
Explore more resources
Altera® Design Hub

FPGA AI Suite
IP Reference Manual

Updated for FPGA AI Suite: 2024.3

Online Version

Send Feedback

768974

2025.02.24

https://www.altera.com/design
https://www.intel.com/content/www/us/en/docs/programmable/768974.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. FPGA AI Suite IP Reference Manual.. 4

2. About the FPGA AI Suite IP...5
2.1. Supported Models..7

2.1.1. MobileNet V2 differences between Caffe and TensorFlow models...................... 7
2.2. Model Performance.. 7

2.2.1. Throughput on the MobileNetV1 model (and other very fast models)...............12
2.3. Software Emulation of the FPGA AI Suite IP...12
2.4. FPGA AI Suite Layer / Primitive Ranges...13
2.5. FPGA AI Suite IP Block Configuration.. 14

2.5.1. Architecture Description File Format for Instance Parameterization................. 16
2.5.2. Architecture Description File Parameters... 17

2.6. IP Block Interfaces...31
2.6.1. Clock and Reset...32
2.6.2. AXI Interfaces... 32
2.6.3. AXI Interface Clock and Reset..32
2.6.4. Input Feature Tensor In-Memory Format... 33
2.6.5. Output Tensor In-Memory Format.. 37

2.7. Feature Input and Output Streaming ... 40
2.7.1. Input Streaming.. 40
2.7.2. Output Streaming.. 42

2.8. DDR-Free Operation... 43

3. FPGA AI Suite IP Generation Utility.. 45
3.1. IP Generation Utility Execution Flows..45
3.2. IP Generation Utility Inputs... 47
3.3. IP Generation Utility Outputs... 47
3.4. IP Generation Utility Command Line Options..47

3.4.1. The --flow create_ip Flow.. 49
3.4.2. The --flow add_arch Flow.. 50
3.4.3. The --flow list Flow..51
3.4.4. The --flow remove_arch Flow...51

4. FPGA AI Suite Ahead-of-Time Splitter Utility...52
4.1. Files Generated by the FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility................... 52
4.2. Building the FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility..................................53
4.3. Running the FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility................................. 53
4.4. FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility Example Application...................... 55

5. CSR Map and Descriptor Queue...56
5.1. Discovery ROM.. 56
5.2. Interrupt Control... 57
5.3. DMA Descriptor Queue..57
5.4. DMA Control Registers..58
5.5. Performance Registers..59
5.6. Debug Network Registers..59
5.7. DMA License Register... 60
5.8. DMA Transaction Counters...60

Contents

FPGA AI Suite: IP Reference Manual Send Feedback

2

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. FPGA AI Suite IP Reference Manual Archives..61

B. FPGA AI Suite IP Reference Manual Document Revision History...................................62

Contents

Send Feedback FPGA AI Suite: IP Reference Manual

3

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. FPGA AI Suite IP Reference Manual
The FPGA AI Suite IP Reference Manual provides an overview of the FPGA AI Suite IP
and the parameters that you can set to customize the IP. This document also covers
the FPGA AI Suite IP generation utility.

About the FPGA AI Suite Documentation Library

Documentation for the FPGA AI Suite is split across a few publications. Use the
following table to find the publication that contains the FPGA AI Suite information that
you are looking for:

Table 1. FPGA AI Suite Documentation Library

Title and Description

Release Notes
Provides late-breaking information about the FPGA AI Suite including new features, important bug fixes, and
known issues.

Link

Getting Started Guide
Get up and running with the FPGA AI Suite by learning how to initialize your compiler environment and
reviewing the various design examples and tutorials provided with the FPGA AI Suite

Link

IP Reference Manual
Provides an overview of the FPGA AI Suite IP and the parameters you can set to customize it. This document
also covers the FPGA AI Suite IP generation utility.

Link

Compiler Reference Manual
Describes the use modes of the graph compiler (dla_compiler). It also provides details about the compiler
command options and the format of compilation inputs and outputs.

Link

PCIe-based Design Example User Guide
Describes the design and implementation for accelerating AI inference using the FPGA AI Suite, Intel®
Distribution of OpenVINO™ toolkit, and a Terasic* DE10-Agilex Development Board.

Link

SoC-based Design Example User Guide
Describes the design and implementation for accelerating AI inference using the FPGA AI Suite, Intel
Distribution of OpenVINO toolkit, and an Arria® 10 SX SoC FPGA Development Kit (DK-SOC-10AS066S) or
Agilex™ 7 FPGA I-Series Transceiver-SoC Development Kit.

Link

Intel Distribution of OpenVINO toolkit Requirement

To use the FPGA AI Suite, you must be familiar with the Intel Distribution of
OpenVINO toolkit.

FPGA AI Suite Version 2024.3 requires the Intel Distribution of OpenVINO toolkit
Version 2023.3 LTS. For OpenVINO documentation, refer to https://docs.openvino.ai/
2023.3/documentation.html.

768974 | 2025.02.24

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/772497.html
https://www.intel.com/content/www/us/en/docs/programmable/768970.html
https://www.intel.com/content/www/us/en/docs/programmable/768974.html
https://www.intel.com/content/www/us/en/docs/programmable/768972.html
https://www.intel.com/content/www/us/en/docs/programmable/768977.html
https://www.intel.com/content/www/us/en/docs/programmable/768979.html
https://docs.openvino.ai/2023.3/documentation.html
https://docs.openvino.ai/2023.3/documentation.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2. About the FPGA AI Suite IP
The FPGA AI Suite IP is an RTL-instantiable configurable IP with AXI interfaces that
you can instantiate into a generic embedded FPGA system.

The IP is configured through parameters defined in an Architecture Description File.
The Architecture Description File, along with the OpenVINO intermediate
representation of your trained model, is compiled by the FPGA AI Suite compiler into
configuration instructions for the IP.

The following diagram shows a high-level architecture of the FPGA AI Suite IP.

Figure 1. High-Level Architecture of the FPGA AI Suite IP

FPGA AI Suite IP

and Memory+Host Interface

Input Feeder, Feature+Filter Cache

Processing Engine Array

Crossbar

Activation Pool

Config*
*generated by the FPGA AI Suite compiler

768974 | 2025.02.24

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The primary parameters defined in an Architecture Description File cover the following
properties:

• PE array vectorization

• Scratch pad sizing

• External memory bus bandwidth

• Types/vectorization of auxiliary layer blocks

The following diagram is an architecture diagram for a specific instantiation of the
FPGA AI Suite IP. The blocks connected to the crossbar in this diagram are examples.
The selection of blocks connected to the crossbar are determined by compile time
parameters.

Figure 2. Architecture of an Example Instantiation of the FPGA AI Suite IP

DMA

Feature
Write FIFO

Filter Read
FIFO

Feature
Read FIFO

Config FIFO /
Decode

R

I

I

I

I DDR0

CSR

I Int

R

Co
nf

ig

R

R

R R

Input Feeder &
 Scratch Pad

Feature input

Xbar_writeback_input

Fe
ed

er
 in

Co
nf

ig

I

I

I

PE Array

Filter (Ai) [KVECxCVEC]

Feature (Bi) [1xCVEC]

PE Control

I Drain

Filter
Scratch Pad

Write Port

Read Ports

Data

Addr

I BiasDataOut

FilterReadAddr

Exit
FIFO

I

I

In Out

Cr
ed

it

Filter / Feature
Synchronizer

I

I

I

R

R

R

I

R I

Fe
ed

er
 ou

t
Co

nf
ig

In

Activation

I R Out

R

Co
nf

ig

Pool

I R Out

R

Co
nf

ig

Auxiliary Crossbar
In R

R R

I

I I R

Co
nf

ig

I

I Debug_CSR

Config Network
I I I I R I I

Bias/Scale (C/Si) [KVECx1]
I

BiasReadAddr

I FilterDataOut

I

∑[Sk(Ai,k• Bi)]+Cki

I: Initiator (Avalon MM Host Interface)
R: Responder (Avalon MM Agent Interface)

R

R

R

R

R

R

R

R

R R

R

R

R

R
R

Two teams are typically involved in the implementation of an AI feature:

• A machine learning (ML) team responsible for developing and delivering an AI
model.

• An FPGA team responsible for integrating the FPGA AI Suite IP and runtime
together into a system.

Defining the IP architecture straddles the boundary between these two teams. The ML
team must develop an AI model that meets the target performance in some
parameterization of the configurable IP. The FPGA team must ensure it fits onto the
FPGA and closes timing.

Although responsibility for defining the parameterization of the configurable
architecture can lie with either team (but is a joint responsibility), it might be easiest
for the ML team to define the architecture.

The team responsible for defining the IP parameterization can use the FPGA AI Suite
compiler (dla_compiler command) area and performance estimator tools to guide
their decisions. The FPGA AI Suite Compiler Reference Manual describes how to use
the dla_compiler tool.

