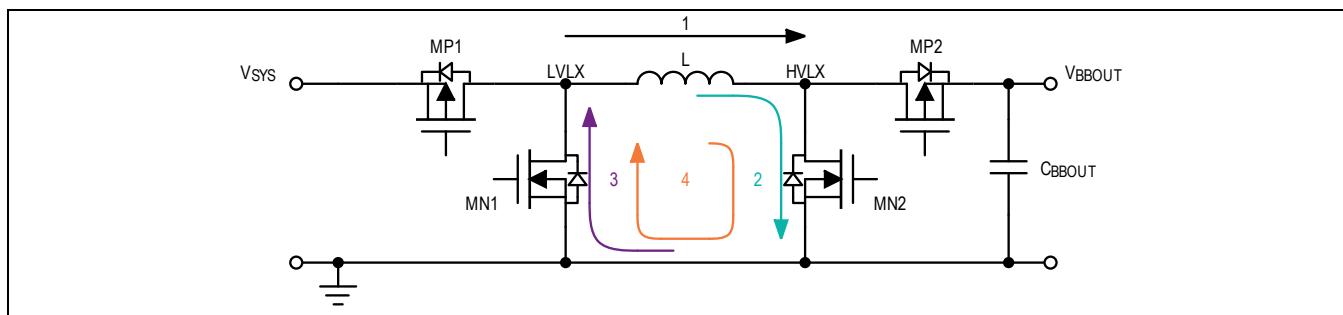



Figure 8. The Buck-Boost Regulator and Switching Phases

**Buck-Boost Mode**

When BBstMode (register 0x41[1]) is 0, the regulator operates in buck-boost mode. The inductor charges in phase 2 up to BBstIPSet1 (register 0x43[3:0]). This minimizes noise when  $V_{SYS}$  is close to  $V_{BBOUT}$ . The buck-boost then transitions to phase 1. If  $V_{SYS} > V_{BBOUT}$ , the inductor continues charging until either the current reaches BBstIPSet1 + BBstIPSet2 (register 0x43[7:4]) or after a 500ns delay. If  $V_{SYS} \leq V_{BBOUT}$ , the buck-boost waits for the 500ns delay to elapse or until the current drops to the valley limit. Next, the regulator enters phase 3 to discharge the inductor current to the valley limit. When the inductor current reaches the valley-current crossing threshold or falls below 0, the regulator freewheels in phase 4 until the next charge phase. When operating in continuous conduction mode (CCM), the buck-boost enters phase 4 for approximately 30ns if BBstZCCmpDis = 1. The buck-boost skips phase 4 when operating in CCM and BBstZCCmpDis = 0. The valley behavior is determined by BBstZCCmpDis (register 0x44[4]). [Figure 9](#) shows the inductor current in buck-boost mode.

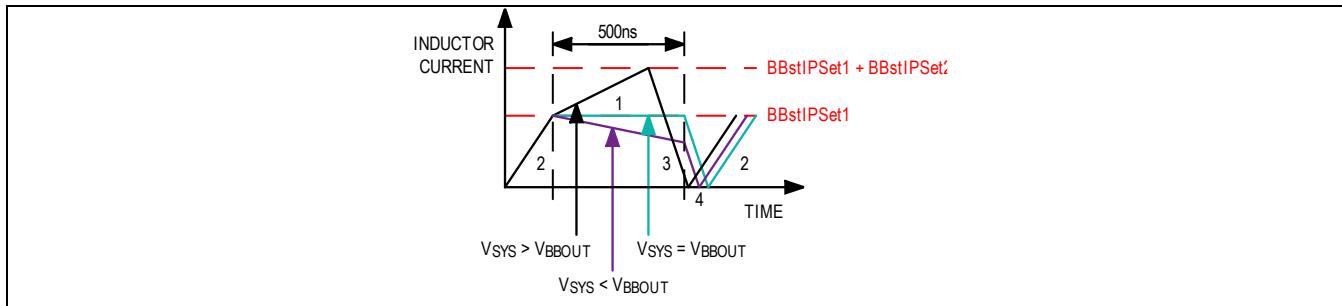



Figure 9. Buck-Boost Inductor Current in Buck-Boost Mode

**Buck-Only Mode**

To maximize efficiency when  $V_{SYS} > V_{BBOUT}$ , the buck-boost regulator has a buck-only mode. When BBstMode = 1, the regulator behaves as a synchronous buck regulator. The inductor charges in phase 1 until the inductor current reaches BBstIPSet1. The regulator then transitions to phase 3 to provide a path to deliver the inductor current to the output. [Figure 10](#) shows the inductor current in buck-only mode.

Buck-only mode reduces switching losses present in buck-boost mode. Buck-only mode should be used when  $V_{BBOUT}$  is always less than  $V_{SYS}$  to maximize efficiency.

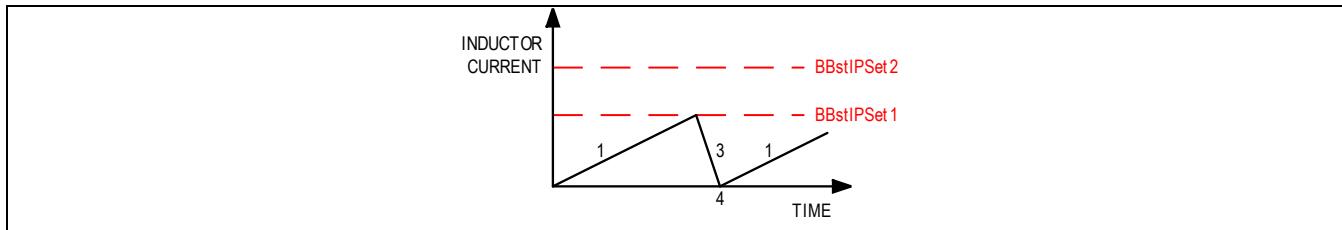



Figure 10. Buck-Boost Inductor Current in Buck-Only Mode

**Inductor Peak and Valley Current Limits**

The buck-boost regulator monitors the maximum and minimum values of the inductor current. Peak and valley currents can be fixed to the values in BBstIPSet\_ and 0mA, respectively (see bits: BBstIPSet1, BBstIPSet2), or allowed to change based on load requirements if BBstAdptDis = 0 (see bit: BBstAdptDis).

Peak currents are set in the BBstIPSet register (see register: BBstIPSet). BBstIPSet1 controls the peak current when  $V_{SYS} < V_{BBOUT}$  and when the regulator is in buck-only mode. BBstIPSet2 sets a secondary current limit when  $V_{SYS} > V_{BBOUT}$  in buck-boost mode. The total inductor current limit when  $V_{SYS} > V_{BBOUT}$  is BBstIPSet1 + BBstIPSet2. The buck-boost regulator transitions from phase 1 to phase 3 if the inductor current reaches BBstIPSet1 + BBstIPSet2 or if the 500ns timeout has elapsed. Minimizing the difference between BBstIPSet1 and BBstIPSet2 reduces the output ripple, but decreases efficiency. Care must be taken to optimize the peak current settings to keep a low output ripple while maximizing efficiency. [Figure 11](#) presents the safe operating area of BBstIPSet2 with respect to BBstIPSet1. Selecting values lower than those of [Figure 11](#) for a given value can reduce efficiency and increase output ripple. [Figure 12](#) is a graphical guide to selecting combinations of BBstIPSet1 and BBstIPSet2 to maximize efficiency for specific BBstVSet values.

In order to maximize the ease of implementation, the peak current settings of the buck-boost regulator are automatically adjusted to the settings shown in [Figure 12](#) for a given output voltage when BBstlSetLookUpDis = 0. If a different peak current setting is desired, the BBstlSetLookUpDis = 1 setting must be selected; only then will BBstlIPSet1 and BBstlIPSet2 have an effect (see bit: BBstlSetLookUpDis). When BBstlAdptDis = 0 (see bit: BBstlAdptDis), the regulator automatically increases the peak current limits when the load increases to improve load regulation and efficiency at high loads. When BBstZCCmpDis = 1 (see bit: BBstZCCmpDis), the buck-boost operates with peak and valley current limits. In discontinuous conduction mode (DCM), the valley limit is 0mA and it acts as a zero crossing. In CCM, the peak and valley limits are automatically adjusted by the voltage loop if BBstlAdptDis = 0 (see bit: BBstlAdptDis). However, when BBstZCCmpDis = 0 (see bit: BBstZCCmpDis), the buck-boost operates with peak, valley, and zero crossing current limits. The zero crossing limit is fixed at 0mA while the peak and valley limits are adjusted by the voltage loop if BBstlAdptDis = 0 (see bit: BBstlAdptDis).

In DCM, the valley current limit is negative so the end of phase 1 or 3 is determined by the zero-crossing current. In CCM, the valley current limit is  $\geq 0$ mA if BBstZCCmpDis = 0 (see bit: BBstZCCmpDis). The end of phase 1 or 3 is thus determined by the valley current comparator.

Disabling the zero current crossing comparator reduces the buck-boost output ripple. Enabling the comparator improves EMI in CCM by removing the phase 4 stage in CCM mode that is otherwise present when BBstZCCmpDis = 1 (see bit: BBstZCCmpDis).

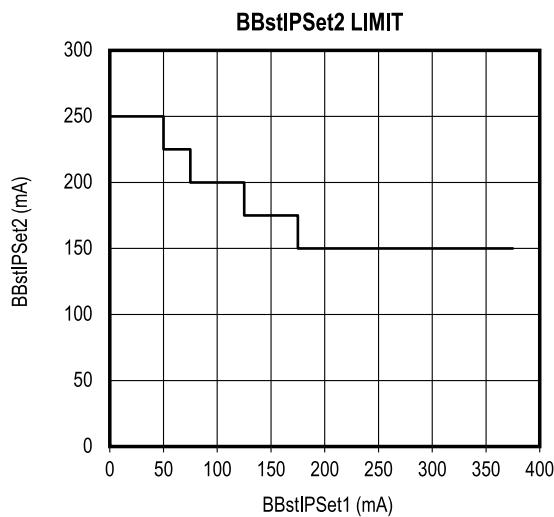



Figure 11. Minimum BBstlIPSet2 Limit for a Given BBstlIPSet1 Setting

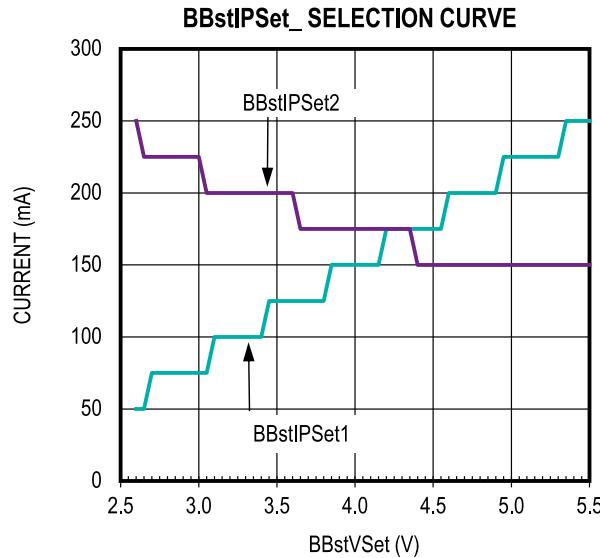



Figure 12. Recommended BBstIPSet1 and BBstIPSet2 Settings

### Buck Regulators

The MAX20366 includes three buck regulators: two low-power 400mA bucks and one high-power 600mA buck. All of the buck regulators operate in a pulse-frequency modulation (PFM) scheme with peak and valley current control. At light loads, the buck converters operate in discontinuous conduction mode (DCM) to maximize efficiency. The buck regulators have minimum and maximum capacitance requirements. The effective output capacitance of each buck should fall within these limits to guarantee stable operation. [Figure 13](#) illustrates the minimum and maximum capacitance for each output voltage setting.

### Buck Inductor Selection

Inductor selection for the MAX20366 should be optimized for the intended application. A 2.2 $\mu$ H inductor value is strongly preferred for these buck converters. A 1 $\mu$ H inductor is acceptable, but results in decreased efficiency with only marginal load transient response benefits. Aside from the inductor-value physical size, DC resistance (DCR), maximum average current, and saturation current are the primary factors to consider. The maximum average inductor current is simply equal to the maximum output current expected in the application.

The average inductor current calculated above dictates the required maximum average current for temperature rise on the inductor. In order to determine the required inductor saturation current, the peak current must be calculated. The peak current for this converter can be calculated as the higher value between the following equations:

$$I_{L\_PEAK\_CCM} = I_{L\_MAX} + \frac{1.15 \times \text{BuckxlSet}}{2} + 100\text{mA} \text{ and } I_{L\_PEAK\_DCM} = 1.15 \times \text{BuckxlSet} + 100\text{mA}$$

Where BuckxlSet is the peak current setting for the relevant buck converter and  $I_{L\_MAX}$  is the maximum expected load current on the converter.

When selecting an inductor, one primary factor in achieving high efficiency is the DCR of the inductor. For maximum efficiency, select an inductor with the lowest DCR possible in the required package size. Another factor to consider is magnetic losses. Generally, magnetic losses are lower in inductors with larger physical size and/or higher saturation current ratings. In most cases, ferrite inductors should be avoided as they tend to exhibit poor AC characteristics, especially in DCM. Refer to [Table 4](#) for inductor recommendations for a given optimization parameter.

**Table 4. Recommended Inductors Buck**

| OPTIMIZATION PARAMETERS | VENDOR | PART NUMBER     |
|-------------------------|--------|-----------------|
| Efficiency              | Murata | DFE201610E-2R2M |

|      |        |                |
|------|--------|----------------|
| Size | Murata | DFE18SBN2R2MEL |
|------|--------|----------------|

### Buck Output Capacitor Selection

The bucks are designed to be compatible with small case-size ceramic capacitors. As such, the device has low output capacitance requirements to accommodate the steep voltage derating of 0603 and 0402 (imperial) case-size capacitors. Additionally, there is a maximum output capacitance requirement to maintain stability. The required minimum and maximum capacitance requirements in [Figure 13](#) show the required capacitance for the BK\_OUT node.

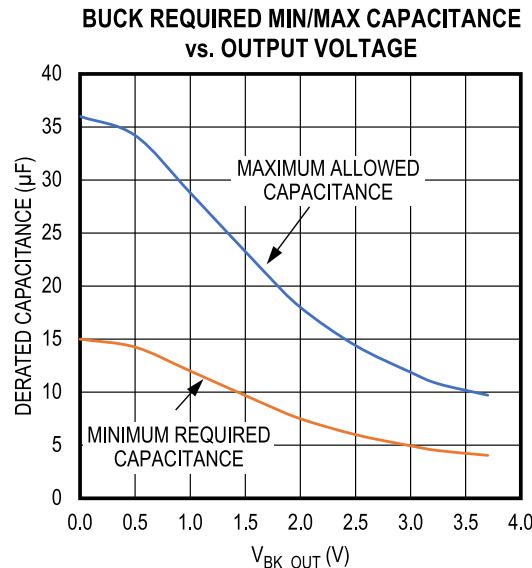



Figure 13. Buck Required Minimum and Maximum Capacitance to Guarantee Stability

### Inductor Peak and Valley Current Limits

When a buck regulator is in DCM, the inductor's minimum current threshold ( $I_{VALLEY}$ ) is 0mA and the inductor's peak current threshold ( $I_{PEAK}$ ) is set automatically to the optimal value per [Figure 14](#) by the regulator's automatic lookup table or by the Buck\_ISet register (see bits: Buck1ISet, Buck2ISet, Buck3ISet) if Buck\_ISetLookUpDis = 1 (see bits: Buck1ISetLookUpDis, Buck2ISetLookUpDis, Buck3ISetLookUpDis). In this mode, as the load increases the switching frequency also increases in accordance with the PFM control scheme.

As the load continues to increase, the switching frequency of the buck regulator eventually reaches roughly 1.1MHz. At this point, if the buck regulator adaptive current setting is enabled (Buck\_ISetAdptDis = 0) (see bits: Buck1ISetAdptDis, Buck2ISetAdptDis, Buck3ISetAdptDis),  $I_{PEAK}$  and  $I_{VALLEY}$  shifts upward maintaining a roughly constant offset between themselves (set by the inductor peak current setting described in the first paragraph above). Once the valley current begins to increase, the regulator is operating in continuous conduction mode (CCM) as the inductor is no longer discharged completely to 0mA. The slope of the switching frequency flattens and rises only marginally for the remainder of the load range. This control scheme seeks to balance both the ohmic losses arising from the peak current level and the switching losses incurred by driving the gates of the FETs, extending load regulation and high efficiency over a wider range of loads.

If the adaptive current setting is disabled (Buck\_ISetAdptDis = 1) (see bits: Buck1ISetAdptDis, Buck2ISetAdptDis, Buck3ISetAdptDis), the switching frequency continues to rise until the regulator reaches critical conduction mode. As the load increases past critical conduction mode, the switching frequency saturates and the buck regulator behaves as a current source. This results in increased load regulation error at the output of the regulator.

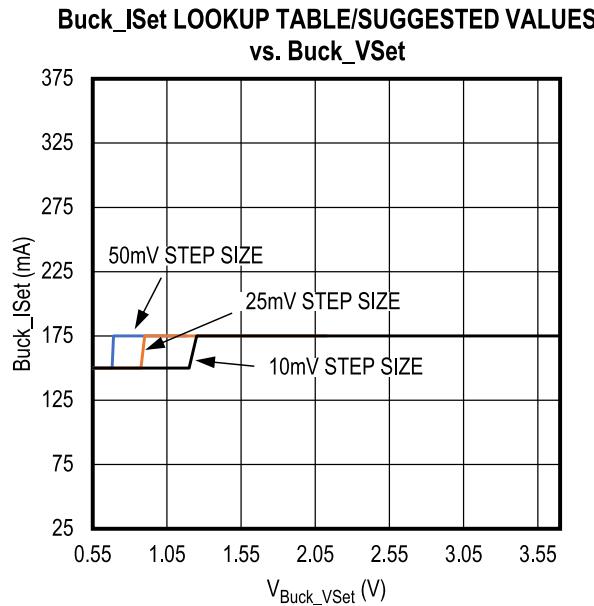



Figure 14. Optimal Peak Current Setting vs. Output Voltage

#### Adjustments to Manipulate Buck Switching Frequency

In some applications, the buck output-voltage ripple can generate noise at frequencies that interfere with sensitive analog circuitry. The adjustable peak current of the MAX20366 provides the flexibility to shift the ripple frequency out of the sensitive frequency ranges when the regulator is in DCM mode. Increasing the peak current delivers more charge to the output capacitor in a switching cycle, thereby decreasing the number of times the output capacitor requires charging to supply the same load. In this case, the output ripple frequency decreases for a given load current and shifts below sensitive, high-frequency ranges. Conversely, decreasing the peak current increases the switching frequency for a given load current to prevent injecting noise in sensitive, low-frequency ranges.

Note that increasing the peak current results in higher ohmic losses, which can lower efficiency and increased output-voltage ripple amplitude. Decreasing the peak current incurs higher switching losses, which can lower the efficiency. Refer to the [Typical Operating Characteristics](#) section.

In order to maximize the ease of implementation, the peak current settings of the buck regulator can be automatically adjusted to the optimal settings for a given output voltage. When Buck\_ISetLookUpDis = 0 (see bits: Buck1ISetLookUpDis, Buck2ISetLookUpDis, Buck3ISetLookUpDis), the MAX20366 updates the peak current settings when the output voltage of the buck regulator is changed in any DVS mode. If an application requires independent peak current control, setting Buck\_ISetLookUpDis = 1 (see bits: Buck1ISetLookUpDis, Buck2ISetLookUpDis, Buck3ISetLookUpDis) disables the automatic update function.

#### High Power Buck Converter with LDO Mode

The charging phase of a buck regulator delivers energy to the inductor by creating a path from the regulator input to its output. Current through the inductor rises according to the equation:

$$\Delta I = \frac{V_{IN} - V_{OUT}}{L} \times \Delta t$$

Because the inductor current must ramp to a fixed value (i.e.,  $\Delta I$  is fixed and is the peak current limit), as the input voltage approaches the output voltage, the time required for the inductor to reach its peak current ( $\Delta t$ ) increases. This causes the regulator output-voltage ripple amplitude on the output of the converter to grow as the  $V_{IN} - V_{OUT}$  value decreases, reducing the efficiency and increasing the output ripple noise.

To avoid an excessively large  $\Delta t$ , the high-current Buck3 regulator of the MAX20366 automatically transitions into an LDO operation mode when  $V_{IN} - V_{OUT}$  reaches  $V_{IN\_BOUT\_DRPOUT\_TH\_F}$ . This eliminates the performance reduction when

Buck3 operates at low buck voltage ratios. The LDO mode also improves performance over a standard buck architecture since LDOs are efficient and maintain noise immunity at low step-down ratios. Transitions into and out of LDO mode have substantial hysteresis to prevent oscillations when entering and exiting LDO mode.

### Charge Pump

A low-quiescent current 5V charge pump is included in MAX20366. For proper operation a 22nF (min), 33nF (max) capacitor should be connected between the CPP and CPN bumps.

### Power Switch and Reset Control

The MAX20366 features a power switch that provides the ability to execute a reset sequence or to turn off the main system power and enter OFF or SEAL mode to extend battery life. In OFF mode, the SYS node and all PMIC outputs are turned off except LDO2 when it is configured as always on, either by the LDO2Seq (see bit: LDO2Seq) or when it is kept on before entering OFF mode. In SEAL mode, all regulators and the SYS node are turned off. SEAL mode is the lowest quiescent current mode of the MAX20366 and maximizes battery life when a product cannot be used for an extended period, such as when shipping from the factory to a retailer. More details on the power modes can be found in the [PMIC Power Modes](#) section.

Shutdown and reset events are triggered by an external control using the power function (PFN) control inputs, I<sup>2</sup>C commands, or if other conditions are met. The behavior of the PFN pins is preconfigured to support one of the multiple types of wearable application cases. [Table 5](#) describes the behavior of the PFN1 and PFN2 pins based on the PwrRstCfg bits (see PwrRstCfg in [Table 5](#)), while [Figure 15](#) through [Figure 23](#) show the state diagrams associated with each mode.

A soft-reset sends a 10ms pulse on RST and either leaves register settings unchanged or resets them to their default values depending on the device version (see bit: SftRstCfg). A hard reset on any device initiates a complete power-on reset (POR) sequence.

Devices with HrvEn = 0 enter SEAL mode on cold boot (battery attach with no CHGIN present). Devices with HrvEn = 1 enter battery recovery (BR) mode on cold boot. When the MAX20366 is in ON mode, it enters OFF/SEAL/BR mode after receiving PWR\_OFF\_CMD/PWR\_SEAL\_CMD/PWR\_BR\_CMD I<sup>2</sup>C command in the PwrCmd register (see register: PwrCmd), respectively. When the device detects a valid PFN signal it enters OFF mode or BR mode based on the PwrRstCfg and HrvEn setting.

The MAX20366 exits OFF/SEAL mode and turns the main power back on when there is a qualified PFN1 signal for PwrRstCfg settings where PFN1 is KIN, or when a valid voltage is applied to CHGIN. In the powered-on state, the SYS node is enabled and other functions can be controlled through the I<sup>2</sup>C registers. [Figure 24](#) and [Figure 25](#) illustrate a complete boot sequence coming out of OFF/SEAL mode.

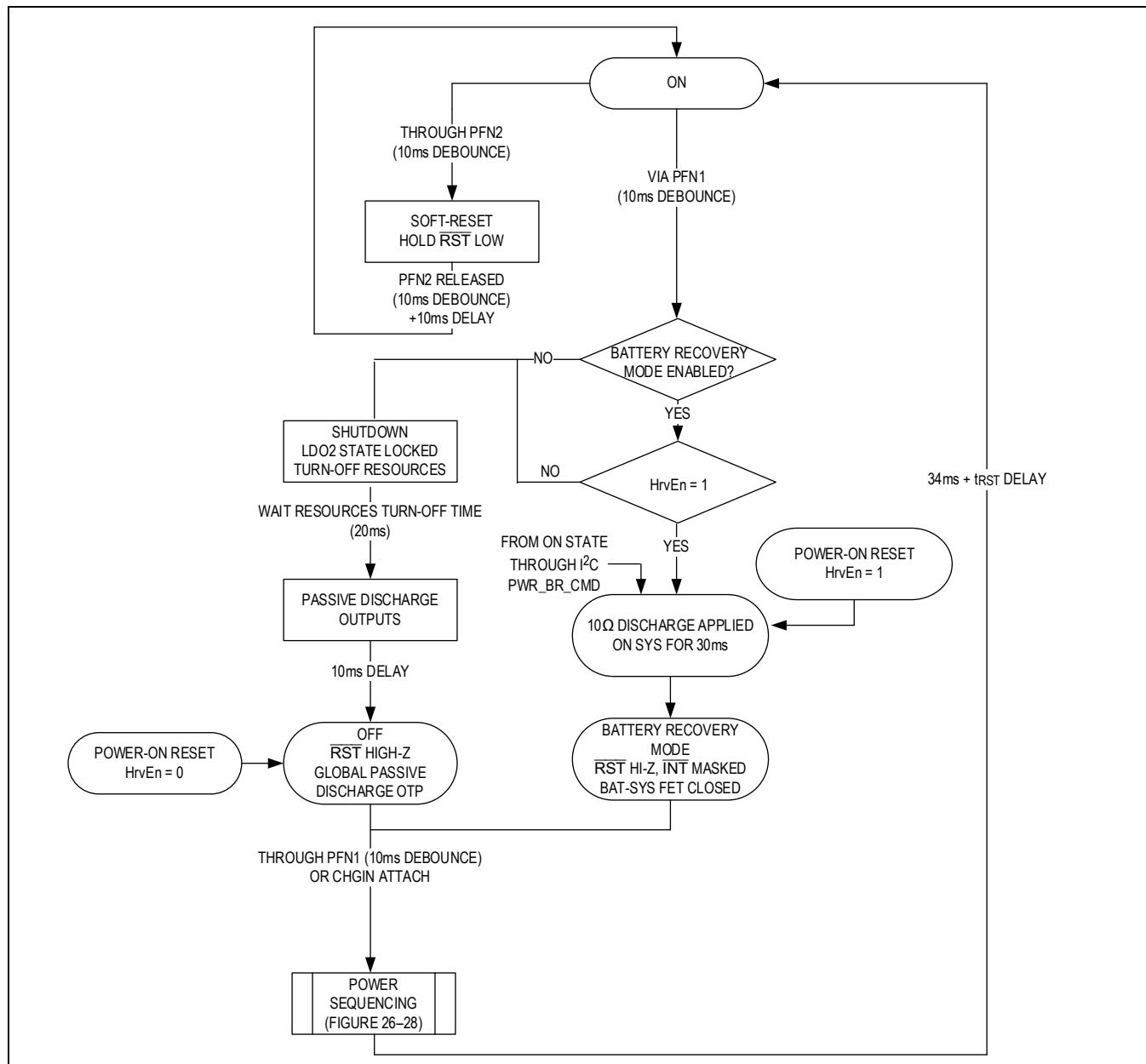



Figure 15. PwrRstCfg 0000, 0001

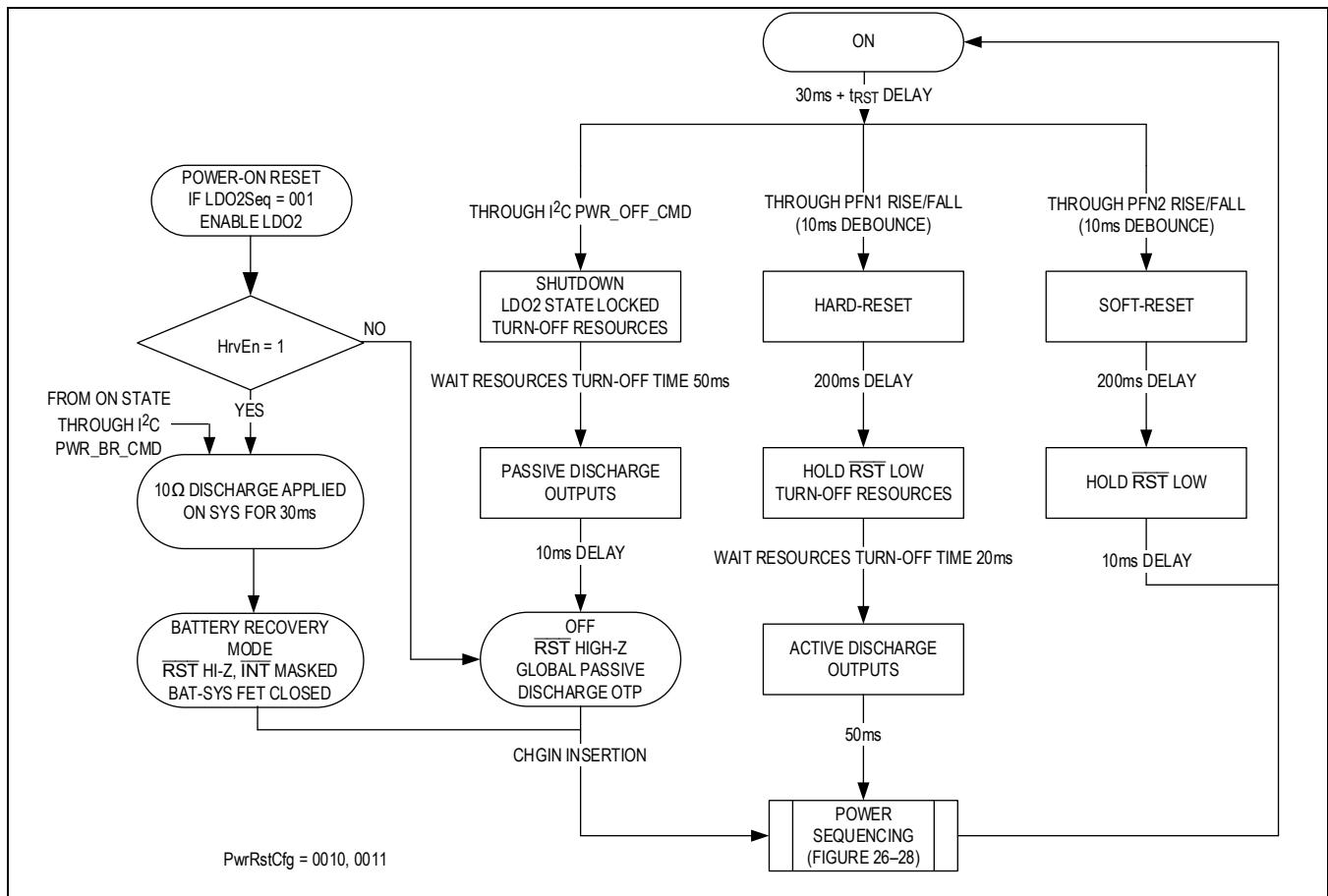



Figure 16. PwrRstCfg 0010, 0011

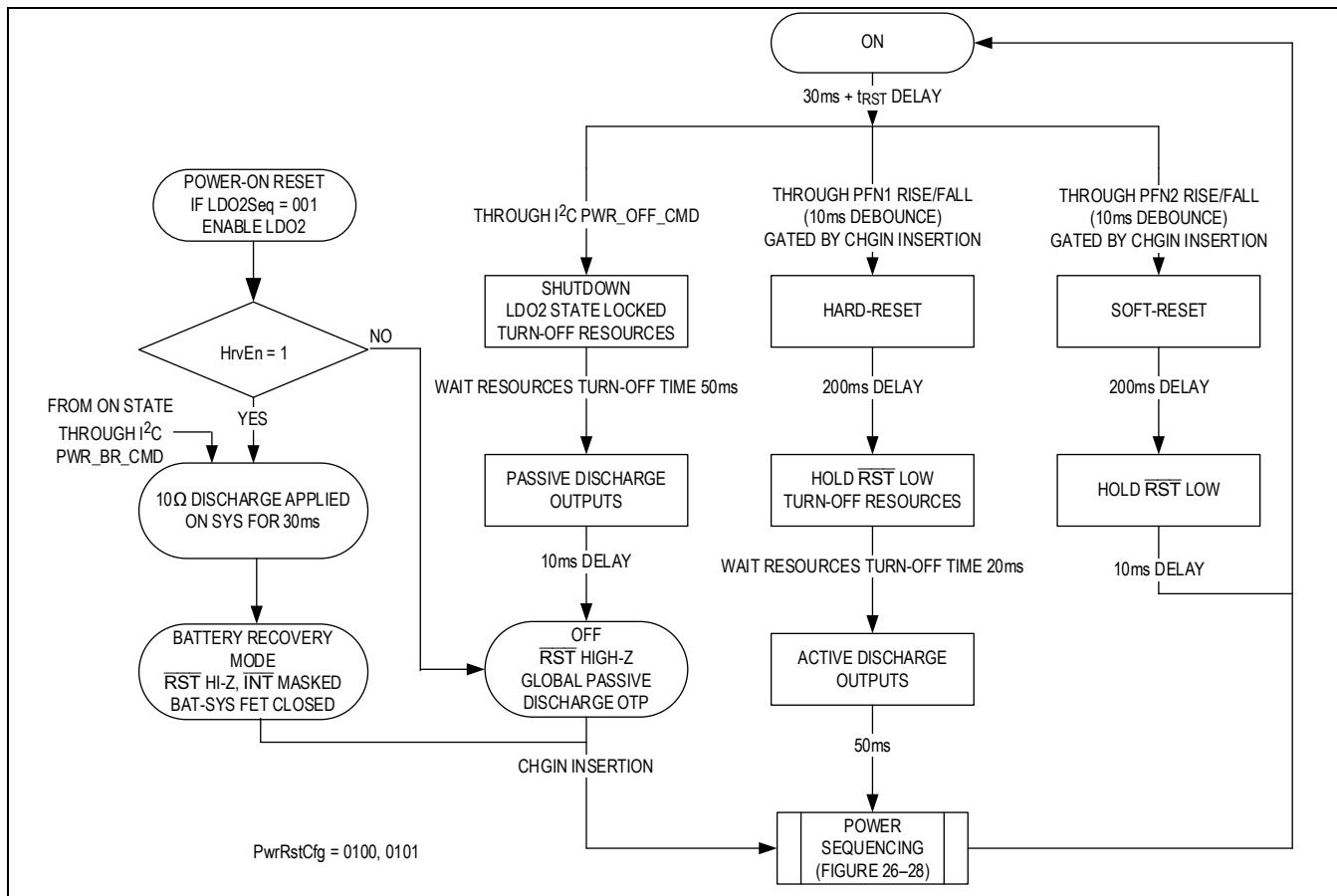



Figure 17. PwrRstCfg 0100, 0101

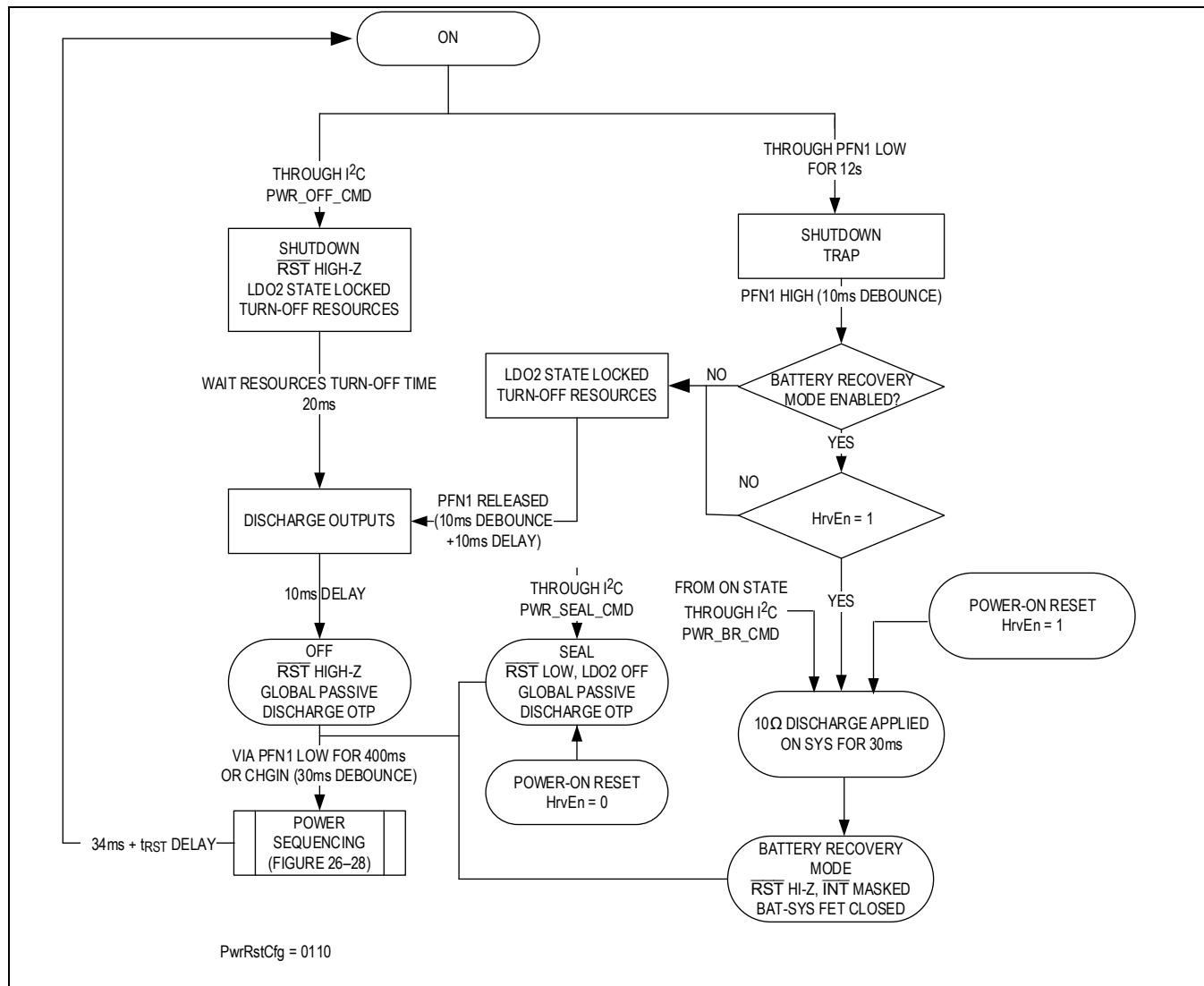



Figure 18. PwrRstCfg 0110

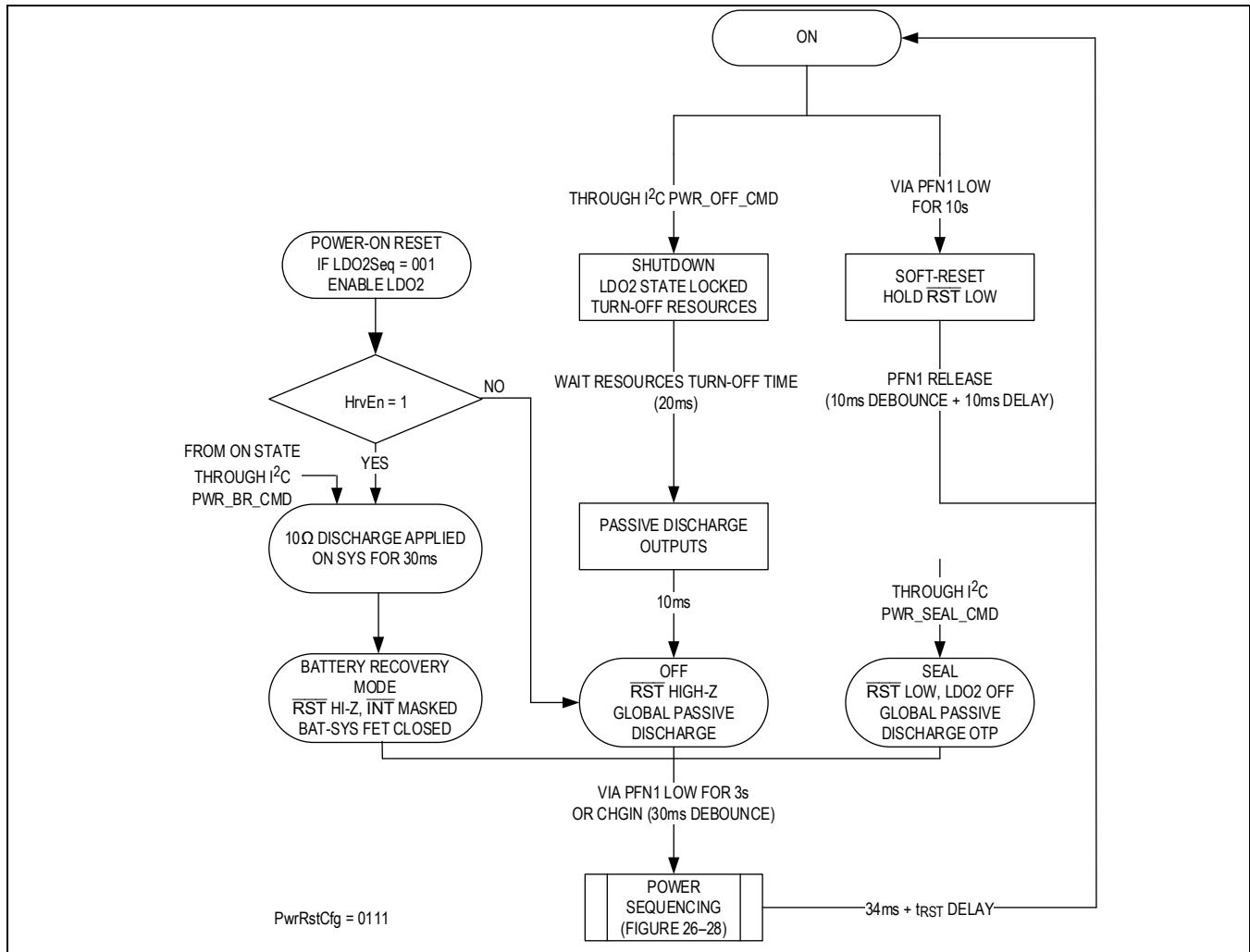



Figure 19. PwrRstCfg 0111

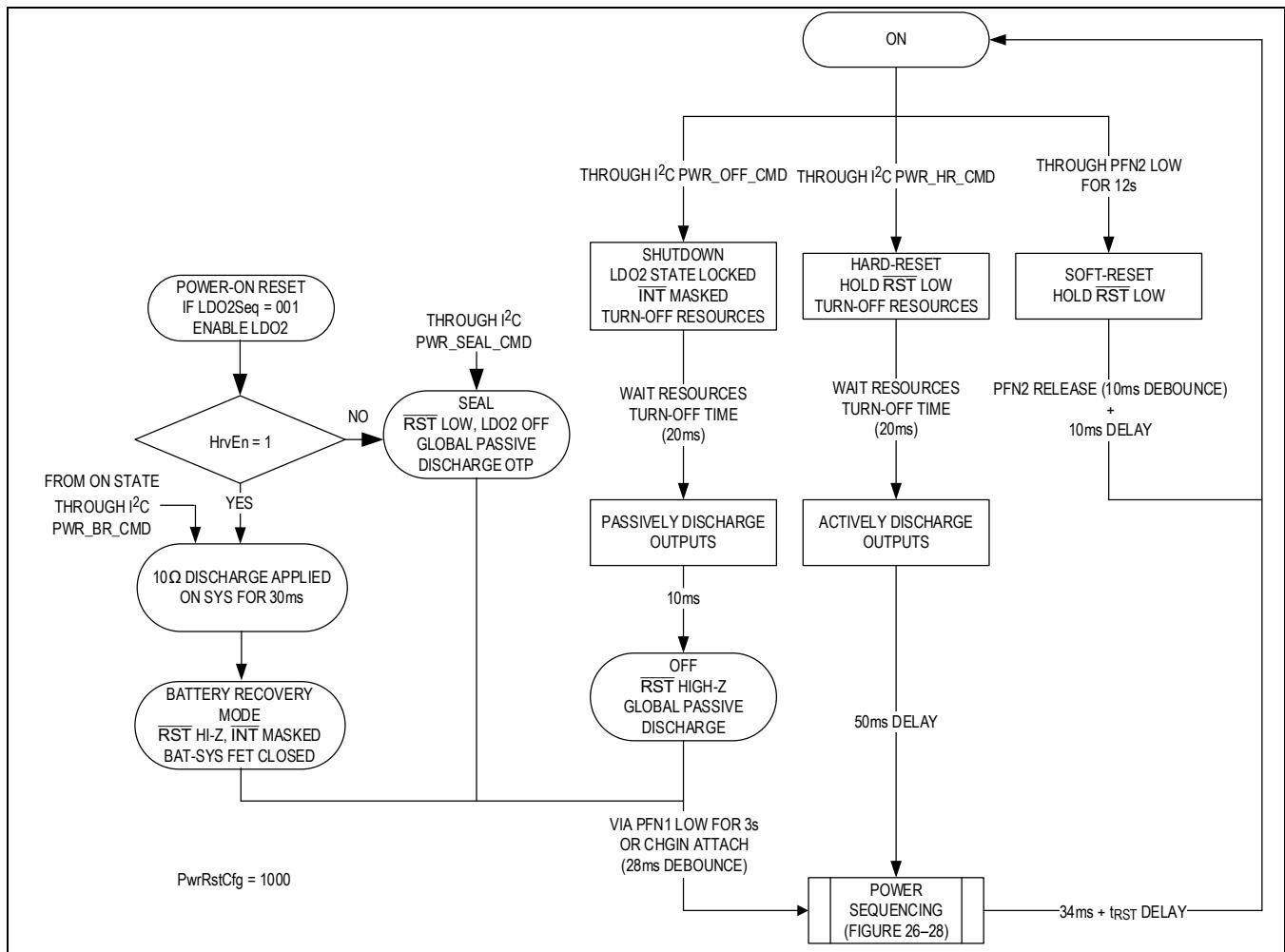



Figure 20. PwrRstCfg 1000

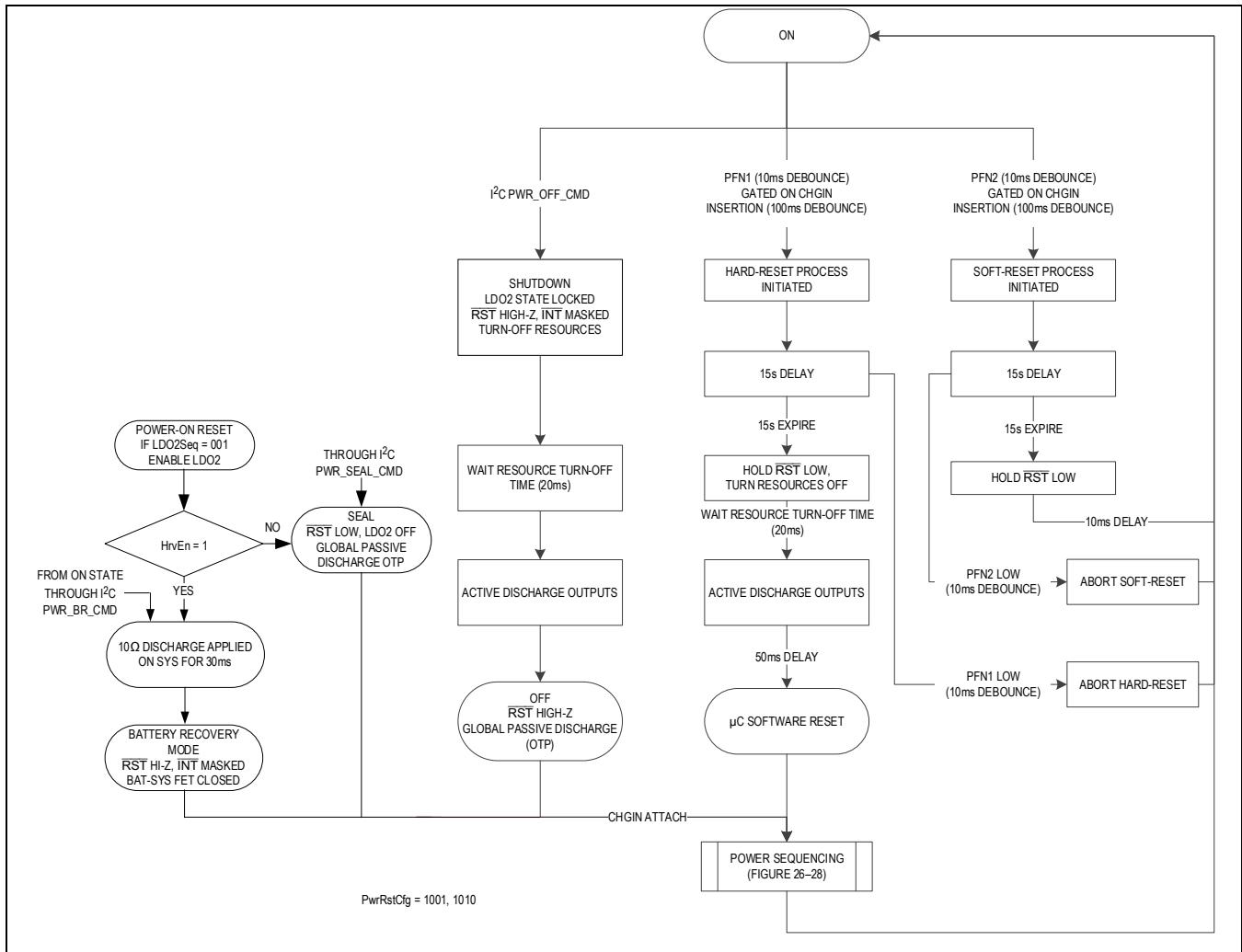



Figure 21. PwrRstCfg 1001, 1010

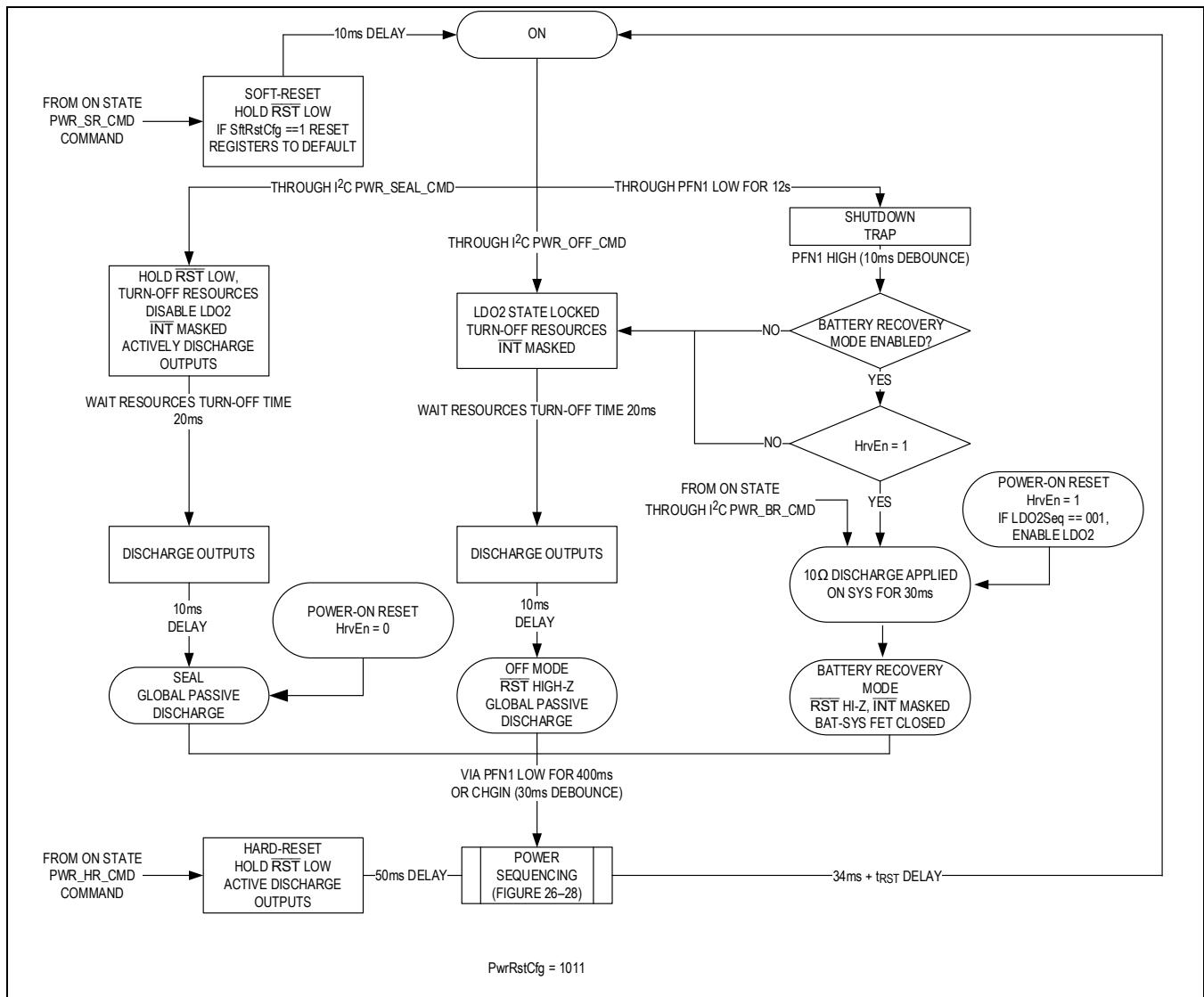



Figure 22. PwrRstCfg 1011

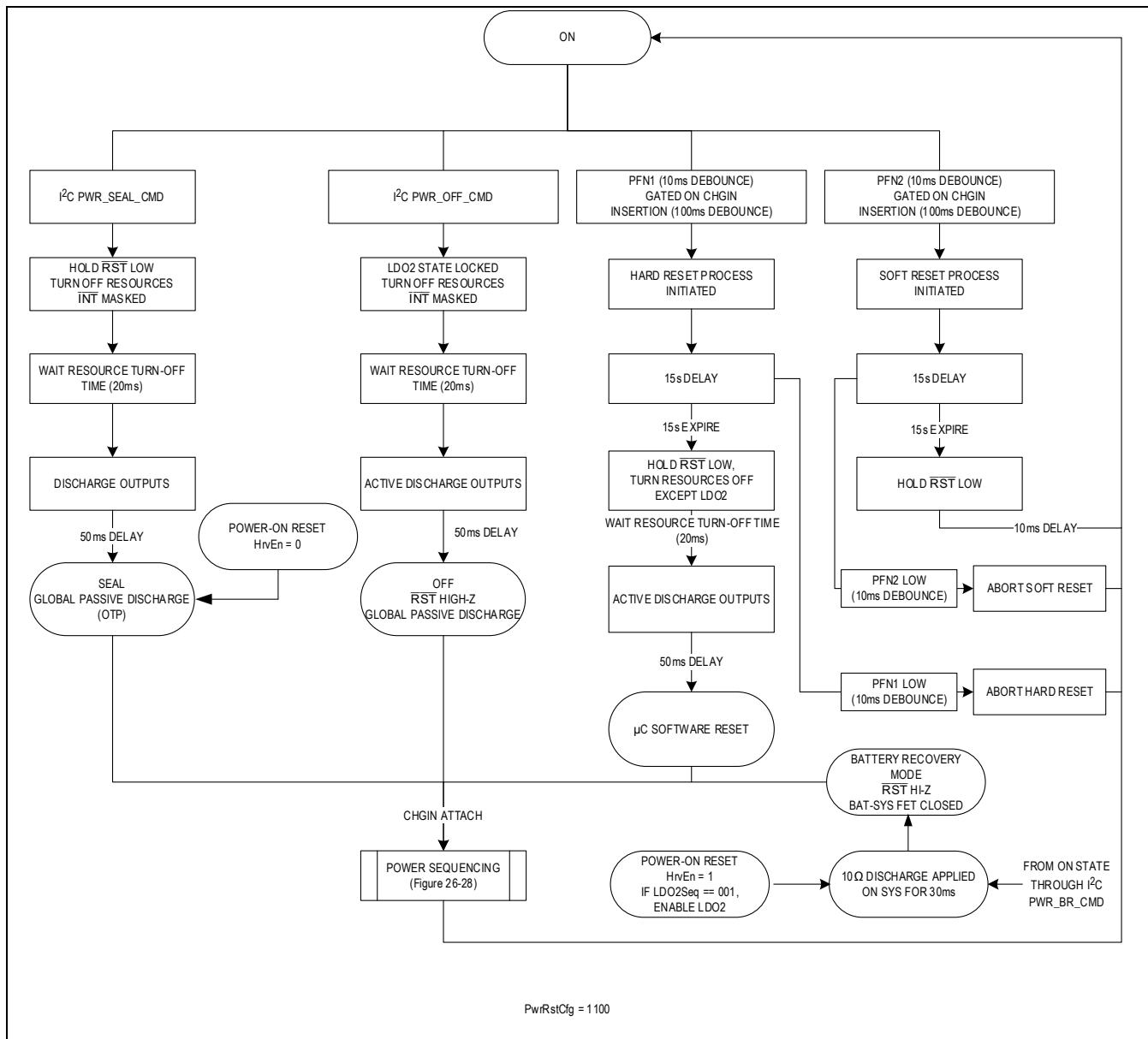



Figure 23. PwrRstCfg 1100

Table 5. PwrRstCfg Settings

| PwrRstCfg[3:0] | FIGURE                    | MODE NAME | BEHAVIOR                                                                                                                                                                                                                       |
|----------------|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000           | <a href="#">Figure 15</a> | ON/OFF    | ON/OFF Mode with 10ms Debounce. PFN1 is the active-high ON/OFF control input. PFN2 is the active-low soft-reset input.                                                                                                         |
| 0001           | <a href="#">Figure 15</a> | ON /OFF   | ON/OFF Mode with 10ms Debounce. PFN1 is the active-low ON/OFF control input. PFN2 is the active-low soft-reset input.                                                                                                          |
| 0010           | <a href="#">Figure 16</a> | AON       | Always-On Mode. A rising edge on PFN1 generates a hard-reset after a 200ms delay. A rising edge on PFN2 generates a soft-reset after a 200ms delay. The device can only enter the OFF state by writing to the PwrCmd register. |

|      |                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|---------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0011 | <a href="#">Figure 16</a> | AON                            | Always-On Mode. A falling edge on PFN1 generates a hard-reset after a 200ms delay. A falling edge on PFN2 generates a soft-reset after a 200ms delay. The device can only enter the OFF state by writing to the PwrCmd register.                                                                                                                                                                                                                  |
| 0100 | <a href="#">Figure 17</a> | CR High                        | Always-On Mode. Holding PFN1 high during a CHGIN insertion generates a hard-reset after a 200ms delay. Holding PFN2 high during a CHGIN insertion triggers a soft-reset after a 200ms delay. The device can only enter the OFF state by writing to the PwrCmd register.                                                                                                                                                                           |
| 0101 | <a href="#">Figure 17</a> | CR Low                         | Always-On Mode. Holding PFN1 low during a CHGIN insertion generates a hard-reset after a 200ms delay. Holding PFN2 low during a CHGIN insertion triggers a soft-reset after a 200ms delay. The device can only enter the OFF state by writing to the PwrCmd register.                                                                                                                                                                             |
| 0110 | <a href="#">Figure 18</a> | $\overline{KIN}$               | ON/OFF Through Key Presses. PFN1 is the active-low $\overline{KIN}$ button. PFN2 is the open-drain $KOUT$ output, which buffers the $\overline{KIN}$ input. The device enters on mode through a short (400ms) $\overline{KIN}$ press or a CHGIN insertion. The device enters OFF mode through a long (> 12s) $\overline{KIN}$ press or through the PwrCmd register.                                                                               |
| 0111 | <a href="#">Figure 19</a> | CSR1                           | On/Reset Through Key Presses. PFN1 is the active-low $\overline{KIN}$ button. PFN2 is the open-drain $KOUT$ output, which buffers the $\overline{KIN}$ input. The device enters on mode through a long (> 3s) $\overline{KIN}$ press or a CHGIN insertion. A long (> 12s) $\overline{KIN}$ press generates a soft-reset. The device can only enter the off state by writing to the PwrCmd register.                                               |
| 1000 | <a href="#">Figure 20</a> | CSR2                           | On/Reset Through Key Presses. PFN1 is the active-low $\overline{KIN}$ button. The device enters on mode through a long (> 3s) $\overline{KIN}$ press or a CHGIN insertion. A long (> 12s) PFN2 press generates a soft-reset. The device can only enter the off-state by writing to the PwrCmd register.                                                                                                                                           |
| 1001 | <a href="#">Figure 21</a> | Custom CR High                 | Always-On Mode. The device can only enter the on state through a CHGIN insertion. Holding PFN1 high during a CHGIN insertion generates a hard-reset after a 15 second delay. If PFN1 is brought low during this delay (10ms debounce), the hard-reset is aborted. Holding PFN2 high during a CHGIN insertion generates a soft-reset after a 15 second delay. If PFN2 is brought low during this delay (10ms debounce), the hard-reset is aborted. |
| 1010 | <a href="#">Figure 21</a> | Custom CR Low                  | Always-On Mode. The device can only enter the on state through a CHGIN insertion. Holding PFN1 low during a CHGIN insertion generates a hard-reset after a 15 second delay. If PFN1 is brought high during this delay (10ms debounce), the hard-reset is aborted. Holding PFN2 low during a CHGIN insertion generates a soft-reset after a 15 second delay. If PFN2 is brought high during this delay (10ms debounce), the hard-reset is aborted. |
| 1011 | <a href="#">Figure 22</a> | $\overline{KIN}$ with OFF/SEAL | ON/OFF Through Key Presses with OFF/SEAL. PFN1 is the active-low $\overline{KIN}$ button. PFN2 is the open-drain $KOUT$ output, which buffers the $\overline{KIN}$ input. The device enters on mode through a short (400ms) $\overline{KIN}$ press or a CHGIN insertion. The device enters OFF mode through a long (> 12s) $\overline{KIN}$ press or through the PwrCmd register.                                                                 |
| 1100 | <a href="#">Figure 23</a> | Custom CR High with OFF/SEAL   | Always-On Mode with OFF/SEAL. The device can only enter the on-state through a CHGIN insertion. Holding PFN1 high during a CHGIN insertion generates a hard-reset after a 15-second delay. If PFN1 is brought low during this delay (10ms debounce), the hard-reset is aborted. Holding PFN2 high during a CHGIN insertion                                                                                                                        |

|           |   |     |                                                                                                                                      |
|-----------|---|-----|--------------------------------------------------------------------------------------------------------------------------------------|
|           |   |     | generates a soft-reset after a 15-second delay. If PFN2 is brought low during this delay (10ms debounce), the hard-reset is aborted. |
| 1101-1111 | — | RFU | —                                                                                                                                    |

