restricted

AN241720 (infineon

Getting started with XMC5000 MCU on
ModusToolbox™ software

About this document

Scope and purpose

This application note helps you to explore the XMC5000 family MCU architecture and development tools, and
shows how to create your first project using the Eclipse IDE for ModusToolbox™ software. This application note
also guides you to more resources available online to accelerate your learning about XMC5000 family MCU.

This application note covers only XMC5000 family MCUs.
Intended audience

This document is intended for users who are new to XMC5000 family MCU and ModusToolbox™ software.
Associated part family

All XMC5000 devices
Software version

ModusToolbox™ software 3.5 or later.

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-41720 Rev. **
www.infineon.com 2025-09-01

https://www.infineon.com

restricted o~ _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon
Table of contents

Table of contents

About thisdocument e 1

Tableof contents e e 2
1 IntrodUction e 4
1.1 Architecture and product liNeSttt e e e 4
1.2 XMC5000 fEAtUIS . e et e ettt et e e 5
2 XMC5000 family MCU r@SOUKCESttt ettt ettt ettty 7
3 XMC5000 MCU development Kits i e 8
4 Development @COSYStem i e 9
4.1 Firmware/application development ettt e e 9
41.1 Installing the ModusToolbox™ tools packagecovuuiii i 9
4.1.2 ChoosiNg an IDE e e e e 9
4.1.3 MOdUSTOOIDOX™ Nl ..t e e e e e 10
5 Getting started with XMC5000 MCU design..................oiiiiiiiiiiiiiiiiieennnnn. 11
5.1 P eI EQUISIEES . v vttt e e e e 11
5.1.1 HardWare . . e e e e 11
5.1.2 Y] 101 T P 11
5.2 Application development e e e 11
53 ADOUt the deSigN . .ottt e e 12
5.4 Create anew application o i e e e e 12
54.1 Eclipse IDE for ModusToolboX™ o e et e 12
54.1.1 View and modify the designo e e 15
54.1.1.1 Open Device Configuratorot e e e 16
54.1.1.2 Add retarget-iomiddleware e 18
54.1.2 Wt fIrmMW A . e e e 19
54.13 Build the applicationo i e e e 26
54.1.4 Program the device . ..o e e 27
54.15 TSt Y OUN AOSI g ¢ o ettt et ettt et e e e e 29
5.4.1.6 Debugging the application using KitProg3/MiniProg4cooiiiiiiiiiiiiieaann. 31
5.4.2 Visual Studio Code for ModusToolbox™ e 33
5.4.3 IAR Embedded Workbench for ModusToolbox™........ ..ot 33
5.4.4 Keil pVision for ModusToolboX™ e e i 33
6 L] 1] 0T 4 - /2 PP 34

R OrENCES e e e 35
7 GlOSSaANY . ..ot 36

ReVISION MiStOry e e 37

Trademarks e e 38
Application note 2 002-41720 Rev. **

2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

Table of contents

DISClaIMOY . . .ot e 39

Application note 3 002-41720 Rev. **
2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

1 Introduction

1 Introduction

The XMC5000 family MCU integrates the following features on a single chip:
« Upto 160 MHz 32-bit Arm” Cortex -M4F CPU with the following:
- Single-cycle multiply
- Single precision floating-point unit (FPU)
- Memory protection unit (MPU)
« Upto 100-MHz 32-bit Arm” Cortex” MO+ CPU with the following:
- Single-cycle multiply
- Memory protection unit (MPU)
+ Programmable analog and digital peripherals

+ Upto2112 KB of code flash with an additional, up to 128 KB of work flash, and an internal SRAM of up to
256 KB

« ModusToolbox™ development environment with installable SDKs and libraries, industry-standard Arm®
tools, and RTOS support

The ModusToolbox™ software environment supports XMC5000 family MCU application development with a set
of tools for configuring the device, setting up the peripherals, and complementing your projects with world-
class middleware.

This application note introduces you to the capabilities of the XMC5000 family MCU, gives an overview of the
development ecosystem, and gets you started with a simple ‘Hello World’ application wherein you learn to use
the XMC5000 family MCU. The document also explains how to create the application from an empty starter
application, but the completed design is available as a code example for ModusToolbox™ on GitHub.

For hardware design considerations, see Hardware design guide for the XMC5000 family.

. .
1.1 Architecture and product lines
Figure 1 shows a detailed block diagram of the MCU.
CPU Subsystem
XMC5000 | SWJETW/ITM/CTT | < e SWI/MTB/CTT
c
Arm® Cortex®- eCT FLASH SRAMO sRaM1 | [3 3[z |5 = CRYPTO Arme® ROM
Up to 2112 KB Code-flash + Ub to 128 KB Up to 128 KB suoltold o AES, SHA, CRC, 2KB
M4 Up to 128 KB Work-flash pto P oZ|o 2 ;;j% TRNG, RSA, ECC Cortex®-MO0+
160 MHz IR 100 MHz
System Resources D 8KBFLASH antrollirKBs SRAM Controller SRAM Controller 2 2 N Initiator/MMIO MO NWIC TP ROM Controller
Power [
Siepconto 1t J - JE Jf 3f 3¢ Jf JCJfJd 1z I 1 J°T
23'; ?‘%) | System Interconnect (Multi Layer AHB, IPC, MPU/SMPU) |
REF iI
PWRSYS-HT
(L)) C::j [pcik] Peripheral Interconnect (MMIO,PPU) |
Clock
it
200 WDT
2x MCWDT Prog.
MO Analog
FLL 45 c m
IXPLL SAR ADC =T _ _ S g
(12-bit) 32 8 B 3 2o
Reset _ a9 % 0w % o X 3 e =]
Reset Control o 2 X 20 2 n 5 % o 6'
XRES A 94 c 0 <3 g Q 3 m
wn Ne) > @ > @ 3 > ==z
Test @ 23 E| 3 gz B
TestMode Entry 3 = % S <
©
_— SARMUX
ii A 4 Y A,
'Xﬁ:;/'g;'izs [High Speed 1/0 Matrix, Smart 1/0, Boundary Scan |
LowePowerActive/Sleep f 5x Smart 10
DeepSleep [Up to 118x GPIO_STD, 4x GPIO_ENH]
Figure 1 XMC5000 architecture diagram

Table 1 provides an overview of the product line.

Application note 4 002-41720 Rev. **
2025-09-01

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/?redirId=178597
https://www.infineon.com/row/public/documents/30/42/infineon-an234224-hardware-design-guide-for-the-xmc7000-family-applicationnotes-en.pdf

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

1 Introduction

Table 1 XMC5000 family MCU product line
Device series Details
XMC5100 series Two-core architecture: up to 80 MHz Arm’ Cortex’-M4F and up to 80 MHz

Cortex -MO+

576 KB code flash, 64 KB work flash, 64 KB SRAM

Packages: 64/100 LQFP

XMC5200 series Two-core architecture: up to 160 MHz Arm’ Cortex’-M4F and up to 100 MHz
Cortex -M0O+

1088 KB code flash, 96 KB work flash, 128 KB SRAM

Packages: 64/100/144 LQFP

XMC5300 series Two-core architecture: up to 160 MHz Arm’ Cortex’-M4F and up to 100 MHz
Cortex -MO+

2112 KB code flash, 128 KB work flash, 256 KB SRAM

Packages: 100/144 LQFP

Note: For more details, see the device datasheets.

1.2 XMC5000 features

The following is a list of key features of XMC5000. For more information, see the device datasheet and reference
manuals

+ CPU subsystem

32-bit dual-core CPU subsystem

- 160 MHz (max) 32-bit Arm’ Cortex” -M4F CPU with single-cycle multiply, single precision floating-
point, and memory protection units

- 100 MHz (max) 32-bit Arm’ Cortex” MO+ CPU with single-cycle multiply and memory protection unit

- Inter-processor communication in hardware

- Two types of DMA controllers - one to support peripheral-to-memory (and vice versa) and one for
memory-to-memory data transfers over the AHB bus

- Upto 2112 KB of code flash along with up to 128 KB of work flash
- Flash programming on JTAG/SWD interface
- Read-while-Write (RWW) allows updating the code flash and work flash while executing from it
- Single- and dual-bank modes (specifically for firmware over-the-air (FOTA) update)

- Aninternal SRAM of up to 256 KB

- Crypto engine to support Enhanced Secure Hardware Extension (eSHE) and Hardware Secure Module
(HSM)

The crypto engine and software support the following functions:
- RSA-2048, RSA-3072, RSA-4096, ECC-256, ECC-384, SHA-2, SHA-3, AES-128/-192/-256, and 3DES
- True random number generator (TRNG) and pseudo random number generator (PRNG)

Application note 5 002-41720 Rev. **
2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

1 Introduction

- Hash function
- Galois/Counter mode (GCM)
- Hardware error correction (SECDED ECC) on all safety-critical memories (SRAM and flash)
+ Communication
- High-speed CAN FD communication supporting up to 8 Mbps data rate
- Serial interface to support various serial communication (UART/SPI/12C)
+ Miscellaneous
- Low-power 2.7 Vto 5.5V operation, with two robust brownout detect (BOD) and overvoltage detect
(OVD) options
- Programmable GPIOs, and smart I/O to perform Boolean operations on signals going to and from 1/0
pins
- Deep Sleep and Hibernate power modes for low-power solution
- High-performance 12-bit, 1 Msps analog-to-digital converter (ADC)
- Hardware watchdog function
- Real-time clock with auto-calibration

- Timing and pulse-width modulation with support for timer, capture, quadrature, pulse-width
modulation (PWM outputs), PWM with dead time (PWM_DT), pseudo-random PWM (PWM_PR), and
shift register (SR) modes; some PWM channels also support stepper motor control

- Event generator to support cyclic wakeup from Deep Sleep mode and peripheral trigger in active
power mode

- Debugging via JTAG controller (IEEE-1149.1-2001 compliant interface), and Arm” SWD port
- Supports Arm’ Embedded Trace Macrocell (ETM)

- Datatrace using SWD

- Instruction and data trace using JTAG

Application note 6 002-41720 Rev. **
2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

2 XMC5000 family MCU resources

2 XMC5000 family MCU resources

The XMC5000 family 32-bit Arm” Cortex” microcontroller web page contains a wealth of data that will assist you
in selecting the right XMC5000 device and quickly and effectively integrate it into your design. For a
comprehensive list of XMC5000 family MCU resources, see How to design with XMC5000 family MCU. The
following is an abbreviated list of resources for XMC5000 family MCUs.

