

M-A351AS/AU

3axis Accelerometer

■ GENERAL DESCRIPTION

M-A351AS and M-A351AU measures 3axis acceleration with high accuracy and high stability. The M-A351 sensor unit is based on Quartz technology (QMEMS) for high accuracy, high stability, small size, and low power consumption. With up to 100Hz sensor bandwidth and 1000Sps data output rate, the M-A351 sensor unit enables wide dynamic range vibration measurement.

The M-A351 sensor unit utilizes unique digital sensing architecture which minimizes the requirement for expensive analog circuit components such as high resolution AD converters. The digital sensing architecture and serial interface also simplifies design integration and eliminates analog noise challenges.

The M-A351 series accelerometer simplifies the development and differentiation of industrial seismic, vibration, structural measurement systems.

■ FEATURES

• Small Size and Lightweight	: 24x24x19mm, 12grams
• Low Noise	: 0.5 μ Grms/ $\sqrt{\text{Hz}}$ (Average)
• High Resolution	: 0.06 μ G/LSB
• Wide Bandwidth	: 100Hz (selectable)
• Output Rate	: 1000Sps (selectable)
• Three Axis Accelerometer	: $\pm 5\text{G}$
• Digital Serial Interface	: SPI (M-A351AS) / UART (M-A351AU)
• Wide Operating Temperature Range	: -20°C to +85°C
• Low Power Consumption	: 66mW, 3.3V
• Output Mode Selection (each axis)	: Acceleration, Tilt Angle, or Tilt Angle Speed

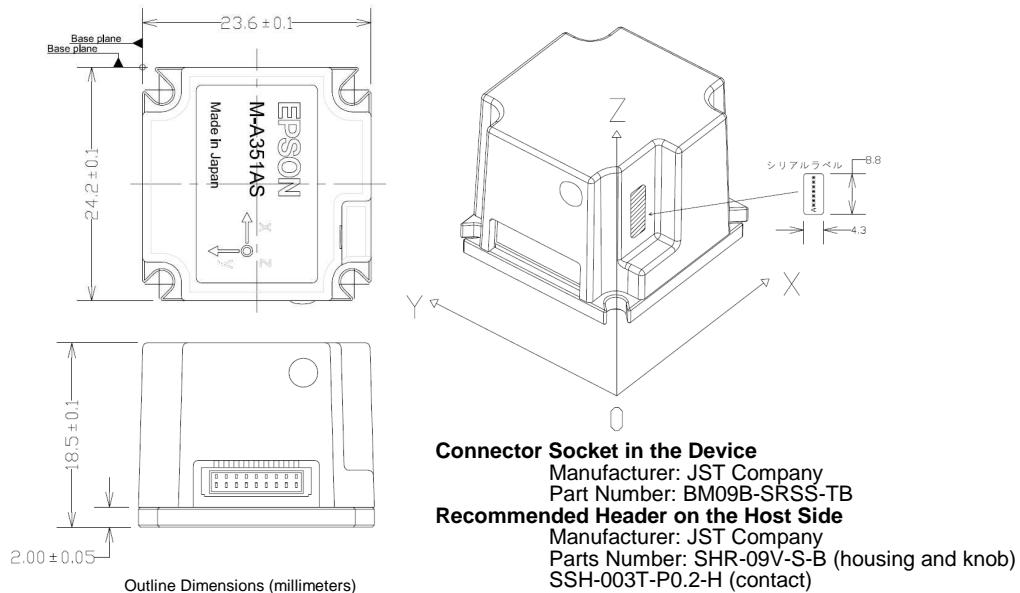
■ SPECIFICATION

T_A =-20°C to +85°C, VCC=3.15V to 3.45V, $\pm 1\text{G}$, unless otherwise noted.