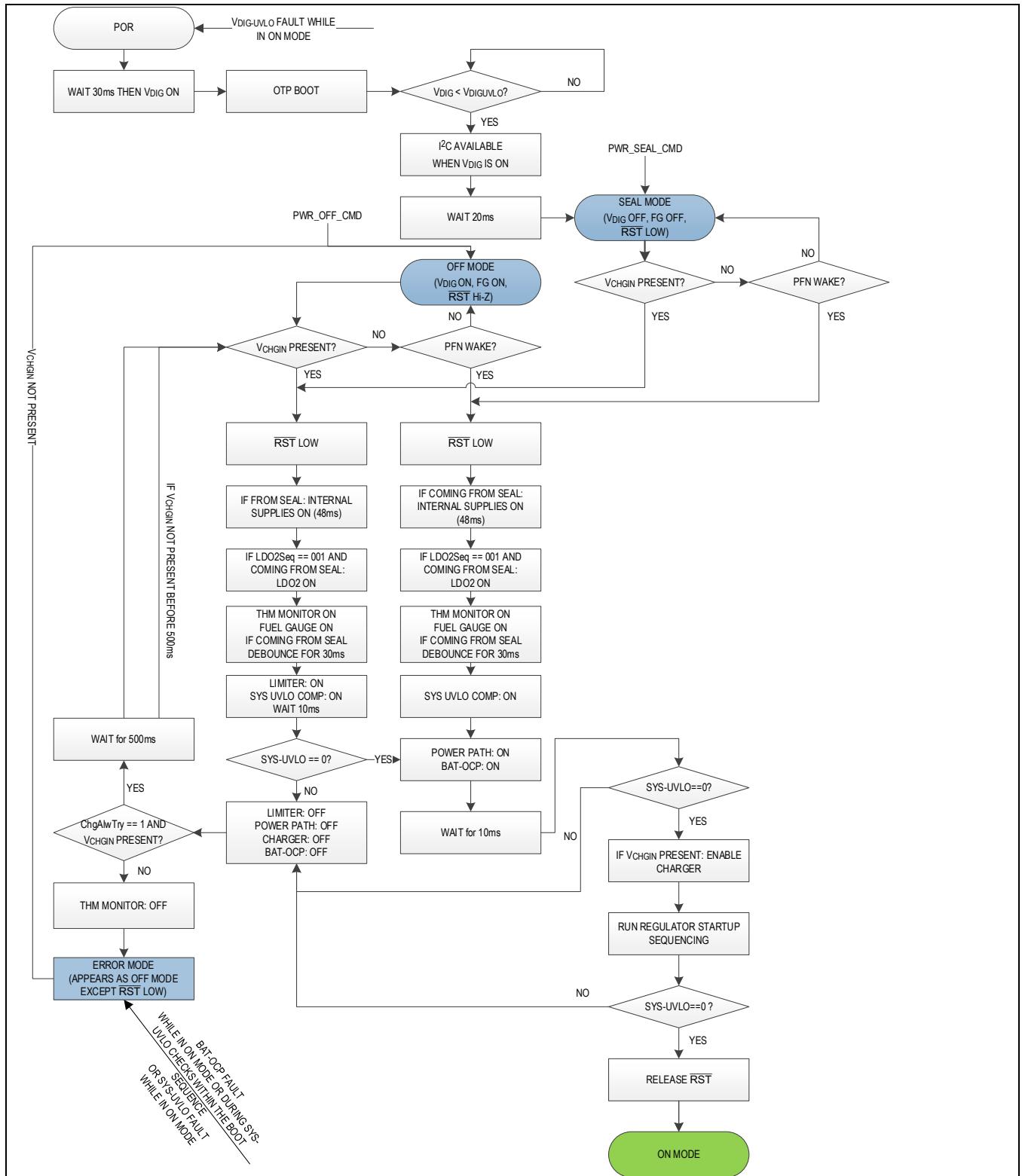



Figure 24. Boot Sequence—Harvester Mode Disabled

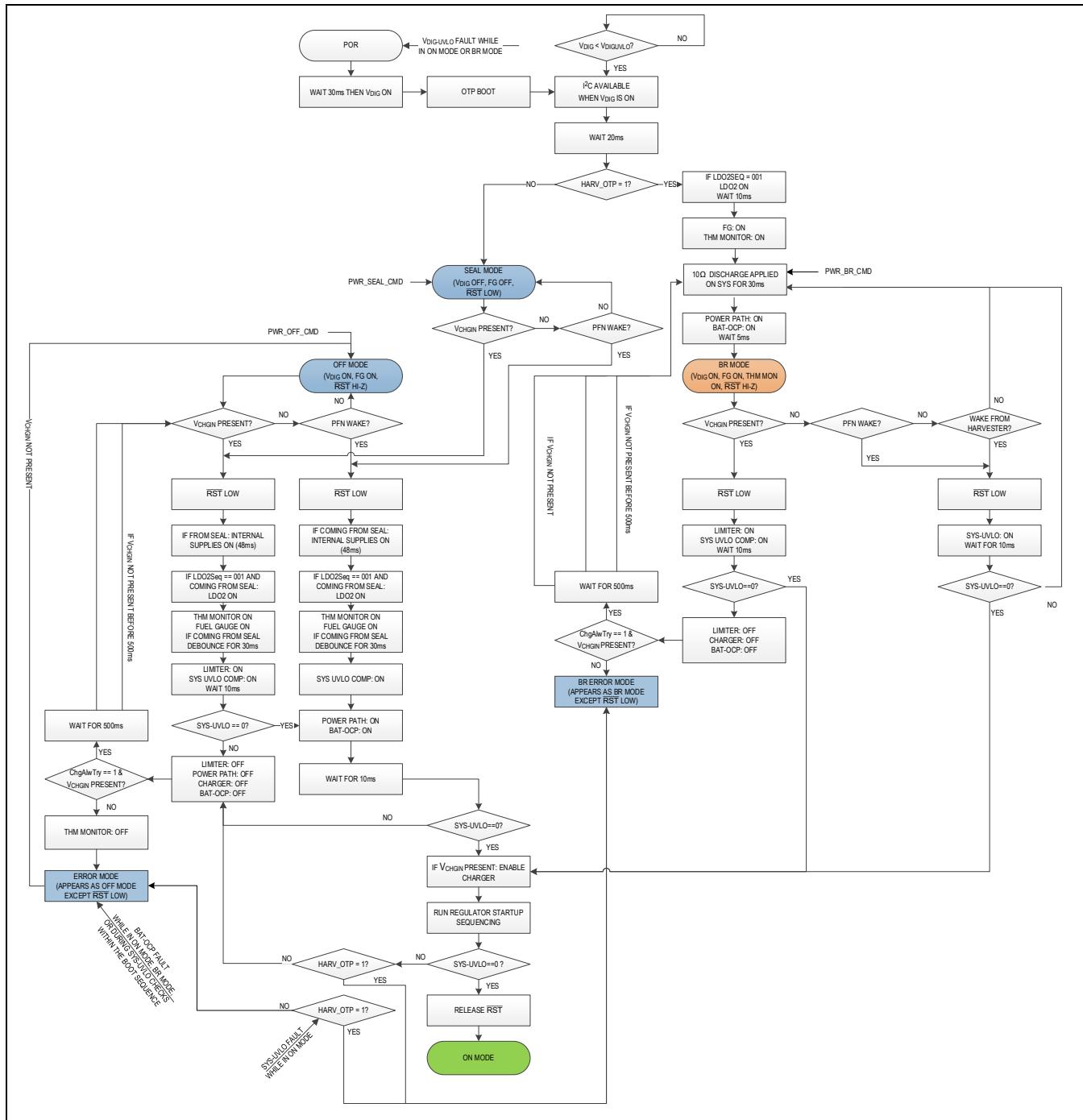



Figure 25. Boot Sequence—Harvester Mode Enabled

## PMIC Power Modes

The following sections describe the basic operating modes of the MAX20366.

### SEAL Mode

SEAL mode is the lowest-quiescent current mode on the MAX20366. In this mode, all resources are off except the button monitor and  $V_{CHGIN}$  insertion detection circuitry.

## OFF Mode

The MAX20366 must in some cases power an RTC. OFF mode is the lowest quiescent current mode in which the fuel gauge and the always on LDO are powered. In this mode, the  $V_{DIG}$  supply, the button and  $V_{CHGIN}$  monitor circuits, and the fuel gauge are on. If LDO2 was on before entering OFF mode or if LDO2Seq = 001 (see bit: LDO2Seq), LDO2 is also on in OFF mode.

## ON Mode (Versions with HrvEn = 0)

ON mode is the most common operating mode. In ON mode, all regulators are or can be enabled, the fuel gauge is on, and all features are accessible.

## Battery Recovery Mode (Versions with HrvEn = 1)

On versions of MAX20366 with HrvEn = 1, MPC7 and MPC6 are permanently reconfigured as “Wake Input” (from Harvester) and “Disable Output” (to Harvester, high-side open-drain to VCCINT), respectively. If the device has SysPDEn enabled, SYS node is discharged through a  $10\Omega$  resistor for 30ms before entering battery recovery node. In battery recovery mode, the part is in the same operating condition as OFF mode; however, in addition the switch between SYS and BAT is closed in order to allow a charging path for recovery from a dead battery situation and the battery thermistor is actively monitored to ensure safe operating conditions. As soon as the battery reaches a threshold which is programmed on the MAX20361 harvester, the MAX20361 sends a wake signal, bringing the part into ON Mode (Versions with HrvEn = 1) as described below. In situations where the THM monitor detects an out-of-bound condition and the charging is considered unsafe, a disable signal is sent to the harvester to halt charging.

## ON Mode (Versions with HrvEn = 1)

ON mode with HrvEn = 1 is very similar to ON mode with HrvEn = 0 as described above with the exception that harvester functionality is enabled. In this mode, an ideal diode can be applied to the BAT-SYS relationship. In the default operation, the harvester supplies SYS directly until it is unable to further support the output at which point the battery supplements the supply. This mode also includes the rest of the harvester interaction functionality described in the [MAX20361 Harvester Interaction](#) section. This behavior can be modified per the HrvBatSys, HrvThmEn and HrvThmDis bit fields (see bits: HrvBatSys, HrvThmEn, HrvThmDis).

## Interrupt

INT output of the MAX20366 is driven low when any one of the unmasked interrupts is triggered by the corresponding status change. INT output is held low until the unmasked and triggered interrupt register bits are read by the user. The interrupt bits are cleared on read. The interrupt registers consist of Int0 to Int3 and HptInt0 to HptInt2. The interrupt mask registers consist of IntMask0 to IntMask3 and HptIntMask0 to HptIntMask2.

## Power Sequencing

The sequencing of the switching regulators, load switches, and LDOs during power-on is configurable. See each function’s sequencing bits for details. Regulators and switches can turn on at one of three points during the power-on process: 0% of tRST time after the power-on event, at the time the RST signal is released, or at two points in between. The two points between 0% of tRST time delay and the RST rising edge are fixed proportionally to the duration of the power-on reset (POR) process boot delay (tRST). The value of the tRST delay ranges from 80ms to 420ms and is stored in the BootDly bits (see bit: BootDly). The timing relationship is presented graphically in [Figure 26](#), [Figure 27](#), and [Figure 28](#).

Alternatively, the regulators and switches can remain off by default and turn on manually with an I<sup>2</sup>C command after RST is released. LDO2 can be configured to be always on.

The SYS voltage is monitored during the power-on sequence. If  $V_{SYS}$  falls below  $V_{SYS\_UVLO}$  during the sequencing process with a valid voltage at CHGIN and ChgAlwTry = 1, the process repeats from the point where SYS was enabled to allow more time for the voltage to stabilize. If there is not a valid voltage at CHGIN, the device returns to the off state to avoid draining the battery. Power is also turned off if BAT experiences a current greater than  $I_{BAT\_OCP}$  for more than  $t_{BAT\_OCP\_RD}$ .

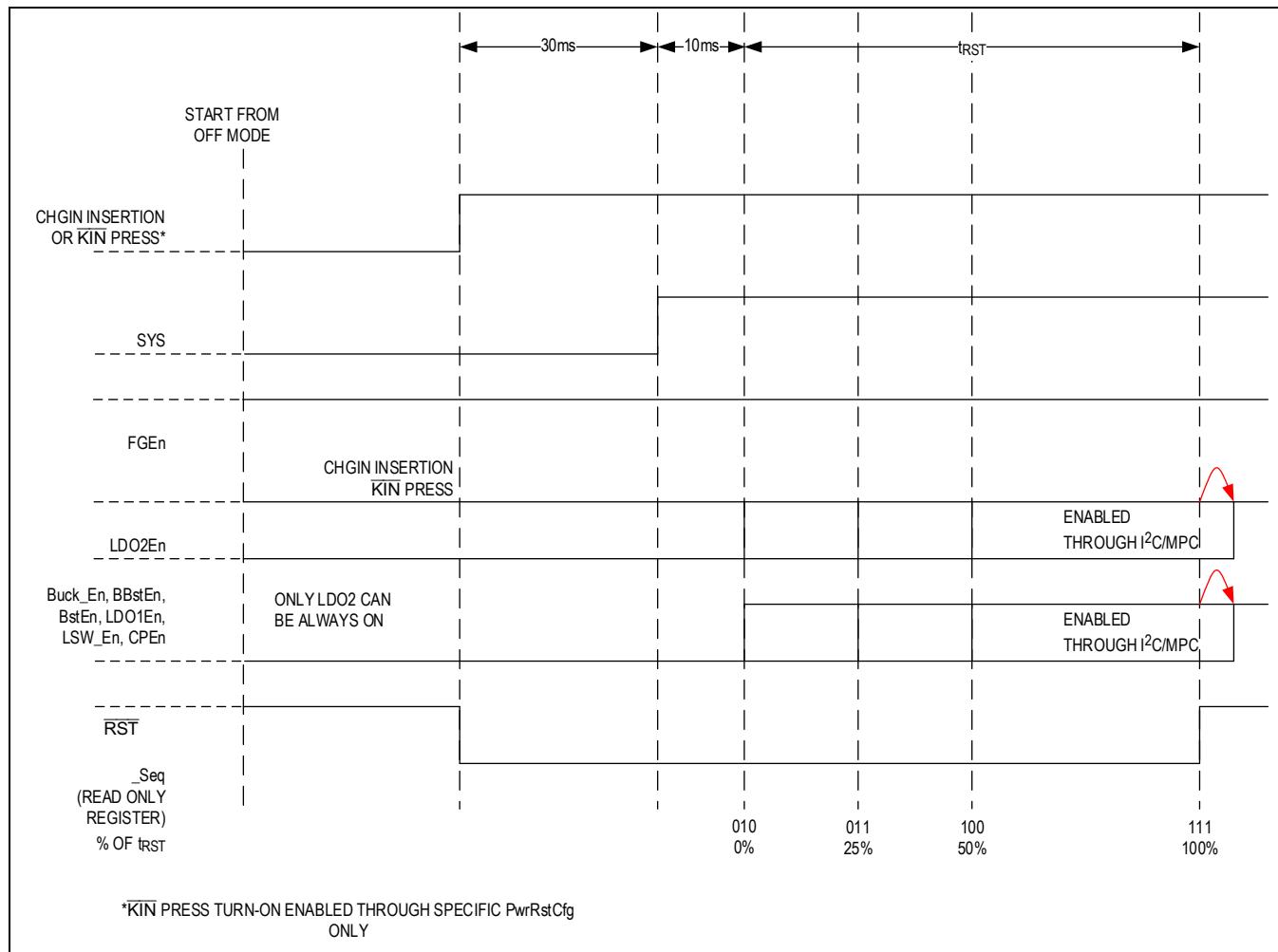



Figure 26. Power Sequencing, HrvEn = 0 from OFF Mode

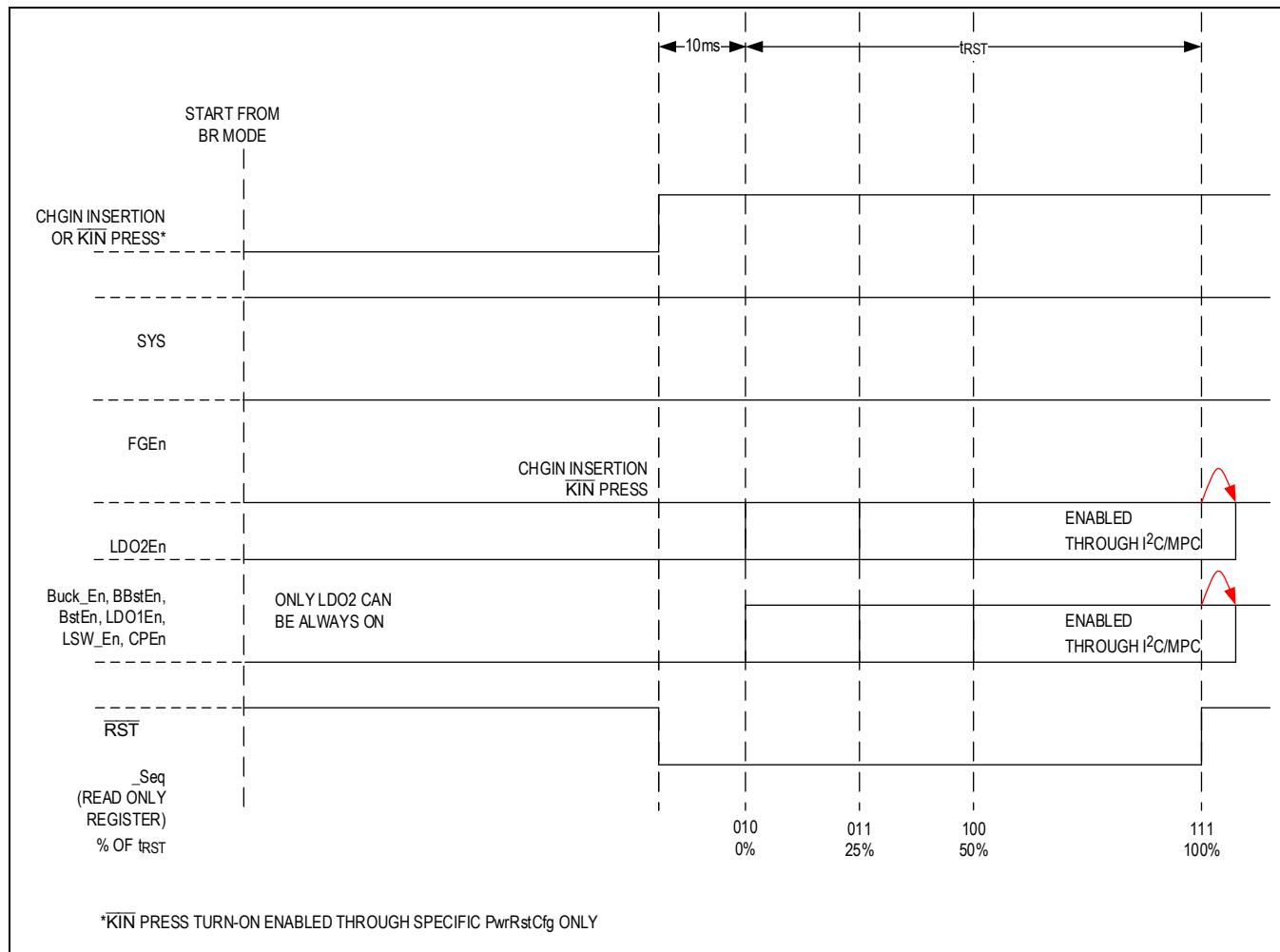



Figure 27. Power Sequencing, HrvEn = 1 from BR Mode

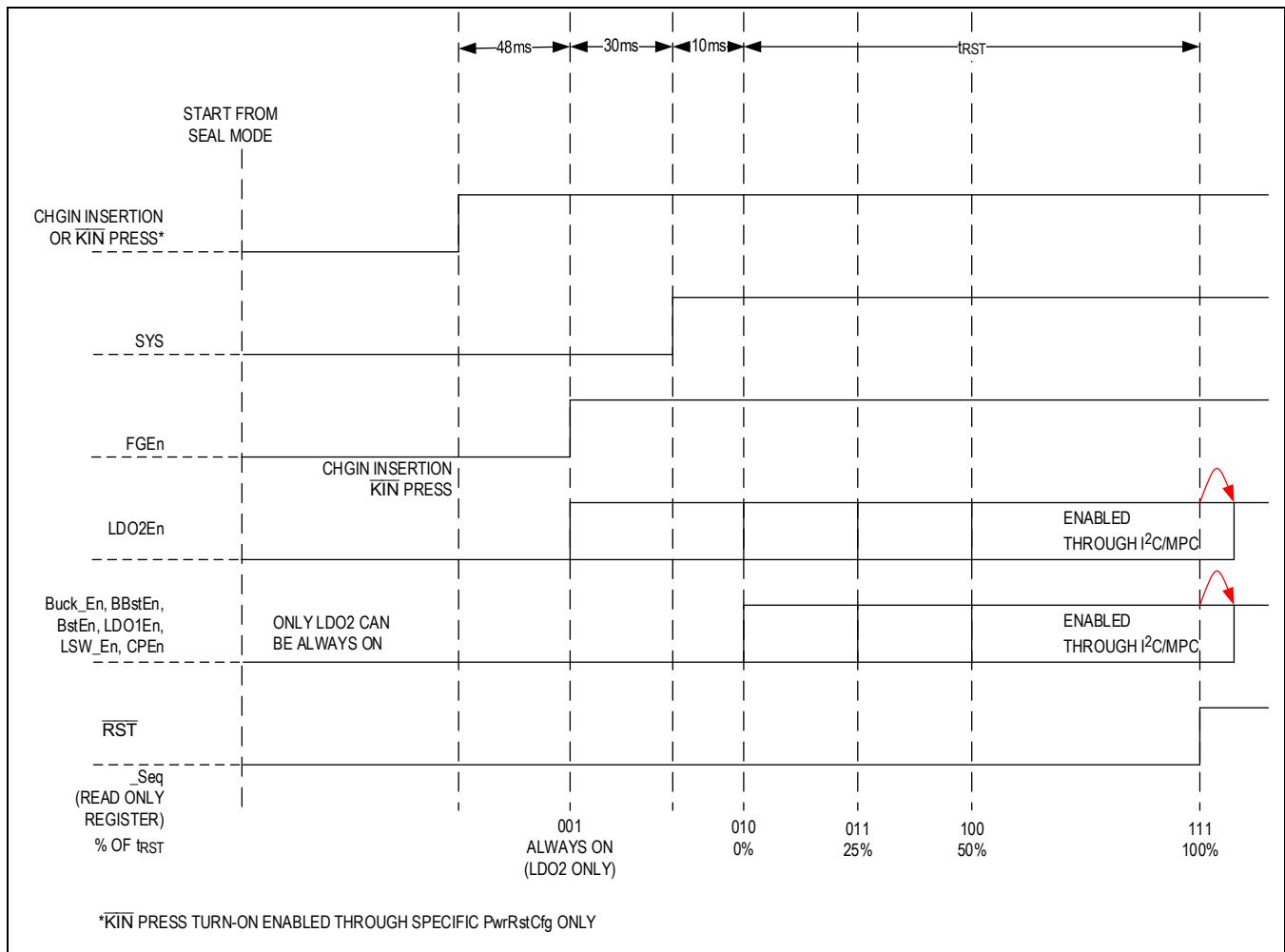



Figure 28. Power Sequencing, from SEAL Mode

### System Load Switch

An internal 80mΩ (typ) MOSFET connects BAT to SYS when no voltage source is available on CHGIN. When an external source is detected at CHGIN, this switch opens and SYS is powered from the input source through the input current limiter. The SYS-to-BAT switch also prevents  $V_{SYS}$  from falling below  $V_{BAT}$  when the system load exceeds the input current limit. If  $V_{SYS}$  drops to  $V_{BAT}$  due to the current limit ( $I_{LIM}$ ), the SYS-to-BAT switch turns on so the load is supported by the battery. If the system load continuously exceeds the input current limit, the battery is not charged. This is useful for handling loads that are nominally below the input current limit, but have high current peaks exceeding the input current limit. During these peaks, battery energy is used, but at all other times the battery charges.

### Smart Power Selector

The smart power selector seamlessly distributes power from the external CHGIN input to the BAT and SYS nodes. With both an external adapter and battery connected, the smart power selector basic functions are:

- When the system load requirements are less than the input-current limit, the battery is charged with residual power from the input.
- When the system load requirements exceed the input-current limit, the battery supplies supplemental current to the load.
- When the battery is connected and there is no input-current limit, the system is powered from the battery.

**Input Limiter**

The input limiter distributes power from the external adapter to the system load and battery charger. In addition to the input limiter's primary function of passing power to the system load and charger, it performs several additional functions to optimize use of available power.

**Invalid CHGIN Voltage Protection**

If CHGIN is above the overvoltage threshold  $V_{CHGIN\_OV}$ , the device enters overvoltage lockout (OVLO). OVLO protects the MAX20366 and downstream circuitry from high-voltage stress up to +28V. During OVLO, the internal circuit remains powered and an interrupt is sent to the host. The negative voltage protection down to -5.5V disconnects CHGIN and the device is powered only by BAT. The charger turns off and the system load switch closes, allowing the battery to power SYS. CHGIN is also invalid if it is less than  $V_{BAT}$ , or less than the  $V_{CHGIN\_DET}$  threshold. With an invalid input voltage, the SYS-to-BAT load switch closes and allows the battery to power SYS.

**CHGIN Input Current Limit**

The CHGIN input current is limited to prevent input overload. The input current limit  $ILIM$  is I<sup>2</sup>C-controlled through parameter  $ILimCntl$  (see bit:  $ILimCntl$ ). To accommodate systems with a high inrush current, the limiter includes a blanking time  $t_{ILIM\_BLANK}$ , I<sup>2</sup>C programmable through the parameter  $ILimBlank$  (see bit:  $ILimBlank$ ), during which the input current limit increases to  $I_{LIM\_MAX}$ .

**Thermal Limiting**

In case the die temperature exceeds  $T_{CHG\_LIM}$ , the MAX20366 attempts to limit temperature increases by reducing the input current from CHGIN. In particular, the system load has priority over the charger current, so the input current is first reduced by lowering the charge current. If the junction temperature continues to rise and reaches the maximum operating limit ( $T_{CHG\_SHDN}$ ), no input current is drawn from CHGIN and the battery powers the entire system load.

**Battery Charger****Adaptive Battery Charging**

While the system is powered from CHGIN, the charger draws power from SYS to charge the battery. If the total load exceeds the input current limit, an adaptive charger control loop reduces charge current to prevent  $V_{SYS}$  from collapsing below the maximum between  $V_{SYS\_LIM}$  that is I<sup>2</sup>C programmable through the  $SysMinVlt$  parameter (see bit:  $SysMinVlt$ ), and  $V_{SYS\_BAT\_REG}$  values. When the charge current is reduced below 50% ( $I_{FCHG\_TEXT}$  threshold) due to  $V_{SYS\_LIM}/V_{SYS\_BAT\_REG}$  or  $T_{CHG\_LIM}$  limits, the timer clock operates at half speed. When the charge current is reduced below 20% ( $I_{FCHG\_TSUS}$  threshold) due to  $V_{SYS\_LIM}/V_{SYS\_BAT\_REG}$  or  $T_{CHG\_LIM}$  limits, the timer clock pauses.

**Fast Charge Current Setting**

The MAX20366 uses an external resistor connected from ISET to GND to set the fast-charge current  $I_{FCHG}$ . The precharge ( $I_{PCHG}$ ) and charge-done,  $I_{CHG\_DONE}$ , currents are I<sup>2</sup>C programmed using  $IPChg$  and  $IChgDone$  parameters (see bits:  $IPChg$ ,  $IChgDone$ ), respectively, as a percentage of this value. The fast-charge current resistor can be calculated as:

$$R_{ISET} = K_{ISET} \times V_{ISET} / I_{FCHG}$$

where  $K_{ISET}$  has a typical value of 2000A/A and  $V_{ISET}$  has a typical value of +1V. The range of acceptable values for  $R_{ISET}$  is 4k $\Omega$  to 400k $\Omega$ . A capacitive load on the ISET pin can cause instability of the charger if the condition ( $C_{ISET} < 5\mu s / R_{ISET}$ ) pF is violated.

**JEITA Monitoring with Charger Control**

To enhance safety when charging lithium-ion batteries, the MAX20366 includes a JEITA compliant temperature monitoring. A resistive divider is formed on THM by attaching a pullup resistor to TPU and connecting the thermistor of a battery-pack (do not exceed 2mA load on TPU). TPU is internally connected internally to  $V_{DIG}$  through a switch. The divider output is read by internal comparators when JEITA monitoring is enabled and the resulting temperature measurement places the battery into one of five temperature zones: cold, cool, room, warm, and hot. Charging is always inhibited in cold and hot regions or if the thermistor is not detected while charging behavior is configurable in warm, room, and cool regions using the I<sup>2</sup>C-controlled  $ChgThmEn$  parameter (see bit:  $ChgThmEn$ ). In particular, the battery regulation voltage can be reduced to the  $V_{BAT\_REG\_JTA}$  value using the I<sup>2</sup>C-programmed  $ChgCool/Room/ WarmBatReg[1:0]$  parameters (see bits:  $ChgCoolBatReg$ ,  $ChgRoomBatReg$ ,  $ChgWarmBatReg$ ) while the fast-charge current can be

reduced to the  $I_{FCHG\_JTA}$  value using the I<sup>2</sup>C-programmed ChgCool/Room/WarmIFChg parameters (see bits: ChgCoolIFChg, ChgRoomIFChg, ChgWarmIFChg). Charging can also be inhibited in cool and warm regions using ChgThmEn (see bit: ChgThmEn). See figures [Figure 29](#), [Figure 30](#), and [Figure 31](#) for representations of the JEITA charging profile in each of the charging phases.

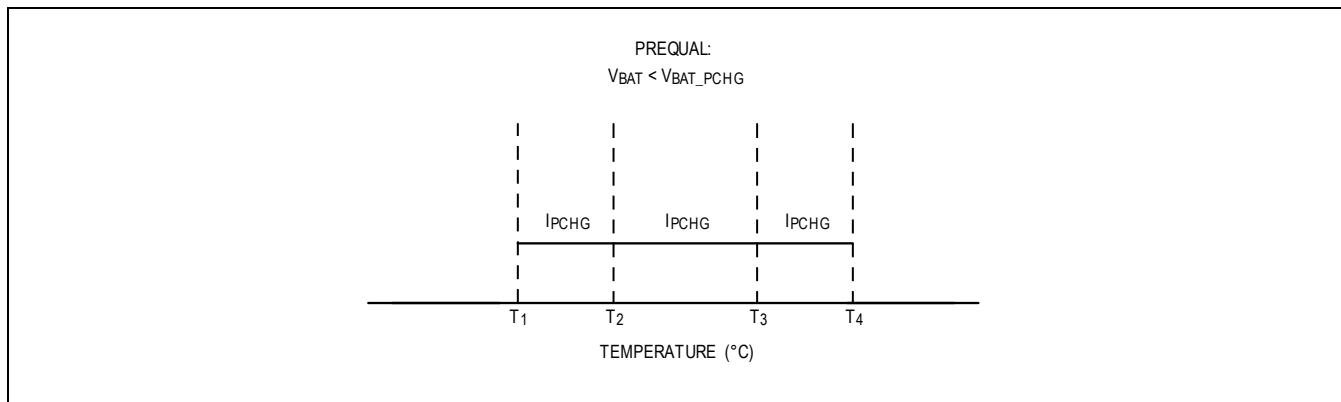



Figure 29. Sample JEITA Pre-Charge Profile

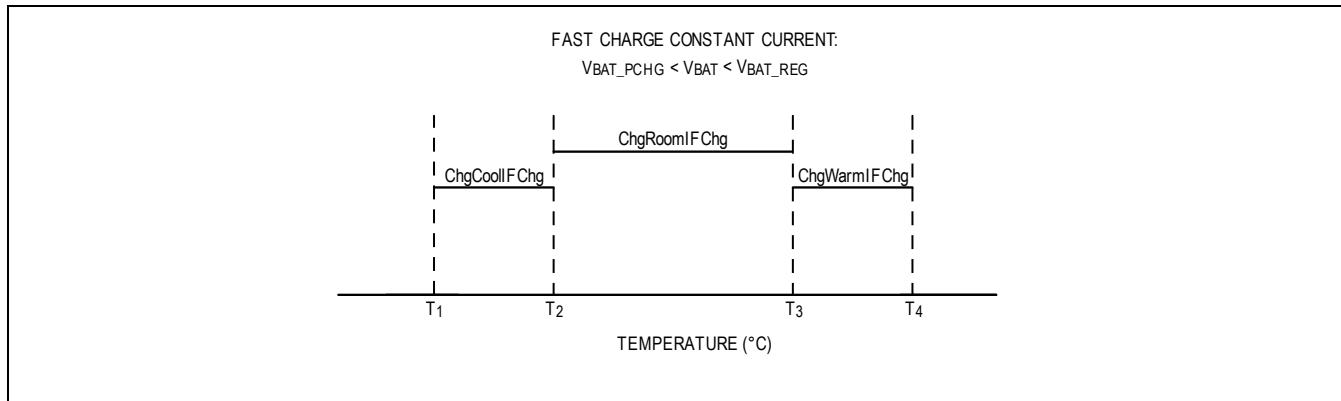



Figure 30. Sample JEITA Fast Charge Profile

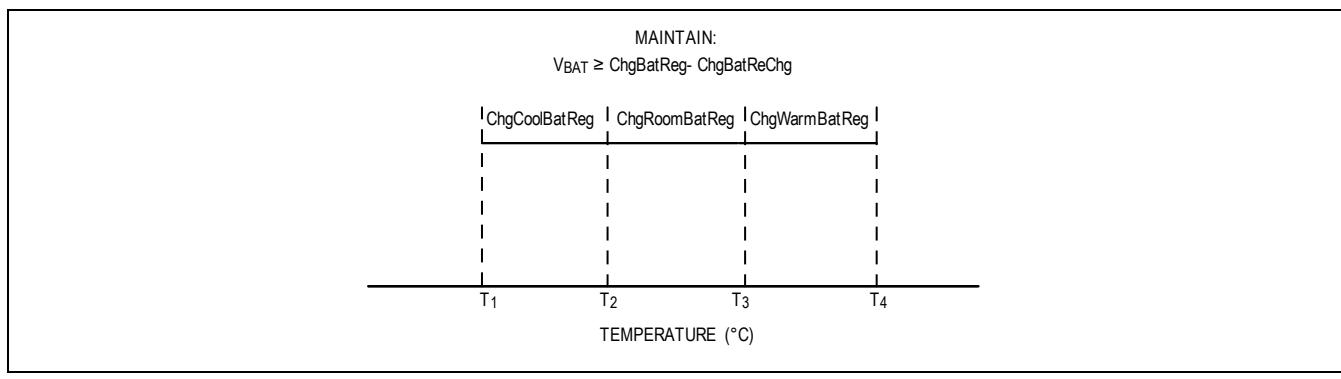



Figure 31. Sample JEITA Maintain Charge Profile

### Step Charging

Lithium-ion batteries suffer capacity degradation over their lifetimes. One of the primary causes of degradation over the lifetime of a battery is due to an effect called lithium plating, which describes the formation of metallic lithium on the anode of the battery. Lithium plating has many causes, but one of the most common is when the battery is charged at high rates relative to the capacity of the battery when the battery is at a high state of charge (SOC). To combat this effect, the MAX20366 includes a step-charge function. This function allows the user to select a voltage threshold at which the charge current can be reduced in order to avoid lithium plating and prolong the lifetime of the battery. The settings of this function can be found in the StepChgCfg0 and StepChgCfg1 registers (see bits: StepChgCfg0, StepChgCfg1). The ChgStepRise

(see bit: ChgStepRise) field allows the setting of the rising voltage  $V_{BAT\_STPCHG}$  at which the charge current should be reduced. The ChgIStep (see bit: ChgIStep) field sets the percentage  $I_{FCHG\_STPCHG}$  of the full fastcharge current to which the charger should be set when the battery is above the  $V_{BAT\_STPCHG}$  value specified with ChgStepRise (see bit: ChgStepRise). Lastly, the ChgStepHys (see bit: ChgStepHys) field sets the  $V_{BAT\_STPCHG\_H}$  hysteresis for the step charge function in order to avoid oscillations in case a high battery impedance causes the voltage to fall a large amount upon reduction of the battery current. If this function is not desirable, set the ChgIStep (see bit: ChgIStep) setting to 100% ("111") to disable it.

In case both JEITA and step-charging related fast-charge current reductions are active, the minimum between the two is selected and applied.

### Battery Charger State Diagram

A battery charger-state diagram is shown below in [Figure 32](#). User can read ChgStat bits (see bit: ChgStat) to know the status of charger.

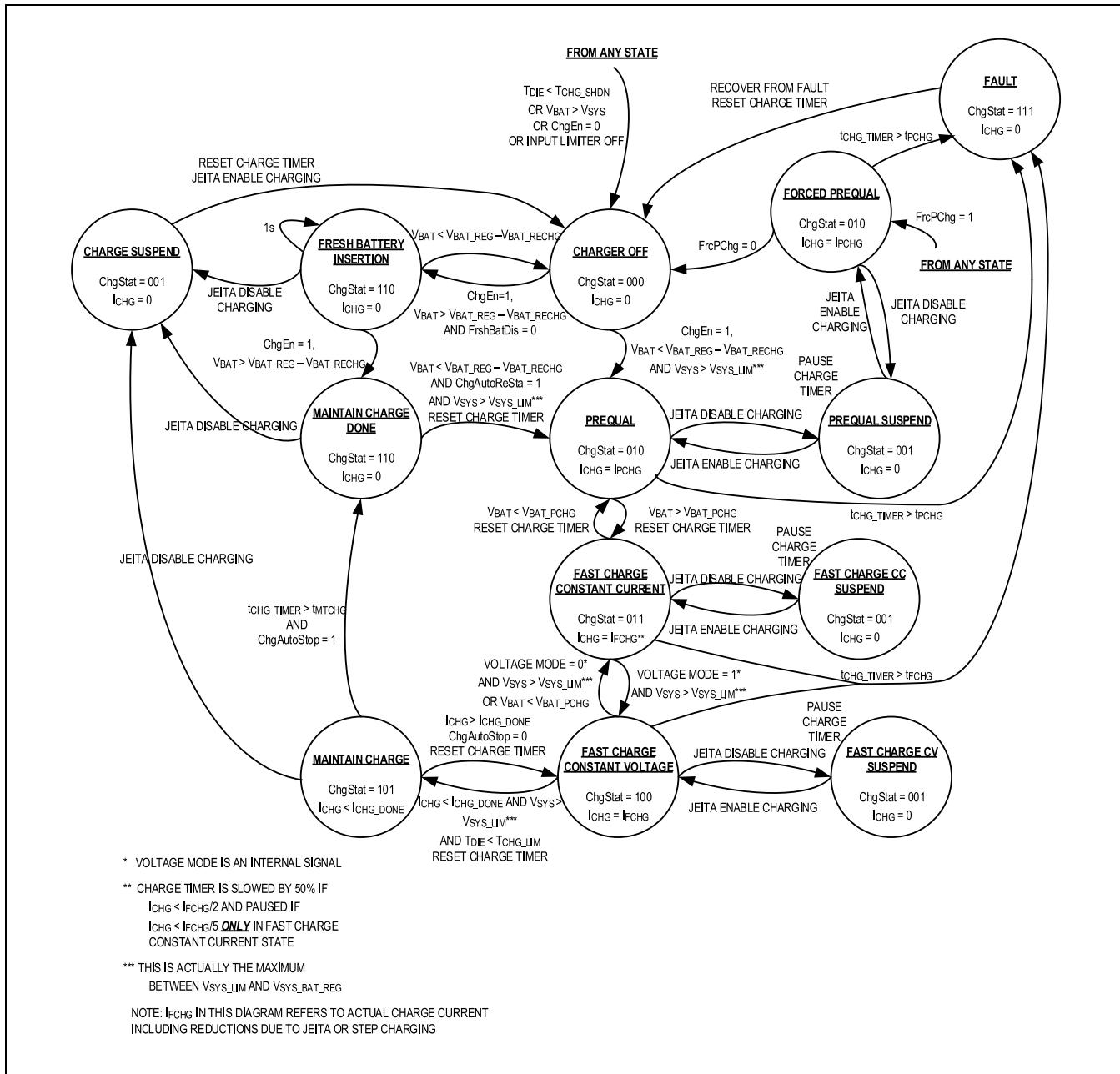



Figure 32. Battery Charger-State Diagram

### Battery or Pack Protector Presence Detection

When pack protectors open due to a discharge-related fault, the pack protector turns off the discharge FET, placing a reverse-biased body diode in the discharge path and preventing further discharge. In this state, the system designer can decide that the battery has been damaged and that they would like to prevent a full charge cycle in the future. Even if the system designer does decide that the battery can be recovered, they can have concerns that the diode drop of the pack protector can cause the charger to believe that the battery is above the precharge voltage threshold, which would mean that the fast charge current is applied. In this scenario, it is useful for the system to understand before starting a full charge cycle whether a pack is present on the BAT node (with an open protector) or if the battery has simply been removed. The MAX20366 contains all of the necessary circuitry to allow the system designer to implement such a check. One example of a simple algorithm to check for such a condition is to run the below check every time before starting a battery charging cycle:

1. After receiving a UsbOkInt interrupt (see bit: UsbOkInt) and before enabling the charger the BAT pulldown resistor by writing BatPD = 1 (see BatPD), wait enough time for any BAT capacitance to discharge, then check the BatGood (see bit: BatGood) status and disable the BAT pull-down resistor. If BatGood = 1 (see bit: BatGood), then the battery is present and charging can resume. If BatGood = 0 (see bit: BatGood) indicating that the BAT voltage is below the UVLO threshold either:

a.The battery is not present.

or

b.The pack protector is open.

2. Now turn the charger on in a “forced precharge” mode by writing FrcPChg = 1 and ChgEn = 1 (see bits: FrcPChg, ChgEn) simultaneously and check BatRegDone (see bit: BatRegDone). If BatRegDone = 1 meaning that  $V_{BAT} \geq V_{BAT\_REG}$ , it means that the battery is not present since if it were, the BAT voltage would only be allowed to rise one diode drop above the actual battery voltage. If instead BatRegDone = 0, the battery must be present and forced precharge mode should be maintained at least long enough to unlock the pack protector.

### SAR ADC/Monitor Mux

In order to simplify system monitoring, the MAX20366 includes a voltage monitor multiplexer (MUX). The MUX, which is I<sup>2</sup>C controlled using the IVMONCtl parameter (see bit: IVMONCtl) in the PMIC register map, connects the IVMON pin to the scaled value of one of the seven voltage regulators, BAT, or SYS. A resistive divider scales the selected voltage to one of four ratios determined by IVMONRatioConfig (see bit: IVMONRatioConfig). Because the MUX can only tolerate voltages up to +5.5V, CHGIN, CPOUT and BSTOUT are not available on IVMON. Additionally, the ISET voltage is available to monitor the charging current according to the following equation:

$$I_{CHG} = \frac{(K_{ISET} \times V_{ISET} \times RED\_FCT)}{R_{ISET}}$$

Where:

$I_{CHG}$  = Actual charging current flowing into BAT

$K_{ISET}$  = Gain factor (2000A/A)

$V_{ISET}$  = Voltage read from monitor mux.

$RED\_FCT$  = Eventual reduction factor can be due to JEITA and/or step-charging (see bits: Chg1Step, ChgCoolIFChg, ChgRoomIFChg, ChgWarmIFChg parameters). If neither JEITA nor step-charging current reduction is active,  $RED\_FCT$  is equal to 1.

$R_{ISET}$  = Nominal resistor value on ISET

The MAX20366 also contains an internal ADC that can be used to read the voltage rails and performs system tasks such as SYS tracking for automatic level compensation (ALC) during haptic driver operations. Manual ADC measurements are initiated by first selecting a channel by writing to ADCSel (see bit: ADCSel) in the Haptic Driver/ADC register map. The measurement is then launched by writing a 1 to ADCConvLnch (see bit: ADCConvLnch). Once the measurement is complete, an ADCEOCInt interrupt (see bit: ADCEOCInt) is set to inform the system that the value is available for read in the ADCAvg, ADCMin, and ADCMax register fields (see bits: ADCAvg, ADCMin, ADCMax). Averaging of measurements can be performed by setting the number of measurements to average using the ADCAvgSiz register field (see bit: ADCAvgSiz). The ADC can also measure the IVMON voltage when the MUX is enabled with a 1:1 ratio. The full-scale range of the ADC for different voltage rails is detailed in [Table 6](#).

**Table 6. ADC Full-Scale Range**

| VOLTAGE RAIL | AVAILABLE RANGE (V) | CONVERSION (V)            |
|--------------|---------------------|---------------------------|
| $V_{HDIN}$   | 0 to +5.5           | (ADC____[7:0] x 5.5V)/255 |

|                                                                                          |             |                                       |
|------------------------------------------------------------------------------------------|-------------|---------------------------------------|
| V <sub>IVMON</sub> (use IVMONRatioConfig = 00<br>(see <a href="#">IVMONRatioConfig</a> ) | 0 to +5.5   | (ADC <sub>__</sub> [7:0] x 5.5V)/255  |
| CHGIN                                                                                    | +3 to +8.25 | (ADC <sub>__</sub> [7:0] x 8.25V)/255 |
| CPOUT                                                                                    | +3 to +8.25 | (ADC <sub>__</sub> [7:0] x 8.25V)/255 |
| BSTOUT                                                                                   | +3 to +21   | (ADC <sub>__</sub> [7:0] x 21.0V)/255 |

### Haptic Driver

The MAX20366 features a versatile, integrated haptic driver. The driver allows for real-time control of haptic devices through PWM or I<sup>2</sup>C as well as the ability to run haptic patterns from internal RAM. For added flexibility, the driver is capable of driving both linear resonant actuator (LRA) and eccentric rotating mass (ERM) actuators.

#### Eccentric Rotating Mass (ERM)

An ERM is the simplest haptic actuator to drive. The driving signal is taken directly as the PWM output of an integrated H-bridge, allowing for bidirectional operation of the actuator. To configure the MAX20366 to drive an ERM, the HptSel bit (see bit: HptSel) must be set to 0.

#### Linear Resonant Actuator (LRA)

Unlike the on-off control of an ERM, LRAs require a sinusoidal driving signal. The MAX20366 realizes this with a Class-D amplifier that converts the driver input to a sinusoidal output.

An LRA's vibration magnitude is maximized when the driving signal matches the LRA's resonant frequency. To ensure the haptic driver closely tracks this frequency, the MAX20366 includes an auto-resonance tracking feature that measures the back-electromotive force (BEMF) of the LRA to track the resonance of the actuator. The resonant tracking feature should remain enabled any time an LRA is driven. Resonance tracking is enabled by setting the EmfEn bit to 1 (see bit: EmfEn). The range of resonant frequencies that are tracked is clamped by the driver to be no lower than max(200kHz/IniGss[11:0], 100Hz) and no greater than min(800kHz/IniGss[11:0], 1kHz). See the description of IniGss (see bit: IniGss) in the register map for calculation of frequency. This mitigates the risk of audible noise during a fault event.

To select LRA mode, set the HptSel bit to 1 (see bit: HptSel).

#### LRA Braking

The haptic driver features a braking function to efficiently stop or reverse the direction of an LRA. Each time the driving polarity is reversed, the BEMF measuring configurations are overridden by the values in BrkLpGain, BrkCyc, and BrkWdw for BrkCyc number of half cycles (see bits: BrkLpGain, BrkCyc, BrkWdw). This allows the haptic driver to optimize the redetection of the BEMF after the sudden change in direction.

Additionally, the haptic driver can automatically detect the optimal braking time when running patterns in the RAMHP and ETRG modes. When the RAM pattern reaches a brake sample (nLSx = 00 and RPTx = 0000) (see bits: nLSx, RPTx), or when the ETRG pattern reaches the brake amplitude, the haptic driver measures the LRA's BEMF amplitude centered about either two or four sample points of the sine wave (depending on AutoBrkPeakMeas setting) (see bit: AutoBrkPeakMeas). If the absolute value of the BEMF is lower than the threshold AutoBrkMeasTh (see bit: AutoBrkMeasTh) for more than half of the duration of AutoBrkMeasWdw (see bit: AutoBrkMeasWdw) for a number of consecutive sample points where BEMF amplitude is measured (set by AutoBrkMeasEnd, see bit: AutoBrkMeasEnd), then the driver determines that the BEMF is sufficiently small and driving stops.

Note that all LRA registers except those that set the full-scale voltage and initial guess for the resonant frequency of the LRA should be left at their defaults for most actuators. The only exceptions are that EmfSkipCyc (see bit: EmfSkipCyc) should be written to 0 for optimal performance and when an LRA with a very fast time constant is in use, the AutoBrkPeakMeas (see bit: AutoBrkPeakMeas) might need to be changed to 1 in order to accommodate that LRA's characteristics.

#### Automatic Level Compensation

Because V<sub>HDIN</sub> can vary over time, the driver must adjust its output duty cycle to maintain a constant reference to the full-scale voltage. An automatic level compensation (ALC) function measures V<sub>HDIN</sub> and handles this adjustment. ALC can be enabled by setting the AlcEn bit (see bit: AlcEn) to 1 and uses the MAX20366 internal ADC to monitor V<sub>HDIN</sub>. The

ALC function then scales the haptic driver duty cycle as needed to maintain the programmed driver amplitude. If ALC is not enabled,  $V_{HDIN}$  is assumed to be  $V_{fs}$  (see bit:  $V_{fs}$ ).