+ Overview: XMC5000 family MCU web page

+ Product selectors: XMC5000 series MCU

« Datasheet: describes and provide electrical specifications for each device family

+ Application notes and code examples cover a broad range of topics, from basic to advanced

+ Reference manuals (architecture and register) provide detailed descriptions of the architecture and
registers in each device family

+ XMC5000 family MCU programming specification provides the information necessary to program the
nonvolatile memory of XMC5000 family MCU devices

+ Development tools: KIT_XMC52_EVK
+ Technical support: XMC5000 family community forum, knowledge base articles

Application note 7 002-41720 Rev. **
2025-09-01

https://www.infineon.com/products/microcontroller/32bit-industrial-arm-cortex-m/xmc5000

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

3 XMC5000 MCU development kits

3 XMC5000 MCU development kits

« Development kits

- XMC5000 Evaluation Kit (KIT_XMC52_EVK)

For the complete list of kits for the XMC5000 family MCU along with the shield modules, see the above
microcontroller kits page.

Application note 8 002-41720 Rev. **
2025-09-01

https://www.infineon.com/evaluation-board/KIT-XMC52-EVK

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

4 Development ecosystem

4 Development ecosystem

4.1 Firmware/application development

Infineon provides the ModusToolbox™ software for firmware/application development on XMC5000 MCU.

ModusToolbox™ software is a modern, extensible development ecosystem supporting a wide range of Infineon
microcontroller devices, including PSOC™ Arm” Cortex” Microcontrollers, TRAVEO™ T2G Arm’ Cortex”
Microcontroller, XMC™ industrial microcontrollers, AIROC™ Wi-Fi devices, AIROC™ Bluetooth’ devices, and USB-C
Power Delivery microcontrollers. This software includes configuration tools, low-level drivers, middleware
libraries, and other packages that enable you to create MCU and wireless applications. All tools run on
Windows, macOS, and Linux. ModusToolbox™ includes an Eclipse IDE, which provides an integrated flow with
all the ModusToolbox™ tools. Other IDEs such as Visual Studio Code, IAR Embedded Workbench and Arm’ MDK
(Vision) are also supported.

ModusToolbox™ software supports stand-alone device and middleware configurators. Use the configurators to
set the configuration of different blocks in the device and generate code that can be used in firmware
development.

Libraries and enablement software are available at the GitHub site.

ModusToolbox™ tools and resources can also be used on the command line. See the "Build system" chapter in
the ModusToolbox™ tools package user guide for detailed documentation.

4.1.1 Installing the ModusToolbox™ tools package

Refer to the ModusToolbox™ tools package installation guide for details.

4.1.2 Choosing an IDE

ModusToolbox™ software, the latest-generation toolset, is supported across Windows, Linux, and macOS
platforms. ModusToolbox™ software supports third-party IDEs, including the Eclipse IDE, Visual Studio Code,
Arm’ MDK (uVision), and IAR Embedded Workbench. The tools package includes an implementation for all the
supported IDEs. The tools support all XMC5000 MCUs. The associated BSP and library configurators also work
on all three host operating systems.

IAR

®) .
L_CO'I"T‘;”d Eclipse IDE If‘r;" V“_"E_)K V'S“g' :t”d'o Embedded
ine Interface (Keil pVision) ode Workbench
Figure 2 ModusToolbox™ environment
Application note 9 002-41720 Rev. **

2025-09-01

https://github.com/infineon
https://www.infineon.com/ModusToolboxUserGuide
https://www.Infineon.com/ModusToolboxInstallguide

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

4 Development ecosystem

4.1.3 ModusToolbox™ help

The ModusToolbox™ ecosystem provides documentation and training. Launch the Eclipse IDE for
ModusToolbox™ software and navigate to the following Help menu items:

Choose Help > ModusToolbox™ General Documentation:

« ModusToolbox™ Documentation Index: Provides brief descriptions and links to various types of
documentation included as part of the ModusToolbox™ software

+ ModusToolbox™ Installation Guide: Provides instructions for installing the ModusToolbox™ software

+ ModusToolbox™ User Guide: This guide primarily covers the ModusToolbox™ aspects of building,
programming, and debugging applications. Additionally, it covers various aspects of the tools installed
along with the IDE

+ ModusToolbox™ Training Material: Links to the training material available at https://github.com/
Infineon/training-modustoolbox

+ Release Notes: Describes the features and known limitations for the ModusToolbox™ software, provided as
part of the ModusToolbox™ tools package included with the installer

For documentation on Eclipse IDE for ModusToolbox™, choose Help > Eclipse IDE for ModusToolbox™
documentation.

+ User Guide: Provides descriptions about creating applications as well as building, programming, and
debugging them using Eclipse IDE

+ Eclipse IDE Survival Guide: This is a link to a forum with answers for questions about how to get common
tasks done

Application note 10 002-41720 Rev. **
2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

5 Getting started with XMC5000 MCU design

This section does the following:

+ Demonstrates how to build a simple design based on XMC5000 family MCU and program it on to the
development kit

+ Makes it easy to learn XMC5000 MCU design techniques and how to use the ModusToolbox™ software with
different IDEs

5.1 Prerequisites

Before you get started with the application development instructions, make sure that you have the appropriate
development kit for your XMC5000 MCU product line and have installed the required software. Ensure you have
an active internet connection to access the GitHub repositories during project creation.

5.1.1 Hardware

The design is developed for XMC5000 Family Evaluation Kit (KIT_XMC52_EVK). However, you can build the
application for other development kits also. For more details, see the Application development section.

5.1.2 Software

Install ModusToolbox™ software 3.5 or later.

After installing the software, see the ModusToolbox™ tools package user guide to get an overview of the
software.

ModusToolbox™ XMC500 Early Access Pack (EAP)

As this MCU collaterals are not available online, the Early Access Pack needs to be installed to get the required
resources.

1. Download and install the Infineon Developer Center Launcher application
2, Login using your Infineon credentials
3. Download and install the ModusToolbox™ XMC5000 Early Access Pack from Infineon Developer Center

Launcher application. The default installation directory of the Early Access pack is the root
ModusToolbox™ installation folder of the respective operating system

4, After installing the Early Access Pack, use the following system variable to enable the early access
environment. Save the Environment variables and restart ModusToolbox™

Variable name: "MTB_ENABLE_EARLY_ACCESS"

Variable value: "com.ifx.tb.tool.modustoolboxpackxmc5000"

5.2 Application development

These instructions are grouped into several sections. Each section is dedicated to a phase of the application
development workflow. The key sections are:

Create a new application

View and modify the design

Write firmware

Build the application

Program the device

6. Test your design

This design is developed for the XMC5000 Evaluation Kit. You can use other supported kits to test this example
by selecting the appropriate kit while creating the application.

uihwbde

Application note 11 002-41720 Rev. **
2025-09-01

https://www.infineon.com/modustoolbox
https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/design-resources/development-tools/utilities/infineon-developer-center-idc-launcher

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

5.3 About the design

This design uses the XMC5000 family MCU to execute two tasks: UART communication and LED control.

After device reset, this code example uses the UART to print a “Hello World” message to the serial port stream,
and starts blinking the user LED on the kit. When you press the Enter key on the serial console, the blinking is
paused or resumed.

5.4 Create a new application

This section guides you in creating a new application. It uses the Empty App starter application and manually
adds the functionality from the Hello World starter application.

As mentioned in the Choosing an IDE section, ModusToolbox™ software supports the following third-party IDEs:

1. Eclipse IDE for ModusToolbox™

2. Visual Studio Code for ModusToolbox™

3. IAR Embedded Workbench for ModusToolbox™
4, Keil pVision for ModusToolbox™

The following sections provide details on how to create a new application on different IDEs.

5.4.1 Eclipse IDE for ModusToolbox™

If you are familiar with developing applications with ModusToolbox™ software, you can use the Hello World
starter application directly. It is a complete design, with all the firmware written for the supported kits. You can
walk through the instructions and observe how the steps are implemented in the code example.

If you start from scratch and follow all the instructions in this application note, you can use the Hello World
code example as a reference while following the instructions.

Launch the Dashboard 3.5 application to get started.

Note: Ensure that the Dashboard 3.5 application is connected the internet to clone the starter application
onto your machine.

The Dashboard 3.5 application helps you get started using the various tools with easy access to documentation
and training material, and provides a simple path for creating applications and creating and editing BSPs.