In addition to the FPGA team and the ML team, another team is likely responsible for
the software integration on the host processor. Depending on the system details, this
software is likely responsible for interfacing with OpenVINO and communicating (via
the BSP) with the FPGA AI Suite IP. This software will likely be based on the runtime
system that is included with the PCIe Example Design or possibly based on an SOC
Example Design.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

6

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.1. Supported Models

The FPGA AI Suite supports the following pretrained models from OpenVINO Model
Zoo:

Table 2. OpenVINO Model Zoo 2023.3 LTS

Model Zoo 2023.3 LTS path Model Framework

public/mobilenet-v1-1.0-224 MobileNet V1 Caffe

public/mobilenet-v2 MobileNet V2 Caffe

public/mobilenet-v2-1.4-224 MobileNet V2 TensorFlow

public/mobilenet-v3-large-1.0-224-tf MobileNet V3 TensorFlow

public/resnet-50-tf ResNet-50 TensorFlow

intel/unet-camvid-onnx-0001 UNet PyTorch

public/yolo-v3-tf YOLO v3 TensorFlow

public/yolo-v3-tiny-tf TinyYOLO v3 TensorFlow

Yolo v8 (all heads) PyTorch

public/squeezenet1.1 SqueezeNet v1.1 Caffe

public/i3d_rgb_tf Inflated 3D (I3D) TensorFlow

Multilayer Perceptrons (MLPs)

After installation, the location $COREDLA_ROOT/example_graphs/MLP/ contains an
example MLP graph.

In addition, the FPGA AI Suite supports certain signed INT8 symmetric quantized
models that use neural network compression framework (NNCF) flows.

Customized models that are similar to the supported models or are derived from the
above models are not supported, although in some cases they might work without
modification.

The supplied example architectures (or IP Configurations) support all of the above
models, except for the Small and Small_Softmax architectures that support only
ResNet-50, MobileNet V1, and MobileNet V2.

2.1.1. MobileNet V2 differences between Caffe and TensorFlow models

There are two inverted bottlenecks (group of expand, depthwise, projection) in which
TensorFlow has already gone down to 14x14 while Caffe is still at 28x28. This is the
only place where the structure of the graph differs. TensorFlow also uses ReLU6,
implemented with a clamp in the FPGA AI Suite IP, while Caffe uses ReLU.

2.2. Model Performance

The performance estimator tool (described in the FPGA AI Suite Compiler Reference
Manual) assumes the following fMAX values for FPGA devices:

• Arria 10: 265 MHz

• Agilex 7: 400 MHz

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

7

https://www.intel.com/content/www/us/en/docs/programmable/768972.html
https://www.intel.com/content/www/us/en/docs/programmable/768972.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

These assumptions are reasonable and conservative for the standard speed bin. As
shown by the results in this section, the achieved fMAX of the example design typically
exceeds these assumptions.

The performance results for the designs that follow were achieved using the
dla_build_example_design.py script that is included with the FPGA AI Suite. The
script uses a standard (-2) speed bin with a single seed and uses high-effort compiler
settings.

The runtime hosts used for determining the performance results are as follows:

• Agilex 7 runtime host: SUSE Linux Enterprise Server 15 host on an Intel Xeon®

processor E5-1650 @ 3.5 GHz.

This design uses a dedicated DDR interface for the IP. The batch size is 1. Performance
varies based on the clock speed, the DDR latency and bandwidth.

The dla_build_example_design.py script includes the following two .qsf lines to
enable non-default Quartus® Prime options during design compilation:

set_global_assignment -name ALLOW_SHIFT_REGISTER_MERGING_ACROSS_HIERARCHIES
ALWAYS
set_global_assignment -name DISABLE_REGISTER_MERGING_ACROSS_HIERARCHIES OFF

The architectures in the tables that follow are in the $COREDLA_ROOT/
example_architectures/ directory. Review the README file in that directory for
information about each architecture.

The IP Throughput column in the tables that follow shows the performance for the
portion of the graph that runs on the FPGA device. In many cases, the entire graph
runs on the FPGA device. The IP Throughput is representative of performance if the IP
is used in a hostless configuration.

The IP+host Throughput column in the tables that follow shows the performance
including the host. The IP+host performance may be lower than IP-only performance
if the host is unable to stream data to the FPGA device quickly enough, or if the host
is limited by some of the processing associated with the graph (for example, the host
performs NMS for the YOLOv3 graph). Achievable IP+host performance depends on
the speed and loading of the host and the FPGA AI Suite IP.

Details - FPGA AI Suite 2024.3

Architecture fMAX ALMs DSPs M20Ks Registers

AGX7_FP16_Generic 600 MHz 33.6 k 186 511 95 k

AGX7_FP16_Performance 605 MHz 103.9 k 1162 1533 324 k

AGX7_Small_NoSoftmax 610 MHz 17.2 k 80 296 49 k

AGX7_Small_Softmax 616 MHz 18.6 k 90 304 57 k

AGX7_Generic 600 MHz 38.9 k 202 778 113 k

AGX7_Performance 585 MHz 70.5 k 650 1278 207 k

AGX7_Performance_Giant 535 MHz 127.8 k 1546 2371 359 k

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

8

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

public/mobilenet-v1-1.0-224

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughput

[fps]

Top-1
[%]

Top-5
[%]

AGX7_FP16_Generic 33.6 k 186 2261 171 171 71.2 89.5

AGX7_FP16_Performance 103.9 k 1162 9117 572 567 71.2 89.5

AGX7_Small_NoSoftmax 17.2 k 80 2770 167 167 70.9 89.6

AGX7_Small_Softmax 18.6 k 90 2796 169 168 70.9 89.5

AGX7_Generic 38.9 k 202 3306 255 251 70.9 89.5

AGX7_Performance 70.5 k 650 8893 566 399 70.9 89.5

AGX7_Performance_Giant 127.8 k 1546 8987 1483 764 71.0 89.6

public/mobilenet-v2

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughput

[fps]

Top-1
[%]

Top-5
[%]

AGX7_FP16_Generic 33.6 k 186 3653 148 147 71.8 89.6

AGX7_FP16_Performance 103.9 k 1162 6948 372 367 71.8 89.6

AGX7_Small_NoSoftmax 17.2 k 80 4609 141 138 71.6 89.6

AGX7_Small_Softmax 18.6 k 90 4645 142 139 71.8 89.4

AGX7_Generic 38.9 k 202 2720 203 198 71.8 89.4

AGX7_Performance 70.5 k 650 7166 343 276 71.7 89.4

AGX7_Performance_Giant 127.8 k 1546 6370 1081 726 71.8 89.4

public/mobilenet-v2-1.4-224

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughp

ut
[fps]

Top-1
[%]

Top-5
[%]

AGX7_FP16_Generic 33.6 k 186 4085 122 121 74.8 91.9

AGX7_FP16_Performance 103.9 k 1162 8717 290 288 74.8 91.9

AGX7_Generic 38.9 k 202 4184 151 145 74.7 91.8

AGX7_Performance 70.5 k 650 8716 290 226 74.7 91.8

AGX7_Performance_Giant 127.8 k 1546 7539 847 618 74.7 91.7

(*) DDR is estimated minimum average read + write (that is, read + write require at least this
much bandwidth on average). Peak bandwidth is higher.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

9

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

public/mobilenet-v3-large-1.0-224-tf

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughp

ut
[fps]

Top-1
[%]

Top-5
[%]

AGX7_FP16_Generic 33.6 k 186 3774 169 165 75.8 92.1

AGX7_FP16_Performance 103.9 k 1162 11260 240 234 75.8 92.1

AGX7_Generic 38.9 k 202 4530 181 174 72.3 90.7

AGX7_Performance 70.5 k 650 11293 246 201 72.1 90.5

AGX7_Performance_Giant 127.8 k 1546 8492 355 304 72.6 90.6

public/resnet-50-tf

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughp

ut
[fps]

Top-1
[%]

Top-5
[%]

AGX7_FP16_Generic 33.6 k 186 3005 32 32 76.8 92.9

AGX7_FP16_Performance 103.9 k 1162 11715 166 164 76.8 92.9

AGX7_Small_NoSoftmax 17.2 k 80 5935 28 28 77.0 92.9

AGX7_Small_Softmax 18.6 k 90 5989 28 28 77.1 92.9

AGX7_Generic 38.9 k 202 4206 60 60 77.1 92.9

AGX7_Performance 70.5 k 650 11540 163 143 76.9 92.9

AGX7_Performance_Giant 127.8 k 1546 8067 237 229 76.9 92.8

Resnet50 v1 (Caffe)

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughp

ut
[fps]

Top-1
[%]

Top-5
[%]

AGX7_FP16_Generic 33.6 k 186 2822 38 38 74.4 91.4

AGX7_FP16_Performance 103.9 k 1162 12139 195 195 74.4 91.4

AGX7_Small_NoSoftmax 17.2 k 80 4161 37 37 74.1 91.4

AGX7_Small_Softmax 18.6 k 90 4203 37 37 74.2 91.3

AGX7_Generic 38.9 k 202 4489 73 73 74.2 91.3

AGX7_Performance 70.5 k 650 12119 195 162 74.0 91.4

AGX7_Performance_Giant 127.8 k 1546 8379 270 247 74.1 91.4

intel/unet-camvid-onnx-0001

Architecture ALMs DSPs DDR(*)

[MB/s]
IP Throughput

[fps]

AGX7_FP16_Generic 33.6 k 186 825 1.09

AGX7_FP16_Performance 103.9 k 1162 4552 7.57

AGX7_Small_NoSoftmax 17.2 k 80 1140 1.10

continued...

