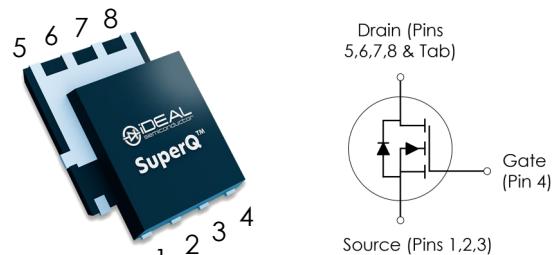


SuperQ™ 200-V N-Channel Power MOSFET

FEATURES

- 175°C Industrial temperature rating
- Robustness under fault conditions
- 100% UIS tested in production
- Low switching losses, Q_{SW} and E_{OSS}
- Easier parallelling with $\pm 0.5V$ gate threshold


APPLICATIONS

- Motor control
- Boost converters and SMPS control FETs
- Secondary side synchronous rectifier

DESCRIPTION

Engineered for SMPS and high-efficiency motor drives, this 200V SuperQ MOSFET delivers ultra-low conduction and switching losses in a robust PDFN 5x6mm package. Featuring best-in-class $R_{DS(on)}$ and Q_{SW} , it minimizes heat dissipation at both full and partial loads.

PRODUCT SUMMARY

PDFN 5x6mm

Parameter	Value	Unit
$T_A = 25^\circ\text{C}$		
V_{DS}	200	V
$R_{DS(on),max}$	25	$\text{m}\Omega$
I_D	45	A
Q_G	27.5	nC
Q_{SW}	2.5	nC
E_{OSS}	1	μJ

ORDERING INFORMATION

Part Number	Package	Marking	Packaging
iS20M028S1C	PDFN5x6	iS20M028S1	13" 5,000pcs T&R