### Haptic UVLO

Additionally, if  $AlcEn = 1$  (see bit:  $AlcEn$ ),  $V_{HDIN}$  is measured after the driver is enabled but prior to starting a vibration. At any moment, if  $V_{HDIN}$  goes below the maximum between the value programmed through  $HDINDisTh$  (see bit:  $HDINDisTh$ ) and the  $V_{HDIN\_UVLO}$  threshold, the vibration event is aborted and the haptic driver is locked. See the [Haptic Driver Lock](#) section for details regarding restarting vibration if a haptic UVLO condition is reached.

The time required to perform the initial  $V_{HDIN}$  measurement, as well as other startup delays, results in a small initial latency of the haptic driver. To avoid partial pattern skipping in real-time modes, vibration patterns should be provided at least  $t_{HD\_START}$  after enabling the desired real-time vibration mode (PPWM or RTI<sup>2</sup>C).

### Driver Amplitude

The haptic driver features a configurable voltage basis for the amplitude of the driving signal. Setting this basis, referred to as the full-scale voltage ( $V_{FS}$ ), configures the maximum amplitude of the driver output. It is set using  $V_{fs}$  (see bit:  $V_{fs}$ ) and has a range of 0V to 5.5V (LSB = 21.57mV). Since the H-bridge is supplied by  $V_{HDIN}$ , the actual full-scale voltage of the driver at any moment is the minimum of the value stored in  $V_{fs}$  (see bit:  $V_{fs}$ ) and  $V_{HDIN}$ .

Once  $V_{FS}$  has been set, all driver amplitudes are scaled as a percentage of the full-scale voltage. The resolution of the amplitude is always  $V_{HDIN}/128$ . Therefore, the effective resolution of the amplitude scales with the  $V_{FS}/V_{HDIN}$  ratio. For example, if  $V_{FS} = V_{HDIN}/2$ , the effective resolution is 6 bits.

### Vibration Timeout

A vibration timeout parameter is programmable through I<sup>2</sup>C. If a vibration lasts longer than the programmed timeout period, the vibration is aborted. The timeout period is stored in  $DrvTmo$  (see bit:  $DrvTmo$ ) (LSB = 1s). Writing code "000000" disables the timeout function. See the [Haptic Driver Lock](#) section for details regarding restarting vibration if a timeout is reached.

### Overcurrent/Thermal Protection

The haptic driver also includes overcurrent and thermal shutdown protection. While the haptic driver is active, the MAX20366 monitors the current from DRP and DRN. If overcurrent protection is enabled ( $HptOCPProtDis = 0$ ) (see bit:  $HptOCPProtDis$ ) and the DRP or DRN current exceeds  $I_{HD\_OCP}$ , the haptic driver issues a fault, aborts vibration, and enters the locked state.

Thermal protection allows the MAX20366 to immediately shut down the haptic driver should the die temperature exceed  $T_{HD\_SHDN}$ . This feature is enabled by setting  $HptThmProtDis = 0$  (see bit:  $HptThmProtDis$ ).

See the [Haptic Driver Lock](#) section for details regarding restarting vibration if an overcurrent or overtemperature condition is reached.

### Haptic Driver Lock

If the MAX20366 detects a fault in the haptic driver, vibrations in progress are aborted and the haptic driver is locked by the haptic fault locking function. The user must manually set the  $HptFltUnlock$  bit (see bit:  $HptFltUnlock$ ) in order to run a new vibration attempt. A fault occurs under any of the following conditions:  $V_{HDIN}$  drops below the threshold programmed in  $HDINDisTh$  (see bit:  $HDINDisTh$ ) or below  $V_{HDIN\_UVLO}$ , an overcurrent is detected on DRN or DRP (see bits:  $HptDRPOCPLow$ ,  $HptDRNOCPLow$ ,  $HptDRPOCPHigh$ ,  $HptDRNOCPHigh$ ), the die temperature exceeds the thermal protection threshold  $HptThm$  (see bit:  $HptThm$ ), or a vibration duration exceeds the timeout period stored in  $DrvTmo$  (see bit:  $DrvTmo$ ). Writing  $HptFltUnlock$  (see bit:  $HptFltUnlock$ ) to 1 clears the fault and automatically clears the  $HptFltUnlock$  bit to 0.

### Interface Modes

There are a total of four interface modes for controlling the haptic driver. These include two real-time modes and two stored memory modes. The haptic driver mode is set through  $HptDrvMode$  (see bit:  $HptDrvMode$ ). Selecting an operation mode also enables the driver. In addition,  $HptDrvClkEn$  (see bit:  $HptDrvClkEn$ ) must be set and kept to 1 before setting  $HptDrvMode$  (see bit:  $HptDrvMode$ ) and for the whole duration of vibration. Once the vibration finishes,  $HptDrvMode$  (see bit:  $HptDrvMode$ ) must be set to "00000" before the haptic driver can be disabled by setting  $HptDrvClkEn = 0$  (see bit:  $HptDrvClkEn$ ) for power savings. In all cases haptic patterns must begin with driving in the positive direction.

### Pure-PWM (PPWM)

PPWM mode offers real-time control of the haptic driver. Patterns are generated by applying a PWM signal to the MPC\_ pin selected by HptDrvMode (see bit: HptDrvMode). The duty cycle of the applied signal determines the amplitude of the driving signal, scaled by Vfs (see bit: Vfs). The driving direction is centered to about a 50% duty cycle. A duty cycle of 0% to 47.5% produces a 100%Vfs to 0%Vfs amplitude in the negative direction and a duty cycle of 52.5% to 100% produces a 0%Vfs to 100%Vfs amplitude in the positive direction (see bit: Vfs). The region between 47.5% and 52.5% duty cycle is a dead zone and inputs within this range correspond to a null output. All patterns must begin with driving in the positive direction (duty cycle between 52.5% to 100%).

A timeout feature prevents idle PWM inputs from causing unwanted vibrations of the haptic motor. If the input signal remains at 0% duty cycle or 100% duty cycle for more than 2.56ms, the output is null and vibration stops. As such, the MPC\_ input must remain dynamic to produce a continuous output.

### Real-Time I<sup>2</sup>C (RTI<sup>2</sup>C)

Similar to PPWM mode, RTI<sup>2</sup>C mode offers real-time control of the haptic driver. The HptRTI2CPat register (see register: HptRTI2CPat) determines the amplitude of the output signal. The lower seven bits of the register (HptRTI2CPat[6:0]) set the amplitude as a percentage of V<sub>FS</sub> and the MSB (HptRTI2CPat[7]) sets the direction of rotation (0 for positive and 1 for negative). 100% amplitude, positive drive, for example, is produced by setting HptRTI2CPat to 0x7F (0b01111111).

Once RTI<sup>2</sup>C mode is enabled through HptDrvMode (see bit: HptDrvMode), the haptic driver continuously outputs the amplitude and direction defined by the latest data in HptRTI2CPat (see bit: HptRTI2CPat). In order to generate haptic patterns, the HptRTI2CPat register must receive new data. All patterns must begin with driving in the positive direction (MSB of initial write to HptRTI2CPat = 0).

### External Triggered Stored Pattern (ETRG)

In ETRG mode, a rising edge on an MPC\_ pin or a 0-to-1 transition of the HptExtTrig bit (see bit: HptExtTrig) initiates a vibration sequence. The sequence is contained in six registers and comprises an overdrive (startup) amplitude, active drive amplitude, braking amplitude, and the duration of each driving behavior.

Amplitudes contained in HptETRGOdAmp, HptETRGActAmp, and HptETRGBrkAmp (see bits: HptETRGOdAmp, HptETRGActAmp, HptETRGBrkAmp) follow the same format as HptRTI2CPat (see bit: HptRTI2CPat) (i.e., the lower seven bits store the amplitude as a percentage of V<sub>FS</sub> and the MSB determines the direction).

The trigger input is selected when the driver enters ETRG mode through HptDrvMode (see bit: HptDrvMode). In order to properly register the rising edge, the trigger signal must remain high for a few clock cycles of the driver.

Once the sequence begins, the haptic driver follows the duration values stored in HptETRGOdDur, HptETRGActDur, and HptETRGBrkDur (see bits: HptETRGOdDur, HptETRGActDur, HptETRGBrkDur). It is possible, however, to extend the active drive time by leaving the trigger high longer than the time specified in HptETRGActDur (see HptETRGActDur). Doing so causes the driver to output the amplitude stored in HptETRGActAmp (see bit: HptETRGActAmp) until a falling edge is detected. Once the trigger signal falls low, the brake sequence executes. All patterns must begin with driving in the positive direction (MSB of HptETRGOdAmp = 0, see bit: HptETRGOdAmp).

### RAM Stored Haptic Pattern (RAMHP)

The final method of controlling the haptic driver is RAMHP mode. The MAX20366 contains an internal 256 x 24-bit RAM in which haptic patterns are stored. By storing haptic sequences in RAM at startup, the driver can perform sophisticated haptic sequences upon receipt of a trigger signal as in ETRG mode. The direct I<sup>2</sup>C register HptRAMPatAdd (see bit: HptRAMPatAdd) specifies the RAM address where the sequence begins.

RAM should be loaded when the MAX20366 comes out of OFF/SEAL mode. To write data to the RAM, the HptRAMEn (see bit: HptRAMEn) must first be set high. Next, writing a value to the direct register HptRAMAdd (see bit: HptRAMAdd) specifies the RAM address in which data written to HptRAMDataH, HptRAMDataM, and HptRAMDataL is stored (see bit: HptRAMDataH, HptRAMDataM, HptRAMDataL). It is possible to read back data from RAM. Writing an address to HptRAMAdd (see bit: HptRAMAdd), then initiating an I<sup>2</sup>C read transaction of the HptRAMDataH, HptRAMDataM, and HptRAMDataL registers allow readback of the three bytes stored in the RAM address. RAM read and write procedures are depicted graphically in [Figure 33](#). Note that all patterns must begin with driving in the positive direction (AmpSign of first RAM address in a pattern = 0).

A haptic pattern is composed of multiple pattern samples. Pattern samples define the amplitude, duration, wait time, transition, and repetition of a segment of a haptic pattern. These samples are defined in three bytes and written to RAM

through HptRAMDataH, HptRAMDataM, and HptRAMDataL. HptRAMDataH (see bit: HptRAMDataH) contains the sign of the sample's amplitude (AmpSign), the upper-five bits of the amplitude (Amp[6:2]), and instructions to the haptic driver on handling the pattern sample (nLSx). HptRAMDataM (see bit: HptRAMDataM) contains the lower two bits of the sample's amplitude (Amp[1:0]), the duration of the sample (Dur), and the upper bit of the wait time before the next sample in the pattern (Wait[4]). HptRAMDataL (see bit: HptRAMDataL) contains the lower four bits of the wait time (Wait[3:0]) and the repetition behavior (RPTx). [Table 7](#) describes the definition of a pattern sample and [Figure 34](#) and [Figure 35](#) provide a sample haptic pattern with a corresponding waveform.



Figure 33. Read and Write Process for Haptic RAM

**Table 7. RAMHP Pattern Storage Format**

| ADDRESS        | 0x40-0x43                                                                                                                                                                                                                                                                                                                   |    |          |    |          |           |    |         |  |  |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|----|----------|-----------|----|---------|--|--|--|--|--|--|--|
| BIT            | B7                                                                                                                                                                                                                                                                                                                          | B6 | B5       | B4 | B3       | B2        | B1 | B0      |  |  |  |  |  |  |  |
| HptRAMAdd      | HptRAMAdd[7:0]                                                                                                                                                                                                                                                                                                              |    |          |    |          |           |    |         |  |  |  |  |  |  |  |
| HptRAMDataH    | nLSx[1:0]                                                                                                                                                                                                                                                                                                                   |    | AmpSign  |    | Amp[6:2] |           |    |         |  |  |  |  |  |  |  |
| HptRAMDataM    | Amp[1:0]                                                                                                                                                                                                                                                                                                                    |    | Dur[4:0] |    |          |           |    | Wait[4] |  |  |  |  |  |  |  |
| HptRAMDataL    | Wait[3:0]                                                                                                                                                                                                                                                                                                                   |    |          |    |          | RPTx[3:0] |    |         |  |  |  |  |  |  |  |
| HptRAMAdd[7:0] | The RAM address in which the pattern sample is stored                                                                                                                                                                                                                                                                       |    |          |    |          |           |    |         |  |  |  |  |  |  |  |
| nLSx[1:0]      | Sets the behavior of a sample in the pattern.<br>00 = Current sample is the last sample in the pattern<br>01 = Current sample is not the last sample in the pattern<br>10 = Interpolate current sample with next sample<br>11 = Current sample is the last sample in the pattern. Repeat the entire pattern RPTx[3:0] times |    |          |    |          |           |    |         |  |  |  |  |  |  |  |

|              |                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AmpSign[1:0] | Sign of haptic amplitude in current sample<br>0 = Positive<br>1 = Negative<br>Patterns must always use the convention that driving begins with positive (0) amplitude and braking is done with negative (1) amplitude.                                                                                                                                                                                |
| Amp[6:2]     | Sets the amplitude of pattern sample x as a 7-bit percentage of VFS and a 1-bit direction (see Vfs[7:0]).                                                                                                                                                                                                                                                                                             |
| Dur[4:0]     | Sets the duration of time the driver outputs the amplitude of the current sample in increments of 5ms<br>00000 = 0ms<br>00001 = 5ms<br>...<br>11110 = 150ms<br>11111 = 155ms                                                                                                                                                                                                                          |
| Wait[4:0]    | Sets the duration of time the driver waits at zero amplitude before the next sample in increments of 5ms<br>00000 = 0ms<br>00001 = 5ms<br>...<br>11110 = 150ms<br>11111 = 155ms                                                                                                                                                                                                                       |
| RPTx[3:0]    | Sets the number of times to repeat the sample before moving to the next sample in the pattern. If nLSx[1:0] = 11, this sets the number of times to repeat the whole pattern.<br>0000 = Repeat 0 times. If nLSx = 00, automatic braking is performed on this sample with a maximum braking time equal to Wait[4:0].<br>0001 = Repeat 1 time<br>...<br>1110 = Repeat 14 times<br>1111 = Repeat 15 times |

| nLS0[1:0] | A[7:0] | D[4:0]            | W[4:0]            | RPT[3:0]            |
|-----------|--------|-------------------|-------------------|---------------------|
| nLSPREV   | APREV  | D <sub>PREV</sub> | W <sub>PREV</sub> | RPT <sub>PREV</sub> |
| 01        | A0     | 00010             | 00001             | 0001                |
| 01        | A1     | 00011             | 00000             | 0010                |
| 10        | A2     | 00011             | 00000             | DC                  |
| 10        | A3     | 00011             | 00000             | DC                  |
| 11        | A4     | DC                | 00010             | 0010                |

DC = DON'T CARE

END OF PREVIOUS PATTERN

Figure 34. Sample Pattern Stored in RAM

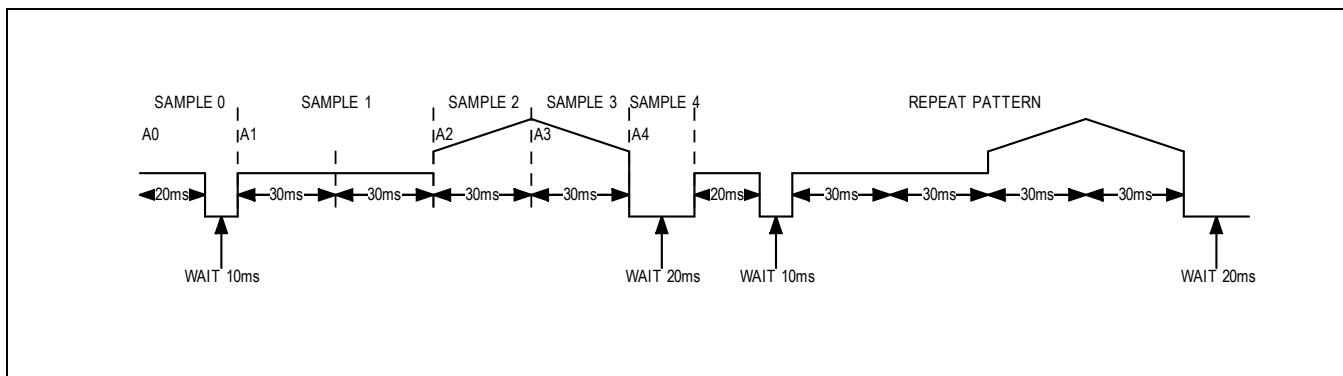



Figure 35. Diagram of Haptic Driver Output for Sample Pattern Stored Pattern

### Fuel Gauge

The MAX20366 integrates ModelGauge m5 EZ with high-side current sensing. For more details about the ModelGauge m5 algorithm, a link to the ModelGauge m5 EZ User Guide/software implementation guide, etc., refer to the Design Resources tab at the MAX17260 product page, and see the Register Map in the MAX17620 data sheet.

### MAX20361 Harvester Interaction

The MAX20366 implements a few features that allow it to seamlessly interact with the MAX20361 solar-energy harvester chip. Registers ThmCfg2, HrvCfg0, and HrvCfg1 (see bits: ThmCfg2, HrvCfg0, HrvCfg1) offer some settings for how the harvester-PMIC interaction takes place. Thresholds set on the PMIC for battery full-charge voltage and a restart threshold (see bits: HrvBatReg, HrvBatReChg) set the conditions for the behavior of the PMIC described in per the HrvBatSys register setting (see bit: HrvBatSys). Interactions between the charger and harvester are intended to be seamless and system intervention should not be necessary.

### Harvester Thermistor Monitoring

The MAX20366 features harvester temperature thresholds that are distinct from those of the battery charger for hot and cold regions. These thresholds are more relaxed offering a wider temperature range over which the harvester is permitted to charge. According to the device specific setting (see JEITASet in [Table 8](#)) the hot threshold can be set to either 14.51% (JEITASet = 0) or 23.53% (JEITASet = 1) while the cold threshold is fixed at 81.64% for both. For additional flexibility, register HrvCfg1 (see register: HrvCfg1) also allows behavior in the various charging temperature regions to be defined.

**Register Map****Haptic Driver and ADC Registers - Peripheral ID: 0xA0/0xA1**

| ADDR<br>ESS                             | NAME                          | MSB                |                      |                      |                       |                         |                  |                            | LSB                      |  |  |  |  |  |
|-----------------------------------------|-------------------------------|--------------------|----------------------|----------------------|-----------------------|-------------------------|------------------|----------------------------|--------------------------|--|--|--|--|--|
| <b>ADC and Haptic Status/Interrupts</b> |                               |                    |                      |                      |                       |                         |                  |                            |                          |  |  |  |  |  |
| 0x00                                    | <u>HptStatus0[7:0]</u><br>1   | HptHDINDi<br>s     | HptDRPOCPL<br>ow     | HptDRNOCPL<br>ow     | HptDRPOCPH<br>igh     | HptDRNOCPHi<br>gh       | HptThm<br>HptThm | HptClkOn<br>HptClkOn       | HptFrqLock<br>HptFrqLock |  |  |  |  |  |
| 0x01                                    | <u>HptStatus1[7:0]</u><br>1   | —                  | —                    | —                    | —                     | —                       | —                | —                          | HptFlt<br>HptFlt         |  |  |  |  |  |
| 0x02                                    | <u>HptStatus2[7:0]</u><br>1   | —                  | —                    | —                    | —                     | —                       | —                | ADCBusy<br>ADCBusy         | —<br>—                   |  |  |  |  |  |
| 0x03                                    | <u>HptInt0[7:0]</u>           | HptHDINDi<br>sInt  | HptDRPOCPL<br>owInt  | HptDRNOCPL<br>owInt  | HptDRPOCPH<br>ighInt  | HptDRNOCPHi<br>ghInt    | HptThm<br>Int    | HptClkOnInt<br>HptClkOnInt | HptFrqLock<br>Int        |  |  |  |  |  |
| 0x04                                    | <u>HptInt1[7:0]</u>           | —                  | —                    | —                    | —                     | HptAutoTuneD<br>oneInt  | HptTmo<br>Int    | HptHDINUV<br>LOInt         | HptFltInt<br>HptFltInt   |  |  |  |  |  |
| 0x05                                    | <u>HptInt2[7:0]</u>           | —                  | —                    | —                    | —                     | —                       | —                | ADCBusyInt<br>ADCBusyInt   | ADCEOCIn<br>t            |  |  |  |  |  |
| 0x06                                    | <u>HptIntMask0[7<br/>:0]</u>  | HptHDINDi<br>sIntM | HptDRPOCPL<br>owIntM | HptDRNOCPL<br>owIntM | HptDRPOCPH<br>ighIntM | HptDRNOCPHi<br>ghIntM   | HptThm<br>IntM   | HptClkOnInt<br>M           | HptFrqLock<br>IntM       |  |  |  |  |  |
| 0x07                                    | <u>HptIntMask1[7<br/>:0]</u>  | —                  | —                    | —                    | —                     | HptAutoTuneD<br>oneIntM | HptTmo<br>IntM   | HptHDINUV<br>LOIntM        | HptFltIntM<br>HptFltIntM |  |  |  |  |  |
| 0x08                                    | <u>HptIntMask2[7<br/>:0]</u>  | —                  | —                    | —                    | —                     | —                       | —                | ADCBusyInt<br>M            | ADCEOCIn<br>tM           |  |  |  |  |  |
| <b>Haptic Control</b>                   |                               |                    |                      |                      |                       |                         |                  |                            |                          |  |  |  |  |  |
| 0x09                                    | <u>HptControl[7:0]</u><br>1   | HptExtTrig         | HptRamEn             | HptDrvClkEn          | HptDrvMode[4:0]       |                         |                  |                            |                          |  |  |  |  |  |
| 0x0A                                    | <u>HptRTI2CPat[<br/>7:0]</u>  | HptRTI2CPat[7:0]   |                      |                      |                       |                         |                  |                            |                          |  |  |  |  |  |
| 0x0B                                    | <u>HptRAMPatAd<br/>d[7:0]</u> | HptRAMPatAdd[7:0]  |                      |                      |                       |                         |                  |                            |                          |  |  |  |  |  |
| 0x0C                                    | <u>HptProt[7:0]</u>           | —                  | —                    | —                    | —                     | —                       | HptOffl<br>mp    | HptThmProt<br>Dis          | HptOCProt<br>Dis         |  |  |  |  |  |
| 0x0D                                    | <u>HptUnlock[7:0]</u>         | —                  | —                    | —                    | —                     | —                       | —                | —                          | HptFltUnloc<br>k         |  |  |  |  |  |
| <b>Haptic Configuration</b>             |                               |                    |                      |                      |                       |                         |                  |                            |                          |  |  |  |  |  |

| ADDR<br>ESS            | NAME                                   | MSB              |                     |                       |                      |                    |                       |                     | LSB             |
|------------------------|----------------------------------------|------------------|---------------------|-----------------------|----------------------|--------------------|-----------------------|---------------------|-----------------|
| 0x11                   | <a href="#">HPTCfq0[7:0]</a>           | –                | AutoBrkPeak<br>Meas | AutoBrkCmpS<br>atStop | AutoBrkDis           | EmfEn              | HptSel                | AlcEn               | ZccHysEn        |
| 0x12                   | <a href="#">HPTCfq1[7:0]</a>           |                  |                     |                       |                      | Vfs[7:0]           |                       |                     |                 |
| 0x13                   | <a href="#">HPTCfq2[7:0]</a>           |                  |                     |                       |                      | HDINDisTh[7:0]     |                       |                     |                 |
| 0x14                   | <a href="#">HPTCfq3[7:0]</a>           | –                |                     |                       |                      | EmfSkipTh[6:0]     |                       |                     |                 |
| 0x15                   | <a href="#">HPTCfq4[7:0]</a>           | IniGssRes<br>Dis | –                   | –                     |                      |                    | IniDly[4:0]           |                     |                 |
| 0x16                   | <a href="#">HPTCfq5[7:0]</a>           | –                | –                   | –                     |                      |                    | WidWdw[4:0]           |                     |                 |
| 0x17                   | <a href="#">HPTCfq6[7:0]</a>           |                  |                     | NarWdw[3:0]           |                      | –                  |                       | EmfSkipCyc[2:0]     |                 |
| 0x18                   | <a href="#">HPTCfq7[7:0]</a>           | –                | –                   |                       |                      | BlankWdw[5:0]      |                       |                     |                 |
| 0x19                   | <a href="#">HPTCfq8[7:0]</a>           | –                | –                   | –                     |                      |                    | BrkCyc[4:0]           |                     |                 |
| 0x1A                   | <a href="#">HPTCfq9[7:0]</a>           |                  |                     | AutoBrkMeasWdw[3:0]   |                      | AutoBrkMeasTh[1:0] |                       | AutoBrkMeasEnd[1:0] |                 |
| 0x1B                   | <a href="#">HPTCfqA[7:0]</a>           | –                |                     | BrkLpGain[1:0]        | –                    |                    | BrkWdw[3:0]           |                     |                 |
| 0x1C                   | <a href="#">HPTCfqB[7:0]</a>           | ZccSlowEn        | FltrCntrEn          | –                     |                      |                    | DrvTmo[4:0]           |                     |                 |
| 0x1D                   | <a href="#">HPTCfqC[7:0]</a>           |                  |                     |                       | IniGss[7:0][7:0]     |                    |                       |                     |                 |
| 0x1E                   | <a href="#">HPTCfqD[7:0]</a>           | –                | –                   | –                     | –                    |                    | IniGss[11:8][3:0]     |                     |                 |
| 0x1F                   | <a href="#">HPTCfqE[7:0]</a>           | –                | –                   |                       |                      | NarCntLck[5:0]     |                       |                     |                 |
| 0x20                   | <a href="#">HPTCfqF[7:0]</a>           | –                |                     | NarLpGain[2:0]        |                      | –                  |                       | WidLpGain[2:0]      |                 |
| <b>Haptic Autotune</b> |                                        |                  |                     |                       |                      |                    |                       |                     |                 |
| 0x22                   | <a href="#">HptAutoTune[<br/>7:0]</a>  | –                | –                   | –                     | –                    | –                  | –                     | AutoTuneGo<br>od    | AutoTuneR<br>un |
| 0x23                   | <a href="#">BEMFPeriod0[<br/>7:0]</a>  |                  |                     |                       | BEMFPeriod[7:0][7:0] |                    |                       |                     |                 |
| 0x24                   | <a href="#">BEMFPeriod1[<br/>7:0]</a>  | –                | –                   | –                     | –                    |                    | BEMFPeriod[11:8][3:0] |                     |                 |
| <b>Haptic Patterns</b> |                                        |                  |                     |                       |                      |                    |                       |                     |                 |
| 0x30                   | <a href="#">HptETRGODa<br/>mp[7:0]</a> |                  |                     |                       | ETRGODamp[7:0]       |                    |                       |                     |                 |

| ADDR<br>ESS              | NAME                                    | MSB              |   |                |   |   |             |   | LSB               |  |  |  |  |  |  |
|--------------------------|-----------------------------------------|------------------|---|----------------|---|---|-------------|---|-------------------|--|--|--|--|--|--|
| 0x31                     | <a href="#">HptETRGOdD<br/>ur[7:0]</a>  | ETRGOdDur[7:0]   |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x32                     | <a href="#">HptETRGActA<br/>mp[7:0]</a> | ETRGActAmp[7:0]  |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x33                     | <a href="#">HptETRGActD<br/>ur[7:0]</a> | ETRGActDur[7:0]  |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x34                     | <a href="#">HptETRGBTkA<br/>mp[7:0]</a> | ETRGBTkAmp[7:0]  |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x35                     | <a href="#">HptETRGBTkD<br/>ur[7:0]</a> | ETRGBTkDur[7:0]  |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| <b>RAM Interface</b>     |                                         |                  |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x40                     | <a href="#">HptRAMAdd[7<br/>:0]</a>     | HptRAMAdd[7:0]   |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x41                     | <a href="#">HptRAMDataH<br/>[7:0]</a>   | HptRAMDataH[7:0] |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x42                     | <a href="#">HptRAMData<br/>M[7:0]</a>   | HptRAMDataM[7:0] |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x43                     | <a href="#">HptRAMDataL<br/>[7:0]</a>   | HptRAMDataL[7:0] |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| <b>ADC/MON Interface</b> |                                         |                  |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x50                     | <a href="#">ADCEn[7:0]</a>              | –                | – | –              | – | – | –           | – | ADCConvL<br>aunch |  |  |  |  |  |  |
| 0x51                     | <a href="#">ADCCfg[7:0]</a>             | –                | – | ADCAvgSiz[2:0] |   |   | ADCSel[2:0] |   |                   |  |  |  |  |  |  |
| 0x53                     | <a href="#">ADCDatAvg[7:<br/>0]</a>     | ADCAvg[7:0]      |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x54                     | <a href="#">ADCDatMin[7:<br/>0]</a>     | ADCMin[7:0]      |   |                |   |   |             |   |                   |  |  |  |  |  |  |
| 0x55                     | <a href="#">ADCDatMax[7<br/>:0]</a>     | ADCMax[7:0]      |   |                |   |   |             |   |                   |  |  |  |  |  |  |

**Register Details****HptStatus0 (0x0)**

| BIT         | 7          | 6            | 5            | 4             | 3             | 2         | 1         | 0          |
|-------------|------------|--------------|--------------|---------------|---------------|-----------|-----------|------------|
| Field       | HptHDINDis | HptDRPOCPLow | HptDRNOCPLow | HptDRPOCPHigh | HptDRNOCPHigh | HptThm    | HptClkOn  | HptFrqLock |
| Access Type | Read Only  | Read Only    | Read Only    | Read Only     | Read Only     | Read Only | Read Only | Read Only  |

| BITFIELD      | BITS | DESCRIPTION                                                                     | DECODE                                                                                                                                                                                                          |
|---------------|------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptHDINDis    | 7    | Status of the haptic driver HDIN voltage disable threshold.                     | 0: V <sub>HDIN</sub> greater than HDINDisTh[7:0] threshold.<br>1: Fault condition. Haptic driver locked and disabled due to V <sub>HDIN</sub> falling below the HDINDisTh[7:0] threshold.                       |
| HptDRPOCPLow  | 6    | Status of the haptic driver overcurrent protection on the DRP low-side switch.  | 0: No overcurrent detected on the DRP low-side switch.<br>1: Fault condition. Haptic driver locked and disabled due to current on the DRP low-side switch rising above the I <sub>HD_OCP</sub> threshold.       |
| HptDRNOCPLow  | 5    | Status of the haptic driver overcurrent protection on the DRN low-side switch.  | 0: No overcurrent detected on the DRN low-side switch.<br>1: Fault condition. Haptic driver locked and disabled due to current on the DRN low-side switch rising above the I <sub>HD_OCP</sub> threshold.       |
| HptDRPOCPHigh | 4    | Status of the haptic driver overcurrent protection on the DRP high-side switch. | 0: No overcurrent detected on the DRP high-side switch.<br>1: Fault condition, haptic driver locked and disabled due to the current on the DRP high-side switch rising above the I <sub>HD_OCP</sub> threshold. |
| HptDRNOCPHigh | 3    | Status of the haptic driver overcurrent protection on the DRN high-side switch. | 0: No overcurrent detected on the DRN high-side switch.<br>1: Fault condition. Haptic driver locked and disabled due to current on the DRN high-side switch rising above the I <sub>HD_OCP</sub> threshold.     |
| HptThm        | 2    | Status of the haptic driver thermal protection.                                 | 0: No overtemperature condition detected.<br>1: Fault condition. Haptic driver locked and disabled due to the die temperature rising above the T <sub>HD_SHDN</sub> threshold.                                  |
| HptClkOn      | 1    | Status of the haptic driver clock.                                              | 0: Haptic driver clock disabled<br>1: Haptic driver clock enabled                                                                                                                                               |
| HptFrqLock    | 0    | Status of the haptic driver BEMF resonant frequency locking.                    | 0: BEMF resonant frequency not locked<br>1: BEMF resonant frequency locked                                                                                                                                      |

**HptStatus1 (0x1)**

| BIT         | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0         |
|-------------|---|---|---|---|---|---|---|-----------|
| Field       | — | — | — | — | — | — | — | HptFlt    |
| Access Type | — | — | — | — | — | — | — | Read Only |

| BITFIELD | BITS | DESCRIPTION                                  | DECODE                                                                                                                            |
|----------|------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| HptFlt   | 0    | Status of the haptic driver fault condition. | 0: No haptic driver fault condition detected<br>1: Haptic driver locked and disabled due to one or more fault conditions detected |

**HptStatus2 (0x2)**

| BIT         | 7 | 6 | 5 | 4 | 3 | 2 | 1         | 0 |
|-------------|---|---|---|---|---|---|-----------|---|
| Field       | — | — | — | — | — | — | ADCBusy   | — |
| Access Type | — | — | — | — | — | — | Read Only | — |

| BITFIELD | BITS | DESCRIPTION              | DECODE                                                   |
|----------|------|--------------------------|----------------------------------------------------------|
| ADCBusy  | 1    | Status of ADC operation. | 0: ADC disabled<br>1: ADC enabled and conversion running |

**HptInt0 (0x3)**

| BIT         | 7             | 6               | 5               | 4                | 3                | 2           | 1           | 0             |
|-------------|---------------|-----------------|-----------------|------------------|------------------|-------------|-------------|---------------|
| Field       | HptHDINDisInt | HptDRPOCPLowInt | HptDRNOCPLowInt | HptDRPOCPHighInt | HptDRNOCPHighInt | HptThmInt   | HptClkOnInt | HptFrqLockInt |
| Access Type | Write, Read   | Write, Read     | Write, Read     | Write, Read      | Write, Read      | Write, Read | Write, Read | Write, Read   |

| BITFIELD         | BITS | DESCRIPTION                                  |
|------------------|------|----------------------------------------------|
| HptHDINDisInt    | 7    | Change in HptHDINDis caused an interrupt.    |
| HptDRPOCPLowInt  | 6    | Change in HptDRPOCPLow caused an interrupt.  |
| HptDRNOCPLowInt  | 5    | Change in HptDRNOCPLow caused an interrupt.  |
| HptDRPOCPHighInt | 4    | Change in HptDRPOCPHigh caused an interrupt. |
| HptDRNOCPHighInt | 3    | Change in HptDRNOCPHigh caused an interrupt. |
| HptThmInt        | 2    | Change in HptThm caused an interrupt.        |
| HptClkOnInt      | 1    | Change in HptClkOn caused an interrupt.      |
| HptFrqLockInt    | 0    | Change in HptFrqLock caused an interrupt.    |

**HptInt1 (0x4)**

| BIT         | 7 | 6 | 5 | 4 | 3                  | 2           | 1              | 0           |
|-------------|---|---|---|---|--------------------|-------------|----------------|-------------|
| Field       | — | — | — | — | HptAutoTuneDoneInt | HptTmolnt   | HptHDINUVLOInt | HptFltInt   |
| Access Type | — | — | — | — | Write, Read        | Write, Read | Write, Read    | Write, Read |

| BITFIELD           | BITS | DESCRIPTION                                             | DECODE                                                                                                                                           |
|--------------------|------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| HptAutoTuneDoneInt | 3    | Haptic driver auto-tune procedure completion interrupt. | Set to 1 when haptic auto tune is complete.                                                                                                      |
| HptTmoint          | 2    | Haptic driver vibration timeout interrupt.              | 0: Haptic driver vibration timeout not expired.<br>1: Fault condition. Haptic driver locked and disabled due to vibration timeout being expired. |
| HptHDINUVLOInt     | 1    | Haptic driver HDIN UVLO interrupt.                      | 0: $V_{HDIN} > V_{HDIN\_UVLO}$ .<br>1: Fault condition. Haptic driver locked and disabled due to $V_{HDIN} < V_{HDIN\_UVLO}$ .                   |
| HptFltInt          | 0    | Change in HptFlt caused an interrupt.                   | Set to 1 when there is change in the HptFlt bit.                                                                                                 |

**HptInt2 (0x5)**

| BIT                | 7 | 6 | 5 | 4 | 3 | 2 | 1           | 0           |
|--------------------|---|---|---|---|---|---|-------------|-------------|
| <b>Field</b>       | — | — | — | — | — | — | ADCBusyInt  | ADCEOCInt   |
| <b>Access Type</b> | — | — | — | — | — | — | Write, Read | Write, Read |

| BITFIELD   | BITS | DESCRIPTION                            |
|------------|------|----------------------------------------|
| ADCBusyInt | 1    | Change in ADCBusy caused an interrupt. |
| ADCEOCInt  | 0    | ADC end of conversion interrupt.       |

**HptIntMask0 (0x6)**

| BIT                | 7              | 6                | 5                | 4                 | 3                 | 2            | 1              | 0              |
|--------------------|----------------|------------------|------------------|-------------------|-------------------|--------------|----------------|----------------|
| <b>Field</b>       | HptHDINDisIntM | HptDRPOCPLowIntM | HptDRNOCPLowIntM | HptDRPOCPHighIntM | HptDRNOCPHighIntM | HptThmInIntM | HptClkOnInIntM | HptFrqLockIntM |
| <b>Access Type</b> | Write, Read    | Write, Read      | Write, Read      | Write, Read       | Write, Read       | Write, Read  | Write, Read    | Write, Read    |

| BITFIELD         | BITS | DESCRIPTION                                                                          | DECODE                     |
|------------------|------|--------------------------------------------------------------------------------------|----------------------------|
| HptHDINDisIntM   | 7    | HptHDINDisIntM masks the HptHDINDisInt interrupt in the HptInt0 register (0x03).     | 0: Masked<br>1: Not masked |
| HptDRPOCPLowIntM | 6    | HptDRPOCPLowIntM masks the HptDRPOCPLowInt interrupt in the HptInt0 register (0x03). | 0: Masked<br>1: Not masked |
| HptDRNOCPLowIntM | 5    | HptDRNOCPLowIntM masks the HptDRNOCPLowInt interrupt in the HptInt0 register (0x03). | 0: Masked<br>1: Not masked |

| BITFIELD          | BITS | DESCRIPTION                                                                            | DECODE                     |
|-------------------|------|----------------------------------------------------------------------------------------|----------------------------|
| HptDRPOCPhighIntM | 4    | HptDRPOCPhighIntM masks the HptDRPOCPhighInt interrupt in the HptInt0 register (0x03). | 0: Masked<br>1: Not masked |
| HptDRNOCPhighIntM | 3    | HptDRNOCPhighIntM masks the HptDRNOCPhighInt interrupt in the HptInt0 register (0x03). | 0: Masked<br>1: Not masked |
| HptThmIntM        | 2    | HptThmIntM masks the HptThmInt interrupt in the HptInt0 register (0x03).               | 0: Masked<br>1: Not masked |
| HptClkOnIntM      | 1    | HptClkOnIntM masks the HptClkOnInt interrupt in the HptInt0 register (0x03).           | 0: Masked<br>1: Not masked |
| HptFrqLockIntM    | 0    | HptFrqLockIntM masks the HptFrqLockInt interrupt in the HptInt0 register (0x03).       | 0: Masked<br>1: Not masked |

**HptIntMask1 (0x7)**

| BIT                | 7 | 6 | 5 | 4 | 3                   | 2           | 1               | 0           |
|--------------------|---|---|---|---|---------------------|-------------|-----------------|-------------|
| <b>Field</b>       | — | — | — | — | HptAutoTuneDoneIntM | HptTmolntM  | HptHDINUVLOIntM | HptFltIntM  |
| <b>Access Type</b> | — | — | — | — | Write, Read         | Write, Read | Write, Read     | Write, Read |

| BITFIELD            | BITS | DESCRIPTION                                                                                | DECODE                     |
|---------------------|------|--------------------------------------------------------------------------------------------|----------------------------|
| HptAutoTuneDoneIntM | 3    | HptAutoTuneDoneIntM masks the HptAutoTuneDoneInt interrupt in the HptInt1 register (0x04). | 0: Masked<br>1: Not masked |
| HptTmolntM          | 2    | HptTmolntM masks the HptTmolnt interrupt in the HptInt1 register (0x04).                   | 0: Masked<br>1: Not masked |
| HptHDINUVLOIntM     | 1    | HptHDINUVLOIntM masks the HptHDINUVLOInt interrupt in the HptInt1 register (0x04).         | 0: Masked<br>1: Not masked |
| HptFltIntM          | 0    | HptFltIntM masks the HptFltInt interrupt in the HptInt1 register (0x04).                   | 0: Masked<br>1: Not masked |

**HptIntMask2 (0x8)**

| BIT                | 7 | 6 | 5 | 4 | 3 | 2 | 1           | 0           |
|--------------------|---|---|---|---|---|---|-------------|-------------|
| <b>Field</b>       | — | — | — | — | — | — | ADCBusyIntM | ADCEOCIntM  |
| <b>Access Type</b> | — | — | — | — | — | — | Write, Read | Write, Read |

| BITFIELD    | BITS | DESCRIPTION                                                                | DECODE                     |
|-------------|------|----------------------------------------------------------------------------|----------------------------|
| ADCBusyIntM | 1    | ADCBusyIntM masks the ADCBusyInt interrupt in the HptInt2 register (0x05). | 0: Masked<br>1: Not masked |
| ADCEOCIntM  | 0    | ADCEOCIntM masks the ADCEOCInt interrupt in the HptInt2 register (0x05).   | 0: Masked<br>1: Not masked |

HptControl (0x9)

| BIT         | 7           | 6           | 5           | 4               | 3 | 2 | 1 | 0 |
|-------------|-------------|-------------|-------------|-----------------|---|---|---|---|
| Field       | HptExtTrig  | HptRamEn    | HptDrvClkEn | HptDrvMode[4:0] |   |   |   |   |
| Access Type | Write, Read | Write, Read | Write, Read | Write, Read     |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptExtTrig  | 7    | Haptic driver external trigger for ETRGI and RAMHPI driver mode (HptDrvMod[4:0] = "01100" and HptDrvMod[4:0] = "10010," respectively)                                                                                                                                                                                                                                      | 0: No vibration triggered<br>1: Vibration triggered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HptRamEn    | 6    | Haptic driver RAM block enable                                                                                                                                                                                                                                                                                                                                             | 0: RAM disabled<br>1: RAM enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HptDrvClkEn | 5    | Haptic driver clock enable. In all interface modes, HptDrvClkEn must be set to 1 at the same time or before providing the desired mode in HptDrvMod[4:0]. The HptDrvClkEn bit must remain set to 1 during the vibration. Once vibration finishes, HptDrvMod[4:0] must be set to "00000" before the haptic driver can be disabled through HptDrvClkEn = 0 for power savings | 0: Haptic driver clock disabled<br>1: Haptic driver clock enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HptDrvMode  | 4:0  | Haptic driver interface mode selection.                                                                                                                                                                                                                                                                                                                                    | 00000: Disable haptic driver.<br>00001: Enable PPWM0 mode and provide amplitude based on PWM duty cycle on MPC0<br>00010: Enable PPWM1 mode and provide amplitude based on PWM duty cycle on MPC1<br>00011: Enable PPWM2 mode and provide amplitude based on PWM duty cycle on MPC2<br>00100: Enable PPWM3 mode and provide amplitude based on PWM duty cycle on MPC3<br>00101: Enable PPWM4 mode and provide amplitude based on PWM duty cycle on MPC4<br>00110: Enable RTI2C mode and provide current output amplitude based on the contents of HptRTI2CPat(0x0A)<br>00111: Enable ETRG0 mode. Provide a pulse on MPC0 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details).<br>01000: Enable ETRG1 mode. Provide a pulse on MPC1 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details).<br>01001: Enable ETRG2 mode. Provide a pulse on MPC2 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details).<br>01010: Enable ETRG3 mode. Provide a pulse on MPC3 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details).<br>01011: Enable ETRG4 mode. Provide a pulse on MPC4 |

| BITFIELD | BITS | DESCRIPTION | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |             | <p>to start vibration (see the External Triggered Stored Pattern (ETRG) section for details).</p> <p>01100: Enable ETRGI mode using I<sup>2</sup>C. Set HptExtTrg(0x09[7]) bit to start vibration (see the External Triggered Stored Pattern (ETRG) section for details).</p> <p>01101: Enable RAMHP0 mode. Provide a pulse on MPC0 to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details).</p> <p>01110: Enable RAMHP1 mode. Provide a pulse on MPC1 to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details).</p> <p>01111: Enable RAMHP2 mode. Provide a pulse on MPC2 to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details).</p> <p>10000: Enable RAMHP3 mode. Provide a pulse on MPC3 to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details).</p> <p>10001: Enable RAMHP4 mode. Provide a pulse on MPC4 to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details).</p> <p>10010: Enable RAMHP1 mode using I<sup>2</sup>C. Set HptExtTrg(0x09[7]) bit to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details).</p> <p>&gt;10010: Reserved</p> |

[HptRTI2CPat \(0xA\)](#)

| BIT         | 7                | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|------------------|---|---|---|---|---|---|---|
| Field       | HptRTI2CPat[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read      |   |   |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                           |
|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptRTI2CPat | 7:0  | Haptic driver programmed output amplitude as a percentage of V <sub>FS</sub> in RTI2C mode (HptDrvMod = "00110"). LSB = 0.78%V <sub>FS</sub> . Note that the MSB represents the sign of the amplitude to be driven. Patterns must always begin with driving in the positive direction (0 as the MSB). |

[HptRAMPatAdd \(0xB\)](#)

| BIT         | 7                 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|-------------------|---|---|---|---|---|---|---|
| Field       | HptRAMPatAdd[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read       |   |   |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                             |
|--------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptRAMPatAdd | 7:0  | Address of first sample in haptic driver vibration pattern to be run in RAMHP_ mode (HptDrvMod = "01101," "01110," "01111," "10000," "10001," "10010"). |

HptProt (0xC)

| BIT         | 7 | 6 | 5 | 4 | 3 | 2           | 1             | 0             |
|-------------|---|---|---|---|---|-------------|---------------|---------------|
| Field       | — | — | — | — | — | HptOffImp   | HptThmProtDis | HptOCPProtDis |
| Access Type | — | — | — | — | — | Write, Read | Write, Read   | Write, Read   |

| BITFIELD      | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                          | DECODE                                                                                                                                                                                         |
|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptOffImp     | 2    | Haptic driver output off-state impedance.                                                                                                                                                                                                                                                                                                            | 0: When haptic driver is disabled, outputs are strongly shorted to GND through low-side switches<br>1: When haptic driver is disabled, outputs are shorted to GND with 15kΩ pull-down          |
| HptThmProtDis | 1    | Haptic driver thermal protection disable.<br>If HptThmProtDis = 0 and the haptic driver is locked and disabled due to an overtemperature condition, HptThmInt interrupt is issued and HptFlt is set to 1. Set HptFltUnlock = 1 to allow a restart of the haptic driver.                                                                              | 0: Thermal protection enabled, haptic driver shuts down if die temperature rises above $T_{HD\_SHDN}$ threshold<br>1: Thermal protection disabled                                              |
| HptOCPProtDis | 0    | Haptic driver overcurrent protection disable.<br>If HptOCPProtDis = 0 and the haptic driver is locked and disabled due to an overcurrent condition, HptDRPOCPLowInt and/or HptDRNOCPLowInt and/or HptDRPOCPHighInt and/or HptDRNOCPHighInt interrupt is issued and HptFlt is set to 1. Set HptFltUnlock = 1 to allow a restart of the haptic driver. | 0: Overcurrent protection enabled. Haptic driver shuts down if current through any of DRP/DRN high/low-side switches exceeds the $I_{HD\_OCP}$ threshold<br>1: Overcurrent protection disabled |

HptUnlock (0xD)

| BIT         | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0            |
|-------------|---|---|---|---|---|---|---|--------------|
| Field       | — | — | — | — | — | — | — | HptFltUnlock |
| Access Type | — | — | — | — | — | — | — | Write, Read  |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                                   |
|--------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptFltUnlock | 0    | Haptic driver unlock control.<br>When a fault condition causes the haptic driver to be locked and disabled, HptFlt is set to 1 and it can only be cleared by manually writing HptFltUnlock to 1. After the unlock, HptFltUnlock also goes to 0 automatically. |

HPTCfg0 (0x11)

| BIT   | 7 | 6               | 5                 | 4          | 3     | 2      | 1     | 0        |
|-------|---|-----------------|-------------------|------------|-------|--------|-------|----------|
| Field | — | AutoBrkPeakMeas | AutoBrkCmpSatStop | AutoBrkDis | EmfEn | HptSel | AlcEn | ZccHysEn |

|             |   |             |             |             |             |             |             |             |
|-------------|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Access Type | - | Write, Read |
|-------------|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|

| BITFIELD          | BITS | DESCRIPTION                                                                                                                                                                                                                                           | DECODE                                                                                                                                                  |
|-------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| AutoBrkPeakMeas   | 6    | Haptic driver BEMF amplitude detection sample points.<br>Determines if two or four BEMF sample points are used during automatic braking.                                                                                                              | 0: Four sample points are used to measure the BEMF amplitude<br>1: Two sample points are used to measure the BEMF amplitude                             |
| AutoBrkCmpSatStop | 5    | Haptic driver BEMF zero crossing comparator counter saturation.<br>If enabled, the automatic braking function exits when the counter on the zero crossing comparator is saturated during a braking window within one of the BrkCyc[4:0] half periods. | 0: Do not exit braking when the zero crossing comparator counter is saturated<br>1: Exit braking when the zero crossing comparator counter is saturated |
| AutoBrkDis        | 4    | Haptic driver automatic braking disable.                                                                                                                                                                                                              | 0: Automatic braking enabled<br>1: Automatic braking disabled                                                                                           |
| EmfEn             | 3    | Haptic driver BEMF resonance detection control.                                                                                                                                                                                                       | 0: Disabled<br>1: Enabled                                                                                                                               |
| HptSel            | 2    | Haptic driver mode select.                                                                                                                                                                                                                            | 0: ERM mode<br>1: LRA mode                                                                                                                              |
| AlcEn             | 1    | Haptic driver automatic level compensation (ALC) control.                                                                                                                                                                                             | 0: Disabled<br>1: Enabled                                                                                                                               |
| ZccHysEn          | 0    | Haptic driver BEMF zero crossing comparator hysteresis control.                                                                                                                                                                                       | 0: Disabled<br>1: Enabled (6mV typ)                                                                                                                     |

HPTCfg1 (0x12)

|             |             |   |   |   |   |   |   |   |
|-------------|-------------|---|---|---|---|---|---|---|
| BIT         | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field       | Vfs[7:0]    |   |   |   |   |   |   |   |
| Access Type | Write, Read |   |   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                        |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vfs      | 7:0  | Haptic drive full-scale voltage ( $V_{FS}$ ).<br>Stores the voltage $V_{FS}$ to which the desired percentage output amplitude is referred. The actual $V_{FS}$ is the minimum between the value programmed on Vfs[7:0] and the current $V_{HDIN}$ value. LSB = 5.5V/255 = 21.57mV. |

HPTCfg2 (0x13)

|             |                |   |   |   |   |   |   |   |
|-------------|----------------|---|---|---|---|---|---|---|
| BIT         | 7              | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field       | HDINDisTh[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read    |   |   |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                                                                                            |
|-----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HDINDisTh | 7:0  | Haptic driver HDIN voltage disable threshold.<br>If $V_{HDIN}$ falls below this threshold, the haptic driver is locked and disabled, HptHDINDisInt interrupt is issued and HptFlt is set to 1. Set HptFltUnlock = 1 to allow a restart of the haptic driver. LSB = 5.5V/255 = 21.57mV. |

**HPTCfg3 (0x14)**

| BIT                | 7 | 6              | 5 | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|----------------|---|---|---|---|---|---|
| <b>Field</b>       | — | EmfSkipTh[6:0] |   |   |   |   |   |   |
| <b>Access Type</b> | — | Write, Read    |   |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                                                                                               |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EmfSkipTh | 6:0  | Haptic driver BEMF detection skip threshold.<br>If the absolute (lower 7 bits) programmed output amplitude as a percentage of $V_{FS}$ is lower than EmfSkipTh, BEMF detection is skipped as the returned BEMF voltage would be too small to be reliably detected. LSB = 0.78% $V_{FS}$ . |

**HPTCfg4 (0x15)**

| BIT                | 7            | 6 | 5 | 4           | 3 | 2 | 1 | 0 |  |  |
|--------------------|--------------|---|---|-------------|---|---|---|---|--|--|
| <b>Field</b>       | IniGssResDis | — | — | IniDly[4:0] |   |   |   |   |  |  |
| <b>Access Type</b> | Write, Read  | — | — | Write, Read |   |   |   |   |  |  |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                       | DECODE                                                                                                                                                                                                                                   |
|--------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IniGssResDis | 7    | Haptic driver initial guess restore disable.                                                                                                                                                                                                                                                                                                      | 0: Haptic driver uses IniGss[11:0] as the driving frequency after the end of BrkCyc[4:0] sinewave half periods<br>1: Haptic driver does not use IniGss[11:0] as the driving frequency after the end of BrkCyc[4:0] sinewave half periods |
| IniDly       | 4:0  | Haptic driver number of sinewave half periods to be skipped before (re)starting BEMF measurement after:<br>1) start of vibration pattern<br>2) change of output polarity (e.g., braking)<br>3) programmed percentage output amplitude (with respect to $V_{FS}$ ) becoming again higher than EmfSkipTh[6:0] after having previously gone below it |                                                                                                                                                                                                                                          |

**HPTCfg5 (0x16)**

| BIT                | 7 | 6 | 5 | 4           | 3 | 2 | 1 | 0 |
|--------------------|---|---|---|-------------|---|---|---|---|
| <b>Field</b>       | – | – | – | WidWdw[4:0] |   |   |   |   |
| <b>Access Type</b> | – | – | – | Write, Read |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                                         |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------|
| WidWdw   | 4:0  | Haptic driver wide window duration for BEMF zero-crossing detection. LSB = 1/32 <sup>nd</sup> of currently imposed sinewave period. |

**HPTCfg6 (0x17)**

| BIT                | 7           | 6 | 5 | 4 | 3 | 2 | 1               | 0 |
|--------------------|-------------|---|---|---|---|---|-----------------|---|
| <b>Field</b>       | NarWdw[3:0] |   |   |   |   | – | EmfSkipCyc[2:0] |   |
| <b>Access Type</b> | Write, Read |   |   |   |   | – | Write, Read     |   |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                           |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------|
| NarWdw     | 7:4  | Haptic driver narrow window duration for BEMF zero-crossing detection. LSB = 1/32 <sup>nd</sup> of currently imposed sinewave period. |
| EmfSkipCyc | 2:0  | Haptic driver number of consecutive sinewave half periods during which BEMF detection is skipped after a BEMF detection completes.    |

**HPTCfg7 (0x18)**

| BIT                | 7 | 6 | 5             | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|---------------|---|---|---|---|---|
| <b>Field</b>       | – | – | BlankWdw[5:0] |   |   |   |   | – |
| <b>Access Type</b> | – | – | Write, Read   |   |   |   |   | – |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                         |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BlankWdw | 5:0  | Haptic driver zero-crossing comparator blanking time applied after entering or prior to exiting the wide, narrow, and braking windows. The blanking window duration cannot exceed 1/64 <sup>th</sup> of the current sinewave period unless AutoBrkPeakMeas = 1 and the driver is in the automatic braking state. LSB = 128/25.6MHz. |

**HPTCfg8 (0x19)**

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|---|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |   |

|                    |   |   |   |             |  |  |  |  |
|--------------------|---|---|---|-------------|--|--|--|--|
| <b>Field</b>       | – | – | – | BrkCyc[4:0] |  |  |  |  |
| <b>Access Type</b> | – | – | – | Write, Read |  |  |  |  |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                    |
|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BrkCyc   | 4:0  | Haptic driver number of consecutive sinewave half periods during which active braking is applied after a change in driving polarity. During these half periods, the gain used becomes BrkLpGain[1:0], the window duration becomes BrkWdw[4:0], and the effects of IniDly[4:0], EmfSkipCyc[2:0], and NarCntLck[5:0] are masked. |

