

KIT_CSK_PASCO2_5V

XENSIV™ PASCO2V15 Connected Sensor Kit

About this document

Scope and purpose

This user guide describes the function, circuitry, and performance of the XENSIV™ PASCO2V15 Wing board, part of Infineon's XENSIV™ PASCO2V15 Connected Sensor Kit ([KIT_CSK_PASCO2_5V](#)).

Intended audience

The intended audience for this document is design engineers, technicians, and developers of electronic systems, working with Infineon's XENSIV™ photoacoustic spectroscopy (PAS) CO₂ gas sensors or XENSIV™ DPS368 barometric pressure sensor.

Reference Board/Kit

Product(s) embedded on a PCB with a focus on specific applications and defined use cases that may include software. PCB and auxiliary circuits are optimized for the requirements of the target application.

Note: Boards do not necessarily meet safety, EMI, quality standards (for example UL, CE) requirements.

Important notice

Important notice

“Evaluation Boards and Reference Boards” shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as “Reference Board”).

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer’s technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Safety precautions

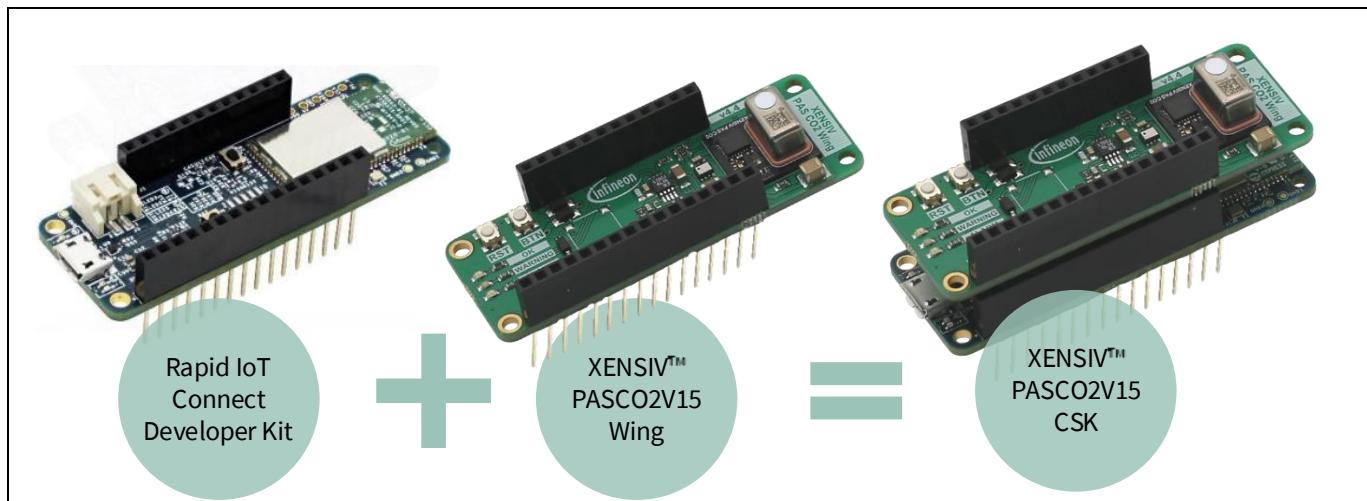
Safety precautions

Note: Please note the following warnings regarding the hazards associated with development systems.

Table 1 Safety precautions

	Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.
---	---

Table of contents**Table of contents**


About this document	1
Important notice	2
Safety precautions	3
Table of contents	4
1 The board at a glance	5
1.1 Scope of supply	6
1.2 Block diagram.....	6
1.3 Main features	8
1.4 Board parameters and technical data.....	8
2 System and functional description	9
2.1 Getting started.....	9
2.2 Quick IoT experience.....	9
2.2.1 Signup and login	9
2.2.2 Add your device.....	10
2.2.3 Application	10
2.2.4 Configure Wi-Fi network	11
2.2.5 Submit your device configurations	11
2.2.6 Download the zip package.....	12
2.2.7 Program the KIT_CSX_PASCO2_5V	13
2.2.8 Device management	14
2.2.9 Select desired application	14
2.2.10 Selected application attributes.....	15
2.2.11 View sensor data	15
3 System design	17
3.1 Schematics	18
3.2 Layout	21
3.3 Bill of materials.....	21
3.4 Connector details	22
References	25
Glossary	26
Revision history	27
Disclaimer	28

1 The board at a glance

1 The board at a glance

The XENSIV™ PASCO2V15 Connected Sensor Kit supports customers in testing sensor-driven IoT products and CO2 use cases as well as in prototyping. It offers a real-time sensor evaluation with custom configurations and cloud- and PAS CO2-based solution output visualization. The KIT_CSK_PASCO2_5V (Figure 1) comes with:

- Rapid IoT Connect Developer Kit (CYSBSYSKIT-DEV-01)
- XENSIV™ PASCO2V15 Wing (EVAL_PASCO2_WING_5V)

Figure 1 XENSIV™ PASCO2V15 Connected Sensor Kit

The Rapid IoT Connect Developer Kit (CYSBSYSKIT-DEV-01) shown in Figure 2 allows the evaluation of the Rapid IoT Connect module (CYSBSYS-RP01) on a standard Feather form-factor. The CYSBSYS-RP01 Rapid IoT Connect module is a turnkey module that enables secure, scalable, and reliable compute and connect.

The Rapid IoT Connect Developer Kit carries a CYSBSYS-RP01 Rapid IoT connect system-on-module (SoM), which includes a PSOC™ 6 MCU, an AIROC™ CYW43012 single-chip radio, onboard crystals, oscillators, chip antenna, and passive components.

Figure 2 Rapid IoT Connect Developer Kit

1 The board at a glance

The XENSIV™ PASCO2V15 Wing board shown in [Figure 3](#) is based on the PASCO2V15 CO2 sensor. The sensor is based on the photoacoustic spectroscopy (PAS) principle, where CO2 molecules within the sensor cavity absorb the infrared light, generating small pressure changes that are detected by an acoustic detector. The integrated microcontroller provides a direct readout of CO2 concentration in parts per million (ppm). Precise CO2 readings are guaranteed.

Figure 3 XENSIV™ PASCO2V15 Wing board

The board also comprises the XENSIV™ DPS368 digital barometric pressure sensor. This high-precision pressure sensor can detect very small changes in barometric pressure, which makes it an ideal device where accurate pressure event detection is required (for example, opening of doors or windows or fall detection).

Having both the CO2 sensor and pressure sensor on the board gives the possibility to develop and test more complex scenarios where data from both sensors is combined for more reliable event detection.

1.1 Scope of supply

The kit can be powered from a 3.7 V LiPo battery or via a USB cable from an external 5 V power supply. The battery is automatically charged when the system is connected to an external power supply.

1.2 Block diagram

A block diagram of the wing board is shown in [Figure 4](#). The wing board comprises the XENSIV™ PASCO2V15 CO2 gas sensor and the required power supply components. Power lines are highlighted in red. It is also equipped with push buttons and LEDs.

