
XMC5xxx MCU programming specification

About this document
Scope and purpose

This specification provides the information to program the non-volatile memory of the XMC5100/XMC5200/
XMC5300 MCU families, describes the communication protocol to provide access for an external programmer
and explains the programming algorithm.
Intended audience

This document is written for experienced hardware and software engineers that require information on how to
program non-volatile memory of the XMC5000 MCU.

Programming Specification Please read the sections "Important notice" and "Warnings" at the end of this document 002-41783 Rev. **
www.infineon.com 2025-07-02

https://www.infineon.com

Table of contents

About this document . 1

Table of contents . 2

1 Introduction . 3
1.1 Programmer . 3
1.2 XMC5000 MCU family overview . 3

2 Non-volatile memory subsystem . 5
2.1 Flash main region (FLASH) . 7
2.2 Flash work region (WFLASH) .7
2.3 Flash supervisory region (SFLASH) . 7
2.4 Electronic fuses (eFuse) . 7

3 Hex file . 9
3.1 Organization of the hex file . 9

4 Protocol stack . 11
4.1 Communication interface . 11
4.2 Physical layer .16

5 Programming algorithm . 21
5.1 High-level programming flow . 21
5.2 Constants and subroutines used in the programming flow . 22
5.3 Step 1.A – acquire XMC5000 MCU . 28
5.4 Step 1.B – Acquire XMC5000 MCU (alternate method) . 31
5.5 Step 2 – Check silicon ID . 36
5.6 Step 3 – Erase all flash . 37
5.7 Step 4 – Erase sector of FLASH and WFLASH . 38
5.8 Step 5 – Program FLASH and WFLASH . 38
5.9 Step 6 – Program SFLASH (optional) . 41
5.10 Step 7 – Verify FLASH, WFLASH, and SFLASH . 44
5.11 Step 8 – Verify checksum of FLASH, WFLASH, and SFLASH . 45
5.12 Step 9 – Program eFuses and lifecycles . 46

6 Appendix A: Intel hex file format . 51

7 Appendix B: Serial wire debug (SWD) protocol . 53

8 Appendix C: Joint test action group (JTAG) protocol . 56

Revision history .57

Disclaimer . 58

XMC5xxx MCU programming specification

Table of contents

Programming Specification 2 002-41783 Rev. **
2025-07-02

1 Introduction
This programming specification:
• Provides the information to program the non-volatile memory of the XMC5000 MCU family
• Describes the communication protocol to provide access for an external programmer
• Explains the programming algorithm
• Describes the physical connection basics
The programming algorithms described hereafter are compatible with all XMC5000 MCUs.
The pin locations, electrical, and timing specifications of the physical connection are not part of this document.
For these details, see the device datasheet.

1.1 Programmer
Figure 1 illustrates a high-level view of the programmer environment.

Figure 1 Figure 1 Programmer in development environment

In the manufacturing environment, the integrated development environment (IDE) block is absent because its
main purpose is to produce a hex file. As shown in Figure 1, the programmer performs three functions:
• Parses the srec/hex file and extracts information
• Interfaces with the XMC5000 MCU silicon using a Serial Wire Debug (SWD) or JTAG master
• Implements the programming algorithm by translating the srec/hex data into SWD or JTAG signals
The structure of the programmer depends on its requirements, which can be software- or firmware-centric.
In a software-centric structure, the programmer’s hardware works as a bridge between the protocol (such as
USB) and SWD or JTAG. An external device (software) passes all SWD/JTAG commands to the hardware through
the protocol. The bridge is not involved in parsing the hex file and programming algorithm. This is the task of
the upper layer (software). Examples of such programmers are MiniProg4 and Segger J-Link.
A firmware-centric structure is an independent hardware design in which all functions of the programmer are
implemented in one device, including storage for the hex file. Its main purpose is to act as a mass programmer
in manufacturing.
This document does not discuss the specific implementation of the programmer. It focuses on data flow,
algorithms, and physical interfacing.

1.2 XMC5000 MCU family overview
The XMC5000 is a family of MCUs with dual solution, with both the Arm® Cortex®-M4F and Cortex®-M0+ processor
cores. This MCU family supports the Arm® SWJ-DP Interface for programming and debugging operations, using
the SWD or JTAG protocols.
The non-volatile subsystem of the chip consists of a flash memory system. The flash memory system stores the
user’s program.
The silicon can be programmed after it is installed in the system by way of the SWD or JTAG interface (in-system
programming).

XMC5xxx MCU programming specification

1 Introduction

Programming Specification 3 002-41783 Rev. **
2025-07-02

See the device datasheet for the specifications on the memory size and programming frequency range.
This document focuses on the specific programming operations without referencing the chip architecture.
Many important topics are detailed in the appendices. Other device-specific information can be found in the
device’s datasheet or technical reference manual.
This document includes three appendices:
• Appendix A: Intel hex file format
• Appendix B: Serial wire debug (SWD) protocol
• Appendix C: Joint test action group (JTAG) protocol

XMC5xxx MCU programming specification

1 Introduction

Programming Specification 4 002-41783 Rev. **
2025-07-02

2 Non-volatile memory subsystem
This chapter describes the non-volatile memory subsystem of the XMC5000MCU.

Figure 2 XMC5000MCU non-volatile subsystem

Table 1 Programming parameters of XMC5000 MCU

Feature XMC5100 XMC5200 XMC5300

Start address 0x1000 0000

Number of large (32 KB)
sectors (NML)

14 30 62

Number of small (8 KB)
sectors (NMS)

16 16 16

Write (Row) size, B 8, 32, and 512

Erase size Sector size

Total size, KB 576 1088 2112

(table continues...)

XMC5xxx MCU programming specification

2 Non-volatile memory subsystem

Programming Specification 5 002-41783 Rev. **
2025-07-02

Table 1 (continued) Programming parameters of XMC5000 MCU

Feature XMC5100 XMC5200 XMC5300

Flash work region (WFLASH)

Start address 0x1400 0000

Number of large (2 KB)
sectors (NWL)

24 36 48

Number of small (128 B)
sectors (NWS)

128 192 256

Write (Row) size, B 4

Erase size

Total size, KB 64 96 128

Table 2 SFlash/eFuse programming parameters for XMC5000 MCUs

SFLASH

Start address 0x1700 0000

Sectors Single sector of 32 KB

Write (row) size, B 512

Erase size N/A. Required a WriteRow API call with empty data

Total size, KB 32

SFLASH_ALT

Start address 0x1780 0000

Sectors Single sector of 32 KB

Note This Flash region is not intended to be programmed by the user. The purpose
of this region is to store backup copy of the SFLASH. When system call is
interrupted during SFLASH programming (e.g. due to power loss) the contents
of the SFLASH can be damaged. A special recovery mechanism is
implemented in the boot SROM which will restore SFLASH contents from the
backup.

EFUSE

Start address 0x9070 0000 (virtual address for OpenOCD, see Electronic fuses (eFuse) for
details)

Sectors Single sector of 128 B

Write (row) size Single bit

Erase size N/A. One-time programming

Total size, KB 0,128

* FLASH, WFLASH, and SFLASH memories are mapped directly to the CPU’s address space. Firmware or an
external programmer can read its content directly from the given address.

XMC5xxx MCU programming specification

2 Non-volatile memory subsystem

Programming Specification 6 002-41783 Rev. **
2025-07-02

2.1 Flash main region (FLASH)
The flash contains code to be executed. See Figure 2 and Table 1 for details.

2.2 Flash work region (WFLASH)
The flash contains the WFLASH to store application-specific information or emulate EEPROM memory. See
Figure 2 and Table 1 for details.

2.3 Flash supervisory region (SFLASH)
The flash contains the SFLASH to store application-specific data. See Figure 2 and Table 1 for details.

Table 3 SFLASH’s regions

Address region Description

0x1700 0800 - 0x1700 0FFF The user’s area. 2 KB are used to store arbitrary data.

0x1700 1A00 - 0x1700 1A03 NORMAL Access Restrictions (NAR). Used for chip protection in the NORMAL Life
Cycle stage.

0x1700 1A04 - 0x1700 1A07 NORMAL DEAD Access Restrictions (NDAR). Used for chip protection in the
NORMAL DEAD Life Cycle stage.

0x1700 6400 - 0x1700 6FFF The Public Key. Used for a digital signature of the application

0x1700 7600 - 0x1700 77FF Application protection settings

0x1700 7C00 - 0x1700 7DFF The Table of Contents, Part 2 (TOC2). Used to locate OEM objects.

The accessible SFLASH sub-regions are listed in Table 5. Writing to the sub-regions is not possible at the
“SECURE” chip life cycle stage. Writing to any SFLASH address outside the specified sub-regions is not possible
at any Life Cycle stage except VIRGIN which is a factory-only stage.

2.4 Electronic fuses (eFuse)
Electronic fuses (eFuses) are 1024-bit (128 bytes) non-volatile memories where each bit is a one-time
programmable (OTP). The eFuses are implemented as a regular Advanced High-performance Bus (AHB)
peripheral with the following characteristics and assumptions:
• eFuse memory can be programmed (eFuse bit value changed from 0 to 1) only once; if an eFuse bit is

blown, it cannot be cleared again.
• Programming a fuse requires the associated I/O supply to be at a specific level: the VDDIO0 (or VDDIO if

only one VDDIO is present in the package) supply of the device is set to 3.0-5.5 V.
• Eight bits of the eFuse array can be read at a time using ReadFuseByte system call.
• Fuses are programmed one bit at a time using BlowFuseBit system call.
See Figure 2 and Table 1 for details.

Table 4 eFuse regions

Address region Description

0x2C - 0x3B “SECURE” HASH. The 128-bit (16 bytes) AES_HASH is used by boot code to authenticate
objects in the Table of Contents, Part 2 (TOC2).

(table continues...)

XMC5xxx MCU programming specification

2 Non-volatile memory subsystem

Programming Specification 7 002-41783 Rev. **
2025-07-02

Table 4 (continued) eFuse regions

Address region Description

0x3C – 0x3F “SECURE” Access Restrictions (SAR). Access restrictions for “SECURE” protection state
in “SECURE” lifecycle stage.

0x40 - 0x43 “SECURE” DEAD Access Restrictions (SAR). Access restrictions for DEAD protection state
in “SECURE” lifecycle stage and number of zeros for “Secure” fuse group

0x68 – 0x7F Customer data

Table 4 lists the eFuse bytes accessible for production programming.
eFuses can be read or programmed using two dedicated system calls – ReadFuseByte and BlowFuseBit.
ReadFuseByte call reads one data byte (eight eFuse bits) at a time. It accepts eFuse byte offset as a parameter.
The value of this parameter directly corresponds to the address shown in Figure 2. For instance, to read first
byte of the ‘Customer Data’ region a value of 0x68 should be passed to ReadFuseByte system call.
BlowFuseBit call blows a single eFuse bit at a time. It accepts three parameters to identify eFuse bit to be
blown: byte address, macro address, and bit address. These parameters have the following relation with the
eFuse byte offset as shown in Figure 2:
• macro_address = byte_offset % 4
• byte_address = byte_offset / 4
• bit_address is the bit to be blown in the selected byte
For instance, to blow the least significant bit (LSb) of the first byte of the ‘Customer Data’ region (byte offset =
0x68, bit #0) these parameters can be calculated as follows:
• macro_address = 0x68 % 4 = 0x00
• byte_address = 0x68 / 4 = 0x1A
• bit_address = 0
The OpenOCD tool supports eFuse programming with a data stored in regular HEX, SREC, ELF or binary files. A
virtual address range has been allocated for eFuse region for this purpose. This address range does not
correspond to any internal hardware, instead, it is treated in a special way by the flash utility. The rules of the
translation between virtual address range and physical eFuse bits is as follows:
• The virtual address range is 0x9070 0000 … 0x9070 03FF (1024 bytes in total)
• Each byte in the programming file corresponds to single eFuse bit (1024 eFuse bits in total)
• The bit order is LSB to MSB, e.g. the second bit of the ‘Customer Data’ region (byte offset = 0x68, bit #1)

corresponds to the virtual address 0x90700000 + 0x68 * 8 + 1 = 0x90700341
Each byte in the programming file can have three possible values:
• 0x00 – Do not blow the eFuse bit. OpenOCD will check the actual state of the bit and will show an error if

eFuse bit is blown, but data in programming file indicates that it should not be blown.
• 0x01 – Blow the eFuse bit. OpenOCD will check the actual state of the bit and will show a warning if eFuse

bit is already blown.
• 0xFF – Ignore the state of the eFuse bit. The actual state of the bit is not checked, no warnings/errors will be

generated.
Blowing an eFuse is an irreversible process, programming is recommended only in mass production
programming under controlled factory conditions and not at prototyping stages. For more details, see the
“eFuse Memory” section of the architecture technical reference manual (TRM).