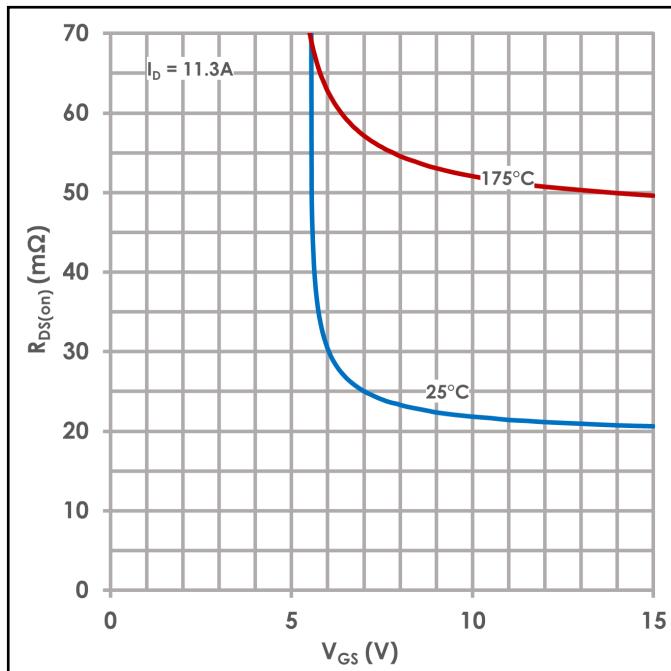


Figure 1: Typical Drain-Source On Resistance

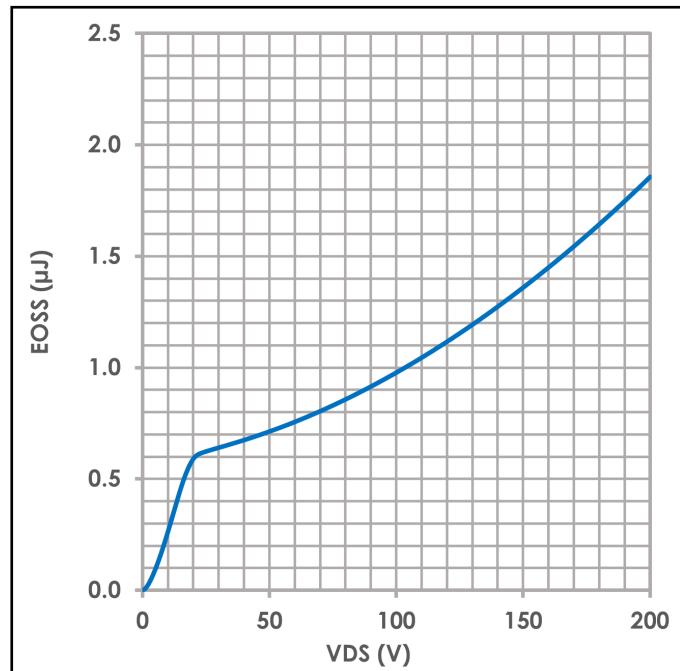


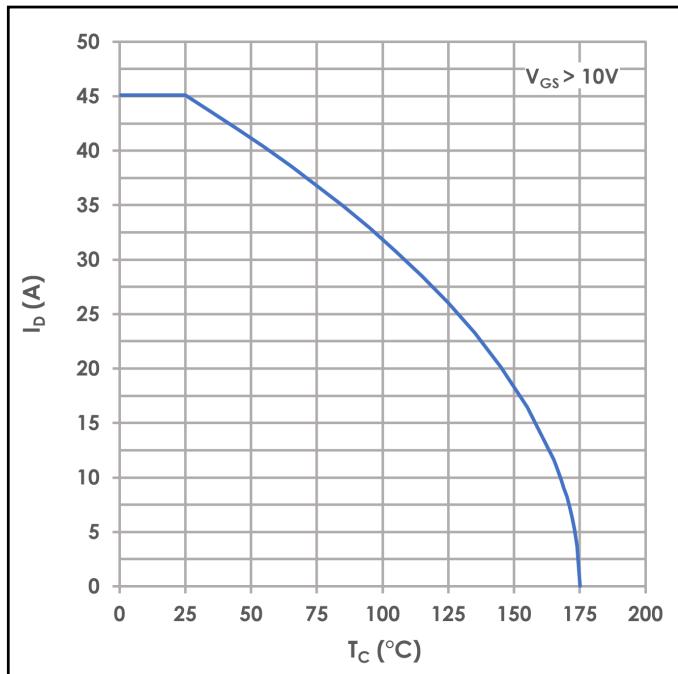