HPTCfg9 (0x1A)

| BIT                | 7                   | 6 | 5 | 4 | 3                  | 2                   | 1 | 0 |
|--------------------|---------------------|---|---|---|--------------------|---------------------|---|---|
| <b>Field</b>       | AutoBrkMeasWdw[3:0] |   |   |   | AutoBrkMeasTh[1:0] | AutoBrkMeasEnd[1:0] |   |   |
| <b>Access Type</b> | Write, Read         |   |   |   | Write, Read        | Write, Read         |   |   |

| BITFIELD       | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                             | DECODE                                            |
|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| AutoBrkMeasWdw | 7:4  | Haptic driver BEMF amplitude detection window duration during automatic braking. LSB = 128/25.6MHz.                                                                                                                                                                                                     |                                                   |
| AutoBrkMeasTh  | 3:2  | Haptic driver BEMF absolute amplitude detection threshold during automatic braking.                                                                                                                                                                                                                     | 00: 2.5mV<br>01: 5.0mV<br>10: 7.5mV<br>11: 10.0mV |
| AutoBrkMeasEnd | 1:0  | Haptic driver BEMF amplitude detection end counter during automatic braking.<br>Sets the number of consecutive BEMF amplitude detections in which the absolute amplitude of the BEMF must be less than AutoBrkMeasTh[1:0] for more than half of AutoBrkMeasWdw[3:0] in order to stop automatic braking. | 00: 1<br>01: 2<br>10: 3<br>11: 4                  |

HPTCfgA (0x1B)

| BIT                | 7 | 6              | 5 | 4 | 3           | 2 | 1 | 0 |  |
|--------------------|---|----------------|---|---|-------------|---|---|---|--|
| <b>Field</b>       | – | BrkLpGain[1:0] |   |   | BrkWdw[3:0] |   |   |   |  |
| <b>Access Type</b> | – | Write, Read    |   |   | Write, Read |   |   |   |  |

| BITFIELD  | BITS | DESCRIPTION                                                                           | DECODE           |
|-----------|------|---------------------------------------------------------------------------------------|------------------|
| BrkLpGain | 6:5  | Haptic driver braking window gain.<br>Sets gain by which the phase delay found by the | 00: 1<br>01: 1/2 |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                           | DECODE             |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|          |      | zero-crossing comparator is multiplied to calculate the shift for the new sinewave half period with respect to the previously imposed sinewave. This value is used when the braking window is active. | 10: 1/4<br>11: 1/8 |
| BrkWdw   | 3:0  | Haptic driver braking window duration for BEMF zero-crossing detection. LSB = 1/32 <sup>nd</sup> of currently imposed sinewave period.                                                                |                    |

**HPTCfgB (0x1C)**

| BIT                | 7           | 6           | 5 | 4           | 3 | 2 | 1 | 0 |
|--------------------|-------------|-------------|---|-------------|---|---|---|---|
| <b>Field</b>       | ZccSlowEn   | FltrCntrEn  | – | DrvTmo[4:0] |   |   |   |   |
| <b>Access Type</b> | Write, Read | Write, Read | – | Write, Read |   |   |   |   |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZccSlowEn  | 7    | Haptic driver zero-crossing comparator slow-down enable.                                                                                                                                                                                                                                   | 0: Zero-crossing comparator operates in normal mode<br>1: Slows down the zero-crossing comparator by 2X for stronger antialiasing filtering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FltrCntrEn | 6    | Haptic driver zero-crossing event capturing filter enable.                                                                                                                                                                                                                                 | 0: Zero-crossing measured using single comparator/transition<br>1: Zero-crossing measured using an up/down counter that samples (at 25.6MHz) the output of the comparator for the whole duration of the enabled window (wide, narrow, or braking). The counter starts at zero (mid-code) and ends at a positive or negative code depending on whether the average zero-crossing event occurs before or after than the expected time. The closer the zero-crossing is on average to the expected time, the closer to zero code returned at the end of the window is. Phase error (in 25.6MHz period units) can be calculated by dividing the resulting code at the end of the window by 2. The usage of the up/down counter enables filtering/noise rejection that could otherwise cause a systematic shift in the phase error detected. |
| DrvTmo     | 4:0  | Haptic driver vibration timeout.<br>If vibration timeout is reached, the haptic driver is locked and disabled, HptTmoInt interrupt is issued and HptFlt is set to 1. Set HptFltUnlock = 1 to allow a restart of the haptic driver. LSB = 1s. Timeout is disabled if DrvTmo[4:0] = "00000." |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**HPTCfgC (0x1D)**

| BIT                | 7                | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------------------|------------------|---|---|---|---|---|---|---|
| <b>Field</b>       | IniGss[7:0][7:0] |   |   |   |   |   |   |   |
| <b>Access Type</b> | Write, Read      |   |   |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                    |
|-------------|------|----------------------------------------------------------------------------------------------------------------|
| IniGss[7:0] | 7:0  | Haptic driver initial guess frequency.<br>Initial estimate for BEMF frequency = ((25.6MHz/64) / IniGss[11:0]). |

**HPTCfgD (0x1E)**

| BIT                | 7 | 6 | 5 | 4 | 3                 | 2 | 1 | 0 |  |
|--------------------|---|---|---|---|-------------------|---|---|---|--|
| <b>Field</b>       | – | – | – | – | IniGss[11:8][3:0] |   |   |   |  |
| <b>Access Type</b> | – | – | – | – | Write, Read       |   |   |   |  |

| BITFIELD     | BITS | DESCRIPTION                                                                                                    |
|--------------|------|----------------------------------------------------------------------------------------------------------------|
| IniGss[11:8] | 3:0  | Haptic driver initial guess frequency.<br>Initial estimate for BEMF frequency = ((25.6MHz/64) / IniGss[11:0]). |

**HPTCfgE (0x1F)**

| BIT                | 7 | 6 | 5              | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|----------------|---|---|---|---|---|
| <b>Field</b>       | – | – | NarCntLck[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read    |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                               |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NarCntLck | 5:0  | Haptic driver number of consecutive sinewave half periods where the BEMF is detected and where the phase delay must fall within the narrow window before detection window is reduced from wide to narrow. |

**HPTCfgF (0x20)**

| BIT                | 7 | 6              | 5 | 4 | 3 | 2 | 1              | 0 |
|--------------------|---|----------------|---|---|---|---|----------------|---|
| <b>Field</b>       | – | NarLpGain[2:0] |   |   |   | – | WidLpGain[2:0] |   |
| <b>Access Type</b> | – | Write, Read    |   |   |   | – | Write, Read    |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                              | DECODE                                                  |
|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| NarLpGain | 6:4  | Haptic driver narrow window gain.<br>Sets gain by which the phase delay found by the zero-crossing comparator is multiplied to calculate the shift for the new sinewave half period with | 000: 1<br>001: 1/2<br>010: 1/4<br>011: 1/8<br>100: 1/16 |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                                                                                           | DECODE                                                                                          |
|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|           |      | respect to the previously imposed sinewave. This value is used when the narrow window is active.                                                                                                                                                                                      | 101: 1/32<br>110: 1/64<br>111: 1/128                                                            |
| WidLpGain | 2:0  | Haptic driver wide window gain.<br>Sets gain by which the phase delay found by the zero-crossing comparator is multiplied to calculate the shift for the new sinewave half period with respect to the previously imposed sinewave. This value is used when the wide window is active. | 000: 1<br>001: 1/2<br>010: 1/4<br>011: 1/8<br>100: 1/16<br>101: 1/32<br>110: 1/64<br>111: 1/128 |

**HptAutoTune (0x22)**

| BIT         | 7 | 6 | 5 | 4 | 3 | 2 | 1            | 0           |
|-------------|---|---|---|---|---|---|--------------|-------------|
| Field       | – | – | – | – | – | – | AutoTuneGood | AutoTuneRun |
| Access Type | – | – | – | – | – | – | Read Only    | Write, Read |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                 | DECODE                                                                                                                                                           |
|--------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AutoTuneGood | 1    | Haptic driver auto-tune procedure result.                                                                                                                                   | 0: BEMF resonant frequency locking was not achieved with the auto-tune procedure<br>1: BEMF resonant frequency locking was achieved with the auto-tune procedure |
| AutoTuneRun  | 0    | Haptic driver auto-tune command.<br>Set AutoTuneRun to 1 to launch the auto-tune procedure. AutoTuneRun is automatically cleared to 0 once auto-tune procedure is complete. |                                                                                                                                                                  |

**BEMFPeriod0 (0x23)**

| BIT         | 7                    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|----------------------|---|---|---|---|---|---|---|
| Field       | BEMFPeriod[7:0][7:0] |   |   |   |   |   |   |   |
| Access Type | Read Only            |   |   |   |   |   |   |   |

| BITFIELD        | BITS | DESCRIPTION                                                                                           |
|-----------------|------|-------------------------------------------------------------------------------------------------------|
| BEMFPeriod[7:0] | 7:0  | Haptic driver resonant frequency resolved by autotune function = ((25.6MHz / 64) / BEMFPeriod[11:0]). |

**BEMFPeriod1 (0x24)**

| BIT   | 7 | 6 | 5 | 4 | 3                     | 2 | 1 | 0 |
|-------|---|---|---|---|-----------------------|---|---|---|
| Field | – | – | – | – | BEMFPeriod[11:8][3:0] |   |   |   |

|             |   |   |   |   |           |  |  |  |  |
|-------------|---|---|---|---|-----------|--|--|--|--|
| Access Type | - | - | - | - | Read Only |  |  |  |  |
|-------------|---|---|---|---|-----------|--|--|--|--|

| BITFIELD         | BITS | DESCRIPTION                                                                                           |
|------------------|------|-------------------------------------------------------------------------------------------------------|
| BEMFPeriod[11:8] | 3:0  | Haptic driver resonant frequency resolved by autotune function = ((25.6MHz / 64) / BEMFPeriod[11:0]). |

**HptETRGOdAmp (0x30)**

|             |                |   |   |   |   |   |   |   |
|-------------|----------------|---|---|---|---|---|---|---|
| BIT         | 7              | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field       | ETRGOdAmp[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read    |   |   |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                                                      |
|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETRGOdAmp | 7:0  | Haptic driver programmed output amplitude of the overdrive period as a percentage of V <sub>FS</sub> in ETRG mode. LSB = 0.78%V <sub>FS</sub> . Note that the MSB represents the sign of the amplitude to be driven and must always be set to 0. |

**HptETRGOdDur (0x31)**

|             |                |   |   |   |   |   |   |   |
|-------------|----------------|---|---|---|---|---|---|---|
| BIT         | 7              | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field       | ETRGOdDur[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read    |   |   |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                             |
|-----------|------|-------------------------------------------------------------------------|
| ETRGOdDur | 7:0  | Haptic driver duration of the overdrive period in ETRG mode. LSB = 5ms. |

**HptETRGActAmp (0x32)**

|             |                 |   |   |   |   |   |   |   |
|-------------|-----------------|---|---|---|---|---|---|---|
| BIT         | 7               | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field       | ETRGActAmp[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read     |   |   |   |   |   |   |   |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                                                                                                            |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETRGActAmp | 7:0  | Haptic driver programmed output amplitude of the normal drive period as a percentage of $V_{FS}$ in ETRG mode. LSB = 0.78% $V_{FS}$ . Note that the MSB represents the sign of the amplitude to be driven and must always be set to 0. |

**HptETRGActDur (0x33)**

| BIT         | 7               | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|-----------------|---|---|---|---|---|---|---|
| Field       | ETRGActDur[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read     |   |   |   |   |   |   |   |

| BITFIELD   | BITS | DESCRIPTION                                                                 |
|------------|------|-----------------------------------------------------------------------------|
| ETRGActDur | 7:0  | Haptic driver duration of the normal drive period in ETRG mode. LSB = 10ms. |

**HptETRGBrkAmp (0x34)**

| BIT         | 7               | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|-----------------|---|---|---|---|---|---|---|
| Field       | ETRGBrkAmp[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read     |   |   |   |   |   |   |   |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                                                                                                       |
|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETRGBrkAmp | 7:0  | Haptic driver programmed output amplitude of the braking period is a percentage of $V_{FS}$ in ETRG mode. LSB = 0.78% $V_{FS}$ . Note that the MSB represents the sign of the amplitude to be driven and must always be set to 1. |

**HptETRGBrkDur (0x35)**

| BIT         | 7               | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|-----------------|---|---|---|---|---|---|---|
| Field       | ETRGBrkDur[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read     |   |   |   |   |   |   |   |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                  |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETRGBrkDur | 7:0  | Haptic driver duration of the braking period in ETRG mode is LSB = 5ms. If AutoBrkDis = 0, the automatic braking process is triggered with a maximum braking time of ETRGBrkDur[7:0]. If AutoBrkDis = 1, ETRGBrkDur[7:0] must be adjusted to achieve the desired optimal braking efficiency. |

HptRAMAdd (0x40)

| BIT         | 7              | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|----------------|---|---|---|---|---|---|---|
| Field       | HptRAMAdd[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read    |   |   |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                            |
|-----------|------|------------------------------------------------------------------------|
| HptRAMAdd | 7:0  | Haptic driver RAM address. The pattern sample is stored in these bits. |

HptRAMDataH (0x41)

| BIT         | 7                | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|------------------|---|---|---|---|---|---|---|
| Field       | HptRAMDataH[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read      |   |   |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                            | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptRAMDataH | 7:0  | Bits 7-6: nLSx<br>Bit 5: AmpSign<br>Bits 4-0: Amp[6:2] | nLSx: Sets the behavior of a sample in the pattern.<br>00 = Current sample is the last sample in the pattern<br>01 = Current sample is not the last sample in the pattern<br>10 = Interpolate current sample with next sample<br>11 = Current sample is the last sample in the pattern.<br>Repeat the entire pattern RPTx[3:0] times<br>AmpSign: Sign of haptic amplitude in current sample<br>0 = Positive<br>1 = Negative<br>Amp: Sets the amplitude of pattern sample x as a 7-bit percentage of V <sub>FS</sub> and a 1-bit direction. |

HptRAMDataM (0x42)

| BIT         | 7                | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|------------------|---|---|---|---|---|---|---|
| Field       | HptRAMDataM[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read      |   |   |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                | DECODE                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptRAMDataM | 7:0  | Bits 7-6: Amp[1:0]<br>Bits 5-1: Dur[4:0]<br>Bit 0: Wait[4] | Amp: Sets the amplitude of pattern sample x as a 7-bit percentage of V <sub>FS</sub> and a 1-bit direction.<br>Dur: Sets the duration of time the driver outputs the amplitude of the current sample in increments of 5ms<br>00000 = 0ms<br>00001 = 5ms<br>...<br>11110 = 150ms<br>11111 = 155ms<br>Wait: Sets the duration of time the driver waits at zero amplitude before the next sample in increments of 5ms |

| BITFIELD | BITS | DESCRIPTION | DECODE                                                              |
|----------|------|-------------|---------------------------------------------------------------------|
|          |      |             | 00000 = 0ms<br>00001 = 5ms<br>...<br>11110 = 150ms<br>11111 = 155ms |

[HptRAMDataL \(0x43\)](#)

| BIT         | 7                | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|------------------|---|---|---|---|---|---|---|
| Field       | HptRAMDataL[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read      |   |   |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HptRAMDataL | 7:0  | Bits 7-4: Wait[3:0]<br>Bits 3-0: RPTx[3:0] | Wait: Sets the duration of time the driver waits at zero amplitude before the next sample in increments of 5ms<br>00000 = 0ms<br>00001 = 5ms<br>...<br>11110 = 150ms<br>11111 = 155ms<br>RPTx: Sets the number of times to repeat the sample before moving to the next sample in the pattern. If nLSx[1:0] = 11, this sets the number of times to repeat the whole pattern.<br>0000 = Repeat 0 times. If nLSx = 00, automatic braking is performed on this sample with a maximum braking time equal to Wait[4:0].<br>0001 = Repeat 1 time<br>...<br>1110 = Repeat 14 times<br>1111 = Repeat 15 times |

[ADCEn \(0x50\)](#)

| BIT         | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0              |
|-------------|---|---|---|---|---|---|---|----------------|
| Field       | — | — | — | — | — | — | — | ADCCConvLaunch |
| Access Type | — | — | — | — | — | — | — | Write, Read    |

| BITFIELD       | BITS | DESCRIPTION                                                                                                                                                         |
|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADCCConvLaunch | 0    | ADC conversion launch command.<br>Set ADCCConvLaunch = 1 to launch an ADC conversion. ADCCConvLaunch is automatically cleared to 0 once the conversion is complete. |

[ADCCfg \(0x51\)](#)

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|---|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |   |

|             |   |   |                |             |
|-------------|---|---|----------------|-------------|
| Field       | - | - | ADCAvgSiz[2:0] | ADCSEL[2:0] |
| Access Type | - | - | Write, Read    | Write, Read |

| BITFIELD  | BITS | DESCRIPTION                                                                                        | DECODE                                                                                                                                                                                                                                                          |
|-----------|------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADCAvgSiz | 5:3  | ADC averaging size.<br>ADC performs $2^{\text{ADCAvgSiz}[2:0]}$ consecutive averaged measurements. | 000: No averaging (1 measurement)<br>001: Average 2 measurements<br>010: Average 4 measurements<br>011: Average 8 measurements<br>100: Average 16 measurements<br>101: Average 32 measurements<br>110: Average 64 measurements<br>111: Average 128 measurements |
| ADCSEL    | 2:0  | ADC channel selection.                                                                             | 000: $V_{HDIN}$<br>001: $V_{MON}$ (use MONRatioConfig[1:0] = "00")<br>010: Reserved<br>011: $V_{CHGIN}$<br>100: $V_{CPOUT}$<br>101: $V_{ESTOUT}$<br>110: Reserved<br>111: Reserved                                                                              |

ADCDatAvg (0x53)

|             |             |   |   |   |   |   |   |   |
|-------------|-------------|---|---|---|---|---|---|---|
| BIT         | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field       | ADCAvg[7:0] |   |   |   |   |   |   |   |
| Access Type | Read Only   |   |   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                      |
|----------|------|------------------------------------------------------------------------------------------------------------------|
| ADCAvg   | 7:0  | ADC conversion average value.<br>Contains the average value of the $2^{\text{ADCAvgSiz}[2:0]}$ ADC measurements. |

ADCDatMin (0x54)

|             |             |   |   |   |   |   |   |   |
|-------------|-------------|---|---|---|---|---|---|---|
| BIT         | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field       | ADCMIN[7:0] |   |   |   |   |   |   |   |
| Access Type | Read Only   |   |   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                         |
|----------|------|---------------------------------------------------------------------------------------------------------------------|
| ADCMIN   | 7:0  | ADC conversion minimum value.<br>Contains the minimum value among the $2^{\text{ADCAvgSiz}[2:0]}$ ADC measurements. |

ADC DatMax (0x55)

| BIT         | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|-------------|---|---|---|---|---|---|---|
| Field       | ADCMax[7:0] |   |   |   |   |   |   |   |
| Access Type | Read Only   |   |   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                           |
|----------|------|-----------------------------------------------------------------------------------------------------------------------|
| ADCMax   | 7:0  | ADC conversion maximum value.<br>Contains the maximum value among the $2^{\text{ADC Avg Siz}[2:0]}$ ADC measurements. |

**PMIC Registers - Peripheral ID: 0x50/0x51**

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| ADDR<br>ESS                       | NAME                 | MSB          |                   |                   |                  |                   |                    |                     | LSB            |
|-----------------------------------|----------------------|--------------|-------------------|-------------------|------------------|-------------------|--------------------|---------------------|----------------|
| <b>PMIC Interrupts and Status</b> |                      |              |                   |                   |                  |                   |                    |                     |                |
| 0x00                              | <u>ChipID[7:0]</u>   |              |                   |                   |                  |                   |                    |                     | ChipRev[7:0]   |
| 0x01                              | <u>Status0[7:0]</u>  | –            | –                 |                   | ThmStat[2:0]     |                   |                    |                     | ChgStat[2:0]   |
| 0x02                              | <u>Status1[7:0]</u>  | –            | –                 | ILim              | UsbOVP           | UsbOk             | ChgJEITASD         | ChgJEITAR<br>eg     | ChgTmo         |
| 0x03                              | <u>Status2[7:0]</u>  | ChgThmSD     | –                 | ThmLDO_LS<br>W    | UVLOLDO2         | UVLOLDO1          | –                  | –                   | –              |
| 0x04                              | <u>Status3[7:0]</u>  | BBstFault    | HrvBatCmp         | SysBatLim         | ChgSysLim        | ChgStep           | ThmBk1             | ThmBk2              | ThmBk3         |
| 0x05                              | <u>Status4[7:0]</u>  | BatGood      | BatRegDon<br>e    | BstFault          | –                | –                 | –                  | –                   | –              |
| 0x06                              | <u>Int0[7:0]</u>     | ThmStatInt   | ChgStatInt        | ILimInt           | UsbOVPInt        | UsbOkInt          | ChgJEITASD<br>Int  | ChgJEITAR<br>egInt  | ChgTmoint      |
| 0x07                              | <u>Int1[7:0]</u>     | ChgThmSDInt  | –                 | ThmLDO_LS<br>WInt | UVLOLDO2<br>Int  | UVLOLDO1<br>Int   | –                  | LSW1Tmoint          | LSW2Tmoint     |
| 0x08                              | <u>Int2[7:0]</u>     | BBstFaultInt | HrvBatCmpl<br>nt  | SysBatLimInt      | ChgSysLimI<br>nt | ChgStepInt        | ThmBk1Int          | ThmBk2Int           | ThmBk3Int      |
| 0x09                              | <u>Int3[7:0]</u>     | BatGoodInt   | BatRegDon<br>eInt | BstFaultInt       | –                | I2cCrcFailIn<br>t | I2cTmoint          | HptStatInt          | ADCStatInt     |
| 0x0A                              | <u>IntMask0[7:0]</u> | ThmStatIntM  | ChgStatIntM       | ILimIntM          | UsbOVPInt<br>M   | UsbOkIntM         | ChgJEITASD<br>IntM | ChgJEITAR<br>egIntM | ChgTmoint<br>M |

| ADDR<br>ESS      | NAME                         | MSB              |                     |                    |                     |                    |                   |                    | LSB              |  |  |  |  |  |
|------------------|------------------------------|------------------|---------------------|--------------------|---------------------|--------------------|-------------------|--------------------|------------------|--|--|--|--|--|
| 0x0B             | <u>IntMask1[7:0]</u>         | ChgThmSDInt<br>M | –                   | ThmLDO_LS<br>WIntM | UVLOLDO2<br>IntM    | UVLOLDO1<br>IntM   | –                 | LSW1Tmoln<br>tM    | LSW2Tmol<br>ntM  |  |  |  |  |  |
| 0x0C             | <u>IntMask2[7:0]</u>         | BBstFaultIntM    | HrvBatCmpl<br>ntM   | SysBatLimInt<br>M  | ChgSysLimI<br>ntM   | ChgStepInt<br>M    | ThmBk1IntM        | ThmBk2IntM         | ThmBk3Int<br>M   |  |  |  |  |  |
| 0x0D             | <u>IntMask3[7:0]</u>         | BatGoodIntM      | BatRegDon<br>eIntM  | BstFaultIntM       | –                   | I2cCrcFailIn<br>tM | I2cTmoIntM        | HptStatIntM        | ADCStatInt<br>M  |  |  |  |  |  |
| <b>Harvester</b> |                              |                  |                     |                    |                     |                    |                   |                    |                  |  |  |  |  |  |
| 0x0F             | <u>ILimCntl[7:0]</u>         | SysMinVlt*[2:0]  |                     |                    | ILimBlank*[1:0]     |                    | ILimCntl*[2:0]    |                    |                  |  |  |  |  |  |
| 0x10             | <u>ChgCntl0[7:0]</u>         | FrcPChg*         | ChgBatReChg*[1:0]   |                    | ChgBatReg*[3:0]     |                    |                   | ChgEn*             |                  |  |  |  |  |  |
| 0x11             | <u>ChgCntl1[7:0]</u>         | BatPD*           | VPCchg*[2:0]        |                    |                     | IPChg*[1:0]        |                   | IChgDone*[1:0]     |                  |  |  |  |  |  |
| 0x12             | <u>ChgTmr[7:0]</u>           | ChgAutoStop*     | ChgAutoRe<br>Sta*   | MtChgTmr*[1:0]     |                     | FChgTmr*[1:0]      |                   | PChgTmr*[1:0]      |                  |  |  |  |  |  |
| 0x13             | <u>StepChgCfg0[<br/>7:0]</u> | –                | ChgStepHys*[2:0]    |                    |                     | ChgStepRise*[3:0]  |                   |                    |                  |  |  |  |  |  |
| 0x14             | <u>StepChgCfg1[<br/>7:0]</u> | –                | –                   | –                  | VSysUvlo*[1:0]      | ChgStep*[2:0]      |                   |                    |                  |  |  |  |  |  |
| 0x15             | <u>ThmCfg0[7:0]</u>          | –                | ChgThmEn*[1:0]      |                    | ChgCoolBatReg*[1:0] |                    | ChgCoolFChg*[2:0] |                    |                  |  |  |  |  |  |
| 0x16             | <u>ThmCfg1[7:0]</u>          | –                | –                   | –                  | ChgRoomBatReg*[1:0] | ChgRoomIFChg*[2:0] |                   |                    |                  |  |  |  |  |  |
| 0x17             | <u>ThmCfg2[7:0]</u>          | HrvThmEn[1:0]    |                     | –                  | ChgWarmBatReg*[1:0] | ChgWarmIFChg*[2:0] |                   |                    |                  |  |  |  |  |  |
| 0x18             | <u>HrvCfg0[7:0]</u>          | HrvBatSys[1:0]   |                     | HrvBatReChg[1:0]   |                     | HrvBatReg[3:0]     |                   |                    |                  |  |  |  |  |  |
| 0x19             | <u>HrvCfg1[7:0]</u>          | –                | HrvThmDis           | HrvWarmBatReg[1:0] |                     | HrvRoomBatReg[1:0] |                   | HrvCoolBatReg[1:0] |                  |  |  |  |  |  |
| <b>MON Mux</b>   |                              |                  |                     |                    |                     |                    |                   |                    |                  |  |  |  |  |  |
| 0x1A             | <u>MONCfg[7:0]</u>           | –                | MONRatioConfig[1:0] |                    | MONOffHz            | MONCntl[3:0]       |                   |                    |                  |  |  |  |  |  |
| <b>Buck1</b>     |                              |                  |                     |                    |                     |                    |                   |                    |                  |  |  |  |  |  |
| 0x1B             | <u>Buck1Ena[7:0]</u>         | Buck1Seq[2:0]    |                     |                    | –                   | –                  | –                 | Buck1En[1:0]       |                  |  |  |  |  |  |
| 0x1C             | <u>Buck1Cfg0[7:0]</u><br>1   | Buck1IntegDis    | Buck1PGO<br>ODEn    | Buck1Fast          | Buck1PsvD<br>sc     | Buck1ActDs<br>c    | Buck1LowE<br>MI   | Buck1FETS<br>cale  | Buck1EnLX<br>Sns |  |  |  |  |  |
| 0x1D             | <u>Buck1Cfg1[7:0]</u><br>1   | –                | –                   | Buck1MPC2<br>Fast  | Buck1FPW<br>M       | Buck1Adpt<br>Dis   | –                 | –                  | –                |  |  |  |  |  |

| ADDR<br>ESS  | NAME                                  | MSB                    |                   |                   |                  |                   |                 |                   | LSB              |
|--------------|---------------------------------------|------------------------|-------------------|-------------------|------------------|-------------------|-----------------|-------------------|------------------|
| 0x1E         | <a href="#">Buck1ISet[7:0]</a>        | Buck1ISetLoo<br>kUpDis | –                 | –                 | –                | Buck1ISet[3:0]    |                 |                   |                  |
| 0x1F         | <a href="#">Buck1VSet[7:0]</a><br>1   | –                      | –                 | Buck1VSet[5:0]    |                  |                   |                 |                   |                  |
| 0x20         | <a href="#">Buck1Ctr[7:0]</a>         | Buck1MPC7              | Buck1MPC6         | Buck1MPC5         | Buck1MPC<br>4    | Buck1MPC<br>3     | Buck1MPC2       | Buck1MPC1         | Buck1MPC<br>0    |
| 0x21         | <a href="#">Buck1DvsCfg0</a><br>[7:0] | –                      | –                 | –                 | Buck1DVSCfg[4:0] |                   |                 |                   |                  |
| 0x22         | <a href="#">Buck1DvsCfg1</a><br>[7:0] | –                      | –                 | Buck1DVSVlt0[5:0] |                  |                   |                 |                   |                  |
| 0x23         | <a href="#">Buck1DvsCfg2</a><br>[7:0] | –                      | –                 | Buck1DVSVlt1[5:0] |                  |                   |                 |                   |                  |
| 0x24         | <a href="#">Buck1DvsCfg3</a><br>[7:0] | –                      | –                 | Buck1DVSVlt2[5:0] |                  |                   |                 |                   |                  |
| 0x25         | <a href="#">Buck1DvsCfg4</a><br>[7:0] | –                      | –                 | Buck1DVSVlt3[5:0] |                  |                   |                 |                   |                  |
| 0x26         | <a href="#">Buck1DvsSpi[</a><br>7:0]  | –                      | –                 | Buck1SPIVlt[5:0]  |                  |                   |                 |                   |                  |
| <b>Buck2</b> |                                       |                        |                   |                   |                  |                   |                 |                   |                  |
| 0x27         | <a href="#">Buck2Ena[7:0]</a>         | Buck2Seq[2:0]          |                   |                   | –                | –                 | –               | Buck2En[1:0]      |                  |
| 0x28         | <a href="#">Buck2Cfg[7:0]</a>         | Buck2EnbINT<br>GR      | Buck2PGO<br>ODena | Buck2Fast         | Buck2PsvD<br>sc  | Buck2ActDs<br>c   | Buck2LowE<br>MI | Buck2FETS<br>cale | Buck2EnLx<br>Sns |
| 0x29         | <a href="#">Buck2Cfg1[7:0]</a><br>1   | –                      | –                 | Buck2MPCF<br>ast  | Buck2FPW<br>M    | Buck2IAdpt<br>Dis | –               | –                 | –                |
| 0x2A         | <a href="#">Buck2ISet[7:0]</a>        | Buck2ISetLoo<br>kUpDis | –                 | –                 | –                | Buck2ISet[3:0]    |                 |                   |                  |
| 0x2B         | <a href="#">Buck2VSet[7:0]</a><br>1   | –                      | –                 | Buck2VSet[5:0]    |                  |                   |                 |                   |                  |
| 0x2C         | <a href="#">Buck2Ctr[7:0]</a>         | Buck2MPC7              | Buck2MPC6         | Buck2MPC5         | Buck2MPC<br>4    | Buck2MPC<br>3     | Buck2MPC2       | Buck2MPC1         | Buck2MPC<br>0    |
| 0x2D         | <a href="#">Buck2DvsCfg0</a><br>[7:0] | –                      | –                 | –                 | Buck2DvsCfg[4:0] |                   |                 |                   |                  |
| 0x2E         | <a href="#">Buck2DvsCfg1</a><br>[7:0] | –                      | –                 | Buck2DvsVlt0[5:0] |                  |                   |                 |                   |                  |

| ADDR<br>ESS       | NAME                                   | MSB                    |                   |                   |                  |                  |                 |                   | LSB              |  |  |  |  |  |
|-------------------|----------------------------------------|------------------------|-------------------|-------------------|------------------|------------------|-----------------|-------------------|------------------|--|--|--|--|--|
| 0x2F              | <a href="#">Buck2DvsCfg2<br/>[7:0]</a> | –                      | –                 | Buck2DvsVlt1[5:0] |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x30              | <a href="#">Buck2DvsCfg3<br/>[7:0]</a> | –                      | –                 | Buck2DvsVlt2[5:0] |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x31              | <a href="#">Buck2DvsCfg4<br/>[7:0]</a> | –                      | –                 | Buck2DvsVlt3[5:0] |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x32              | <a href="#">Buck2DvsSpi[<br/>7:0]</a>  | –                      | –                 | Buck2SPIVlt[5:0]  |                  |                  |                 |                   |                  |  |  |  |  |  |
| <b>Buck3</b>      |                                        |                        |                   |                   |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x34              | <a href="#">Buck3Ena[7:0]</a>          | Buck3Seq[2:0]          |                   |                   | –                | –                | –               | Buck3En[1:0]      |                  |  |  |  |  |  |
| 0x35              | <a href="#">Buck3Cfg[7:0]</a>          | Buck3EnbINT<br>GR      | Buck3PGO<br>ODena | Buck3Fast         | Buck3PsvD<br>sc  | Buck3ActDs<br>c  | Buck3LowE<br>MI | Buck3FETS<br>cale | Buck3EnLx<br>Sns |  |  |  |  |  |
| 0x36              | <a href="#">Buck3Cfg1[7:0]<br/>1</a>   | –                      | Buck3DisLD<br>O   | Buck3MPCF<br>ast  | Buck3FPW<br>M    | Buck3Adpt<br>Dis | –               | –                 | –                |  |  |  |  |  |
| 0x37              | <a href="#">Buck3ISet[7:0]</a>         | Buck3ISetLoo<br>kUpDis | –                 | –                 | –                | Buck3ISet[3:0]   |                 |                   |                  |  |  |  |  |  |
| 0x38              | <a href="#">Buck3VSet[7:0]<br/>1</a>   | –                      | –                 | Buck3VSet[5:0]    |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x39              | <a href="#">Buck3Ctrl[7:0]</a>         | Buck3MPC7              | Buck3MPC6         | Buck3MPC5         | Buck3MPC<br>4    | Buck3MPC<br>3    | Buck3MPC2       | Buck3MPC1         | Buck3MPC<br>0    |  |  |  |  |  |
| 0x3A              | <a href="#">Buck3DvsCfg0<br/>[7:0]</a> | –                      | –                 | –                 | Buck3DvsCfg[4:0] |                  |                 |                   |                  |  |  |  |  |  |
| 0x3B              | <a href="#">Buck3DvsCfg1<br/>[7:0]</a> | –                      | –                 | Buck3DvsVlt0[5:0] |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x3C              | <a href="#">Buck3DvsCfg2<br/>[7:0]</a> | –                      | –                 | Buck3DvsVlt1[5:0] |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x3D              | <a href="#">Buck3DvsCfg3<br/>[7:0]</a> | –                      | –                 | Buck3DvsVlt2[5:0] |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x3E              | <a href="#">Buck3DvsCfg4<br/>[7:0]</a> | –                      | –                 | Buck3DvsVlt3[5:0] |                  |                  |                 |                   |                  |  |  |  |  |  |
| 0x3F              | <a href="#">Buck3DvsSpi[<br/>7:0]</a>  | –                      | –                 | Buck3SPIVlt[5:0]  |                  |                  |                 |                   |                  |  |  |  |  |  |
| <b>Buck-Boost</b> |                                        |                        |                   |                   |                  |                  |                 |                   |                  |  |  |  |  |  |

| ADDR<br>ESS | NAME                    | MSB               |             |                  |                 |                 |                 |                | LSB         |  |  |  |  |  |
|-------------|-------------------------|-------------------|-------------|------------------|-----------------|-----------------|-----------------|----------------|-------------|--|--|--|--|--|
| 0x40        | <u>BBstEna[7:0]</u>     | BBstSeq[2:0]      |             |                  | –               | –               | –               | BBstEn[1:0]    |             |  |  |  |  |  |
| 0x41        | <u>BBstCfg[7:0]</u>     | BBstISetLookUpDis | –           | –                | BBstLowEMI      | BBstActDsc      | BBstRampEn      | BBstMode       | BBstPsvDisC |  |  |  |  |  |
| 0x42        | <u>BBstVSet[7:0]</u>    | –                 | –           | BBstVSet[5:0]    |                 |                 |                 |                |             |  |  |  |  |  |
| 0x43        | <u>BBstISet[7:0]</u>    | BBstIPSet2[3:0]   |             |                  |                 | BBstIPSet1[3:0] |                 |                |             |  |  |  |  |  |
| 0x44        | <u>BBstCfg1[7:0]</u>    | –                 | BBstAdptDis | BBstFast         | BBstZCCMppDis   | BBstFETScale    | BBstMPC1FastCtl | BBFHighSh[1:0] |             |  |  |  |  |  |
| 0x45        | <u>BBstCtr0[7:0]</u>    | BBstMPC7          | BBstMPC6    | BBstMPC5         | BBstMPC4        | BBstMPC3        | BBstMPC2        | BBstMPC1       | BBstMPC0    |  |  |  |  |  |
| 0x46        | <u>BBstCtr1[7:0]</u>    | –                 | –           | –                | BBstDvsCfg[4:0] |                 |                 |                |             |  |  |  |  |  |
| 0x47        | <u>BBstDvsCfg0[7:0]</u> | –                 | –           | BBstDvsVlt0[5:0] |                 |                 |                 |                |             |  |  |  |  |  |
| 0x48        | <u>BBstDvsCfg1[7:0]</u> | –                 | –           | BBstDvsVlt1[5:0] |                 |                 |                 |                |             |  |  |  |  |  |
| 0x49        | <u>BBstDvsCfg2[7:0]</u> | –                 | –           | BBstDvsVlt2[5:0] |                 |                 |                 |                |             |  |  |  |  |  |
| 0x4A        | <u>BBstDvsCfg3[7:0]</u> | –                 | –           | BBstDvsVlt3[5:0] |                 |                 |                 |                |             |  |  |  |  |  |
| 0x4B        | <u>BBstDvsSpi[7:0]</u>  | –                 | –           | BBstSPIVlt[5:0]  |                 |                 |                 |                |             |  |  |  |  |  |
| <b>LDO1</b> |                         |                   |             |                  |                 |                 |                 |                |             |  |  |  |  |  |
| 0x51        | <u>LDO1Ena[7:0]</u>     | LDO1Seq[2:0]      |             |                  | –               | –               | –               | LDO1En[1:0]    |             |  |  |  |  |  |
| 0x52        | <u>LDO1Cfg[7:0]</u>     | –                 | –           | –                | LDO1_MPC0CNF    | LDO1_MPC0CNT    | LDO1ActDsc      | LDO1Mode       | LDO1PsvDisC |  |  |  |  |  |
| 0x53        | <u>LDO1VSet[7:0]</u>    | –                 | –           | LDO1VSet[5:0]    |                 |                 |                 |                |             |  |  |  |  |  |
| 0x54        | <u>LDO1Ctr[7:0]</u>     | LDO1MPC7          | LDO1MPC6    | LDO1MPC5         | LDO1MPC4        | LDO1MPC3        | LDO1MPC2        | LDO1MPC1       | LDO1MPC0    |  |  |  |  |  |
| <b>LDO2</b> |                         |                   |             |                  |                 |                 |                 |                |             |  |  |  |  |  |
| 0x55        | <u>LDO2Ena[7:0]</u>     | LDO2Seq[2:0]      |             |                  | –               | –               | –               | LDO2En[1:0]    |             |  |  |  |  |  |
| 0x56        | <u>LDO2Cfg[7:0]</u>     | –                 | –           | –                | –               | LDO2SupplY      | LDO2ActDsc      | LDO2Mode       | LDO2PsvDisC |  |  |  |  |  |
| 0x57        | <u>LDO2VSet[7:0]</u>    | –                 | –           | –                | LDO2VSet[4:0]   |                 |                 |                |             |  |  |  |  |  |

| ADDR<br>ESS          | NAME                           | MSB              |                |                |                |                |                |                | LSB            |
|----------------------|--------------------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 0x58                 | <a href="#">LDO2Ctr[7:0]</a>   | LDO2MPC7         | LDO2MPC6       | LDO2MPC5       | LDO2MPC4       | LDO2MPC3       | LDO2MPC2       | LDO2MPC1       | LDO2MPC0       |
| <b>Load Switch 1</b> |                                |                  |                |                |                |                |                |                |                |
| 0x59                 | <a href="#">LSW1Ena[7:0]</a>   | LSW1Seq[2:0]     |                |                | –              | –              | –              | LSW1En[1:0]    |                |
| 0x5A                 | <a href="#">LSW1Cfq[7:0]</a>   | –                | –              | –              | –              | –              | LSW1ActDsc     | LSW1LowIq      | LSW1PsvDsc     |
| 0x5B                 | <a href="#">LSW1Ctr[7:0]</a>   | LSW1MPC7         | LSW1MPC6       | LSW1MPC5       | LSW1MPC4       | LSW1MPC3       | LSW1MPC2       | LSW1MPC1       | LSW1MPC0       |
| <b>Load Switch 2</b> |                                |                  |                |                |                |                |                |                |                |
| 0x5C                 | <a href="#">LSW2Ena[7:0]</a>   | LSW2Seq[2:0]     |                |                | –              | –              | –              | LSW2En[1:0]    |                |
| 0x5D                 | <a href="#">LSW2Cfq[7:0]</a>   | –                | –              | –              | –              | –              | LSW2ActDsc     | LSW2LowIq      | LSW2PsvDsc     |
| 0x5E                 | <a href="#">LSW2Ctr[7:0]</a>   | LSW2MPC7         | LSW2MPC6       | LSW2MPC5       | LSW2MPC4       | LSW2MPC3       | LSW2MPC2       | LSW2MPC1       | LSW2MPC0       |
| <b>Charge Pump</b>   |                                |                  |                |                |                |                |                |                |                |
| 0x5F                 | <a href="#">ChgPmpEna[7:0]</a> | ChgPmpSeq[2:0]   |                |                | –              | –              | –              | ChgPmpEn[1:0]  |                |
| 0x60                 | <a href="#">ChgPmpCfq[7:0]</a> | –                | –              | –              | –              | –              | –              | CPVSet         | ChgPmpPsv      |
| 0x61                 | <a href="#">ChgPmpCtr[7:0]</a> | CHGPMPMP<br>C7   | CHGPMPM<br>PC6 | CHGPMPMP<br>C5 | CHGPMPM<br>PC4 | CHGPMPM<br>PC3 | CHGPMPMP<br>C2 | CHGPMPM<br>PC1 | CHGPMPM<br>PC0 |
| <b>Boost</b>         |                                |                  |                |                |                |                |                |                |                |
| 0x62                 | <a href="#">BoostEna[7:0]</a>  | BoostSeq[2:0]    |                |                | –              | –              | –              | BstEn[1:0]     |                |
| 0x63                 | <a href="#">BoostCfq[7:0]</a>  | –                | –              | –              | –              | BstPsvDsc      | BstAdptEn      | BstFastStrt    | BstFETScal     |
| 0x64                 | <a href="#">BoostISet[7:0]</a> | BstISetLookUpDis | –              | –              | –              | BstISet[3:0]   |                |                |                |
| 0x65                 | <a href="#">BoostVSet[7:0]</a> | –                | –              | BstVSet[5:0]   |                |                |                |                |                |
| 0x66                 | <a href="#">BoostCtr[7:0]</a>  | BstMPC7          | BstMPC6        | BstMPC5        | BstMPC4        | BstMPC3        | BstMPC2        | BstMPC1        | BstMPC0        |
| <b>MPC Control</b>   |                                |                  |                |                |                |                |                |                |                |
| 0x67                 | <a href="#">MPC0Cfq[7:0]</a>   | MPC0Read         | –              | –              | MPC0Out        | MPC0OD         | MPC0HiZB       | MPC0Res        | MPC0Pup        |

| ADDR<br>ESS | NAME                                     | MSB                |                  |                  |                  |                  |                  |                  | LSB              |
|-------------|------------------------------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 0x68        | <a href="#">MPC1Cfg[7:0]</a>             | MPC1Read           | –                | –                | MPC1Out          | MPC1OD           | MPC1HiZB         | MPC1Res          | MPC1Pup          |
| 0x69        | <a href="#">MPC2Cfg[7:0]</a>             | MPC2Read           | –                | –                | MPC2Out          | MPC2OD           | MPC2HiZB         | MPC2Res          | MPC2Pup          |
| 0x6A        | <a href="#">MPC3Cfg[7:0]</a>             | MPC3Read           | –                | –                | MPC3Out          | MPC3OD           | MPC3HiZB         | MPC3Res          | MPC3Pup          |
| 0x6B        | <a href="#">MPC4Cfg[7:0]</a>             | MPC4Read           | –                | –                | MPC4Out          | MPC4OD           | MPC4HiZB         | MPC4Res          | MPC4Pup          |
| 0x6C        | <a href="#">MPC5Cfg[7:0]</a>             | MPC5Read           | –                | –                | MPC5Out          | MPC5OD           | MPC5HiZB         | MPC5Res          | MPC5Pup          |
| 0x6D        | <a href="#">MPC6Cfg[7:0]</a>             | MPC6Read           | –                | –                | MPC6Out          | MPC6OD           | MPC6HiZB         | MPC6Res          | MPC6Pup          |
| 0x6E        | <a href="#">MPC7Cfg[7:0]</a>             | MPC7Read           | –                | –                | MPC7Out          | MPC7OD           | MPC7HiZB         | MPC7Res          | MPC7Pup          |
| 0x6F        | <a href="#">MPC1trSts[7:0]</a>           | –                  | –                | USBOkMPC<br>Sts  | –                | –                | BK3PgMPC<br>Sts  | BK2PgMPC<br>Sts  | BK1PgMP<br>CSts  |
| 0x70        | <a href="#">BK1DedIntCfg[<br/>7:0]</a>   | BK1PGMPCIn<br>t    | BK1MPC6S<br>el   | BK1MPC5Se<br>l   | BK1MPC4S<br>el   | BK1MPC3S<br>el   | BK1MPC2Se<br>l   | BK1MPC1S<br>el   | BK1MPC0<br>Sel   |
| 0x71        | <a href="#">BK2DedIntCfg[<br/>7:0]</a>   | BK2PGMPCIn<br>t    | BK2MPC6S<br>el   | BK2MPC5Se<br>l   | BK2MPC4S<br>el   | BK2MPC3S<br>el   | BK2MPC2Se<br>l   | BK2MPC1S<br>el   | BK2MPC0<br>Sel   |
| 0x72        | <a href="#">BK3DedIntCfg[<br/>7:0]</a>   | BK3PGMPCIn<br>t    | BK3MPC6S<br>el   | BK3MPC5Se<br>l   | BK3MPC4S<br>el   | BK3MPC3S<br>el   | BK3MPC2Se<br>l   | BK3MPC1S<br>el   | BK3MPC0<br>Sel   |
| 0x73        | <a href="#">HptDedIntCfg[<br/>7:0]</a>   | HptStatDedInt      | HPTMPC6S<br>el   | HPTMPC5Se<br>l   | HPTMPC4S<br>el   | HPTMPC3S<br>el   | HPTMPC2S<br>el   | HPTMPC1S<br>el   | HPTMPC0<br>Sel   |
| 0x74        | <a href="#">ADCDedIntCfg[<br/>7:0]</a>   | ADCSStatMPCI<br>nt | ADCMPC6S<br>el   | ADCMPC5S<br>el   | ADCMPC4<br>Sel   | ADCMPC3<br>Sel   | ADCMPC2S<br>el   | ADCMPC1S<br>el   | ADCMPC0<br>Sel   |
| 0x75        | <a href="#">USBOkDedInt<br/>Cfg[7:0]</a> | USBOkMPCIn<br>t    | USBOkMPC<br>6Sel | USBOkMPC<br>5Sel | USBOkMP<br>C4Sel | USBOkMP<br>C3Sel | USBOkMP<br>C2Sel | USBOkMP<br>C1Sel | USBOkMP<br>C0Sel |

## LED Current Sinks

|      |                                     |                   |   |   |               |   |   |                  |  |  |  |
|------|-------------------------------------|-------------------|---|---|---------------|---|---|------------------|--|--|--|
| 0x78 | <a href="#">LEDCommon[<br/>7:0]</a> | LED_BoostLo<br>op | – | – | LED_Open[2:0] |   |   | LEDISet[1:0]     |  |  |  |
| 0x79 | <a href="#">LED0Ref[7:0]</a>        | –                 | – | – | –             | – | – | LED0_REFSEL[1:0] |  |  |  |
| 0x7A | <a href="#">LED0Ctr[7:0]</a>        | LED0En[2:0]       |   |   | LED0ISet[4:0] |   |   |                  |  |  |  |
| 0x7B | <a href="#">LED1Ctr[7:0]</a>        | LED1En[2:0]       |   |   | LED1ISet[4:0] |   |   |                  |  |  |  |
| 0x7C | <a href="#">LED2Ctr[7:0]</a>        | LED2En[2:0]       |   |   | LED2ISet[4:0] |   |   |                  |  |  |  |

## Boot Behavior and PFNx status

|      |                          |   |   |   |   |   |   |         |         |
|------|--------------------------|---|---|---|---|---|---|---------|---------|
| 0x7D | <a href="#">PFN[7:0]</a> | – | – | – | – | – | – | PFN2Pin | PFN1Pin |
|------|--------------------------|---|---|---|---|---|---|---------|---------|

| ADDR<br>ESS                                  | NAME                             | MSB              |           |           |            |            |           |              | LSB        |
|----------------------------------------------|----------------------------------|------------------|-----------|-----------|------------|------------|-----------|--------------|------------|
| 0x7E                                         | <a href="#">BootCfg[7:0]</a>     | PwrRstCfg[3:0]   |           |           |            |            | SftRstCfg | BootDly[1:0] | ChgAlwTry  |
| <b>Power Commands and Lock Function</b>      |                                  |                  |           |           |            |            |           |              |            |
| 0x7F                                         | <a href="#">PwrCfg[7:0]</a>      | -                | -         | -         | -          | -          | -         | -            | StayOn     |
| 0x80 <a href="#">PwrCmd[7:0]</a> PwrCmd[7:0] |                                  |                  |           |           |            |            |           |              |            |
| 0x81                                         | <a href="#">BuckCfg[7:0]</a>     | Bk2FrcDCM        | Bk1FrcDCM | Bk3DVSCur | Bk2DVSCur  | Bk1DVSCur  | Bk3LowBW  | Bk2LowBW     | Bk1LowBW   |
| 0x83                                         | <a href="#">LockMsk[7:0]</a>     | LD2Lck           | LD1Lck    | BBLck     | BstLck     | BK3Lck     | BK2Lck    | BK1Lck       | ChgLck     |
| 0x84                                         | <a href="#">LockUnlock[7:0]</a>  | PASSWD[7:0]      |           |           |            |            |           |              |            |
| <b>SFOUT</b>                                 |                                  |                  |           |           |            |            |           |              |            |
| 0x86                                         | <a href="#">SFOUTCtr[7:0]</a>    | SFOUTVSet        | -         | -         | -          | -          | -         | SFOUTEn[1:0] |            |
| 0x87                                         | <a href="#">SFOUTMPC[7:0]</a>    | SFOUTMPC7        | SFOUTMPC6 | SFOUTMPC5 | SFOUTMP C4 | SFOUTMP C3 | SFOUTMPC2 | SFOUTMPC1    | SFOUTMP C0 |
| <b>OTP Readback</b>                          |                                  |                  |           |           |            |            |           |              |            |
| 0x88                                         | <a href="#">I2C OTP ADD[7:0]</a> | OTPDIG__ADD[7:0] |           |           |            |            |           |              |            |
| 0x89                                         | <a href="#">I2C OTP DAT[7:0]</a> | OTPDIG__DAT[7:0] |           |           |            |            |           |              |            |

## Register Details

### ChipID (0x0)

| BIT         | 7            | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|--------------|---|---|---|---|---|---|---|
| Field       | ChipRev[7:0] |   |   |   |   |   |   |   |
| Access Type | Read Only    |   |   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                     |
|----------|------|---------------------------------------------------------------------------------|
| ChipRev  | 7:0  | ChipRev[7:0] bits show information about the hardware revision of the MAX20366. |

**Status0 (0x1)**

| BIT         | 7 | 6 | 5            | 4 | 3 | 2            | 1 | 0 |
|-------------|---|---|--------------|---|---|--------------|---|---|
| Field       | — | — | ThmStat[2:0] |   |   | ChgStat[2:0] |   |   |
| Access Type | — | — | Read Only    |   |   | Read Only    |   |   |

| BITFIELD | BITS | DESCRIPTION                      | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ThmStat  | 5:3  | Status of thermistor monitoring. | 000: Cold zone ( $V_{THM\_COLD} < V_{THM} < V_{THM\_DIS}$ )<br>001: Cool zone ( $V_{THM\_COOL} < V_{THM} < V_{THM\_COLD}$ )<br>010: Room zone ( $V_{THM\_WARM} < V_{THM} < V_{THM\_COOL}$ )<br>011: Warm zone ( $V_{THM\_HOT} < V_{THM} < V_{THM\_WARM}$ )<br>100: Hot zone ( $V_{THM} < V_{THM\_HOT}$ )<br>101: No thermistor detected ( $V_{THM} > V_{THM\_DIS}$ )<br>110: Thermistor monitoring disabled because CHGIN input voltage is present and ChgThmEn[1:0] = "00" or because CHGIN input voltage is not present and ChgThmEn[1:0] = HrvThmEn[1:0] = "00".<br>111: Thermistor monitoring disabled because CHGIN input voltage is not present, ChgThmEn[1:0] is not equal to "00" and HrvThmEn[1:0] = "00". |
| ChgStat  | 2:0  | Status of charger                | 000: Charger off<br>001: Charging suspended due to temperature (see Figure 33, the Battery Charger-State Diagram)<br>010: Precharge in progress<br>011: Fast-charge constant current in progress<br>100: Fast-charge constant voltage in progress<br>101: Maintain charge in progress<br>110: Maintain charger timer done<br>111: Charger fault condition (see Figure 33, the Battery Charger-State Diagram)                                                                                                                                                                                                                                                                                                        |

**Status1 (0x2)**

| BIT         | 7 | 6 | 5         | 4         | 3         | 2          | 1           | 0         |
|-------------|---|---|-----------|-----------|-----------|------------|-------------|-----------|
| Field       | — | — | ILim      | UsbOVP    | UsbOk     | ChgJEITASD | ChgJEITAReg | ChgTmo    |
| Access Type | — | — | Read Only | Read Only | Read Only | Read Only  | Read Only   | Read Only |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                       | DECODE                                                                                                   |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ILim       | 5    | Status of CHGIN input current limit.<br>Valid only when CHGIN input voltage is present and [UsbOVP,UsbOk] = "01".                                 | 0: CHGIN input current below limit<br>1: CHGIN input current limit active                                |
| UsbOVP     | 4    | Status of CHGIN overvoltage protection (OVP).                                                                                                     | 0: CHGIN overvoltage not detected<br>1: CHGIN overvoltage detected                                       |
| UsbOk      | 3    | Status of CHGIN input voltage.                                                                                                                    | 0: CHGIN input voltage not present or outside of valid range<br>1: CHGIN input voltage present and valid |
| ChgJEITASD | 2    | Status of battery charger shutdown due to JEITA.<br>Valid only when CHGIN input voltage is present, [UsbOVP,UsbOk] = "01" and charger is enabled. | 0: Charger operating normally or disabled<br>1: Charger disabled due to JEITA                            |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                           | DECODE                                                                                                           |
|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| ChgJEITAReg | 1    | Status of battery charger current or voltage reduction due to JEITA.<br>Valid only when CHGIN input voltage is present, [UsbOVP,UsbOk] = "01" and charger is enabled. | 0: Charger operating normally or disabled.<br>1: Charger current or voltage being actively reduced due to JEITA. |
| ChgTmo      | 0    | Status of charger time-out condition.<br>Valid only when CHGIN input voltage is present, [UsbOVP,UsbOk] = "01" and charger is enabled.                                | 0: Charger operating normally or disabled<br>1: Charger has reached a time-out condition                         |