1 The board at a glance

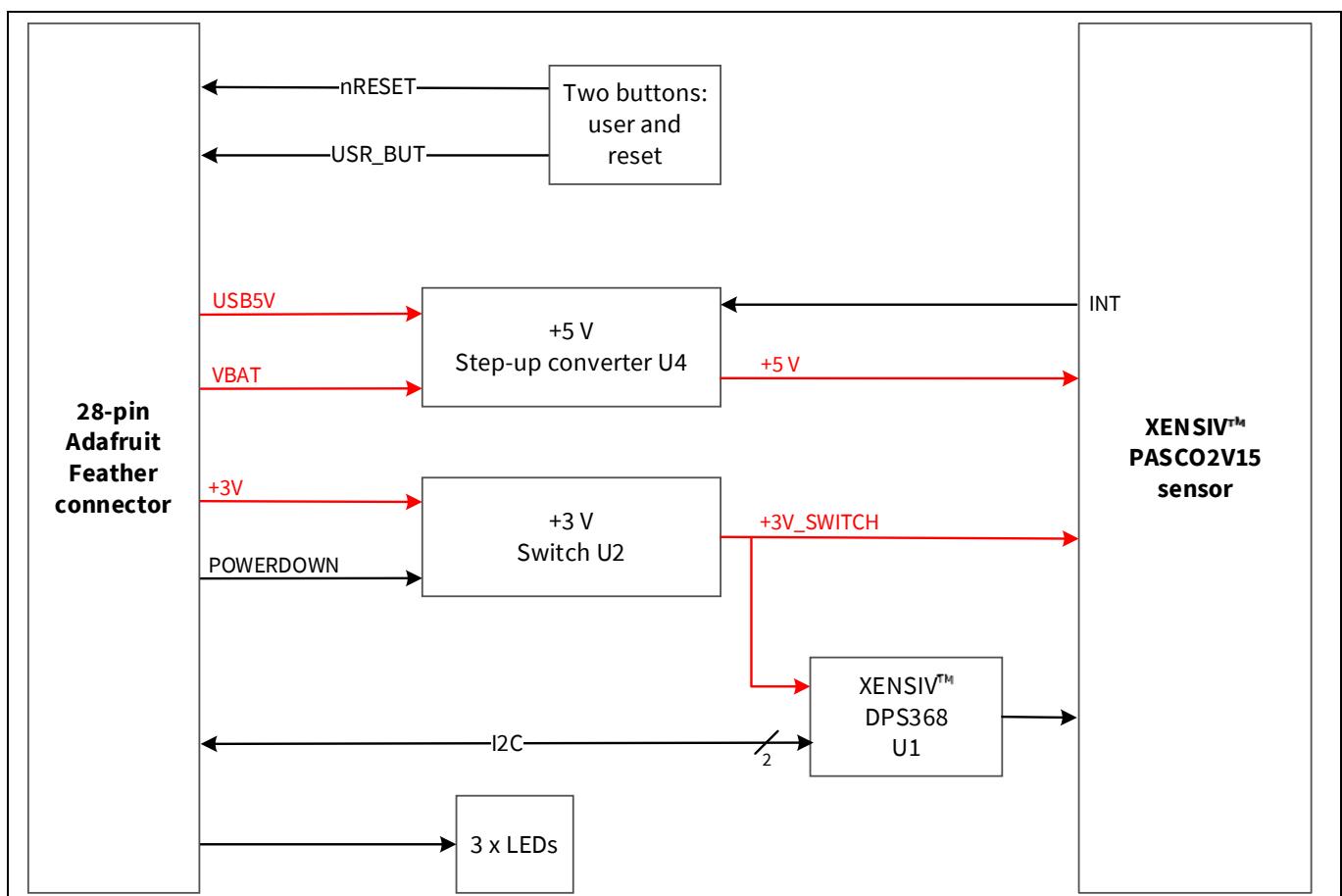


Figure 4 XENSIV™ PASCO2V15 Wing board block diagram

A system block diagram showing the shield connected to the CSK rapid IoT baseboard is shown in [Figure 4](#). The interface from the shield to the rapid IoT baseboard includes I²C, digital signals, analog signals and power lines. The baseboard can interact with the outside world using Wi-Fi, Bluetooth®, USB, or a combination of them depending on the firmware/software (FW/SW) installed on the baseboard. The kit can be powered from an external power supply or from a LiPo battery.

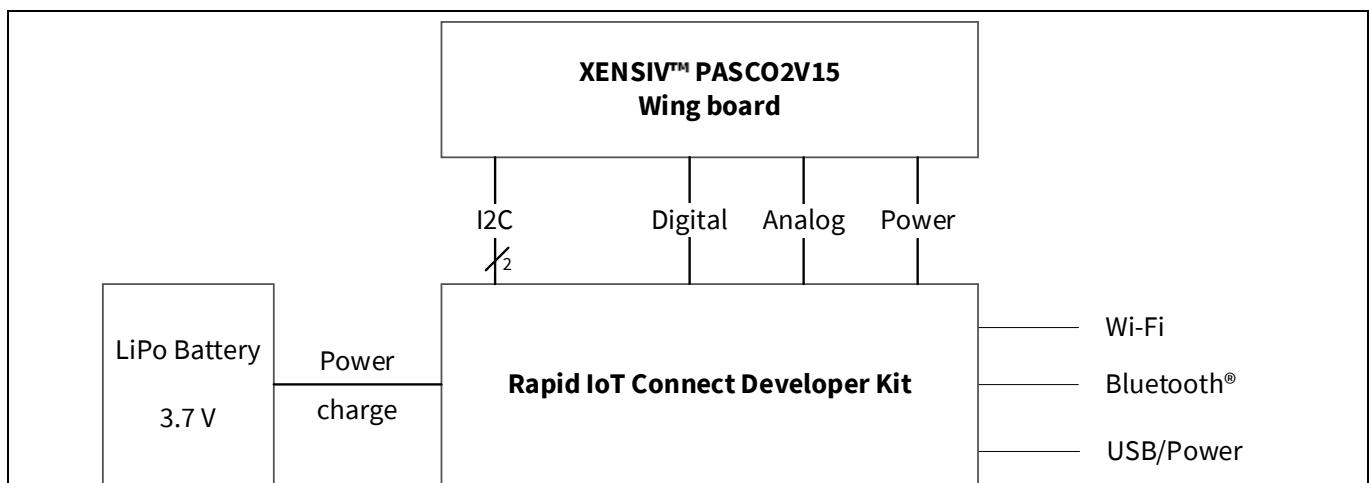


Figure 5 CSK system block diagram

1 The board at a glance

1.3 Main features

- XENSIV™ PASCO2V15 gas sensor
 - Exceptionally small form factor 14 mm x 13.8 mm x 7.5 mm sensor
 - Accurate and robust performance at ppm level (± 50 ppm ± 5 percent of reading)
 - Advanced compensation and self-calibration algorithms
 - Configurable sampling rate via UART and I²C interfaces
- XENSIV™ DPS368 barometric pressure sensor
 - Package dimensions: 8-pin PG-VLGA-8-2, 2.0 mm x 2.5 mm x 1.1 mm
 - IPx8 certified: Temporary immersion at 50 m for 1 hour
 - Interface: I²C and SPI (both with optional interrupt)
 - Operating modes: Command (manual), background (automatic), and standby
 - Pressure sensor precision: ± 0.002 hPa (or ± 0.02 m) (high precision mode)
 - Absolute accuracy: ± 1 hPa (or ± 8 m)
- XENSIV™ PASCO2V15 Wing board
 - 63 mm x 23 mm size on standard FR4 laminate
 - 3 LEDs and 2 configurable user buttons
 - Form-factor compatibility with Adafruit
- CY5BSYSKIT-DEV-01 Rapid IoT Connect Developer Kit (MCU board)
 - Operates with ModusToolbox™ and Infineon Rapid IoT Connect cloud platform

1.4 Board parameters and technical data

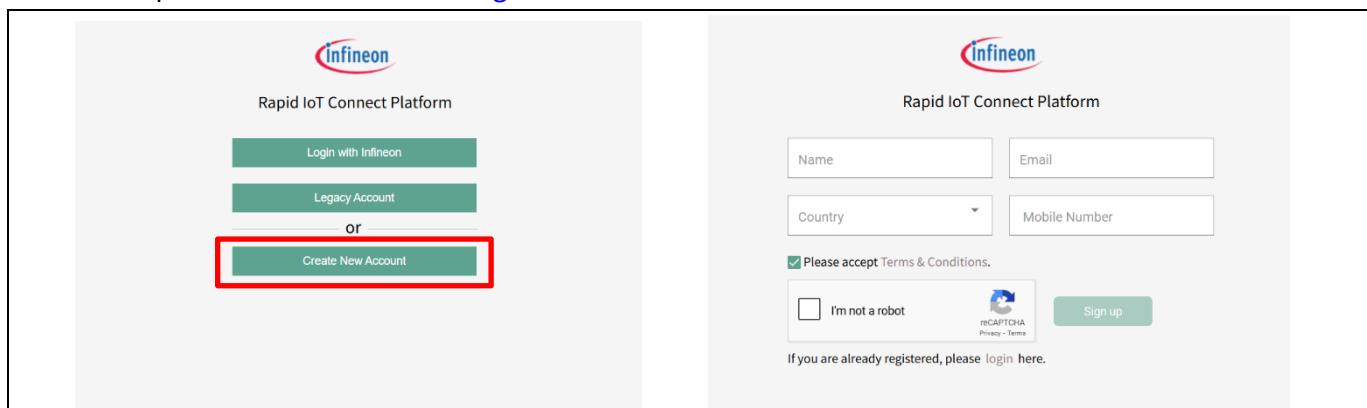
Table 2 Parameters

Parameter	Symbol	Conditions	Value	Unit
Supply voltage	–	–	3 (logic and pressure sensor) 5 (step up powering PAS sensor)	V

2 System and functional description

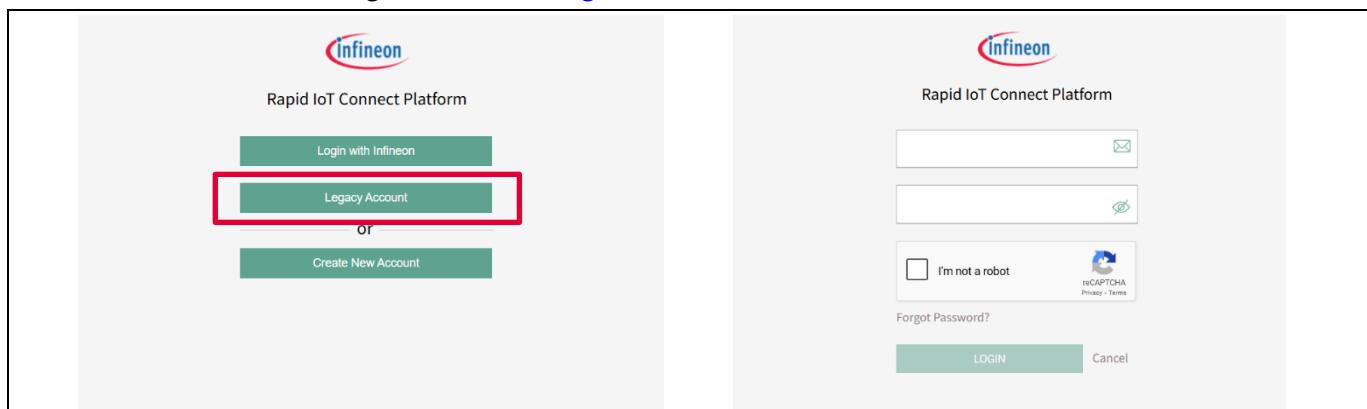
2 System and functional description

2.1 Getting started


The Connected Sensor Kit is a cutting-edge IoT development platform that empowers engineers to swiftly design, test, and refine innovative IoT devices. By providing pre-configured sensor scenarios and real-time data visualization, this kit enables developers to achieve the 10-minute IoT experience, allowing them to rapidly evaluate and validate their ideas.