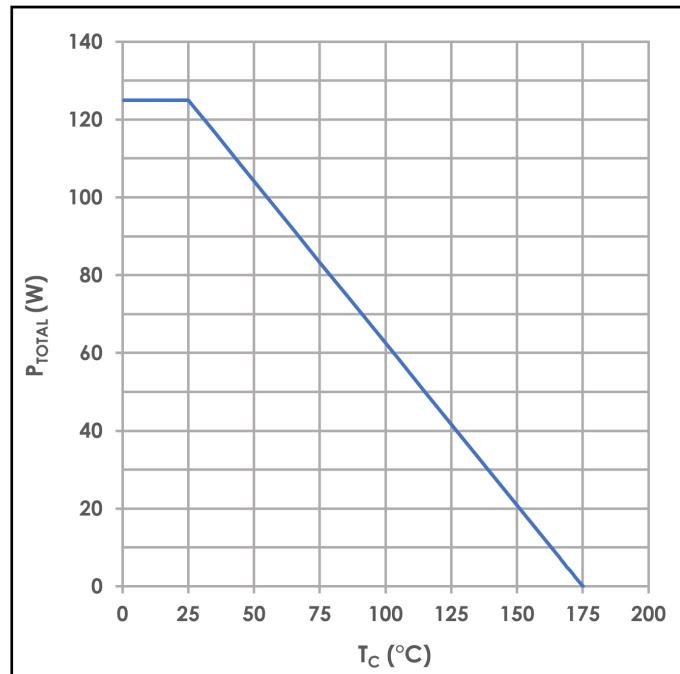
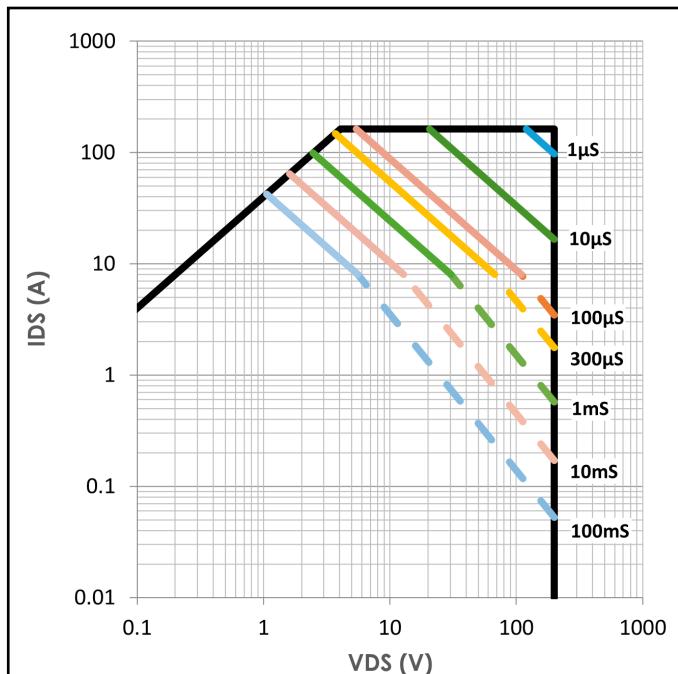
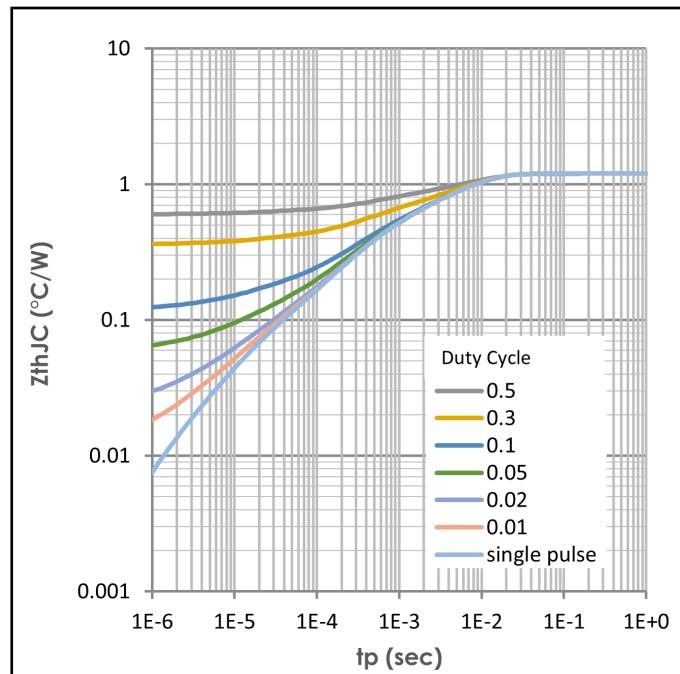
Figure 2: Typical COSS Stored Energy