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

10

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Architecture ALMs DSPs DDR(*)

[MB/s]
IP Throughput

[fps]

AGX7_Small_Softmax 18.6 k 90 1153 1.11

AGX7_Generic 38.9 k 202 1319 2.14

AGX7_Performance 70.5 k 650 4331 7.36

AGX7_Performance_Giant 127.8 k 1546 5426 11.71

public/yolo-v3-tf

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughp

ut
[fps]

Detection
mAP
@0.5

Detection
mAP

@0.5:0.9
5

AGX7_FP16_Generic 33.6 k 186 1428 4.2 4 62.27 31.58

AGX7_FP16_Performance 103.9 k 1162 6347 27.9 28 62.25 31.58

AGX7_Generic 38.9 k 202 1901 8.2 8 62.28 31.49

AGX7_Performance 70.5 k 650 6170 27.0 11 62.22 31.47

AGX7_Performance_Giant 127.8 k 1546 6634 40.5 30 62.25 31.46

public/yolo-v3-tiny-tf

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughp

ut
[fps]

Detection
mAP
@0.5

Detection
mAP

@0.5:0.9
5

AGX7_FP16_Generic 33.6 k 186 1200 41 36 35.79 14.77

AGX7_FP16_Performance 103.9 k 1162 4680 116 113 35.81 14.78

AGX7_Generic 38.9 k 202 2433 82 66 35.76 14.74

AGX7_Performance 70.5 k 650 4647 115 40 35.73 14.72

AGX7_Performance_Giant 127.8 k 1546 5028 109 64 35.81 14.75

public/yolo-v8-nano detection

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughp

ut
[fps]

Detection
mAP
@0.5

Detection
mAP

@0.5:0.9
5

AGX7_FP16_Performance 103.9 k 1162 6728 94 91 51.15 36.52

AGX7_Generic 38.9 k 202 2427 50 39 51.14 36.50

AGX7_Performance 70.5 k 650 6720 95 32 51.10 36.48

public/yolo-v8-nano classification

Architecture ALMs DSPs DDR(*)

[MB/s]
Throughput

[fps]
Top-1
[%]

Top-5
[%]

AGX7_FP16_Performance 103.9 k 1162 10345 1384 67.92 87.72

AGX7_Generic 38.9 k 202 5489 943 67.96 87.86

AGX7_Performance 70.5 k 650 10178 1358 67.72 87.72

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

11

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

public/squeezenet1.1

Architecture ALMs DSPs DDR(*)

[MB/s]
IP

Throughput
[fps]

IP+host
Throughp

ut
[fps]

Top-1
[%]

Top-5
[%]

AGX7_FP16_Generic 33.6 k 186 631 218 219 58.5 81.1

AGX7_FP16_Performance 103.9 k 1162 4679 940 886 58.5 81.1

AGX7_Small_NoSoftmax 17.2 k 80 923 220 219 58.5 81.0

AGX7_Small_Softmax 18.6 k 90 933 222 222 58.5 81.0

AGX7_Generic 38.9 k 202 1722 535 536 58.5 81.0

AGX7_Performance 70.5 k 650 4654 932 419 58.4 81.0

AGX7_Performance_Giant 127.8 k 1546 3631 951 735 58.3 81.1

public/i3d_rgb_tf

Architecture ALMs DSPs DDR(*)

[MB/s]
Throughput

[fps]
Top-1
[%]

Top-5
[%]

AGX7_FP16_Generic 33.6 k 186 442 0.61 65.79 82.89

AGX7_FP16_Performance 103.9 k 1162 2562 4.14 65.79 82.89

AGX7_Small_NoSoftmax 17.2 k 80 492 0.58 65.35 82.89

AGX7_Small_Softmax 18.6 k 90 496 0.59 65.57 82.89

AGX7_Generic 38.9 k 202 742 1.36 65.57 83.11

AGX7_Performance 70.5 k 650 2486 4.01 65.13 83.11

AGX7_Performance_Giant 127.8 k 1546 2839 4.64 65.79 82.89

2.2.1. Throughput on the MobileNetV1 model (and other very fast
models)

Due to the high system throughput, the MobileNetV1 performance with large IP
instances is strongly dependent on the host.

2.3. Software Emulation of the FPGA AI Suite IP

The FPGA AI Suite includes a compiled software model of the FPGA AI Suite IP that is
bit-accurate(*). The emulation of the FPGA AI Suite IP is accessible through the
OpenVINO plugin interface. This emulation models the numeric details of the IP,
including the behavior of the block floating point numerics (when used).

The OpenVINO emulation plugin is enabled in the $COREDLA_ROOT/bin/
plugins_emulation.xml plugins file. Because it uses the OpenVINO plugin
architecture, it works with both the OpenVINO Python API and the C++ API. For an
example that shows how to use emulation as the inference engine for the runtime
dla_benchmark utility, refer to “Performing Inference Without an FPGA Board” in the
FPGA AI Suite Getting Started Guide.

(*) Minor rounding differences between software emulation and hardware will typically result in
differences of less than two units of least precision (ulps).

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/768970/current/performing-inference-without-an-fpga-board.html
https://www.intel.com/content/www/us/en/docs/programmable/768970.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Because the emulation executes on the CPU and does not benefit from the FPGA
acceleration, the emulation is much slower than inference on the FPGA. Typical
inference times for a single image with ResNet50 are on the order of minutes of time.
The inference speed varies dramatically depending on the architecture configuration
and the graph.

2.4. FPGA AI Suite Layer / Primitive Ranges

The following table lists the hyperparameter ranges supported by key primitive layers:

Layer / Primitive Hyperparameter Supported Range

Fully connected None n/a

2D Conv Filter Size Width = [1..28]
Height = [1..28]
Height does not have to equal width.
Default value for each is 14.

Stride Maximum stride is 15

Pad Maximum pad is (216) - 1

3D Conv Filter Size Width = [1..28]
Height = [1..28]
Depth = [1..14]
Filter volume should fit into the filter cache size.

Stride Maximum stride is 15.

Pad Maximum pad is (216) - 1

Depthwise Filter Size Same as 2D Conv filter size
Depth = 1

Stride Same as 2D Conv stride
Depth = 1

Pad Same as 2D conv padding
Depth = 1

Scale-Shift Scale factor FP16 float range

Bias term FP16 float range

Deconv / Transpose
Convolution

Filter Size Any – Same as convolution, and height/width can be
different
Depth = 1

Stride 1, 2, 4, 8 (stride width == stride height)
Depth = 1

Pad Restricted to filter_[height, width] - 1
Depth = 1

ReLU n/a n/a

pReLU Scaling parameter (a) (1 per
filter / conv output channel)

float range
Depth = 1

Leaky ReLU Scaling parameter (a) (1 per
tensor)

float range

Clamp Limit parameters (a, b) (1
per tensor)

float range

continued...

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

13

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Layer / Primitive Hyperparameter Supported Range

Round_Clamp Limit parameters (a, b) (1
per tensor)

float range

H-sigmoid n/a n/a

H-swish n/a n/a

Sigmoid n/a FP16 float range

Swish n/a FP16 float range

Tanh n/a FP16 float range

Max Pool Window Size up to 13x13x13

Pad 1, 2

Stride 1, 2, 3, 4

Average Pool Window Size Up to 27x27 (one less than the maximum 2D convolution
size)
Width == Height
Depth = 1 or 2

Pad 1, 2

Stride 1, 2, 3, 4

Softmax Maximum Number of
Channels

4096

Elementwise Multiplication of
feature * filter and feature *
feature tensors.(1)

n/a Tensor sizes are expanded if necessary to support the
multiplication.
Depth = 1

ChannelToSpace
DepthToSpace
PixelShuffle

block_mode blocks_first or blocks_last

block_size 2, 4, 8

2.5. FPGA AI Suite IP Block Configuration

The FPGA AI Suite IP block has many important parameters that describe arithmetic
precision, feature set, size of various modules (such as the PE Array), and details
regarding the internal buses and the external AXI interface.