**Status2 (0x3)**

| BIT                | 7         | 6 | 5          | 4         | 3         | 2 | 1 | 0 |
|--------------------|-----------|---|------------|-----------|-----------|---|---|---|
| <b>Field</b>       | ChgThmSD  | – | ThmLDO_LSW | UVLOLDO2  | UVLOLDO1  | – | – | – |
| <b>Access Type</b> | Read Only | – | Read Only  | Read Only | Read Only | – | – | – |

| BITFIELD   | BITS | DESCRIPTION                                                                                              | DECODE                                                                                              |
|------------|------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| ChgThmSD   | 7    | Status of input limiter and charger thermal shutdown.<br>Valid only when CHGIN input voltage is present. | 0: Input limiter and charger operating normally<br>1: Input limiter and charger in thermal shutdown |
| ThmLDO_LSW | 5    | Status of LDO1, LDO2, LSW1, LSW2 Thermal Shutdown                                                        | 0: All the above blocks are operating normally<br>1: One of the above blocks is in thermal shutdown |
| UVLOLDO2   | 4    | Status of LDO2 UVLO                                                                                      | 0: LDO2 operating normally<br>1: LDO2 UVLO active                                                   |
| UVLOLDO1   | 3    | Status of LDO1 UVLO                                                                                      | 0: LDO1 operating normally<br>1: LDO1 UVLO active                                                   |

**Status3 (0x4)**

| BIT                | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <b>Field</b>       | BBstFault | HrvBatCmp | SysBatLim | ChgSysLim | ChgStep   | ThmBk1    | ThmBk2    | ThmBk3    |
| <b>Access Type</b> | Read Only |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                       | DECODE                                                                                                                                                   |
|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstFault | 7    | Status of Buck-Boost Fault                                                                                                                        | 0: Buck-Boost operating normally<br>1: Buck-Boost under fault condition                                                                                  |
| HrvBatCmp | 6    | Status of harvester BAT comparator.<br>Valid only when harvester interaction is enabled when HrvEn=1.                                             | 0: $V_{BAT} < V_{HARV\_BAT\_REG}$ (with $V_{HARV\_BAT\_RECHG}$ hysteresis)<br>1: $V_{BAT} > V_{HARV\_BAT\_REG}$ (with $V_{HARV\_BAT\_RECHG}$ hysteresis) |
| SysBatLim | 5    | Status of charger regulation due to SYS voltage.<br>Valid only when CHGIN input voltage is present, [UsbOVP,UsbOk] = "01" and charger is enabled. | 0: Charge current is not being actively reduced to regulate $V_{SYS}$<br>1: Charge current actively being reduced to regulate $V_{SYS}$ collapse         |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                       | DECODE                                                                                                                                                                              |
|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ChgSysLim | 4    | Status of input limiter regulation due to CHGIN voltage.<br>Valid only when CHGIN input voltage is present and [UsbOVP,UsbOk] = "01".             | 0: Input limiter current is not being actively reduced to regulate V <sub>CHGIN</sub><br>1: Input limiter current is actively being reduced to regulate V <sub>CHGIN</sub> collapse |
| ChgStep   | 3    | Status of charger step-charge current reduction.<br>Valid only when CHGIN input voltage is present, [UsbOVP,UsbOk] = "01" and charger is enabled. | 0: Charger step-charge current reduction not active<br>1: Charger step-charge current reduction active                                                                              |
| ThmBk1    | 2    | Status of Buck1 Thermal Shutdown                                                                                                                  | 0: Buck1 operating normally<br>1: Buck1 in thermal shutdown                                                                                                                         |
| ThmBk2    | 1    | Status of Buck2 Thermal Shutdown                                                                                                                  | 0: Buck2 operating normally<br>1: Buck2 in thermal shutdown                                                                                                                         |
| ThmBk3    | 0    | Status of Buck3 Thermal Shutdown                                                                                                                  | 0: Buck3 operating normally<br>1: Buck3 in thermal shutdown                                                                                                                         |

**Status4 (0x5)**

| BIT                | 7         | 6          | 5         | 4 | 3 | 2 | 1 | 0 |
|--------------------|-----------|------------|-----------|---|---|---|---|---|
| <b>Field</b>       | BatGood   | BatRegDone | BstFault  | – | – | – | – | – |
| <b>Access Type</b> | Read Only | Read Only  | Read Only | – | – | – | – | – |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                               | DECODE                                                                                                                        |
|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| BatGood    | 7    | Status of charger BatGood comparator.<br>Valid only when CHGIN input voltage is present and [UsbOVP,UsbOk] = "01".                                        | 0: V <sub>BAT</sub> < V <sub>BAT_UVLO</sub><br>1: V <sub>BAT</sub> > V <sub>BAT_UVLO</sub> or CHGIN input voltage not present |
| BatRegDone | 6    | Status of charger BAT voltage regulation.<br>Valid only when CHGIN input voltage is present, [UsbOVP,UsbOk] = "01", charger is enabled and SysBatLim = 0. | 0: V <sub>BAT</sub> < V <sub>BAT_REG</sub><br>1: V <sub>BAT</sub> ≥ V <sub>BAT_REG</sub>                                      |
| BstFault   | 5    | Status of Buck-Boost Fault                                                                                                                                | 0: Buck-Boost operating normally<br>1: Buck-Boost under fault condition                                                       |

**Int0 (0x6)**

| BIT                | 7           | 6           | 5           | 4           | 3           | 2             | 1              | 0           |
|--------------------|-------------|-------------|-------------|-------------|-------------|---------------|----------------|-------------|
| <b>Field</b>       | ThmStatInt  | ChgStatInt  | ILimInt     | UsbOVPInt   | UsbOkInt    | ChgJEITASDInt | ChgJEITARegInt | ChgTmolInt  |
| <b>Access Type</b> | Write, Read   | Write, Read    | Write, Read |

| BITFIELD   | BITS | DESCRIPTION                                 |
|------------|------|---------------------------------------------|
| ThmStatInt | 7    | Change in ThmStat[2:0] caused an interrupt. |

| BITFIELD       | BITS | DESCRIPTION                                 |
|----------------|------|---------------------------------------------|
| ChgStatInt     | 6    | Change in ChgStat[2:0] caused an interrupt. |
| ILimInt        | 5    | Change in ILim caused an interrupt.         |
| UsbOVPInt      | 4    | Change in UsbOVP caused an interrupt.       |
| UsbOkInt       | 3    | Change in UsbOk caused an interrupt.        |
| ChgJEITASDInt  | 2    | Change in ChgJEITASD caused an interrupt.   |
| ChgJEITARegInt | 1    | Change in ChgJEITAReg caused an interrupt.  |
| ChgTmoInt      | 0    | Change in ChgTmo caused an interrupt.       |

Int1 (0x7)

| BIT         | 7           | 6 | 5             | 4           | 3           | 2 | 1           | 0           |
|-------------|-------------|---|---------------|-------------|-------------|---|-------------|-------------|
| Field       | ChgThmSDInt | – | ThmLDO_LSWInt | UVLOLDO2Int | UVLOLDO1Int | – | LSW1TmoInt  | LSW2TmoInt  |
| Access Type | Write, Read | – | Write, Read   | Write, Read | Write, Read | – | Write, Read | Write, Read |

| BITFIELD      | BITS | DESCRIPTION                               |
|---------------|------|-------------------------------------------|
| ChgThmSDInt   | 7    | Change in ChgThmSD caused an interrupt.   |
| ThmLDO_LSWInt | 5    | Change in ThmLDO_LSW caused an interrupt. |
| UVLOLDO2Int   | 4    | Change in UVLOLDO2 caused an interrupt.   |
| UVLOLDO1Int   | 3    | Change in UVLOLDO1 caused an interrupt.   |
| LSW1TmoInt    | 1    | Change in LSW1Tmo caused an interrupt.    |
| LSW2TmoInt    | 0    | Change in LSW2Tmo caused an interrupt.    |

Int2 (0x8)

| BIT         | 7            | 6             | 5            | 4            | 3           | 2           | 1           | 0           |
|-------------|--------------|---------------|--------------|--------------|-------------|-------------|-------------|-------------|
| Field       | BBstFaultInt | HrvBatCmplInt | SysBatLimInt | ChgSysLimInt | ChgStepInt  | ThmBk1Int   | ThmBk2Int   | ThmBk3Int   |
| Access Type | Write, Read  | Write, Read   | Write, Read  | Write, Read  | Write, Read | Write, Read | Write, Read | Write, Read |

| BITFIELD     | BITS | DESCRIPTION                              |
|--------------|------|------------------------------------------|
| BBstFaultInt | 7    | Change in BBstFault caused an interrupt. |

| BITFIELD     | BITS | DESCRIPTION                              |
|--------------|------|------------------------------------------|
| HrvBatCmplnt | 6    | Change in HrvBatCmp caused an interrupt. |
| SysBatLimInt | 5    | Change in SysBatLim caused an interrupt. |
| ChgSysLimInt | 4    | Change in ChgSysLim caused an interrupt. |
| ChgStepInt   | 3    | Change in ChgStep caused an interrupt.   |
| ThmBk1Int    | 2    | Change in ThmBk1 caused an interrupt.    |
| ThmBk2Int    | 1    | Change in ThmBk2 caused an interrupt.    |
| ThmBk3Int    | 0    | Change in ThmBk3 caused an interrupt.    |

Int3 (0x9)

| BIT         | 7           | 6             | 5           | 4 | 3             | 2           | 1          | 0          |
|-------------|-------------|---------------|-------------|---|---------------|-------------|------------|------------|
| Field       | BatGoodInt  | BatRegDoneInt | BstFaultInt | – | I2cCrcFailInt | I2cTmoint   | HptStatInt | ADCStatInt |
| Access Type | Write, Read | Write, Read   | Write, Read | – | Write, Read   | Write, Read | Read Only  | Read Only  |

| BITFIELD      | BITS | DESCRIPTION                                                                                                               |
|---------------|------|---------------------------------------------------------------------------------------------------------------------------|
| BatGoodInt    | 7    | Change in BatGood caused an interrupt.                                                                                    |
| BatRegDoneInt | 6    | Change in BatRegDone caused an interrupt.                                                                                 |
| BstFaultInt   | 5    | Change in BstFault caused an interrupt.                                                                                   |
| I2cCrcFailInt | 3    | CRC Failure - I <sup>2</sup> C write not performed                                                                        |
| I2cTmoint     | 2    | I <sup>2</sup> C Watchdog Timer Expired due to 100ms bus inactivity between START and STOP conditions.                    |
| HptStatInt    | 1    | Haptic driver general status interrupt. HptStatInt is issued in case any other haptic driver related interrupt is issued. |
| ADCStatInt    | 0    | ADC general status interrupt. ADCStatInt is issued in case any other ADC related interrupt is issued.                     |

IntMask0 (0xA)

| BIT         | 7           | 6           | 5           | 4           | 3           | 2              | 1               | 0           |
|-------------|-------------|-------------|-------------|-------------|-------------|----------------|-----------------|-------------|
| Field       | ThmStatIntM | ChgStatIntM | ILimIntM    | UsbOVPlntM  | UsbOkIntM   | ChgJEITASDIntM | ChgJEITARegIntM | ChgTmointM  |
| Access Type | Write, Read    | Write, Read     | Write, Read |

| BITFIELD        | BITS | DESCRIPTION                                                                     | DECODE                     |
|-----------------|------|---------------------------------------------------------------------------------|----------------------------|
| ThmStatIntM     | 7    | ThmStatIntM masks the ThmStatInt interrupt in the Int0 register (0x06).         | 0: Masked<br>1: Not masked |
| ChgStatIntM     | 6    | ChgStatIntM masks the ChgStatInt interrupt in the Int0 register (0x06).         | 0: Masked<br>1: Not masked |
| ILimIntM        | 5    | ILimIntM masks the ILimInt interrupt in the Int0 register (0x06).               | 0: Masked<br>1: Not masked |
| UsbOVPIntM      | 4    | UsbOVPIntM masks the UsbOVPInt interrupt in the Int0 register (0x06).           | 0: Masked<br>1: Not masked |
| UsbOkIntM       | 3    | UsbOkIntM masks the UsbOkInt interrupt in the Int0 register (0x06).             | 0: Masked<br>1: Not masked |
| ChgJEITASDIntM  | 2    | ChgJEITASDIntM masks the ChgJEITASDInt interrupt in the Int0 register (0x06).   | 0: Masked<br>1: Not masked |
| ChgJEITAREglntM | 1    | ChgJEITAREglntM masks the ChgJEITAREglnt interrupt in the Int0 register (0x06). | 0: Masked<br>1: Not masked |
| ChgTmolntM      | 0    | ChgTmolntM masks the ChgTmolnt interrupt in the Int0 register (0x06).           | 0: Masked<br>1: Not masked |

IntMask1 (0xB)

| BIT         | 7            | 6 | 5              | 4            | 3            | 2 | 1           | 0           |
|-------------|--------------|---|----------------|--------------|--------------|---|-------------|-------------|
| Field       | ChgThmSDIntM | – | ThmLDO_LSWIntM | UVLOLDO2IntM | UVLOLDO1IntM | – | LSW1TmolntM | LSW2TmolntM |
| Access Type | Write, Read  | – | Write, Read    | Write, Read  | Write, Read  | – | Write, Read | Write, Read |

| BITFIELD       | BITS | DESCRIPTION                                                                   | DECODE                     |
|----------------|------|-------------------------------------------------------------------------------|----------------------------|
| ChgThmSDIntM   | 7    | ChgThmSDIntM masks the ChgThmSDInt interrupt in the Int1 register (0x07).     | 0: Masked<br>1: Not masked |
| ThmLDO_LSWIntM | 5    | ThmLDO_LSWIntM masks the ThmLDO_LSWInt interrupt in the Int1 register (0x07). | 0: Masked<br>1: Not masked |
| UVLOLDO2IntM   | 4    | UVLOLDO2IntM masks the UVLOLDO2Int interrupt in the Int1 register (0x07).     | 0: Masked<br>1: Not masked |
| UVLOLDO1IntM   | 3    | UVLOLDO1IntM masks the UVLOLDO1Int interrupt in the Int1 register (0x07).     | 0: Masked<br>1: Not masked |
| LSW1TmolntM    | 1    | LSW1TmolntM masks the LSW1Tmolnt interrupt in the Int1 register (0x07).       | 0: Masked<br>1: Not masked |

| BITFIELD    | BITS | DESCRIPTION                                                             | DECODE                     |
|-------------|------|-------------------------------------------------------------------------|----------------------------|
| LSW2TmointM | 0    | LSW2TmointM masks the LSW2Tmoint interrupt in the Int1 register (0x07). | 0: Masked<br>1: Not masked |

IntMask2 (0xC)

| BIT         | 7             | 6             | 5             | 4             | 3           | 2           | 1           | 0           |
|-------------|---------------|---------------|---------------|---------------|-------------|-------------|-------------|-------------|
| Field       | BBstFaultIntM | HrvBatCmplntM | SysBatLimIntM | ChgSysLimIntM | ChgSteplntM | ThmBk1IntM  | ThmBk2IntM  | ThmBk3IntM  |
| Access Type | Write, Read   | Write, Read   | Write, Read   | Write, Read   | Write, Read | Write, Read | Write, Read | Write, Read |

| BITFIELD      | BITS | DESCRIPTION                                                                 | DECODE                     |
|---------------|------|-----------------------------------------------------------------------------|----------------------------|
| BBstFaultIntM | 7    | BBstFaultIntM masks the BBstFaultInt interrupt in the Int2 register (0x08). | 0: Masked<br>1: Not masked |
| HrvBatCmplntM | 6    | HrvBatCmplntM masks the HrvBatCmplnt interrupt in the Int2 register (0x08). | 0: Masked<br>1: Not masked |
| SysBatLimIntM | 5    | SysBatLimIntM masks the SysBatLimInt interrupt in the Int2 register (0x08). | 0: Masked<br>1: Not masked |
| ChgSysLimIntM | 4    | ChgSysLimIntM masks the ChgSysLimInt interrupt in the Int2 register (0x08). | 0: Masked<br>1: Not masked |
| ChgSteplntM   | 3    | ChgSteplntM masks the ChgSteplnt interrupt in the Int2 register (0x08).     | 0: Masked<br>1: Not masked |
| ThmBk1IntM    | 2    | ThmBk1IntM masks the ThmBk1Int interrupt in the Int2 register (0x08).       | 0: Masked<br>1: Not masked |
| ThmBk2IntM    | 1    | ThmBk2IntM masks the ThmBk2Int interrupt in the Int2 register (0x08).       | 0: Masked<br>1: Not masked |
| ThmBk3IntM    | 0    | ThmBk3IntM masks the ThmBk3Int interrupt in the Int2 register (0x08).       | 0: Masked<br>1: Not masked |

IntMask3 (0xD)

| BIT         | 7           | 6              | 5            | 4 | 3              | 2           | 1           | 0           |
|-------------|-------------|----------------|--------------|---|----------------|-------------|-------------|-------------|
| Field       | BatGoodIntM | BatRegDoneIntM | BstFaultIntM | – | I2cCrcFailIntM | I2cTmointM  | HptStatIntM | ADCStatIntM |
| Access Type | Write, Read | Write, Read    | Write, Read  | – | Write, Read    | Write, Read | Write, Read | Write, Read |

| BITFIELD    | BITS | DESCRIPTION                                                             | DECODE                     |
|-------------|------|-------------------------------------------------------------------------|----------------------------|
| BatGoodIntM | 7    | BatGoodIntM masks the BatGoodInt interrupt in the Int3 register (0x09). | 0: Masked<br>1: Not masked |

| BITFIELD       | BITS | DESCRIPTION                                                                   | DECODE                     |
|----------------|------|-------------------------------------------------------------------------------|----------------------------|
| BatRegDoneIntM | 6    | BatRegDoneIntM masks the BatRegDoneInt interrupt in the Int3 register (0x09). | 0: Masked<br>1: Not masked |
| BstFaultIntM   | 5    | BstFaultIntM masks the BstFaultInt interrupt in the Int3 register (0x09).     | 0: Masked<br>1: Not masked |
| I2cCrcFailIntM | 3    | I2CCRCFailIntM masks the I2CCRCFailInt interrupt in the Int3 register (0x09). | 0: Masked<br>1: Not masked |
| I2cTmointM     | 2    | I2CTmointM masks the I2CTmoint interrupt in the Int3 register (0x09).         | 0: Masked<br>1: Not masked |
| HptStatIntM    | 1    | HptStatIntM masks the HptStatInt interrupt in the Int3 register (0x09).       | 0: Masked<br>1: Not masked |
| ADCStatIntM    | 0    | ADCStatIntM masks the ADCStatInt interrupt in the Int3 register (0x09).       | 0: Masked<br>1: Not masked |

**ILimCtl (0xF)**

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT                | 7               | 6 | 5 | 4 | 3               | 2 | 1 | 0 |
|--------------------|-----------------|---|---|---|-----------------|---|---|---|
| <b>Field</b>       | SysMinVlt*[2:0] |   |   |   | ILimBlank*[1:0] |   |   |   |
| <b>Access Type</b> | Write, Read     |   |   |   | Write, Read     |   |   |   |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                 | DECODE                                                                                                      |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| SysMinVlt* | 7:5  | System (SYS) voltage minimum threshold.<br>SYS voltage below which charging current is reduced to prevent V <sub>SYS</sub> from collapsing. | 000: 3.6V<br>001: 3.7V<br>010: 3.8V<br>011: 3.9V<br>100: 4.0V<br>101: 4.1V<br>110: 4.2V<br>111: 4.3V        |
| ILimBlank* | 4:3  | CHGIN input current limiter blanking time (during which the current is limited to I <sub>LIM_MAX</sub> ).                                   | 00: No debounce (allow a few clock cycles for resampling)<br>01: 0.5ms<br>10: 1.0ms<br>11: 10.0ms           |
| ILimCtl*   | 2:0  | CHGIN programmable input current limit.                                                                                                     | 000: 50mA<br>001: 90mA<br>010: 150mA<br>011: 200mA<br>100: 300mA<br>101: 400mA<br>110: 450mA<br>111: 1000mA |

**ChgCtl0 (0x10)**

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT         | 7           | 6                 | 5 | 4 | 3 | 2               | 1 | 0 |             |
|-------------|-------------|-------------------|---|---|---|-----------------|---|---|-------------|
| Field       | FrcPChg*    | ChgBatReChg*[1:0] |   |   |   | ChgBatReg*[3:0] |   |   | ChgEn*      |
| Access Type | Write, Read | Write, Read       |   |   |   | Write, Read     |   |   | Write, Read |

| BITFIELD     | BITS | DESCRIPTION                                                            | DECODE                                                                                                                                                                                                                                       |
|--------------|------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FrcPChg*     | 7    | Charger forced precharge mode. Valid only if ChgEn = 1.                | 0: Charger operating normally<br>1: Charger current is forced to precharge value                                                                                                                                                             |
| ChgBatReChg* | 6:5  | Charger recharge threshold in relation to ChgBatReg[3:0].              | 00: ChgBatReg[3:0] -70mV<br>01: ChgBatReg[3:0] -120mV<br>10: ChgBatReg[3:0] -170mV<br>11: ChgBatReg[3:0] -220mV                                                                                                                              |
| ChgBatReg*   | 4:1  | Charger battery regulation voltage.                                    | 0000: 4.25V<br>0001: 4.30V<br>0010: 4.35V<br>0011: 4.40V<br>0100: 4.45V<br>0101: 4.46V<br>0110: 4.47V<br>0111: 4.48V<br>1000: 4.49V<br>1001: 4.50V<br>1010: 4.51V<br>1011: 4.52V<br>1100: 4.53V<br>1101: 4.54V<br>1110: 4.55V<br>1111: 4.56V |
| ChgEn*       | 0    | Charger on/off control.<br>Does not affect input limiter and SYS node. | 0: Charger disabled<br>1: Charger enabled                                                                                                                                                                                                    |

### ChgCtl1 (0x11)

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT         | 7           | 6           | 5 | 4 | 3 | 2           | 1 | 0 |                |
|-------------|-------------|-------------|---|---|---|-------------|---|---|----------------|
| Field       | BatPD*      | VPChg*[2:0] |   |   |   | IPChg*[1:0] |   |   | IChgDone*[1:0] |
| Access Type | Write, Read | Write, Read |   |   |   | Write, Read |   |   | Write, Read    |

| BITFIELD | BITS | DESCRIPTION                                 | DECODE                                                                                                       |
|----------|------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| BatPD*   | 7    | Pulldown resistor enable on BAT.            | 0: Pulldown resistor disabled<br>1: Pulldown resistor enabled                                                |
| VPChg*   | 6:4  | Charger precharge voltage rising threshold. | 000: 2.10V<br>001: 2.25V<br>010: 2.40V<br>011: 2.55V<br>100: 2.70V<br>101: 2.85V<br>110: 3.00V<br>111: 3.15V |

| BITFIELD  | BITS | DESCRIPTION                            | DECODE                                                                                           |
|-----------|------|----------------------------------------|--------------------------------------------------------------------------------------------------|
| IPChg*    | 3:2  | Charger precharge current.             | 00: 0.05 x $I_{FCHG}$<br>01: 0.10 x $I_{FCHG}$<br>10: 0.20 x $I_{FCHG}$<br>11: 0.30 x $I_{FCHG}$ |
| IChgDone* | 1:0  | Charger charge-done current threshold. | 00: 0.05 x $I_{FCHG}$<br>01: 0.10 x $I_{FCHG}$<br>10: 0.20 x $I_{FCHG}$<br>11: 0.30 x $I_{FCHG}$ |

**ChgTmr (0x12)**

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT                | 7            | 6             | 5              | 4 | 3 | 2             | 1 | 0             |
|--------------------|--------------|---------------|----------------|---|---|---------------|---|---------------|
| <b>Field</b>       | ChgAutoStop* | ChgAutoReSta* | MtChgTmr*[1:0] |   |   | FChgTmr*[1:0] |   | PChgTmr*[1:0] |
| <b>Access Type</b> | Write, Read  | Write, Read   | Write, Read    |   |   | Write, Read   |   | Write, Read   |

| BITFIELD      | BITS | DESCRIPTION                                                                                                                                           | DECODE                                                                                                                                                                              |
|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ChgAutoStop*  | 7    | Charger auto-stop control.<br>Controls the transition from maintain-charge to maintain-charge done. See Figure 33, the Battery Charger-State Diagram. | 0: Auto-stop disabled<br>1: Auto-stop enabled                                                                                                                                       |
| ChgAutoReSta* | 6    | Charger auto-restart control.<br>See Figure 33, the Battery Charger-State Diagram.                                                                    | 0: Charger remains in maintain-charge done even when $V_{BAT}$ is less than recharge threshold.<br>1: Charger automatically restarts when $V_{BAT}$ drops below recharge threshold. |
| MtChgTmr*     | 5:4  | Charger maintain-charge timer.                                                                                                                        | 00: 0min<br>01: 15min<br>10: 30min<br>11: 60min                                                                                                                                     |
| FChgTmr*      | 3:2  | Charger fast-charge timer.                                                                                                                            | 00: 75min<br>01: 150min<br>10: 300min<br>11: 600min                                                                                                                                 |
| PChgTmr*      | 1:0  | Charger precharge timer.                                                                                                                              | 00: 30min<br>01: 60min<br>10: 120min<br>11: 240min                                                                                                                                  |

**StepChgCfg0 (0x13)**

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT                | 7 | 6                | 5 | 4 | 3                 | 2 | 1 | 0 |
|--------------------|---|------------------|---|---|-------------------|---|---|---|
| <b>Field</b>       | – | ChgStepHys*[2:0] |   |   | ChgStepRise*[3:0] |   |   |   |
| <b>Access Type</b> | – | Write, Read      |   |   | Write, Read       |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                       | DECODE                                                                                                                                                                                                                                       |
|--------------|------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ChgStepHys*  | 6:4  | Charger step-charge voltage threshold hysteresis. | 000: 100mV<br>001: 200mV<br>010: 300mV<br>011: 400mV<br>100: 500mV<br>101: 600mV<br>110: Reserved<br>111: Reserved                                                                                                                           |
| ChgStepRise* | 3:0  | Charger step-charge voltage rising threshold.     | 0000: 3.80V<br>0001: 3.85V<br>0010: 3.90V<br>0011: 3.95V<br>0100: 4.00V<br>0101: 4.05V<br>0110: 4.10V<br>0111: 4.15V<br>1000: 4.20V<br>1001: 4.25V<br>1010: 4.30V<br>1011: 4.35V<br>1100: 4.40V<br>1101: 4.45V<br>1110: 4.50V<br>1111: 4.55V |

**StepChgCfg1 (0x14)**

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT                | 7 | 6 | 5 | 4              | 3 | 2 | 1             | 0 |
|--------------------|---|---|---|----------------|---|---|---------------|---|
| <b>Field</b>       | – | – | – | VSysUvlo*[1:0] |   |   | ChgStep*[2:0] |   |
| <b>Access Type</b> | – | – | – | Write, Read    |   |   | Write, Read   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                       | DECODE                                                                                                                                                                                               |
|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VSysUvlo* | 4:3  | SYS UVLO falling voltage threshold selector.                                                                                                                                                                                                                                                                                                      | 00: 2.7V<br>01: 2.9V<br>10: 3.0V<br>11: 3.2V                                                                                                                                                         |
| ChgStep*  | 2:0  | Charger step-charge current reduction.<br>Sets the modified fast-charge current once ChgStepRise[3:0] threshold is exceeded. The fast-charge current is the minimum of the value set by ChgStep[2:0] and the applicable charger current reduction related to thermistor monitoring (see ChgCoolIFchg[2:0], ChgRoomIFchg[2:0], ChgWarmIFchg[2:0]). | 000: 0.2 x $I_{FCHG}$<br>001: 0.3 x $I_{FCHG}$<br>010: 0.4 x $I_{FCHG}$<br>011: 0.5 x $I_{FCHG}$<br>100: 0.6 x $I_{FCHG}$<br>101: 0.7 x $I_{FCHG}$<br>110: 0.8 x $I_{FCHG}$<br>111: 1.0 x $I_{FCHG}$ |

**ThmCfg0 (0x15)**

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT         | 7 | 6              | 5 | 4 | 3                   | 2 | 1 | 0                 |
|-------------|---|----------------|---|---|---------------------|---|---|-------------------|
| Field       | – | ChgThmEn*[1:0] |   |   | ChgCoolBatReg*[1:0] |   |   | ChgCoolFChg*[2:0] |
| Access Type | – | Write, Read    |   |   | Write, Read         |   |   | Write, Read       |

| BITFIELD       | BITS | DESCRIPTION                                                                                                                                                                           | DECODE                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ChgThmEn*      | 6:5  | Charger thermistor monitoring related control.<br>Valid only when CHGIN input voltage is present.                                                                                     | 00: Thermistor monitoring disabled<br>01: Thermistor monitoring permanently enabled and charger enabled in the cool and room temperature zones<br>10: Thermistor monitoring permanently enabled and charger enabled in the room and warm temperature zones<br>11: Thermistor monitoring permanently enabled and charger enabled in the cool, room, and warm temperature zones |
| ChgCoolBatReg* | 4:3  | Charger cool zone battery regulation voltage reduction.<br>Sets the modified battery regulation voltage when the cool temperature zone is entered according to thermistor monitoring. | 00: ChgBatReg[3:0] -150mV<br>01: ChgBatReg[3:0] -100mV<br>10: ChgBatReg[3:0] -50mV<br>11: ChgBatReg[3:0]                                                                                                                                                                                                                                                                      |
| ChgCoolFChg*   | 2:0  | Charger cool zone fast-charge current reduction.<br>Sets the modified fast-charge current when the cool temperature zone is entered according to thermistor monitoring.               | 000: 0.2 x $I_{FCHG}$<br>001: 0.3 x $I_{FCHG}$<br>010: 0.4 x $I_{FCHG}$<br>011: 0.5 x $I_{FCHG}$<br>100: 0.6 x $I_{FCHG}$<br>101: 0.7 x $I_{FCHG}$<br>110: 0.8 x $I_{FCHG}$<br>111: 1.0 x $I_{FCHG}$                                                                                                                                                                          |

**ThmCfg1 (0x16)**

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT         | 7 | 6 | 5 | 4                   | 3 | 2 | 1                  | 0 |
|-------------|---|---|---|---------------------|---|---|--------------------|---|
| Field       | – | – | – | ChgRoomBatReg*[1:0] |   |   | ChgRoomIFChg*[2:0] |   |
| Access Type | – | – | – | Write, Read         |   |   | Write, Read        |   |

| BITFIELD       | BITS | DESCRIPTION                                                                                                                                                                           | DECODE                                                                                                                                             |
|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ChgRoomBatReg* | 4:3  | Charger room zone battery regulation voltage reduction.<br>Sets the modified battery regulation voltage when the room temperature zone is entered according to thermistor monitoring. | 00: ChgBatReg[3:0] -150mV<br>01: ChgBatReg[3:0] -100mV<br>10: ChgBatReg[3:0] -50mV<br>11: ChgBatReg[3:0]                                           |
| ChgRoomIFChg*  | 2:0  | Charger room zone fast-charge current reduction.<br>Sets the modified fast-charge current when the room temperature zone is entered according to thermistor monitoring.               | 000: 0.2 x $I_{FCHG}$<br>001: 0.3 x $I_{FCHG}$<br>010: 0.4 x $I_{FCHG}$<br>011: 0.5 x $I_{FCHG}$<br>100: 0.6 x $I_{FCHG}$<br>101: 0.7 x $I_{FCHG}$ |

| BITFIELD | BITS | DESCRIPTION | DECODE                                                   |
|----------|------|-------------|----------------------------------------------------------|
|          |      |             | 110: $0.8 \times I_{FCHG}$<br>111: $1.0 \times I_{FCHG}$ |

ThmCfg2 (0x17)

\*Bits are reset to default value upon CHGIN rising/falling edge based on UsbOkselect option (see Device Default Settings for UsbOkselect value).

| BIT         | 7             | 6 | 5 | 4                   | 3 | 2 | 1                  | 0 |
|-------------|---------------|---|---|---------------------|---|---|--------------------|---|
| Field       | HrvThmEn[1:0] |   | – | ChgWarmBatReg*[1:0] |   |   | ChgWarmIFChg*[2:0] |   |
| Access Type | Write, Read   |   | – | Write, Read         |   |   | Write, Read        |   |

| BITFIELD       | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                      | DECODE                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HrvThmEn       | 7:6  | Periodic thermistor monitoring related control.<br>Valid when CHGIN input voltage is not present and interaction with harvester is enabled when HrvEn = 1.<br>If HrvThmEn[1:0] is different from "00", thermistor ( $V_{THM}$ ) is periodically monitored by exploiting Fuel Gauge periodic measurements timing. | 00: Periodic thermistor monitoring disabled.<br>01: Periodic thermistor monitoring enabled and harvester charging enabled in the cool and room temperature zones.<br>10: Periodic thermistor monitoring enabled and harvester charging enabled in the room and warm temperature zones.<br>11: Periodic thermistor monitoring enabled and harvester charging enabled in the cool, room, and warm temperature zones. |
| ChgWarmBatReg* | 4:3  | Charger warm zone battery regulation voltage reduction.<br>Sets the modified battery regulation voltage when the warm temperature zone is entered according to thermistor monitoring.                                                                                                                            | 00: ChgBatReg[3:0] -150mV<br>01: ChgBatReg[3:0] -100mV<br>10: ChgBatReg[3:0] -50mV<br>11: ChgBatReg[3:0]                                                                                                                                                                                                                                                                                                           |
| ChgWarmIFChg*  | 2:0  | Charger warm zone fast-charge current reduction.<br>Sets the modified fast-charge current when the warm temperature zone is entered according to thermistor monitoring.                                                                                                                                          | 000: $0.2 \times I_{FCHG}$<br>001: $0.3 \times I_{FCHG}$<br>010: $0.4 \times I_{FCHG}$<br>011: $0.5 \times I_{FCHG}$<br>100: $0.6 \times I_{FCHG}$<br>101: $0.7 \times I_{FCHG}$<br>110: $0.8 \times I_{FCHG}$<br>111: $1.0 \times I_{FCHG}$                                                                                                                                                                       |

HrvCfg0 (0x18)

| BIT         | 7              | 6 | 5                | 4 | 3 | 2              | 1 | 0 |
|-------------|----------------|---|------------------|---|---|----------------|---|---|
| Field       | HrvBatSys[1:0] |   | HrvBatReChg[1:0] |   |   | HrvBatReg[3:0] |   |   |
| Access Type | Write, Read    |   | Write, Read      |   |   | Write, Read    |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                            | DECODE                                                                                                                                                                                                                                     |
|-----------|------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HrvBatSys | 7:6  | Harvester BAT-SYS FET control.<br>Valid when CHGIN input voltage is not present and interaction with harvester is enabled when HrvEn = | 00: Direct-path (BAT-SYS FET fully on) forced active<br>01: Direct-path active if $V_{BAT} < HrvBatReg[3:0]$ and ideal BAT-to-SYS diode active if $V_{BAT} > HrvBatReg[3:0]$ . Once ideal diode has been activated, an hysteresis equal to |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                         | DECODE                                                                                                                                                                                                                                             |
|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      | 1. If HrvEn = 0 and CHGIN input voltage is not present, the BAT-SYS FET is fully on (direct-path). If CHGIN input voltage is present, the BAT-SYS FET is controlled by the charger. | HrvBatReChg[1:0] is applied on HrvBatReg[3:0] threshold.<br>10: Ideal BAT-to-SYS diode (BAT-SYS FET controlled in order to allow current flowing from BAT to SYS with a low drop and to not allow current flowing from SYS to BAT)<br>11: Reserved |
| HrvBatReChg | 5:4  | Harvester recharge threshold in relation to HrvBatReg[3:0].                                                                                                                         | 00: HrvBatReg[3:0] -70mV<br>01: HrvBatReg[3:0] -120mV<br>10: HrvBatReg[3:0] -170mV<br>11: HrvBatReg[3:0] -220mV                                                                                                                                    |
| HrvBatReg   | 3:0  | Harvester battery-regulation voltage threshold.                                                                                                                                     | 0000: 4.25V<br>0001: 4.30V<br>0010: 4.35V<br>0011: 4.40V<br>0100: 4.45V<br>0101: 4.46V<br>0110: 4.47V<br>0111: 4.48V<br>1000: 4.49V<br>1001: 4.50V<br>1010: 4.51V<br>1011: 4.52V<br>1100: 4.53V<br>1101: 4.54V<br>1110: 4.55V<br>1111: 4.56V       |

HrvCfg1 (0x19)

| BIT                | 7 | 6           | 5                  | 4 | 3 | 2                  | 1 | 0                  |
|--------------------|---|-------------|--------------------|---|---|--------------------|---|--------------------|
| <b>Field</b>       | – | HrvThmDis   | HrvWarmBatReg[1:0] |   |   | HrvRoomBatReg[1:0] |   | HrvCoolBatReg[1:0] |
| <b>Access Type</b> | – | Write, Read | Write, Read        |   |   | Write, Read        |   | Write, Read        |

| BITFIELD      | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                          | DECODE                                                                                                                                                                                                                                       |
|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HrvThmDis     | 6    | Harvester charging disabled condition control. Valid when CHGIN input voltage is not present, interaction with harvester is enabled via HrvEn = 1, HrvThmEn[1:0] is different from "00" and the temperature is in a zone where charging from harvester is inhibited. If HrvEn = 1 and CHGIN input voltage is present, the harvester is permanently disabled through the MPC6 output. | 0: Harvester is disabled through the MPC6 output and the BAT-SYS FET is controlled through HrvBatSys[1:0].<br>1: Harvester is not disabled through the MPC6 output and ideal BAT-to-SYS diode is forced active regardless of HrvBatSys[1:0]. |
| HrvWarmBatReg | 5:4  | Harvester warm zone battery regulation voltage threshold reduction. Sets the modified harvester battery regulation voltage threshold when the warm temperature zone is entered according to thermistor monitoring.                                                                                                                                                                   | 00: HrvBatReg[3:0] -400mV<br>01: HrvBatReg[3:0] -350mV<br>10: HrvBatReg[3:0] -250mV<br>11: HrvBatReg[3:0]                                                                                                                                    |
| HrvRoomBatReg | 3:2  | Harvester room zone battery regulation voltage threshold reduction. Sets the modified harvester battery regulation                                                                                                                                                                                                                                                                   | 00: HrvBatReg[3:0] -400mV<br>01: HrvBatReg[3:0] -350mV<br>10: HrvBatReg[3:0] -250mV<br>11: HrvBatReg[3:0]                                                                                                                                    |

| BITFIELD      | BITS | DESCRIPTION                                                                                                                                                                                                           | DECODE                                                                                                    |
|---------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|               |      | voltage threshold when the room temperature zone is entered according to thermistor monitoring.                                                                                                                       |                                                                                                           |
| HrvCoolBatReg | 1:0  | Harvester cool zone battery regulation voltage threshold reduction.<br>Sets the modified harvester battery regulation voltage threshold when the cool temperature zone is entered according to thermistor monitoring. | 00: HrvBatReg[3:0] -400mV<br>01: HrvBatReg[3:0] -350mV<br>10: HrvBatReg[3:0] -250mV<br>11: HrvBatReg[3:0] |

MONCfg (0x1A)

| BIT                | 7 | 6                   | 5 | 4           | 3 | 2 | 1 | 0 |
|--------------------|---|---------------------|---|-------------|---|---|---|---|
| <b>Field</b>       | – | MONRatioConfig[1:0] |   | MONOffHiZ   |   |   |   |   |
| <b>Access Type</b> | – | Write, Read         |   | Write, Read |   |   |   |   |

| BITFIELD       | BITS | DESCRIPTION                                                        | DECODE                                                                                                                                                                                                                                                                            |
|----------------|------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONRatioConfig | 6:5  | MON multiplexer resistive partition selector.                      | 00: 1:1<br>01: 2:1<br>10: 3:1<br>11: 4:1                                                                                                                                                                                                                                          |
| MONOffHiZ      | 4    | MON multiplexer disabled condition.<br>Valid when MONCtl = "0000". | 0: MON is pulled low by a 59kΩ (typ) resistor.<br>1: MON is Hi-Z.                                                                                                                                                                                                                 |
| MONCtl         | 3:0  | MON multiplexer input channel selector.                            | 0000: MON multiplexer disabled.<br>0001: Reserved<br>0010: BAT<br>0011: SYS<br>0100: BK1OUT<br>0101: BK2OUT<br>0110: BK3OUT<br>0111: L1OUT<br>1000: L2OUT<br>1001: SFOUT<br>1010: BBOUT<br>1011: Reserved<br>1100: Reserved<br>1101: Reserved<br>1110: Reserved<br>1111: Reserved |

Buck1Ena (0x1B)

| BIT                | 7             | 6 | 5 | 4 | 3 | 2 | 1 | 0            |
|--------------------|---------------|---|---|---|---|---|---|--------------|
| <b>Field</b>       | Buck1Seq[2:0] |   |   |   | – | – | – | Buck1En[1:0] |
| <b>Access Type</b> | Read Only     |   |   |   | – | – | – | Write, Read  |

| BITFIELD | BITS | DESCRIPTION                                                                          | DECODE                                                                                                                                                                                                                                                                                                                      |
|----------|------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1Seq | 7:5  | Buck1 Enable Configuration                                                           | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR Process Delay Control<br>011: Enabled at 25% of Boot/POR Process Delay Control<br>100: Enabled at 50% of Boot/POR Process Delay Control<br>101: Reserved<br>110: Reserved<br>111: Controlled by Buck1En [1:0] after 100% of Boot/POR Process Delay Control |
| Buck1En  | 1:0  | Buck1 Enable Configuration (effective only when Buck1Seq = 111 or Buck1UnlockEn = 1) | 00: Disabled: BK1OUT not actively discharged unless Hard-Reset/Shutdown/Off mode<br>01: Enabled<br>10: Controlled by MPC_ (See Buck1MPC_ bits)<br>11: Reserved                                                                                                                                                              |

Buck1Cfg0 (0x1C)

| BIT         | 7             | 6            | 5           | 4           | 3           | 2           | 1             | 0            |
|-------------|---------------|--------------|-------------|-------------|-------------|-------------|---------------|--------------|
| Field       | Buck1IntegDis | Buck1PGOODEn | Buck1Fast   | Buck1PsvDsc | Buck1ActDsc | Buck1LowEMI | Buck1FETScale | Buck1EnLXSns |
| Access Type | Write, Read   | Write, Read  | Write, Read | Write, Read | Write, Read | Write, Read | Write, Read   | Write, Read  |

| BITFIELD      | BITS | DESCRIPTION                                                                                                                                                                     | DECODE                                                                                                                                                   |
|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1IntegDis | 7    | Buck1 integrator feedback disable                                                                                                                                               | 0: Integrator enabled<br>1: Integrator disabled—proportional control only                                                                                |
| Buck1PGOODEn  | 6    | Buck1 PGOOD comparator control                                                                                                                                                  | 0: PGOOD comparator disabled during voltage transition after startup<br>1: PGOOD comparator enabled during voltage transition after startup              |
| Buck1Fast     | 5    | Buck1 pretrigger mode setting                                                                                                                                                   | 0: Normal, low quiescent current operation<br>1: Increased quiescent mode for fast load transient response. Quiescent current increased to 30µA.         |
| Buck1PsvDsc   | 4    | Buck1 passive discharge control                                                                                                                                                 | 0: Buck1 passively discharged only in Hard-Reset<br>1: Buck1 passively discharged in Hard-Reset or Enable Low.                                           |
| Buck1ActDsc   | 3    | Buck1 active discharge control                                                                                                                                                  | 0: Buck1 actively discharged only in Hard-Reset<br>1: Buck1 actively discharged in Hard-Reset or Enable Low                                              |
| Buck1LowEMI   | 2    | Buck1 low EMI mode                                                                                                                                                              | 0: Normal operation<br>1: Slow rise/fall edges on BK1LX by 3x                                                                                            |
| Buck1FETScale | 1    | Buck1 Force FET Scaling<br>Reduce the FET size by a factor of two. Used to optimize the efficiency when Buck1ISet must be < 100mA (e.g., to mitigate noise at low frequencies). | 0: FET scaling disabled<br>1: FET scaling enabled                                                                                                        |
| Buck1EnLXSns  | 0    | Buck1 LX Sense Control<br>Selects the condition to turn-on freewheeling FET. Keep it to 0 for Buck1Vset ≤ 1.6V                                                                  | 0: Enter freewheeling mode after inductor current zero-crossing<br>1: Enter freewheeling mode on VLX high detection after inductor current zero-crossing |

Buck1Cfg1 (0x1D)

| BIT         | 7 | 6 | 5             | 4           | 3            | 2 | 1 | 0 |
|-------------|---|---|---------------|-------------|--------------|---|---|---|
| Field       | — | — | Buck1MPC2Fast | Buck1FPWM   | Buck1AdptDis | — | — | — |
| Access Type | — | — | Write, Read   | Write, Read | Write, Read  | — | — | — |

| BITFIELD      | BITS | DESCRIPTION                              | DECODE                                                                                    |
|---------------|------|------------------------------------------|-------------------------------------------------------------------------------------------|
| Buck1MPC2Fast | 5    | Buck1 FAST mode by MPC2 control          | 0: Buck1 fast mode control by MPC2 disabled<br>1: Buck1 fast mode control by MPC2 enabled |
| Buck1FPWM     | 4    | Buck1 forced PWM mode control            | 0: Normal operation<br>1: Forced PWM mode enabled                                         |
| Buck1AdptDis  | 3    | Buck1 adaptive peak current mode control | 0: Adaptive peak current mode enabled<br>1: Peak current fixed at value set in Buck1ISet  |

Buck1ISet (0x1E)

| BIT         | 7                  | 6 | 5 | 4 | 3              | 2 | 1 | 0 |
|-------------|--------------------|---|---|---|----------------|---|---|---|
| Field       | Buck1ISetLookUpDis | — | — | — | Buck1ISet[3:0] |   |   |   |
| Access Type | Write, Read        | — | — | — | Write, Read    |   |   |   |

| BITFIELD           | BITS | DESCRIPTION                                                                                                                                                                                                                          | DECODE                                                                                                                                                                                                                                  |
|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1ISetLookUpDis | 7    | Buck1 Peak Current Set by Lookup Table Disable                                                                                                                                                                                       | 0: Inductor current setting is set according to look-up table<br>1: Inductor current setting is set by Buck1ISet                                                                                                                        |
| Buck1ISet          | 3:0  | Buck1 Inductor Peak Current Setting.<br>Valid only if Buck1ISetLookUpDis is high.<br>For the best efficiency, use between 150mA and 200mA. Linear scale, 25mA increments, settings below 75mA can be limited by the minimum $t_{ON}$ | 0000: 0mA<br>0001: 25mA<br>0010: 50mA<br>0011: 75mA<br>0100: 100mA<br>0101: 125mA<br>0110: 150mA<br>0111: 175mA<br>1000: 200mA<br>1001: 225mA<br>1010: 250mA<br>1011: 275mA<br>1100: 300mA<br>1101: 325mA<br>1110: 350mA<br>1111: 375mA |

Buck1VSet (0x1F)

| BIT         | 7 | 6 | 5              | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|----------------|---|---|---|---|---|
| Field       | — | — | Buck1VSet[5:0] |   |   |   |   |   |
| Access Type | — | — | Write, Read    |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                            |
|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1VSet | 5:0  | Buck1 Output Voltage Setting<br>0.50V to 0.50V+(63 x Buck1VStep), linear scale, increments of Buck1VStep.<br>e.g., for Buck1VStep = 10mV:<br>000000 = 0.50V<br>000001 = 0.51V<br>...<br>111111 = 1.13V |

**Buck1Ctr (0x20)**

| BIT         | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Field       | Buck1MPC7   | Buck1MPC6   | Buck1MPC5   | Buck1MPC4   | Buck1MPC3   | Buck1MPC2   | Buck1MPC1   | Buck1MPC0   |
| Access Type | Write, Read |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                     | DECODE                                                         |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Buck1MPC7 | 7    | Buck1 MPC7 Enable Control.<br>Only valid when Buck1Seq = 111 and Buck1En = 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs | 0: Buck1 not controlled by MPC7<br>1: Buck1 controlled by MPC7 |
| Buck1MPC6 | 6    | Buck1 MPC6 Enable Control.<br>Only valid when Buck1Seq = 111 and Buck1En = 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs | 0: Buck1 not controlled by MPC6<br>1: Buck1 controlled by MPC6 |
| Buck1MPC5 | 5    | Buck1 MPC5 Enable Control.<br>Only valid when Buck1Seq = 111 and Buck1En = 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs | 0: Buck1 not controlled by MPC5<br>1: Buck1 controlled by MPC5 |
| Buck1MPC4 | 4    | Buck1 MPC4 Enable Control.<br>Only valid when Buck1Seq = 111 and Buck1En = 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs | 0: Buck1 not controlled by MPC4<br>1: Buck1 controlled by MPC4 |
| Buck1MPC3 | 3    | Buck1 MPC3 Enable Control.<br>Only valid when Buck1Seq = 111 and Buck1En = 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs | 0: Buck1 not controlled by MPC3<br>1: Buck1 controlled by MPC3 |
| Buck1MPC2 | 2    | Buck1 MPC2 Enable Control.<br>Only valid when Buck1Seq = 111 and Buck1En = 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs | 0: Buck1 not controlled by MPC2<br>1: Buck1 controlled by MPC2 |
| Buck1MPC1 | 1    | Buck1 MPC1 Enable Control.<br>Only valid when Buck1Seq = 111 and Buck1En = 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs | 0: Buck1 not controlled by MPC1<br>1: Buck1 controlled by MPC1 |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                     | DECODE                                                         |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|           |      | 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs                                                                            |                                                                |
| Buck1MPC0 | 0    | Buck1 MPC0 Enable Control.<br>Only valid when Buck1Seq = 111 and Buck1En = 10. If multiple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs | 0: Buck1 not controlled by MPC0<br>1: Buck1 controlled by MPC0 |

Buck1DvsCfg0 (0x21)

| BIT         | 7 | 6 | 5 | 4                | 3 | 2 | 1 | 0 |
|-------------|---|---|---|------------------|---|---|---|---|
| Field       | – | – | – | Buck1DVSCfg[4:0] |   |   |   |   |
| Access Type | – | – | – | Write, Read      |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1DVSCfg | 4:0  |             | 00000: DVS Modes Disabled<br>00001: MPC0/MPC1<br>00010: MPC0/MPC2<br>00011: MPC0/MPC3<br>00100: MPC0/MPC4<br>00101: MPC0/MPC5<br>00110: MPC0/MPC6<br>00111: MPC0/MPC7<br>01000: MPC1/MPC2<br>01001: MPC1/MPC3<br>01010: MPC1/MPC4<br>01011: MPC1/MPC5<br>01100: MPC1/MPC6<br>01101: MPC1/MPC7<br>01110: MPC2/MPC3<br>01111: MPC2/MPC4<br>10000: MPC2/MPC5<br>10001: MPC2/MPC6<br>10010: MPC2/MPC7<br>10011: MPC3/MPC4<br>10100: MPC3/MPC5<br>10101: MPC3/MPC6<br>10110: MPC3/MPC7<br>10111: MPC4/MPC5<br>11000: MPC4/MPC6<br>11001: MPC4/MPC7<br>11010: MPC5/MPC6<br>11011: MPC5/MPC7<br>11100: MPC6/MPC7<br>11101: SPI Mode<br>>11101: RESERVED |

Buck1DvsCfg1 (0x22)

| BIT         | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|-------------------|---|---|---|---|---|
| Field       | – | – | Buck1DVSVlt0[5:0] |   |   |   |   |   |
| Access Type | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1DVSVlt0 | 5:0  | Buck1 alternate output voltage setting 0 (Controlling MPCs = 00)<br>0.50V to 0.50V+(63 x Buck1VStep), linear scale, increments of Buck1VStep.<br>e.g., for Buck1VStep = 10mV:<br>000000 = 0.50V<br>000001 = 0.51V<br>...<br>111111 = 1.13V |

Buck1DvsCfg2 (0x23)

| BIT         | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|-------------------|---|---|---|---|---|
| Field       | – | – | Buck1DVSVlt1[5:0] |   |   |   |   |   |
| Access Type | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1DVSVlt1 | 5:0  | Buck1 alternate output voltage setting 1 (Controlling MPCs = 01)<br>0.50V to 0.50V+(63 x Buck1VStep), linear scale, increments of Buck1VStep.<br>e.g., for Buck1VStep = 10mV:<br>000000 = 0.50V<br>000001 = 0.51V<br>...<br>111111 = 1.13V |

Buck1DvsCfg3 (0x24)

| BIT         | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|-------------------|---|---|---|---|---|
| Field       | – | – | Buck1DVSVlt2[5:0] |   |   |   |   |   |
| Access Type | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1DVSVlt2 | 5:0  | Buck1 alternate output voltage setting 2 (Controlling MPCs = 10)<br>0.50V to 0.50V+(63 x Buck1VStep), linear scale, increments of Buck1VStep.<br>e.g., for Buck1VStep = 10mV:<br>000000 = 0.50V<br>000001 = 0.51V<br>...<br>111111 = 1.13V |

Buck1DvsCfg4 (0x25)

| BIT         | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|-------------------|---|---|---|---|---|
| Field       | – | – | Buck1DVSVlt3[5:0] |   |   |   |   |   |
| Access Type | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1DVSVlt3 | 5:0  | Buck1 alternate output voltage setting 3 (Controlling MPCs = 11)<br>0.50V to 0.50V+(63 x Buck1VStep), linear scale, increments of Buck1VStep.<br>e.g., for Buck1VStep = 10mV:<br>000000 = 0.50V<br>000001 = 0.51V<br>...<br>111111 = 1.13V |

Buck1DvsSpi (0x26)

| BIT         | 7 | 6 | 5                | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|------------------|---|---|---|---|---|
| Field       | – | – | Buck1SPIVlt[5:0] |   |   |   |   |   |
| Access Type | – | – | Read Only        |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                      |
|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck1SPIVlt | 5:0  | Buck1 SPI DVS Readback<br>0.50V to 0.50V+(63 x Buck1VStep), linear scale, increments of Buck1VStep.<br>e.g., for Buck1VStep = 10mV:<br>000000 = 0.50V<br>000001 = 0.51V<br>...<br>111111 = 1.13V |

Buck2Ena (0x27)

| BIT         | 7             | 6 | 5 | 4 | 3 | 2 | 1 | 0            |
|-------------|---------------|---|---|---|---|---|---|--------------|
| Field       | Buck2Seq[2:0] |   |   |   | – | – | – | Buck2En[1:0] |
| Access Type | Read Only     |   |   |   | – | – | – | Write, Read  |

| BITFIELD | BITS | DESCRIPTION                | DECODE                                                                                                                                          |
|----------|------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2Seq | 7:5  | Buck2 Enable Configuration | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR Process Delay Control<br>011: Enabled at 25% of Boot/POR Process Delay Control |

| BITFIELD | BITS | DESCRIPTION                                                                          | DECODE                                                                                                                                                                   |
|----------|------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |                                                                                      | 100: Enabled at 50% of Boot/POR Process Delay Control<br>101: Reserved<br>110: Reserved<br>111: Controlled by Buck2En [1:0] after 100% of Boot/POR Process Delay Control |
| Buck2En  | 1:0  | Buck2 Enable Configuration (effective only when Buck2Seq = 111 or Buck2UnlockEn = 1) | 00: Disabled: BK2OUT not actively discharged unless Hard-Reset/Shutdown/Off mode<br>01: Enabled<br>10: Controlled by MPC_ (See Buck2MPC_bits)<br>11: Reserved            |