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ($T_A = 25^\circ\text{C}$ unless otherwise specified)	VALUE	UNIT
V_{GS}	Gate-to-source voltage	± 20	V
I_D	Continuous drain current (silicon limited), $T_C = 25^\circ\text{C}$	45	A
	Continuous drain current (silicon limited), $T_C = 100^\circ\text{C}$	32	
I_{DM}	Pulsed drain current	162	A
P_D	Power dissipation, $T_C = 25^\circ\text{C}$	125	W
T_J, T_{stg}	Operating junction, storage temperature	-55 to 175	$^\circ\text{C}$
E_{AS}	Avalanche energy, single pulse $I_D = 18.3\text{A}$, $R_{GS} = 25\Omega$	168	mJ

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER ($T_A = 25^\circ\text{C}$ unless otherwise specified)	VALUE			UNIT
		MIN	TYP	MAX	
$R_{\theta JC}$	Junction-to-case thermal resistance - PDFN 5x6mm	-	-	1.2	$^\circ\text{C/W}$
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽¹⁾	-	-	50	$^\circ\text{C/W}$





(1) 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise specified)

SYMBOL	PARAMETER	TEST CONDITIONS	VALUE			UNIT
			MIN	TYP	MAX	
STATIC CHARACTERISTICS						
BV_{DSS}	Drain-to-source voltage	$\text{V}_{\text{GS}} = 0\text{V}$, $\text{I}_D = 1\text{mA}$	200	-	-	V
I_{DSS}	Drain-to-source leakage current	$\text{V}_{\text{GS}} = 0\text{V}$, $\text{V}_{\text{DS}} = 160\text{V}$, $\text{T}_J = 25^\circ\text{C}$	-	0.03	1	μA
		$\text{V}_{\text{GS}} = 0\text{V}$, $\text{V}_{\text{DS}} = 160\text{V}$, $\text{T}_J = 125^\circ\text{C}$ ⁽²⁾	-	12	100	
I_{GSS}	Gate-to-source leakage current	$\text{V}_{\text{DS}} = 0\text{V}$, $\text{V}_{\text{GS}} = 20\text{V}$	-	1	100	nA
$\text{V}_{\text{GS(th)}}$	Gate-to-source threshold voltage	$\text{V}_{\text{DS}} = \text{V}_{\text{GS}}$, $\text{I}_D = 70\mu\text{A}$	3.1	3.6	4.1	V
$\text{R}_{\text{DS(on)}}$	Drain-to-source on-resistance	$\text{V}_{\text{GS}} = 10\text{V}$, $\text{I}_D = 11.3\text{A}$	-	22	25	$\text{m}\Omega$
g_{fs}	Transconductance	$\text{V}_{\text{DS}} = 10\text{V}$, $\text{I}_D = 11.3\text{A}$	14	28	-	S
DYNAMIC CHARACTERISTICS						
C_{iss}	Input capacitance ⁽²⁾	$\text{V}_{\text{GS}} = 0\text{V}$, $\text{V}_{\text{DS}} = 100\text{V}$, $f = 100\text{kHz}$	-	1,886	2,451	pF
C_{rss}	Reverse transfer capacitance ⁽²⁾		-	12	16	
C_{oss}	Output capacitance ⁽²⁾		-	65	85	
$\text{C}_{\text{o(er)}}$	Effective output capacitance	$\text{V}_{\text{DS}} = 0$ to 100V , $\text{V}_{\text{GS}} = 0\text{V}$	-	197	-	
R_G	Series gate resistance	$f = 1\text{MHz}$	-	3.1	4.7	Ω
$t_{\text{d(on)}}$	Turn-on delay time	$\text{V}_{\text{DS}} = 100\text{V}$, $\text{V}_{\text{GS}} = 10\text{V}$, $\text{I}_{\text{DS}} = 11.3\text{A}$, $\text{R}_{\text{G,EXT}} = 0\ \Omega$	-	9.3	-	ns
t_r	Rise time		-	2	-	
$t_{\text{d(off)}}$	Turn-off delay time		-	28	-	
t_f	Fall time		-	12.7	-	
GATE CHARGE CHARACTERISTICS						
Q_g	Gate charge total ⁽²⁾	$\text{V}_{\text{DS}} = 100\text{V}$, $\text{I}_D = 11.3\text{A}$, $\text{V}_{\text{GS}} = 0$ to 10V	-	27.5	36	nC
Q_{sw}	Switching charge ⁽³⁾		-	2.5	-	
Q_{gd}	Gate to drain charge ⁽²⁾ ⁽³⁾		-	1.2	1.6	
$\text{Q}_{\text{g(th)}}$	Gate charge at threshold		-	6.7	-	
$\text{V}_{\text{plateau}}$	Gate plateau voltage		-	5.5	-	V
Q_{oss}	Output charge ⁽²⁾	$\text{V}_{\text{DS}} = 0$ to 100V , $\text{V}_{\text{GS}} = 0\text{V}$	-	95	109	nC
E_{oss}	Capacitive stored energy		-	1	-	μJ
DIODE CHARACTERISTICS						
V_{SD}	Diode forward voltage	$\text{I}_{\text{SD}} = 11.3\text{A}$, $\text{V}_{\text{GS}} = 0\text{V}$	-	1	1.2	V
Q_{rr}	Reverse recovery charge	$\text{V}_{\text{DS}} = 100\text{V}$, $\text{I}_F = 11.3\text{A}$, $\text{di}/\text{dt} = 100\text{A}/\mu\text{s}$	-	440	-	nC
t_{rr}	Reverse recovery time		-	108	-	ns

(2) Defined by design. Not subject to production test.

(3) Q_{sw} should be used for switching loss calculations. See Q_{sw} application note on www.idealsemi.com. See Figure 16.