XMC5xxx MCU programming specification

2 Non-volatile memory subsystem

Programming Specification 8 002-41783 Rev. **
2025-07-02

3 Hex file
This chapter describes the information the programmer must extract from the hex file to program the XMC5000
MCU.

3.1 Organization of the hex file
The hexadecimal (hex) file describes the non-volatile configuration of the project. This file is the data source for
the programmer.
The hex file for the XMC5000 MCU follows the Intel hex file format. Intel’s specification is generic and defines
only some types of records that can compose the hex file. The specification allows customizing the format for
any possible chip architecture. The chip vendor defines the records’ functional meaning which typically varies
for different chip families. See Appendix A: Intel hex file format for details of the Intel hex file format.
The XMC5000 MCU defines the following data sections in the hex file:
• User’s program (code) for FLASH region
• User’s data for WFLASH region
• User’s / OEM data for SFLASH region
• eFuse region
See Figure 3 to determine the allocation of these sections in the address space of the Intel hex file.
The programmer uses hex addresses (Figure 3) to read the sections from the hex file into its local buffer. Later,
this data is programmed (translated) into the corresponding addresses of the chip.
See Table 1 for the region addresses described in the section.

Figure 3 Hex file organization for XMC5000 MCU

FLASH: This is the user’s code that must be programmed. The maximum size of this section must not exceed
the FLASH size of the XMC5000 MCU. See Flash main region (FLASH) for the FLASH memory region description.
WFLASH: Stores application-specific information. The availability of this section in the hex file is optional and
depends on the linker scripts usage in the user’s project. See Flash work region (WFLASH) for the WFLASH
memory region description.

XMC5xxx MCU programming specification

3 Hex file

Programming Specification 9 002-41783 Rev. **
2025-07-02

SFLASH: Stores application-specific information in the five fragmented sub-sections. The availability of this
section in the hex file is optional and depends on the linker scripts usage in the user’s project. See Flash
supervisory region (SFLASH) for the SFLASH memory region description.
eFuse: Each eFuse bit setting is stored in the hex file as a full byte. This is done for two reasons:
• The programmer can distinguish between bytes being set and bytes that are not cared about, or bytes

whose value are not know
• More accurate reflection of how these bits are programmed, because the SROM API sets one bit per call.
The values are: 0x00 – Not blown, 0x01 – Blown, and 0xFF – Ignore.

Note: The programmer can only perform the “not blown” operation first and then the “blown” operation.
First, the programmer reads the corresponding eFuse bit from the device and blows it only if the
device value is 0 (not blown) and the hex value is 0x01 (blown). See Electronic fuses (eFuse) for more
details.

XMC5xxx MCU programming specification

3 Hex file

Programming Specification 10 002-41783 Rev. **
2025-07-02

4 Protocol stack
This chapter explains the low-level details of the communication interface. Figure 4 illustrates the stack of
protocols involved in the programming process. The programmer must implement both the hardware and
software components.

Figure 4 Programmer’s protocol stack

• The programming algorithm protocol, the topmost protocol, implements the whole programming flow in
terms of logical and algorithmic steps. This protocol is implemented completely in software. Its smallest
building block is the SWD or JTAG command. The whole programming algorithm is the meaningful flow of
these blocks.
All programming algorithms are based on system APIs, stored in SROM (SROM APIs). During programming
of the flash row, the system code is executed from the SROM. It communicates with the Inter Processor
Communication (IPC) module, which “knows” how to program flash. In contrast to the Write operation,
reading from flash is an immediate operation that is carried out directly from the necessary address (see
Figure 2 for address space). Reading works on a word basis (4-byte); writing works on a row basis (4-byte
for WorkFlash; 8-, 32- or 512-byte for MainFlash; 512-byte for SFlash).
The Programming Algorithm protocol is the fundamental part of this specification. For more information
on this algorithm, see Programming algorithm.

• Communication interface layer acts as a bridge between pure software and hardware implementations.
SWJ interface implements a set of lower-level (protocol-dependent) commands. It also transforms the
software representation of these commands into line signals (digital form). The SWJ interface helps to
isolate the programming algorithm from hardware specifics, which makes the algorithm reusable.

• Physical layer is the complete hardware specification of the signals and interfacing pins, and includes
drive modes, voltage levels, resistance, and other components.

4.1 Communication interface
The external device (whether it is Infineon-supplied programmer and debugger or a third-party device that
supports programming and debugging) can access most internal resources through the Program and Debug
Interface provided in chip. The Serial Wire Debug (SWD) or the JTAG interface can be used as the
communication protocol between the external device and the MCU.

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 11 002-41783 Rev. **
2025-07-02

4.1.1 Program and debug interface
The main purpose of the Program and Debug Interface is to support programming and debugging through the
JTAG or SWD interface and to provide the Read/Write access to all memory and registers in the system during
debugging, including the Cortex®-M4 and Cortex®-M0+ register banks when the core is running or halted.
The MCU implements a Debug Access Port (DAP), which integrates the SWJ-DP (Serial Wire/JTAG Debug Port)
and complies with the Arm® specification ARM® Debug Interface Architecture Specification ADIv5.0 to ADIv5.2
(ARM IHI 0031C).
The debug port (DP) connects to the DAP bus which in turn connects to one of the Access Ports (AP):
• CM0-AP – Connects directly to the AHB debug slave port of the CM0+ and provides access to the CM0+

internal debug components and to the rest of the system through the CM0+ AHB master interface. This AP
provides the debug host the same view as an application running on the CM0+ including the access to the
MMIO of other debug components of the Cortex® M0+ subsystem. These debug components are accessed
by the CM0+ CPU, but cannot be accessed through the other APs or by the CM4 core.

• CM4-AP – Locates inside the CM4, provides access to the CM4 internal debug components and to the rest
of the system through the CM4 AHB master interfaces. This provides the debug host the same view as
an application running on the CM4 core including the access to the debug components in the CM4 core
through the External Peripheral Bus (EPB). These debug components are accessed by the CM4 CPU, but
cannot be accessed through the other APs or by the CM0+ core.

• System-AP – Provides access to the rest of the system and to the System ROM table which cannot be
accessed in any other way.

4.1.1.1 DAP security
The debug privileges are regulated by the platform protection mechanism using the Memory Protection Units
(MPUs), Shared Memory Protection Units (SMPUs), and Peripheral Protection Units (PPUs).
See the “Device Security” and “Protection Units” sections of the architecture TRM for more details of the
security settings for the XMC5000 MCU.

4.1.1.2 DAP power domain
Almost all debug components are part of the Active power domain. The only exception is the SWD/JTAG-DP,
which is part of the DeepSleep power domain. This allows the debug host to connect during DeepSleep mode,
while the application is running or powered down. This enables the infield debugging for low-power
applications in which the chip is mostly in DeepSleep mode.
After the debugger is connected to the chip, it must bring the chip to the Active state before any operation. For
this, the SWD/JTAG-DP has a register (DP.CTL/STAT) with two power request bits. The two bits are DP.CTL/
STAT.CDBGPWRUPREQ and DP.CTL/STAT.CSYSPWRUPREQ they request debug power and system power,
respectively. These bits must remain set for the duration of the debug session.
Note that only the two SWD pins (SWJ_SWCLK_TCLK and SWJ_SWDIO_TMS) are operational during DeepSleep
power mode – the JTAG pins are operational only in Active mode. The JTAG debug and JTAG boundary scan are
not available when the system is in DeepSleep mode.

4.1.1.3 SWD/JTAG selection
The JTAG and SWD are mutually exclusive because of Arm’s SWJ-DP implementation and sharing pins. An
external programmer/debugger must be able to switch to the required protocol. The watcher circuit
implemented in the SWJ-DP detects a specific 16-bit select sequence on SWJ_SWDIO_TMS and decides if the
JTAG or SWD interface is active. By default, the JTAG operations are selected on a power-up reset and the JTAG
protocol can be used from the reset without sending a select sequence. The protocol switches only when the
selected interface is in its reset state (test-logic-reset for JTAG and line-reset for SWD).

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 12 002-41783 Rev. **
2025-07-02

To switch the SWJ-DP from the JTAG to SWD operation:
• Send 50 or more SWJ_SWCLK_TCLK cycles with SWJ_SWDIO_TMS HIGH. This ensures the current interface

is in its reset state. The JTAG interface detects only the 16-bit JTAG-to-SWD sequence starting from the
test-logic-reset state.

• Send the 16-bit JTAG-to-SWD selected sequence to SWJ_SWDIO_TMS, first 0b0111 1001 1110 0111 – the
most significant bit (MSb). This can be represented as 0x79E7, MSB transmitted first, or 0xE79E, least
significant bit LSb transmitted first.

• Send 50 or more SWJ_SWCLK_TCLK cycles with SWJ_SWDIO_TMS HIGH. This ensures the SWD interface
enters the line reset state if before sending the select sequence the SWJ-DP was already in the SWD
operation.

Figure 5 JTAG-to-SWD sequence timing

To switch the SWJ-DP from the SWD to JTAG operation:
• Send 50 or more SWJ_SWCLK_TCLK cycles with SWJ_SWDIO_TMS HIGH. This ensures the current interface

is in its reset state. The SWD interface detects the 16-bit SWD-to-JTAG sequence only when it is in the reset
state.

• Send the 16-bit SWD-to-JTAG select sequence to SWJ_SWDIO_TMS: first 0b0011 1100 1110 0111, MSb. This
can be represented as 0x3CE7, MSb transmitted first or 0xE73C, LSb transmitted first.

• Send five or more SWJ_SWCLK_TCLK cycles with SWJ_SWDIO_TMS HIGH. This ensures the JTAG TAP
enters the test-logic-reset state if before sending the select sequence the SWJ-DP was already in the JTAG
operation.

Figure 6 SWD-to-JTAG sequence timing

For a more detailed description, see the SWD and JTAG select mechanism section in ARM® Debug Interface
Architecture Specification ADIv5.0 to ADIv5.2 (ARM IHI 0031C).

4.1.2 Hardware access commands
The SWJ-DP supports several types of transactions: Interface selection, Target Selection, Read, Write, and Port
Reset. All are defined in the Arm® specification. The APIs must be implemented by the Communication Interface
layer shown in Figure 4. The upper protocol, Programming Algorithm, requires two extra commands to
manipulate the hardware: Power(state) and ToggleReset(). Table 5 lists the hardware access commands used
by the software layer.

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 13 002-41783 Rev. **
2025-07-02

Table 5 Hardware access commands

Command Parameters Description

DAP_JTAGtoSWD A standard Arm® command to switch the SWJ-DP from
the JTAG to SWD operation. This sequence synchronizes
the programmer and chip; it is the first transaction in a
programming flow. See SWD/JTAG selection for the
implementation details.

SWD_Write IN APnDP, IN addr, IN data32,
OUT ack

Sends 32-bit data to the DAP specified register using the
SWD interface. The register is defined by the APnDP (1
bit) and addr (2 bit) parameters. The DAP returns a 3-bit
status in ack.