1. Open the Dashboard 3.5 application. Do one of the following:

+ Windows: Navigate to [ModusToolbox™ installation path]/tools_3.5/dashboard/dashboard.exe or
you can also select the "ModusToolbox™ Dashboard 3.5" item from the Windows Start menu

+ Linux: Navigate to [ModusToolbox” installation path]/tools_3.5/dashboard and run the executable

+ macOS: Run the "dashboard" app

2. On the Dashboard 3.5 window, in the right pane, in the Target IDE drop-down list, select Eclipse IDE for
ModusToolbox™, and click Launch Eclipse IDE for ModusToolbox™

Application note 12 002-41720 Rev. **
2025-09-01

restricted

o~ _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

Dashboard 3.5
File Settings Help

Learn Create

Create a new application for ...

‘ Irarget IDE: Eclipse IDE for MoedusToolbox™ 3.5 VI
NOE
©‘\ IDE

@ I Launch Eclipse IDE for ModusToolbox™ 3.5 I
0 ™ This option opens the Eclipse IDE. To create an application,
ModusToolbox select the "New Application™ option in the Eclipse IDE Quick
New to ModusToolbox™ software? Panel.

Eclipse IDE for ModusToolbox™ User Guide

\ Py
l 3 | Create or edit a Board Support Package (BSP) ...

<

BSP

Launch BSP Assistant

ModusToolbox™ Documematlon

Install

Install and configure additional features ... |

SETUP

Launch ModusToolbox Setup

Figure 3 Dashboard 3.5 application
3. Select a new workspace

At launch, Eclipse IDE for ModusToolbox™ displays a dialog to choose a directory for use as the
workspace directory. The workspace directory is used to store workspace preferences and development
artifacts. You can choose an existing empty directory by clicking the Browse button, as shown in the
following figure. Alternatively, you can type in a directory name to be used as the workspace directory
along with the complete path, and the IDE will create the directory.

[Eclipse IDE for ModusToolbox™ 3.5 Launcher O X

Select a directory as workspace

Eclipse IDE for ModusToolbox™ 3.5 uses the workspace directory to store its preferences and development artifacts.

|CAmtw Browse...
Use this as the default and do not ask again
» Recent Workspaces
Launch Cancel

Figure 4 Select a directory as the workspace
4, Create a new ModusToolbox™ application
a. Click New Application in the Start group of the Quick Panel

b. Alternatively, you can choose File > New > ModusToolbox™ Application, as Figure 5 shows. This
displays the Eclipse IDE for ModusToolbox™ Application window

Application note 13 002-41720 Rev. **
2025-09-01

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

infineon

5 Getting started with XMC5000 MCU design

= Quic... Varia.. % Expr.. s Brea.. = O

Eclipse IDE for
ModusToolbox™

& New Application

line fo

& Search Online for L SPs
& Training Material
A Refresh Quick Panel

ﬂ miw - Eclipse IDE for ModusToolbox™ 3.5

File Edit Navigate Search _Project Run _Window Help
I New Alt+Shift«N > | ™ Project...

Bpen Tle
pen fiie < Other... Crl+N

1 Open Projects from File System.
Recent Files » I- ModusToolbox™ Application Ctrl+7 I

Figure 5 Create a New ModusToolbox™ Application
5. Select a target XMC5000 Evaluation Kit

ModusToolbox™ speeds up the development process by providing BSPs that set various workspace/
project options for the specified development kit in the new application dialog.

a. In the Choose Board Support Package (BSP) dialog, choose the Kit Name that you have. The
steps that are followed use KIT_XMC52_EVK, as shown in Figure 6

b. Click Next

] Choose Board Support Package (BSP) - Project Creatar 240 - o X

Settings Help

mplate.

Create from MPN... Browse for BSP.. [=) [¥ KIT_XMC52_ EVK

Kit Name. MCU/SOC/SIP The KIT_XMC52_EVK, a 100-pin evaluation board is

KIT_XMC_PLT2GO_XMC4200
KIT_XMC_PLT2GO_XMC4400
KIT_XMC11_80OT_001
KIT_XMC12_8OOT_001
KIT_XMC13_BOOT 001
KIT_XMC13_DPCC_V1
KIT_XMC1300_DC_V1
KIT_XMC14 26O
KIT_XMC14_BOOT 001
KIT_XMC1400_DC_V1
KIT_XMC42_DPCC_V1
KIT_XMC43_RELAX_ECAT_V1
KIT_XMC4400_DC V1
KIT_XMCAS_RELAX VA
KIT_XMCA7_RELAX V1

KIT XMC48 RELAX ECAT V1

KIT XMC71_EVK_LITE V2
| KITXMC72_EVK

T XME7I00 e v

XMC4200-F64x256
XMIC4400-F100x512
XMC1100-T038x0064
XMC1200-T038x0200
XMC1302-T038x0200
XMC1302-T038x0200
XMC1302-T038x0200
XMIC1404-Q040x0200
XMC1404-Q064x0200
XMC1402-T038x0200
XMC4200-F64x256
XMC4300-F100x256
XMC4400-F100x512
XMC4500-F100x1024
XMC4700-F 14452048
XIVIC4800-F144x2048

[[KITXMC52_EVK XMC5200-F100K1088AA
0 VRIEV XWICTT00D-F176KATE0

XMCT7100D-F100K4160
XMC7200D-E272K8384

KIT_XMC72_EVK_MUR 43438M2 XMC7200D-E272KB384

XMCTI00R-F17AKRARA

» Wireless Charging BSPs based on the XNC™ 5000 family of devices. XMC™

~ XMC™ B5Ps 5200 MCU is designed for industial applications.
EVAL GEDL7141 TRAP_1SH XMC1404-Q054x0200 Arduino for interfacing Arduins shields. In addition,
EVAL_BEDL7151_26V_1KW XMC1404-Q064x0200 the board feature: on-board programmer
EVAL_IMD700A_FOC_3SH IMD701A-Q064x128 (XMC1404-Q debugger (KitPro CAN FD transceiver, two user
EVAL-XMC4800PSOCEMS-XMC XMC4800-E196x2048 nd one u: uttos

board supports an operating voltage of 5.0 V for
XMC™ 5200 device.

Kit Features:

* XMC5200-F100K1088AA 108K Flash 100-
pin LOFP device

* Programming interface (Arm® Standard
JTAG, Cortex® Debug + ETM with Arm® ETM
Mictor)

Reset control with manual reset switch and
voltage supervision

* CAN FD interface

* KitProg3 on-board SWD programmer/

USB-UART and USB-I2C bridge

ctor interface and a

ges of 33 Vand

5.0 V for the XMC™ 5200 device

 Three user LEDs, two user buttons, and a reset
button for the XMC™ 5200 device

* A potentiometer which can be used to
simulate analog sensor output

* A mode button and a mede LED for KitProg3

-

Figure 6 Choose target hardware
c. In the Select Application dialog, select Empty App starter application, as shown in the following
figure
d. In the Name field, type in a name for the application, such as Hello_World. You can choose to
leave the default name if you prefer

Note: Try to use a short name without spaces in between.

e. Click Create to create the application, as shown in the following figure and wait for the Project
Creator to automatically close once the project is successfully created

002-41720 Rev. **
2025-09-01

Application note 14

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

[Select Application - Project Creator 2.40 - [u] X

Settings Help

Root Path: C/mtw Browse...

Target IDE: Eclipse IDE for ModusToolbox™
se for Application.. ¥ %= [Z B &

Template Application New Application Name New BSP Name
siad

n
For more details, see the
Empty A 3 AP KIT XMC52 EVK
(e o e R e

Figure 7 Choose starter application
You have successfully created a new ModusToolbox™ application for XMC5000 MCU.

If you are using custom hardware based on the XMC5000 MCU or a different XMC5000 MCU part number, see the
"Creating your Own BSP" section in the ModusToolbox™ user guide.

5.4.1.1 View and modify the design

The Figure 8 shows the ModusToolbox™ Project Explorer interface displaying the structure of the application
project.

The XMC5000 family MCU consists of two cores: one CMO+ core and one M4F core. This application note shows
an example code for firmware development using ModusToolbox™ software.

{1 Project Explorer X % Debug Registers 7, Peripherals
v 5 Hello_World

Binaries !
& bsps
= TARGET APP KIT XMC52 EVK
= build
v = deps
Add your library dependencies in this folder.txt
assetlocks.json
mtb-hal-xmcSemtb
retarget-io.mth

= libs
C main.c
library-manager.log

an LICENSE

| & Makefile

v README.md

« |5 mtb_shared
& catlcmOp
(= emsis
& core-lib
& core-make

A

g

(= mtb-hal-xmc5x

= mtb-pdl-cat1

& recipe-make-catla
& retarget-io

Figure 8 Project Explorer view

A project folder consists of various subfolders - each denoting a specific aspect of the project.