Configurable parameters are specified in the Architecture Description (.arch) file, as
described in Architecture Description File Format for Instance Parameterization on
page 16 and Architecture Description File Parameters on page 17.

The table below shows the major parameters, some of which are not configurable,
that describe the IP block.

Common Parameter Name Description Valid Range

c_vector
(CVEC)

Size of the dot product performed by each PE in the
PE Array.
Typically optimized when generating an optimized
architecture with the FPGA AI Suite compiler.

[4,8,16,32,64]

k_vector Number of PEs in the PE Array [4-128]

continued...

(1) This is an element-wise multiplication, not a matrix multiply operation.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

14

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Common Parameter Name Description Valid Range

(PE KVEC) Must be a multiple of c_vector

num_lanes Number of execution lane. Each lane contains a set
of auxiliary modules (aux_modules) and a number
(equal to k_vector) of PEs

[1,2,4]

N/A Number of auxiliary modules connecting to the
crossbar (XBAR)

[1-4]

pool k_vector
(Pool KVEC)

Width of the pool interface.
Typically optimized when generating an optimized
architecture with the FPGA AI Suite compiler.

[1,2,4,8,16,32,64]

pool max_window_height
pool max_window_width

Size of the pooling window [3x3, 7x7,13x13]

depthwise k_vector
(Depthwise KVEC)

Number of output channels processed in parallel.
Typically optimized when generating an optimized
architecture with the FPGA AI Suite compiler.

[16, 32, 64]
Must be equal to k_vector

depthwise max_window_height
depthwise max_window_width

Size of the depthwise filter [3x3, 5x5, 7x7]

depthwise max_dilation_vertical
depthwise
max_dilation_horizontal

Maximum supported value for the depthwise dilation [1-6]

activation k_vector
(Activation KVEC)

Width of the activation interface.
Typically optimized when generating an optimized
architecture with the FPGA AI Suite compiler.

[2,4,8,16,32,64]

enable_clamp Enables clamp activation function [true, false]

enable_relu Enables ReLU activation function [true, false]

enable_leaky_relu Enables Leaky ReLU activation function [true, false]

enable_prelu Enables PReLU activation function [true, false]

enable_round_clamp Enables round clamp activation function [true, false]

enable_sigmoid Enables Sigmoid and Swish activation functions [true, false]

enable_tanh Enables Tanh activation function [true, false]

enable_parameter_rom Enables storing graph parameters in on-chip
memory, which requires input and output streaming
to be enabled and configured.
For details about DDR-free operation, refer to
“Generating Artifacts for DDR-Free Operation” in the
FPGA AI Suite Compiler Reference Manual.

[true, false]

arch_precision
(PE precision)

Precision of features and weights in the PE Array.
For details about how this parameter affects DSP
utilization, refer to the “Parameter:
arch_precision” section of Parameter Group:
Global Parameters on page 17.

"FP11" (INT7-BFP / 1s.6m.5e)
"FP12AGX" (INT8-BFP / 8m.5e,
two's complement)
"FP13AGX" (INT9-BFP / 9m.5e,
two's complement)
"FP16" (INT12-BFP /
1s.11m.5e)

PE bias add precision Precision of accumulator bias value in the PE Array. fp16

PE accumulator precision Precision of the accumulators in the PE Array. fp32

PE drain precision Precision of values drained from the PE
Accumulators to the XBAR and AUX Modules.

fp16

continued...

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

15

https://www.intel.com/content/www/us/en/docs/programmable/768972/current/generating-artifacts-for-ddr-free-operation.html
https://www.intel.com/content/www/us/en/docs/programmable/768972.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Common Parameter Name Description Valid Range

PE interleave factor Multi-threading factor for the features x filters in the
PE array accumulators.

Agilex 5 devices: 12x1
Agilex 7 devices: 2x3, 3x2,
5x1, 1x5
Arria 10 devices: 2x2, 4x1,
1x4
Stratix® 10 devices: 2x3, 3x2,
5x1, 1x5
1×1 supported for graphs with
no bias

PE scale precision Precision of scale multiplier in the PE array fp16

Aux module precision Precision of the Aux Modules fp16

Memory port width Width of memory port [64, 128, 256, 512]

enable_debug Toggle the FPGA AI Suite debug network that
includes interface profiling counters that can be
queried with the CSR.
Enabled by default.

[true, false]

enable_layout_transform Enables the dedicated input tensor layout transform
module.

[true, false]

The major constraints include:

• PE KVEC must be a multiple of CVEC

• PE KVEC must be divisible by XBAR and AUX KVECs

• PE drain width must be equal to XBAR KVEC

Graph limitations include:

• Convolution filter size: 1×1 -> 28×28, including asymmetric

• Convolution filter stride: 1 .. 15

• No limitation on convolution padding

• The limits of the depthwise layers are the same as normal convolution. Depthwise
convolution is handled with software emulation using regular convolution passes.

The maximum supported DDR size is 4GB.

2.5.1. Architecture Description File Format for Instance Parameterization

The FPGA AI Suite IP has a highly configurable architecture. Configuring the design
allows for different trade-offs between inference performance (throughput and
latency) and utilization of FPGA resources (area). Configurations are specified through
Architecture Description Files. The IP instances corresponding to these configurations
can be compiled as part of an FPGA design into an FPGA bitstream.

The architecture determines how much FPGA area is consumed by the FPGA AI Suite
IP and strongly affects the achieved inference fps and ease of timing closure.

Achieving the best performance of a given graph for a given FPGA area (or the
smallest FPGA area for a given performance target) requires optimizing the
architecture. The architecture optimization function of the FPGA AI Suite compiler is
designed to produce good architectures for a given graph or set of graphs. For more
details about the architecture optimization function of the compiler, refer to the FPGA
AI Suite Compiler Reference Manual.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

16

https://www.intel.com/content/www/us/en/docs/programmable/768972.html
https://www.intel.com/content/www/us/en/docs/programmable/768972.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The FPGA AI Suite Architecture Description Files use the protobuf format and have
a .arch file extension. While these files are human readable and editable, manually
optimizing an architecture requires a deep knowledge of the FPGA AI Suite IP design
and is not recommended.

You adjust some of the architecture parameters by hand, because the Architecture
Optimizer does not modify them. For example, the optimizer does not modify the
numerical precision (for example, fp16 or fp11) in the architecture file. Similarly, the
optimizer does not modify details related to the AXI interfaces on the IP. In some
case, you can improve performance of the resulting optimized architecture by the
choice of these values.

When possible, modifying the graph or batch size might also result in performance
improvements. For example, a graph that requires FP16 precision might have
sufficient accuracy at FP11 or FP12 if a few extra layers are added. Reducing the
internal precision enables a large memory and area reduction. Very small and fast
graphs might achieve a higher performance on hardware by using a batch size that is
greater than one.

The example_architectures/ directory includes an example that shows how to
enable the hardware-accelerated softmax function.

The comment character in the .arch format is #.

2.5.2. Architecture Description File Parameters

2.5.2.1. Parameter Group: Global Parameters

Parameter: family

This parameter specifies the target FPGA device family for the architecture.

Legal
Values

Table 3. Valid Values for family Global Parameter

Value Description

A10 Target Arria 10 devices.

AGX5 Target Agilex 5 devices.

AGX7 Target Agilex 7 devices.

C10 Target Cyclone® 10 devices.

S10 Target Stratix 10 devices.

Parameter: k_vector

This parameter, also called KVEC, describes the number of filters that the PE Array is
able to process simultaneously.

Typically the architecture optimizer is used to set this parameter.

Legal
values:

[4-128]

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

17

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The k_vector value must be a multiple of the c_vector value.

• The k_vector value must be divisible by the xbar_k_vector
and auxiliary k_vector values.

• When you use the depthwise module, the k_vector value must
equal the c_vector value.

Parameter: c_vector

This parameter, also called CVEC, describes the size of the dot product within each PE
in the PE Array.

Typically the architecture optimizer is used to set this parameter.

Legal values: [4,8,16,32,64]

• When you use the depthwise module, the c_vector value
must equal the k_vector value.

Parameter: num_lanes

This parameter describes how many output-height slices the architecture can compute
in parallel.

Using the num_lanes architecture parameter has the following effects:

• Setting the num_lanes parameter scales the PE array in the FPGA AI Suite IP by
the given number and provides additional parallelism at the cost of more DSPs and
area.

• The total stream buffer size scales with the num_lanes parameter. Because the
feature surface of a graph is divided across multiple lanes, adjust the
stream_buffer_depth parameter listed in the .arch file by the inverse of the
num_lanes parameter value. For example, a 4-lane architecture with 10k stream
buffer depth indicates a 40k total stream buffer size.