Figure 3: Drain Current

Figure 4: Power Dissipation

Figure 5: Safe Operating Area

Figure 6: Max Transient Thermal Impedance

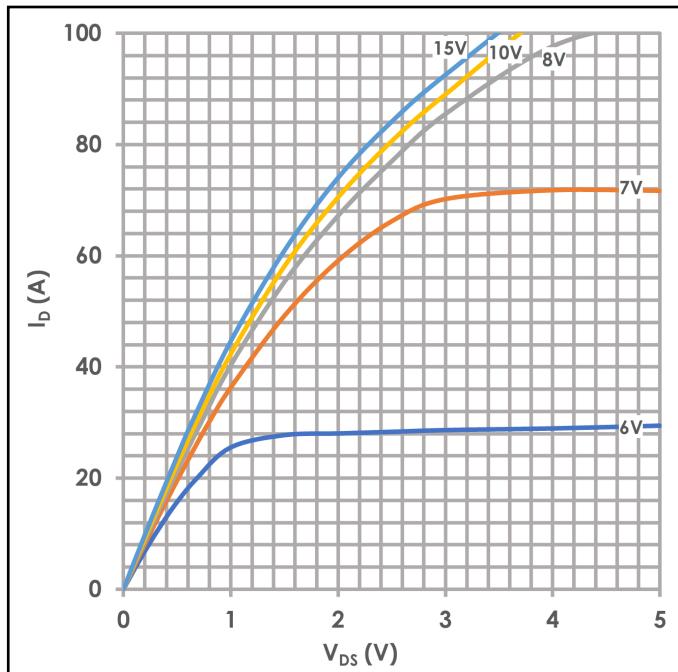


Figure 7: Typical Output Characteristics