1. The files provided by the BSP are available in the bsps folder and are listed under TARGET_<bsp name>
subfolders. All the input files for the device and peripheral configurators are in the config folder inside
the BSP. The GeneratedSource folder in the BSP contains the files that are generated by the configurators

Application note 15 002-41720 Rev. **
2025-09-01

https://www.infineon.com/ModusToolboxUserGuide

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

and are prefixed with cycfg_. These files contain the design configuration as defined by the BSP.
From ModusToolbox™ 3.x or later, you can directly customize the configurator files of the BSP for your
application rather than overriding the default design configurator files with custom design configurator
files because BSPs are completely owned by the application. The bsps folder also contains the linker
scripts and the start-up code for the XMC5000 MCU used on the board

2. The build folder contains all the artifacts resulting from a build of the project. The output files are
organized by target BSPs

3. The deps folder contains.mtb files, which provide the locations from which ModusToolbox™ pulls the
libraries that are directly referenced by the application. These files typically contain the GitHub location
of a library. The .mtb files also contain a git commit hash or tag that tells which version of the library
is to be fetched and a path as to where the library should be stored locally. For example, here, retarget-
io.mtb pointstomtb://retarget-io#latest-vl.X#$$ASSET_REP0$$/retarget-io/latest-vi.X. The variable
$$ASSET_REPO$$ points to the root of the shared location which defaults to mtb_shared. If the library must
be local to the application instead of shared, use $$L0cAL$$ instead of $$ASSET_REPO$$

4, The libs folder also contains .mtb files. In this case, they point to libraries that are included indirectly
as a dependency of a BSP or another library. For each indirect dependency, the Library Manager places
a.mtb file in this folder. These files have been populated based on the targets available in the deps folder

For example, using rhe KIT_XMC52_EVK BSP populates the libs folder with the following .mtb files:
catlcmOp, cmsis.mtb, core-lib.mtb, core-make.mtb, deivce-db.mtb, mtb-hal-xmc5x.mtb, mtb-pdl-
catl.mtb, receipe-make-catla, retarget-io.mtb

The libs folder contains the mtb.mk file, which stores the relative paths of all the libraries required by the
application. The build system uses this file to find all the libraries required by the application. Everything
in the libs folder is generated by the Library Manager so you should not manually edit anything in that
folder

5. An application contains a Makefile which is at the application's root folder. This file contains the set of
directives that the make tool uses to compile and link the application project. There can be more than
one project in an application. In that case, there is a Makefile at the application level and one inside each
project

6. By default, when creating a new application or adding a library to an existing application and specifying
it as shared, all libraries are placed in an mtb_shared directory adjacent to the application directories

The mtb_shared folder is shared between different applications within a workspace. Different
applications may use different versions of shared libraries if necessary

5.4.1.1.1 Open Device Configurator

BSP configurator files are in the bsps/TARGET_<BSP-name>/config folder. Click <Application-name> from Project
Explorer and then click Device Configurator link in the Quick Panel to open the design.modus file in the Device
Configurator as shown in the following figure. You can also open other configuration files in their respective
configurators or click the corresponding links in the Quick Panel.

Application note 16 002-41720 Rev. **
2025-09-01

https://github.com/Infineon/cat1cm0p
https://github.com/Infineon/cmsis
https://github.com/Infineon/core-lib
https://github.com/Infineon/core-make
https://github.com/Infineon/device-db
https://github.com/Infineon/mtb-pdl-cat1
https://github.com/Infineon/mtb-pdl-cat1
https://github.com/Infineon/recipe-make-cat1a
https://github.com/Infineon/retarget-io#latest-v1.X

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

infineon

5 Getting started with XMC5000 MCU design

[C/mtw/Hello World/bsps/TARGET_APP_KIT_XMC52_EVK) ign.mod tor 5,30 - O b
Resources Categories Pane ‘

- Device Confi

File Edit Settings View Help

XMC5200-F100K1088AA Serial Communication Block (SCB) 0 (CVBSP_DEBUG_UART) - Parameters EE
Peripherals Pins _ Analog-Routing _ System _Peripheral-Clocks DMA | Enter fiter text FACER 4=
Enter filter text.. AR Value
Resource Name(s) Personality Overview
v Analog (%) Configuration Help Open UART (SCB) Documentation
v Programmable Analog
(] 12-bit SAR ADC 0 General
[0 12-bit SAR ADC 1 (%) Com Mode Standard
(O 12-bit SAR ADC 2 (7) Baud Rate (bps) 115200
O epassaref (7) Oversample 8
v Communication () Bit Order LSE First
> Controller Area Netwark FD (CAN FD) 0 (3) Data Width 8 bits
5 Controller Area Network FD (CAN FD) 1 @ Parity None
8 Serial Communication Block (SCE) 0 CVBSP DEBUG UART UART-30 - @ stop Bits Tbit
(0 Serial Communication Block (SCE) 1 scb_1 () Enable Digital Filter g
(0 Serial Communication Block (SCB) 2 + Support RS-485
[0 Serial Communication Block (SCE) 3 (@ Tx-Enable 8]
[Serial Communication Block (SCE) 4 « Flow Control
() Serial Communication Block (SCB) 5 () Enable Flow Control [m]
() Serial Communication Block (SCB) 6 (7) CTS Polarity Active Low
() Serial Communication Block (SCB) 7 () RTS Polarity Active Low
v Digital (%) RTS Activation Level 63
w Timer, Counter, and PWM (TCPWM) 0 © Connections
2 Igmmg 2:::? [@ Clock P | @ 245 bit Divider 0 clk [USED]
() TCPWMI0] Group[1] 16-bit Counter 0 ¢, @ RX & | @ Po[0] digital_inout (CYBSP_DEBUG_UART_RX) [USED]
() TCPWMIO] Group(1] 16-bit Counter 1 3 TX A4 | @ POM1 dinital inout (VRSP DFRUG LART TX) TUSEDT
(0) TCPWMI0] Groupl1] 16-bit Counter 2
() TCPWMI0] Group(1] 16-bit Counter 3 [Tod= Preview =
() TCPWM[0] Group(1] 16-bit Counter 4 Ente .
() TCPWM[0] Group(1] 16-bit Counter 5 #include "cyhal hw_types.h”
() TCPWMIO] Groupl1] 16-bit Counter 6 USING_HAL LITE) */
() TCPWMIO] Groupl1] 16-bit Counter 7 e
() TCPWM(0] Group(1] 16-bit Counter 8 ATerrupt_IRQR

() TCPWMI0] Group(1] 16-bit Counter 9

() TCPWMI0] Groupl1] 16-bit Counter 10

() TCPWMI0] Group(1] 16-bit Counter 11 tcp
« TCPWMI[0] Group 2

() TCPWMI0] Group(2] 32-bit Counter 0

() TCPWMIO] Group(2] 32-bit Counter 1

(] TCPWMI0] Group[2] 32 bit Counter 2

DEBUG_UART_config -

[Notice List ElE:

okros 1 0Warnings Ejohm o rios
Notices Pane

Fix Description Location]

Figure 9 Device Configurator - UART configuration

The Device Configurator provides a set of Resources Categories tabs. Here, you can choose between different
resources available in the device such as peripherals, pins, and clocks from the List of Resources.

You can choose how a resource behaves by choosing a Personality for the resource. For example, a Serial
Communication Block (SCB) resource can have EZI2C, 12C, SPI, or UART personalities. The Name(s) is your
name for the resource, which is used in firmware development. One or more aliases can be specified by using a
comma to separate them (with no spaces).

The Parameters pane is where you enter the configuration parameters for each enabled resource and the
selected personality. The Code Preview pane shows the configuration code generated per the configuration
parameters selected. This code is populated in the cycfg_ files in the Generatedsource folder. The Parameters
pane and Code Preview pane may be displayed as tabs instead of separate windows but the contents will be
the same.

Any errors, warnings, and information messages arising out of the configuration are displayed in the Notices
pane. Configuring the peripheral is required for both PDL- and HAL-based implementations to work.
Figure 9 also shows that SCB 0 is enabled and configured. As SCB 0 is used for communicating with the user

through the debug UART terminal, replicate the same configuration in your setup for the "Hello World"
application.

002-41720 Rev. **
2025-09-01

Application note 17

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

5 Getting started with XMC5000 MCU design

[C/mtw/Hello World/bsps/TARGET_APP_KIT_XMC52_EVK, ign.modus - Device Configurator 5.30 - o x
File Edit Settings View Help Resources Categories Pane

XMC5200-F100K1088AA TCPWMIO] Group(1] 16-bit Counter 0 (TCPWM_COUNTER) - Parameters 5
[Peripherals —Pins Analog-Routing _ System _Peripheral-Clocks _ DMA | Enter filter text FLAR =
Enter filter text.. Z\T BB £E Name Value

‘ ‘ . Parameters Pane
Resource Name(s) Personality v Overview

v Analog .