SWD_Read IN APnDP, IN addr,
OUT data32, OUT ack, OUT
parity

Reads 32-bit data from the DAP specified register using
the SWD interface. The register is defined by the APnDP
(1 bit) and addr (2 bit) parameters. The DAP returns 32-
bit data, the status, and parity (control) bit of the read
32-bit word.

JTAG_Write IN APnDP, IN addr, IN data32,
OUT ack

Sends 32-bit data to the DAP specified register using the
JTAG interface. The register is defined by the APnDP (1
bit) and addr (2 bit) parameters. The DAP returns the 3-
bit status in ack.

JTAG_Read IN APnDP, IN addr,
OUT data32, OUT ack

Reads 32-bit data from the DAP specified register using
the JTAG interface. The register is defined by the APnDP
(1 bit) and add” (2 bit) parameters. The DAP returns 32-
bit data and the status.

ToggleReset Generates a reset signal for the XMC5000 MCU. The
programmer must have a dedicated pin connected to
the XRES_L pin of the XMC5000 MCU.

Power IN state If the programmer powers the XMC5000 MCU, it must
have this function to supply power to the device.

For information on the structure of the SWD Read and Write packets and their waveform on the bus, see
Appendix B: Serial wire debug (SWD) protocol. For information on the structure of the JTAG, see Appendix C:
Joint test action group (JTAG) protocol.
The SWJ Read/Write commands allow accessing registers of the SWJ-DP module from Figure 5. The DAP
functionally is split into two control units:
• Debug Port (DP) – Responsible for the physical connection to the programmer or debugger.
• Access Port (AP) – Provides the interface between the DAP module and one or more debug components

(such as the Cortex®-M0+ CPU).
An external programmer can access the registers of these access ports using the following bits in the SWJ
packet:
• APnDP – Select access port (0 – DP, 1 - AP).
• ADDR – 2-bit field addressing a register in the selected access port.
The SWJ Read/Write commands are used to access these registers. They are the smallest transactions that can
appear on the SWJ bus. Table 6 shows the DAP registers used during programming.

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 14 002-41783 Rev. **
2025-07-02

Table 6 DAP registers (in Arm® notation)

Register APnDP (1-bit) Address (2-bit) Access (R/W) Full Name

IDCODE 0 2’b00 R Identification Code Register

ABORT 0 2’b00 W AP ABORT Register

CTRL/STAT 0 2’b01 R/W Control/Status Register

SELECT 0 2’b10 W AP Select Register

CSW 1 2’b00 R/W Control Status/Word Register (CSW)

TAR 1 2’b01 R/W Transfer Address Register

DRW 1 2’b11 R/W Data Read/Write Register

For more information about these registers, see the ARM® Debug Interface Architecture Specification ADIv5.0 to
ADIv5.2.

4.1.3 Pseudocode
This document uses easy-to-read C style pseudocode to show the programming algorithm. The following two
commands are used for the programming script:

Write_DAP (Register, Data32)
Read_DAP (Register, OUT Data32)

Where the Register parameter is an AP/DP register defined by APnDP and address bits (see Table 6). The
pseudo-commands correspond to the Read or Write SWJ transactions. Examples:

Write_DAP (TAR, MEM_BASE_SRAM)
Write_DAP (DRW, 0x12345678)
Read_DAP (IDCODE, OUT swd_id)

The Register parameter technically can be represented as a structure in C:

struct DAP_Register
{
 BYTE APnDP; // 1-bit field
 BYTE Addr; // 2-bit field
};

Then, the DAP registers will be defined as:

DAP_Register TAR = {1, 1},
 DRW = {1, 3},
 IDCODE = {0, 0};

The defined Write and Read pseudo-commands are successful if both return the ACK status of the SWJ
transaction. For the Read transaction, the parity bit must be considered (corresponds to read data32 value). If

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 15 002-41783 Rev. **
2025-07-02

the status of the transaction or the parity bit is (or both are) incorrect, the transaction failed. Depending on the
programming context, the programming must terminate or the transaction must be tried again.
The implementation of Write and Read pseudo-commands based on the hardware access commands SWJ Read
and Write (Table 5) is as follows.

//---
SWJ_Status Write_DAP (Register, data32)
{
 if (Interface == SWD)
 SWD_Write (Register.APnDP, Register.Addr, data32, OUT Ack);
 else if (Interface == JTAG)
 JTAG_Write (Register.APnDP, Register.Addr, data32, OUT Ack);
 return Ack;
}

//---
SWJ_Status Read_DAP (Register, OUT data32)
{
 if (Interface == “SWD”)
 {
 SWD_Read (Register.APnDP, Register.Addr, OUT data32, OUT Ack, OUT Parity);

 if (Ack == 3'b001) //ACK, then check the parity bit
 {
 Parity_data32 = 0x00;
 for (i=0; i<32; i++)
 Parity_data32 ^= ((data32 >> i) & 0x01);
 if (Parity_data32 != parity)
 Ack = 3'b111; //NACK
 }
}
 else if (Interface == “JTAG”)
 JTAF_Read (Register.APnDP, Register.Addr, OUT data32, OUT Ack);

 return Ack;
}
//---

The programming code in the Programming algorithm is based mostly on the Write and Read pseudo-
commands and some commands in Table 5.

4.2 Physical layer
This section summarizes the hardware connection between the programmer and the MCU for programming.
Figure 7 shows the generic connection between the MCU and the programmer. See Table 7 for pins/signals
description.
See the device datasheet for the pins location, electrical, and timing specifications.

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 16 002-41783 Rev. **
2025-07-02

Figure 7 Connection schematic of programmer

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 17 002-41783 Rev. **
2025-07-02

Table 7 Pins/signals description

Pin SWD JTAG Description

Signal
name

Mandatory Signal
name

Mandatory

SWJ_SWCLK_TCLK SWCLK
(Serial
Wire
Clock)

YES TCLK
(Test
Clock)

YES The data synchronization clock, driven
by the host programmer/debugger.
Although the Arm® specification does
not define the minimum frequency of
the SWD bus, the minimum for the
XMC5000 MCU family is 1.5 MHz. It is
needed only in the first step to acquire
the chip during the boot window. After
that, the programming frequency can be
as low as needed.
For the SWD, the host should perform all
Read or Write operations on the SWDIO
line on the falling edge of the SWDCK.
The XMC5000 MCU performs the Read or
Write operations on the SWDIO on the
rising edge of the SWDCK.
For the JTAG, the host writes to the TMS
and TDI pins of the XMC5000 on the
falling edge of the TCK and the XMC5000
MCU reads data on its TMS and TDI lines
on the rising edge of the TCK. XMC5000
MCU writes to its TDO line on the falling
edge of TCK and the host reads from the
TDO line of the XMC5000 MCU on the
rising edge of the TCK.

SWJ_SWDIO_TMS SWDIO
(Serial
Wire
Data
Input/
Output)

YES TMS
(Test
Mode
Select)

YES The SWDIO is a bidirectional data input/
output signal
The TMS is the JTAG Test Mode Select
signal sampled at the rising edge of the
TCK to determine the next state.

(table continues...)

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 18 002-41783 Rev. **
2025-07-02

Table 7 (continued) Pins/signals description

Pin SWD JTAG Description

Signal
name

Mandatory Signal
name

Mandatory

SWJ_SWO_TDO SWO
(Serial
Wire
Output)

NO TDO
(Test
Data
Out)

YES The SWO signal (also known as
TRACESWO) is required for the Serial
Wire Viewer (SWV) and not required for
SWD programming. It provides real-time
data trace information from the
XMC5000 MCU via the SWO pin, while the
CPU continues running at full speed. The
data trace via the SWV is not available
using the JTAG interface.
TDO signal represents the data shifted
out of the device’s test or programming
logic and is valid on the falling edge of
TCK when the internal state machine is
in the correct state.

SWJ_SWDOE_TDI - - TDI
(Test
Data In)

YES The TDI signal represents data shifted
into the device’s test or programming
logic. It is sampled at the rising edge of
the TCK.

XRES_L 1) XRES_L
(External
Reset)

NO XRES_L
(Reset)

NO The external reset active LOW signal. The
XRES_L is not related to the Arm®

standard. It is used to reset the part as a
first step in a programming flow.
Note: XRES_L pin/signal is not

TRST (Test Reset) signal for
the JTAG Interface which
is the optional pin that
asynchronously resets only
the JTAG test logic.

GND GND
(Ground)

YES GND
(Ground)

YES Negative supply voltage (Ground).

VDDD 2) VDD NO VDD NO Positive supply voltage. The XMC5000
MCU can be powered by external power
supply or by a programmer.

You can program a chip in either Reset (recommended) or Power Cycle mode. The mode affects only the first
step - how to reset the part at the start of the programming flow. All other steps are the same.

1 The XRES_L pin is mandatory for Reset XMC5000 MCU acquisition mode, but not used for Power Cycle mode.
2 The VDDD pin is mandatory for Power Cycle XMC5000 MCU acquisition mode, where the programmer powers the XMC5000 MCU

and external power is not applied. For Reset acquisition mode, the source of the power supplier does not matter, so the pin is
optional.

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 19 002-41783 Rev. **
2025-07-02

• Reset mode: To start programming, the host toggles the XRES_L line and then sends SWD/JTAG commands
(see Table 5). The power on the XMC5000 MCU board can be supplied by the host or by an external power
adapter (the VDDD line can be optional).

• Power cycle mode: To start programming, the host powers on the XMC5000 MCU and then starts sending
the SW/JTAG commands. The XRES_L line is not used.

The programmer should implement XMC5000 MCU acquisition in Reset mode. It is also the only way to acquire
the XMC5000 MCU if the board consumes too much current, which the programmer cannot supply. Power Cycle
mode support is optional and should be used only if: a) the XRES_L pin is not available on the part’s package; b)
the third-party programmer does not implement the XRES_L line, but can supply power to the XMC5000 MCU.

XMC5xxx MCU programming specification

4 Protocol stack

Programming Specification 20 002-41783 Rev. **
2025-07-02

5 Programming algorithm
This chapter describes in detail the programming flow of the XMC5000. It starts with a high-level description of
the algorithm and then describes every step using pseudocode. All code is based on the upper-level
subroutines composed of atomic SWJ instructions (see Pseudocode). These subroutines are defined in
Constants and subroutines used in the programming flow. The ToggleReset() and Power() commands are also
used (see Table 5).

5.1 High-level programming flow
Figure 8 shows the sequence of steps that must be executed to program the MCU. These steps are described in
detail in the following sections. All the steps in this programming flow must be completed successfully for a
successful programming operation. The programmer should stop the programming flow if any step fails. In
pseudocode, it is assumed that the programmer checks the status of each SWJ transaction (Write_DAP,
Read_DAP, WriteIO, ReadIO). This extra code is not shown in the programming script. If any of these
transactions fails, then programming must be aborted.
The flash programming in the MCU family is implemented using the SROM APIs. The external programmer puts
the parameters into the SRAM (or registers) and requests system calls, which in turn perform flash updates.

Figure 8 High-level programming flow of XMC5000 MCU

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 21 002-41783 Rev. **
2025-07-02

5.2 Constants and subroutines used in the programming flow
To make the pseudocode easier to understand, many registers and frequently-used constants are named. The
defined symbols are used in the pseudocode. Table 8 lists the constants used in the programming scripts.