When the value of the num_lanes parameter of architecture is greater than 1, the
architecture is subject to the following limitations:

• All c_vector and k_vector values in the architecture must be the same

• The softmax auxiliary module is not supported.

Legal values: [1,2,4]

Parameter: arch_precision

This parameter sets the precision (in bits) of the internal numeric representation used
by FPGA AI Suite IP. Lower values increase fps and reduce area, but at the cost of
inference accuracy.

Each internal precision option corresponds to a different number of sign and mantissa
bits, and uses either two's complement or sign+magnitude. For details, refer to the
table in FPGA AI Suite IP Block Configuration on page 14.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

18

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The FP16 precision significantly increases the size of the resulting IP, but can improve
accuracy (particularly in models that have not been retrained for low precision).

All numeric options use block floating point format. In block floating point format,
each block of size CVEC shares a common exponent. Both CVEC (c_vector) and
arch_precision affect the accuracy of the inference. However, the impact of
c_vector is generally small, while the impact of the arch_precision setting is
relatively large.

The block floating point format used by the FPGA AI Suite IP is directly compatible
with graphs that use INT8 symmetric quantization. INT8 symmetric quantization
requires that all operations going from floating point to integer, and vice versa, require
only scaling (multiplication or division). When given a graph with INT8 weights, the
FPGA AI Suite compiler sets the exponent of the block floating point weights so the
original INT8 weights can be used directly as the mantissa. This setting limits the use
of INT8 weights to architectures where the mantissa is 8-bits or larger.

The use of INT8 graphs does not significantly affect either the inference speed or the
FPGA resource consumption. All inference, regardless of whether block floating point is
used, is performed with the same hardware.

In addition to selecting a compatible numeric precision, set the pe_array/
enable_scale parameter to true in order to support graphs with INT8 quantization.

The example architectures that are included with the FPGA AI Suite are already set to
the recommended arch_precision parameter values for their supported FPGA
family. In some cases, it is useful to select a different arch_precision value. FP11
is the lowest precision option, but requires the least number of RAM blocks, and
slightly reduces the amount of external memory traffic. The FP12AGX significantly
reduces the number of DSPs required to implement the PE array, but logic utilization
may increase.

Agilex 5 devices implement enhanced DSPs with AI tensor blocks. To take advantage
of AI tensor blocks, set the arch_precision value to FP12AGX or FP11 and use
interleave values of 12x1.

For more details about the block floating point format, refer to the Low-Precision
Networks for Efficient Inference on FPGAs white paper.

Legal values: FPGA Device
Family

Supported arch_precision Values

Agilex 5 • FP11
• FP12AGX
• FP13AGX
• FP16 (less common)

Agilex 7 • FP11
• FP13AGX
• FP16 (less common)

continued...

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

19

https://www.intel.com/content/dam/www/central-libraries/us/en/documents/low-precision-networks-for-efficient-inference-on-fpgas-white-paper.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/low-precision-networks-for-efficient-inference-on-fpgas-white-paper.pdf
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FPGA Device
Family

Supported arch_precision Values

Arria 10 • FP11
• FP16 (less common)

Cyclone 10 GX • FP11
• FP16 (less common)

Stratix 10 • FP11
• FP16 (less common)

Table 4. Multiplication Operations per DSP

Precision

FPGA Device Family

Arria 10
Cyclone 10 GX

Stratix 10
Agilex 7 Agilex 5

FP11 4 4 20(*)

FP12AGX – – 20(*)

FP13AGX – 4 4(**)

FP16 2 2 2

INT8 symmetric quantization is enabled by FP12AGX and higher precision options.

The total number of multipliers required by the PE Array will be equal to CVEC * KVEC
* num_lanes. Due to quantization, this calculation underpredicts the number of DSPs
required when using Agilex 5 DSP tensor mode. In addition, the PE Array requires
KVEC * num_lanes DSPs to build the FP32 accumulators.

Parameter: stream_buffer_depth

This parameter controls the depth of the stream buffer. The stream buffer is used as
the on-chip cache for feature (image) data. Larger values increase area (logic and
block RAM) but also increase performance.

Typically the architecture optimizer is used to set this parameter.

Legal values: [2048-262144]

Parameter: enable_eltwise_mult

This parameter enables the Elementwise multiplication layer. This layer is required for
MobileNetV3.

(*) Assumes a 12x1 interleave.

(**) The Agilex 5 DSP block supports six multipliers per block, but currently FPGA AI Suite uses
only four of them.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

20

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameters: filter_size_width_max, filter_size_height_max

These parameters determine the maximum size of a convolution filter, which also
relates the maximum window size for Average Pool.

The maximum window size for Average Pool is no larger than the value determined by
the following formula: min filter_size_width_max, file_size_height_max − 1. In addition, the
Average Pool window size may be limited by the filter_scratchpad and filter_depth
parameters.

Legal values: [14,28]

Parameters: output_image_height_max, output_image_width_max,
output_channels_max

These parameters control the maximum size of the output tensor.

The default maximum size is 128x128, with up to 8192 channels

Parameter: enable_debug

This parameter toggles the FPGA AI Suite debug network to allow forwarding of read
requests from the CSR to one of many externally-attached debug-capable modules.

Generally not required for production architectures.

Legal values: [true,false]

Parameter: enable_layout_transform

The parameter enables the dedicated input tensor transform module in the FPGA AI
Suite IP. When enabled, the dedicated layout transform hardware transforms the input
tensor format and folds the inputs into channels.

You can use the layout transform in streaming and non-streaming configurations of
the FPGA AI Suite IP. The transform is particularly useful for doing fast and
deterministic tensor preprocessing in hostless applications, or applications where the
hard-processor is slow or highly loaded.

However, the layout transform comes with an FPGA area cost that scales mainly with
the input data bus width, maximum tensor/stride dimensions, and CVEC. In particular,
instances where the value of max_stride_width × max_stride_height ×
max_channels is greater than the CVEC value consume significant memory resources
due to the buffer space required for the overflowing CVEC.

In graphs where the first convolution stride dimensions are unity, no folding can be
done, and the layout transform cannot optimize the layout of the input tensor. In such
a case, try doing a lighter-weight transformation operation outside of the FPGA AI
Suite IP.

When this parameter is enabled, configure the transform with the parametersas
described in Parameter Group: layout_transform_params on page 31. For information
about the layout transformation operation and hardware, refer to Input Layout
Transform Hardware on page 36.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

21

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The hardware layout transform is not supported in SoC designs in streaming-to-
memory (S2M) mode. the S2M design uses a lightweight, external transform module.

2.5.2.2. Parameter Group: activation

This parameter group configures the activation module. These activation functions are
common in deep learning, and it is beyond the scope of this document to describe
them.

Different activation functions can be enabled or disabled to suit the graph to be run.
Disabling unnecessary activations functions can reduce area.

Parameter: activation/enable_relu

This parameter enables or disables the Rectified Linear Unit (ReLU) activation function.

Legal values: [true, false]

Parameter: activation/enable_leaky_relu

This parameter enables or disables the Leaky ReLU activation function. This activation
function is a superset of the ReLU activation function.

Legal values: [true, false]

Parameter: activation/enable_prelu

This parameter enables or disables the Parametric ReLU activation function. This
activation function is a superset of the Leaky ReLU activation function.

Legal values: [true, false]

Parameter: activation/enable_clamp

This parameter enables or disables the clamp function. Enabling the clamp function
also enables a ReLU6 activation function.

Legal values: [true, false]

Parameter: activation/enable_round_clamp

This parameter enables or disables the round_clamp function. Enabling the
round_clamp function also enables ReLU.

If both enable_clamp and enable_round_clamp are set, enable_round_clamp takes
priority over enable_clamp when implementing ReLU.

Legal values: [true, false]

Parameter: activation/enable_sigmoid

This parameter enables or disables the Sigmoid and Swish activation functions.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

22

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

As a side-effect, enabling these activation functions also enables the Tanh and
Reciprocal activation function. This side-effect might change in a future release, so the
best practice is to enable activation function explicitly instead of depending on the
side-effect.

Legal values: [true, false]

Parameter activation/enable_tanh

This parameter enables or disables the Tanh activation function.

As a side-effect, enabling this activation functions also enables the Sigmoid, Swish,
and Reciprocal activation functions. This side-effect might change in a future release,
so the best practice is to enable activation functions explicitly instead of depending on
the side-effect.

Legal value: [true, false]

2.5.2.3. Parameter Group: pe_array

This parameter group configures the PE Array. The PE Array is used to calculate dot
products.

Parameter: pe_array/dsp_limit

Use this parameter to force the PE array to implement multipliers in ALM logic on the
FPGA.