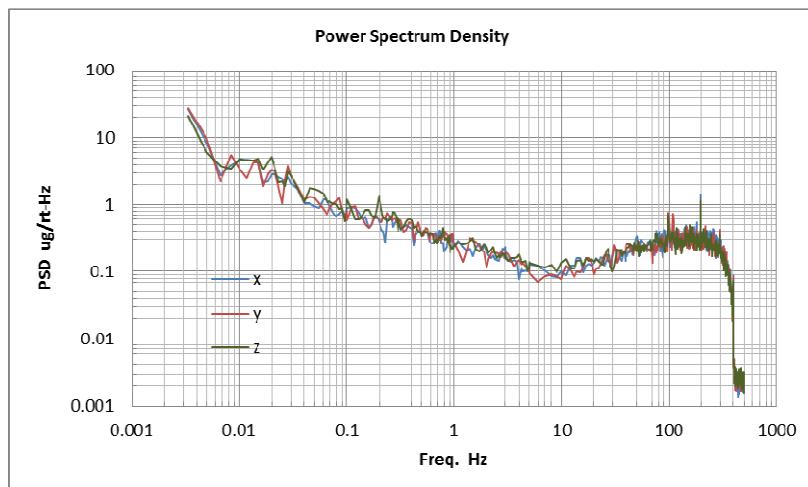
Parameter	Test Conditions / Comments	Spec.	Unit
Acceleration Output Data Type			
Input Range (*1)	Reduced accuracy operating range	+/-5	G
Input Range (*2)	Accuracy guaranteed by specification	+/-1	G
Null Offset	$T_A=25^\circ\text{C}$	+/-4	mG
Null Offset Repeatability	$T_A=25^\circ\text{C}$ and VCC=3.3V for one year after shipment	3	mG
Null Offset Temperature Variation	-20°C to +85°C	+/-4	mG
Noise Density	$T_A=25^\circ\text{C}$, average 0.5Hz to 6Hz, horizontal (+/-5deg.)	0.5	$\mu\text{Grms}/\sqrt{\text{Hz}}$
	$T_A=25^\circ\text{C}$, peak 0.5Hz to 100Hz, horizontal (+/-5deg.)	60	$\mu\text{Grms}/\sqrt{\text{Hz}}$
Resolution	UART/SPI (Binary)	0.06	$\mu\text{G}/\text{LSB}$
Tilt Angle Output Data Type (*3)			
Input Range	Accuracy guaranteed by specification	+/-0.785	rad
Null Offset Repeatability	$T_A=25^\circ\text{C}$ and VCC=3.3V for one year after shipment	+/-3.491	mrad
Resolution	UART/SPI (Binary)	0.002	$\mu\text{rad}/\text{LSB}$
Tilt Angle Speed Output Data Type (*4)			
Calculating Range	Unit per millisecond of measurement trigger	+/-2.094	rad/ms
Resolution	UART/SPI (Binary)	2	$(\mu\text{rad/s})/\text{LSB}$
Common			
Filter Bandwidth (*5)	Selectable with command	5, 10, 20, 50, 100	Hz
Data Output Rate (*5)	UART, Selectable with command	Up to 1000	Sps
	SPI, Selectable with command	Up to 500	Sps
Power Supply Voltage	$T_A=25^\circ\text{C}$	3.3	V
Consumption Current	Measurement mode, $T_A=25^\circ\text{C}$	20	mA

*1 The range from above $\pm 1\text{G}$ to $\pm 5\text{G}$ is outside the guaranteed accuracy specifications.

*2 The calibrated standard 1G gravitational acceleration value is 9.80665 m/s².


*3 Tilt angle is internally calculated from the gravitational acceleration.

*4 Tilt angle speed = delta tilt angle / data rate.


*5 The output data rate and internal filter bandwidth is selectable by the command.

M-A351AS/AU

■ OUTLINE DIMENSIONS

■ EXAMPLE OF THE MAIN CHARACTERISTIC(NOISE DENSITY)

NOTICE:

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of Economy, Trade and Industry or other approval from another government agency.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2018, All rights reserved

SEIKO EPSON CORPORATION

MSM Business Project

281 Fujimi, Fujimi-machi, Suwa-gun, Nagano-ken 399-0293 JAPAN
Phone: +81-266-61-0614 FAX: +81-266-61-2051

First issue Feb.,2016 in Japan
Modified;Mar. 2018
Rev.20180309