To further accelerate development, a comprehensive suite of code examples is available within ModusToolbox™, offering a one-stop-shop for developers to kick-start their IoT projects with ease.

2.2 Quick IoT experience


2.2.1 Signup and login

1. Create an account with the [Infineon Rapid IoT Connect Platform](#) by signing up with your email address and other required details as shown in [Figure 6](#)

Figure 6 **Rapid IoT Connect Platform signup**

2. You will receive a password via email, which you will be prompted to change upon your first login to one of your choosing
3. Enter the credentials to login as shown in [Figure 7](#)

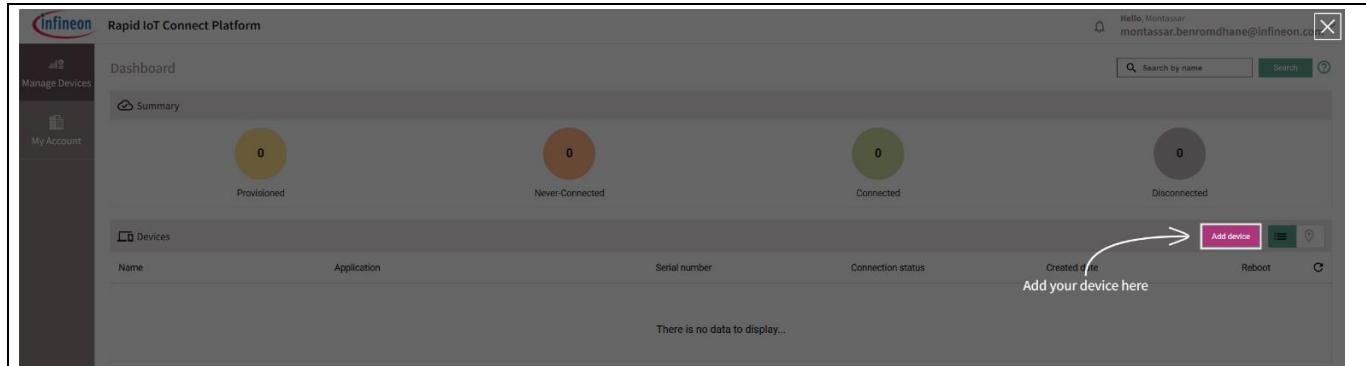
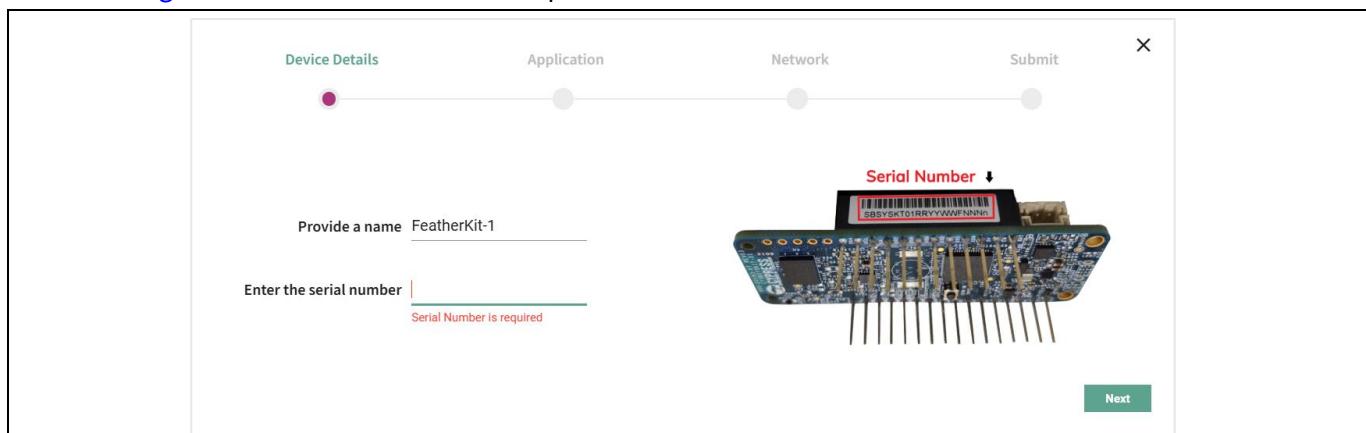


Figure 7 **Rapid IoT Connect Cloud Platform login**

2 System and functional description


2.2.2 Add your device

1. Click on the **Add device** button to start the process of adding your new KIT_CSK_PASCO2_5V device. A pop-up wizard appears to guide you through the process

Figure 8 Add your device

2. On the **Device Details**, provide a name for your device, and enter the development kit serial number as shown [Figure 9](#). Click the **Next** button to proceed further

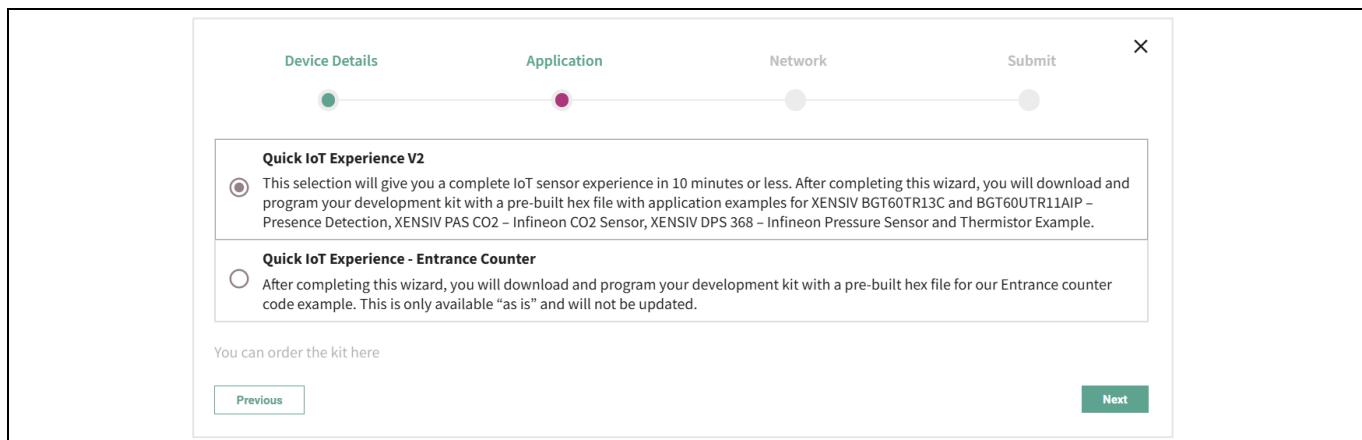


Figure 9 Add device wizard

2.2.3 Application

- With the Quick IoT Experience in **Application**, you can complete an IoT sensor experience that includes telemetry and fleet monitoring, in less than ten minutes
- After you complete the setup wizard, download and program your development kit with a built-in *hex* file. This *hex* file prepares and configures your development kit with the latest Wi-Fi firmware, an example application, and all the credentials required to securely connect to the cloud
- Note that the example application automatically uses the integrated temperature sensor. Ensure to select your desired application based on the XENSIV™ wing board you have, in this case it is XENSIV™ PASCO2V15 wing

2 System and functional description

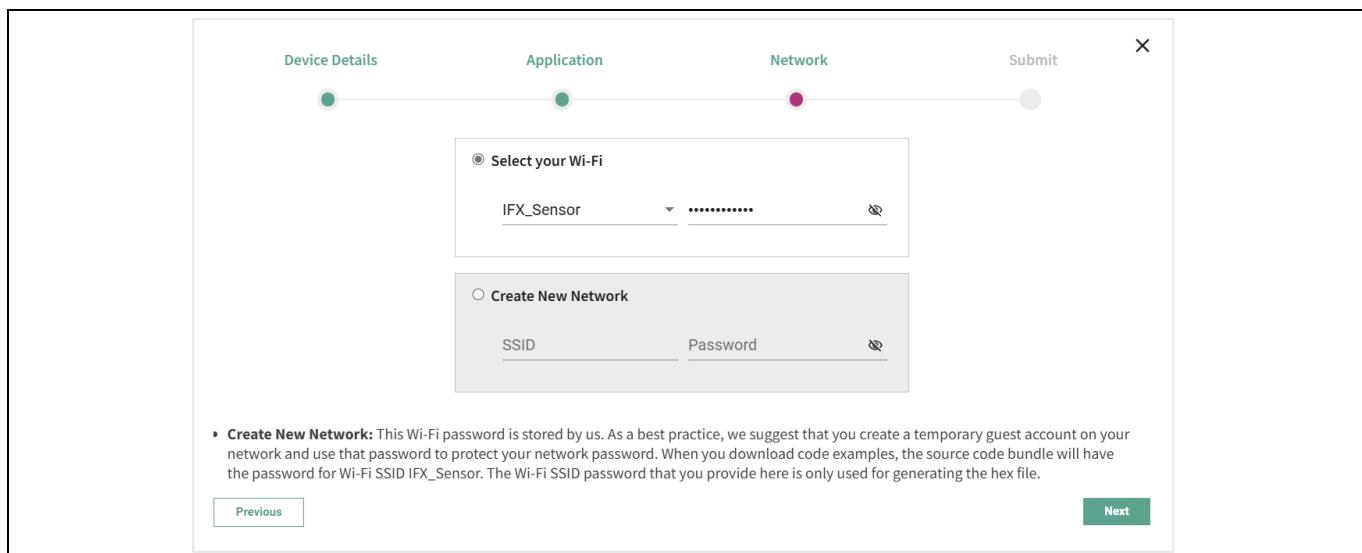


Figure 10 Select application

2.2.4 Configure Wi-Fi network

You can connect to your preferred WPA2 network by providing the Wi-Fi SSID and password by selecting **Create New Network**, or set up an access point/hotspot with WPA2-PSK security by using the following credentials:

- SSID: IFX_Sensor
- Security: WPA2-PSK
- Password: S66M14022021

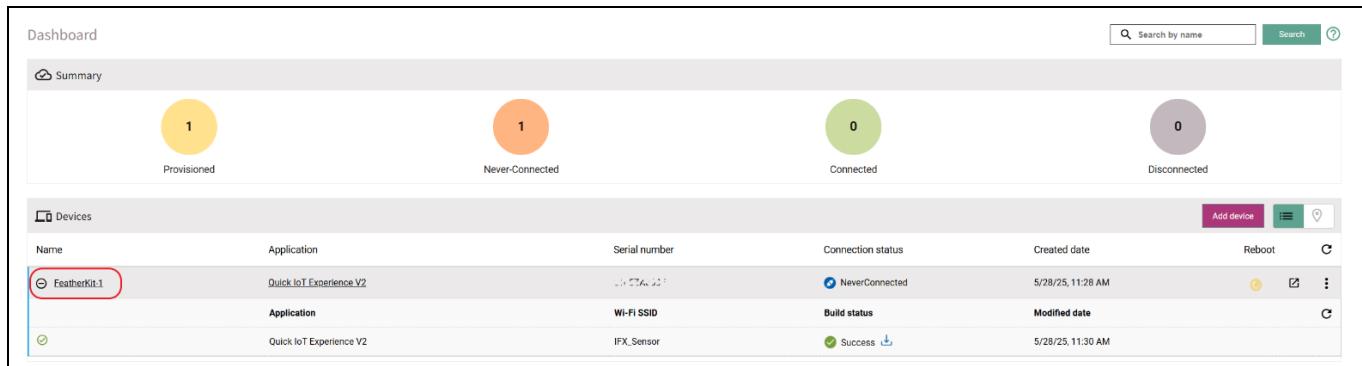


Figure 11 Configure and select network

2.2.5 Submit your device configurations

- Ensure all the information that you have entered is accurate before clicking the **Submit** button
- If you need to make changes, you can go back to earlier screens by pressing the **Previous** button
- After you click **Submit**, a custom hex file will be built for your device, and a software bundle will be generated for programming your development kit, as shown in [Figure 13](#)

2 System and functional description

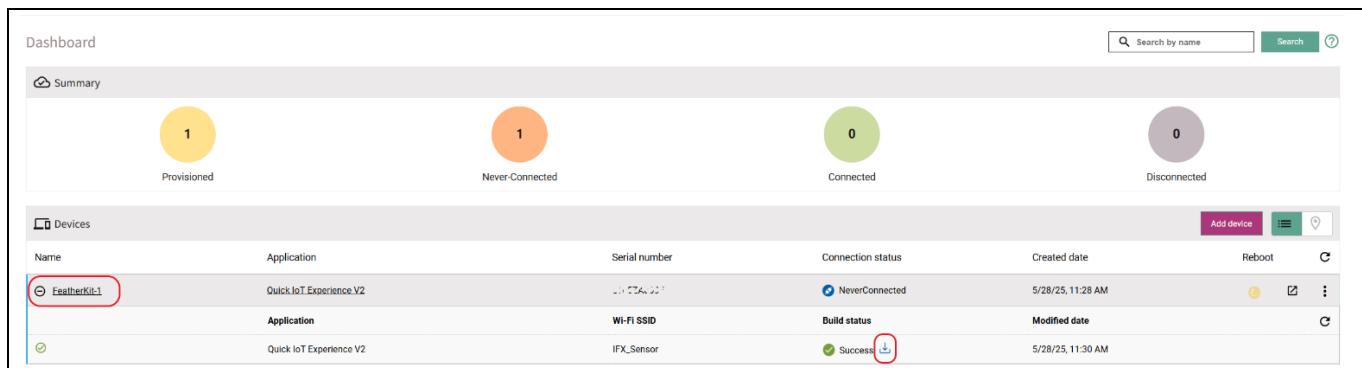
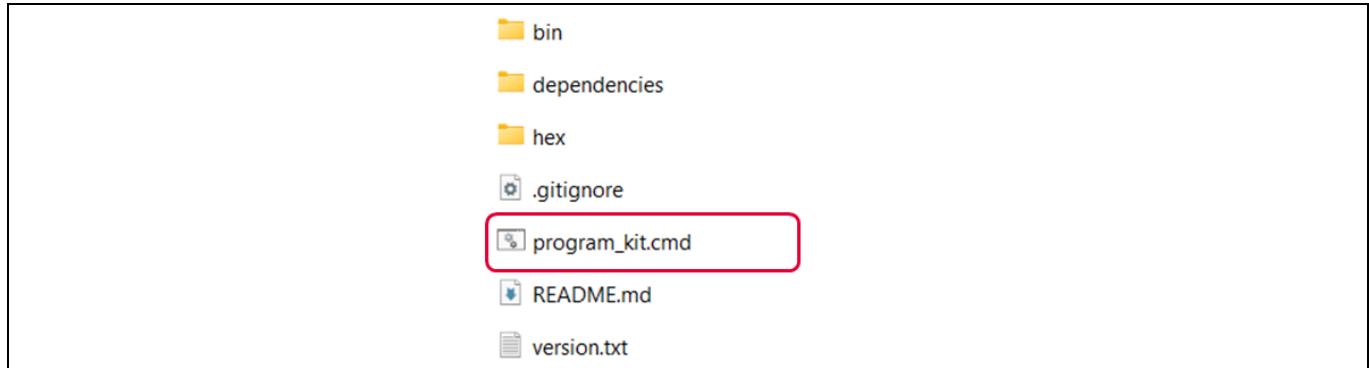


Figure 12 Device management dashboard

Note: You can add/register a maximum of five devices with the Rapid IoT Connect Cloud Platform account.

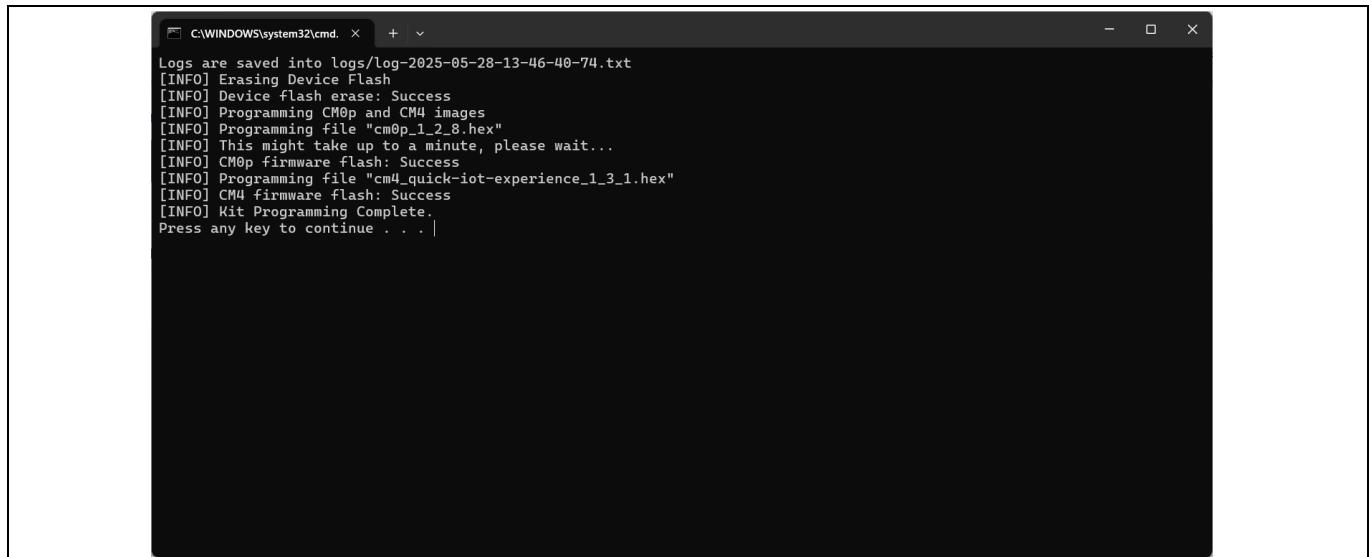
2.2.6 Download the zip package

Depending on your laptop or PC's operating system (Windows/Linux/Mac), you will receive a downloadable package that includes a hex file firmware image and a programming tool for your KIT_CSK_PASCO2_5V kit. The package will be in the form of a zip file. To view the detailed device status, click on the (expand) button. To download the zip package, click (download) next to **Success** on the application as shown in [Figure 13](#).


Figure 13 Device management dashboard

2 System and functional description

2.2.7 Program the KIT_CSK_PASCO2_5V


- Use a Micro-USB cable to connect your development kit to your PC or laptop
- Extract the zip file and run the *program_kit* script

For Windows users, the script will be a *.cmd* file, while Linux and Mac users will see a *.sh* and *.command* files, respectively. If you are using Linux or Mac, ensure to run the script from a terminal with the necessary permissions. For detailed instructions, see the *README.md* file as shown in [Figure 14](#)

Figure 14 Package content

The successful kit programming command line logs are illustrated in [Figure 15](#).

Figure 15 Kit programming complete

2 System and functional description

2.2.8 Device management

Manage your device (s) and their configurations in the device management tab. To view the details of a particular device, click on the expand icon next to the **Created date** to view the respective device details.