The number of multipliers that the PE requires is determined by the k_vector and
c_vector global parameters. Given the value of the arch_precision global
parameter and the target architecture (for example, Arria 10 or Agilex 7), the number
of multipliers determines the number of DSPs that the PE Array tries to use. If this
number exceeds the value set in the dsp_limit parameter, then some multipliers are
implemented in ALM logic to ensure that the PE Array DSP usage does not exceed the
limit set by the dsp_limit parameter.

If this option is omitted, then all multipliers are implemented in the FPGA AI Suite IP
as DSPs.

Typically, this parameter is set by the architecture optimizer.

Parameters: pe_array/num_interleaved_features, pe_array/
num_interleaved_filters

To support layers with bias values, the PE array uses a threaded accumulator that is
time-multiplexed to handle multiple accumulations. Each accumulation corresponds to
an output filter and feature.

Common
Values: Agilex 5 devices 12x1

Agilex 7 devices 5x1, 3x2

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

23

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arria 10 devices 4x1, 2x2

Cyclone 10 GX

Stratix 10 devices 5x1, 3x2

All architectures support a 1x1 interleave. Selecting a 1x1 interleave typically reduces
ALM consumption, but the IP associated with this architecture does not support layers
with bias. Because most deep learning graphs include bias, the 1x1 interleave is
typically not used.

The architecture optimizer does not modify the num_interleaved_features and
num_interleaved_filters values. You must set them manually.

The filter interleave multiplies the effective KVEC, which means that graphs with a
depthwise convolution (such as certain versions of MobileNet) might perform best
when using num_interleaved_filters=1. Multilayer perceptron graphs might
perform best when using num_interleaved_features=1.

Except in the 1x1 case, the value of num_interleaved_features multiplied by
num_interleaved_filters must meet the following requirements:

Agilex 5 devices The value of num_interleaved_features must be
greater than or equal to 12.

Agilex 7 devices The value of num_interleaved_features multiplied by
num_interleaved_filters must be greater than or
equal to five.

Arria 10 devices The value of num_interleaved_features multiplied by
num_interleaved_filters must be greater than or
equal to four.

Cyclone 10 GX
devices

Stratix 10 devices The value of num_interleaved_features multiplied by
num_interleaved_filters must be greater than or
equal to five.

There is no advantage in choosing interleave factors larger than the minimum
required.

Parameter: pe_array/exit_fifo_depth

This parameter controls the depth of the PE Array exit FIFO. Larger values might
reduce the incidence of stalling, but at the cost of area.

Typically, this parameter is not modified.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

24

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter: pe_array/enable_scale

This parameter controls whether the IP supports scaling feature values by a per-
channel weight. This is used to support batch normalization and INT8 scaling (in
graphs that are INT-8 quantized and do not use block floating point).

In most graphs, the graph compiler (dla_compiler command) adjusts the
convolution weights to account for scale, so this option is usually not required.
(Similarly, if a shift is required, then the convolution bias values are adjusted).

Legal values: true, false

2.5.2.4. Parameter Group: pool

This parameter group configures the pool module. The pool module is used for max
pooling only; average pooling is performed using the convolution engine.

Parameter: pool/k_vector

This parameter controls the width of the pool interface.

Typically, the architecture optimizer is used to set this parameter.

Legal values: [1,2,4,8,16,32, 64]

Parameters: pool/max_window_height, pool/max_window_width

These parameters set the maximum window height and width that the architecture
can support.

Typically, you set this value to the size of the largest max pooling window in your
graph. Larger values cost more FPGA area.

Legal values: [3-7]

Parameters: pool/max_stride_vertical, pool/max_stride_horizontal

These parameters set the maximum stride values that the architecture can support.

Typically, you set these to the largest value your graph requires after a max pool.
Larger values cost FPGA area.

Legal values: [1-4]

2.5.2.5. Parameter Group: depthwise

This parameter group configures the depthwise module. The depthwise module
accelerates the depthwise convolutions.

If a depthwise layer has more parameters than the depthwise module can support, the
layer is executed on the general PE array.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

25

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter: depthwise/K_vector

This parameter controls the width of the depthwise interface. Typically, the
architecture optimizer is used to set this parameter.

Legal Values: [16, 32, 64]

Parameters: depthwise/max_window_height, depthwise/max_window_width

These parameters set the maximum window height and width that the architecture
can support. Typically, you set this value to the size of the largest max depthwise
window in your graph.

Larger values cost more FPGA area.

Legal Values: [3, 5, 7]

Parameters: depthwise/max_stride_vertical, depthwise/
max_stride_horizontal

These parameters set the maximum stride values that the architecture can support.
Typically, you set these to the largest value your graph requires after a depthwise
convolution.

Larger values cost FPGA area.

Legal Values: [1-4]

Parameters: depthwise/max_dilation_vertical, depthwise/
max_dilation_horizontal

These parameters set the maximum dilation values that the architecture can support.
Typically, you set these to the largest value your depthwise convolutions in your graph
require

Larger values cost FPGA area.

Legal Values: [1-6]

2.5.2.6. Module: softmax

The softmax module is enabled or disabled by including a custom auxiliary primitive
(custom_aux_primitive) with a layer_type and name set to softmax. The
primitive must connect to the crossbar (xbar).

The file example_architectures/Generic_softmax.arch has an example of this
connectivity.

Parameter: softmax/max_num_channels

This parameter sets the maximum number of channels for SoftMax that the
architecture can support.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

26

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Legal Values: [1-4096]

2.5.2.7. Parameter Group: dma

This parameter group defines key attributes related to the external AXI interface for
the IP.

Parameters: dma/csr_addr_width, dma/csr_data_bytes

These parameters define the interface to the CSR.

Parameters: dma/ddr_addr_width, dma/ddr_burst_width, dma/
ddr_data_bytes, dma/ddr_read_id_width

These parameters define the AXI interface to off-chip memory.

2.5.2.8. Parameter Group: xbar

For each layer of the graph, data passes through the convolution engine (referred to
as the processing element [PE] array), followed by zero or more auxiliary modules.
The auxiliary modules perform operations such as activation or pooling.

After the output data for a layer has been computed, it can be sent to one of the
following places:

• An internal buffer while waiting for the start of the next convolution layer.

• The external memory for reading by the host program.

Internally, a crossbar (xbar) connects the modules together. The xbar parameters
specify the connections between the PE array, the auxiliary modules, the input feeder
(which holds data waiting for the next convolution layer), and the output writer (which
writes the data to the external memory).

Consider the following example:

xbar {
 xbar_k_vector : 16
 max_input_interfaces : 4
 max_output_interfaces : 4
 xbar_ports {
 xbar_aux_port {
 name : 'activation'
 input_connection : 'xbar_in_port'
 }
 xbar_aux_port {
 name : 'pool'
 input_connection : 'xbar_in_port'
 input_connection : 'activation'
 }
 }
 xbar_in_port {
 external_connection : 'pe_array'
 }
 xbar_out_port {
 external_connection : 'input_feeder'
 external_connection : 'output_writer'
 input_connection : 'xbar_in_port'
 input_connection : 'pool'
 }
 }

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

27

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The crossbar always has the following elements:

• An xbar_in_port element that accepts the incoming connection from the PE
array.

• An xbar_out_port element that connects externally to the input feeder and
output writer.

This example architecture also has two auxiliary modules defined with
xbar_aux_port elements: a pool module and an activation module. The
xbar_aux_port elements are specified in the xbar_ports section.

In this configuration, the activation module can accept data from the xbar_in_port
(the PE array), while the pool module can accept data from the xbar_in_port or
from the activation module.

Finally, the output port can accept data either directly from the xbar_in_port or
from the pool module. These connections limit how data flows through the system.

In this example, the activation module cannot write out from the layer. Activations
must be followed by pooling layers. Also, an activation layer cannot follow a pooling
layer. However, the convolution can be followed by a pooling layer without an
activation layer in between.

Connections cost area and can reduce fMAX. You can reduce area by including only the
connections that are required for a given graph (sometimes called "depopulating" the
crossbar). If you use this architecture as the starting point for the Architecture
Optimizer, the result can improve throughput.

To see examples of other crossbar configurations, review the
example_architectures/ directory.

Parameter: xbar/xbar_k_vector

This parameter defines the width of the interface into the crossbar. Typically, this
parameter is set to be equal to the width of the widest interface into any of the
auxiliary modules.

Typically, the architecture optimizer is used to set this parameter.

Legal values: [2,4,8,16,32,64]

2.5.2.9. Parameter Group: filter_scratchpad

These parameters define the on-chip cache used for the filter weights, bias values,
and scale values (if scale and bias are enabled).

Parameter: filter_scratchpad/filter_depth

This parameter defines the size of the on-chip cache used to store convolution filter
weights. Larger values use more FPGA resources, but might increase fps.

Typically, the architecture optimizer is used to set this parameter.

Legal values: Depends on the setting of enable_parameter_rom:

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

28

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• enable_parameter_rom=false

2n where n is 9, 10, or 11

• enable_parameter_rom=true

2n where n is 4 or greater.