Table 8 Constants used in programming scripts

Name XMC5100/XMC5200/XMC5300 Comment

MEM_BASE_SRAM 0x08000000 Base address of SRAM

MEM_BASE_FLASH 0x10000000 Base address of Main Flash region

MEM_BASE_WFLASH 0x14000000 Base address of Work Flash region

MEM_BASE_SFLASH 0x17000000 Base address of Supervisory Flash
region

MEM_BASE_IPC 0x40220000 Base address for IPC structures

IPC_INTR_STRUCT_SIZE 0x20

IPC_STRUCT_SIZE 0x20

IPC_STRUCT0 0x40220000 CM0+ address

IPC_STRUCT1 0x40220020 CM4 address

IPC_STRUCT2 0x40220040 DAP address

IPC_INTR_STRUCT 0x40221000 IPC_INTR structure addr

IPC_STRUCT_ACQUIRE_OFFSET 0x00 Used to acquire a lock

IPC_STRUCT_NOTIFY_OFFSET 0x08 Used for Notification events

IPC_STRUCT_LOCK_STATUS_OFFSET 0x1C IPC lock status

IPC_STRUCT_DATA0_OFFSET 0x0C 32-bit data element

IPC_STRUCT_DATA1_OFFSET 0x10 32-bit data element

IPC_STRUCT_LOCK_STATUS_ACQUIRED
_MSK

0x80000000 Is lock acquired

IPC_STRUCT_ACQUIRE_SUCCESS_MSK 0x80000000 Is acquired

MXS40_SROMAPI_DATA_LOCATION_MS
K

0x00000001

MXS40_SROMAPI_STATUS_MSK 0xF0000000

MXS40_SROMAPI_STAT_SUCCESS 0xA0000000

MXS40_SROMAPI_SILID_CODE 0x00000001 SiliconId API code

MXS40_SROMAPI_WRITEROW_CODE 0x05000100 WriteRow API code

MXS40_SROMAPI_PROGRAMROW_CODE 0x06000100 ProgramRow API code

MXS40_SROMAPI_ERASEALL_CODE 0x0A000001 EraseAll API code

MXS40_SROMAPI_CHECKSUM_CODE 0x0B000001 Checksum API code

MXS40_SROMAPI_CHECKSUM_DATA_M
SK

0x0FFFFFFF Checksum mask

MXS40_SROMAPI_BLOW_FUSE_CODE 0x01000001 BlowFuse API code
(table continues...)

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 22 002-41783 Rev. **
2025-07-02

Table 8 (continued) Constants used in programming scripts

Name XMC5100/XMC5200/XMC5300 Comment

MXS40_SROMAPI_READ_FUSE_CODE 0x03000001 ReadFuse API code

MXS40_SROMAPI_GENERATE_HASH_CO
DE

0x1E000000 GenerateHASH API code

MXS40_SROMAPI_CHECK_FACTORY_HA
SH_CODE

0x27000001 CheckFactoryHASH API code

ARM_DHCSR 0xE000EDF0 Debug Halting Control and Status
Register

ARM_DHCSR_S_HALT_MSK 0x00020000 S_HALT

ARM_DHCSR_S_LOCKUP_MSK 0x00080000 S_LOCKUP

SRAM_SCRATCH_ADDR 0x08003000

SRSS_TST_MODE 0x40261100 TST_MODE register

SRSS_TST_MODE_TEST_MODE_MSK 0x80000000 TEST_MODE_Mask

The programming flow includes some operations used in all steps. These are implemented as subroutines in
the pseudocode.

Table 9 Subroutines used in programming flow

Subroutine Description

bool WriteIO (addr32, data32) Writes a 32-bit data into the specified address of the CPU address
space. Returns true if all SWJ transactions succeeded (ACKed).

bool ReadIO (addr32, OUT data 32) Reads 32-bit data from the specified address of the CPU address space.
Note that the actual size of the read data (8, 16, or 32 bits) depends on
the setting in the CSW register of DAP (see Table 6). By default, all
accesses are 32-bit long.
Returns true if all SWDJ transactions succeeded (ACKed).

bool Ipc_PollLockStatus (ipcId,
isLockExpected)

Depending on the isLockExpected parameter, waits until the LOCK
status bit of the IPC structure is released or acquired. The ipcId input
parameter determines the number of the IPC structure (ipcId = 0 : CM0+
IPC_STRUCT; ipcId = 1 : CM4 IPC_STRUCT; ipcId = 2 : DAP IPC_STRUCT).
Timeout is 1 second.
Returns true if the LOCK status bit corresponds to the desired status;
otherwise, returns false.

bool Ipc_Acquire(ipcId) Acquires the IPC structure. The timeout is 1 second. Returns true if the
IPC structure is acquired; otherwise, returns false.

(table continues...)

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 23 002-41783 Rev. **
2025-07-02

Table 9 (continued) Subroutines used in programming flow

Subroutine Description

bool PollSromApiStatus (addr32, OUT
data32)

Waits until the SROM command is completed and then checks its
status. addr32 is the address where the SROM API status word is
expected (IPC_STRUCT.DATA field or address in RAM if parameters for
SROM API are passed in RAM). The timeout is 1 second.
Output parameter data32 is the status/result word provided by the
SROM API.
Returns true if the command is completed and its status is successful;
otherwise, returns false.

bool CallSromApi(callIdAndParams,
OUT data32)

Executes the SROM API. The input parameter is the API OpCode and
parameters word. Output parameter data32 is the status/result word,
provided by SROM API.
Returns true if the SROM API is executed and returned the success
status; otherwise, returns false.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 24 002-41783 Rev. **
2025-07-02

The implementation of these subroutines follows. It is based on the pseudocode and registers defined in
Hardware access commands and Pseudocode. It uses the constants defined in this chapter.

//---
// “WriteIO” Subroutine
bool WriteIO (addr32, data32)
{
 if (interface == “SWD”)
 Ack_OK = 3b’001;
 else // JTAG
 Ack_OK = 3b’010;

 Ack1 = Write_DAP (TAR, addr32);
 Ack2 = Write_DAP (DRW, data32);
 return (Ack1 == Ack_OK) && (Ack2 == Ack_OK);
}

//---
// “ReadIO” Subroutine
bool ReadIO (addr32, OUT data32)
{
 if (interface == “SWD”)
 Ack_OK = 3b’001;
 else // JTAG
 Ack_OK = 3b’010;

 Ack1 = Write_DAP (TAR, addr32);
 Ack2 = Read_DAP (DRW, OUT data32);
 Ack3 = Read_DAP (DRW, OUT data32);
 return (Ack1 == Ack_OK) && (Ack2 == Ack_OK) && (Ack3 == Ack_OK);
}

//---
// “Ipc_PollLockStatus” Subroutine
bool Ipc_PollLockStatus (ipcId, isLockExpected)
{
 IpcAddr = IPC_STRUCT0 + IPC_STRUCT_SIZE * ipcId;

 do
 {
 ReadIO (IpcAddr + IPC_STRUCT_LOCK_STATUS_OFFSET, OUT Status);
 IsLocked = (Status & IPC_STRUCT_LOCK_STATUS_ACQUIRED_MSK) != 0;
 IsExpectedStatus = (isLockExpected && IsLocked) || (!isLockExpected && !IsLocked)
 }
 while ((!IsExpectedStatus) && (TimeElapsed < 1 sec))
 if (TimeElapsed >= 1 sec) return false; // timeout

 return true;
}

//---
// “Ipc_Acquire” Subroutine
bool Ipc_Acquire (ipcId)

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 25 002-41783 Rev. **
2025-07-02

{
 IpcAddr = IPC_STRUCT0 + IPC_STRUCT_SIZE * ipcId;
 do
 {
 // To acquire the IPC[2] (IPC structure for DAP),
 // the debugger must write any value to the IPC[2].ACQUIRE register.
 // The Write operation acquires the lock. The Write value is irrelevant.
 // Note: This Write is NOT required for flash loaders (running on CM0+ or CM4)
 WriteIO (IpcAddr + IPC_STRUCT_ACQUIRE_OFFSET, IPC_STRUCT_ACQUIRE_SUCCESS_MSK);

 // To acquire the IPC[0] (CM0) or IPC[1] (CM4) (e.g. in flash loaders)
 // the master must read the IPC[x].ACQUIRE register
 // If the SUCCESS field returns 1, the Read acquired the lock.
 // If the SUCCESS field returns 0, the Read did not acquire the lock.
 // Note: A single Read access performs two functions:
 // - The attempt to acquire a lock.
 // - Return the result of the acquisition attempt (SUCCESS field).
 ReadIO (IpcAddr + IPC_STRUCT_ACQUIRE_OFFSET, OUT Status);
 Status &= IPC_STRUCT_ACQUIRE_SUCCESS_MSK;
 }
 while ((Status == 0) && (TimeElapsed < 1 sec))

 if (TimeElapsed >= 1 sec) return false; // timeout
 else return true;
}

//---
// “PollSromApiStatus” Subroutine
bool PollSromApiStatus (addr32, OUT data32)
{
 do
 {
 ReadIO (addr32, OUT data32);
 Status = data32 & MXS40_SROMAPI_STATUS_MSK;
 }
 while (Status != MXS40_SROMAPI_STAT_SUCCESS) && (TimeElapsed < 1 sec))
 if (TimeElapsed >= 1 sec) return false; // timeout

 return true;
}

//---
// “CallSromApi” Subroutine
bool CallSromApi (callIdAndParams, OUT data32)
{
 // System Calls can be invoked either by the code running on the CPU core
 // or by the DAP directly. Each source of System Calls has it’s dedicated
 // IPC structure. For instance, on XMC5000 chips the code running on CM4
 // core must use IPC structure #1, System Calls invoked by the DAP must
 // use IPC#2. The mapping of IPC structures is shown in
 // the table below:
 //
 // | CM0+ | CM4 | DAP |

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 26 002-41783 Rev. **
2025-07-02

 // --------------------------------|
 // XMC5000 | 0 | 1 | 2 |
 //
 // In this example IPC #2 Is used.

 IpcId = 2;
 IpcAddr = IPC_STRUCT0 + IPC_STRUCT_SIZE * IpcId;

 // Check where the arguments for the SROM API are located
 // [0]: 1 - arguments are passed in IPC.DATA. 0 - arguments are passed in SRAM
 IsDataInRam = (callIdAndParams & MXS40_SROMAPI_DATA_LOCATION_MSK) == 0;

 // Acquire IPC_STRUCT[IpcId]
 Status = Ipc_Acquire(IpcId);
 if (Status == false) return false;

 // Write one of these to IPC_STRUCT[IpcId].DATA:
 // a) SROM API OpCode with Parameters (if all API parameters fit in one word)
 // b) Address in SRAM where they are located
 if (IsDataInRam) {
 WriteIO (IpcAddr + IPC_STRUCT_DATA0_OFFSET, SRAM_SCRATCH_ADDR);
 }
 else {
 WriteIO (IpcAddr + IPC_STRUCT_DATA0_OFFSET, callIdAndParams);
 }

 // Enable the notification interrupt of IPC_INTR_STRUCT[0](CM0+) for IPC_STRUCT[IpcId]
 WriteIO IPC_INTR_STRUCT + IPC_INTR_STRUCT_INTR_IPC_MASK_OFFSET, 1 << (16 + 2));

 // Notify to IPC_INTR_STRUCT[0]. IPC_STRUCT[IpcId].MASK <- Notify
 // This starts the SROM API execution
 WriteIO (IpcAddr + IPC_STRUCT_NOTIFY_OFFSET, 1 << 0 /*IPC_INTR_STRUCT0*/);

 // The poll lock status for the released state
 Status = Ipc_PollLockStatus (IpcId , false);
 if (Status == false) return false;

 // The poll data word
 if (IsDataInRam) {
 Status = PollSromApiStatus (SRAM_SCRATCH_ADDR, data32);
 }
 else {
 Status = PollSromApiStatus (IpcAddr + IPC_STRUCT_DATA0_OFFSET, data32);
 }

 return Status;
}
//---

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 27 002-41783 Rev. **
2025-07-02

5.3 Step 1.A – acquire XMC5000 MCU
The first step in programming the XMC5000 MCU is to put it into Test mode (or Programming mode). This is
special mode in which the CPU is controlled by an external programmer which can also access other system
resources such as SRAM and registers. The main purpose of this step is to prevent execution of the user’s code
from the main FLASH region. After the user’s code starts, it can repurpose the SWJ pins 3) (use them as GPIO), so
the external debugger will not be able to communicate with the device. If there is corrupted user’s code in the
main Flash region, the Cortex®-M0+ core may enter a lockup state. This step has strict timing requirements that
the host must meet to enter Test mode successfully. Figure 9 shows the timing diagram for entering Test mode.