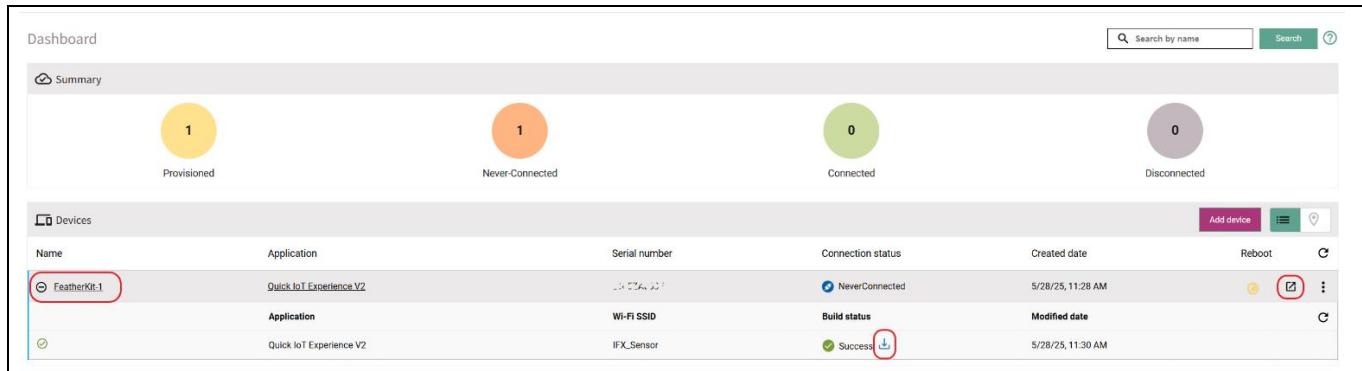


Figure 16 Device connection status

2.2.9 Select desired application

- To select the desired application for your connected Infineon sensor wing board (in this case, XENSIV™ PASCO2V15 wing), go to the **Attributes** tab in the device details
- Click on the dropdown menu for **Sensors** and select “**XENSIV PAS CO2**”
- After you select the application, the attributes will be pushed to the device, and it will reboot to the desired application

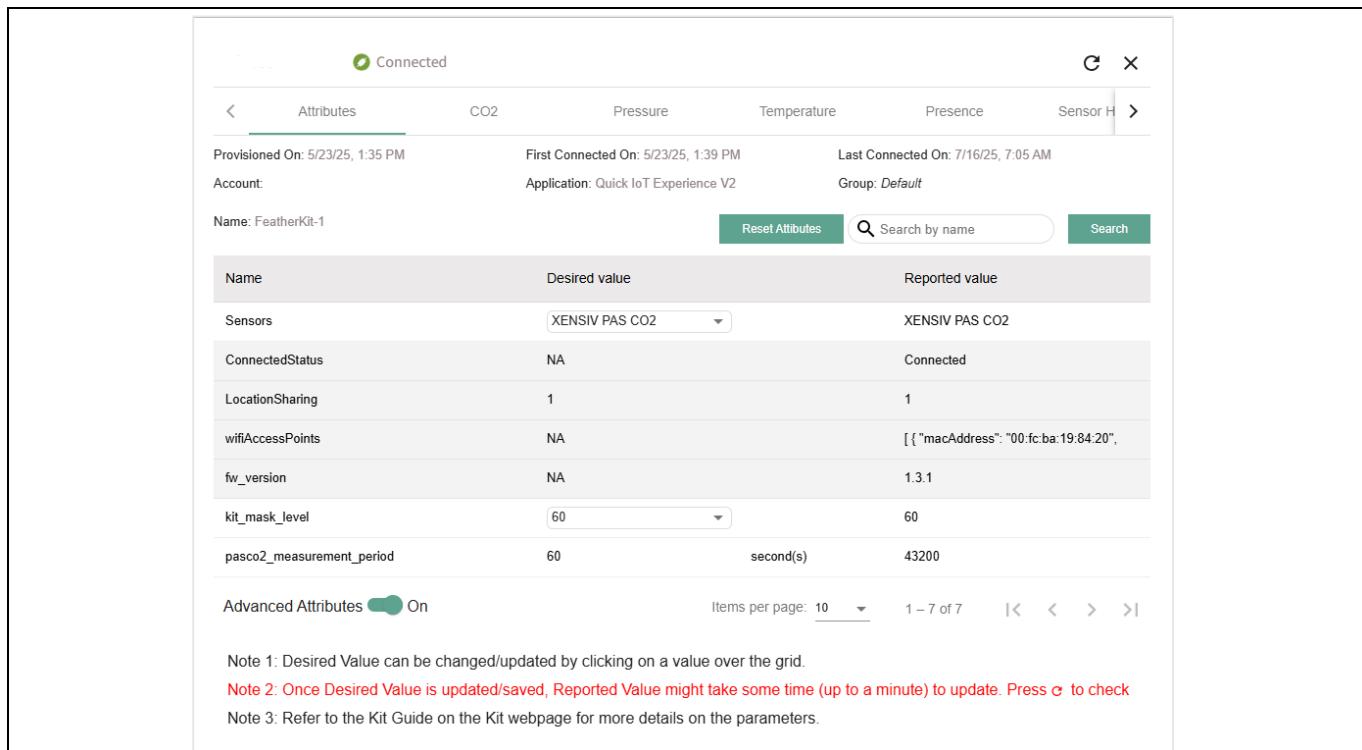


Figure 17 Attributes tab for connected device

Note: Selecting a new application can cause the connectivity to temporarily disconnect and reconnect from the Rapid IoT Connect Cloud Platform.

2 System and functional description

2.2.10 Selected application attributes

- To view all attributes on one page, click on the **Items per page** dropdown menu at the bottom of the **Attributes** tab and adjust the number of items accordingly
- For the Presence Detection use case, see the list of attributes as shown in [Table 3](#)

Table 3 CO2 measurement application attributes

Attribute	Description
kit_mask_level	Disable logs, enable minimal logs or full logs to cloud 60: WARN, MINOR, MAJOR, FATAL all to UART terminal 62: INFO, WARN, MINOR, MAJOR, FATAL all to UART terminal 124: WARN, MINOR, MAJOR, FATAL all to Cloud UI as well as UART terminal
pasco2_measurement_period	10 – 43200 PAS CO2 measurement period Default is 60 second(s)

2.2.11 View sensor data

- To view your sensor data on the cloud, click on the desired tab at the top of the device details window
- By default, your application will be set to Thermistor. Click on the **CO2** tab to view the data represented as a graph for easy viewing. You can also download the raw data in .CSV format by clicking the **Download** button in the top-right corner

Note: *As a standard user, your data is retained for 14 days. After this period, the data will no longer be available for retrieval. If you require a longer data retention period, contact [Infineon Support](#) to discuss upgrading your account.*

2 System and functional description

Figure 18 CO2 measurement data visualization

3 System design

3 System design

This section introduces you to the various features of the XENSIV™ PASCO2V15 Wing board. Apart from the headers, all components are mounted on the top side of the Wing board, which has male headers facing downwards to either plug the board directly on the Rapid IoT baseboard or on top of another Wing board such as the Infineon XENSIV™ PASCO2V15 Wing board.

Figure 19 and Table 4 provide a description of the components mounted on the XENSIV™ PASCO2V15 Wing board.

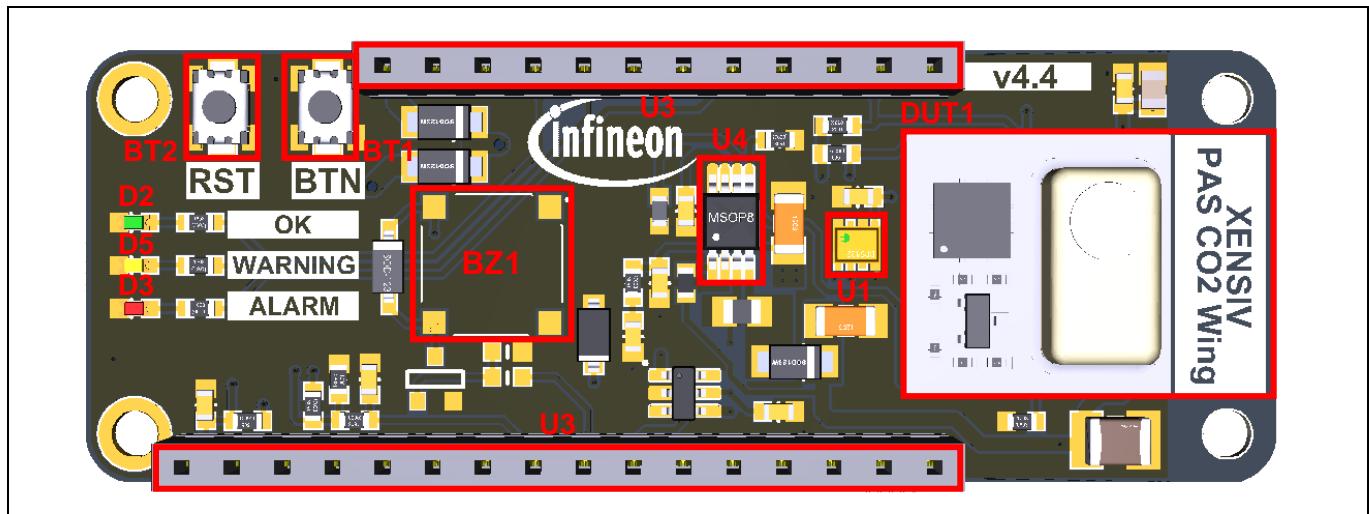


Figure 19 Front view of the XENSIV™ PASCO2V15 Wing board

Table 4 Onboard hardware

Ref designator	Function
U1	XENSIV™ DPS368 digital barometric pressure sensor
U2	2:1 (SPDT), 1-channel analog switch, programmable control of the on and off output 3 V
U3	28-pin Adafruit feather-compatible adaptor headers
U4	Boost/inverting DC-DC converter with 2 A switch, soft-start and synchronization
DUT1	XENSIV™ PASCO2V15 gas sensor
BT1	Touch button; active LOW
BT2	Touch button; active LOW, system reset function
D2	Green color LED for acceptable level of CO2 concentration
D3	Red color LED for alarm level of CO2 concentration
D5	Yellow color LED for warning level of CO2 concentration
BZ1	Option for buzzer (not populated by default)