Parameter: filter_scratchpad/bias_scale_depth

This parameter defines the size of the on-chip cache used to store feature bias and
scale weights, if the corresponding support is enabled in the PE Array. Larger values
use more FPGA resources, but might increase inference throughput.

Typically this is set equal to the filter_scratchpad/filter_depth parameter.

Legal values: Depends on the setting of enable_parameter_rom:

• enable_parameter_rom=false

2n where n is 9, 10, or 11

• enable_parameter_rom=true

2n where n is 4 or greater.

2.5.2.10. Parameter Group: input_stream_interface

Enable and configure the width of the input AXI4-Stream interface. If enabled, input
streaming requires that the layout transform is also enabled. Neural network graphs
compiled with an input streaming-enabled architecture cannot be sliced in the input
layer, therefore the stream buffer depth must be large enough to fit the input layer.

Parameter: input_stream_interface/enable

Enables the input streaming module. Enable_layout_transform must also be true, and
the transform must be configured for the target neural network graph.

Legal values: true, false

Parameter: input_stream_interface/data_width

Sets the width of the AXI4-streaming input bus in bits.

Legal values: 2n where n is 4 or greater.

Parameter: input_stream_interface/fifo_depth

Sets the depth of the input FIFO

Legal
values:

2n where n is 4 or greater.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

29

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For best performance, set the fifo_depth value to the size of one
transformed input (refer to Input Transform Mapping on page 35)
For example, if the transformed input is 32×28×28×x1 and the
c_vector size is 16, set fifo_depth to 2048.

For example, an architecture with a 128-bit input AXI streaming interface would
include the following options:

input_stream_interface {
 enable: true
 data_width: 128
 fifo_depth: 2048
}

2.5.2.11. Parameter Group: output_stream_interface

Enable and configure the AXI4-Stream output interface.

Parameter: output_stream_interface/enable

Enables the output streaming module.

Legal values: true, false

Parameter: output_stream_interface/data_width

Sets the width of the AXI4-steaming output interface in bits.

Legal values: 2n where n is 4 or greater.

Parameter: output_stream_interface/fifo_depth

Sets the depth of the output FIFO.

Legal
values:

2n where n is 4 or greater.

For best performance, the FIFO depth should hold the entire output
ceil channel

xbar k_vector × width × height × depth. For example, if the output is
64×10×10×1 and the xbar k_vector is 32, the FIFO depth should be
set to 256.

For example, and architecture file with an 128-bit wide output AXI streaming interface
would include the following options:

output_stream_interface {
 enable: true
 data_width: 128
 fifo_depth: 1024
}

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

30

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5.2.12. Parameter Group: config_network

These parameters define the configuration network that connects internal components
within the IP.

Typically, this section is changed only minimally when modifying the examples in the
example_architectures/ directory.

2.5.2.13. Parameter Group: layout_transform_params

These parameters configure the input tensor layout transformation module of the
FPGA AI Suite IP.

Parameter: layout_transform_params/do_u8_fp16_conversion

When true, this parameter enables hardware to convert 8-bit integer input values to
FP16 format, and 8-bit unsigned integers must be given as inputs. Otherwise, no
conversion is done and you must write FP16 values at the input.

Legal values: [true, false]

Parameters: layout_transform_params/max_channels,
layout_transform_params/max_feature_height,
layout_transform_params/max_feature_width,
layout_transform_params/max_feature_depth,
layout_transform_params/max_stride_height,
layout_transform_params/ max_stride_width,
layout_transform_params/max_stride_depth, layout_transform_params/
max_pad_top, layout_transform_params/max_pad_left,
layout_transform_params/max_pad_depth, layout_transform_params/
max_filter_width, layout_transform_params/max_filter_height,
layout_transform_params/max_filter_depth

This group configures the range of feature shapes, padding, and convolution strides
that the layout transform hardware module supports. The values in this configuration
represent the maximum allowed values for each parameter. However, the resource
usage of the layout transform is sensitive to the parameterization, so set these values
as close to the actual values as possible.

The parameters of the first convolution in the graph must fit within the maximum
range configured here. The exact parameters required by the layout transform module
are reported by the FPGA AI Suite compiler in a file named
input_transform_dump_<graphname>.csv.

For more information about the input tensor layout transform, refer to Input Feature
Tensor In-Memory Format on page 33.

2.6. IP Block Interfaces

This document uses the terms initiator and responder where the terms master and
slave might have been used in the past.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

31

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.1. Clock and Reset

Table 5. Clocks

Name Description

dla_clk Clock used by internal processing logic

ddr_clk Clock used by DDR memory and CSR interfaces

irq_clk Clock used for interrupt request (IRQ) interface

Table 6. Resets

Name Description

dla_resetn Global asynchronous reset
This reset must be held for at least three cycles of the slowest of the clocks listed in the Clocks table.
The IP becomes responsive sometime after the reset is released, but not immediately due to an internal
reset cycle in the FPGA AI Suite IP.

2.6.2. AXI Interfaces

Name Type Description

DDR0 Initiator AXI4 Initiator port for connecting to DDR memory

CSR Responder AXI4-Lite Exposes IP MMIO region

Interrupt Initiator Interrupt Sender Level sensitive interrupt

2.6.3. AXI Interface Clock and Reset

Name Clock Reset Note

DDR0 Initiator ddr_clk dla_resetn N/A

CSR Responder ddr_clk dla_resetn The CSR initiator operates on the ddr_clk clock.

Interrupt Initiator irq_clk dla_resetn N/A

The following parameters are used by the AXI interfaces. The parameter values can be
modified in the Architecture Description files as described in IP Generation Utility.

Name Supported Value Entry in Architecture Description

C_CSR_AXI_ADDR_WIDTH 11 = dma.csr_addr_width

C_CSR_AXI_DATA_WIDTH 32 = dma.csr_data_bytes * 8

C_DDR_AXI_ADDR_WIDTH 1~32 = dma.ddr_addr_width

C_DDR_AXI_BURST_WIDTH 1~8 = dma.ddr_burst_width

C_DDR_AXI_DATA_WIDTH 64, 128, 256, 512 (bits) = dma.ddr_data_bytes * 8

C_DDR_AXI_THREAD_ID_WIDTH 2 = ddr_read_id_width

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

32

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6.4. Input Feature Tensor In-Memory Format

Input features are stored in FP16 format. FP16 format has 1 sign bit, 10 mantissa bits,
and 5 exponent bits. The input features are converted by the IP hardware to its native
format using a round to nearest, ties to even (RNE) rounding rule.

Feature elements are packed into CVEC-sized chunks in the channel dimension from
low to high. The final CVEC chunk, at a given (d,h,w), is padded with zeros. The CVEC
chunks are stored in NCDHW format. The order is as follows: batch, channel, depth,
height, width, and CVEC, where CVEC is the fastest changing index and batch the
slowest.

The following figure shows a sample memory layout for a 1×3×1×2×2 input tensor to
a CVEC=2 architecture:

Figure 3. Input Tensor In-Memory Layout

A2000

A1000

A0000

A2011

A1011

A0011

A2010

A1010

A0010

A2001

A1001

A0001

0

A1000

A2000

A0000

A1010

A2010

A0010

0

A1011

A2011

A0011

0

A1001

A2001

A0001

Padded and Chunked
Tensor (4, 1, 2, 2)

CVEC=2

Logical Tensor (3, 1, 2, 2)

0
0

A1011

A1001

0
0

A1010

A1000

A0010

A2000

A2010 Base_addr + 24
Base_addr + 16
Base_addr + 8
Base_addr

Sample memory layout
(Byte addressed, 64 bit

words, little endian)
CVEC=2

6 4 2 0
A0000

A0011

A2001

A2011

A0001

2.6.4.1. Multiple Input Graphs

For graphs with more than one input, each tensor is structured as described in the
previous section. The multiple input tensors must be packed together at address
offsets as reported by the FPGA AI Suite compiler.

The compiler generates CSV files that describe the input and output tensor, unless you
specify the --fno-transform-tables option. Each row of the CSV file gives
information about one input. For more details, refer to the FPGA AI Suite Compiler
Reference Manual.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

33

https://www.intel.com/content/www/us/en/docs/programmable/768972.html
https://www.intel.com/content/www/us/en/docs/programmable/768972.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For multiple inputs, the inputs are stored by batch and then by input number. For
example, for 3 inputs and 2 batches, the input tensors would be stored as follows:

• input 1, batch 1

• input 1, batch 2

• input 2, batch 1

• input 2, batch 2

• input 3, batch 1

• input 3, batch 2

2.6.4.2. Input Folding

Many graphs, particularly those processing image data, have very shallow input
channels. In high CVEC instantiations, very shallow input channels can lead to low
computational efficiency.