Figure 9 Timing diagram for entering test mode

This diagram details the chip’s internal signals while entering Test mode. Everything starts from toggling the
XRES_L line (or applying power), so the chip enters Internal Reset mode for a Tlite_up period. After that, the
system boot code starts execution. When completed, the CPU waits during a Tlisten period for a special
connection sequence on the SWJ port. If, during this time, the host sends the correct sequence of SWJ
commands, the CPU enters Test mode. Otherwise, it starts the execution of the user’s code from the main
FLASH region. Timing parameters may vary depending on the boot code execution flow (see the corresponding
Architecture TRM for boot timing parameters). Therefore, the best way to enter Test mode is to start sending an
acquire sequence immediately after XRES_L is toggled (or power is supplied in Power Cycle mode). This
sequence is sent iteratively until it succeeds (all SWJ transactions are ACKed and all conditions are met).
Figure 10 shows the Acquire Chip procedure. It is detailed in terms of the SWD transaction. Note that the
recommended minimum frequency of the programmer is 1.5 MHz which meets the timing requirement of this
step.

3 Application firmware is expected to follow this procedure for the SWJ pin configuration:
1. Do not touch the configuration of the SWJ pins for parts that have a permanent SWD interface. They will be properly

configured and may have already connected to the SWD probe when the firmware starts.
2. For parts that repurpose their SWD pins:

• If the SWD interface is presently active (CPUSS_DP_STATUS.SWJ_CONNECTED bit is 1), leave the pins in their current
state; a probe connected during the acquire window and the pins should not be repurposed.

• If the SWD interface is not active, you may configure the pins and enable the alternate purpose.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 28 002-41783 Rev. **
2025-07-02

Figure 10 Flowchart of acquire chip step

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 29 002-41783 Rev. **
2025-07-02

5.3.1 Pseudocode – Step 1.A: Acquire chip

//---
// Reset the target depending on Acquire mode – Reset or Power Cycle
if (AcquireMode == “Reset”) ToggleXRES(); // Toggle the XRES_L pin, the target must be powered
else if (AcquireMode == “Power Cycle”) PowerOn();// Supply power to the target

if (Interface == “SWD”)
{
 Ack_OK = 3b’001;
 idcode = 0x6BA02477;
}
else // JTAG
{
 Ack_OK = 3b’010;
 idcode = 0x6BA00477;
}

// Execute the connection sequence – acquire a port.
// This is used as a handshake between the debugger and target device.
// After the target device replied to the request to read the IDCODE,
// it means that the device is already booted after a reset and ready to communicate.
do
{
 if (Interface == “SWD”)
 DAP_JTAGtoSWD();
 Ack = Read_DAP (IDCODE, OUT ID);
}while ((Ack != Ack_OK) && TimeElapsed < 1000 ms);

if ((ID != idcode) || (TimeElapsed >= 1000 ms)) return FAIL;
// For PowerCycle, the timeout must be longer. For example: ~3000 ms.

// Power up the debug port using the next bits in the CTRL/STAT register:
// [30]:CSYSPWRUPREQ and [28]:CDBGPWRUPREQ - power-up requests.
// [5]:STICKYERR, [4]:STICKYCMP and [1]:STICKYORUN – sticky errors bits
// Note: for the JTAG, sticky error bits are Read/Write enabled and writing 1
// to these bits clears the associated sticky errors.
// For the SWD, these bits are Read-only and to clean the sticky errors,
// write to the appropriate bits of the DP.ABORT register
if (Interface == “SWD”)
{
 Write_DAP (CTRL/STAT, 0x50000000);
}
else // JTAG
{
 Write_DAP (CTRL/STAT, 0x50000032);
}
Write_DAP (SELECT, 0x00000000); // Select SYSAP (APSEL=0x00)
Write_DAP (CSW, 0x23000002); // Set 32-bit transfer mode

// Enter the CPU into Test Mode
// Set the TEST_MODE bit in the TEST_MODE reg from the CPU space
WriteIO (SRSS_TST_MODE, SRSS_TST_MODE_TEST_MODE_MSK);

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 30 002-41783 Rev. **
2025-07-02

ReadIO (SRSS_TST_MODE, OUT DataOut);
if ((DataOut & SRSS_TST_MODE_TEST_MODE_MSK) == 0) return FAIL;

// The steps above are time critical and must be executed
// without a delay immediately after a reset.
// The steps below are to ensure that the target was successfully acquired.
// These steps are not time critical.

// Select CM0AP (APSEL=0x01) to check whether the core is not in the LOCKUP state
// and for further operations with flash
Write_DAP (SELECT, 0x01000000);

// Check the lockup (S_LOCKUP == 0) and halt (S_HALT == 0)
ReadIO (ARM_DHCSR, OUT DataOut);
if ((DataOut & ARM_DHCSR_S_LOCKUP_MSK) != 0
 || (DataOut & ARM_DHCSR_S_HALT_MSK) != 0) return FAIL;

return PASS
//---

5.4 Step 1.B – Acquire XMC5000 MCU (alternate method)
The Acquire Chip sequence in the previous section is based on entering the XMC5000 MCU Test mode by
triggering a hard-reset condition, and then sending the acquire sequence within the specified time window. The
hard-reset condition is generated by toggling either the XRES_L pin or the power supply to the device.
Programming by entering Test mode using XRES_L or power cycling is the recommended method for third-
party production programmers or any other general-purpose programmer.
There might be cases where the host programmer hardware or software constraints might prevent
programming of the device in Test mode. These constraints can include:
• Host programmer hardware might be IO pin constrained and cannot spare an extra IO for toggling the

XRES_L pin or the power supply to the XMC5000 MCU. Only the SWJ protocol pins are available for
programming.

• The host programmer software application is unable to meet the timing requirements to enter XMC5000
MCU Test mode after triggering a hard-reset condition. In such a scenario, the MCU enters the user’s code
execution mode after the test mode timing window elapses.

For a host programmer with any of the above constraints, the modified acquire chip sequence provided in this
section does not require the XRES_L/power supply toggling, and does not have the Test mode timing
requirements. Only the SWJ protocol pins are used for programming. This modified sequence works only under
the following conditions:
• The SWJ pins on the XMC5000 MCU have not been repurposed for any other application-firmware-specific

use. If the SWJ pins are repurposed as part of the existing firmware image in flash memory, the SWJ pins
are not available for communication with the host SWJ interface to update the existing firmware image.

• The Access Restriction Properties allow the SWJ access to the Access Debug Ports (Normal Access
Restriction properties are applicable if the device is in the Normal Protection state, “Secure” and Dead
Access Restriction properties are applicable if the device is in the “Secure” and Dead Protection state
respectively).

Developers wanting to program devices using the modified sequence should be aware of these limitations.
Devices coming from the factory satisfy both the above-listed conditions, and hence can be programmed using
the modified acquire sequence. But if firmware not meeting any of the above conditions is programmed to the
XMC5000 MCU, then subsequent re-programming of the device is not possible using the modified acquire

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 31 002-41783 Rev. **
2025-07-02

sequence. Due to this limitation, this method is not recommended for third-party programmers or general-
purpose programmers because they would generally be required to support programming under all possible
operating conditions.
Figure 11 shows the acquire chip (alternate method) procedure.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 32 002-41783 Rev. **
2025-07-02

Fi
gu

re
 1

1
Fl

ow
ch

ar
t o

f a
cq

ui
re

 ch
ip

 st
ep

 (a
lte

rn
at

e
m

et
ho

d)

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 33 002-41783 Rev. **
2025-07-02

5.4.1 Pseudocode – Step 1.B: Acquire chip (alternate method)

if (interface == “SWD”)
{
 Ack_OK = 3b’001;
 idcode = 0x6BA02477;else // JTAG
}
else // JTAG
 Ack_OK = 3b’010;
 idcode = 0x6BA00477;
}

//---
// Execute the SWJ connect sequence.
// 1000 ms time-out is the worst case for a secure application.
do {
 if (Interface == “SWD”)
 DAP_JTAGtoSWD();
 Ack = Read_DAP(IDCODE, OUT ID);
}while((Ack != Ack_OK) && TimeElapsed < 1000 ms);

if ((ID != idcode) || (TimeElapsed >= 1000 ms)) return FAIL;

// Power up the debug port by setting bits [30]:CSYSPWRUPREQ
// and [28]:CDBGPWRUPREQ in the CTRL/STAT register.
// Also, clear previous errors if any previous firmware upgrade
// operation was aborted, or invalid transaction executed.
if (Interface == “SWD”)
{
 // Clear previous errors: write to the AP ABORT register in Debug Port
 // (APnDP bit – 0, Address is 2’b00, Access - W for the AP ABORT register
 Write_DAP (ABORT, 0x0000001E);
 // Power up debug port
 Write_DAP (CTRL/STAT, 0x50000000);
}
else // JTAG
{
 // Power up the debug port and clear previous errors by writing bits
 // [5]:STICKYERR, [4]:STICKYCMP and [1]:STICKYORUN
 // Note: for the JTAG, sticky error bits are Read/Write enabled and writing 1
 // to these bits clears the associated sticky errors.
 // For the SWD, these bits are Read-only and to clean the sticky errors,
 // write to the appropriate bits of the DP.ABORT register
 Write_DAP (CTRL/STAT, 0x50000032);
}
Write_DAP (SELECT, 0x00000000); // Select SYSAP (APSEL=0x00)
Write_DAP (CSW, 0x23000002); // Set 32-bit transfer mode
Write_DAP (SELECT, 0x01000000); // Select CM0AP (APSEL=0x01)

// Get an address at the reset vector
// If flash is empty (address at default reset vector == 0), then the boot code
// jumps to an infinite loop in ROM. That is the sufficient condition for programming
ReadIO (0x10000004, OUT ResetAddress);

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 34 002-41783 Rev. **
2025-07-02

if (ResetAddress == 0) return PASS;

// Enable the debug, and halt the CPU using the DHCSR register
WriteIO (0xE000EDF0, 0xA05F0003);
// Verify the debug enable, cpu halt bits are set
ReadIO (0xE000EDF0, OUT Status);
if((Status & 0x00000003) != 0x00000003) return FAIL;

// Enable the Breakpoint unit using the BP_CTRL (Breakpoint Control Register)
// Set bits [0]: ENABLE =1, [1]: KEY=1
WriteIO (0xE0002000, 0x00000003);
// Map the address bits to the breakpoint compare register
// bit map, set the enable breakpoint bit, and the match bits
ResetAddress = (ResetAddress & 0x1FFFFFFC) | 0xC0000001;
//Update the breakpoint compare register
WriteIO (0xE0002008, ResetAddress);
// Issue a software reset
// using the AIRCR (Application Interrupt and Reset Control Register)
WriteIO (0xE000ED0C, 0x05FA0004);

// Let the target do some initialization before polling for IDCODE
Delay(5 ms);

// Repeat a portion of the acquire sequence again
// No need to check the ID value again
do {
 if (Interface == “SWD”)
 DAP_JTAGtoSWD();
 Ack = Read_DAP(IDCODE, OUT ID);
}while((Ack != Ack_OK) && TimeElapsed < 1000 ms);

if (TimeElapsed >= 1000 ms) return FAIL;