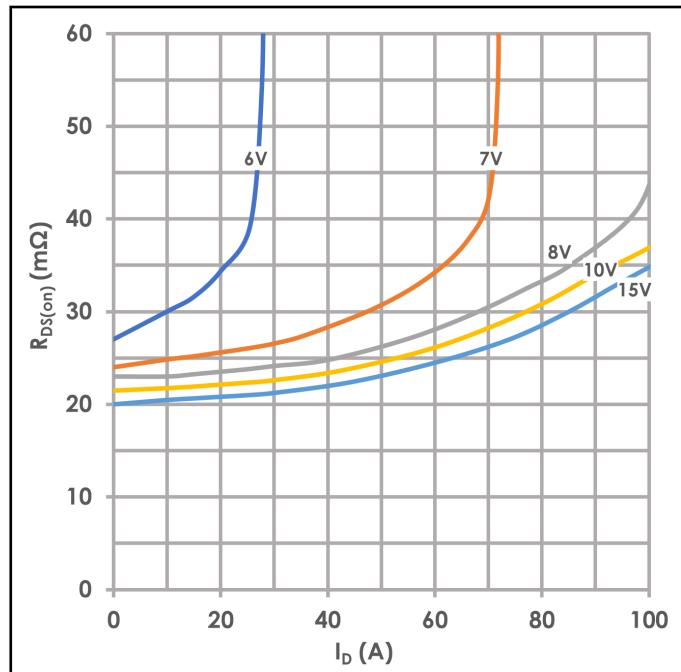


Figure 8: Typical Drain-Source On-Resistance

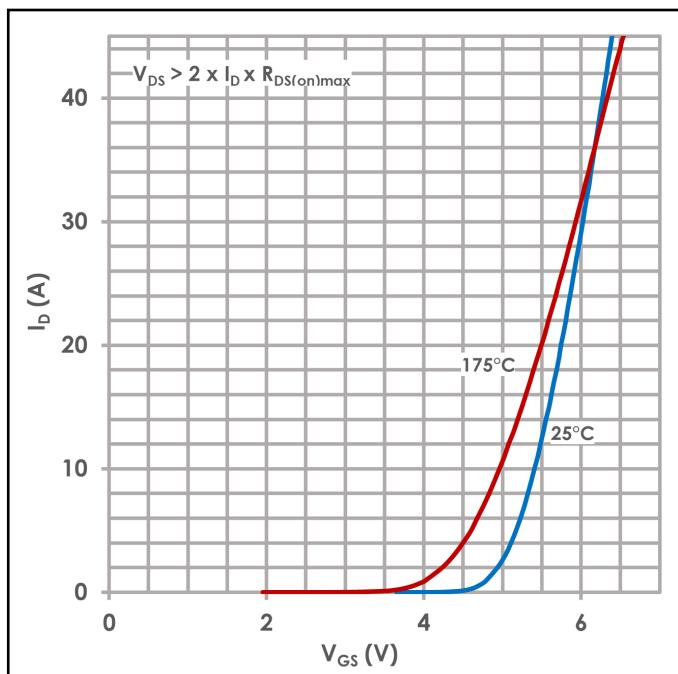


Figure 9: Typical Transfer Characteristics

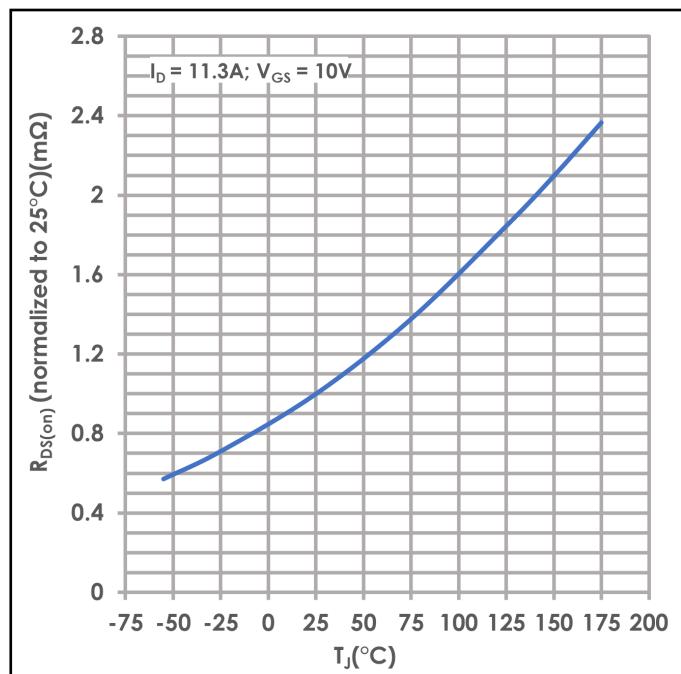