~ Programmable Analog @ c Help Open Timer - Counter (TCPWM) D
() 12-bit SAR ADC 0
v General

() 12-bit SAR ADC 1

neral
() Clack Prescaler

infineon

[0 12-bit SAR ADC 2 Dividelby,32 -
p— (?) Counter Resolution (%) 16-bits
. co (@ Run Mode Continuous -
N ea Network FD (CAN FD) 0 (%) period 31249
> Controller Area Network FD (CAN FD) 1 (?) Compare or Capture Capture -
@ Serial Communication Block (SCB) 0 CYBSP_DEBUG_UART ~ UART-3.0 () Count Direction Up -
(0 serial Communication Block (SC8) 1 v Capture
(O Serial Commu Block (SCB) 2 (@ Capture 0 Input Disabled -
() serial Commu: Block (5C8) 3 (@) Capture 1 Input Disabled -
(O Serial Communication Block (SCB) 4 v Interrupt Source
(7 serial Communication Block (SCB) 5 (@) Overflow & Underflow (J
(O Serial Communicaf tion Block (SCB) 6 (?) Compare 0 & Capture 0 @
(O Serial Communication Block (SC8) 7 (?) Compare 1 & Capture 1 (J
v Digital v Inputs

~ Timer, Counter, and PWM (TCPWM) 0 (@) Clack Signal @ | @ 8 bit Divider 0 clk [USED]

'

() TCPWMIO] Groupl1] 16-bit Counter 1 c
(0) TCPWMIO] Group{1] 16-bit Counter

> TCPWMIO] Group 0 @ Count Input Disabled v

 TCPWMIO] Group 1
e T[c;w;:;gs 1] 16-bit Counter 0 TCPWM _COUNTER Timer - @ stop nput Dieshied =
ot it Counter imer - Caunt () Reload Input Disabled S

L

() TCPWMIO] Groupl1] 16-bit Counter 3 <c
(0 TCPWMIO] Group(1] 16-bi
() TCPWMIO] Group{1] 16-
(0 TCPWMIO] Group{1] 16-
() TCPWMIO] Groupl1] 16-bit Counter 7 c
(0) TCPWMIO] Group{1] 16-bit Counter
() TCPWMIO] Group{1] 16-
(0 TCPWMIO] Group(1] 16-bit
O TCPWMIO] Group(1] 16-bit
v TCPWMIO] Group 2
() TCPWMIO] Groupl2] 32-bit Counter 0 +c
() TCPWMIO] Groupi2] 32-bit Counter 1 tcp

Notice List &

Qoerors | 1 0Wamings =] 0Tasks @ 0infos
Notices Pane

Fix Description Locatio

Teadv

Figure 10 Device Configurator - Timer configuration

Figure 10 shows that the timer TCPWM[0] Group[1] 16-bit Counter 0 is configured in Timer - Counter mode.

This configuration is used in the code to generate interrupts for LED toggling. Make the same configuration in
your setup. To make the LED toggle every second, the input clock frequency is set to 1 MHz. Ensure that this
configuration is also made in your setup.

In the "Hello World" application, you are using a GPIO connected to the LED on the EVK. To use the GPIO,
enable pin P19.0 in the Pins tab in the Resource Categories pane. Also, make sure that the Drive Mode is set to
‘Strong Drive. Input buffer off’.

At this point in the development process, the required middleware is ready to be added to the design. The
middleware required for the "Hello World" application is the retarget-io library and mtb-hal-xmc5x library.

5.4.1.1.2 Add retarget-io middleware

This section explains how to add the retarget-io middleware to redirect standard input and output streams to
the UART configured by the BSP. The initialization of the middleware will be done in the main.c file.

1. In the Quick Panel, click the Library Manager link

2, In the subsequent dialog, click Add Libraries

3. Under Peripherals, select and enable retarget-io and mtb-hal-xmc5x

4, Click OK and then Update

The files necessary to use the retarget-io and mtb-hal-xmc5x middleware are added in the mtb_shared >
retarget_io folder, and the .mtb file is added to the deps folder, as shown in the following figure.

002-41720 Rev. **
2025-09-01

Application note 18

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

[Add Library - Library Manager 240 X

Target Project: Hello_World -

[Enter filter text. | T 2B retergetio
Name Version The Retarget 10 library provides APIs for transmitting
T v [—— (O mbedTLS Acceleration v2.7.0 Release messages to or from the board via standard printf/scanf ¢ Project Explorer X 4 Debug il Registers % Periphs
Ml Quick Panel |+~ Variables |SiEcprsssongisity mtb-hal-cat! 271 release functions using a UART connection which is generally = Hello World
Eclipse for %] connected to a host machine. o Binarics
ModusToolbox Version details: 1.7.0 release @ bsps
- recipe- ec 25 ease & build
» Start
' 2 > Graphics v & deps
+ Hello World (APP_KIT XMC52 EVK) Application Directory: |Gl || , Add your library dependencies in this folder.t
» Launches Enter filter text. v Peripheral assetlocksjson
— || /—== () audio-codec-ak4a54a 1,02 release mib-hal xmesx.mtb
) audio-codec-wmB960 1.0.0 release retarget-io.mtb
& BSP Assistant v BSPs O bmite0 3.9.1 release & Tibs
© APP_KIT_XMC52 O bmi270 2.86.1 release £ main.c
Tool 270 v Hello World Libraries) bmm150 200 release library-manager.log
o - catlcmOp () bmm350 1.4.0 release i LICENSE
cmsis () CY8CKIT-028-EPD 2.1.0 release Makefile
T core-lib [CYSCKIT-028-SENSE 1.1.0 release README.md
ModusToolbox™ Programemer 5.4 core-make () CYaCKIT-028-TFT 120 release « & mtb_shared
oduet | device-db () CY8CKIT-032 1.1.0 release @ catlemOp
= | mtb-pdl-cat1 () display-eink-e2271cs021 1.1.0 release emsis
& ModusToolbox™ set) recipe-make-catla () display-oled-ssd1306 1.03 release & core-lib
display-tft-st7735s 0.5.0 release .
- BSP Configurators (APP_KIT XMC52 EVI O display & core-make
7 (APP_KIT . LEVK) | addesp || Add Library 0 display-tft-st7789v 1,04 release P TSrT———
u Device Configurator 5.30 | () multi-hali-bridge 5.0.1 release & mtb-pdl-catl
& Smart I/0 Configurator 4.40 ! hinished parsing super manif ([optiga-nbt-lib-c-mth 1.1.2 release recipe-make-catla
manifest-f2xml' () optiga-trust-m 5.3.0 release
Downloading manifest file 8 retoroctio T
Downloading manifest file 'h
! [7 rgb-1ed T release
Downloading manifest file 'h o ik
0 1.
Downloading manifest file 'h
Dournloading manifest file *h
Dounloading manifest file 'h oK e
Dowlonding manifent i h [_oc]
=
Figure 11 Add the retarget-io and mtb-hal-xmc5x middleware
. f.
5.4.1.2 Write firmware

At this point in the development process, you have created an application with the assistance of an application
template and modified it to add the retarget-io middleware. In this part, you write the firmware that
implements the design functionality.

If you are working from scratch using the empty XMC5000 family starter application, you can copy the
respective source code to the main. c file of the application project from the code snippet provided in this
section. If you are using the "Hello World" code example, all the required files are already in the application.
Firmware flow

Examine the code in the main.c file of the application. Figure 12 shows the firmware flowchart.

After reset, resource initialization for this example is performed by the CM4 CPU. It configures the system clocks,
pins, clock to peripheral connections, and other platform resources.

Then, the clocks and system resources are initialized by the BSP initialization function. The retarget-io
middleware is configured to use the debug UART, and the user LED is initialized. The debug UART prints a “Hello
World!” message on the terminal emulator - the onboard KitProg3 acts as the USB-to-UART bridge to create the
virtual COM port. A timer object is configured to generate an interrupt every 1000 milliseconds. At each timer
interrupt, the CPU toggles the LED state on the kit.

The firmware is designed to accept the 'Enter' key as an input, and on every press of the 'Enter' key, the
firmware starts or stops the blinking of the LED.

Note that this application code uses BSP/HAL/middleware functions to execute the intended functionality.

cybsp_init() - This BSP function initializes all the system resources of the device, including but not limited to
the system clocks and power regulators.

Cy_SCB_UART_Init() - This function initializes the debug UART.
mtb_hal_uart_setup() and cy_retarget_io_init() - These functions set up the HAL UART and redirect the input/
output stream to the debug UART.

mtb_hal_uart_get() - The while loop calls this function to detect the pressing of the 'Enter Key', which start or
stop the LED toggling.

Application note 19 002-41720 Rev. **
2025-09-01

restricted ./.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

timer_init() - This function wraps a set of timer function calls to instantiate and configure a hardware timer. It
also sets up a callback for the timer interrupt.

isr_timer() - Thisis the timer ISR getting executed in every 1000 milliseconds. This function sets a flag for
toggling the LED.

The flag set by the timer ISR is checked in the main loop, and the LED is toggled based on it.

Application note 20 002-41720 Rev. **
2025-09-01

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

5 Getting started with XMC5000 MCU design

Copy the following code snippet to the main.c file of your application project.

infineon

/***

* Header Files
***/
#include "cy pdl.h"

#include "cybsp.h"

#include "cy_retarget_io.h"

#include "mtb_hal.h"

/***

* Macros
***/

/***

* Global Variables

***/

/* Interrupt configuration */

const cy_stc_sysint_t IRQ_CFG =

{
.intrSrc = ((NvicMux3_IRQn << CY_SYSINT_INTRSRC_MUXIRQ_ SHIFT) | TCPWM_TIMER_IRQ),
.intrPriority = 7UL

¥

bool timer_interrupt_flag = false;
bool led_blink_active_flag = true;

/* Variable for storing character read from terminal */
uint8_t uart_read_value = OUL;

/* For the Retarget -IO (Debug UART) usage */
static cy_stc_scb_uart_context_t UART_context; /** UART context */
static mtb_hal_uart_t UART_hal_obj; /** Debug UART HAL object

/***

* Function Prototypes
***/
void timer_init(void);
void isr_timer(void);

/***

* Function Name: main

3k 3k sk 3k sk ok ok sk 3k ok 3k ok 3k ok 3k sk 3k sk 3k sk ok sk ok 3k ok 3k sk 3k sk 3k sk 3k sk 3k sk ok 3k ok 3k 3k 3k ok 3k sk 3k sk ok sk ok sk ok 3k ok 3k ok 3k ok 3k sk 3k sk 3k sk 3k 3k ok 3k ok 3k ok 3k ok ok ok ok ok sk k ke k
* Summary:

* This is the main function. It sets up a timer to trigger a periodic interrupt.
* The main while loop checks for the status of a flag set by the interrupt and

* toggles an LED at 1Hz to create an LED blinky. Will be achieving the 1Hz Blink
* pate based on the The LED_BLINK_TIMER_CLOCK HZ and LED_BLINK_TIMER_PERIOD

* Macros,i.e. (LED_BLINK_TIMER_PERIOD + 1) / LED_BLINK_TIMER_CLOCK_HZ = X ,Here,
* X denotes the desired blink rate. The while loop also checks whether the

* 'Enter' key was pressed and stops/restarts LED blinking.