// Power up the debug port by setting bits [30]:CSYSPWRUPREQ
// and [28]:CDBGPWRUPREQ in the CTRL/STAT register.
// Also, clear previous errors if any previous firmware upgrade
// operation was aborted, or invalid transaction executed.
if (Interface == “SWD”)
{
 // Clear previous errors: write to the AP ABORT register in Debug Port
 // (APnDP bit – 0, Address is 2’b00, Access - W for the AP ABORT register
 Write_DAP (ABORT, 0x0000001E);
 // Power up the debug port
 Write_DAP (CTRL/STAT, 0x50000000);
}
else // JTAG
{
 // Power up the debug port and clear previous errors by writing bits
 // [5]:STICKYERR, [4]:STICKYCMP and [1]:STICKYORUN
 // Note: for the JTAG, sticky error bits are Read/Write enabled and writing 1
 // to these bits clears the associated sticky errors.
 // For the SWD, these bits are Read-only and to clean the sticky errors,
 // write to the appropriate bits of the DP.ABORT register

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 35 002-41783 Rev. **
2025-07-02

 Write_DAP (CTRL/STAT, 0x50000032);
}
Write_DAP (SELECT, 0x00000000); // Select SYSAP (APSEL=0x00)
Write_DAP (CSW, 0x00000002); // Set 32-bit transfer mode
Write_DAP (SELECT, 0x01000000); // Select CM0AP (APSEL=0x01)

// Verify the debug enable, cpu halt bits are set in the DHCSR register
ReadIO (0xE000EDF0, OUT Status);
if((Status & 0x00000003) != 0x00000003) return FAIL;

// Load infinite for loop code in SRAM address MEM_BASE_SRAM + 0x300
WriteIO (MEM_BASE_SRAM + 0x300, 0xE7FEE7FE);
// Load the PC with the address of infinite for the loop SRAM address with the thumb bit (bit
0) set
WriteIO (0xE000EDF8, MEM_BASE_SRAM + 0x301);
WriteIO (0xE000EDF4, 0x0001000F);
// Load the SP with the top of the SRAM address – Set for the minimum SRAM size devices (65 KB
size)
WriteIO (0xE000EDF8, MEM_BASE_SRAM + 0xFFF0);
WriteIO (0xE000EDF4, 0x00010011);
//Read the xPSR register, set the thumb bit, and restore the modified value to the xPSR register
WriteIO (0xE000EDF4, 0x00000010);
ReadIO (0xE000EDF8, OUT PsrRegVal);
PsrRegVal = PsrRegVal | 0x01000000;
WriteIO (0xE000EDF8, PsrRegVal);
WriteIO (0xE000EDF4, 0x00010010);
// Disable the Breakpoint unit
WriteIO (0xE0002000, 0x00000002);
// Unhalt the CPU
WriteIO (0xE000EDF0, 0xA05F0001);

return PASS;
//---

5.5 Step 2 – Check silicon ID
This step is required to verify that the acquired XMC5000 MCU corresponds to the hex file. It reads the ID from
the hex file and compares it with the ID obtained from the XMC5000 MCU, using the Silicon ID SROM API.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 36 002-41783 Rev. **
2025-07-02

5.5.1 Pseudocode – Step 2: Check silicon ID

//---
// Read Silicon ID from the hex file, 4 bytes from address 0x9050 0002 (big endian):
// HexID[0] - Silicon ID Hi
// HexID[1] - Silicon ID Lo
// HexID[2] - Revision ID
// HexID[3] - Family ID
// HEX_ReadSiliconID() must be implemented.
HexID = HEX_ReadSiliconID();

// Read Silicon ID from the target using a SROM request
// Type 0: Get Family ID & Revision ID
Params1 = MXS40_SROMAPI_SILID_CODE + (0x0000FF00 & (0 << 8));
Status = CallSromApi(Params1, OUT DataOut0);
if(!Status) return FAIL;

// Type 1: Get Silicon ID and protection state
Params2 = MXS40_SROMAPI_SILID_CODE + (0x0000FF00 & (1 << 8));
Status = CallSromApi(Params2, OUT DataOut1);
if(!Status) return FAIL;

FamilyIdHi = (DataOut0 & 0x0000FF00) >> 8; // Family ID High
FamilyIdLo = (DataOut0 & 0x000000FF) >> 0; // Family ID Low
RevisionIdMaj = (DataOut0 & 0x00F00000) >> 20; // Rev ID Major
RevisionIdMin = (DataOut0 & 0x000F0000) >> 16; // Rev ID Major
SiliconIdHi = (DataOut1 & 0x0000FF00) >> 8; // Silicon ID High
SiliconIdLo = (DataOut1 & 0x000000FF) >> 0; // Silicon ID Low
ProtectState = (DataOut1 & 0x000F0000) >> 16; // Protection state
LifeCycleStage = (DataOut1 & 0x00F00000) >> 20; // Life cycle stage

// Compare Family ID and Silicon ID with the Read from the the HEX file
// Ignore Revision ID, it is not essential for the programming; there are many
if ((FamilyIdHi != HexID.FamilyIdHi) || (FamilyIdLo != HexID.FamilyIdLo) ||
 (SiliconIdHi != HexID.SiliconIdHi) || (SiliconIdLo != HexID.SiliconIdLo)
 return FAIL;

return PASS;
//---

5.6 Step 3 – Erase all flash
The FLASH must be erased before programming. This step erases all FLASH rows in the user’s flash calling the
Erase All SROM API.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 37 002-41783 Rev. **
2025-07-02

5.6.1 Pseudocode – Step 3: Erase all flash

//---
Params = MXS40_SROMAPI_ERASEALL_CODE;
Status = CallSromApi(Params, OUT DataOut);
return Status;
//---

5.7 Step 4 – Erase sector of FLASH and WFLASH
The whole FLASH can be erased by the Erase All command. But sometimes it is necessary to erase only a few
FLASH sectors. Besides, there is no Erase All command for the WFLASH. The Erase Sector SROM API resolves the
issue.

5.7.1 Pseudocode – Step 4: Erase sector

//---
// 1. Prepare the EraseSector SROM API
// SRAM_SCRATCH: OpCode
WriteIO (SRAM_SCRATCH_ADDR , MXS40_SROMAPI_ERASESECTOR_CODE);

// SRAM_SCRATCH + 0x04: Any address inside of the sector to be erased
Params = 0x14000000; // The address of the first WFLASH sector
WriteIO (SRAM_SCRATCH_ADDR + 0x04 , Params);

// 2. Call the EraseSector SROM API
Status = CallSromApi(Params, OUT DataOut);
return Status;
//---

5.8 Step 5 – Program FLASH and WFLASH
The Flash memory is programmed in rows. The programmer must serially program each row individually. This
step uses the Program Row SROM API. The API requires a row size as the input parameter. See Table 1 for the
row sizes. See Table 10 for mapping the flash row size to the Program Row API input parameter value.

Table 10 Mapping row size to program row API parameter value

Flash region Flash row size, bytes Program API constant

Work Flash 4 2

Main Flash 8 3

Main Flash 32 5

Main Flash 512 9

Figure 12 illustrates this programming algorithm.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 38 002-41783 Rev. **
2025-07-02

Figure 12 Flowchart of the “program flash” step

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 39 002-41783 Rev. **
2025-07-02

5.8.1 Pseudocode – Step 5: Program flash

//---
// StartAddr and EndAddr are taken from the programming file
// and align them to the supported row size

// Program all data from the programming file

Addr = StartAddr;
while (Addr < EndAddr)
{
 // 1. Extract the row data from the hex-file from address
 // Addr and put into the buffer Data.
 // To speed up the programming, program the flash
 // with the maximum length of the row
 // HEX_ReadData() must be implemented by Programmer.
 Data = HEX_ReadData(Addr, MaxRowSize);

 // 2. Select an optimal row size
 if (Data.size() >= MaxRowSize)
 {
 RowSize = MaxRowSize;
 }
 else
 {
 // If the programming file does not contain the requested data, decrease
 // RowSize if possible or fill the rest of the Read data by erasing the cell’s value
 }

 // 3. Prepare ProgramRow SROM API
 // SRAM_SCRATCH: OpCode
 WriteIO (SRAM_SCRATCH_ADDR , MXS40_SROMAPI_PROGRAMROW_CODE);

 // SRAM_SCRATCH + 0x04: Data location/size and Integrity check
 Params =
 (6 << 0) + // Data size: take the value from Table 10. E.g. 6 for 512 bytes
 (1 << 8) + // Data location: 1 - SRAM
 (0 << 16) + // Verify row: 0 - Data integrity check is not performed
 (0 << 24); // Not used
 WriteIO (SRAM_SCRATCH_ADDR + 0x04 , Params);

 // SRAM_SCRATCH + 0x08:
 // The flash address to be programmed (in 32-bit system address format)
 WriteIO (SRAM_SCRATCH_ADDR + 0x08 , Addr);

 // SRAM_SCRATCH + 0x0C:
 // The pointer to the first data byte location
 DataRamAddr = SRAM_SCRATCH_ADDR + 0x10;
 WriteIO (SRAM_SCRATCH_ADDR + 0x0C, DataRamAddr);

 // Load the row bytes into the SRAM buffer
 for (i=0; i < RowSize || i < Data.size(); i+=4)
 {

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 40 002-41783 Rev. **
2025-07-02

 DataWord = (Data[i+3]<<24) +
 (Data[i+2]<<16) +
 (Data[i+1]<<8) +
 (Data[i]<<0);
 WriteIO (DataRamAddr + i, DataWord);
 }

 // 4. Call the ProgramRow SROM API
 Status = CallSromApi(Params, OUT DataOut);
 if (!Status) return FAIL;
 Addr += RowSize;
}
return PASS;
//--

5.9 Step 6 – Program SFLASH (optional)
The SFLASH stores application-specific data such as calibration data, non-volatile parameters, and so on.
See Table 3 for the address ranges in the SFLASH region that can be programmed.
The SFLASH programming step is optional—every application determines the need for this flash region and its
purpose. The SFLASH rows are not stored in the hex file by default, so if your workflow requires that the SFLASH
data be in the hex file, the linker scripts must contain the appropriate sections and the data for these sections
must be properly defined. Alternatively, the user application can update the SFLASH region whenever needed
(CPU access via SROM APIs). During mass production, a vendor should define the programming process—where
to get the SFLASH data and at which row/address to store it.
Figure 13 illustrates the programming algorithm for the SFLASH region.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 41 002-41783 Rev. **
2025-07-02

Figure 13 Flowchart of "Program SFLASH" step

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 42 002-41783 Rev. **
2025-07-02

5.9.1 Pseudocode. Step 9: Program SFLASH

//---
// StartAddr and EndAddr are taken from the programming file
// and align them to the supported row size

// Program all data from the programming file

Addr = StartAddr;
while (Addr < EndAddr)
{
 // 1. Extract the row data from the hex-file from address
 // Addr and put into buffer Data.
 // HEX_ReadData() must be implemented by Programmer.
 Data = HEX_ReadData(Addr, RowSize);

 // 2. Prepare the WriteRow SROM API
 // SRAM_SCRATCH: OpCode
 WriteIO (SRAM_SCRATCH_ADDR , MXS40_SROMAPI_WRITEROW_CODE);

 // SRAM_SCRATCH + 0x04: Data location/size and Integrity check
 Params =
 (1 << 16); // Verify row: 0 - Data integrity check is performed
 WriteIO (SRAM_SCRATCH_ADDR + 0x04 , Params);

 // SRAM_SCRATCH + 0x08:
 // The flash address to be programmed (in 32-bit system address format)
 WriteIO (SRAM_SCRATCH_ADDR + 0x08 , Addr);

 // SRAM_SCRATCH + 0x0C:
 // The pointer to the first data byte location
 DataRamAddr = SRAM_SCRATCH_ADDR + 0x10;
 WriteIO (SRAM_SCRATCH_ADDR + 0x0C, DataRamAddr);

 // Load the row bytes into the SRAM buffer
 for (i=0; i < RowSize || i < Data.size(); i+=4)
 {
 DataWord = (Data[i+3]<<24) +
 (Data[i+2]<<16) +
 (Data[i+1]<<8) +
 (Data[i]<<0);
 WriteIO (DataRamAddr + i, DataWord);
 }

 // 4. Call the ProgramRow SROM API
 Status = CallSromApi(MXS40_SROMAPI_WRITEROW_CODE, OUT DataOut);
 if (!Status) return FAIL;
 Addr += RowSize;
}
return PASS;
//--

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 43 002-41783 Rev. **
2025-07-02

5.10 Step 7 – Verify FLASH, WFLASH, and SFLASH
The checksum is verified eventually, so this step is optional. It should be kept in the programming flow for
higher reliability. The checksum cannot completely guarantee that the content is written without errors.
During verification, the programmer reads a row from flash and the corresponding data from the hex file and
compares them. If any difference is found, the programmer must stop and return a failure. Each row must be
considered.
Reading from the Flash, WFLASH, and SFLASH is achieved by direct access to the memory space of the CPU. No
SROM API is required; simply read the word (32 bits) from the address range 0x10000000 to 0x100FFFFC,
FlashSize – 4. For example:

ReadIO (0x10000000, OUT FlashWord);
ReadIO (0x10000004, OUT FlashWord);
…
ReadIO (0x100FFFFC, OUT FlashWord);

Figure 14 illustrates the verification algorithm.