3 System design

3.1 Schematics

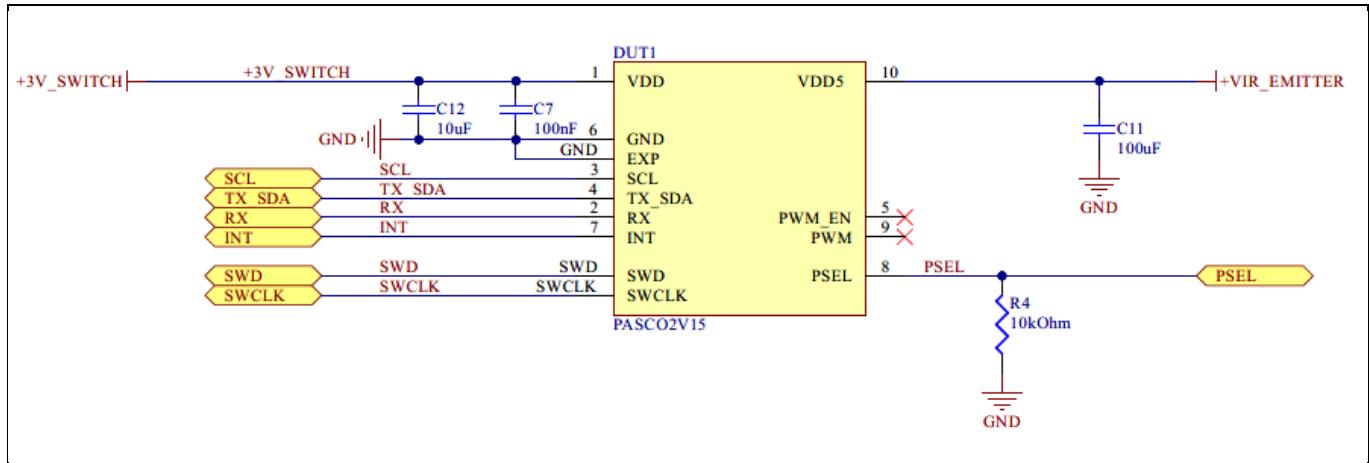


Figure 20 XENSIV™ PASCO2V15 schematic

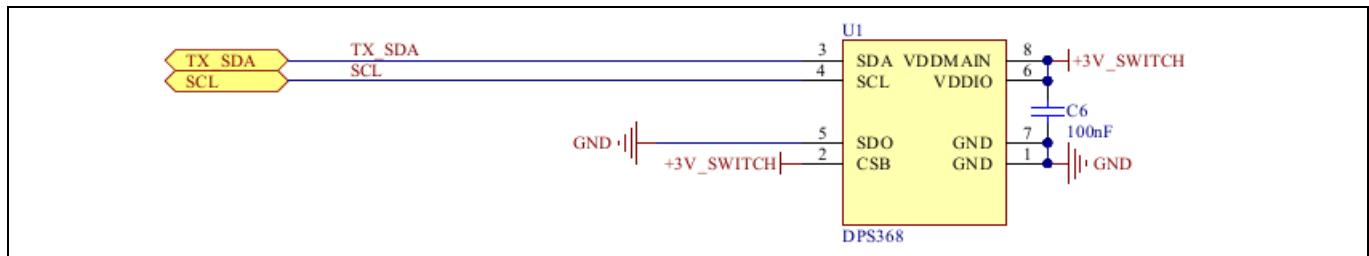


Figure 21 XENSIV™ DPS368 schematic

The user interface on the wing board consists of two mechanical buttons (Figure 22) and three LEDs (Figure 23).

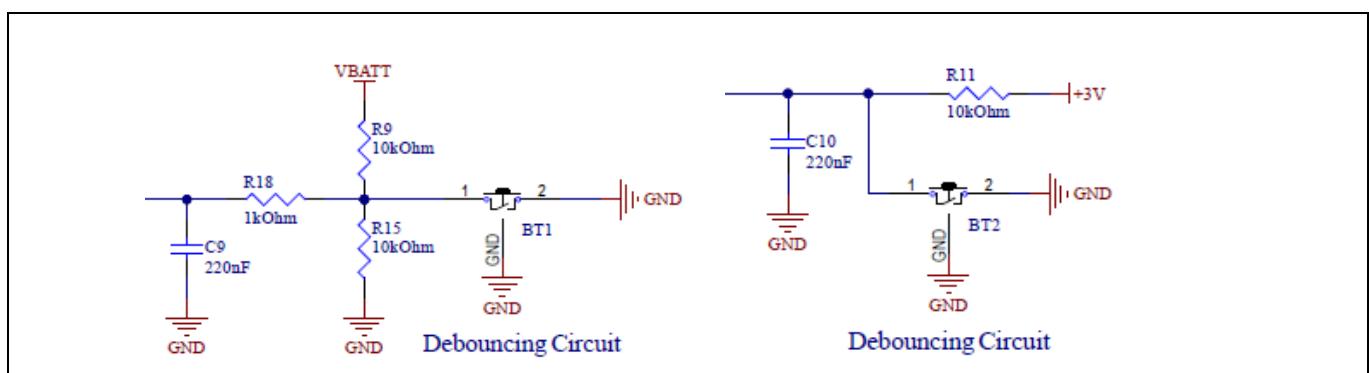


Figure 22 User (BT1) and reset button (BT2) schematic

3 System design

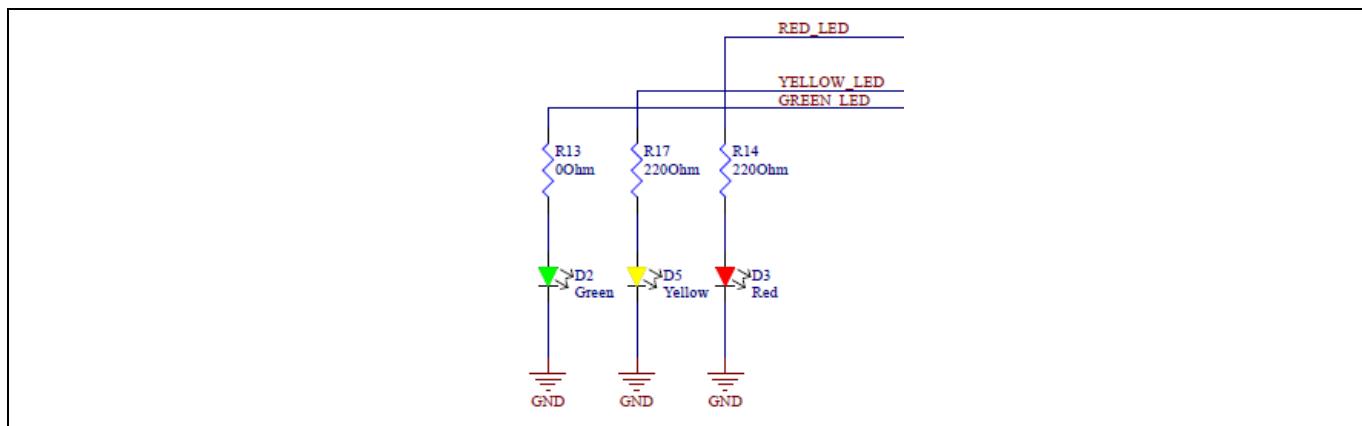


Figure 23 LEDs schematic

Figure 24 shows the 1-channel analog switch, which provides programmable control of the 3 V output status, (on/off). This function is used to switch only the PAS module on to measure the CO2 concentration so that the board's power consumption is reduced.