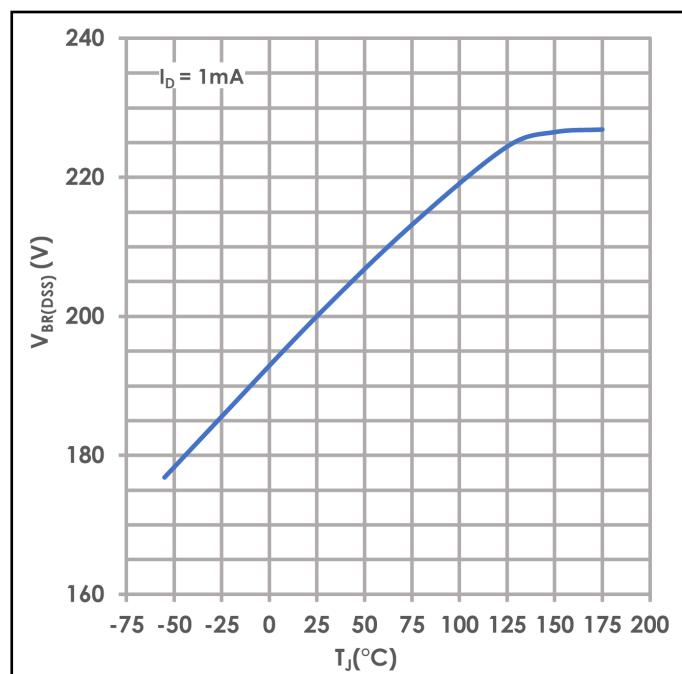
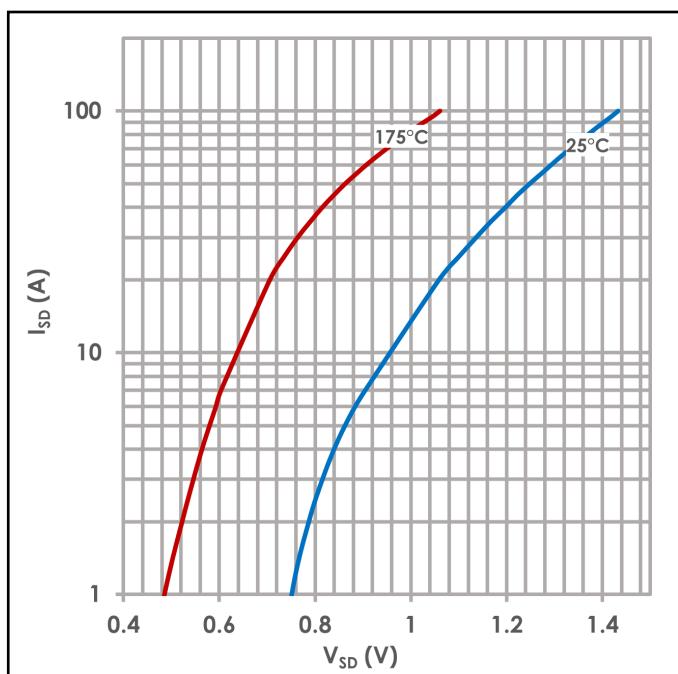
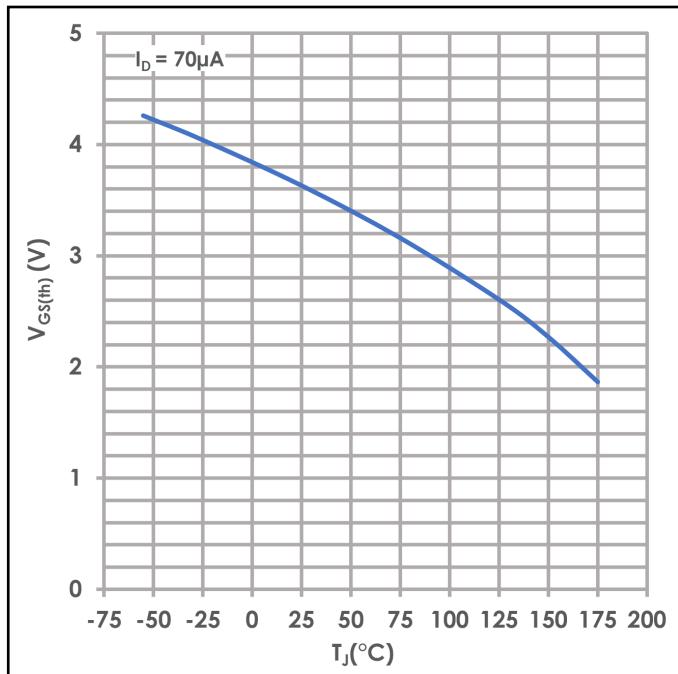
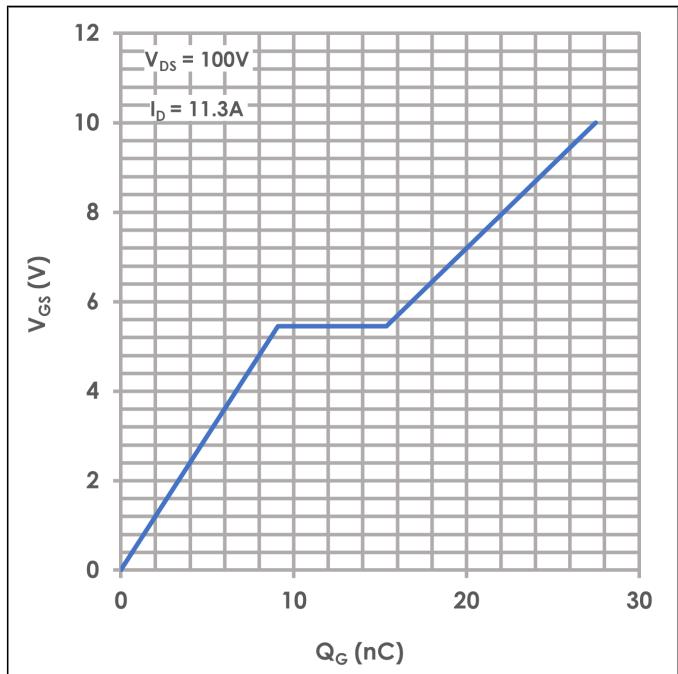
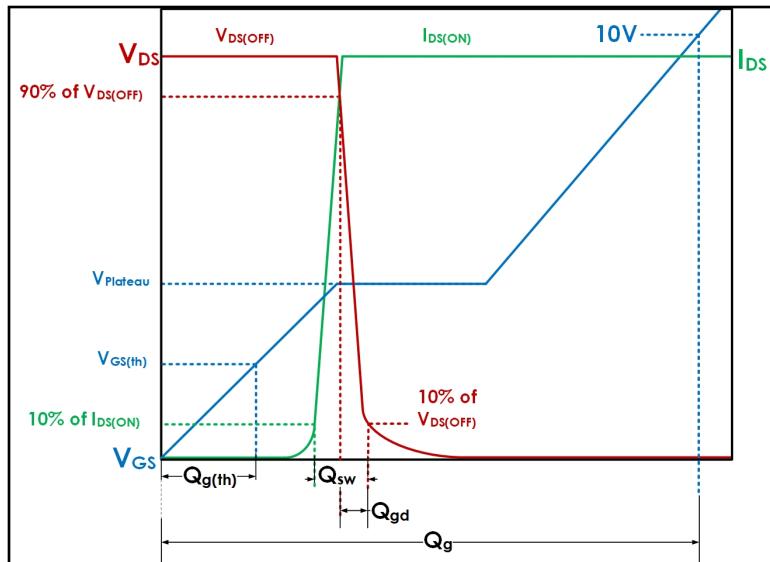