* Parameters:

Application note 21

*/

002-41720 Rev. **
2025-09-01

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

5 Getting started with XMC5000 MCU design

* none

* Return:
* int
*
***/
int main(void)

cy_rslt_t result;

/* Initialize the device and board peripherals */
result = cybsp_init();

/* Board init failed. Stop program execution */
if (result != CY_RSLT_SUCCESS)

{
CY_ASSERT(0);

/* Enable global interrupts */
__enable_irq();

/* Debug UART init */
result = (cy_rslt_t)Cy SCB_UART_Init(UART_HW, &UART_config, &UART_context);

/* UART init failed. Stop program execution */
if (result != CY_RSLT_SUCCESS)

{
CY_ASSERT(0);

Cy_SCB_UART_Enable(UART_HW);

/* Setup the HAL UART */
result = mtb_hal_uart_setup(&UART_hal_obj, &UART_hal_config, &UART_context, NULL);

/* HAL UART init failed. Stop program execution */
if (result != CY_RSLT_SUCCESS)

{
CY_ASSERT(0);

result = cy retarget_io_init(&UART_hal_obj);

/* HAL retarget_io init failed. Stop program execution */
if (result != CY_RSLT_SUCCESS)

{
CY_ASSERT(0);

/* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */
printf("\x1b[23\x1b[;H");

Application note 22

infineon

002-41720 Rev. **
2025-09-01

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

5 Getting started with XMC5000 MCU design

printf("****************** "

"PDL: Hello World! Example "
0 3k 3k sk 3k ok ok ok ok ok ok ok ok ok sk ok sk sk ok \P\n\n“);

printf("Hello World!!!\r\n\n");
printf("For more projects, "
"visit our code examples repositories:\r\n\n");

printf("https://github.com/Infineon/"
"Code-Examples-for-ModusToolbox-Software\r\n\n");

/* Initialize timer to toggle the LED */
timer_init();

printf("Press 'Enter' key to pause or "

"resume blinking the user LED \r\n\r\n");

for (53)
{
/* Check if 'Enter' key was pressed */

uart_read_value = Cy_SCB_UART_Get(UART_HW);
if (uart_read_value == '\r'")

{
/* Pause LED blinking by stopping the timer */

if (led_blink_active_flag)

/* Move cursor to previous line */
printf("\x1b[1F");

led_blink_active_flag "= 1;

if (timer_interrupt_flag)

{
/* Clear the flag */
timer_interrupt_flag = false;
/* Invert the USER LED state */
Cy_GPIO_Inv(CYBSP_USER_LED_PORT, CYBSP_USER_LED_PIN);
}
Application note 23

{
Cy_TCPWM_Counter_Disable(TCPWM_TIMER_HW, TCPWM_TIMER_NUM);
printf("LED blinking paused \r\n");

}

else /* Resume LED blinking by starting the timer */

{
Cy_TCPWM_Counter_Enable(TCPWM_TIMER_HW, TCPWM_TIMER_NUM);
Cy_TCPWM_TriggerStart_Single(TCPWM_TIMER_HW, TCPWM_TIMER_NUM);
printf("LED blinking resumed\r\n");

}

/* Check if timer elapsed (interrupt fired) and toggle the LED */

infineon

002-41720 Rev. **
2025-09-01

restricted

..
Getting started with XMC5000 MCU on ModusToolbox™ software In f| neon

5 Getting started with XMC5000 MCU design

/***

* Function Name: timer_init

3k 3k sk 3k sk 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k 3k ok 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 3k 3k 5k ok sk ok sk ok sk 3k 3k 3k 3k 3k 3k ok ok ok ok ok 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok ok %k %k %k %k %k %k k
* Summary:

* This function creates and configures a Timer object. The timer ticks

* continuously and produces a periodic interrupt on every terminal count

event. The period is defined by the 'period' and 'compare_value' of the

timer configuration structure 'led_blink_timer_cfg'. Without any changes,

this application is designed to produce an interrupt every 1 second.

*

Parameters:
none

* ¥ ¥ ¥

*

* Return :
* void

***/

void timer_init(void)

{
cy_rslt_t result;
/* Initialize the timer object. Does not use input pin ('pin' is NC) and
* does not use a pre-configured clock source ('clk' is NULL). */
result = Cy TCPWM_Counter_Init(TCPWM_TIMER_HW, TCPWM_TIMER_NUM, &TCPWM_TIMER_config);
if(result != CY_TCPWM_SUCCESS)
{
CY_ASSERT(0);
}
/* Interrupt settings */
Cy SysInt_Init(&IRQ_CFG, &isr_timer);
NVIC_ClearPendingIRQ(NvicMux3_IRQn);
NVIC_EnableIRQ((IRQn_Type) NvicMux3_IRQn);
Cy _TCPWM_Counter_Enable(TCPWM_TIMER_HW, TCPWM_TIMER_NUM);
/* Start the timer with the configured settings */
Cy TCPWM_TriggerStart_Single(TCPWM_TIMER_HW, TCPWM_TIMER_NUM);
}

/***

* Function Name: isr_timer
3k 3k ok 3k ok 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k 3k ok 3k ok 3k ok sk ok sk ok 3k 3k 3k %k 3k 3k 3k ok 3k ok ok sk ok 3k ok 3k 3k 3k 3k 3k ok 3k 3k ok %k %k %k %k %k %k k
* Summary:

* This is the interrupt handler function for the timer interrupt.
*

* Parameters:

Application note 24 002-41720 Rev. **
2025-09-01

restricted

o~ _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

* callback_arg Arguments passed to the interrupt callback
* event Timer/counter interrupt triggers

*

* Return:

* void

***/
void isr_timer(void)

{

/* Get interrupt source */
uint32_t intrMask = Cy_TCPWM_GetInterruptStatusMasked(TCPWM_TIMER_HW, TCPWM_TIMER_NUM);

/* Clear interrupt source */
Cy_TCPWM_ClearInterrupt(TCPWM_TIMER_HW, TCPWM_TIMER_NUM, intrMask);

/* Set interrupt flag */
timer_interrupt_flag = true;

/* [1 END OF FILE */

Application note 25 002-41720 Rev. **
2025-09-01

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

5 Getting started with XMC5000 MCU design

infineon

NO

START >

!

Initialize clocks and
system resources
On timer Interrupt

l l

Initialize retarget-io to use
BSP’s debug UART

Set the timer interrupt flag

l

Exit Interrupt
Handler

Initialize the user LED

l

Print the message
“Hello World”
on to UART terminal

l

Initialize and start the
timer, register callback —
LED starts blinking

Is “Enter” key

pressed?

YES

Was LED

blinking earlier? NO J
YES ‘
N l
Stop the timer Start the timer

s timer interrupt

flag set? No

YES
AN/

Clear timer interrupt flag
&

Toggle LED state

Figure 12

Firmware flowchart

This completes the summary of how the firmware works in the code example. Explore the source files for a

deeper understanding.

5.4.1.3

Build the application

This section shows how to build the application.

Application note

26

002-41720 Rev. **
2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

1. Select the application project in the Project Explorer view
2. Click the Build Project shortcut under the Hello_World group in the Quick Panel
It selects the build configuration from the Makefile and compiles/links all projects that constitute the

application. By default, Debug configurations are selected. The Console view lists the results of the
build operation, as Figure 13 shows

[l mtw - Hello_World/main.c - Eclipse for ModusToalbox™ - o x
File Edit Source Navigate Search Project Run Window Help
= Befvi 5] L ST - B S S a ml@
@Pro.. X % De.. UiRe.. %Per. = O FREADMEmd € mainc x = 0 % Outline x =)
5 B ¢~ intrcfgl
= Hello_World timer_interrupt_flag
=t Shared int main(void) - led_blink_active_flag
{ uart_read _value
result;

- DEBUG_UART_context
DEBUG UART hal obj

result . O3 fe timer_init
fi isr_timer
fx main int (void)
(result |- CY_RSLT_SUCCESS) fe timer init
{ fie isr_timer
RT(@);
}
[$H
result - () ¢ DEBUG_UART_HM, DEBUG_UART_cont
(result |- CY_RSLT_SUCCESS)
{
SSERT(0) ;
i
¢ ¢ DEBUG_UART_HW) ;
| Quic... - Vari.. % Exp.. % Bre =o result t (¢ DEBUG_UART_hal_obj, DEBUG_UART _hal_conf
Eclipse for (result |- CY_RSLT_SUCCESS)
ModusToolbox™ {
ror
» Start
~ Hello World (APP_KIT XMC52_EVK) © Console % [£ Problems =5 Progress [Memory $ Terminal x i -&@lMmEB~nO~=o

DT Build Console [Hello_ World]

| -text | exie020000 5352

| 2 |
| -ARM_exidx | exieez6308 | 8 |
Build Config | .copy.table | exisea63ie | 24 |
| .zero.table | ©x10026328 | 8 |
i | .data | exoseesese | a4 |
~ Tools | .noinit | exeseeszze | 1592 |
5P | -bss | exeseessas | 512 |
o | -heap | ©xese08aa8 | 89432 |
t T
Total Internal Flash (Available) 1114112
Total Internal Flash (Utilized) 25888

16:09:84 Build Finished. @ errors, @ warnings. (took 10s.820ms)

Figure 13 Build the application

If you encounter errors, revisit earlier steps to ensure that you completed all the required tasks.