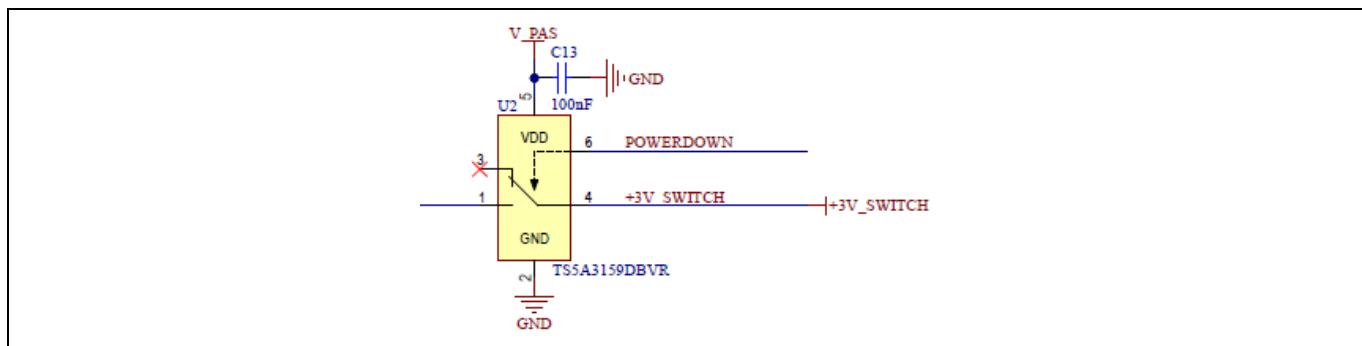
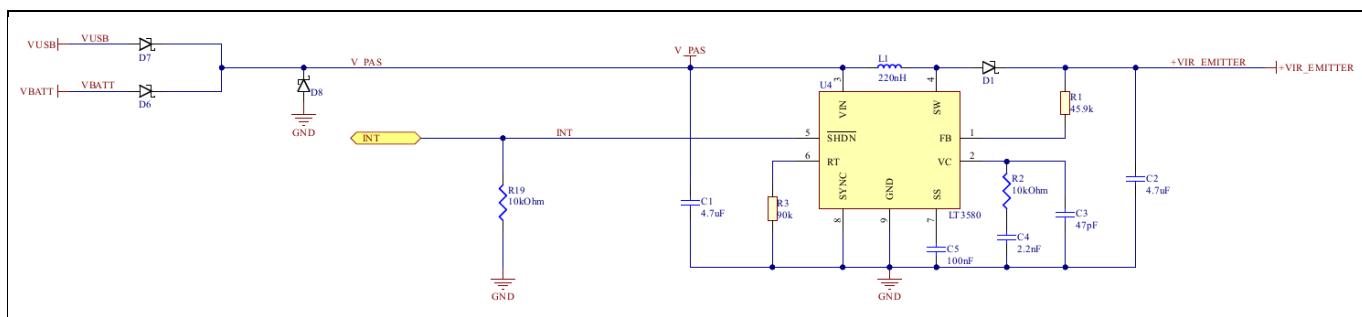
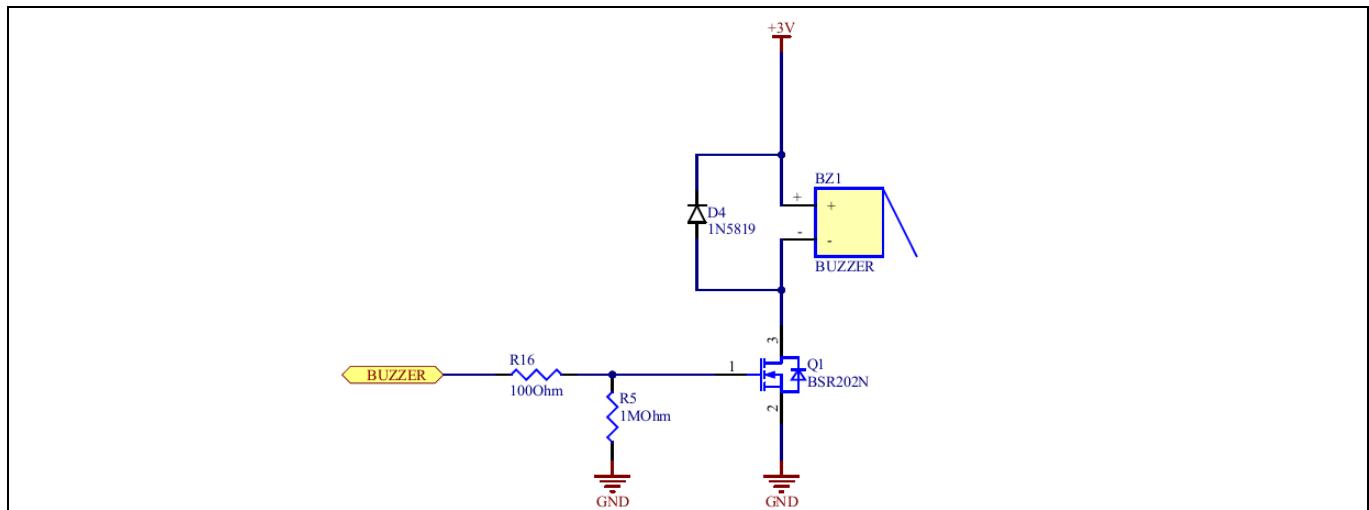
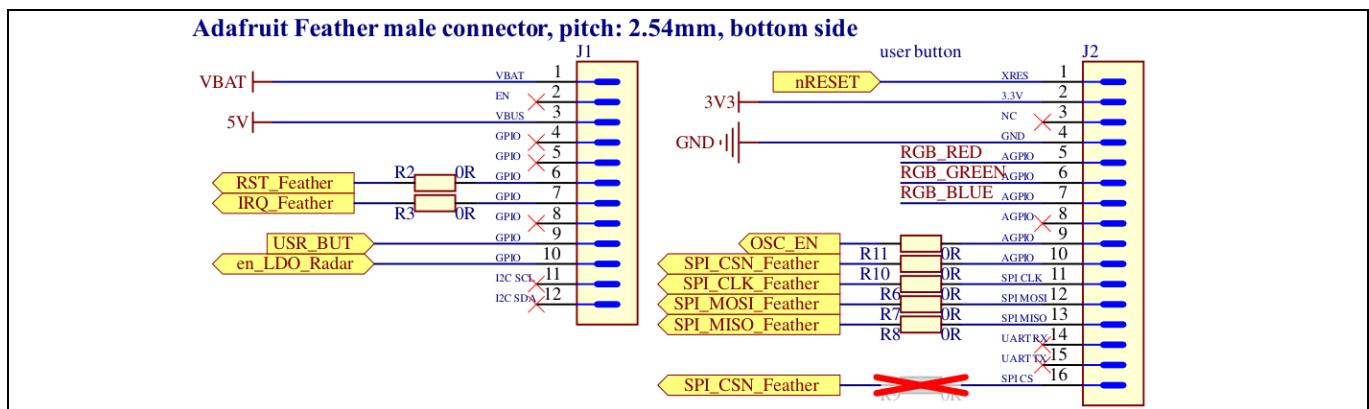


Figure 24 1-channel analog switch schematic

Figure 25 shows the voltage booster circuit. It is required to provide stable 5 V supply for the CO2 sensor module.


Figure 25 Boot circuit 5 V schematic

3 System design

Figure 26 Optional buzzer circuit (not populated) schematic

Figure 27 shows the pin assignment of J1 and J2 on the XENSIV™ PASCO2V15 Wing board. The Adafruit feather-compatible header is used to plug into the CYCBSYSKIT-DEV-01 Rapid IoT Connect Developer Kit.

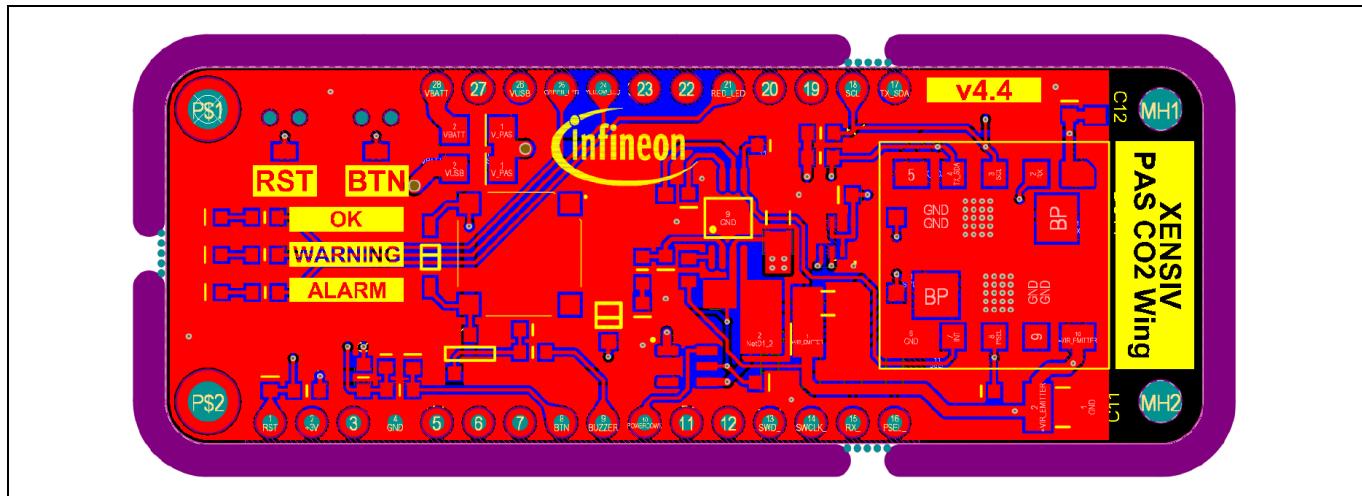


Figure 27 Adafruit headers schematic

3 System design

3.2 Layout

The size of the XENSIV™ PASCO2V15 Wing board is 43 mm (L) x 23 mm (W), as shown in [Figure 28](#).

Figure 28 PCB layout of XENSIV™ PASCO2V15 Wing board

3.3 Bill of materials

[Table 5](#) lists the bill of materials (BOM) of the XENSIV™ PASCO2V15 Wing board.