**Buck2Cfg (0x28)**

| BIT         | 7             | 6             | 5           | 4           | 3           | 2           | 1             | 0            |
|-------------|---------------|---------------|-------------|-------------|-------------|-------------|---------------|--------------|
| Field       | Buck2EnbINTGR | Buck2PGOODena | Buck2Fast   | Buck2PsvDsc | Buck2ActDsc | Buck2LowEMI | Buck2FETScale | Buck2EnLxSns |
| Access Type | Write, Read   | Write, Read   | Write, Read | Write, Read | Write, Read | Write, Read | Write, Read   | Write, Read  |

| BITFIELD      | BITS | DESCRIPTION                                                                                                                                                                        | DECODE                                                                                                                                                               |
|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2EnbINTGR | 7    | Buck2 integrator feedback disable                                                                                                                                                  | 0: Integrator enabled<br>1: Integrator disabled—proportional control only                                                                                            |
| Buck2PGOODena | 6    | Buck2 PGOOD comparator control                                                                                                                                                     | 0: PGOOD comparator disabled during voltage transition after startup<br>1: PGOOD comparator enabled during voltage transition after startup                          |
| Buck2Fast     | 5    | Buck2 pretrigger mode setting                                                                                                                                                      | 0: Normal, low quiescent current operation<br>1: Increased quiescent mode for fast load transient response. Quiescent current increased to 30µA.                     |
| Buck2PsvDsc   | 4    | Buck2 passive discharge control                                                                                                                                                    | 0: Buck2 passively discharged only in Hard-Reset<br>1: Buck2 passively discharged in Hard-Reset or Enable Low.                                                       |
| Buck2ActDsc   | 3    | Buck2 active discharge control                                                                                                                                                     | 0: Buck2 actively discharged only in Hard-Reset<br>1: Buck2 actively discharged in Hard-Reset or Enable Low                                                          |
| Buck2LowEMI   | 2    | Buck2 low EMI mode                                                                                                                                                                 | 0: Normal operation<br>1: Slow rise/fall edges on BK2LX by 3x                                                                                                        |
| Buck2FETScale | 1    | Buck2 FET Scaling Control.<br>Reduce the FET size by a factor of two. Used to optimize the efficiency when Buck1ISet must be < 100mA (e.g., to mitigate noise at low frequencies). | 0: FET scaling disabled<br>1: FET scaling enabled                                                                                                                    |
| Buck2EnLxSns  | 0    | Buck2 LX Sense Control<br>Selects the condition to turn-on freewheeling FET. Keep it to 0 for Buck2Vset ≤ 1.6V                                                                     | 0: Enter freewheeling mode after inductor current zero-crossing<br>1: Enter freewheeling mode on V <sub>LX</sub> high detection after inductor current zero-crossing |

**Buck2Cfg1 (0x29)**

| BIT   | 7 | 6 | 5            | 4         | 3             | 2 | 1 | 0 |
|-------|---|---|--------------|-----------|---------------|---|---|---|
| Field | — | — | Buck2MPCFast | Buck2FPWM | Buck2IAdptDis | — | — | — |

|             |   |   |             |             |             |   |   |   |
|-------------|---|---|-------------|-------------|-------------|---|---|---|
| Access Type | - | - | Write, Read | Write, Read | Write, Read | - | - | - |
|-------------|---|---|-------------|-------------|-------------|---|---|---|

| BITFIELD      | BITS | DESCRIPTION                              | DECODE                                                                                    |
|---------------|------|------------------------------------------|-------------------------------------------------------------------------------------------|
| Buck2MPCFast  | 5    | Buck2 FAST mode by MPC3 control          | 0: Buck2 FAST mode control by MPC3 disabled<br>1: Buck2 FAST mode control by MPC3 enabled |
| Buck2FPWM     | 4    | Buck2 forced PWM mode control            | 0: Normal operation<br>1: Forced PWM mode enabled                                         |
| Buck2IAdptDis | 3    | Buck2 adaptive peak current mode control | 0: Adaptive peak current mode enabled<br>1: Peak current fixed at value set in Buck2ISet  |

**Buck2ISet (0x2A)**

|             |                    |   |   |   |   |                |   |   |
|-------------|--------------------|---|---|---|---|----------------|---|---|
| BIT         | 7                  | 6 | 5 | 4 | 3 | 2              | 1 | 0 |
| Field       | Buck2ISetLookUpDis |   |   |   |   | Buck2ISet[3:0] |   |   |
| Access Type | Write, Read        |   |   |   |   | Write, Read    |   |   |

| BITFIELD           | BITS | DESCRIPTION                                                                                                                                                                                                                          | DECODE                                                                                                                                                                                                                                  |
|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2ISetLookUpDis | 7    | Buck2 peak current set by lookup table disabled                                                                                                                                                                                      | 0: Inductor current setting is set according to lookup table<br>1: Inductor current setting is set by Buck2ISet                                                                                                                         |
| Buck2ISet          | 3:0  | Buck2 Inductor Peak Current Setting.<br>Valid only if Buck2ISetLookUpDis is high.<br>For the best efficiency, use between 150mA and 200mA. Linear scale, 25mA increments, settings below 75mA can be limited by the minimum $t_{on}$ | 0000: 0mA<br>0001: 25mA<br>0010: 50mA<br>0011: 75mA<br>0100: 100mA<br>0101: 125mA<br>0110: 150mA<br>0111: 175mA<br>1000: 200mA<br>1001: 225mA<br>1010: 250mA<br>1011: 275mA<br>1100: 300mA<br>1101: 325mA<br>1110: 350mA<br>1111: 375mA |

**Buck2VSet (0x2B)**

|             |   |   |                |   |   |   |   |   |
|-------------|---|---|----------------|---|---|---|---|---|
| BIT         | 7 | 6 | 5              | 4 | 3 | 2 | 1 | 0 |
| Field       | - | - | Buck2VSet[5:0] |   |   |   |   |   |
| Access Type | - | - | Write, Read    |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                               |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2VSet | 5:0  | Buck2 Output Voltage Setting<br>0.50V to 0.50V+(63 x Buck2VStep), linear scale, increments of Buck2VStep.<br>e.g., for Buck2VStep = 25mV: |

| BITFIELD | BITS | DESCRIPTION                                                 |
|----------|------|-------------------------------------------------------------|
|          |      | 000000 = 0.50V<br>000001 = 0.525V<br>...<br>111111 = 2.075V |

**Buck2Ctr (0x2C)**

| BIT         | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Field       | Buck2MPC7   | Buck2MPC6   | Buck2MPC5   | Buck2MPC4   | Buck2MPC3   | Buck2MPC2   | Buck2MPC1   | Buck2MPC0   |
| Access Type | Write, Read |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                     | DECODE                                                         |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Buck2MPC7 | 7    | Buck2 MPC7 Enable Control.<br>Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs | 0: Buck2 not controlled by MPC7<br>1: Buck2 Controlled by MPC7 |
| Buck2MPC6 | 6    | Buck2 MPC6 Enable Control.<br>Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs | 0: Buck2 not controlled by MPC6<br>1: Buck2 controlled by MPC6 |
| Buck2MPC5 | 5    | Buck2 MPC5 Enable Control.<br>Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs | 0: Buck2 not controlled by MPC5<br>1: Buck2 controlled by MPC5 |
| Buck2MPC4 | 4    | Buck2 MPC4 Enable Control.<br>Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs | 0: Buck2 not controlled by MPC4<br>1: Buck2 controlled by MPC4 |
| Buck2MPC3 | 3    | Buck2 MPC3 Enable Control.<br>Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs | 0: Buck2 not controlled by MPC3<br>1: Buck2 controlled by MPC3 |
| Buck2MPC2 | 2    | Buck2 MPC2 Enable Control.<br>Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs | 0: Buck2 not controlled by MPC2<br>1: Buck2 controlled by MPC2 |
| Buck2MPC1 | 1    | Buck2 MPC1 Enable Control.<br>Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs | 0: Buck2 not controlled by MPC1<br>1: Buck2 controlled by MPC1 |
| Buck2MPC0 | 0    | Buck2 MPC0 Enable Control.<br>Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs | 0: Buck2 not controlled by MPC0<br>1: Buck2 controlled by MPC0 |

| BITFIELD | BITS | DESCRIPTION                                                                          | DECODE |
|----------|------|--------------------------------------------------------------------------------------|--------|
|          |      | 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs |        |

Buck2DvsCfg0 (0x2D)

| BIT                | 7 | 6 | 5 | 4                | 3 | 2 | 1 | 0 |
|--------------------|---|---|---|------------------|---|---|---|---|
| <b>Field</b>       | – | – | – | Buck2DvsCfg[4:0] |   |   |   |   |
| <b>Access Type</b> | – | – | – | Write, Read      |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2DvsCfg | 4:0  |             | 00000: DVS Modes Disabled<br>00001: MPC0/MPC1<br>00010: MPC0/MPC2<br>00011: MPC0/MPC3<br>00100: MPC0/MPC4<br>00101: MPC0/MPC5<br>00110: MPC0/MPC6<br>00111: MPC0/MPC7<br>01000: MPC1/MPC2<br>01001: MPC1/MPC3<br>01010: MPC1/MPC4<br>01011: MPC1/MPC5<br>01100: MPC1/MPC6<br>01101: MPC1/MPC7<br>01110: MPC2/MPC3<br>01111: MPC2/MPC4<br>10000: MPC2/MPC5<br>10001: MPC2/MPC6<br>10010: MPC2/MPC7<br>10011: MPC3/MPC4<br>10100: MPC3/MPC5<br>10101: MPC3/MPC6<br>10110: MPC3/MPC7<br>10111: MPC4/MPC5<br>11000: MPC4/MPC6<br>11001: MPC4/MPC7<br>11010: MPC5/MPC6<br>11011: MPC5/MPC7<br>11100: MPC6/MPC7<br>11101: SPI Mode<br>>11101: RESERVED |

Buck2DvsCfg1 (0x2E)

| BIT                | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|-------------------|---|---|---|---|---|
| <b>Field</b>       | – | – | Buck2DvsVlt0[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                  |
|--------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2DvsVlt0 | 5:0  | Buck2 alternate output voltage setting 0 (Controlling MPCs = 00)<br>0.50V to 0.50V+(63 x Buck2VStep), linear scale, increments of Buck2VStep.<br>e.g., for Buck2VStep = 25mV:<br>000000 = 0.50V<br>000001 = 0.525V<br>...<br>111111 = 2.075V |

**Buck2DvsCfg2 (0x2F)**

| BIT                | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|-------------------|---|---|---|---|---|
| <b>Field</b>       | — | — | Buck2DvsVlt1[5:0] |   |   |   |   |   |
| <b>Access Type</b> | — | — | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                  |
|--------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2DvsVlt1 | 5:0  | Buck2 alternate output voltage setting 1 (Controlling MPCs = 01)<br>0.50V to 0.50V+(63 x Buck2VStep), linear scale, increments of Buck2VStep.<br>e.g., for Buck2VStep = 25mV:<br>000000 = 0.50V<br>000001 = 0.525V<br>...<br>111111 = 2.075V |

**Buck2DvsCfg3 (0x30)**

| BIT                | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|-------------------|---|---|---|---|---|
| <b>Field</b>       | — | — | Buck2DvsVlt2[5:0] |   |   |   |   |   |
| <b>Access Type</b> | — | — | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                  |
|--------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2DvsVlt2 | 5:0  | Buck2 alternate output voltage setting 2 (Controlling MPCs = 10)<br>0.50V to 0.50V+(63 x Buck2VStep), linear scale, increments of Buck2VStep.<br>e.g., for Buck2VStep = 25mV:<br>000000 = 0.50V<br>000001 = 0.525V<br>...<br>111111 = 2.075V |

Buck2DvsCfg4 (0x31)

| BIT         | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|-------------------|---|---|---|---|---|
| Field       | – | – | Buck2DvsVlt3[5:0] |   |   |   |   |   |
| Access Type | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                  |
|--------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2DvsVlt3 | 5:0  | Buck2 alternate output voltage setting 3 (Controlling MPCs = 11)<br>0.50V to 0.50V+(63 x Buck2VStep), linear scale, increments of Buck2VStep.<br>e.g., for Buck2VStep = 25mV:<br>000000 = 0.50V<br>000001 = 0.525V<br>...<br>111111 = 2.075V |

Buck2DvsSpi (0x32)

| BIT         | 7 | 6 | 5                | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|------------------|---|---|---|---|---|
| Field       | – | – | Buck2SPIVlt[5:0] |   |   |   |   |   |
| Access Type | – | – | Read Only        |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                         |
|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck2SPIVlt | 5:0  | Buck2 SPI DVS Readback.<br>0.50V to 0.50V+(63 x Buck2VStep), linear scale, increments of Buck2VStep.<br>e.g., for Buck2VStep = 25mV:<br>000000 = 0.50V<br>000001 = 0.525V<br>...<br>111111 = 2.075V |

Buck3Ena (0x34)

| BIT         | 7             | 6 | 5 | 4 | 3 | 2 | 1 | 0            |
|-------------|---------------|---|---|---|---|---|---|--------------|
| Field       | Buck3Seq[2:0] |   |   |   | – | – | – | Buck3En[1:0] |
| Access Type | Read Only     |   |   |   | – | – | – | Write, Read  |

| BITFIELD | BITS | DESCRIPTION                | DECODE                                                                                                                                          |
|----------|------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3Seq | 7:5  | Buck3 enable configuration | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR process delay control<br>011: Enabled at 25% of Boot/POR process delay control |

| BITFIELD | BITS | DESCRIPTION                                                                          | DECODE                                                                                                                                                                   |
|----------|------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |                                                                                      | 100: Enabled at 50% of Boot/POR process delay control<br>101: Reserved<br>110: Reserved<br>111: Controlled by Buck3En [1:0] after 100% of Boot/POR process delay control |
| Buck3En  | 1:0  | Buck3 enable configuration (effective only when Buck3Seq = 111 or Buck3UnlockEn = 1) | 00: Disabled: BK1OUT not actively discharged unless Hard-Reset/Shutdown/Off mode<br>01: Enabled<br>10: Controlled by MPC_ (See Buck3MPC_bits)<br>11: Reserved            |

**Buck3Cfg (0x35)**

| BIT         | 7             | 6             | 5           | 4           | 3           | 2           | 1             | 0            |
|-------------|---------------|---------------|-------------|-------------|-------------|-------------|---------------|--------------|
| Field       | Buck3EnbINTGR | Buck3PGOODena | Buck3Fast   | Buck3PsvDsc | Buck3ActDsc | Buck3LowEMI | Buck3FETScale | Buck3EnLxSns |
| Access Type | Write, Read   | Write, Read   | Write, Read | Write, Read | Write, Read | Write, Read | Write, Read   | Write, Read  |

| BITFIELD      | BITS | DESCRIPTION                                                                                                                                                                     | DECODE                                                                                                                                                               |
|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3EnbINTGR | 7    | Buck3 integrator feedback disable                                                                                                                                               | 0: Integrator enabled<br>1: Integrator disabled—proportional control only                                                                                            |
| Buck3PGOODena | 6    | Buck3 PGOOD Comparator Control                                                                                                                                                  | 0: PGOOD comparator disabled during voltage transition after startup<br>1: PGOOD comparator enabled during voltage transition after startup                          |
| Buck3Fast     | 5    | Buck3 pretrigger mode setting                                                                                                                                                   | 0: Normal, low quiescent current operation<br>1: Increased quiescent mode for fast load transient response. Quiescent current increased to 30µA.                     |
| Buck3PsvDsc   | 4    | Buck3 Passive Discharge Control                                                                                                                                                 | 0: Buck3 passively discharged only in Hard-Reset<br>1: Buck3 passively discharged in Hard-Reset or Enable Low.                                                       |
| Buck3ActDsc   | 3    | Buck3 Active Discharge Control                                                                                                                                                  | 0: Buck3 actively discharged only in Hard-Reset<br>1: Buck3 actively discharged in Hard-Reset or Enable Low                                                          |
| Buck3LowEMI   | 2    | Buck3 Low EMI Mode                                                                                                                                                              | 0: Normal operation<br>1: Slow rise/fall edges on BK3LX by 3x                                                                                                        |
| Buck3FETScale | 1    | Buck3 Force FET Scaling<br>Reduce the FET size by a factor of two. Used to optimize the efficiency when Buck1ISet must be < 100mA (e.g., to mitigate noise at low frequencies). | 0: FET scaling disabled<br>1: FET scaling enabled                                                                                                                    |
| Buck3EnLxSns  | 0    | Buck3 LX Sense Control<br>Selects the condition to turn-on freewheeling FET. Keep it to 0 for Buck3Vset ≤ 1.6V                                                                  | 0: Enter freewheeling mode after inductor current zero-crossing<br>1: Enter freewheeling mode on V <sub>LX</sub> high detection after inductor current zero-crossing |

**Buck3Cfg1 (0x36)**

| BIT   | 7 | 6           | 5            | 4         | 3            | 2 | 1 | 0 |
|-------|---|-------------|--------------|-----------|--------------|---|---|---|
| Field | — | Buck3DisLDO | Buck3MPCFast | Buck3FPWM | Buck3AdptDis | — | — | — |

|             |   |             |             |             |             |   |   |   |
|-------------|---|-------------|-------------|-------------|-------------|---|---|---|
| Access Type | - | Write, Read | Write, Read | Write, Read | Write, Read | - | - | - |
|-------------|---|-------------|-------------|-------------|-------------|---|---|---|

| BITFIELD      | BITS | DESCRIPTION                              | DECODE                                                                                           |
|---------------|------|------------------------------------------|--------------------------------------------------------------------------------------------------|
| Buck3DisLDO   | 6    | LDO mode control                         | 0: Enable low dropout mode with LDO at low buck ratios<br>1: Disable LDO mode at low buck ratios |
| Buck3MPCFast  | 5    | Buck3 FAST mode by MPC4 control          | 0: Buck3 FAST mode control by MPC4 disabled<br>1: Buck3 FAST mode control by MPC4 enabled        |
| Buck3FPWM     | 4    | Buck3 forced PWM mode control            | 0: Normal operation<br>1: Forced PWM mode enabled                                                |
| Buck3IAdptDis | 3    | Buck3 adaptive peak current mode control | 0: Adaptive peak current mode enabled<br>1: Peak current fixed at value set in Buck3ISet         |

**Buck3ISet (0x37)**

| BIT         | 7                  | 6 | 5 | 4 | 3              | 2 | 1 | 0 |  |
|-------------|--------------------|---|---|---|----------------|---|---|---|--|
| Field       | Buck3ISetLookUpDis | - | - | - | Buck3ISet[3:0] |   |   |   |  |
| Access Type | Write, Read        | - | - | - | Write, Read    |   |   |   |  |

| BITFIELD           | BITS | DESCRIPTION                                                                                                                                                                                                                          | DECODE                                                                                                                                                                                                                                  |
|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3ISetLookUpDis | 7    | Buck3 peak current set by lookup table disabled                                                                                                                                                                                      | 0: Inductor current setting is set according to lookup table<br>1: Inductor current setting is set by Buck3ISet                                                                                                                         |
| Buck3ISet          | 3:0  | Buck3 Inductor Peak Current Setting.<br>Valid only if Buck3ISetLookUpDis is high.<br>For the best efficiency, use between 150mA and 200mA. Linear scale, 25mA increments, settings below 75mA can be limited by the minimum $t_{on}$ | 0000: 0mA<br>0001: 25mA<br>0010: 50mA<br>0011: 75mA<br>0100: 100mA<br>0101: 125mA<br>0110: 150mA<br>0111: 175mA<br>1000: 200mA<br>1001: 225mA<br>1010: 250mA<br>1011: 275mA<br>1100: 300mA<br>1101: 325mA<br>1110: 350mA<br>1111: 375mA |

**Buck3VSet (0x38)**

| BIT         | 7 | 6 | 5              | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|----------------|---|---|---|---|---|
| Field       | - | - | Buck3VSet[5:0] |   |   |   |   |   |
| Access Type | - | - | Write, Read    |   |   |   |   |   |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                             |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3VSet | 5:0  | <p>Buck3 Output Voltage Setting.<br/>0.50V to 0.50V+(63 x Buck3VStep), linear scale, increments of Buck3VStep.<br/>e.g., for Buck3VStep = 50mV:</p> <p>000000 = 0.50V<br/>000001 = 0.55V<br/>...<br/>111111 = 3.65V</p> |

**Buck3Ctr (0x39)**

| BIT         | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Field       | Buck3MPC7   | Buck3MPC6   | Buck3MPC5   | Buck3MPC4   | Buck3MPC3   | Buck3MPC2   | Buck3MPC1   | Buck3MPC0   |
| Access Type | Write, Read |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                     | DECODE                                                         |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Buck3MPC7 | 7    | Buck3 MPC7 Enable Control.<br>Only valid when Buck3Seq = 111 and Buck3En = 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs | 0: Buck3 not controlled by MPC7<br>1: Buck3 controlled by MPC7 |
| Buck3MPC6 | 6    | Buck3 MPC6 Enable Control.<br>Only valid when Buck3Seq = 111 and Buck3En = 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs | 0: Buck3 not controlled by MPC6<br>1: Buck3 controlled by MPC6 |
| Buck3MPC5 | 5    | Buck3 MPC5 Enable Control.<br>Only valid when Buck3Seq = 111 and Buck3En = 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs | 0: Buck3 not controlled by MPC5<br>1: Buck3 controlled by MPC5 |
| Buck3MPC4 | 4    | Buck3 MPC4 Enable Control.<br>Only valid when Buck3Seq = 111 and Buck3En = 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs | 0: Buck3 not controlled by MPC4<br>1: Buck3 controlled by MPC4 |
| Buck3MPC3 | 3    | Buck3 MPC3 Enable Control.<br>Only valid when Buck3Seq = 111 and Buck3En = 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs | 0: Buck3 not controlled by MPC3<br>1: Buck3 controlled by MPC3 |
| Buck3MPC2 | 2    | Buck3 MPC2 Enable Control.<br>Only valid when Buck3Seq = 111 and Buck3En = 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs | 0: Buck3 not controlled by MPC2<br>1: Buck3 controlled by MPC2 |
| Buck3MPC1 | 1    | Buck3 MPC1 Enable Control.<br>Only valid when Buck3Seq = 111 and Buck3En = 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs | 0: Buck3 not controlled by MPC1<br>1: Buck3 controlled by MPC1 |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                     | DECODE                                                         |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|           |      | 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs                                                                            |                                                                |
| Buck3MPC0 | 0    | Buck3 MPC0 Enable Control.<br>Only valid when Buck3Seq = 111 and Buck3En = 10. If multiple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs | 0: Buck3 not controlled by MPC0<br>1: Buck3 controlled by MPC0 |

Buck3DvsCfg0 (0x3A)

| BIT         | 7 | 6 | 5 | 4                | 3 | 2 | 1 | 0 |
|-------------|---|---|---|------------------|---|---|---|---|
| Field       | – | – | – | Buck3DvsCfg[4:0] |   |   |   |   |
| Access Type | – | – | – | Write, Read      |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3DvsCfg | 4:0  |             | 00000: DVS modes disabled<br>00001: MPC0/MPC1<br>00010: MPC0/MPC2<br>00011: MPC0/MPC3<br>00100: MPC0/MPC4<br>00101: MPC0/MPC5<br>00110: MPC0/MPC6<br>00111: MPC0/MPC7<br>01000: MPC1/MPC2<br>01001: MPC1/MPC3<br>01010: MPC1/MPC4<br>01011: MPC1/MPC5<br>01100: MPC1/MPC6<br>01101: MPC1/MPC7<br>01110: MPC2/MPC3<br>01111: MPC2/MPC4<br>10000: MPC2/MPC5<br>10001: MPC2/MPC6<br>10010: MPC2/MPC7<br>10011: MPC3/MPC4<br>10100: MPC3/MPC5<br>10101: MPC3/MPC6<br>10110: MPC3/MPC7<br>10111: MPC4/MPC5<br>11000: MPC4/MPC6<br>11001: MPC4/MPC7<br>11010: MPC5/MPC6<br>11011: MPC5/MPC7<br>11100: MPC6/MPC7<br>11101: SPI Mode<br>>11101: RESERVED |

Buck3DvsCfg1 (0x3B)

| BIT         | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|-------------------|---|---|---|---|---|
| Field       | – | – | Buck3DvsVlt0[5:0] |   |   |   |   |   |
| Access Type | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3DvsVlt0 | 5:0  | Buck3 alternate output voltage setting 0 (Controlling MPCs = 00)<br>0.50V to 0.50V+(63 x Buck3VStep), linear scale, increments of Buck3VStep.<br>e.g., for Buck3VStep = 50mV:<br>000000 = 0.50V<br>000001 = 0.55V<br>...<br>111111 = 3.65V |

**Buck3DvsCfg2 (0x3C)**

| BIT                | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|-------------------|---|---|---|---|---|
| <b>Field</b>       | – | – | Buck3DvsVlt1[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3DvsVlt1 | 5:0  | Buck3 alternate output voltage setting 1 (Controlling MPCs = 01)<br>0.50V to 0.50V+(63 x Buck3VStep), linear scale, increments of Buck3VStep.<br>e.g., for Buck3VStep = 50mV:<br>000000 = 0.50V<br>000001 = 0.55V<br>...<br>111111 = 3.65V |

**Buck3DvsCfg3 (0x3D)**

| BIT                | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|-------------------|---|---|---|---|---|
| <b>Field</b>       | – | – | Buck3DvsVlt2[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3DvsVlt2 | 5:0  | Buck3 alternate output voltage setting 2 (Controlling MPCs = 10)<br>0.50V to 0.50V+(63 x Buck3VStep), linear scale, increments of Buck3VStep.<br>e.g., for Buck3VStep = 50mV:<br>000000 = 0.50V<br>000001 = 0.55V<br>...<br>111111 = 3.65V |

Buck3DvsCfg4 (0x3E)

| BIT         | 7 | 6 | 5                 | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|-------------------|---|---|---|---|---|
| Field       | – | – | Buck3DvsVlt3[5:0] |   |   |   |   |   |
| Access Type | – | – | Write, Read       |   |   |   |   |   |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3DvsVlt3 | 5:0  | Buck3 alternate output voltage setting 3 (Controlling MPCs = 11)<br>0.50V to 0.50V+(63 x Buck3VStep), linear scale, increments of Buck3VStep.<br>e.g., for Buck3VStep = 50mV:<br>000000 = 0.50V<br>000001 = 0.55V<br>...<br>111111 = 3.65V |

Buck3DvsSpi (0x3F)

| BIT         | 7 | 6 | 5                | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|------------------|---|---|---|---|---|
| Field       | – | – | Buck3SPIVlt[5:0] |   |   |   |   |   |
| Access Type | – | – | Read Only        |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                       |
|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buck3SPIVlt | 5:0  | Buck3 SPI DVS Readback.<br>0.50V to 0.50V+(63 x Buck3VStep), linear scale, increments of Buck3VStep.<br>e.g., for Buck3VStep = 50mV:<br>000000 = 0.50V<br>000001 = 0.55V<br>...<br>111111 = 3.65V |

BBstEna (0x40)

| BIT         | 7            | 6 | 5 | 4 | 3 | 2 | 1 | 0           |
|-------------|--------------|---|---|---|---|---|---|-------------|
| Field       | BBstSeq[2:0] |   |   |   | – | – | – | BBstEn[1:0] |
| Access Type | Read Only    |   |   |   | – | – | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                     | DECODE                                                                                                                                          |
|----------|------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstSeq  | 7:5  | Buck-Boost enable configuration | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR process delay control<br>011: Enabled at 25% of Boot/POR process delay control |

| BITFIELD | BITS | DESCRIPTION                                                                           | DECODE                                                                                                                                                                 |
|----------|------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |                                                                                       | 100: Enabled at 50% of Boot/POR process delay control<br>101: Reserved<br>110: Reserved<br>111: Controlled by BBstEn[1:0] after 100% of Boot/POR process delay control |
| BBstEn   | 1:0  | Buck-Boost enable configuration (effective only when BBstSeq = 111 or BBstUnlock = 1) | 00: Disabled: BBOUT not actively discharged unless Hard-Reset/Shutdown/Off mode<br>01: Enabled<br>10: Controlled by MPC_ (See BBstMPC_ bits)<br>11: Reserved           |

**BBstCfg (0x41)**

| BIT         | 7                 | 6 | 5 | 4           | 3           | 2           | 1           | 0           |
|-------------|-------------------|---|---|-------------|-------------|-------------|-------------|-------------|
| Field       | BBstISetLookUpDis | – | – | BBstLowEMI  | BBstActDsc  | BBstRampEn  | BBstMode    | BBstPsvDisc |
| Access Type | Write, Read       | – | – | Write, Read |

| BITFIELD          | BITS | DESCRIPTION                                         | DECODE                                                                                                                                                                  |
|-------------------|------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstISetLookUpDis | 7    | Buck-Boost peak current set by lookup table disable | 0: Inductor current setting is set according to look-up table<br>1: Inductor current setting is set by BBstIPSet2 and BBstIPSet1                                        |
| BBstLowEMI        | 4    | Buck-Boost low EMI mode                             | 0: Normal operation<br>1: Slow rise/fall edges on HVUX/LVUX by 3x                                                                                                       |
| BBstActDsc        | 3    | Buck-Boost active discharge control                 | 0: Buck-Boost actively discharged only in Hard-Reset<br>1: Buck-Boost actively discharged in Hard-Reset or Enable Low                                                   |
| BBstRampEn        | 2    | Buck-Boost ramp enable                              | 0: Voltage setting transition is performed without intermediate steps<br>1: Voltage setting transition to a higher value is performed with incremental steps every 20µs |
| BBstMode          | 1    | Buck-Boost operating mode                           | 0: Buck-Boost<br>1: Buck Only                                                                                                                                           |
| BBstPsvDisc       | 0    | Buck-Boost passive discharge control                | 0: Buck-Boost passively discharged only in Hard-Reset<br>1: Buck-Boost passively discharged in Hard-Reset or Enable Low.                                                |

**BBstVSet (0x42)**

| BIT         | 7 | 6 | 5             | 4 | 3 | 2 | 1 | 0 |
|-------------|---|---|---------------|---|---|---|---|---|
| Field       | – | – | BBstVSet[5:0] |   |   |   |   |   |
| Access Type | – | – | Write, Read   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                             |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstVSet | 5:0  | Buck-Boost Output Voltage Setting.<br>2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 can interfere with V <sub>BBOUT_UVLO</sub> and are not guaranteed |

| BITFIELD | BITS | DESCRIPTION                                                              |
|----------|------|--------------------------------------------------------------------------|
|          |      | 000000 = 2.5V<br>000001 = 2.55V<br>...<br>111100 = 5.5V<br>>111100 = N/A |

**BBstlSet (0x43)**

| BIT         | 7                | 6 | 5 | 4 | 3 | 2 | 1                | 0 |
|-------------|------------------|---|---|---|---|---|------------------|---|
| Field       | BBstlIPSet2[3:0] |   |   |   |   |   | BBstlIPSet1[3:0] |   |
| Access Type | Write, Read      |   |   |   |   |   | Write, Read      |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstlIPSet2 | 7:4  | Buck-Boost nominal maximum peak current setting.<br>Valid only if BBstlSetLookUpb is high.<br>See Buck-Boost Regulator section for a description<br>of the peak current settings. 0mA to 375mA, linear<br>scale, 25mA increments, settings below 75mA<br>can be limited by the minimum $t_{ON}$ .<br>Recommended settings:<br>$V_{BBOUT} \leq 2.65V$ : 250mA<br>$2.7V < V_{BBOUT} \leq 3.05V$ : 225mA<br>$3.1V < V_{BBOUT} \leq 3.6V$ : 200mA<br>$3.65V < V_{BBOUT} \leq 4.35V$ : 175mA<br>$V_{BBOUT} > 4.4V$ : 150mA                                                                                                                                                                                                                                       | 0000: BBstlIPSet1 + 0mA<br>0001: BBstlIPSet1 + 25mA<br>0010: BBstlIPSet1 + 50mA<br>0011: BBstlIPSet1 + 75mA<br>0100: BBstlIPSet1 + 100mA<br>0101: BBstlIPSet1 + 125mA<br>0110: BBstlIPSet1 + 150mA<br>0111: BBstlIPSet1 + 175mA<br>1000: BBstlIPSet1 + 200mA<br>1001: BBstlIPSet1 + 225mA<br>1010: BBstlIPSet1 + 250mA<br>1011: BBstlIPSet1 + 275mA<br>1100: BBstlIPSet1 + 300mA<br>1101: BBstlIPSet1 + 325mA<br>1110: BBstlIPSet1 + 350mA<br>1111: BBstlIPSet1 + 375mA |
| BBstlIPSet1 | 3:0  | Buck-Boost nominal peak current setting.<br>Valid only if BBstlSetLookUpb is high.<br>Nominal peak current when charging inductor<br>between $V_{IN}$ and GND.<br>See Buck-Boost Regulator section for a description<br>of the peak current settings. 0mA to 375mA, linear<br>scale, 25mA increments, settings below 75mA may<br>be limited by the minimum $t_{ON}$ .<br>Recommended settings:<br>$V_{BBOUT} \leq 2.65V$ : 50mA<br>$2.7V < V_{BBOUT} \leq 3.05V$ : 75mA<br>$3.1V < V_{BBOUT} \leq 3.4V$ : 100mA<br>$3.45V < V_{BBOUT} \leq 3.8V$ : 125mA<br>$3.85V < V_{BBOUT} \leq 4.15V$ : 150mA<br>$4.2V < V_{BBOUT} \leq 4.55V$ : 175mA<br>$4.6V < V_{BBOUT} \leq 4.9V$ : 200mA<br>$4.95V < V_{BBOUT} \leq 5.3V$ : 225mA<br>$V_{BBOUT} > 5.35V$ : 250mA | 0000: 0mA<br>0001: 25mA<br>0010: 50mA<br>0011: 75mA<br>0100: 100mA<br>0101: 125mA<br>0110: 150mA<br>0111: 175mA<br>1000: 200mA<br>1001: 225mA<br>1010: 250mA<br>1011: 275mA<br>1100: 300mA<br>1101: 325mA<br>1110: 350mA<br>1111: 375mA                                                                                                                                                                                                                                 |

**BBstCfg1 (0x44)**

| BIT                | 7 | 6            | 5           | 4            | 3            | 2               | 1              | 0 |
|--------------------|---|--------------|-------------|--------------|--------------|-----------------|----------------|---|
| <b>Field</b>       | – | BBstlAdptDis | BBstFast    | BBstZCCmpDis | BBstFETScale | BBstMPC1FastCtl | BBFHighSh[1:0] |   |
| <b>Access Type</b> | – | Write, Read  | Write, Read | Write, Read  | Write, Read  | Write, Read     | Write, Read    |   |

| BITFIELD        | BITS | DESCRIPTION                                                                                                                                                                                                                                 | DECODE                                                                                                                                                        |
|-----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstlAdptDis    | 6    | Adaptive peak/valley current adjustment enable                                                                                                                                                                                              | 0: Enabled<br>1: Disabled, peak current fixed and is set by BBstlPSet1,2. Valley current is fixed to 0mA                                                      |
| BBstFast        | 5    | Buck-Boost pretrigger mode setting                                                                                                                                                                                                          | 0: Normal, low quiescent current operation<br>1: Increased quiescent mode for fast load transient response. Quiescent current increased to 30µA.              |
| BBstZCCmpDis    | 4    | Buck-Boost zero-crossing comparator disable                                                                                                                                                                                                 | 0: Enable<br>1: Disable                                                                                                                                       |
| BBstFETScale    | 3    | Buck-Boost Force FET Scaling.<br>Reduce the FET size by factor 2 to optimize the efficiency at light loads                                                                                                                                  | 0: FET scaling disabled<br>1: FET scaling enabled                                                                                                             |
| BBstMPC1FastCtl | 2    | Buck-Boost FAST Mode Enable by MPC1.<br>Improves interoperability with MAX86170/171. Tie MPC1 to INT2 on MAX86170/171 if this mode is used.                                                                                                 | 0: FAST status controlled by BBstFast Register<br>1: FAST mode controlled by MPC1.<br>MPC1 = 0: FAST disabled<br>MPC1 = 1: FAST enabled, IQ increased by 30µA |
| BBFHighSh       | 1:0  | Buck-Boost $f_{HIGH}$ Thresholds.<br>Selects the switching frequency threshold $f_{HIGH}$ . If $f_{SW} > f_{HIGH}$ all the blocks are kept ON ( $I_Q$ is higher). A small glitch on $V_{BBOUT}$ can be present at the $f_{HIGH}$ crossover. | 00: 25kHz/6.125kHz<br>01: 35kHz/8.25kHz<br>10: 50kHz/12.5kHz<br>11: 100kHz/25kHz                                                                              |

**BBstCtr0 (0x45)**

| BIT                | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | BBstMPC7    | BBstMPC6    | BBstMPC5    | BBstMPC4    | BBstMPC3    | BBstMPC2    | BBstMPC1    | BBstMPC0    |
| <b>Access Type</b> | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                 | DECODE                                                                   |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| BBstMPC7 | 7    | Buck-Boost MPC7 Enable Control.<br>Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck-Boost is controlled by the logical OR of the MPCs | 0: Buck-Boost not controlled by MPC7<br>1: Buck-Boost controlled by MPC7 |
| BBstMPC6 | 6    | Buck-Boost MPC6 Enable Control.<br>Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck-Boost is controlled by the logical OR of the MPCs | 0: Buck-Boost not controlled by MPC6<br>1: Buck-Boost controlled by MPC6 |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                 | DECODE                                                                   |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| BBstMPC5 | 5    | Buck-Boost MPC5 Enable Control.<br>Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck-Boost is controlled by the logical OR of the MPCs | 0: Buck-Boost not controlled by MPC5<br>1: Buck-Boost controlled by MPC5 |
| BBstMPC4 | 4    | Buck-Boost MPC4 Enable Control.<br>Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck-Boost is controlled by the logical OR of the MPCs | 0: Buck-Boost not controlled by MPC4<br>1: Buck-Boost controlled by MPC4 |
| BBstMPC3 | 3    | Buck-Boost MPC3 Enable Control.<br>Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck-Boost is controlled by the logical OR of the MPCs | 0: Buck-Boost not controlled by MPC3<br>1: Buck-Boost controlled by MPC3 |
| BBstMPC2 | 2    | Buck-Boost MPC2 Enable Control.<br>Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck-Boost is controlled by the logical OR of the MPCs | 0: Buck-Boost not controlled by MPC2<br>1: Buck-Boost controlled by MPC2 |
| BBstMPC1 | 1    | Buck-Boost MPC1 Enable Control.<br>Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck-Boost is controlled by the logical OR of the MPCs | 0: Buck-Boost not controlled by MPC1<br>1: Buck-Boost controlled by MPC1 |
| BBstMPC0 | 0    | Buck-Boost MPC0 Enable Control.<br>Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck-Boost is controlled by the logical OR of the MPCs | 0: Buck-Boost not controlled by MPC0<br>1: Buck-Boost controlled by MPC0 |

**BBstCtr1 (0x46)**

| BIT         | 7 | 6 | 5 | 4               | 3 | 2 | 1 | 0 |
|-------------|---|---|---|-----------------|---|---|---|---|
| Field       | – | – | – | BBstDvsCfg[4:0] |   |   |   |   |
| Access Type | – | – | – | Write, Read     |   |   |   |   |

| BITFIELD   | BITS | DESCRIPTION                  | DECODE                                                                                                                                                                                                                                                                                                                                |
|------------|------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstDvsCfg | 4:0  | Buck-Boost DVS configuration | 00000: DVS modes disabled<br>00001: MPC0/MPC1<br>00010: MPC0/MPC2<br>00011: MPC0/MPC3<br>00100: MPC0/MPC4<br>00101: MPC0/MPC5<br>00110: MPC0/MPC6<br>00111: MPC0/MPC7<br>01000: MPC1/MPC2<br>01001: MPC1/MPC3<br>01010: MPC1/MPC4<br>01011: MPC1/MPC5<br>01100: MPC1/MPC6<br>01101: MPC1/MPC7<br>01110: MPC2/MPC3<br>01111: MPC2/MPC4 |

| BITFIELD | BITS | DESCRIPTION | DECODE                                                                                                                                                                                                                                                                                                  |
|----------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |             | 10000: MPC2/MPC5<br>10001: MPC2/MPC6<br>10010: MPC2/MPC7<br>10011: MPC3/MPC4<br>10100: MPC3/MPC5<br>10101: MPC3/MPC6<br>10110: MPC3/MPC7<br>10111: MPC4/MPC5<br>11000: MPC4/MPC6<br>11001: MPC4/MPC7<br>11010: MPC5/MPC6<br>11011: MPC5/MPC7<br>11100: MPC6/MPC7<br>11101: SPI Mode<br>>11101: RESERVED |

**BBstDvsCfg0 (0x47)**

| BIT                | 7 | 6 | 5                | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|------------------|---|---|---|---|---|
| <b>Field</b>       | – | – | BBstDvsVlt0[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read      |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                                                                                                            |
|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstDvsVlt0 | 5:0  | Buck-Boost alternate output voltage setting 0 (Controlling MPCs = 00)<br>2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 can interfere with V <sub>BBOUT_UVLO</sub> and are not guaranteed<br>000000 = 2.5V<br>000001 = 2.55V<br>...<br>111100 = 5.5V<br>>111100 = N/A |

**BBstDvsCfg1 (0x48)**

| BIT                | 7 | 6 | 5                | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|------------------|---|---|---|---|---|
| <b>Field</b>       | – | – | BBstDvsVlt1[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read      |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                                                                          |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstDvsVlt1 | 5:0  | Buck-Boost alternate output voltage setting 1 (Controlling MPCs = 01)<br>2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 can interfere with V <sub>BBOUT_UVLO</sub> and are not guaranteed<br>000000 = 2.5V<br>000001 = 2.55V<br>... |

| BITFIELD | BITS | DESCRIPTION                    |
|----------|------|--------------------------------|
|          |      | 111100 = 5.5V<br>>111100 = N/A |

**BBstDvsCfg2 (0x49)**

| BIT                | 7 | 6 | 5                | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|------------------|---|---|---|---|---|
| <b>Field</b>       | – | – | BBstDvsVlt2[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read      |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                                                                                                  |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstDvsVlt2 | 5:0  | Buck-Boost alternate output voltage setting 2 (Controlling MPCs = 10)<br>2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 can interfere with<br>VBOUT_UVLO and are not guaranteed<br>000000 = 2.5V<br>000001 = 2.55V<br>...<br>111100 = 5.5V<br>>111100 = N/A |

**BBstDvsCfg3 (0x4A)**

| BIT                | 7 | 6 | 5                | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|------------------|---|---|---|---|---|
| <b>Field</b>       | – | – | BBstDvsVlt3[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read      |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                                                                                                                                  |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstDvsVlt3 | 5:0  | Buck-Boost alternate output voltage setting 3 (Controlling MPCs = 11)<br>2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 can interfere with<br>VBOUT_UVLO and are not guaranteed<br>000000 = 2.5V<br>000001 = 2.55V<br>...<br>111100 = 5.5V<br>>111100 = N/A |

**BBstDvsSpi (0x4B)**

| BIT          | 7 | 6 | 5               | 4 | 3 | 2 | 1 | 0 |
|--------------|---|---|-----------------|---|---|---|---|---|
| <b>Field</b> | – | – | BBstSPIVlt[5:0] |   |   |   |   |   |

|             |   |   |           |
|-------------|---|---|-----------|
| Access Type | - | - | Read Only |
|-------------|---|---|-----------|

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                                                                                                                   |
|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BBstSPIVlt | 5:0  | Buck-Boost SPI DVS Readback.<br>2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 can interfere with V <sub>BBOUT_UVLO</sub> and are not guaranteed<br>000000 = 2.5V<br>000001 = 2.55V<br>...<br>111100 = 5.5V<br>>111100 = N/A |

[LDO1Ena \(0x51\)](#)

| BIT                | 7            | 6 | 5 | 4 | 3 | 2 | 1 | 0 |             |
|--------------------|--------------|---|---|---|---|---|---|---|-------------|
| <b>Field</b>       | LDO1Seq[2:0] |   |   |   |   | - | - | - | LDO1En[1:0] |
| <b>Access Type</b> | Read Only    |   |   |   |   | - | - | - | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                       | DECODE                                                                                                                                                                                                                                                                                                                           |
|----------|------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDO1Seq  | 7:5  | LDO1 enable configuration (read only)                                             | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR process delay control<br>011: Enabled at 25% of Boot/POR process delay control<br>100: 100 = Enabled at 50% of Boot/POR process delay control<br>101: Reserved<br>110: Reserved<br>111: Controlled by LDO1En [1:0] after 100% of Boot/POR process delay control |
| LDO1En   | 1:0  | LDO1 enable configuration (effective only when LDO1Seq = 111 or LDO1UnlockEn = 1) | 00: Disabled<br>01: Enabled<br>10: Controlled by MPC_ (See LDO1Ctr register 0x54)<br>11: Reserved                                                                                                                                                                                                                                |

[LDO1Cfg \(0x52\)](#)

| BIT                | 7 | 6 | 5 | 4            | 3            | 2           | 1           | 0           |
|--------------------|---|---|---|--------------|--------------|-------------|-------------|-------------|
| <b>Field</b>       | - | - | - | LDO1_MPC0CNF | LDO1_MPC0CNT | LDO1ActDsc  | LDO1Mode    | LDO1PsvDsc  |
| <b>Access Type</b> | - | - | - | Write, Read  | Write, Read  | Write, Read | Write, Read | Write, Read |

| BITFIELD     | BITS | DESCRIPTION            | DECODE                                                                                                                                                         |
|--------------|------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDO1_MPC0CNF | 4    | MPC0 configuration bit | 0: MPC0 controls LDO/SW mode of LDO1 (MPC0 = 0 LDO mode, MPC0 = 1 SW mode)<br>1: MPC0 controls Enable of LDO1 (MPC0 = 0 disabled, MPC0 = 1 enabled in SW mode) |

| BITFIELD     | BITS | DESCRIPTION                                                                                                                                      | DECODE                                                                                                                                                                |
|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDO1_MPC0CNT | 3    | LDO1/MPC0 control bit                                                                                                                            | 0: MPC0 has no effect on the LDO<br>1: LDO1_MPC0CNF is valid and MPC0 function is enabled                                                                             |
| LDO1ActDsc   | 2    | LDO1 active discharge control                                                                                                                    | 0: LDO1 output is actively discharged only in Hard-Reset mode<br>1: LDO1 output is actively discharged in Hard-Reset mode and also when its Enable goes Low           |
| LDO1Mode     | 1    | LDO1 Mode Control.<br>When FET is On, the output is unregulated. This setting is internally latched and can change only when the LDO is disabled | 0: Normal LDO operating mode<br>1: Load switch mode. FET is either fully On or Off depending on state of LDO1En.                                                      |
| LDO1PsvDsc   | 0    | LDO1 passive discharge control                                                                                                                   | 0: LDO1 output is discharged only entering Off and Hard-Reset modes<br>1: LDO1 output is discharged only entering Off and Hard-Reset modes and when the enable is Low |

LDO1VSet (0x53)

| BIT                | 7 | 6 | 5             | 4 | 3 | 2 | 1 | 0 |
|--------------------|---|---|---------------|---|---|---|---|---|
| <b>Field</b>       | – | – | LDO1VSet[5:0] |   |   |   |   |   |
| <b>Access Type</b> | – | – | Write, Read   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                               |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDO1VSet | 5:0  | LDO1 Output Voltage Setting.<br>Limited by input supply<br>0.5V to 1.95V, Linear Scale, 25mV increments<br>000000 = 0.5V<br>000001 = 0.525V<br>...<br>111010 = 1.95V<br>>111010 = Limited by input supply |

LDO1Ctr (0x54)

| BIT                | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | LDO1MPC7    | LDO1MPC6    | LDO1MPC5    | LDO1MPC4    | LDO1MPC3    | LDO1MPC2    | LDO1MPC1    | LDO1MPC0    |
| <b>Access Type</b> | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                             | DECODE                                                       |
|----------|------|-------------------------------------------------------------------------|--------------------------------------------------------------|
| LDO1MPC7 | 7    | LDO1 MPC7 Enable Control.<br>Only valid when LDO1Seq = 111 and LDO1En = | 0: LDO1 not controlled by MPC7<br>1: LDO1 controlled by MPC7 |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                 | DECODE                                                       |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|          |      | 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs                                                                         |                                                              |
| LDO1MPC6 | 6    | LDO1 MPC6 Enable Control.<br>Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs | 0: LDO1 not controlled by MPC6<br>1: LDO1 controlled by MPC6 |
| LDO1MPC5 | 5    | LDO1 MPC5 Enable Control.<br>Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs | 0: LDO1 not controlled by MPC5<br>1: LDO1 controlled by MPC5 |
| LDO1MPC4 | 4    | LDO1 MPC4 Enable Control.<br>Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs | 0: LDO1 not controlled by MPC4<br>1: LDO1 controlled by MPC4 |
| LDO1MPC3 | 3    | LDO1 MPC3 Enable Control.<br>Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs | 0: LDO1 not controlled by MPC3<br>1: LDO1 controlled by MPC3 |
| LDO1MPC2 | 2    | LDO1 MPC2 Enable Control.<br>Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs | 0: LDO1 not controlled by MPC2<br>1: LDO1 controlled by MPC2 |
| LDO1MPC1 | 1    | LDO1 MPC1 Enable Control.<br>Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs | 0: LDO1 not controlled by MPC1<br>1: LDO1 controlled by MPC1 |
| LDO1MPC0 | 0    | LDO1 MPC0 Enable Control.<br>Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs | 0: LDO1 not controlled by MPC0<br>1: LDO1 controlled by MPC0 |

LDO2Ena (0x55)

| BIT         | 7            | 6 | 5 | 4 | 3 | 2 | 1           | 0 |
|-------------|--------------|---|---|---|---|---|-------------|---|
| Field       | LDO2Seq[2:0] |   |   | – | – | – | LDO2En[1:0] |   |
| Access Type | Read Only    |   |   | – | – | – | Write, Read |   |

| BITFIELD | BITS | DESCRIPTION                           | DECODE                                                                                                                                                                                                                                                        |
|----------|------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDO2Seq  | 7:5  | LDO2 Enable Configuration (Read only) | 000: 000 = Disabled<br>001: Enabled always when BAT/SYS is present<br>010: Enabled at 0% of Boot/POR process delay control<br>011: Enabled at 25% of Boot/POR process delay control<br>100: Enabled at 50% of Boot/POR process delay control<br>101: Reserved |

| BITFIELD | BITS | DESCRIPTION                                                                       | DECODE                                                                                            |  |
|----------|------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
|          |      |                                                                                   |                                                                                                   |  |
| LDO2En   | 1:0  | LDO2 Enable Configuration (effective only when LDO2Seq = 111 or LDO2UnlockEn = 1) | 00: Disabled<br>01: Enabled<br>10: Controlled by MPC_ (See LDO2Ctr register 0x58)<br>11: Reserved |  |

LDO2Cfg (0x56)

| BIT         | 7 | 6 | 5 | 4 | 3           | 2           | 1           | 0           |
|-------------|---|---|---|---|-------------|-------------|-------------|-------------|
| Field       | — | — | — | — | LDO2Supply  | LDO2ActDsc  | LDO2Mode    | LDO2PsvDsc  |
| Access Type | — | — | — | — | Write, Read | Write, Read | Write, Read | Write, Read |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                       | DECODE                                                                                                                                                        |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDO2Supply | 3    | AON LDO internal switchover supply control                                                                                                        | 0: L2IN must be provided externally<br>1: L2IN is internally connected to V <sub>CCINT</sub> with a TYP 15kΩ resistor. Bypass L2IN with 1μF                   |
| LDO2ActDsc | 2    | LDO2 active discharge control                                                                                                                     | 0: LDO2 output is actively discharged only in Hard-Reset mode<br>1: LDO2 output is actively discharged in Hard-Reset mode and also when its Enable goes Low   |
| LDO2Mode   | 1    | LDO2 Mode Control.<br>When FET is On, the output is unregulated. This setting is internally latched and can change only when the LDO is disabled. | 0: Normal LDO operating mode<br>1: Load switch mode. FET is either fully On or Off depending on state of LDO2En.                                              |
| LDO2PsvDsc | 0    | LDO2 passive discharge control                                                                                                                    | 0: LDO2 output is passively discharged only in Hard-Reset mode<br>1: LDO2 output is passively discharged in Hard-Reset mode and also when its Enable goes Low |

LDO2VSet (0x57)

| BIT         | 7 | 6 | 5 | 4             | 3 | 2 | 1 | 0 |
|-------------|---|---|---|---------------|---|---|---|---|
| Field       | — | — | — | LDO2VSet[4:0] |   |   |   |   |
| Access Type | — | — | — | Write, Read   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                   |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| LDO2VSet | 4:0  | LDO2 Output Voltage Setting.<br>Limited by input supply.<br>0.9V to 4V, Linear Scale, 100mV increments<br>000000 = 0.9V<br>000001 = 1V<br>... |

| BITFIELD | BITS | DESCRIPTION                |
|----------|------|----------------------------|
|          |      | 11110 = 3.9V<br>11111 = 4V |

LDO2Ctr (0x58)

| BIT                | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | LDO2MPC7    | LDO2MPC6    | LDO2MPC5    | LDO2MPC4    | LDO2MPC3    | LDO2MPC2    | LDO2MPC1    | LDO2MPC0    |
| <b>Access Type</b> | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                 | DECODE                                                       |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| LDO2MPC7 | 7    | LDO2 MPC7 Enable Control.<br>Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs | 0: LDO2 not controlled by MPC7<br>1: LDO2 controlled by MPC7 |
| LDO2MPC6 | 6    | LDO2 MPC6 Enable Control.<br>Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs | 0: LDO2 not controlled by MPC6<br>1: LDO2 controlled by MPC6 |
| LDO2MPC5 | 5    | LDO2 MPC5 Enable Control.<br>Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs | 0: LDO2 not controlled by MPC5<br>1: LDO2 controlled by MPC5 |
| LDO2MPC4 | 4    | LDO2 MPC4 Enable Control.<br>Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs | 0: LDO2 not controlled by MPC4<br>1: LDO2 controlled by MPC4 |
| LDO2MPC3 | 3    | LDO2 MPC3 Enable Control.<br>Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs | 0: LDO2 not controlled by MPC3<br>1: LDO2 controlled by MPC3 |
| LDO2MPC2 | 2    | LDO2 MPC2 Enable Control.<br>Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs | 0: LDO2 not controlled by MPC2<br>1: LDO2 controlled by MPC2 |
| LDO2MPC1 | 1    | LDO2 MPC1 Enable Control.<br>Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs | 0: LDO2 not controlled by MPC1<br>1: LDO2 controlled by MPC1 |
| LDO2MPC0 | 0    | LDO2 MPC0 Enable Control.<br>Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs | 0: LDO2 not controlled by MPC0<br>1: LDO2 controlled by MPC0 |

**LSW1Ena (0x59)**

| BIT                | 7            | 6 | 5 | 4 | 3 | 2 | 1           | 0 |
|--------------------|--------------|---|---|---|---|---|-------------|---|
| <b>Field</b>       | LSW1Seq[2:0] |   |   | – | – | – | LSW1En[1:0] |   |
| <b>Access Type</b> | Read Only    |   |   | – | – | – | Write, Read |   |

| BITFIELD | BITS | DESCRIPTION                                                   | DECODE                                                                                                                                                                                                                                                                                                                     |
|----------|------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LSW1Seq  | 7:5  | LSW1 enable configuration (read only)                         | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR process delay control<br>011: Enabled at 25% of Boot/POR process delay control<br>100: Enabled at 50% of Boot/POR process delay control<br>101: Reserved<br>110: Reserved<br>111: Controlled by LSW1En [1:0] after 100% of Boot/POR process delay control |
| LSW1En   | 1:0  | LSW1 enable configuration (effective only when LSW1Seq = 111) | 00: Disabled<br>01: Enabled<br>10: Controlled by MPC_ (See LSW1MPC_ bits in register 0x5B)<br>11: Reserved                                                                                                                                                                                                                 |

**LSW1Cfg (0x5A)**

| BIT                | 7 | 6 | 5 | 4 | 3 | 2           | 1           | 0           |
|--------------------|---|---|---|---|---|-------------|-------------|-------------|
| <b>Field</b>       | – | – | – | – | – | LSW1ActDsc  | LSW1LowIq   | LSW1PsvDsc  |
| <b>Access Type</b> | – | – | – | – | – | Write, Read | Write, Read | Write, Read |

| BITFIELD   | BITS | DESCRIPTION                                                                                               | DECODE                                                                                                                                                                                             |
|------------|------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LSW1ActDsc | 2    | LSW1 active discharge control                                                                             | 0: LSW1 output is actively discharged only in Hard-Reset mode<br>1: LSW1 output is actively discharged in Hard-Reset mode and also when its Enable goes Low                                        |
| LSW1LowIq  | 1    | LSW1 Low Quiescent Control.<br>Low quiescent mode is achieved by disabling the voltage protection of LSW1 | 0: Voltage protection enabled. If $V_{SYS} - V_{LSW1OUT}$ exceeds $V_{LSW\_PROT}$ , the output is disabled to protect from overcurrent.<br>1: Voltage protection disabled and quiescent is reduced |
| LSW1PsvDsc | 0    | LSW1 passive discharge control                                                                            | 0: LSW1 output is discharged only entering Off and Hard-Reset modes<br>1: LSW1 output is discharged only entering Off and Hard-Reset modes and when the enable is Low                              |