Note: You can also use the command-line interface (CLI) to build the application. See the Build system
section in the ModusToolbox™ tools package user guide. This document is located in the /
docs_<version>/ folder in the ModusToolbox™ installation

5.4.1.4 Program the device
This section shows how to program the XMC5000 MCU.

ModusToolbox™ software uses the OpenOCD protocol to program and debug applications on XMC5000 MCU on
the evaluation kit.

As the evaluation kit is with a built-in programmer, connect the board to your computer using the provided USB
cable.

Application note 27 002-41720 Rev. **
2025-09-01

https://www.infineon.com/dgdl/Infineon-ModusToolbox_3_5_Tools_Package_User_Guide-GettingStarted-v23_00-EN.pdf?fileId=8ac78c8c8386267f0183a8e9720c5915&redirId=188343
https://openocd.org/

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

5 Getting started with XMC5000 MCU design

infineon

If you are developing on your own hardware, you may need a hardware programmer/debugger, for example, a

J-Link or ULinkpro, or MiniProg.
1. Program the application:

a. Connect to the board

b. Select the application project and click the Hello_World Program (KitProg3_MiniProg4)
shortcut under the Launches group in the Quick Panel, as Figure 14 shows. The IDE will select and
run the appropriate run configuration. Note that this step will also perform a build if any files have
been modified since the last build

{3 Project Explorer x4 Debug ! Registers 7. Peripherals
[I=helioworld |

T Binaries

= bsps

= build

= deps

= libs

£ main.c

library-manager.log
i LICENSE
s Makefile
| README.md
v & mtb_shared
= catlemOp
& cmsis
& core-lib
&= core-make
& mtb-hal-xmc5x
= mtb-pdl-cat1
= recipe-make-catla
= retarget-io

ml Quick Panel i*=Variables 7 Expressions ®e Breakpoints
Eclipse for

ModusToolbox™

» Start

= Hello World (APP_KIT XMC52 EVK)

% Build Project

¥ Clean Project

2 ModusToelbox™ Build Configuration Guide

= Launches

Hello World Debug (KitProg3 MiniProg4)

Y% Hello World Program

% Generate Launches for Hello World

B ModusToolbox™ Launch Configuration Guide

Figure 14

Programming an application to a device

The Console view lists the results of the programming operation, as Figure 15 shows.

Application note

28

002-41720 Rev. **
2025-09-01

https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/
https://www.keil.com/arm/ulinkpro/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005-a/

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

B Console % [Problems =3Progress [Memory 4% Terminal X%k BRpEE8H ~0~dr=tC
<terminated> Hello_World Program [Program] C:\Users\gianamy\ModusTooclbox\tools_3.5\modus-shell\bin\make.exe [pid: 19276] (2025865198 16:36:23 - 16:36:33 elapsed: 0:00:09.107) [pid: 19276]
xPSR: @x01000000 pc: @x000001bc msp: @x0801f808
** Programming Started **
auto erase enabled
Info : Padding image section @ at Ox10026520 with 224 bytes (bank write end alignment)
Warn : Adding extra erase range, @x10026600 .. @x10027fff
[1ee%] [1 [Erasing 1
[1ee%] [] [Programming]
wrote 26112 bytes from file C:/mtw/Hello_World/build/last_config/mtbh-example-empty-app.hex in ©.383849s (66.432 KiB/s)
=* programming Finished **
** verify Started **
verified 25888 bytes in 0.056575s (446.863 KiB/s)
** Verified 0K **
** Resetting Target **
Info : SWD DPIDR @x6ba®2477
shutdown command invoked
Figure 15 Console - programming results
5.4.1.5 Test your design
This section describes how to test your design.
Follow these steps to observe the output of your design. This note uses Tera Term as the UART terminal
emulator to view the results, but you can use any terminal of your choice to view the output.
1. Select the serial port
Launch Tera Term and select the USB-UART COM port as Figure 16 shows. Note that your COM port
number may be different.
Application note 29 002-41720 Rev. **

2025-09-01

restricted

Getting started with XMC5000 MCU on ModusToolbox™ software

infineon

5 Getting started with XMC5000 MCU design

O TCR/IP

© Serial

Tera Term: New connection

myhost.example.com
History
Telnet

H

Por‘t:ICOI\-"M: KitProg3 USB-UART (COM4) ~

| oK | Cancel Help

Figure 16
2. Set the baud rate

Selecting the KitProg3 COM port in Tera Term

Set the baud rate to 115200 under Setup > Serial port as Figure 17 shows.

 Tera Term: Serial port setup and connection X
wid

File Edit Setup Contro ir

Port: COM4 | —
Data: 8 bit ~ Cancel
Parity: none ~
Stop bits: 1 bit ~ Help
Flow control: none ~
Transmit delay
0 msec/char 0 msec/line

Device Friendly Name: KitProg3 USB-UART (COM4)

Device Instance ID: USBAVID_04B4&PID_F155&MI_02\6&56!
Device Manufacturer: Cypress

Provider Name: Cypress

Driver Date: 2-7-2023

Driver Version: 2.0.0.0

Figure 17
3. Reset the device

Configuring the baud rate in Tera Term

Press the reset switch (SW1) on the kit. The message shown in Figure 18 appears on the terminal. The

user LED on the kit will start blinking.

Application note

30 002-41720 Rev. **
2025-09-01

restricted

o~ _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

¥ COM4 - Tera Term VT — o x

Figure 18 Printed UART message
4, Pause/resume LED blinking functionality

Press the Enter key to pause/resume blinking the LED. When the LED blinking is paused, a
corresponding message will be displayed on the terminal as shown in Figure 19.

¥ COM4 - Tera Term VT = a X

Flle Edit p Control Window KanjiCode Help

Figure 19 Printed UART message

5.4.1.6 Debugging the application using KitProg3/MiniProg4

XMC5000 kits come with either the KitProg3 or J-Link onboard programmer/debugger. See the KitProg3 user
guide for details of KitProg3 or see the J-Link user guide for the details of J-Link.

The Eclipse IDE contains several launch configurations that control various settings for programming the
devices and launching the debugger. Depending on the kit and the type of applications you are using, there are
various launch configurations available. One such configuration is the KitProg3/MiniProg4 launch
configuration. Refer to the 'PSOC™ MCU programming/debugging' section in the Eclipse IDE for ModusToolbox™
user guide for more details on the launch configurations.

Application note 31 002-41720 Rev. **
2025-09-01

https://www.infineon.com/dgdl/Infineon-KitProg3_User_Guide-UserManual-v17_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f01221f1853
https://www.infineon.com/dgdl/Infineon-KitProg3_User_Guide-UserManual-v17_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f01221f1853
https://www.segger.com/products/debug-probes/j-link/
https://www.infineon.com/dgdl/Infineon-ModusToolbox-Eclipse-IDE-user-guide-UserManual-v16_00-EN.pdf?fileId=8ac78c8c8929aa4d0189bd07dd6113f9&redirId=188241
https://www.infineon.com/dgdl/Infineon-ModusToolbox-Eclipse-IDE-user-guide-UserManual-v16_00-EN.pdf?fileId=8ac78c8c8929aa4d0189bd07dd6113f9&redirId=188241

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

When an application is created, the tool generates the launch configurations for KitProg3_MiniProg4 or J-link
under Launches in the Quick Panel. For the XMC5000 Evaluation Kit, it will generate launch configurations for

KitProg3, as shown in the following figure.

i Quick Panel (- Variables % Expressions “s Breakpoints
Eclipse for
ModusToolbox™
» Start
» Hello World (APP_KIT XMC52 EVK)

= Launches

Figure 20 KitProg3/MiniProg4 launch configuration

Connect the device to the host machine and click the Hello_World Debug (KitProg3_MiniProg4) launch to
start debugging, as shown in Figure 20. Once the debugging starts, the execution halts at the main() function,
and the user can start debugging from the start of main() as shown in the following figure.