Table 5 BOM of the most important/critical parts of the evaluation

Ref designator	Description	Manufacturer	Manufacturer P/N	Qty
BT1, BT2	Touch button, 3 mm x 4 mm	ITT C&K	PTS820J20MSMTRLFS	2
BZ1	–	Mallory Sonalert	AST7525MATRQ	0
C1, C2	Capacitor 1206 4.7 µF 10 V 10%	Samsung	CL31B475KPHNNNE	2
C3	Capacitor 0603 47 pF 50 V 5%	KEMET	C0603C470J5GACTU	1
C4	Capacitor 0603 2.2 nF 10 V 5%	KEMET	C0603C222J8RACTU	1
C5, C6, C7, C13	Capacitor 0603 100 nF 25 V 5%	Kyocera AVX	06033C104JAT2A	4
C9, C10	Capacitor 0603 220 nF 25 V 10%	Murata	GRM188R71E224KA88D	2
C11	Capacitor 1210 100 µF 10 V 20%	Murata	GRM32ER61A107ME20L	1
C12	Capacitor 0805 10 µF 25 V 10%	Kyocera AVX	08053D106KAT2A	1
D1	1 A low VF mega Schottky barrier rectifier	Nexperia	PMEG2010ER, 115	1
D2	LED 0603 green 525 nm	Kingbright	KPG-1608ZGC	1
D3	LED 0603 red	Dialight	598-8010-107F	1
D4	Diode 1N5819 SOD123	Diodes	1N5819HW-7-F	1
D5	LED 0603 yellow	Rohm	SML-D12Y8WT86	1
D6, D7	2 A low VF mega Schottky barrier rectifier	Nexperia	PMEG3020ER, 115	2
D8	STPS0520Z Schottky rectifier 20 V 500 mA single, SOD-123, 2 pins, 320 mV	STMicroelectronics	STPS0520Z	1

3 System design

Ref designator	Description	Manufacturer	Manufacturer P/N	Qty
DUT1	PAS CO2 5V gas sensor	Infineon	PASCO2V15AUMA1	1
L1	Coil MLZ2012DR22DT 220 nH	TDK	MLZ2012DR22DT000	1
Q1	OptiMOS™ N-channel enhancement small signal transistor, 20 V	Infineon	BSR202NL6327HTSA1	0
R1	Resistor 0603 45.9 kΩ 0.1 W 1%	Vishay	TNPW060345K9BEEA	1
R2, R4, R9, R10, R11, R12, R15, R19	Resistor 0603 10 kΩ 0.1 W 1%	Bourns	CR0603-FX-1002ELF	8
R3	Resistor 0603 90 kΩ 0.1 W 1%	Vishay	MCT06030E9002BP100	1
R5	Resistor 0603 1 MΩ 0.1 W 1%	Bourns	CR0603-JW-105GLF	0
R13	Resistor 0603 0 Ω	Vishay	CRCW06030000Z0EA	1
R14, R17	Resistor 0603 220 Ω 0.1 W 1%	Panasonic	ERJ-3GEYJ221V	2
R16	Resistor 0603 100 Ω 0.1 W 1%	Bourns	CR0603-FX-1000ELF	0
R18	Resistor 0603 1 kΩ 0.125 W 1%	Multicomp	MCHP03W8F1001T5E	1
U1	Digital barometric pressure sensor	Infineon	DPS368XTSA1	1
U2	1 Ω, 5 V, 2:1 (SPDT), 1-channel analog switch	Rochester Electronics	TS5A3159DBVR	1
U3	Adafruit Connector 1x12 and 1x16 Female	Adafruit	Adafruit 2830	1
U4	Boost/inverting DC-DC converter with 2 A switch, soft-start and synchronization	Analog Devices/Linear Technology	LT3580IMS8E#PBF	1

3.4 Connector details

Figure 29 highlights the 28-pin Adafruit Feather-compatible headers. The function of the respective header pins is described in Table 6. The image also shows the test points which were used for testing the boards in the lab or production.

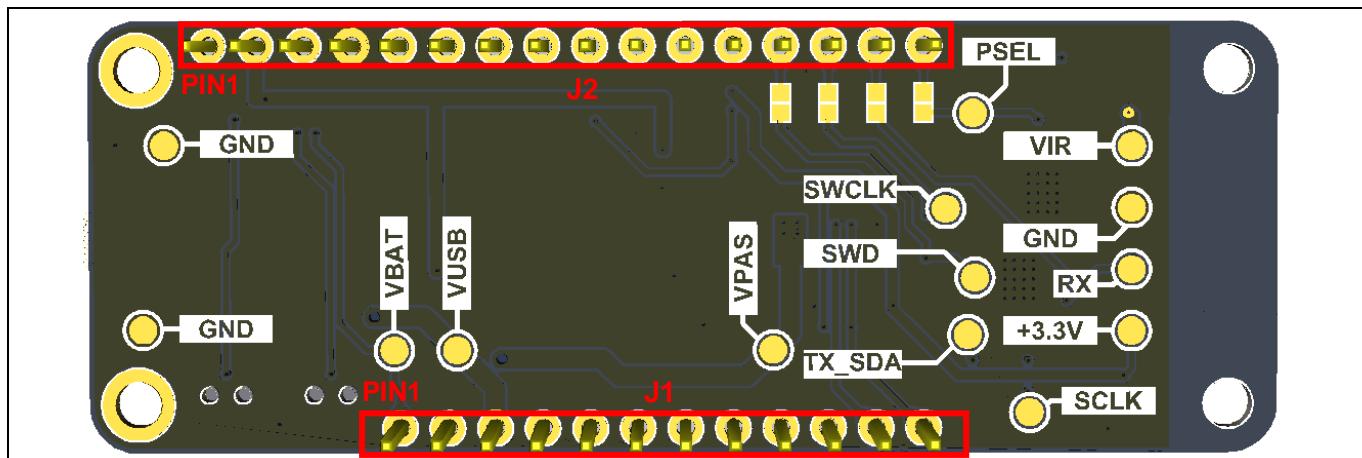


Figure 29 Adafruit headers and test points on bottom of the XENSIV™ PASCO2V15 Wing board

3 System design

Table 6 Adafruit Feather-compatible pinout

Header mapping	Primary onboard function	PSOC™ 6 MCU pin (Rapid IoT baseboard)	Adafruit Feather-compatible mapping (Rapid IoT baseboard)	Adafruit Feather-compatible mapping (PASCO2V15 Wing board)	Details
J1.1	VBAT	-	-	VBAT	LiPo battery voltage
J1.2	EN	-	-	-	Not connected
J1.3	VBUS	-	-	VUSB	USB power
J1.4	GPIO	P9_0	GPIO13	GREEN_LED	Green LED
J1.5	GPIO	P9_1	GPIO12	YELLOW_LED	Yellow LED
J1.6	GPIO	P9_2	GPIO11	-	Not connected
J1.7	GPIO	P9_3	GPIO10	-	Not connected
J1.8	GPIO	P9_4	GPIO9	RED_LED	Red LED
J1.9	GPIO	P9_7	GPIO6	-	Not connected
J1.10	GPIO	P8_4	GPIO5	-	Not connected
J1.11	I ² C SCL	P6_0	SCL	SCL	Connected to KitProg3. Note that this pin has a 4.7 kΩ pull-up for I ² C communication
J1.12	I ² C SDA	P6_1	SDA	TX_SDA	Connected to KitProg3. Note that this pin has a 4.7 kΩ pull-up for I ² C communication
J2.1	XRES	XRES	XRES	RST	Reset button
J2.2	3.3 V	VDDA, VDDIO	VCC	+3V	Analog voltage for PSOC™ 6 MCU
J2.3	NC	-	NC	-	Not connected
J2.4	GND	-	GND	GND	Ground
J2.5	Analog GPIO	P10_0	A0	-	Not connected
J2.6	Analog GPIO	P10_1	A1	-	Not connected
J2.7	Analog GPIO	P10_2	A2	-	Not connected
J2.8	Analog GPIO	P10_3	A3	BTN	User button / VBAT voltage monitoring
J2.9	Analog GPIO	P10_4	A4	BUZZER	PAS buzzer
J2.10	Analog GPIO	P10_5	A5	POWERDOWN	PAS board POWERDOWN

3 System design

Header mapping	Primary onboard function	PSOC™ 6 MCU pin (Rapid IoT baseboard)	Adafruit Feather-compatible mapping (Rapid IoT baseboard)	Adafruit Feather-compatible mapping (PASCO2V15 Wing board)	Details
J2.11	SPI Clock	P5_2	SCK	-	Not connected
J2.12	SPI MOSI	P5_0	MOSI	-	Not connected
J2.13	SPI MISO	P5_1	MISO	SWD	SWD
J2.14	UART RX	P6_4	RX	SWCLK	SWCLK
J2.15	UART TX	P6_5	TX	RX	RX
J2.16	SPI CS	P5_3	GPIO	PSEL	PSEL at PAS sensor

References

- [1] Infineon Technologies AG. *PASCO2V15 gas sensor datasheet*; [Available online](#)
- [2] Infineon Technologies AG: *AN228571 – Getting started with PSOC™ 6 MCU on ModusToolbox™ application note*; [Available online](#)
- [3] Infineon Technologies AG: *Code examples for ModusToolbox™*; [Available online](#)

Glossary

Glossary

BSP

board support package (BSP)

CSK

connected sensor kit (CSK)

GPIO

general-purpose input/output (GPIO)

HW

hardware (HW)

I²C

inter-integrated circuit (I²C)

IoT

internet of things (IoT)

LED

light-emitting diode (LED)

PAS

photoacoustic spectroscopy (PAS)

PCB

printed circuit board (PCB)

SPI

serial peripheral interface (SPI)

UART

Universal asynchronous receiver transmitter (UART)

Revision history

Document revision	Date	Description of changes
1.00	2025-08-08	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this document or others shall be deemed to refer to PSOC™.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Edition 2025-08-08

Published by

Infineon Technologies AG

81726 Munich, Germany

**© 2025 Infineon Technologies AG.
All Rights Reserved.**

**Do you have a question about this
document?**

Email: erratum@infineon.com

Document reference

UG154734

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.