Figure 14 Flowchart of “Verify flash” step

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 44 002-41783 Rev. **
2025-07-02

5.10.1 Pseudocode – Step 6: Verify flash

//--
// StartAddr and EndAddr are taken from the programming file
// and align them to the supported row size

// RowSize can be any value multiple of 2 and the flash size. Use 512 in this example
RowSize = 512;

//Read and Verify Flash rows
Addr = StartAddr;
while (Addr < EndAddr)
{
 //1. Read a row from the hex file
 //from address: Addr into the buffer Data.
 //HEX_ReadData() must be implemented by Programmer.
 HexData = HEX_ReadData(Addr, RowSize);

 //2. Read a row from the chip
 for (i = 0; i < RowSize; i += 4)
 {
 //Read flash via the AHB-interface
 ReadIO (Addr + i, OUT DataOut);
 ChipData[i + 0] = (DataOut >> 0) & 0xFF;
 ChipData[i + 1] = (DataOut >> 8) & 0xFF;
 ChipData[i + 2] = (DataOut >> 16) & 0xFF;
 ChipData[i + 3] = (DataOut >> 24) & 0xFF;
 }

 //3. Compare them
 for (i = 0; i < RowSize; i++)
 {
 if (ChipData[i] != HexData[i]) return FAIL;
 }
}
return PASS;
//--

5.11 Step 8 – Verify checksum of FLASH, WFLASH, and SFLASH
This step validates the result of the flash programming process. It calculates the checksum of the user’s rows
written in Step 5 (Checksum SROM API is used) and compares this value with the 4-byte checksum from the hex
file. The checksum operation cannot completely guarantee that the data is written correctly. For this reason,
the Verify Flash step is also recommended.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 45 002-41783 Rev. **
2025-07-02

5.11.1 Pseudocode – Step 7: Verify checksum

//---
// Use the Checksum SROM API to get the checksum of the whole user's FLASH
// Byte 2 of the parameters select whether the checksum
// is performed on the whole FLASH, or a row of FLASH.
Params = MXS40_SROMAPI_CHECKSUM_CODE +
 (0 << 22) + // Flash region: 0 – main , 1- work , 2 - supervisory
 (1 << 21)); // Whole FLASH: 0 – page , 1 – whole FLASH
Status = CallSromApi(Params, OUT DataOut);
if(!Status) return FAIL;

// Get checksum bits
IpcAddr = IPC_STRUCT0 + IPC_STRUCT_SIZE * IpcId;
ReadIO (IpcAddr + IPC_STRUCT_DATA1_OFFSET, OUT Checksum);

// Read 4-byte checksum of user code from hex-file
// HEX_ReadChecksum() must be implemented by Programmer.
Hex_Checksum = HEX_ReadChecksum();

// Compare silicon's vs hex's checksum
if (Checksum != Hex_Checksum) return FAIL;

return PASS;
//--

5.12 Step 9 – Program eFuses and lifecycles
The eFuse memory starts in address 32’h9070 0000 in the programming flow. The eFuse and lifecycle
programming must be the last step in the programming flow. The table of contents must be programmed
before this step. If any data is changed when the “secure” bit is blown, the XMC5000 MCU will go to the dead
state. Figure 15 shows the sequence to program the eFuse and lifecycles.
See the “Device security” and “Protection units” sections of the technical reference manual (TRM) for more
details of the security settings for the XMC5000 MCU.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 46 002-41783 Rev. **
2025-07-02

Figure 15 Flowchart of the “Program eFuses and lifecycles” step

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 47 002-41783 Rev. **
2025-07-02

5.12.1 Pseudocode – Step 9: Program eFuses and lifecycles

//---
// ReadFuseBit
//
// Uses ReadFuseByte SROM API to read the eFuse byte and returns the specified bit.
//
// Input:
// byteAddr – A byte offset in eFuse memory.
// bitAddr – A bit address of the eFuse bit inside of the eFuse byte.
// Output:
// bitValue – A read eFuse bit value.

// Reads the whole eFuse byte.
params = MXS40_SROMAPI_READ_FUSE_CODE + (byteAddr<<8);
CallSromApi(params, OUT byteValue);

// Returns the specific bit value.
return (byteValue & (1 << bitAddr)) != 0;

//---
// BlowFuseBit
//
// Uses BlowFuseBit SROM API to blow the eFuse bit.
//
// Input:
// byteAddr – The byte offset in eFuse memory: 0-127.
// bitAddr – The bit positions: 0-7.
// Output:
// SUCCESS if the bit is blown, else - FAIL.

// Calculates a macro address.
// Updates the byte address (taking into account macro address).

if (1 == ReadFuseBit(byteAddr, bitAddr))
{
 WARNING("The efuse bit at address 0x%X[%X] has already been blown",
 byteAddr, bitAddr);
 return SUCCESS;
}

macroAddr = 0;
byte_Addr = byteAddr;
while (byte_Addr >= 32) // 32 – The eFuse macro size.
{
 Byte_Addr = byte_Addr - 32;
 macroAddr = macroAddr + 1;
}

params = MXS40_SROMAPI_BLOW_FUSE_CODE + // BlowFuseBit SROM API code
 (0x00FF0000 & (byte_Addr<<16)) + // The byte offset in the macro
 (0x0000F000 & (macroAddr<<12)) + // Macro Address
 (0x00000700 & (bitAddr<<8)); // The bit position in the byte

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 48 002-41783 Rev. **
2025-07-02

CallSromApi(params, OUT dataOut);

if (0 == ReadFuseBit(byteAddr, bitAddr))
{
 ERROR("The efuse bit at address 0x%X[%X] was not blown",
 byteAddr, bitAddr);
 return FAIL;
}

//---
// Programs the eFuse region and performs a Life-Cycle transition.

#define DEAD_ACCESS_RESTR_OFFSET 0x40
#define SECURE_ACCESS_RESTR_OFFSET 0x3C

// Extracts all eFuse data from the programming file.
// NOTE Each eFuse bit is represented by a byte in the programming file.
 The programming file can contain 0x00, 0x01, and 0xFF.
 They correspond to the bit values: 0, 1, and “ignore” respectively.
 “Ignore” means that the value is not specified in the programming file.
 HEX_ReadEFuseData() must be implemented by the Programmer.
EFUSE_Data = HEX_ReadEFuseData();

// Programs all eFuse bits from the programming file.
Addr = 0;
while (Addr < 1024) // 128 eFuse bytes = 1024 eFuse bits.
{
 // Skips Secure Access Restriction, Dead Access Restrictions
 // and the Life-Cycle byte.

 byteAddr = Addr / 8;
 bitAddr = Addr % 8;

 if (EFUSE_Data[Addr] == 0)
 {
 if (ReadFuseBit(byteAddr, bitAddr))
 {
 ERROR("The eFuse bit at address 0x%X[%X] has been blown but didn’t
have to be", byteAddr, bitAddr);
 return FAIL;
 }
 }
 else
 BlowFuseBit(byteAddr, bitAddr);

 Addr++;
}

// Performs Life-Cycle transitions.
if (EFUSE_Data[1] & 0x0F)
 // Only the transition to Secure or Secure with Debug is supported.
{
 // Checks if the chip is in the Normal-Provisioned Life-Cycle.

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 49 002-41783 Rev. **
2025-07-02

 // LifeCycleStage is returned by SiliconID SROM API,
 // in Step 2 – “Get Silicon ID and Life-Cycle”, must be equal to 7.
 // Otherwise, exits the routine .
 offset = DEAD_ACCESS_RESTR_OFFSET;
 deadAccess = EFUSE_Data[offset] | (EFUSE_Data[offset + 1] << 8)
 | (EFUSE_Data[offset+2] << 16)

 offset = SECURE_ACCESS_RESTR_OFFSET;
 secureAccess = EFUSE_Data[offset] | (EFUSE_Data[offset + 1] << 8)
 | (EFUSE_Data[offset+2] << 16)

 isDebug = (EFUSE_Data[1] & 0x0C) != 0;

 // Prepares the TransitionToSecure SROM API.
 // SRAM_SCRATCH: OpCode
 WriteIO (SRAM_SCRATCH_ADDR , MXS40_SROMAPI_TO_SECURE_CODE | isDebug);

 // SRAM_SCRATCH + 0x04: Secure Access Restriction
 WriteIO (SRAM_SCRATCH_ADDR + 0x04, secureAccess);

 // SRAM_SCRATCH + 0x04: Dead Access Restriction
 WriteIO (SRAM_SCRATCH_ADDR + 0x04, deadAccess);

 // Calls the TransitionToSecure SROM API.
 Status = CallSromApi(SRAM_SCRATCH_ADDR, OUT DataOut);
 if (!Status) return FAIL;

 return PASS;

XMC5xxx MCU programming specification

5 Programming algorithm

Programming Specification 50 002-41783 Rev. **
2025-07-02

6 Appendix A: Intel hex file format
Intel hex file records are a text representation of hexadecimal-coded binary data. Only ASCII characters are
used, so the format is portable across most computer platforms. Each line (record) of Intel hex file consists of
six parts, as shown in Figure 16.

Figure 16 Hex file record structure

• Start code – One character – an ASCII colon ':'
• Byte count – Two hex digits (1 byte). Specifies the number of bytes in the data field.
• Address – Four hex digits (2 bytes). A 16-bit address of the beginning of the memory position for the data.
• Record type – Two hex digits (00 to 05). Defines the type of the data field. The record types used in the hex

file generated by Infineon are as follows.
- 00 – A data record with data and a 16-bit address.
- 01 – The end of a file record which is a file termination record and has no data. This must be the last

line of the file; only one is allowed for every file.
- 04 – An extended linear address record, allows full 32-bit addressing. The address field is 0000, the byte

count is 02. The two data bytes represent the upper 16 bits of the 32-bit address, when combined with
the lower 16-bit address of the 00-type record.

• Data – A sequence of ‘n’ bytes of the data, represented by 2n hex digits.
• Checksum – Two hex digits (1 byte) which is the least significant byte of the two complements of the sum

of the values of all fields except fields 1 and 6 (start code ‘:’ byte and two hex digits of the checksum).
Examples for the different record types used in the example hex file are as follows: Consider that these three
records form the hex file.

:020000043200C8
:041000001122334442
:00000001FF

The first record (:020000043200C8) is an extended linear address record as indicated by the value in the record
type field (04). The address field is 0000, the byte count is 02. This means that there are two data bytes in this
record. These data bytes (0x3200) specify the upper 16 bits of the 32-bit address of data bytes. In this case, all
the data records that follow this record are assumed to have their upper 16-bit address as 0x3200 (in other
words, the base address is 0x32000000). 0xC8 is the checksum byte for this record calculated as following:

0xC8 = 0x100 – (0x02+0x00+0x00+0x04+0x32+0x00).