Figure 10: Normalized On-State Resistance vs. Temperature

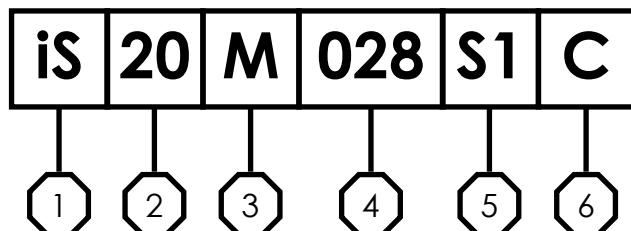
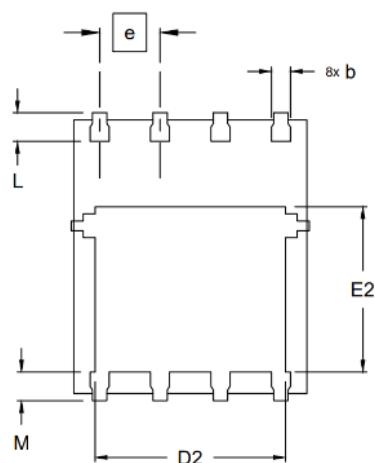
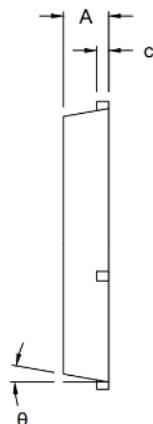
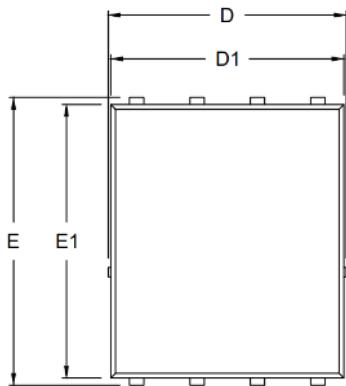

Figure 15: Typical Gate Charge

Figure 16: Gate Charge Definitions




DEVICE DECODER RING

Device Code

- 1 – iDEAL Semiconductor product
- 2 – Voltage rating divided by 10 (200V)
- 3 – M = N-Channel MOSFET, Standard Threshold
- 4 – Maximum drain-to-source resistance
- 5 – SuperQ™ Generation
- 6 – C = PDFN 5x6mm

PDFN 5x6mm Package Drawing

SYMBOL	MIN	MAX
A	0.95	1.05
b	0.31	0.51
c	0.25 REF	
D	4.94	5.30
D1	4.80	5.1
D2	3.70	4.10
E	5.97	6.35
E1	5.67	6.10
E2	3.37	3.76
e	1.27 TYP	
L	0.51	0.71
M	0.51	0.73
θ	0°	10°

Revision History

Version	Date	Comments
1.0	August 2025	Initial Release

IMPORTANT NOTICE AND DISCLAIMER

IDEAL SEMICONDUCTOR DEVICES, INC. ("IDEAL") PROVIDES THE DATASHEET AND ALL SUPPORTING DESIGN RESOURCES, SAFETY INFORMATION, AND OTHER MATERIALS (THE "RESOURCES") "AS IS". IDEAL AND/OR ITS LICENSORS DO NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE RESOURCES OR THAT SUCH RESOURCES WILL BE SUITABLE FOR YOUR APPLICATION. IDEAL HEREBY DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, OR NON-INFRINGEMENT.

You are only permitted to use the Resources and any products provided by iDEAL ("Products") in accordance with the operating parameters set forth in the Resources and iDEAL's standard terms and conditions made available at the time of order placement. Please note that the Resources are intended for skilled, technically-trained developers. You are solely responsible for, and iDEAL disclaims all responsibility and liability for: (a) choosing the Products and evaluating the suitability of such Products for the intended application, as well as determining if the information in the Resources is complete for your application; (b) designing, validating and testing the Products in your system; and (c) ensuring your application meets applicable safety, security, regulatory or other industry requirements and standards. iDEAL assumes no liability for any damage or malfunction resulting from improper handling of Products, or use of Products and Resources outside of the specified parameters. You are responsible for consulting the latest datasheet before placing orders.

IDEAL reserves the right to make corrections, modifications, enhancements, improvements and other change to or otherwise discontinue its Resources and Products in its sole discretion at any time without notice. All Products are sold subject to iDEAL's standard terms and conditions made available at the time of order placement.

Mailing Address:

iDEAL Semiconductor Devices, Inc.
116 Research Drive
Bethlehem, Pennsylvania, USA 18015
info@idealsemi.com