002-41720 Rev. **

Application note 32
2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

5 Getting started with XMC5000 MCU design

[l mitw - Hello_World/main.c - Eclipse for ModusToolbox™ -~ = %
File Edit Source Mavigate Search Project Run Window Help
ke BvR v CHE T L vO vl MDY v F e v Q =
& Pro.. #De.. X WiRe.. %Per. = O [READMEmMd € mainc X =8 2 outline x =8
B x| @ intrClgl
« [Hello_World Debug (KitProg3_MiniProg4) w- timer_interrupt_flag
v i# mtb-example-empty-app.elf int (void) - led_blink_active_flag
« & Thread #1 1 (Name: Current Executic * = { 0+ uart_read_value
= main) at main.c:102 0x1002058c t result; 4~ DEBUG_UART context
/& openocd.exe DEBUG_UART_hal_obj
& arm-none-eabi-gdb.exe it o Anite); fu timer init
fu isr_timer
fu main int (void)
(result |- CY_RSLT_SUCCESS) fu timer_init
{ fie isr_timer
@);
)
{9 H
result - (t_t)Cy S RT_Tnit(DEBUG_UART_HW, DEBUG_UART_conf
(result |- CY_RSLT_SUCCESS)
{
EQuic... “-Vari.. & Exp.. ®eBre.. = 80 RT(0);
}
Eclipse for (DEBUG_UART_Hi) ;
ModusToolbox™
result 1_uart_setup(DEBUG_UART_hal_obj, DEBUG_UART_hal_conf
ice D console % (£ Problems = Progress [Memory $Terminal = A v S8 Me-ny= 10
Hello_World Debug (KitProg3_MiniProg4) [6DB OpenOCD Debugging]
I (42) d@ (/64): Bx{8FF7777FfefdlFf
o s (43) d1 (/64): @xffefadfofbf3fdfe
& Training Material (44) d2 (/64): Oxfbafe7fSfbrfedaf
& Refresh Quick Panel (45) d3 (/64): OxFfTFFffibadd6fff
X (46) d4 (/64): Oxd7effFFFFFTFFFTH
- Hello World (AP KIT XMC52 EVK) (47) d5 (/64): Ox36FF5TFTBbFFfedl
& B Project (48) d6 (/64): Oxafbfdedfd76e77be
BUBd Projec (49) d7 (/64): Ox779fbdcf7dffdFff
& Cle. (50) d8 (/64): @xffafbfd3fbfffff3
B = i e (51) do (/64): exiffdfef76edefbfd
ox™ Bulld Configuration Gt (55 d1e (/64): ex7bd7fFf7FFf7¢d77
T (53) d11 (/64): @xbffefe6fbff3fdbf
Rmchee (58) d12 (/64): OxFFbbAFFFIFFIFEF
Hello_World Debug (KitProg3 MiniProg (55 d13 (/64): @xfaefebabBfeeffff
(56) di4 (/64): Bx7Ffbfbbifbbffef
(57) d15 (/64): Oxfdbbfofbeddesdff
(58) fpscr (/32): @x@0000000 I
===== Cortex-M DHT registers

Figure 21 Debug main()

5.4.2 Visual Studio Code for ModusToolbox™

Refer to the Visual Studio Code for ModusToolbox™ user guide for creating a new application on VS Code.

5.4.3 IAR Embedded Workbench for ModusToolbox™

Refer to the IAR Embedded Workbench for ModusToolbox™ user guide for creating a new application on IAR
Embedded Workbench.

5.4.4 Keil pVision for ModusToolbox™

Refer to the Keil pVision for ModusToolbox™ user guide for creating a new application on Keil uVision.

Application note 33 002-41720 Rev. **

2025-09-01

https://www.infineon.com/dgdl/Infineon-Visual-Studio-Code-user-guide-UserManual-v04_00-EN.pdf?fileId=8ac78c8c92416ca50192787be52923b2&redirId=248223
https://www.infineon.com/dgdl/Infineon-IAR-Embedded-Workbench-user-guide-UserManual-v04_00-EN.pdf?fileId=8ac78c8c92416ca50192787bf63c23ba&redirId=248287
https://www.infineon.com/dgdl/Infineon-Keil-uVision-for-ModusToolbox-user-guide-UserManual-v04_00-EN.pdf?fileId=8ac78c8c92416ca50192787bede323b6&redirId=248253

restricted ./.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

6 Summary

6 Summary

This application note explores the XMC5000 family MCU device architecture and the associated development
tools. The XMC5000 family MCU is a truly-programmable embedded system-on-chip with configurable analog
and digital peripheral functions, memory, and a dual-CPU system on a single chip.

34 002-41720 Rev. **

Application note
2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

References

References

Product page

[1]

Infineon Technologies AG: XMC5000 code examples; Available online

Application notes

[2]

Infineon Technologies AG:

ModusToolbox™

[3]
[4]
[5]
(6]
[7]
(8]
[9]
[10]

Infineon Technologies AG:
Infineon Technologies AG:
Infineon Technologies AG:
Infineon Technologies AG:
Infineon Technologies AG:
Infineon Technologies AG:
Infineon Technologies AG:
Infineon Technologies AG:

Application note

KIT_XMC52_EVK Evaluation Kit guide

ModusToolbox™ installation guides; Available online

ModusToolbox™ release notes; Available online

ModusToolbox™ quick start guide ; Available online

ModusToolbox™ user guide Available online

Eclipse IDE for ModusToolbox™ user guide Available online

Visual Studio Code for ModusToolbox™ user guide Available online

Keil pVision for ModusToolbox™ user guide Available online

IAR Embedded Workbench for ModusToolbox™ user guide Available online

35 002-41720 Rev. **
2025-09-01

https://github.com/Infineon
https://www.infineon.com/assets/row/public/documents/30/68/infineon-modustoolbox-software-installation-guide-gettingstarted-en.pdf
https://www.infineon.com/assets/row/public/documents/30/68/infineon-modustoolbox-tools-package-release-notes-gettingstarted-en.pdf
https://www.infineon.com/assets/row/public/documents/30/68/infineon-modustoolbox-tools-package-quick-start-guide-gettingstarted-en.pdf
https://www.infineon.com/assets/row/public/documents/30/68/infineon-modustoolbox-tools-package-user-guide-gettingstarted-en.pdf
https://www.infineon.com/assets/row/public/documents/30/44/infineon-modustoolbox-eclipse-ide-user-guide-usermanual-en.pdf
https://www.infineon.com/assets/row/public/documents/30/44/infineon-visual-studio-code-user-guide-usermanual-en.pdf
https://www.infineon.com/assets/row/public/documents/30/44/infineon-keil-uvision-for-modustoolbox-user-guide-usermanual-en.pdf
https://www.infineon.com/assets/row/public/documents/30/44/infineon-iar-embedded-workbench-user-guide-usermanual-en.pdf

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

7 Glossary

7 Glossary

This section lists the most commonly used terms that you might see while working with XMC™ family of devices.

« Board support package (BSP): A BSP is the layer of firmware containing board-specific drivers and other
functions. The board support package is a set of libraries that provide firmware APIs to initialize the board
and provide access to board level peripherals

+ KitProg: The KitProg is an onboard programmer/debugger with USB-12C and USB-to-UART bridge
functionality. The KitProg is integrated onto most XMC™ development kits

+ MiniProg3/MiniProg4: Programming hardware for development that is used to program XMC™ devices on
your custom board or XMC™ development kits that do not support a built-in programmer

+ Personality: A personality expresses the configurability of a resource for a functionality. For example, the
SCB resource can be configured to be an UART, SPI, or 12C personalities

« Middleware: Middleware is a set of firmware modules that provide specific capabilities to an application.
Some middleware may provide network protocols (e.g. MQTT), and some may provide high-level software
interfaces to device features (e.g. USB, audio)

+ ModusToolbox™: An Eclipse-based embedded design platform for embedded systems designers that
provides a single, coherent, and familiar design experience, combining the industry’s most deployed Wi-Fi
and Bluetooth technologies, and the lowest power, most flexible MCUs with best-in-class sensing

« Peripheral Driver Library: The peripheral driver library (PDL) simplifies software development for the
XMC5000 MCU architecture. The PDL reduces the need to understand register usage and bit structures, thus
easing software development for the extensive set of peripherals available

Application note 36 002-41720 Rev. **
2025-09-01

https://github.com/infineon?q=TARGET+NOT+Deprecated
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005/
https://github.com/Infineon/modustoolbox-software#mcu-middleware-libraries
https://www.infineon.com/modustoolbox
https://github.com/Infineon/mtb-pdl-cat1

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

Revision history

Revision history

Document revision Date Description of changes
** 2025-09-01 Initial release
Application note 37 002-41720 Rev. **

2025-09-01

restricted

o _.
Getting started with XMC5000 MCU on ModusToolbox™ software |n f| neon

Trademarks

Trademarks

The Bluetooth” word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of
such marks by Infineon is under license.

PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this
document or others shall be deemed to refer to PSOC™.

Application note 38 002-41720 Rev. **
2025-09-01

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-09-01
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-qtz1745565373822

Important notice

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Architecture and product lines
	1.2 XMC5000 features

	2 XMC5000 family MCU resources
	3 XMC5000 MCU development kits
	4 Development ecosystem
	4.1 Firmware/application development
	4.1.1 Installing the ModusToolbox™ tools package
	4.1.2 Choosing an IDE
	4.1.3 ModusToolbox™ help

	5 Getting started with XMC5000 MCU design
	5.1 Prerequisites
	5.1.1 Hardware
	5.1.2 Software

	5.2 Application development
	5.3 About the design
	5.4 Create a new application
	5.4.1 Eclipse IDE for ModusToolbox™
	5.4.1.1 View and modify the design
	5.4.1.1.1 Open Device Configurator
	5.4.1.1.2 Add retarget-io middleware

	5.4.1.2 Write firmware
	5.4.1.3 Build the application
	5.4.1.4 Program the device
	5.4.1.5 Test your design
	5.4.1.6 Debugging the application using KitProg3/MiniProg4

	5.4.2 Visual Studio Code for ModusToolbox™
	5.4.3 IAR Embedded Workbench for ModusToolbox™
	5.4.4 Keil µVision for ModusToolbox™

	6 Summary
	References
	7 Glossary
	Revision history
	Trademarks
	Disclaimer