**LSW1Ctr (0x5B)**

| BIT                | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | LSW1MPC7    | LSW1MPC6    | LSW1MPC5    | LSW1MPC4    | LSW1MPC3    | LSW1MPC2    | LSW1MPC1    | LSW1MPC0    |
| <b>Access Type</b> | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                 | DECODE                                                       |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| LSW1MPC7 | 7    | LSW1 MPC7 Enable Control.<br>Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs | 0: LSW1 not controlled by MPC7<br>1: LSW1 controlled by MPC7 |
| LSW1MPC6 | 6    | LSW1 MPC6 Enable Control.<br>Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs | 0: LSW1 not controlled by MPC6<br>1: LSW1 controlled by MPC6 |
| LSW1MPC5 | 5    | LSW1 MPC5 Enable Control.<br>Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs | 0: LSW1 not controlled by MPC5<br>1: LSW1 controlled by MPC5 |
| LSW1MPC4 | 4    | LSW1 MPC4 Enable Control.<br>Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs | 0: LSW1 not controlled by MPC4<br>1: LSW1 controlled by MPC4 |
| LSW1MPC3 | 3    | LSW1 MPC3 Enable Control.<br>Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs | 0: LSW1 not controlled by MPC3<br>1: LSW1 controlled by MPC3 |
| LSW1MPC2 | 2    | LSW1 MPC2 Enable Control.<br>Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs | 0: LSW1 not controlled by MPC2<br>1: LSW1 controlled by MPC2 |
| LSW1MPC1 | 1    | LSW1 MPC1 Enable Control.<br>Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs | 0: LSW1 not controlled by MPC1<br>1: LSW1 controlled by MPC1 |
| LSW1MPC0 | 0    | LSW1 MPC0 Enable Control.<br>Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs | 0: LSW1 not controlled by MPC0<br>1: LSW1 controlled by MPC0 |

**LSW2Ena (0x5C)**

| BIT                | 7            | 6 | 5 | 4 | 3 | 2 | 1           | 0 |
|--------------------|--------------|---|---|---|---|---|-------------|---|
| <b>Field</b>       | LSW2Seq[2:0] |   |   | – | – | – | LSW2En[1:0] |   |
| <b>Access Type</b> | Read Only    |   |   | – | – | – | Write, Read |   |

| BITFIELD | BITS | DESCRIPTION                           | DECODE                                                                                 |
|----------|------|---------------------------------------|----------------------------------------------------------------------------------------|
| LSW2Seq  | 7:5  | LSW2 enable configuration (read only) | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR process delay control |

| BITFIELD | BITS | DESCRIPTION                                                   | DECODE                                                                                                                                                                                                                           |
|----------|------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |                                                               | 011: Enabled at 25% of Boot/POR process delay control<br>100: Enabled at 50% of Boot/POR process delay control<br>101: Reserved<br>110: Reserved<br>111: Controlled by LSW2En [1:0] after 100% of Boot/POR process delay control |
| LSW2En   | 1:0  | LSW2 enable configuration (effective only when LSW2Seq = 111) | 00: Disabled<br>01: Enabled<br>10: Controlled by MPC_ (See LSW2MPC_ bits in register 0x5E)<br>11: Reserved                                                                                                                       |

**LSW2Cfg (0x5D)**

| BIT                | 7 | 6 | 5 | 4 | 3 | 2           | 1           | 0           |
|--------------------|---|---|---|---|---|-------------|-------------|-------------|
| <b>Field</b>       | — | — | — | — | — | LSW2ActDsc  | LSW2LowIq   | LSW2PsvDsc  |
| <b>Access Type</b> | — | — | — | — | — | Write, Read | Write, Read | Write, Read |

| BITFIELD   | BITS | DESCRIPTION                                                                                               | DECODE                                                                                                                                                                                             |
|------------|------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LSW2ActDsc | 2    | LSW2 active discharge control                                                                             | 0: LSW2 output is actively discharged only in Hard-Reset mode<br>1: LSW2 output is actively discharged in Hard-Reset mode and also when its Enable goes Low                                        |
| LSW2LowIq  | 1    | LSW2 Low Quiescent Control.<br>Low quiescent mode is achieved by disabling the voltage protection of LSW2 | 0: Voltage protection enabled. If $V_{SYS} - V_{LSW2OUT}$ exceeds $V_{LSW\_PROT}$ , the output is disabled to protect from overcurrent.<br>1: Voltage protection disabled and quiescent is reduced |
| LSW2PsvDsc | 0    | LSW2 passive discharge control                                                                            | 0: LSW2 output is discharged only entering Off and Hard-Reset modes<br>1: LSW2 output is discharged only entering Off and Hard-Reset modes and when the enable is Low                              |

**LSW2Ctr (0x5E)**

| BIT                | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | LSW2MPC7    | LSW2MPC6    | LSW2MPC5    | LSW2MPC4    | LSW2MPC3    | LSW2MPC2    | LSW2MPC1    | LSW2MPC0    |
| <b>Access Type</b> | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                 | DECODE                                                       |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| LSW2MPC7 | 7    | LSW2 MPC7 Enable Control.<br>Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs | 0: LSW2 not controlled by MPC7<br>1: LSW2 controlled by MPC7 |
| LSW2MPC6 | 6    | LSW2 MPC6 Enable Control.<br>Only valid when LSW2Seq = 111 and LSW2En =                                                                                     | 0: LSW2 not controlled by MPC6<br>1: LSW2 controlled by MPC6 |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                 | DECODE                                                       |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|          |      | 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs                                                                         |                                                              |
| LSW2MPC5 | 5    | LSW2 MPC5 Enable Control.<br>Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs | 0: LSW2 not controlled by MPC5<br>1: LSW2 controlled by MPC5 |
| LSW2MPC4 | 4    | LSW2 MPC4 Enable Control.<br>Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs | 0: LSW2 not controlled by MPC4<br>1: LSW2 controlled by MPC4 |
| LSW2MPC3 | 3    | LSW2 MPC3 Enable Control.<br>Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs | 0: LSW2 not controlled by MPC3<br>1: LSW2 controlled by MPC3 |
| LSW2MPC2 | 2    | LSW2 MPC2 Enable Control.<br>Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs | 0: LSW2 not controlled by MPC2<br>1: LSW2 controlled by MPC2 |
| LSW2MPC1 | 1    | LSW2 MPC1 Enable Control.<br>Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs | 0: LSW2 not controlled by MPC1<br>1: LSW2 controlled by MPC1 |
| LSW2MPC0 | 0    | LSW2 MPC0 Enable Control.<br>Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs | 0: LSW2 not controlled by MPC0<br>1: LSW2 controlled by MPC0 |

ChgPmpEna (0x5F)

| BIT         | 7              | 6 | 5 | 4 | 3 | 2 | 1 | 0             |
|-------------|----------------|---|---|---|---|---|---|---------------|
| Field       | ChgPmpSeq[2:0] |   |   |   | – | – | – | ChgPmpEn[1:0] |
| Access Type | Read Only      |   |   |   | – | – | – | Write, Read   |

| BITFIELD  | BITS | DESCRIPTION                                                                                | DECODE                                                                                                                                                                                                                                                                                                                       |
|-----------|------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ChgPmpSeq | 7:5  | Charge pump enable configuration (read only)                                               | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR process delay control<br>011: Enabled at 25% of Boot/POR process delay control<br>100: Enabled at 50% of Boot/POR process delay control<br>101: Reserved<br>110: Reserved<br>111: Controlled by ChgPmpEn [1:0] after 100% of Boot/POR process delay control |
| ChgPmpEn  | 1:0  | Charge pump enable configuration (effective only when ChgPmpSeq = 111 or ChgPmpUnlock = 1) | 00: Disabled<br>01: Enabled<br>10: Controlled by MPC_ (See ChgPmpMPC_ bits in                                                                                                                                                                                                                                                |

| BITFIELD | BITS | DESCRIPTION | DECODE                         |
|----------|------|-------------|--------------------------------|
|          |      |             | register 0x61)<br>11: Reserved |

**ChgPmpCfg (0x60)**

| BIT                | 7 | 6 | 5 | 4 | 3 | 2 | 1           | 0           |
|--------------------|---|---|---|---|---|---|-------------|-------------|
| <b>Field</b>       | — | — | — | — | — | — | CPVSet      | ChgPmpPsv   |
| <b>Access Type</b> | — | — | — | — | — | — | Write, Read | Write, Read |

| BITFIELD  | BITS | DESCRIPTION                           | DECODE                                                                                                                     |
|-----------|------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| CPVSet    | 1    | Charge pump voltage control           | 0: 6.6V<br>1: 5V                                                                                                           |
| ChgPmpPsv | 0    | Charge pump passive discharge control | 0: Charge pump passively discharged only in Hard-Reset<br>1: Charge pump passively discharged in Hard-Reset or Enable Low. |

**ChgPmpCtr (0x61)**

| BIT                | 7              | 6              | 5              | 4              | 3              | 2              | 1              | 0              |
|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| <b>Field</b>       | CHGPMPMPC<br>7 | CHGPMPMPC<br>6 | CHGPMPMPC<br>5 | CHGPMPMPC<br>4 | CHGPMPMPC<br>3 | CHGPMPMPC<br>2 | CHGPMPMPC<br>1 | CHGPMPMPC<br>0 |
| <b>Access Type</b> | Write, Read    |

| BITFIELD   | BITS | DESCRIPTION                                                                                                                                                              | DECODE                                                                     |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| CHGPMPMPC7 | 7    | Charge Pump MPC7 Enable Control.<br>Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs | 0: Charge pump not controlled by MPC7<br>1: Charge pump controlled by MPC7 |
| CHGPMPMPC6 | 6    | Charge Pump MPC6 Enable Control.<br>Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs | 0: Charge pump not controlled by MPC6<br>1: Charge pump controlled by MPC6 |
| CHGPMPMPC5 | 5    | Charge Pump MPC5 Enable Control.<br>Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs | 0: Charge pump not controlled by MPC5<br>1: Charge pump controlled by MPC5 |
| CHGPMPMPC4 | 4    | Charge Pump MPC4 Enable Control.<br>Only valid when ChgPmpSeq = 111 and                                                                                                  | 0: Charge pump not controlled by MPC4<br>1: Charge pump controlled by MPC4 |

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                                              | DECODE                                                                         |
|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|             |      | ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs                                                                         |                                                                                |
| CHGPMPPMPC3 | 3    | Charge Pump MPC3 Enable Control.<br>Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs | 0: Charge pump not controlled by MPC3<br>1: Charge pump controlled by MPC3     |
| CHGPMPPMPC2 | 2    | Charge Pump MPC2 Enable Control.<br>Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs | 0: Charge pump not controlled by MPC2<br>1: Charge pump not controlled by MPC2 |
| CHGPMPPMPC1 | 1    | Charge Pump MPC1 Enable Control.<br>Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs | 0: Charge pump not controlled by MPC1<br>1: Charge pump controlled by MPC1     |
| CHGPMPPMPC0 | 0    | Charge Pump MPC0 Enable Control.<br>Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs | 0: Charge pump not controlled by MPC0<br>1: Charge pump controlled by MPC0     |

**BoostEna (0x62)**

| BIT                | 7             | 6 | 5 | 4 | 3 | 2 | 1           | 0 |
|--------------------|---------------|---|---|---|---|---|-------------|---|
| <b>Field</b>       | BoostSeq[2:0] |   |   | – | – | – | BstEn[1:0]  |   |
| <b>Access Type</b> | Read Only     |   |   | – | – | – | Write, Read |   |

| BITFIELD | BITS | DESCRIPTION                                                                        | DECODE                                                                                                                                                                                                                                                                                                                    |
|----------|------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BoostSeq | 7:5  | Boost enable configuration (read only)                                             | 000: Disabled<br>001: Reserved<br>010: Enabled at 0% of Boot/POR process delay control<br>011: Enabled at 25% of Boot/POR process delay control<br>100: Enabled at 50% of Boot/POR process delay control<br>101: Reserved<br>110: Reserved<br>111: Controlled by BstEn [1:0] after 100% of Boot/POR process delay control |
| BstEn    | 1:0  | Boost enable configuration (effective only when BoostSeq = 111 or BoostUnlock = 1) | 00: Disabled<br>01: Enabled<br>10: Controlled by MPC_ (See BoostMPC_ bits in register 0x66)<br>11: Reserved                                                                                                                                                                                                               |

BoostCfg (0x63)

| BIT         | 7 | 6 | 5 | 4 | 3           | 2           | 1           | 0           |
|-------------|---|---|---|---|-------------|-------------|-------------|-------------|
| Field       | – | – | – | – | BstPsvDsc   | BstAdptEn   | BstFastStrt | BstFETScale |
| Access Type | – | – | – | – | Write, Read | Write, Read | Write, Read | Write, Read |

| BITFIELD    | BITS | DESCRIPTION                         | DECODE                                                                                                                                                                                |
|-------------|------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BstPsvDsc   | 3    | Boost passive discharge control     | 0: Boost output is discharged only when entering Off and Hard-Reset modes<br>1: Boost output is discharged only when entering Off and Hard-Reset modes and when BoostEn is set to 000 |
| BstAdptEn   | 2    | Boost adaptive peak current control | 0: Inductor peak current fixed at the programmed value by means of BstSet<br>1: Inductor peak current automatically increased to provide better load regulation                       |
| BstFastStrt | 1    | Boost fast start time               | 0: Time to full current capability during Startup =100ms.<br>Precharge with fixed BstSet = 100mA<br>1: Time to full current capability during Startup = 50ms.                         |
| BstFETScale | 0    | Boost FET scaling                   | 0: No FET scaling<br>1: Active boost FET size scaled down by half to optimize efficiency for low inductor peak current settings                                                       |

BoostISet (0x64)

| BIT         | 7                | 6 | 5 | 4 | 3            | 2 | 1 | 0 |
|-------------|------------------|---|---|---|--------------|---|---|---|
| Field       | BstISetLookUpDis | – | – | – | BstISet[3:0] |   |   |   |
| Access Type | Write, Read      | – | – | – | Write, Read  |   |   |   |

| BITFIELD         | BITS | DESCRIPTION                                                                                                     | DECODE                                                                                                                                                                                                                                       |
|------------------|------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BstISetLookUpDis | 7    | Boost peak current set by lookup table disable                                                                  | 0: Inductor current setting is set according to look-up table<br>1: Inductor current setting is set by BstISet                                                                                                                               |
| BstISet          | 3:0  | Boost Nominal inductor Peak Current Setting.<br>Valid only if BstISetLookUpDis is high.<br>25mA step resolution | 0000: 100mA<br>0001: 125mA<br>0010: 150mA<br>0011: 175mA<br>0100: 200mA<br>0101: 225mA<br>0110: 250mA<br>0111: 275mA<br>1000: 300mA<br>1001: 325mA<br>1010: 350mA<br>1011: 375mA<br>1100: 400mA<br>1101: 425mA<br>1110: 450mA<br>1111: 475mA |

BoostVSet (0x65)

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|---|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |   |

|                    |   |   |              |
|--------------------|---|---|--------------|
| <b>Field</b>       | – | – | BstVSet[5:0] |
| <b>Access Type</b> | – | – | Write, Read  |

| BITFIELD | BITS | DESCRIPTION                                                                      | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BstVSet  | 5:0  | Boost Output Voltage Setting.<br>Linear scale from 5V to 20V in 250mV increments | 000000: 5.00V<br>000001: 5.25V<br>000010: 5.50V<br>000011: 5.75V<br>000100: 6.00V<br>000101: 6.25V<br>000110: 6.50V<br>000111: 6.75V<br>001000: 7.00V<br>001001: 7.25V<br>001010: 7.50V<br>001011: 7.75V<br>001100: 8.00V<br>001101: 8.25V<br>001110: 8.50V<br>001111: 8.75V<br>010000: 9.00V<br>010001: 9.25V<br>010010: 9.50V<br>010011: 9.75V<br>010100: 10.00V<br>010101: 10.25V<br>010110: 10.50V<br>010111: 10.75V<br>011000: 11.00V<br>011001: 11.25V<br>011010: 11.50V<br>011011: 11.75V<br>011100: 12.00V<br>011101: 12.25V<br>011110: 12.50V<br>011111: 12.75V<br>100000: 13.00V<br>100001: 13.25V<br>100010: 13.50V<br>100011: 13.75V<br>100100: 14.00V<br>100101: 14.25V<br>100110: 14.50V<br>100111: 14.75V<br>101000: 15.00V<br>101001: 15.25V<br>101010: 15.50V<br>101011: 15.75V<br>101100: 16.00V<br>101101: 16.25V<br>101110: 16.50V<br>101111: 16.75V<br>110000: 17.00V<br>110001: 17.25V<br>110010: 17.50V<br>110011: 17.75V<br>110100: 18.00V<br>110101: 18.25V<br>110110: 18.50V<br>110111: 18.75V<br>111000: 19.00V<br>111001: 19.25V<br>111010: 19.50V<br>111011: 19.75V<br>111100: 20.00V<br>>111100: Reserved |

**BoostCtr (0x66)**

| BIT         | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Field       | BstMPC7     | BstMPC6     | BstMPC5     | BstMPC4     | BstMPC3     | BstMPC2     | BstMPC1     | BstMPC0     |
| Access Type | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                      | DECODE                                                         |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| BstMPC7  | 7    | Boost MPC7 Enable Control.<br>Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck-Boost is controlled by the logical OR of the MPCs | 0: Boost not controlled by MPC7<br>1: Boost controlled by MPC7 |
| BstMPC6  | 6    | Boost MPC6 Enable Control.<br>Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck-Boost is controlled by the logical OR of the MPCs | 0: Boost not controlled by MPC6<br>1: Boost controlled by MPC6 |
| BstMPC5  | 5    | Boost MPC5 Enable Control.<br>Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck-Boost is controlled by the logical OR of the MPCs | 0: Boost not controlled by MPC5<br>1: Boost controlled by MPC5 |
| BstMPC4  | 4    | Boost MPC4 Enable Control.<br>Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck-Boost is controlled by the logical OR of the MPCs | 0: Boost not controlled by MPC4<br>1: Boost controlled by MPC4 |
| BstMPC3  | 3    | Boost MPC3 Enable Control.<br>Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck-Boost is controlled by the logical OR of the MPCs | 0: Boost not controlled by MPC3<br>1: Boost controlled by MPC3 |
| BstMPC2  | 2    | Boost MPC2 Enable Control.<br>Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck-Boost is controlled by the logical OR of the MPCs | 0: Boost not controlled by MPC2<br>1: Boost controlled by MPC2 |
| BstMPC1  | 1    | Boost MPC1 Enable Control.<br>Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck-Boost is controlled by the logical OR of the MPCs | 0: Boost not controlled by MPC1<br>1: Boost controlled by MPC1 |
| BstMPC0  | 0    | Boost MPC0 Enable Control.<br>Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck-Boost is controlled by the logical OR of the MPCs | 0: Boost not controlled by MPC0<br>1: Boost controlled by MPC0 |

**MPC0Cfg (0x67)**

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|---|---|---|---|---|---|---|---|
|-----|---|---|---|---|---|---|---|---|

| Field       | MPC0Read  | – | – | MPC0Out     | MPC0OD      | MPC0HiZB    | MPC0Res     | MPC0Pup     |
|-------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|
| Access Type | Read Only | – | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                             | DECODE                                                                                              |
|----------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MPC0Read | 7    | MPC0 State                                                                              | 0: MPC0 Low<br>1: MPC0 High (if MPC0OD = 0) or Hi-Z (if MPC0OD = 1)                                 |
| MPC0Out  | 4    | MPC0 Output Value.<br>Valid only if MPC0 is configured as output (MPC0HiZB = 1)         | 0: MPC0 connected to GND<br>1: MPC0 open drain off (MPC0OD = 1) or connected to BK1OUT (MPC0OD = 0) |
| MPC0OD   | 3    | MPC0 Output Configuration.<br>Valid only if MPC0 is configured as output (MPC0HiZB = 1) | 0: MPC0 is push-pull connected to BK1OUT<br>1: MPC0 is open drain                                   |
| MPC0HiZB | 2    | MPC0 Direction                                                                          | 0: MPC0 is Hi-Z. Input buffer enabled.<br>1: MPC0 is not Hi-Z. Output buffer enabled.               |
| MPC0Res  | 1    | MPC0 Resistor Presence.<br>Valid only if MPC0 is configured as input (MPC0HiZB = 0)     | 0: Resistor not connected to MPC0<br>1: Resistor connected to MPC0                                  |
| MPC0Pup  | 0    | MPC0 Resistor Configuration.<br>Valid only if there is a resistor on MPC0 (MPC0Res = 1) | 0: Pulldown connected to MPC0<br>1: Pullup to VCCINT connected to MPC0                              |

**MPC1Cfg (0x68)**

| BIT         | 7         | 6 | 5 | 4           | 3           | 2           | 1           | 0           |
|-------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|
| Field       | MPC1Read  | – | – | MPC1Out     | MPC1OD      | MPC1HiZB    | MPC1Res     | MPC1Pup     |
| Access Type | Read Only | – | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                             | DECODE                                                                                              |
|----------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MPC1Read | 7    | MPC1 State                                                                              | 0: MPC1 Low<br>1: MPC1 High (if MPC1OD = 0) or Hi-Z (if MPC1OD = 1)                                 |
| MPC1Out  | 4    | MPC1 Output Value.<br>Valid only if MPC1 is configured as output (MPC1HiZB = 1)         | 0: MPC1 connected to GND<br>1: MPC1 open drain off (MPC1OD = 1) or connected to BK1OUT (MPC1OD = 0) |
| MPC1OD   | 3    | MPC1 Output Configuration.<br>Valid only if MPC1 is configured as output (MPC1HiZB = 1) | 0: MPC1 is push-pull connected to BK1OUT<br>1: MPC1 is open drain                                   |
| MPC1HiZB | 2    | MPC1 Direction                                                                          | 0: MPC1 is Hi-Z. Input buffer enabled.<br>1: MPC1 is not Hi-Z. Output buffer enabled.               |
| MPC1Res  | 1    | MPC1 Resistor Presence.<br>Valid only if MPC1 is configured as input (MPC1HiZB = 0)     | 0: Resistor not connected to MPC1<br>1: Resistor connected to MPC1                                  |

| BITFIELD | BITS | DESCRIPTION                                                                             | DECODE                                                                   |
|----------|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| MPC1Pup  | 0    | MPC1 Resistor Configuration.<br>Valid only if there is a resistor on MPC1 (MPC1Res = 1) | 0: Pulldown connected to MPC1<br>1: Pullup to $V_{CCINT}$ connected MCP1 |

**MPC2Cfg (0x69)**

| BIT                | 7         | 6 | 5 | 4           | 3           | 2           | 1           | 0           |
|--------------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | MPC2Read  | – | – | MPC2Out     | MPC2OD      | MPC2HiZB    | MPC2Res     | MPC2Pup     |
| <b>Access Type</b> | Read Only | – | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                             | DECODE                                                                                              |
|----------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MPC2Read | 7    | MPC2 State                                                                              | 0: MPC2 Low<br>1: MPC2 High (if MPC2OD = 0) or Hi-Z (if MPC2OD = 1)                                 |
| MPC2Out  | 4    | MPC2 Output Value.<br>Valid only if MPC2 is configured as output (MPC2HiZB = 1)         | 0: MPC2 connected to GND<br>1: MPC2 open drain off (MPC2OD = 1) or connected to BK1OUT (MPC2OD = 0) |
| MPC2OD   | 3    | MPC2 Output Configuration.<br>Valid only if MPC2 is configured as output (MPC2HiZB = 1) | 0: MPC2 is push-pull connected to BK1OUT<br>1: MPC2 is open drain                                   |
| MPC2HiZB | 2    | MPC2 Direction                                                                          | 0: MPC2 is Hi-Z. Input buffer enabled.<br>1: MPC2 is not Hi-Z. Output buffer enabled.               |
| MPC2Res  | 1    | MPC2 Resistor Presence.<br>Valid only if MPC2 is configured as input (MPC2HiZB = 0)     | 0: Resistor not connected to MPC2<br>1: Resistor connected to MPC2                                  |
| MPC2Pup  | 0    | MPC2 Resistor Configuration.<br>Valid only if there is a resistor on MPC2 (MPC2Res = 1) | 0: Pulldown connected to MPC2<br>1: Pullup to $V_{CCINT}$ connected MCP2                            |

**MPC3Cfg (0x6A)**

| BIT                | 7         | 6 | 5 | 4           | 3           | 2           | 1           | 0           |
|--------------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | MPC3Read  | – | – | MPC3Out     | MPC3OD      | MPC3HiZB    | MPC3Res     | MPC3Pup     |
| <b>Access Type</b> | Read Only | – | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                     | DECODE                                                                                              |
|----------|------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MPC3Read | 7    | MPC3 State                                                                      | 0: MPC3 Low<br>1: MPC3 High (if MPC3OD = 0) or Hi-Z (if MPC3OD = 1)                                 |
| MPC3Out  | 4    | MPC3 Output Value.<br>Valid only if MPC3 is configured as output (MPC3HiZB = 1) | 0: MPC3 connected to GND<br>1: MPC3 open drain off (MPC3OD = 1) or connected to BK1OUT (MPC3OD = 0) |

| BITFIELD | BITS | DESCRIPTION                                                                                | DECODE                                                                                |
|----------|------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| MPC3OD   | 3    | MPC3 Output Configuration.<br>Valid only if MPC3 is configured as output<br>(MPC3HiZB = 1) | 0: MPC3 is push-pull connected to BK1OUT<br>1: MPC3 is open drain                     |
| MPC3HiZB | 2    | MPC3 Direction                                                                             | 0: MPC3 is Hi-Z. Input buffer enabled.<br>1: MPC3 is not Hi-Z. Output buffer enabled. |
| MPC3Res  | 1    | MPC3 Resistor Presence.<br>Valid only if MPC3 is configured as input<br>(MPC3HiZB = 0)     | 0: Resistor not connected to MPC3<br>1: Resistor connected to MPC3                    |
| MPC3Pup  | 0    | MPC3 Resistor Configuration.<br>Valid only if there is a resistor on MPC3 (MPC3Res = 1)    | 0: Pulldown connected to MPC3<br>1: Pullup to V <sub>CCINT</sub> connected MCP3       |

MPC4Cfg (0x6B)

| BIT                | 7         | 6 | 5 | 4           | 3           | 2           | 1           | 0           |
|--------------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | MPC4Read  | – | – | MPC4Out     | MPC4OD      | MPC4HiZB    | MPC4Res     | MPC4Pup     |
| <b>Access Type</b> | Read Only | – | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                | DECODE                                                                                                    |
|----------|------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| MPC4Read | 7    | MPC4 State                                                                                 | 0: MPC4 Low<br>1: MPC4 High (if MPC4OD = 0) or Hi-Z (if MPC4OD = 1)                                       |
| MPC4Out  | 4    | MPC4 Output Value.<br>Valid only if MPC4 is configured as output<br>(MPC4HiZB = 1)         | 0: MPC4 connected to GND<br>1: MPC4 open drain off (MPC4OD = 1) or connected to<br>BK1OUT<br>(MPC4OD = 0) |
| MPC4OD   | 3    | MPC4 Output Configuration.<br>Valid only if MPC4 is configured as output<br>(MPC4HiZB = 1) | 0: MPC4 is push-pull connected to BK1OUT<br>1: MPC4 is open drain                                         |
| MPC4HiZB | 2    | MPC4 Direction                                                                             | 0: MPC4 is Hi-Z. Input buffer enabled.<br>1: MPC4 is not Hi-Z. Output buffer enabled.                     |
| MPC4Res  | 1    | MPC4 Resistor Presence.<br>Valid only if MPC4 is configured as input<br>(MPC4HiZB = 0)     | 0: Resistor not connected to MPC4<br>1: Resistor connected to MPC4                                        |
| MPC4Pup  | 0    | MPC4 Resistor Configuration.<br>Valid only if there is a resistor on MPC4 (MPC4Res = 1)    | 0: Pulldown connected to MPC4<br>1: Pullup to V <sub>CCINT</sub> connected MCP4                           |

MPC5Cfg (0x6C)

| BIT          | 7        | 6 | 5 | 4       | 3      | 2        | 1       | 0       |
|--------------|----------|---|---|---------|--------|----------|---------|---------|
| <b>Field</b> | MPC5Read | – | – | MPC5Out | MPC5OD | MPC5HiZB | MPC5Res | MPC5Pup |

| Access Type | Read Only | – | – | Write, Read |
|-------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|
|-------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|

| BITFIELD | BITS | DESCRIPTION                                                                             | DECODE                                                                                              |
|----------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MPC5Read | 7    | MPC5 State                                                                              | 0: MPC5 Low<br>1: MPC5 High (if MPC5OD = 0) or Hi-Z (if MPC5OD = 1)                                 |
| MPC5Out  | 4    | MPC5 Output Value.<br>Valid only if MPC5 is configured as output (MPC5HiZB = 1)         | 0: MPC5 connected to GND<br>1: MPC5 open drain off (MPC5OD = 1) or connected to BK1OUT (MPC5OD = 0) |
| MPC5OD   | 3    | MPC5 Output Configuration.<br>Valid only if MPC5 is configured as output (MPC5HiZB = 1) | 0: MPC5 is push-pull connected to BK1OUT<br>1: MPC5 is open drain                                   |
| MPC5HiZB | 2    | MPC5 Direction                                                                          | 0: MPC5 is Hi-Z. Input buffer enabled.<br>1: MPC5 is not Hi-Z. Output buffer enabled.               |
| MPC5Res  | 1    | MPC5 Resistor Presence.<br>Valid only if MPC5 is configured as input (MPC5HiZB = 0)     | 0: Resistor not connected to MPC5<br>1: Resistor connected to MPC5                                  |
| MPC5Pup  | 0    | MPC5 Resistor Configuration<br>Valid only if there is a resistor on MPC5 (MPC5Res = 1)  | 0: Pulldown connected to MPC5<br>1: Pullup to V <sub>CCINT</sub> connected MPC5                     |

**MPC6Cfg (0x6D)**

| BIT         | 7         | 6 | 5 | 4           | 3           | 2           | 1           | 0           |
|-------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|
| Field       | MPC6Read  | – | – | MPC6Out     | MPC6OD      | MPC6HiZB    | MPC6Res     | MPC6Pup     |
| Access Type | Read Only | – | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                             | DECODE                                                                                              |
|----------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MPC6Read | 7    | MPC6 State                                                                              | 0: MPC6 Low<br>1: MPC6 High (if MPC6OD = 0) or Hi-Z (if MPC6OD = 1)                                 |
| MPC6Out  | 4    | MPC6 Output Value.<br>Valid only if MPC6 is configured as output (MPC6HiZB = 1)         | 0: MPC6 connected to GND<br>1: MPC6 open drain off (MPC6OD = 1) or connected to BK1OUT (MPC6OD = 0) |
| MPC6OD   | 3    | MPC6 Output Configuration.<br>Valid only if MPC6 is configured as output (MPC6HiZB = 1) | 0: MPC6 is push-pull connected to BK1OUT<br>1: MPC6 is open drain                                   |
| MPC6HiZB | 2    | MPC6 Direction                                                                          | 0: MPC6 is Hi-Z. Input buffer enabled.<br>1: MPC6 is not Hi-Z. Output buffer enabled.               |
| MPC6Res  | 1    | MPC6 Resistor Presence.<br>Valid only if MPC6 is configured as input (MPC6HiZB = 0)     | 0: Resistor not connected to MPC6<br>1: Resistor connected to MPC6                                  |
| MPC6Pup  | 0    | MPC6 Resistor Configuration.<br>Valid only if there is a resistor on MPC6 (MPC6Res = 1) | 0: Pulldown connected to MPC6<br>1: Pullup to V <sub>CCINT</sub> connected MPC6                     |

MPC7Cfg (0x6E)

| BIT         | 7         | 6 | 5 | 4           | 3           | 2           | 1           | 0           |
|-------------|-----------|---|---|-------------|-------------|-------------|-------------|-------------|
| Field       | MPC7Read  | – | – | MPC7Out     | MPC7OD      | MPC7HiZB    | MPC7Res     | MPC7Pup     |
| Access Type | Read Only | – | – | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                             | DECODE                                                                                              |
|----------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MPC7Read | 7    | MPC7 State                                                                              | 0: MPC7 Low<br>1: MPC7 High (if MPC7OD = 0) or Hi-Z (if MPC7OD = 1)                                 |
| MPC7Out  | 4    | MPC7 Output Value.<br>Valid only if MPC7 is configured as output (MPC7HiZB = 1)         | 0: MPC7 connected to GND<br>1: MPC7 open drain off (MPC7OD = 1) or connected to BK1OUT (MPC7OD = 0) |
| MPC7OD   | 3    | MPC7 Output Configuration.<br>Valid only if MPC7 is configured as output (MPC7HiZB = 1) | 0: MPC7 is push-pull connected to BK1OUT<br>1: MPC7 is open drain                                   |
| MPC7HiZB | 2    | MPC7 Direction                                                                          | 0: MPC7 is Hi-Z. Input buffer enabled.<br>1: MPC7 is not Hi-Z. Output buffer enabled.               |
| MPC7Res  | 1    | MPC7 Resistor Presence.<br>Valid only if MPC7 is configured as input (MPC7HiZB = 0)     | 0: Resistor not connected to MPC7<br>1: Resistor connected to MPC7                                  |
| MPC7Pup  | 0    | MPC7 Resistor Configuration.<br>Valid only if there is a resistor on MPC7 (MPC7Res = 1) | 0: Pulldown connected to MPC7<br>1: Pullup to V <sub>CCINT</sub> connected MCP7                     |

MPCltrSts (0x6F)

| BIT         | 7 | 6 | 5           | 4 | 3 | 2           | 1           | 0           |
|-------------|---|---|-------------|---|---|-------------|-------------|-------------|
| Field       | – | – | USBOkMPCSts | – | – | BK3PgMPCSts | BK2PgMPCSts | BK1PgMPCSts |
| Access Type | – | – | Read Only   | – | – | Read Only   | Read Only   | Read Only   |

| BITFIELD    | BITS | DESCRIPTION                              | DECODE                                                                                   |
|-------------|------|------------------------------------------|------------------------------------------------------------------------------------------|
| USBOkMPCSts | 5    | USBOk dedicated MPC interrupt status bit | 0: USBOk MPC power good interrupt not active<br>1: USBOk MPC power good interrupt active |
| BK3PgMPCSts | 2    | Buck3 dedicated MPC interrupt status bit | 0: Buck3 MPC power good interrupt not active<br>1: Buck3 MPC power good interrupt active |
| BK2PgMPCSts | 1    | Buck2 dedicated MPC interrupt status bit | 0: Buck2 MPC power good interrupt not active<br>1: Buck2 MPC power good interrupt active |
| BK1PgMPCSts | 0    | Buck1 dedicated MPC interrupt status bit | 0: Buck1 MPC power good interrupt not active<br>1: Buck1 MPC power good interrupt active |

BK1DedIntCfg (0x70)

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|---|---|---|---|---|---|---|---|
|-----|---|---|---|---|---|---|---|---|

|                    |             |             |             |             |             |             |             |             |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | BK1PGMPCInt | BK1MPC6Sel  | BK1MPC5Sel  | BK1MPC4Sel  | BK1MPC3Sel  | BK1MPC2Sel  | BK1MPC1Sel  | BK1MPC0Sel  |
| <b>Access Type</b> | Read Only   | Write, Read |

| <b>BITFIELD</b> | <b>BITS</b> | <b>DESCRIPTION</b>                            | <b>DECODE</b>                                                                          |
|-----------------|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------|
| BK1PGMPCInt     | 7           | Buck1 dedicated power-good interrupt          | 0: No power-good status change<br>1: Buck1 power-good status change caused interrupt   |
| BK1MPC6Sel      | 6           | Buck1 PGOOD Interrupt MPC6 assignment control | 0: Buck1 PGOOD Interrupt not routed to MPC6<br>1: Buck1 PGOOD Interrupt routed to MPC6 |
| BK1MPC5Sel      | 5           | Buck1 PGOOD Interrupt MPC5 assignment control | 0: Buck1 PGOOD Interrupt not routed to MPC5<br>1: Buck1 PGOOD Interrupt routed to MPC5 |
| BK1MPC4Sel      | 4           | Buck1 PGOOD Interrupt MPC4 assignment control | 0: Buck1 PGOOD Interrupt not routed to MPC4<br>1: Buck1 PGOOD Interrupt routed to MPC4 |
| BK1MPC3Sel      | 3           | Buck1 PGOOD Interrupt MPC3 assignment control | 0: Buck1 PGOOD Interrupt not routed to MPC3<br>1: Buck1 PGOOD Interrupt routed to MPC3 |
| BK1MPC2Sel      | 2           | Buck1 PGOOD Interrupt MPC2 assignment control | 0: Buck1 PGOOD Interrupt not routed to MPC2<br>1: Buck1 PGOOD Interrupt routed to MPC2 |
| BK1MPC1Sel      | 1           | Buck1 PGOOD Interrupt MPC1 assignment control | 0: Buck1 PGOOD Interrupt not routed to MPC1<br>1: Buck1 PGOOD Interrupt routed to MPC1 |
| BK1MPC0Sel      | 0           | Buck1 PGOOD Interrupt MPC0 assignment control | 0: Buck1 PGOOD Interrupt not routed to MPC0<br>1: Buck1 PGOOD Interrupt routed to MPC0 |

**BK2DedIntCfg (0x71)**

|                    |             |             |             |             |             |             |             |             |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>BIT</b>         | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
| <b>Field</b>       | BK2PGMPCInt | BK2MPC6Sel  | BK2MPC5Sel  | BK2MPC4Sel  | BK2MPC3Sel  | BK2MPC2Sel  | BK2MPC1Sel  | BK2MPC0Sel  |
| <b>Access Type</b> | Read Only   | Write, Read |

| <b>BITFIELD</b> | <b>BITS</b> | <b>DESCRIPTION</b>                            | <b>DECODE</b>                                                                          |
|-----------------|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------|
| BK2PGMPCInt     | 7           | Buck2 dedicated power-good interrupt          | 0: No power-good status change<br>1: Buck2 power-good status change caused interrupt   |
| BK2MPC6Sel      | 6           | Buck2 PGOOD Interrupt MPC6 assignment control | 0: Buck2 PGOOD Interrupt not routed to MPC6<br>1: Buck2 PGOOD Interrupt routed to MPC6 |
| BK2MPC5Sel      | 5           | Buck2 PGOOD Interrupt MPC5 assignment control | 0: Buck2 PGOOD Interrupt not routed to MPC5<br>1: Buck2 PGOOD Interrupt routed to MPC5 |
| BK2MPC4Sel      | 4           | Buck2 PGOOD Interrupt MPC4 assignment control | 0: Buck2 PGOOD Interrupt not routed to MPC4<br>1: Buck2 PGOOD Interrupt routed to MPC4 |
| BK2MPC3Sel      | 3           | Buck2 PGOOD Interrupt MPC3 assignment control | 0: Buck2 PGOOD Interrupt not routed to MPC3<br>1: Buck2 PGOOD Interrupt routed to MPC3 |
| BK2MPC2Sel      | 2           | Buck2 PGOOD Interrupt MPC2 assignment control | 0: Buck2 PGOOD Interrupt not routed to MPC2<br>1: Buck2 PGOOD Interrupt routed to MPC2 |
| BK2MPC1Sel      | 1           | Buck2 PGOOD Interrupt MPC1 assignment control | 0: Buck2 PGOOD Interrupt not routed to MPC1<br>1: Buck2 PGOOD Interrupt routed to MPC1 |
| BK2MPC0Sel      | 0           | Buck2 PGOOD Interrupt MPC0 assignment control | 0: Buck2 PGOOD Interrupt not routed to MPC0<br>1: Buck2 PGOOD Interrupt routed to MPC0 |

**BK3DedIntCfg (0x72)**

|            |   |   |   |   |   |   |   |   |
|------------|---|---|---|---|---|---|---|---|
| <b>BIT</b> | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------------|---|---|---|---|---|---|---|---|

|                    |             |             |             |             |             |             |             |             |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | BK3PGMPCInt | BK3MPC6Sel  | BK3MPC5Sel  | BK3MPC4Sel  | BK3MPC3Sel  | BK3MPC2Sel  | BK3MPC1Sel  | BK3MPC0Sel  |
| <b>Access Type</b> | Read Only   | Write, Read |

| BITFIELD    | BITS | DESCRIPTION                                   | DECODE                                                                                 |
|-------------|------|-----------------------------------------------|----------------------------------------------------------------------------------------|
| BK3PGMPCInt | 7    | Buck3 dedicated power-good interrupt          | 0: No power-good status change<br>1: Buck3 power-good status change caused interrupt   |
| BK3MPC6Sel  | 6    | Buck3 PGOOD Interrupt MPC6 assignment control | 0: Buck3 PGOOD Interrupt not routed to MPC6<br>1: Buck3 PGOOD Interrupt routed to MPC6 |
| BK3MPC5Sel  | 5    | Buck3 PGOOD Interrupt MPC5 assignment control | 0: Buck3 PGOOD Interrupt not routed to MPC5<br>1: Buck3 PGOOD Interrupt routed to MPC5 |
| BK3MPC4Sel  | 4    | Buck3 PGOOD Interrupt MPC4 assignment control | 0: Buck3 PGOOD Interrupt not routed to MPC4<br>1: Buck3 PGOOD Interrupt routed to MPC4 |
| BK3MPC3Sel  | 3    | Buck3 PGOOD Interrupt MPC3 assignment control | 0: Buck3 PGOOD Interrupt not routed to MPC3<br>1: Buck3 PGOOD Interrupt routed to MPC3 |
| BK3MPC2Sel  | 2    | Buck3 PGOOD Interrupt MPC2 assignment control | 0: Buck3 PGOOD Interrupt not routed to MPC2<br>1: Buck3 PGOOD Interrupt routed to MPC2 |
| BK3MPC1Sel  | 1    | Buck3 PGOOD Interrupt MPC1 assignment control | 0: Buck3 PGOOD Interrupt not routed to MPC1<br>1: Buck3 PGOOD Interrupt routed to MPC1 |
| BK3MPC0Sel  | 0    | Buck3 PGOOD Interrupt MPC0 assignment control | 0: Buck3 PGOOD Interrupt not routed to MPC0<br>1: Buck3 PGOOD Interrupt routed to MPC0 |

[HptDedIntCfg \(0x73\)](#)

| BIT                | 7             | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|--------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>Field</b>       | HptStatDedInt | HPTMPC6Sel  | HPTMPC5Sel  | HPTMPC4Sel  | HPTMPC3Sel  | HPTMPC2Sel  | HPTMPC1Sel  | HPTMPC0Sel  |
| <b>Access Type</b> | Read Only     | Write, Read |

| BITFIELD      | BITS | DESCRIPTION                                     | DECODE                                                                                     |
|---------------|------|-------------------------------------------------|--------------------------------------------------------------------------------------------|
| HptStatDedInt | 7    | Haptic Driver dedicated interrupt               | 0: No Haptic driver status change<br>1: Haptic driver status change caused interrupt       |
| HPTMPC6Sel    | 6    | Haptic Driver Interrupt MPC6 assignment control | 0: Haptic Driver Interrupt not routed to MPC6<br>1: Haptic Driver Interrupt routed to MPC6 |
| HPTMPC5Sel    | 5    | Haptic Driver Interrupt MPC5 assignment control | 0: Haptic Driver Interrupt not routed to MPC5<br>1: Haptic Driver Interrupt routed to MPC5 |
| HPTMPC4Sel    | 4    | Haptic Driver Interrupt MPC4 assignment control | 0: Haptic Driver Interrupt not routed to MPC4<br>1: Haptic Driver Interrupt routed to MPC4 |
| HPTMPC3Sel    | 3    | Haptic Driver Interrupt MPC3 assignment control | 0: Haptic Driver Interrupt not routed to MPC3<br>1: Haptic Driver Interrupt routed to MPC3 |
| HPTMPC2Sel    | 2    | Haptic Driver Interrupt MPC2 assignment control | 0: Haptic Driver Interrupt not routed to MPC2<br>1: Haptic Driver Interrupt routed to MPC2 |
| HPTMPC1Sel    | 1    | Haptic Driver Interrupt MPC1 assignment control | 0: Haptic Driver Interrupt not routed to MPC1<br>1: Haptic Driver Interrupt routed to MPC1 |
| HPTMPC0Sel    | 0    | Haptic Driver Interrupt MPC0 assignment control | 0: Haptic Driver Interrupt not routed to MPC0<br>1: Haptic Driver Interrupt routed to MPC0 |

[ADCDEDINTCFG \(0x74\)](#)

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|---|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |   |

| Field       | ADCStatMPCInt | ADCMPC6Sel  | ADCMPC5Sel  | ADCMPC4Sel  | ADCMPC3Sel  | ADCMPC2Sel  | ADCMPC1Sel  | ADCMPC0Sel  |
|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Access Type | Read Only     | Write, Read |

| BITFIELD      | BITS | DESCRIPTION                                             | DECODE                                                                                                     |
|---------------|------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| ADCStatMPCInt | 7    | ADC Conversion complete dedicated interrupt             | 0: No ADC end of conversion status change<br>1: ADC end of conversion caused interrupt                     |
| ADCMPC6Sel    | 6    | ADC End Of Conversion Interrupt MPC6 assignment control | 0: ADC End of Conversion Interrupt not routed to MPC6<br>1: ADC End of Conversion Interrupt routed to MPC6 |
| ADCMPC5Sel    | 5    | ADC End Of Conversion Interrupt MPC5 assignment control | 0: ADC End of Conversion Interrupt not routed to MPC5<br>1: ADC End of Conversion Interrupt routed to MPC5 |
| ADCMPC4Sel    | 4    | ADC End Of Conversion Interrupt MPC4 assignment control | 0: ADC End of Conversion Interrupt not routed to MPC4<br>1: ADC End of Conversion Interrupt routed to MPC4 |
| ADCMPC3Sel    | 3    | ADC End Of Conversion Interrupt MPC3 assignment control | 0: ADC End of Conversion Interrupt not routed to MPC3<br>1: ADC End of Conversion Interrupt routed to MPC3 |
| ADCMPC2Sel    | 2    | ADC End Of Conversion Interrupt MPC2 assignment control | 0: ADC End of Conversion Interrupt not routed to MPC2<br>1: ADC End of Conversion Interrupt routed to MPC2 |
| ADCMPC1Sel    | 1    | ADC End Of Conversion Interrupt MPC1 assignment control | 0: ADC End of Conversion Interrupt not routed to MPC1<br>1: ADC End of Conversion Interrupt routed to MPC1 |
| ADCMPC0Sel    | 0    | ADC End Of Conversion Interrupt MPC0 assignment control | 0: ADC End of Conversion Interrupt not routed to MPC0<br>1: ADC End of Conversion Interrupt routed to MPC0 |

**USBOkDedIntCfg (0x75)**

| BIT         | 7           | 6            | 5            | 4            | 3            | 2            | 1            | 0            |
|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field       | USBOkMPCInt | USBOkMPC6Sel | USBOkMPC5Sel | USBOkMPC4Sel | USBOkMPC3Sel | USBOkMPC2Sel | USBOkMPC1Sel | USBOkMPC0Sel |
| Access Type | Read Only   | Write, Read  |

| BITFIELD     | BITS | DESCRIPTION                                       | DECODE                                                                     |
|--------------|------|---------------------------------------------------|----------------------------------------------------------------------------|
| USBOkMPCInt  | 7    | USBOk dedicated Power-Good Interrupt              | 0: No USBOk status change<br>1: USBOk status change caused interrupt       |
| USBOkMPC6Sel | 6    | USBOk Dedicated Interrupt MPC6 assignment control | 0: USBOk Interrupt not routed to MPC6<br>1: USBOk Interrupt routed to MPC6 |
| USBOkMPC5Sel | 5    | USBOk Dedicated Interrupt MPC5 assignment control | 0: USBOk Interrupt not routed to MPC5<br>1: USBOk Interrupt routed to MPC5 |
| USBOkMPC4Sel | 4    | USBOk Dedicated Interrupt MPC4 assignment control | 0: USBOk Interrupt not routed to MPC4<br>1: USBOk Interrupt routed to MPC4 |

| BITFIELD     | BITS | DESCRIPTION                                       | DECODE                                                                     |
|--------------|------|---------------------------------------------------|----------------------------------------------------------------------------|
| USBOkMPC3Sel | 3    | USBOk Dedicated Interrupt MPC3 assignment control | 0: USBOk Interrupt not routed to MPC3<br>1: USBOk Interrupt routed to MPC3 |
| USBOkMPC2Sel | 2    | USBOk Dedicated Interrupt MPC2 assignment control | 0: USBOk Interrupt not routed to MPC2<br>1: USBOk Interrupt routed to MPC2 |
| USBOkMPC1Sel | 1    | USBOk Dedicated Interrupt MPC1 assignment control | 0: USBOk Interrupt not routed to MPC1<br>1: USBOk Interrupt routed to MPC1 |
| USBOkMPC0Sel | 0    | USBOk Dedicated Interrupt MPC0 assignment control | 0: USBOk Interrupt not routed to MPC0<br>1: USBOk Interrupt routed to MPC0 |

LEDCommon (0x78)

| BIT                | 7             | 6 | 5 | 4             | 3 | 2 | 1             | 0 |
|--------------------|---------------|---|---|---------------|---|---|---------------|---|
| <b>Field</b>       | LED_BoostLoop | – | – | LED_Open[2:0] |   |   | LEDIStep[1:0] |   |
| <b>Access Type</b> | Write, Read   | – | – | Read Only     |   |   | Write, Read   |   |

| BITFIELD      | BITS | DESCRIPTION                              | DECODE                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LED_BoostLoop | 7    | Boost/LED0 closed-loop operation control | 0: Boost voltage is unrelated to LED0 dropout voltage.<br>1: Boost voltage is increased respect to BstVSet to adjust LED0 dropout voltage according to LED0_REFSEL bits.<br>Maximum increment is 5V.                                                                                                                                                                       |
| LED_Open      | 4:2  | LEDx open detection (Read only)          | Bit 0 = 0: $0 = V_{LED0} > V_{LED\_DET}$ or all LED disabled<br>1 = $V_{LED0} \leq V_{LED\_DET}$ or LED0 only disabled<br>Bit 1 = 1: $0 = V_{LED1} > V_{LED\_DET}$ or all LED disabled<br>1 = $V_{LED1} \leq V_{LED\_DET}$ or LED1 only disabled<br>Bit 2 = 1: $0 = V_{LED2} > V_{LED\_DET}$ or all LED disabled<br>1 = $V_{LED2} \leq V_{LED\_DET}$ or LED2 only disabled |
| LEDIStep      | 1:0  | LED current step-size control            | 00: 0.6mA<br>01: 1.0mA<br>10: 1.2mA<br>11: RESERVED                                                                                                                                                                                                                                                                                                                        |

LED0Ref (0x79)

| BIT                | 7 | 6 | 5 | 4 | 3 | 2 | 1                | 0 |
|--------------------|---|---|---|---|---|---|------------------|---|
| <b>Field</b>       | – | – | – | – | – | – | LED0_REFSEL[1:0] |   |
| <b>Access Type</b> | – | – | – | – | – | – | Write, Read      |   |

| BITFIELD    | BITS | DESCRIPTION                                                       | DECODE                                       |
|-------------|------|-------------------------------------------------------------------|----------------------------------------------|
| LED0_REFSEL | 1:0  | LED0 dropout regulation voltage (valid only if LED_BoostLoop = 1) | 00: 0.2V<br>01: 0.3V<br>10: 0.4V<br>11: 0.5V |

LED0Ctr (0x7A)

| BIT         | 7           | 6 | 5 | 4             | 3 | 2 | 1 | 0 |
|-------------|-------------|---|---|---------------|---|---|---|---|
| Field       | LED0En[2:0] |   |   | LED0ISet[4:0] |   |   |   |   |
| Access Type | Write, Read |   |   | Write, Read   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LED0En   | 7:5  | LED0 driver enable                                                                         | 000: Off<br>001: LED0 On<br>010: Controlled by internal charger status signal<br>011: Controlled by MPC3<br>100: Controlled by MPC4<br>101: Controlled by MPC5<br>110: Controlled by MPC6<br>111: Controlled by MPC7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LED0ISet | 4:0  | LED0 Direct Step Count.<br>LED0 current in mA is given by (LED0_I[4:0] + 1) x LEDISet[1:0] | 00000: 0.6mA/1.0mA/1.2mA<br>00001: 1.2mA/2.0mA/2.4mA<br>00010: 1.8mA/3.0mA/3.6mA<br>00011: 2.4mA/4.0mA/4.8mA<br>00100: 3.0mA/5.0mA/6.0mA<br>00101: 3.6mA/6.0mA/7.2mA<br>00110: 4.2mA/7.0mA/8.4mA<br>00111: 4.8mA/8.0mA/9.6mA<br>01000: 5.4mA/9.0mA/10.8mA<br>01001: 6.0mA/10.0mA/12.0mA<br>01010: 6.6mA/11.0mA/13.2mA<br>01011: 7.2mA/12.0mA/14.4mA<br>01100: 7.8mA/13.0mA/15.6mA<br>01101: 8.4mA/14.0mA/16.8mA<br>01110: 9.0mA/15.0mA/18.0mA<br>01111: 9.6mA/16.0mA/19.2mA<br>10000: 10.2mA/17.0mA/20.4mA<br>10001: 10.8mA/18.0mA/21.6mA<br>10010: 11.4mA/19.0mA/22.8mA<br>10011: 12.0mA/20.0mA/24.0mA<br>10100: 12.6mA/21.0mA/25.2mA<br>10101: 13.2mA/22.0mA/26.4mA<br>10110: 13.8mA/23.0mA/27.6mA<br>10111: 14.4mA/24.0mA/28.8mA<br>11000: 15.0mA/25.0mA/30.0mA |

LED1Ctr (0x7B)

| BIT         | 7           | 6 | 5 | 4             | 3 | 2 | 1 | 0 |
|-------------|-------------|---|---|---------------|---|---|---|---|
| Field       | LED1En[2:0] |   |   | LED1ISet[4:0] |   |   |   |   |
| Access Type | Write, Read |   |   | Write, Read   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION        | DECODE                                                                                                                                                                                                               |
|----------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LED1En   | 7:5  | LED1 driver enable | 000: Off<br>001: LED1 On<br>010: Controlled by internal charger status signal<br>011: Controlled by MPC3<br>100: Controlled by MPC4<br>101: Controlled by MPC5<br>110: Controlled by MPC6<br>111: Controlled by MPC7 |

| BITFIELD | BITS | DESCRIPTION                                                                                | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LED1ISet | 4:0  | LED1 Direct Step Count.<br>LED1 current in mA is given by (LED1_I[4:0] + 1) x LEDISet[1:0] | 0000: 0.6mA/1.0mA/1.2mA<br>00001: 1.2mA/2.0mA/2.4mA<br>00010: 1.8mA/3.0mA/3.6mA<br>00011: 2.4mA/4.0mA/4.8mA<br>00100: 3.0mA/5.0mA/6.0mA<br>00101: 3.6mA/6.0mA/7.2mA<br>00110: 4.2mA/7.0mA/8.4mA<br>00111: 4.8mA/8.0mA/9.6mA<br>01000: 5.4mA/9.0mA/10.8mA<br>01001: 6.0mA/10.0mA/12.0mA<br>01010: 6.6mA/11.0mA/13.2mA<br>01011: 7.2mA/12.0mA/14.4mA<br>01100: 7.8mA/13.0mA/15.6mA<br>01101: 8.4mA/14.0mA/16.8mA<br>01110: 9.0mA/15.0mA/18.0mA<br>01111: 9.6mA/16.0mA/19.2mA<br>10000: 10.2mA/17.0mA/20.4mA<br>10001: 10.8mA/18.0mA/21.6mA<br>10010: 11.4mA/19.0mA/22.8mA<br>10011: 12.0mA/20.0mA/24.0mA<br>10100: 12.6mA/21.0mA/25.2mA<br>10101: 13.2mA/22.0mA/26.4mA<br>10110: 13.8mA/23.0mA/27.6mA<br>10111: 14.4mA/24.0mA/28.8mA<br>11000: 15.0mA/25.0mA/30.0mA |