Summary:

XMC5xxx MCU programming specification

6 Appendix A: Intel hex file format

Programming Specification 51 002-41783 Rev. **
2025-07-02

http://en.wikipedia.org/wiki/ASCII

Address: 000016 = 010
Byte count: 0216 = 210
Record type: 0416 = Extended Linear Address
Data: 320032
Checksum: C816

Calculated checksum: C816

The next record (:041000001122334442) is a data record, as indicated by the value in the record type field (00).
The byte count is 04, meaning there are four bytes in this record . The 32-bit starting address for these data
bytes is at address 0x32001000. The upper 16-bit address (0x3200) is derived from the extended linear address
record in the first line; the lower 16-bit address is specified in the address field of this record as 0x1000. 0x42 is
the checksum byte for this record.
Summary:

Address: 100016 = 409610
Byte count: 0416 = 410
Record type: 0016 = Data
Checksum: 4216

Calculated checksum: 4216

The last record (:00000001FF) is the end-of-file record, as indicated by the value in the record type field (01). This
is the last record of the hex file.

XMC5xxx MCU programming specification

6 Appendix A: Intel hex file format

Programming Specification 52 002-41783 Rev. **
2025-07-02

7 Appendix B: Serial wire debug (SWD) protocol
The SWD protocol is a packet-based serial transaction protocol. At the pin level, it uses a single bidirectional
data connection (SWJ_SWDIO_TMS) and a clock connection (SWJ_SWCLK_TCLK). The host programmer always
drives the clock line, while either the programmer or the XMC5000 MCU drives the data line. A complete data
transfer (one SWD packet) requires 46 clocks and consists of three phases:
• Packet Request – The host programmer issues a request to the XMC5000 MCU.
• Acknowledge Response – The XMC5000 MCU sends an acknowledgment to the host.
• Data Transfer Phase – The data transfer is either from the XMC5000 MCU to the host, following a read

request (RDATA), or from the host to the XMC5000 MCU, following a write request (WDATA). This phase is
present only when a packet request phase is followed by a valid (OK) acknowledge response

Figure 17 shows the timing diagrams of the read and write SWD packets.

Figure 17 Write and read SWD packet timing diagrams

• Host Write Cycle – the Host sends data to the SWJ_SWDIO_TMS line on the falling edge of
SWJ_SWCLK_TCLK and the target will read that data on the next SWJ_SWCLK_TCLK rising edge (for
example, 8-bit header data).

• Host Read Cycle – the target sends data to the SWJ_SWDIO_TMS line on the rising edge of
SWJ_SWCLK_TCLK and the Host reads that data on the next SWJ_SWCLK_TCLK falling edge (for example,
ACK phase (ACK[2:0]), Read Data (rdata[31:0])).

• The Host should not drive the SWJ_SWDIO_TMS line during the TrN phase. During the first TrN phase (½
cycle duration) of the SWD packet, the target starts driving the ACK data to the SWDIO line on the rising
edge of SWJ_SWCLK_TCLK . The Host reads the data on the subsequent falling edge of SWJ_SWCLK_TCLK.
The second TrN phase is 1.5 clock cycles as shown in this figure. Both the target and Host will not drive the
line during the entire second TrN phase (indicated as ‘z’). The Host starts sending the Write data (wdata) on
the next falling edge of SWDCK after the second TrN phase.

The SWD packet is transmitted in this sequence:
1. The start bit initiates a transfer; it is always logical 1.
2. The APnDP bit determines whether the transfer is AP access (indicated by 1), or DP access (indicated by

0).
3. The next bit is RnW, which is 1 for a Read from the MCU or 0 for a Write to the MCU.
4. The ADDR bits (A[3:2]) are register select bits for the access port or debug port. See Table 6 for the

register definition.

XMC5xxx MCU programming specification

7 Appendix B: Serial wire debug (SWD) protocol

Programming Specification 53 002-41783 Rev. **
2025-07-02

5. The parity bit contains the parity of APnDP, RnW, and ADDR bits. This is an even parity bit. If the number
of logical 1s in this bit is odd, then the parity must be 1, otherwise it is 0.
If the parity bit is incorrect, the XMC5000 MCU ignores the header, and there is no ACK response. From
the host standpoint, the programming operation should be aborted and retried by doing a device reset.

6. The stop bit is always logic 0.
7. The park bit is always logic 1 and should be driven high by the host.
8. The ACK bits are a device-to-host response. The possible values are shown in Table 11. Note that ACK

in the current SWD transfer reflects the status of the previous transfer. OK ACK means that the previous
packet was successful. The WAIT response requires a data phase, as explained in the following list. For a
FAULT status, the programming operation should be aborted immediately.
• For a WAIT response, if the transaction is a Read, the host should ignore the data read in the data

phase. The XMC5000 MCU does not drive the line and the host must not check the parity bit as well.
• For a WAIT response, if the transaction is a write, the data phase is ignored by the XMC5000 MCU.

However, the host must still send the data to be written from the standpoint of implementation. The
parity data parity bit corresponding to the data should also be sent by the host.

• For a WAIT response, it means that the XMC5000 MCU is processing the previous transaction. The
host can try for a maximum four continuous WAIT responses to see if an OK response is received. If it
fails, then the programming operation should be aborted and retried.

• For a FAULT response, the programming operation should be aborted and retried by doing a device
reset.

Table 11 ACK response for SWD transfers

ACK[2:0] SWD

OK 001

WAIT 010

FAULT 100

NACK 111
9. The data phase includes a parity bit (even parity)

• For a Read packet, if the host detects a parity error, then it must abort the programming operation
and try again.

• For a Write packet, if the XMC5000 MCU detects a parity error in the data sent by the host, it
generates a FAULT ACK response in the next packet.

10. The Turnaround (TrN) phase. There is a single-cycle turn-around phase between the packet request and
the ACK phases, as well as between the ACK and data phases for Write transfers as shown in Table
11. According to the SWD protocol, both the host and the XMC5000 MCU use the TrN phase to change
the drive modes on their respective SWDIO lines. During the first TrN phase after packet request, the
XMC5000 MCU starts driving the ACK data on the SWDIO line on the rising edge of SWDCK in the TrN
phase. This ensures that the host can read the ACK data on the next falling edge. Thus, the first TrN
cycle lasts for only a half-cycle duration. The second TrN cycle of the SWD packet is one and one-half
cycle long. Neither the host nor the XMC5000 MCU should drive the SWDIO line during the TrN phase, as
indicated by ‘z’ in Table 11.

11. The address, ACK, and Read and Write data are always transmitted LSB first.
12. According to the SWD protocol, the host can generate any number of SWD clock cycles between two

packets with the SWDIO low. You should generate several dummy clock cycles (three) between two
packets or make the clock free running in IDLE mode.

XMC5xxx MCU programming specification

7 Appendix B: Serial wire debug (SWD) protocol

Programming Specification 54 002-41783 Rev. **
2025-07-02

Note: The SWD interface can be reset by clocking 50 or more cycles with the SWJ_SWDIO_TMS kept high. To
return to the idle state, the SWJ_SWDIO_TMS must be clocked low once.

XMC5xxx MCU programming specification

7 Appendix B: Serial wire debug (SWD) protocol

Programming Specification 55 002-41783 Rev. **
2025-07-02

8 Appendix C: Joint test action group (JTAG) protocol
The XMC5000 JTAG interface complies with the IEEE 1149.1 specification and provides additional instructions.
There are two TAPs in the chip. One is in the IOSS for boundary scan and the other is in the CPUSS DAP (IDCODE
0x6BA00477), which is used for device debug and programming. The two TAPs are connected in series, where
the TDO of the IOSS TAP is connected to the TDI of the DAP TAP. This is illustrated in Table 12.

Figure 18 IOSS/DAP TAP connection

IOSS TAP is not used during device programming and must be put into BYPASS mode. This can be done by
shifting the BYPASS instruction (0b1111) into the IOSS instruction register. The size of the Instruction Register in
IOSS TAP is 4 bits. In Bypass mode, the data register is only 1-bit long with the contents of 0. Bypass mode is
used to isolate the XMC5000 MCU TAP. See the example of the TAPs configuration in Figure 19.
CPUSS TAP consists of a 35-bit data register (called DP/AP access register) and a 4-bit instruction register. The
important CPUSS TAP instructions to program the device through the JTAG are listed in Table 12.

Table 12 XMC5000 CPUSS TAP JTAG instructions

Bit Code [3:0] Instruction XMC5000 function

1110 IDCODE Connects TDI and TDO to the device 32-bit JTAG ID code.

1010 DPACC Connects TDI and TDO to the DP/AP access register (35-bit), for access to the
Debug Port registers.

1011 APACC Connects TDI and TDO to the DP/AP access register (35-bit), for access to the
Access Port registers.

1111 BYPASS Bypasses the device, by providing 1-bit latch (bypass register) connected
between TDI and TDO.

Figure 19 IOSS/DAP TAP configuration examples

1. Instructions registers combined. 8 bits in total.
2. Access the DAP’s APACC registers for device debug and programming. IOSS TAP is in bypass mode. 36 bits

in total.

XMC5xxx MCU programming specification

8 Appendix C: Joint test action group (JTAG) protocol

Programming Specification 56 002-41783 Rev. **
2025-07-02

Revision history
Version Date Description
** 2025-07-02 New document

XMC5xxx MCU programming specification

Revision history

Programming Specification 57 002-41783 Rev. **
2025-07-02

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-07-02
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-krn1751393449057

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Programmer
	1.2 XMC5000 MCU family overview

	2 Non-volatile memory subsystem
	2.1 Flash main region (FLASH)
	2.2 Flash work region (WFLASH)
	2.3 Flash supervisory region (SFLASH)
	2.4 Electronic fuses (eFuse)

	3 Hex file
	3.1 Organization of the hex file

	4 Protocol stack
	4.1 Communication interface
	4.1.1 Program and debug interface
	4.1.1.1 DAP security
	4.1.1.2 DAP power domain
	4.1.1.3 SWD/JTAG selection

	4.1.2 Hardware access commands
	4.1.3 Pseudocode

	4.2 Physical layer

	5 Programming algorithm
	5.1 High-level programming flow
	5.2 Constants and subroutines used in the programming flow
	5.3 Step 1.A – acquire XMC5000 MCU
	5.3.1 Pseudocode – Step 1.A: Acquire chip

	5.4 Step 1.B – Acquire XMC5000 MCU (alternate method)
	5.4.1 Pseudocode – Step 1.B: Acquire chip (alternate method)

	5.5 Step 2 – Check silicon ID
	5.5.1 Pseudocode – Step 2: Check silicon ID

	5.6 Step 3 – Erase all flash
	5.6.1 Pseudocode – Step 3: Erase all flash

	5.7 Step 4 – Erase sector of FLASH and WFLASH
	5.7.1 Pseudocode – Step 4: Erase sector

	5.8 Step 5 – Program FLASH and WFLASH
	5.8.1 Pseudocode – Step 5: Program flash

	5.9 Step 6 – Program SFLASH (optional)
	5.9.1 Pseudocode. Step 9: Program SFLASH

	5.10 Step 7 – Verify FLASH, WFLASH, and SFLASH
	5.10.1 Pseudocode – Step 6: Verify flash

	5.11 Step 8 – Verify checksum of FLASH, WFLASH, and SFLASH
	5.11.1 Pseudocode – Step 7: Verify checksum

	5.12 Step 9 – Program eFuses and lifecycles
	5.12.1 Pseudocode – Step 9: Program eFuses and lifecycles

	6 Appendix A: Intel hex file format
	7 Appendix B: Serial wire debug (SWD) protocol
	8 Appendix C: Joint test action group (JTAG) protocol
	Revision history
	Disclaimer