LED2Ctr (0x7C)

| BIT         | 7           | 6 | 5 | 4             | 3 | 2 | 1 | 0 |  |
|-------------|-------------|---|---|---------------|---|---|---|---|--|
| Field       | LED2En[2:0] |   |   | LED2ISet[4:0] |   |   |   |   |  |
| Access Type | Write, Read |   |   | Write, Read   |   |   |   |   |  |

| BITFIELD | BITS | DESCRIPTION                                                                                | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LED2En   | 7:5  | LED2 driver enable                                                                         | 000: Off<br>001: LED2 On<br>010: Controlled by internal charger status signal<br>011: Controlled by MPC3<br>100: Controlled by MPC4<br>101: Controlled by MPC5<br>110: Controlled by MPC6<br>111: Controlled by MPC7                                                                                                                                                                                                                                                                                                                                                     |
| LED2ISet | 4:0  | LED2 Direct Step Count.<br>LED2 current in mA is given by (LED2_I[4:0] + 1) x LEDISet[1:0] | 00000: 0.6mA/1.0mA/1.2mA<br>00001: 1.2mA/2.0mA/2.4mA<br>00010: 1.8mA/3.0mA/3.6mA<br>00011: 2.4mA/4.0mA/4.8mA<br>00100: 3.0mA/5.0mA/6.0mA<br>00101: 3.6mA/6.0mA/7.2mA<br>00110: 4.2mA/7.0mA/8.4mA<br>00111: 4.8mA/8.0mA/9.6mA<br>01000: 5.4mA/9.0mA/10.8mA<br>01001: 6.0mA/10.0mA/12.0mA<br>01010: 6.6mA/11.0mA/13.2mA<br>01011: 7.2mA/12.0mA/14.4mA<br>01100: 7.8mA/13.0mA/15.6mA<br>01101: 8.4mA/14.0mA/16.8mA<br>01110: 9.0mA/15.0mA/18.0mA<br>01111: 9.6mA/16.0mA/19.2mA<br>10000: 10.2mA/17.0mA/20.4mA<br>10001: 10.8mA/18.0mA/21.6mA<br>10010: 11.4mA/19.0mA/22.8mA |

| BITFIELD | BITS | DESCRIPTION | DECODE                                                                                                                                                                                 |
|----------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |             | 10011: 12.0mA/20.0mA/24.0mA<br>10100: 12.6mA/21.0mA/25.2mA<br>10101: 13.2mA/22.0mA/26.4mA<br>10110: 13.8mA/23.0mA/27.6mA<br>10111: 14.4mA/24.0mA/28.8mA<br>11000: 15.0mA/25.0mA/30.0mA |

**PFN (0x7D)**

| BIT                | 7 | 6 | 5 | 4 | 3 | 2 | 1         | 0         |
|--------------------|---|---|---|---|---|---|-----------|-----------|
| <b>Field</b>       | — | — | — | — | — | — | PFN2Pin   | PFN1Pin   |
| <b>Access Type</b> | — | — | — | — | — | — | Read Only | Read Only |

| BITFIELD | BITS | DESCRIPTION    | DECODE                               |
|----------|------|----------------|--------------------------------------|
| PFN2Pin  | 1    | Status of PFN2 | 0: PFN2 not active<br>1: PFN2 active |
| PFN1Pin  | 0    | Status of PFN2 | 0: PFN1 not active<br>1: PFN1 active |

**BootCfg (0x7E)**

| BIT                | 7              | 6 | 5 | 4 | 3 | 2         | 1            | 0         |
|--------------------|----------------|---|---|---|---|-----------|--------------|-----------|
| <b>Field</b>       | PwrRstCfg[3:0] |   |   |   |   | SftRstCfg | BootDly[1:0] | ChgAlwTry |
| <b>Access Type</b> | Read Only      |   |   |   |   | Read Only | Read Only    | Read Only |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                               | DECODE                                                                                                                            |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| PwrRstCfg | 7:4  | Power Reset Configuration.<br>Determines how the device turns on, off, and enters hard-/soft-reset. See PwrRstCfg Settings (Table 5) for PwrRstCfg values and their associated behaviors. |                                                                                                                                   |
| SftRstCfg | 3    | Soft-Reset Configuration.<br>Indicates whether registers are held or reset to default during a soft-reset.                                                                                | 0: Hold register contents<br>1: Reset registers to default                                                                        |
| BootDly   | 2:1  | Boot delay.<br>The boot period when the sequencing engine turns on features with sequence bits 010, 011, and 100.                                                                         | 00: 80ms<br>01: 120ms<br>10: 220ms<br>11: 420ms                                                                                   |
| ChgAlwTry | 0    | SYS UVLO automatic retry.<br>Determines what happens when a SYS UVLO event occurs during the boot process with CHGIN present.                                                             | 0: Part latches off until CHGIN is removed<br>1: Part retries to boot after $t_{CHG\_RETRY\_TMO}$ delay if CHGIN is still present |

PwrCfg (0x7F)

| BIT         | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0           |
|-------------|---|---|---|---|---|---|---|-------------|
| Field       | — | — | — | — | — | — | — | StayOn      |
| Access Type | — | — | — | — | — | — | — | Write, Read |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                         | DECODE                                       |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| StayOn   | 0    | This bit is used to ensure that the processor booted correctly. This bit must be set within 5s of power-on to prevent the part from shutting down and returning to the power-off condition. This bit has no effect after being set. | 0: Shut down 5s after power-on<br>1: Stay on |

PwrCmd (0x80)

| BIT         | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|-------------|---|---|---|---|---|---|---|
| Field       | PwrCmd[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read |   |   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                  | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PwrCmd   | 7:0  | Power Command Register.<br>Writing the following values issues the command listed.<br>After the written value has been validated by the internal logic, this register is cleared automatically.<br>Any other commands are ignored. See <a href="#">PwrRstCfg Settings</a> for the available PwrCmd for each PwrRstCfg value. | 0xB2: PWR_OFF_CMD: Places the part in OFF mode<br>0xC3: PWR_HR_CMD: Issues a hard-reset (power cycle)<br>0xD4: PWR_SR_CMD: Issues a soft-reset (reset pulse only)<br>0xE5: PWR_SEAL_CMD: Places the part in Seal mode. available for PwrRstCfg 0110, 0111, 1000, 1001, 1010, 1011 and 1100<br>0xF6: PWR_BR_CMD: Places the Part in Battery Recovery Mode available only if HrvEn=1<br>0X52: PWR_FACT_CMD: Places the part in Factory Mode available for all PwrRstCfg. To exit factory mode, write PWR_FACT_CMD again.<br>0XA1: PWR_SHDN_CMD: Places the part in Strong OFF mode. Available only for PwrRstCfg 1011 |

BuckCfg (0x81)

| BIT         | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Field       | Bk2FrcDCM   | Bk1FrcDCM   | Bk3DVSCur   | Bk2DVSCur   | Bk1DVSCur   | Bk3LowBW    | Bk2LowBW    | Bk1LowBW    |
| Access Type | Write, Read |

| BITFIELD  | BITS | DESCRIPTION                                                                                                                                                                                                                                                                  |
|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bk2FrcDCM | 7    | Buck 2 Forced Discontinuous Conduction Mode (DCM).<br>Improves light load efficiency at the expense of load regulation error at higher loads.<br>This should only be used if the expected maximum load is less than 50mA<br>0 = Normal operation<br>1 = Forced DCM operation |
| Bk1FrcDCM | 6    | Buck 1 Forced Discontinuous Conduction Mode (DCM).<br>Improves light load efficiency at the expense of load regulation error at higher loads.<br>This should only be used if the expected maximum load is less than 50mA<br>0 = Normal operation<br>1 = Forced DCM operation |
| Bk3DVSCur | 5    | Buck 3 DVS Valley Current Selection.<br>0 = 500mA valley current during DVS transition<br>1 = 1000mA valley current during DVS transition                                                                                                                                    |
| Bk2DVSCur | 4    | Buck 2 DVS Valley Current Selection.<br>0 = 500mA valley current during DVS transition<br>1 = 1000mA valley current during DVS transition                                                                                                                                    |
| Bk1DVSCur | 3    | Buck 1 DVS Valley Current Selection.<br>0 = 500mA valley current during DVS transition<br>1 = 1000mA valley current during DVS transition                                                                                                                                    |
| Bk3LowBW  | 2    | Buck 3 Low Bandwidth Mode.<br>This mode reduces the amount of capacitance required to minimize jitter when transitioning from DCM to CCM. If this bit is enabled, the output capacitance requirement is cut in half.<br>0 = High bandwidth mode<br>1 = Low bandwidth mode    |
| Bk2LowBW  | 1    | Buck 2 Low Bandwidth Mode.<br>This mode reduces the amount of capacitance required to minimize jitter when transitioning from DCM to CCM. If this bit is enabled, the output capacitance requirement is cut in half.<br>0 = High bandwidth mode<br>1 = Low bandwidth mode    |
| Bk1LowBW  | 0    | Buck 1 Low Bandwidth Mode.<br>This mode reduces the amount of capacitance required to minimize jitter when transitioning from DCM to CCM. If this bit is enabled, the output capacitance requirement is cut in half.<br>0 = High bandwidth mode<br>1 = Low bandwidth mode    |

LockMsk (0x83)

| BIT         | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Field       | LD2Lck      | LD1Lck      | BBLck       | BstLck      | BK3Lck      | BK2Lck      | BK1Lck      | ChgLck      |
| Access Type | Write, Read |

| BITFIELD | BITS | DESCRIPTION                        | DECODE                                                                                                             |
|----------|------|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| LD2Lck   | 7    | Lock Mask for LDO2 registers       | 0: LDO2 registers not masked from locking/unlocking<br>1: LDO2 registers masked from locking/unlocking             |
| LD1Lck   | 6    | Lock Mask for LDO1 registers       | 0: LDO1 registers not masked from locking/unlocking<br>1: LDO1 registers masked from locking/unlocking             |
| BBLck    | 5    | Lock Mask for buck-boost registers | 0: Buck-Boost registers not masked from locking/unlocking<br>1: Buck-Boost registers masked from locking/unlocking |
| BstLck   | 4    | Lock Mask for boost registers      | 0x0: Boost registers not masked from locking/unlocking<br>0x1: Boost registers masked from locking/unlocking       |
| BK3Lck   | 3    | Lock Mask for Buck3 registers      | 0x0: Buck3 registers not masked from locking/unlocking<br>0x1: Buck3 registers masked from locking/unlocking       |
| BK2Lck   | 2    | Lock Mask for Buck2 registers      | 0x0: Buck2 registers not masked from locking/unlocking<br>0x1: Buck2 registers masked from locking/unlocking       |
| BK1Lck   | 1    | Lock Mask for Buck1 registers      | 0x0: Buck1 registers not masked from locking/unlocking<br>0x1: Buck1 registers masked from locking/unlocking       |
| ChgLck   | 0    | Lock Mask for charger registers    | 0x0: Charger registers not masked from locking/unlocking<br>0x1: Charger registers masked from locking/unlocking   |

LockUnlock (0x84)

| BIT         | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|-------------|---|---|---|---|---|---|---|
| Field       | PASSWD[7:0] |   |   |   |   |   |   |   |
| Access Type | Write, Read |   |   |   |   |   |   |   |

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                                                                                                                             | DECODE                                                                                         |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| PASSWD   | 7:0  | Lock/Unlock Password.<br>Locks or unlocks all unmasked functions set in the Lock Mask register 0x83 when the correct password is written. Reading this register returns the current lock state of the functions. Locked functions return 1 and unlocked functions return 0. Functions are organized in the same order as register 0x83. | 0x55: Unlock unmasked functions<br>0xAA: Lock unmasked functions<br>All Other Codes: No effect |

SFOUTCtr (0x86)

| BIT         | 7           | 6 | 5 | 4 | 3 | 2 | 1            | 0 |
|-------------|-------------|---|---|---|---|---|--------------|---|
| Field       | SFOUTVSet   | – | – | – | – | – | SFOUTEn[1:0] |   |
| Access Type | Write, Read | – | – | – | – | – | Write, Read  |   |

| BITFIELD  | BITS | DESCRIPTION                       | DECODE                                                                                          |
|-----------|------|-----------------------------------|-------------------------------------------------------------------------------------------------|
| SFOUTVSet | 7    | SFOUT LDO output voltage setting. | 0: 5.0V<br>1: 3.3V                                                                              |
| SFOUTEn   | 1:0  | SFOUT LDO enable configuration.   | 0x0: Disabled (regardless of CHGIN state).<br>0x1: Enabled when CHGIN input voltage is present. |

| BITFIELD | BITS | DESCRIPTION | DECODE                                                                                                                          |
|----------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------|
|          |      |             | 0x2: Enabled when CHGIN input voltage is present and controlled by MPC_ (see SFOUTMPC_ bits in register 0x87)<br>0x3: Reserved. |

**SFOUTMPC (0x87)**

| BIT         | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Field       | SFOUTMPC7   | SFOUTMPC6   | SFOUTMPC5   | SFOUTMPC4   | SFOUTMPC3   | SFOUTMPC2   | SFOUTMPC1   | SFOUTMPC0   |
| Access Type | Write, Read |

| BITFIELD  | BITS | DESCRIPTION                                                                                                     | DECODE                                                         |
|-----------|------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| SFOUTMPC7 | 7    | SFOUT MPC7 Enable Control.<br>If multiple MPCs are selected, SFOUT is controlled by the logical OR of the MPCs. | 0: SFOUT not controlled by MPC7<br>1: SFOUT controlled by MPC7 |
| SFOUTMPC6 | 6    | SFOUT MPC6 Enable Control.<br>If multiple MPCs are selected, SFOUT is controlled by the logical OR of the MPCs. | 0: SFOUT not controlled by MPC6<br>1: SFOUT controlled by MPC6 |
| SFOUTMPC5 | 5    | SFOUT MPC5 Enable Control.<br>If multiple MPCs are selected, SFOUT is controlled by the logical OR of the MPCs. | 0: SFOUT not controlled by MPC5<br>1: SFOUT controlled by MPC5 |
| SFOUTMPC4 | 4    | SFOUT MPC4 Enable Control.<br>If multiple MPCs are selected, SFOUT is controlled by the logical OR of the MPCs. | 0: SFOUT not controlled by MPC4<br>1: SFOUT controlled by MPC4 |
| SFOUTMPC3 | 3    | SFOUT MPC3 Enable Control.<br>If multiple MPCs are selected, SFOUT is controlled by the logical OR of the MPCs. | 0: SFOUT not controlled by MPC3<br>1: SFOUT controlled by MPC3 |
| SFOUTMPC2 | 2    | SFOUT MPC2 Enable Control.<br>If multiple MPCs are selected, SFOUT is controlled by the logical OR of the MPCs. | 0: SFOUT not controlled by MPC2<br>1: SFOUT controlled by MPC2 |
| SFOUTMPC1 | 1    | SFOUT MPC1 Enable Control.<br>If multiple MPCs are selected, SFOUT is controlled by the logical OR of the MPCs. | 0: SFOUT not controlled by MPC1<br>1: SFOUT controlled by MPC1 |
| SFOUTMPC0 | 0    | SFOUT MPC0 Enable Control.<br>If multiple MPCs are selected, SFOUT is controlled by the logical OR of the MPCs. | 0: SFOUT not controlled by MPC0<br>1: SFOUT controlled by MPC0 |

**I2C OTP (0x88)**

| BIT   | 7                | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|------------------|---|---|---|---|---|---|---|
| Field | OTPDIG__ADD[7:0] |   |   |   |   |   |   |   |

|             |             |  |  |  |  |  |  |  |
|-------------|-------------|--|--|--|--|--|--|--|
| Access Type | Write, Read |  |  |  |  |  |  |  |
|-------------|-------------|--|--|--|--|--|--|--|

| BITFIELD    | BITS | DESCRIPTION                                                                                                                                 |
|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| OTPDIG__ADD | 7:0  | This is the address of the OTP reg file for OTP registers read back. OTP registers are filled with data from Sidense OTP block during boot. |

### I<sup>2</sup>C OTP (0x89)

|             |                  |   |   |   |   |   |   |   |
|-------------|------------------|---|---|---|---|---|---|---|
| BIT         | 7                | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Field       | OTPDIG__DAT[7:0] |   |   |   |   |   |   |   |
| Access Type | Read Only        |   |   |   |   |   |   |   |

| BITFIELD    | BITS | DESCRIPTION                     |
|-------------|------|---------------------------------|
| OTPDIG__DAT | 7:0  | This is the OTP data read back. |

## Applications Information

### I<sup>2</sup>C Interface

The MAX20366 contains an I<sup>2</sup>C-compatible interface for data communication with a host controller (SCL and SDA). The interface supports a clock frequency of up to 400kHz. SCL and SDA require pullup resistors that are connected to a positive supply.

### Start, Stop, and Repeated Start Conditions

When writing to the MAX20366 using the I<sup>2</sup>C interface, the controller sends a START condition (S) followed by the MAX20366 I<sup>2</sup>C address. After the address, the controller sends the register address of the register that is to be programmed. The controller then ends communication by issuing a STOP condition (P) to relinquish control of the bus, or a REPEATED START condition (Sr) to communicate to another I<sup>2</sup>C peripheral. See [Figure 36](#).

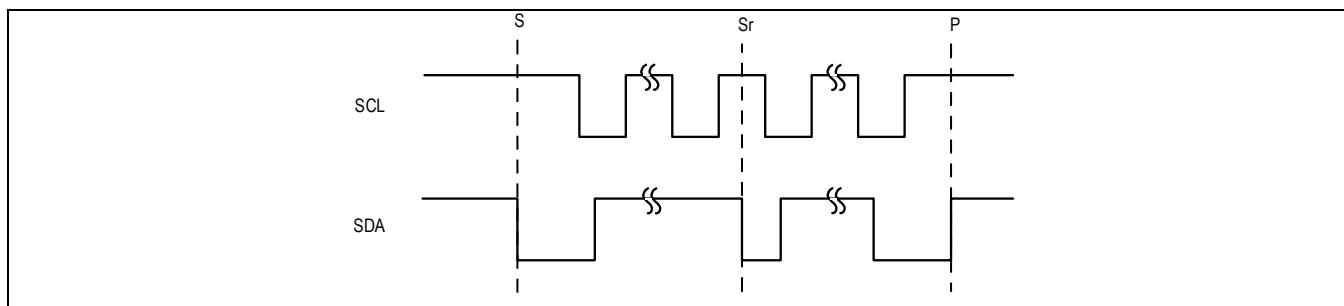



Figure 36. I<sup>2</sup>C START, STOP, and REPEATED START Conditions

### Peripheral Address

Set the Read/Write bit high to configure the MAX20366 to read mode. Set the Read/Write bit low to configure the MAX20366 to write mode. The address is the first byte of information sent to the MAX20366 after the START condition. The MAX20366 has three peripheral addresses. For the ADC and haptic driver registers, the peripheral address is 0xA0/0xA1; for the PMIC the peripheral address is 0x50/0x51; and for the fuel gauge, the peripheral address is 0x6C/0x6D.

**Bit Transfer**

One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals (see the [Start, Stop, and Repeated Start Conditions](#) section). Both SDA and SCL remain high when the bus is not active.

**Single-Byte Write**

In this operation, the controller sends an address and two data bytes to the peripheral device ([Figure 37](#)). The following procedure describes the single byte write operation:

- The controller sends a START condition.
- The controller sends the 7-bit peripheral address plus a write bit (low).
- The addressed peripheral asserts an ACK on the data line.
- The controller sends the 8-bit register address.
- The peripheral asserts an ACK on the data line only if the address is valid (NAK if not).
- The controller sends 8 data bits.
- The peripheral asserts an ACK on the data line.
- The controller generates a STOP condition.

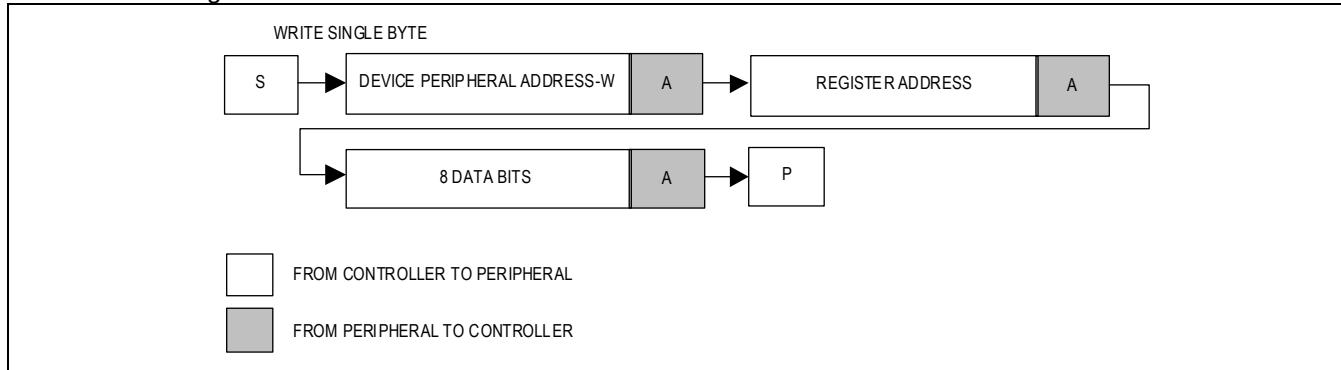



Figure 37. Write Byte Sequence

**Burst Write**

In this operation, the controller sends an address and multiple data bytes to the peripheral device ([Figure 38](#)). The peripheral device automatically increments the register address after each data byte is sent, unless the register being accessed is 0x00, in which case the register address remains the same. The following procedure describes the burst write operation:

- The controller sends a START condition.
- The controller sends the 7-bit peripheral address plus a write bit (low).
- The addressed peripheral asserts an ACK on the data line.
- The controller sends the 8-bit register address.
- The peripheral asserts an ACK on the data line only if the address is valid (NAK if not).
- The controller sends 8 data bits.
- The peripheral asserts an ACK on the data line.
- Repeat 6 and 7 N-1 times.
- The controller generates a STOP condition.

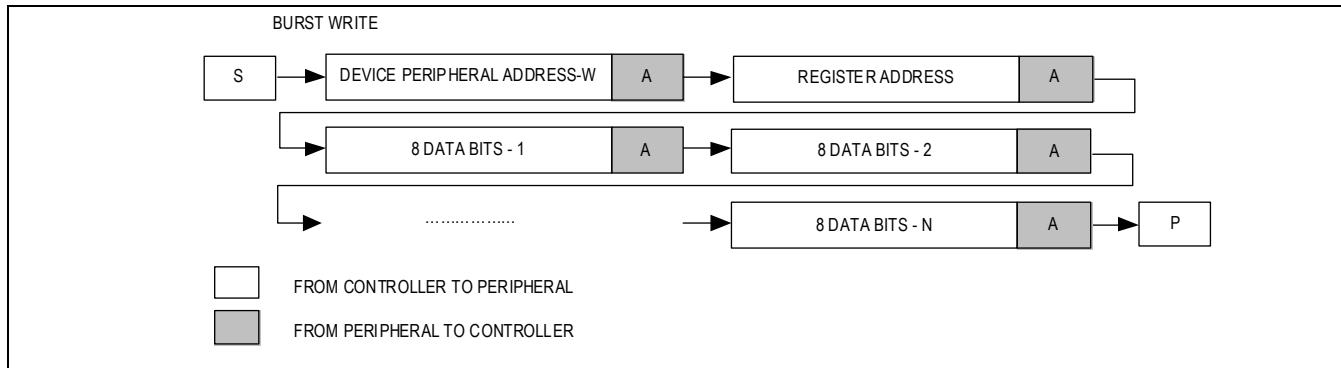



Figure 38. Burst Write Sequence

### Single Byte Read

In this operation, the controller sends an address plus two data bytes and receives one data byte from the peripheral device ([Figure 39](#)). The following procedure describes the single byte read operation:

- The controller sends a START condition.
- The controller sends the 7-bit peripheral address plus a write bit (low).
- The addressed peripheral asserts an ACK on the data line. The controller sends the 8-bit register address.
- The peripheral asserts an ACK on the data line only if the address is valid (NAK if not).
- The controller sends a REPEATED START condition.
- The controller sends the 7-bit peripheral address plus a read bit (high).
- The addressed peripheral asserts an ACK on the data line.
- The peripheral sends 8 data bits.
- The controller asserts a NACK on the data line.
- The controller generates a STOP condition.

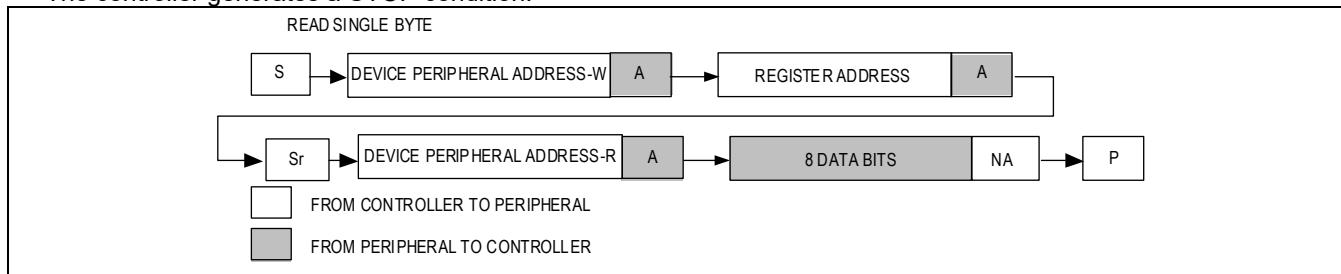



Figure 39. Read Byte Sequence

### Burst Read

In this operation, the controller sends an address plus two data bytes and receives multiple data bytes from the peripheral device ([Figure 40](#)). The following procedure describes the burst byte read operation:

- The controller sends a START condition.
- The controller sends the 7-bit peripheral address plus a write bit (low).
- The addressed peripheral asserts an ACK on the data line.
- The controller sends the 8-bit register address.
- The peripheral asserts an ACK on the data line only if the address is valid (NAK if not).
- The controller sends a REPEATED START condition.
- The controller sends the 7-bit peripheral address plus a read bit (high).
- The peripheral asserts an ACK on the data line.
- The peripheral sends 8 data bits.
- The controller asserts an ACK on the data line.
- Repeat 9 and 10 N-2 times.
- The peripheral sends the last 8 data bits.
- The controller asserts a NACK on the data line.
- The controller generates a STOP condition.

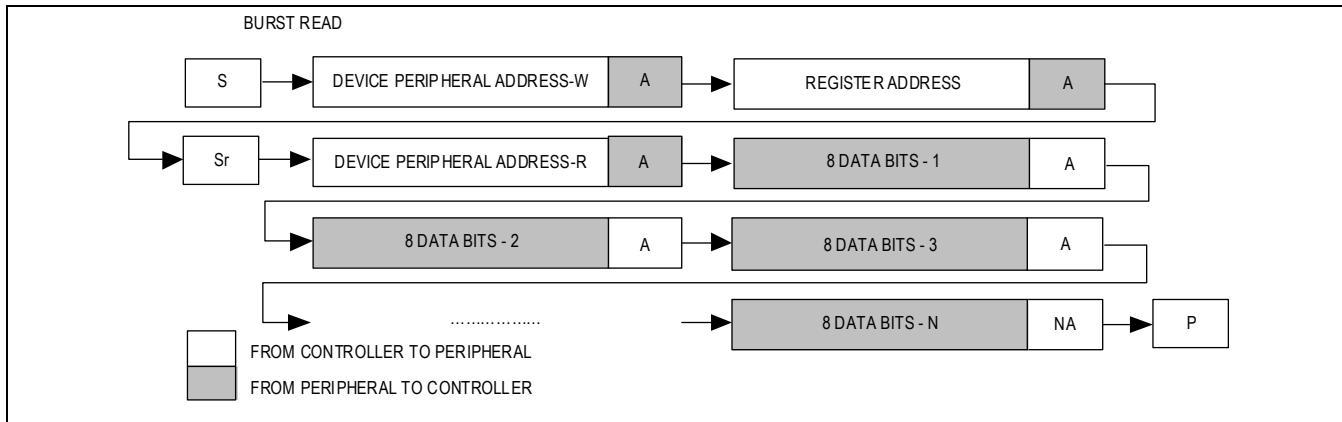



Figure 40. Burst Read Sequence

### Acknowledge Bits

Data transfers are acknowledged with an acknowledge bit (ACK) or a not-acknowledge bit (NACK). Both the controller and the MAX20366 generate ACK bits. To generate an ACK, pull SDA low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (see [Figure 41](#)). To generate a NACK, leave SDA high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. Monitoring for NACK bits allows for detection of unsuccessful data transfers.

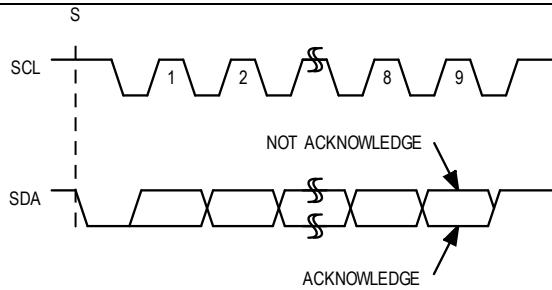
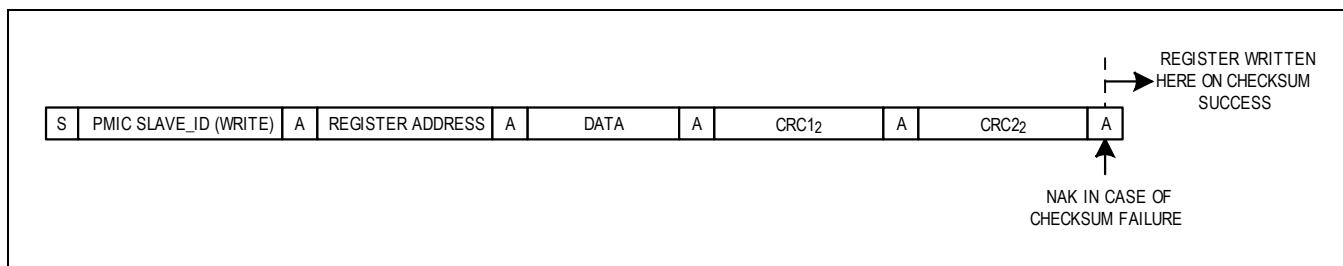



Figure 41. Acknowledge Bits

### I<sup>2</sup>C Security Functions

#### Function Locking

All regulator voltages and the end-of-charge behavior of the charger can be locked. I<sup>2</sup>C writes to a locked bitfield have no effect. To lock a function, its lock mask must be removed in the LockMsk register (see register: LockMsk). To remove the lock mask, set the corresponding function mask bit to 0. By writing the lock password 0xAA to the LockUnlock register (see register: LockUnlock), all unmasked functions are locked. To unlock functions, repeat the mask/unmask process and write the unlock password 0x55 to the LockUnlock register (see register: LockUnlock).


#### Secure Writes with Fletcher-16 Checksum

The MAX20366 includes an optional safe I<sup>2</sup>C-write mode for the registers contained under the PMIC peripheral address (PERIPHERAL\_ID 0x50). When enabled, only single-byte writes are allowed on the PMIC address and each write sequence must be followed by a two-byte checksum (see [Figure 42](#) for the write sequence). In the event that the checksum evaluation returns TRUE, the PMIC immediately writes the value of the write to the appropriate register. In the event that the checksum evaluation returns FALSE, the write is not performed and an interrupt indicating write failure is sent to the system microcontroller.

The fletcher checksum is calculated using the below equations:

$$\text{CSUM1} = (\text{PERIPHERAL\_ID} + \text{REG\_ADD} + \text{DATA}) \div 255$$

$\text{CSUM2} = ((3 \times \text{PERIPHERAL\_ID}) + (2 \times \text{REG\_ADD}) + (\text{DATA})) \div 255$  Where PERIPHERAL\_ID = 0x50, REG\_ADD is the register address being written, DATA is the byte of data to be written, and  $\div$  is the modulo function. The write sequence is as shown in [Figure 42](#) below.

Figure 42. I<sup>2</sup>C Writes on PMIC Peripheral Address with Fletcher-16 Checksum

### Default Bits

Table 8 shows the default settings for different versions. These default values are OTP programmable. Some bits can be changed through the I<sup>2</sup>C interface after power-up while some bits are set through OTP.

**Table 8. Device Default Settings**

| FIELD                         | EV KIT           | EV KIT WITH HARVESTER        | MAX20366A         |
|-------------------------------|------------------|------------------------------|-------------------|
| <a href="#">SysMinVlt</a>     | 3.6V             | 3.6V                         | 4.0V              |
| <a href="#">ILimBlank</a>     | Disabled         | Disabled                     | Disabled          |
| <a href="#">ILimCtl</a>       | 450mA            | 450mA                        | 1000mA            |
| <a href="#">IChgDone</a>      | 30% IFCHG        | 30% IFCHG                    | 10% IFCHG         |
| <a href="#">ChgBatReChg</a>   | ChgBatReg - 70mV | ChgBatReg - 70mV             | ChgBatReg - 120mV |
| <a href="#">ChgBatReq</a>     | 4.35V            | 4.35V                        | 4.20V             |
| <a href="#">ChgEn</a>         | Enabled          | Enabled                      | Enabled           |
| <a href="#">PChgTmr</a>       | 60min            | 60min                        | 30min             |
| <a href="#">VPChg</a>         | 3.15V            | 3.15V                        | 3.00V             |
| <a href="#">IPChg</a>         | 5% IFCHG         | 5% IFCHG                     | 10% IFCHG         |
| <a href="#">ChgStepRise</a>   | 3.80V            | 3.80V                        | 4.55V             |
| <a href="#">ChgAutoStop</a>   | Enabled          | Enabled                      | Enabled           |
| <a href="#">ChgAutoReSta</a>  | Enabled          | Enabled                      | Enabled           |
| <a href="#">MtChgTmr</a>      | 60min            | 60min                        | 30min             |
| <a href="#">FChgTmr</a>       | 600min           | 600min                       | 150min            |
| <a href="#">Chg1Step</a>      | 100% IFCHG       | 100% IFCHG                   | 100% IFCHG        |
| <a href="#">HrvBatReg</a>     | N/A              | 4.35V                        | N/A               |
| <a href="#">HrvThmEn</a>      | N/A              | Cool/Room                    | N/A               |
| <a href="#">ChgThmEn</a>      | Cool/Room        | Cool/Room                    | Cool/Room         |
| <a href="#">VSysUvlo</a>      | 2.7V             | 2.7V                         | 3.0V              |
| <a href="#">HrvThmDis</a>     | N/A              | Force SYS-to-BAT Ideal Diode | N/A               |
| <a href="#">HrvBatSys</a>     | N/A              | Direct if VBAT < HrvBatReg   | N/A               |
| <a href="#">HrvBatReChg</a>   | N/A              | HrvBatReg - 70mV             | N/A               |
| <a href="#">Bk1Step</a>       | 10mV             | 10mV                         | 50mV              |
| <a href="#">Buck1VSet</a>     | 1.10V            | 1.10V                        | 0.70V             |
| <a href="#">Bk2Step</a>       | 25mV             | 25mV                         | 10mV              |
| <a href="#">Buck2VSet</a>     | 1.800V           | 1.800V                       | 1.05V             |
| <a href="#">Bk3Step</a>       | 50mV             | 50mV                         | 50mV              |
| <a href="#">Buck3VSet</a>     | 3.20V            | 3.20V                        | 1.85V             |
| <a href="#">Buck1FETScale</a> | Disabled         | Disabled                     | Disabled          |
| <a href="#">Buck1En</a>       | Disabled         | Disabled                     | Disabled          |
| <a href="#">Buck2En</a>       | Disabled         | Disabled                     | Enabled           |
| <a href="#">Buck2FETScale</a> | Disabled         | Disabled                     | Disabled          |
| <a href="#">Buck3FETScale</a> | Disabled         | Disabled                     | Disabled          |
| <a href="#">Buck3En</a>       | Disabled         | Disabled                     | Enabled           |
| <a href="#">Buck3DisLDO</a>   | LDO Enabled      | LDO Enabled                  | Buck Always       |

|                     |                             |                             |                             |
|---------------------|-----------------------------|-----------------------------|-----------------------------|
| <u>BBstVSet</u>     | 5.00V                       | 5.00V                       | 5.00V                       |
| <u>BBstMode</u>     | Buck-Boost                  | Buck-Boost                  | Buck-Boost                  |
| <u>BBstEn</u>       | Disabled                    | Disabled                    | Disabled                    |
| <u>LDO1Mode</u>     | LDO                         | LDO                         | Load Switch                 |
| <u>LDO1En</u>       | Disabled                    | Disabled                    | Disabled                    |
| <u>BBstFast</u>     | Low IQ                      | Low IQ                      | Low IQ                      |
| <u>BBstFETScale</u> | Disabled                    | Disabled                    | Disabled                    |
| <u>LDO2En</u>       | Disabled                    | Disabled                    | Enabled                     |
| <u>LDO1VSet</u>     | 0.500V                      | 0.500V                      | 1.850V                      |
| <u>LSW1En</u>       | Disabled                    | Disabled                    | Disabled                    |
| <u>LDO2VSet</u>     | 0.9V                        | 0.9V                        | 1.8V                        |
| <u>LDO2Supply</u>   | External                    | External                    | Internal                    |
| <u>LDO2Mode</u>     | LDO                         | LDO                         | LDO                         |
| <u>CPVSet</u>       | 5.0V                        | 5.0V                        | 5.0V                        |
| <u>ChgPmpEn</u>     | Disabled                    | Disabled                    | Disabled                    |
| <u>LSW2LowIq</u>    | Low-IQ                      | Low-IQ                      | Protected                   |
| <u>LSW2En</u>       | Disabled                    | Disabled                    | Disabled                    |
| <u>LSW1LowIq</u>    | Low-IQ                      | Low-IQ                      | Protected                   |
| <u>BstVSet</u>      | 12.00V                      | 12.00V                      | 20.00V                      |
| <u>Bk1DVSCur</u>    | 1A                          | 1A                          | 0.5A                        |
| <u>Bk1LowBW</u>     | Full BW                     | Full BW                     | Full BW                     |
| <u>Bk1FrcDCM</u>    | Normal Mode                 | Normal Mode                 | Normal Mode                 |
| <u>Bk2DVSCur</u>    | 1A                          | 1A                          | 0.5A                        |
| <u>Bk2LowBW</u>     | Full BW                     | Full BW                     | Full BW                     |
| <u>Bk2FrcDCM</u>    | Normal Mode                 | Normal Mode                 | Normal Mode                 |
| <u>Bk3DVSCur</u>    | 1A                          | 1A                          | 0.5A                        |
| <u>Bk3LowBW</u>     | Full BW                     | Full BW                     | Full BW                     |
| <u>INT_MSK_DIS</u>  | INT mask until<br>100% Boot | INT mask until<br>100% Boot | INT mask until 100%<br>Boot |
| <u>BstEn</u>        | Disabled                    | Disabled                    | Disabled                    |
| <u>PwrRstCfg</u>    | 1011                        | 1011                        | 1011                        |
| <u>SftRstCfg</u>    | Reset Regs                  | Reset Regs                  | Reset Regs                  |
| <u>BootDly</u>      | 80ms                        | 80ms                        | 80ms                        |
| <u>ChgAlwTry</u>    | Retry                       | Retry                       | Retry                       |
| <u>StayOn</u>       | Enabled                     | Enabled                     | Enabled                     |
| <u>SFOUTVSet</u>    | 3.3V                        | 3.3V                        | 3.3V                        |
| <u>SFOUTEn</u>      | CHGIN                       | CHGIN                       | CHGIN                       |
| <u>UsbOkselect</u>  | CHGIN Rise                  | CHGIN Rise                  | CHGIN Rise                  |
| <u>LDO1Seq</u>      | LDO1En After<br>100%        | LDO1En After<br>100%        | LDO1En After 100%           |
| <u>BBstSeq</u>      | BBstEn After 100%           | BBstEn After 100%           | BBstEn After 100%           |
| <u>IBatOc</u>       | 1600mA                      | 1600mA                      | 1400mA                      |
| <u>Buck1Seq</u>     | Buck1En After<br>100%       | Buck1En After<br>100%       | Buck1En After 100%          |
| <u>Buck2Seq</u>     | Buck2En After<br>100%       | Buck2En After<br>100%       | 50%                         |
| <u>Buck3Seq</u>     | Buck3En After<br>100%       | Buck3En After<br>100%       | 25%                         |
| <u>LSW1Seq</u>      | LSW1En After<br>100%        | LSW1En After<br>100%        | LSW1En After 100%           |
| <u>BoostSeq</u>     | BstEn After 100%            | BstEn After 100%            | Disabled                    |
| <u>LDO2Seq</u>      | LDO2En After<br>100%        | LDO2En After<br>100%        | 0%                          |
| <u>ChgPmpSeq</u>    | ChgPmpEn After<br>100%      | ChgPmpEn After<br>100%      | Disabled                    |

| <u>LSW2Seq</u> | LSW2En After 100% | LSW2En After 100% | LSW2En After 100% |
|----------------|-------------------|-------------------|-------------------|
| PFN1RES        | Connect Resistor  | Connect Resistor  | Connect Resistor  |
| PFN1PU         | Pullup            | Pullup            | Pullup            |
| PFN2RES        | No Resistor       | No Resistor       | No Resistor       |
| PFN2PU         | N/A               | N/A               | N/A               |
| HrvEn          | Disabled          | Enabled           | Disabled          |
| i2c_crc_ena    | Enabled           | Enabled           | Enabled           |
| i2c_tmo_ena    | Enabled           | Enabled           | Enabled           |
| <u>DrvTmo</u>  | Disabled          | Disabled          | Disabled          |
| <u>HptSel</u>  | LRA               | LRA               | LRA               |
| <u>ILimMax</u> | 1000mA            | 1000mA            | 1000mA            |
| JEITASet       | 0                 | 0                 | 0                 |
| <u>TShdn</u>   | 120°C             | 120°C             | 120°C             |
| SysPDEn        | Enabled           | Enabled           | Enabled           |

## Register Defaults

[Table 9](#) shows the default values of all the registers.

**Table 9. I2C Direct Register Defaults**

| PERIPHERAL ADDRESS | REGISTER ADD | REGISTER NAME | EV KIT | EV KIT WITH HARVESTER | MAX20366A |
|--------------------|--------------|---------------|--------|-----------------------|-----------|
| 0xA0               | 0x00         | HptStatus0    | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x01         | HptStatus1    | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x02         | HptStatus2    | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x03         | HptInt0       | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x04         | HptInt1       | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x05         | HptInt2       | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x06         | HptIntMask0   | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x07         | HptIntMask1   | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x08         | HptIntMask2   | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x09         | HptControl    | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x0A         | HptRTI2CPat   | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x0B         | HptRAMPatAdd  | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x0C         | HptProt       | 0x04   | 0x04                  | 0x04      |
| 0xA0               | 0x0D         | HptUnlock     | 0x00   | 0x00                  | 0x00      |
| 0xA0               | 0x11         | HPTCfg0       | 0x0E   | 0x0E                  | 0x0E      |
| 0xA0               | 0x12         | HPTCfg1       | 0x8B   | 0x8B                  | 0x8B      |
| 0xA0               | 0x13         | HPTCfg2       | 0x8B   | 0x8B                  | 0x8B      |
| 0xA0               | 0x14         | HPTCfg3       | 0x19   | 0x19                  | 0x19      |
| 0xA0               | 0x15         | HPTCfg4       | 0x03   | 0x03                  | 0x03      |
| 0xA0               | 0x16         | HPTCfg5       | 0x05   | 0x05                  | 0x05      |
| 0xA0               | 0x17         | HPTCfg6       | 0x11   | 0x11                  | 0x11      |
| 0xA0               | 0x18         | HPTCfg7       | 0x08   | 0x08                  | 0x08      |
| 0xA0               | 0x19         | HPTCfg8       | 0x1F   | 0x1F                  | 0x1F      |

|      |      |               |      |      |      |
|------|------|---------------|------|------|------|
| 0xA0 | 0x1A | HPTCfg9       | 0x84 | 0x84 | 0x84 |
| 0xA0 | 0x1B | HPTCfgA       | 0x07 | 0x07 | 0x07 |
| 0xA0 | 0x1C | HPTCfgB       | 0x40 | 0x40 | 0x40 |
| 0xA0 | 0x1D | HPTCfgC       | 0xD0 | 0xD0 | 0xD0 |
| 0xA0 | 0x1E | HPTCfgD       | 0x07 | 0x07 | 0x07 |
| 0xA0 | 0x1F | HPTCfgE       | 0x06 | 0x06 | 0x06 |
| 0xA0 | 0x20 | HPTCfgF       | 0x24 | 0x24 | 0x24 |
| 0xA0 | 0x22 | HptAutoTune   | 0x00 | 0x00 | 0x00 |
| 0xA0 | 0x23 | BEMFPeriod0   | 0xD0 | 0xD0 | 0xD0 |
| 0xA0 | 0x24 | BEMFPeriod1   | 0x07 | 0x07 | 0x07 |
| 0xA0 | 0x30 | HptETRG0dAmp  | 0x7F | 0x7F | 0x7F |
| 0xA0 | 0x31 | HptETRG0dDur  | 0x04 | 0x04 | 0x04 |
| 0xA0 | 0x32 | HptETRGActAmp | 0x3F | 0x3F | 0x3F |
| 0xA0 | 0x33 | HptETRGActDur | 0x32 | 0x32 | 0x32 |
| 0xA0 | 0x34 | HptETRGBrkAmp | 0xFF | 0xFF | 0xFF |
| 0xA0 | 0x35 | HptETRGBrkDur | 0x20 | 0x20 | 0x20 |
| 0xA0 | 0x40 | HptRAMAdd     | 0x00 | 0x00 | 0x00 |
| 0xA0 | 0x41 | HptRAMDataH   | —    | —    | —    |
| 0xA0 | 0x42 | HptRAMDataM   | —    | —    | —    |
| 0xA0 | 0x43 | HptRAMDataL   | —    | —    | —    |
| 0xA0 | 0x50 | ADCEn         | 0x00 | 0x00 | 0x00 |
| 0xA0 | 0x51 | ADCCfg        | 0x00 | 0x00 | 0x00 |
| 0xA0 | 0x53 | ADCDatAvg     | 0x00 | 0x00 | 0x00 |
| 0xA0 | 0x54 | ADCDatMin     | 0x00 | 0x00 | 0x00 |
| 0xA0 | 0x55 | ADCDatMax     | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x00 | ChipID        | 0x06 | 0x06 | 0x06 |
| 0x50 | 0x01 | Status0       | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x02 | Status1       | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x03 | Status2       | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x04 | Status3       | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x05 | Status4       | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x06 | Int0          | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x07 | Int1          | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x08 | Int2          | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x09 | Int3          | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x0A | IntMask0      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x0B | IntMask1      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x0C | IntMask2      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x0D | IntMask3      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x0F | ILimCntl      | 0x06 | 0x06 | 0x87 |
| 0x50 | 0x10 | ChgCntl0      | 0x0D | 0x0D | 0x27 |
| 0x50 | 0x11 | ChgCntl1      | 0x73 | 0x73 | 0x65 |

|      |      |              |      |      |      |
|------|------|--------------|------|------|------|
| 0x50 | 0x12 | ChgTmr       | 0xFD | 0xFD | 0xE4 |
| 0x50 | 0x13 | StepChgCfg0  | 0x30 | 0x30 | 0x3F |
| 0x50 | 0x14 | StepChgCfg1  | 0x07 | 0x07 | 0x17 |
| 0x50 | 0x15 | ThmCfg0      | 0x3F | 0x3F | 0x3F |
| 0x50 | 0x16 | ThmCfg1      | 0x1F | 0x1F | 0x1F |
| 0x50 | 0x17 | ThmCfg2      | 0x1F | 0x5F | 0x1F |
| 0x50 | 0x18 | HrvCfg0      | 0x00 | 0x46 | 0x00 |
| 0x50 | 0x19 | HrvCfg1      | 0x3F | 0x7F | 0x3F |
| 0x50 | 0x1A | IVMONCfg     | 0x10 | 0x10 | 0x10 |
| 0x50 | 0x1B | Buck1Ena     | 0xE0 | 0xE0 | 0xE0 |
| 0x50 | 0x1C | Buck1Cfg0    | 0x50 | 0x50 | 0x50 |
| 0x50 | 0x1D | Buck1Cfg1    | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x1E | Buck1Iset    | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x1F | Buck1VSet    | 0x37 | 0x37 | 0x83 |
| 0x50 | 0x20 | Buck1Ctr     | 0x01 | 0x01 | 0x01 |
| 0x50 | 0x21 | Buck1DvsCfg0 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x22 | Buck1DvsCfg1 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x23 | Buck1DvsCfg2 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x24 | Buck1DvsCfg3 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x25 | Buck1DvsCfg4 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x26 | Buck1DvsSpi  | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x27 | Buck2Ena     | 0xE0 | 0xE0 | 0x81 |
| 0x50 | 0x28 | Buck2Cfg     | 0x51 | 0x51 | 0x50 |
| 0x50 | 0x29 | Buck2Cfg1    | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x2A | Buck2Iset    | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x2B | Buck2VSet    | 0x72 | 0x72 | 0x32 |
| 0x50 | 0x2C | Buck2Ctr     | 0x02 | 0x02 | 0x02 |
| 0x50 | 0x2D | Buck2DvsCfg0 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x2E | Buck2DvsCfg1 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x2F | Buck2DvsCfg2 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x30 | Buck2DvsCfg3 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x31 | Buck2DvsCfg4 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x32 | Buck2DvsSpi  | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x34 | Buck3Ena     | 0xE0 | 0xE0 | 0x61 |
| 0x50 | 0x35 | Buck3Cfg     | 0x51 | 0x51 | 0x51 |
| 0x50 | 0x36 | Buck3Cfg1    | 0x00 | 0x00 | 0x40 |
| 0x50 | 0x37 | Buck3Iset    | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x38 | Buck3VSet    | 0xB5 | 0xB5 | 0x9A |
| 0x50 | 0x39 | Buck3Ctr     | 0x04 | 0x04 | 0x04 |
| 0x50 | 0x3A | Buck3DvsCfg0 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x3B | Buck3DvsCfg1 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x3C | Buck3DvsCfg2 | 0x00 | 0x00 | 0x00 |

|      |      |              |      |      |      |
|------|------|--------------|------|------|------|
| 0x50 | 0x3D | Buck3DvsCfg3 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x3E | Buck3DvsCfg4 | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x3F | Buck3DvsSpi  | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x40 | BBstEna      | 0xE0 | 0xE0 | 0xE0 |
| 0x50 | 0x41 | BBstCfg      | 0x05 | 0x05 | 0x05 |
| 0x50 | 0x42 | BBstVSet     | 0x32 | 0x32 | 0x32 |
| 0x50 | 0x43 | BBstISet     | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x44 | BBstCfg1     | 0x13 | 0x13 | 0x13 |
| 0x50 | 0x45 | BBstCtr0     | 0x08 | 0x08 | 0x08 |
| 0x50 | 0x46 | BBstCtr1     | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x47 | BBstDvsCfg0  | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x48 | BBstDvsCfg1  | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x49 | BBstDvsCfg2  | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x4A | BBstDvsCfg3  | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x4B | BBstDvsSpi   | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x51 | LDO1Ena      | 0xE0 | 0xE0 | 0xE0 |
| 0x50 | 0x52 | LDO1Cfg      | 0x01 | 0x01 | 0x03 |
| 0x50 | 0x53 | LDO1VSet     | 0x00 | 0x00 | 0x36 |
| 0x50 | 0x54 | LDO1Ctr      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x55 | LDO2Ena      | 0xE0 | 0xE0 | 0x41 |
| 0x50 | 0x56 | LDO2Cfg      | 0x01 | 0x01 | 0x09 |
| 0x50 | 0x57 | LDO2VSet     | 0x00 | 0x00 | 0x09 |
| 0x50 | 0x58 | LDO2Ctr      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x59 | LSW1Ena      | 0xE0 | 0xE0 | 0xE0 |
| 0x50 | 0x5A | LSWCfg       | 0x03 | 0x03 | 0x01 |
| 0x50 | 0x5B | LSW1Ctr      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x5C | LSW2Ena      | 0xE0 | 0xE0 | 0xE0 |
| 0x50 | 0x5D | LSW2Cfg      | 0x03 | 0x03 | 0x01 |
| 0x50 | 0x5E | LSW2Ctr      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x5F | ChgPmpEna    | 0xE0 | 0xE0 | 0x00 |
| 0x50 | 0x60 | ChgPmpCfg    | 0x03 | 0x03 | 0x03 |
| 0x50 | 0x61 | ChgPmpCtr    | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x62 | BoostEna     | 0xE0 | 0xE0 | 0x00 |
| 0x50 | 0x63 | BoostCfg     | 0x0E | 0x0E | 0x0E |
| 0x50 | 0x64 | BoostISet    | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x65 | BoostVSet    | 0x1C | 0x1C | 0x3C |
| 0x50 | 0x66 | BoostCtr     | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x67 | MPC0Cfg      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x68 | MPC1Cfg      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x69 | MPC2Cfg      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x6A | MPC3Cfg      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x6B | MPC4Cfg      | 0x00 | 0x00 | 0x00 |

|      |      |                |      |      |      |
|------|------|----------------|------|------|------|
| 0x50 | 0x6C | MPC5Cfg        | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x6D | MPC6Cfg        | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x6E | MPC7Cfg        | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x6F | MPCltrSts      | 0x00 | 0x00 | 0x06 |
| 0x50 | 0x70 | BK1DedIntCfg   | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x71 | BK2DedIntCfg   | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x72 | BK3DedIntCfg   | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x73 | HptDedIntCfg   | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x74 | ADCDEDINTCFG   | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x75 | USBOKDedIntCfg | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x78 | LEDCommon      | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x79 | LED0Ref        | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x7A | LED0Ctr        | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x7B | LED1Ctr        | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x7C | LED2Ctr        | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x7D | PFN            | 0x01 | 0x01 | 0x01 |
| 0x50 | 0x7E | BootCfg        | 0xB9 | 0xB9 | 0xB9 |
| 0x50 | 0x7F | PwrCfg         | 0x01 | 0x01 | 0x01 |
| 0x50 | 0x80 | PwrCmd         | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x81 | BuckCfg        | 0x38 | 0x38 | 0x00 |
| 0x50 | 0x83 | LockMsk        | 0xFF | 0xFF | 0xFF |
| 0x50 | 0x84 | LockUnlock     | 0xFF | 0xFF | 0xFF |
| 0x50 | 0x86 | SFOUTCtr       | 0x81 | 0x81 | 0x81 |
| 0x50 | 0x87 | SFOUTMPC       | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x88 | I2C OTP ADD    | 0x00 | 0x00 | 0x00 |
| 0x50 | 0x89 | I2C OTP DAT    | —    | —    | —    |

## Ordering Information

| PART NUMBER    | TEMP RANGE     | PIN-PACKAGE |
|----------------|----------------|-------------|
| MAX20366AEWZ+  | -40°C to +85°C | 72 WLP      |
| MAX20366AEWZ+T | -40°C to +85°C | 72 WLP      |

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

**Revision History**

| REVISION NUMBER | REVISION DATE | DESCRIPTION              | PAGES CHANGED |
|-----------------|---------------|--------------------------|---------------|
| 0               | 12/24         | Release for Market Intro | —             |