The folding can be done in conjunction with the FPGA AI Suite compiler and the FPGA
AI Suite IP, or it can be performed in hardware using the hardware layout transform
described in Input Layout Transform Hardware on page 36.

Input folding is typically most beneficial to the first layer of a graph.

The following figure illustrates an example of the functionality of the folding transform
performed by the FPGA AI Suite compiler.

Figure 4. Illustration of the folding transform for a 1x1×5×5 input, 1×1×3×3 filter and
stride_height = stride_width = 2

i04i02i00

Channel = 0

Folded OutputInput Pre-Folding

i24i22i20

i44i42i40

i44i43i42i41i40

i34i33i32i31i30

i24i23i22i21i20

i14i13i12i11i10

i03 i04i02i01i00

0i03i01

Channel = 1

0i23i21

0i43i41

i14i12i10

Channel = 2

i34i32i30

0i13i11

Channel = 3

0i33i31

000000

In this transformation, the input depth, height, and width are folded into the channel
dimension by a factor corresponding to the stride of the first convolution of a network.
In the earlier figure, this factor corresponds to transforming the input channels from 1
to 4 (1 × stride_depth × stride_height × stride_width), input height from 5 to 3 (ceil 5

2) and
input width from 5 to 3. Each color corresponds to the new filter window, which in this

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

34

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

case would be 4×1×2×2, with the gray boxes corresponding to 0 padding for the
filters. Folding is done in a similar way for inputs with depths greater than one, but the
folding transform illustration excludes it for simplicity.

The FPGA AI Suite IP has various enhancements that reduce, but not eliminate the
efficiency hit of shallow first layers. In many cases, you can disable first layer folding
in the compiler and pass shallow-channel tensors directly to the IP hardware.

You can disable or enable folding with the following FPGA AI Suite compiler options:

• NoFolding

No folding is performed by the host or an external module. This leads to low
efficiency for the FPGA AI Suite IP but might be useful for debugging purposes.

• ExternalFullFolding

Folding performed by the host or an external module for the depth, height, and
width stride of the first convolution layer.

• ExternalFullExtraPEFolding

Folding is performed by the host or an external module for the depth, height, and
width stride of the first convolution layer with additional folding performed
afterward via the FPGA AI Suite IP. This might lead to better performance than
ExternalFullFolding depending on the instantiation parameters of IP.

• PEFolding

Folding is performed entirely by the FPGA AI Suite IP without the need for any
host or external module. This should lead to similar performance to
ExternalFullFolding depending on the instantiation parameters of the FPGA AI
Suite IP and the neural network topology.

PEFolding mode does not support input with a depth greater than one.

2.6.4.3. Input Scale and Shift

Many graphs require that input data be pre-scaled and pre-shifted. These scale and
shift operations are supported in the FPGA AI Suite IP if they are sent to the device.
Depending on the folding options specified, the method of support differs for the FPGA
AI Suite IP. Input preprocessing is not supported for 5D inputs.

For the ExternalFullFolding or ExternalFullExtraPEFolding options, external modules of
the FPGA AI Suite are responsible for replacing the zero padding of the input data with
non-zero shift values received as input from the FPGA AI Suite compiler.

For the NoFolding or PEFolding options, the scaling and shifting are performed entirely
by the FPGA AI Suite IP without any additional support from the host or external
modules. If the scale and shift operation is not mapped to the device, then it is
typically performed as an operation fused with the conversion to FP16. This fused
operation is performed either by a host CPU or by an external hardware block.

2.6.4.4. Input Transform Mapping

To help make sense of how input data is transformed for a compiled graph, the FPGA
AI Suite compiler creates the following CSV files:

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

35

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• input_transform_dump_<graph-name>.csv

This file describes the tensor shape, padding, and stride for each input tensor.

• input_transform_mapping_<graph-name>.csv

This file shows the element-wise mapping of the logical input tensor elements
(domain) to the FPGA AI Suite IP input tensor format (co-domain) described
earlier.

The transform mapping file has columns that correspond to the offset and subscript
indices for the logical input tensor elements, and the corresponding elements in the
transformed FPGA AI Suite input tensor.

For a graph with the input example given in Input Tensor In-Memory Layout, the
transform mapping CSV output from the DLA compiler would be as follows:

Table 7. Example Transform Mapping CSV Output

Logical
Tensor
Offset

Input
Channel

(C)

Input
Depth

(D)

Input
Height

(H)

Input
Width
(W)

→ Input
Tensor
Offset

Transformed
Channel (C)

Transformed
Depth (D)

Transformed
Height (H)

Transformed
Width (W)

Transformed
C-vector
(Cvec)

0 0 0 0 0 → 0 0 0 0 0 0

1 0 0 0 1 → 2 0 0 0 1 0

2 0 0 1 0 → 4 0 0 1 0 0

3 0 0 1 1 → 6 0 0 1 1 0

4 1 0 0 0 → 1 1 0 0 0 0

5 1 0 0 1 → 3 1 0 0 1 0

6 1 0 1 0 → 5 1 0 1 0 0

7 1 0 1 1 → 7 1 0 1 1 0

8 2 0 0 0 → 8 0 0 0 0 1

9 2 0 0 1 → 10 0 0 0 1 1

10 2 0 1 0 → 12 0 0 1 0 1

11 2 0 1 1 → 14 0 0 1 1 1

The tensor offsets in this table are logical, not address offsets and are thus
independent of data type. The transformation typically implicitly adds zero padding to
the data. As such, not all transformed output logical offsets are mapped from a given
input logical offset.

2.6.4.5. Input Layout Transform Hardware

The input tensor layout transform and folding operations described in this section can
be done on the FPGA AI Suite when the layout transform is enabled in the IP
architecture file.

The hardware implementation assumes that the input tensors are in HWC format, and
that the data elements are either FP16 or U8 format. The hardware implementation of
the input transform supports input folding for any feature, stride, and padding values.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

36

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When active, the layout transform hardware folds the input tensor and converts it to
the CHWCvec format as described in Input Feature Tensor In-Memory Format on page
33. If configured for U8 inputs, the data elements are also converted to FP16 format
before tensors are sent downstream for inference.

Use the hardware layout transform with the --ffolding_option 1 compiler option
described in “Compilation Options (dla_compiler Command Options)” in the FPGA
AI Suite Compiler Reference Manual. The layout transform hardware does not
currently support multi-batch inputs (N>1) or 5-dimensional input tensors. Scale and
shift values are also not applied in the hardware layout transform. You must apply
scale and shift values to inputs before inferencing.

2.6.5. Output Tensor In-Memory Format

The output tensor in-memory format is similar to the input tensor in-memory format
described in Input Feature Tensor In-Memory Format on page 33. However, the output
tensor is padded to the nearest multiple of KVEC rather than CVEC, with the padding
being done at the boundaries between FPGA AI Suite IP outputs rather than strictly at
the edge of the logical tensor output.

While the logical tensor output might be a single tensor, the FPGA AI Suite IP might
compute this output as one single output or by slicing the output into smaller pieces.

Each scenario can result in a different output layout, with the first resulting in padding
only on the boundary of the tensor as shown in the following figure:

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

37

https://www.intel.com/content/www/us/en/docs/programmable/768972/current/compilation-options-dla-compiler-command.html
https://www.intel.com/content/www/us/en/docs/programmable/768972/current/compilation-options-dla-compiler-command.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Output Tensor In-Memory Layout Without Slicing

A2000

A3000

A4000

A5000

A1000

A0000

A2011

A3011

A4011

A5011

A1011

A0011

A2010

A3010

A4010

A5010

A1010

A0010

A2001

A3001

A4001

A5001

A1001

A0001 A2000

A3000

A4000

A5000

0
0

A1000

A0000

A2001

A3001

A4001

A5001

0
0

A1001

A0001

A2010

A3010

A4010

A5010

0
0

A1010

A0010

A2011

A3011

A4011

A5011

0
0

A1011

A0011

Padded Tensor (8, 1, 2, 2)
CVEC=2, KVEC=4

Logical Tensor (6, 1, 2, 2)

Sample memory layout
(Byte addressed, 64 bit

words, little endian)
CVEC=2, KVEC=4

0
0

A5011

A5001

A3011

A3001

A1011

A1001

0
0

A4011

A4001

A2011

A2001

A0011

A0001

A3010

A3000

A1010

A1000

0
0

A5010

A5000

A2010

A2000

A0010

A0000

0
0

A4010

A4000

Base_addr + 56
Base_addr + 48
Base_addr + 40
Base_addr + 32
Base_addr + 24
Base_addr + 16
Base_addr +8
Base_addr

6 4 2 0

The second scenario results in padding within the logical tensor as well as on the
boundary of the logical tensor as shown in the following figure:

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

38

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Output In-Memory Layout With Slicing

A2000

A3000

A4000

A5000

A1000

A0000

A2011

A3011

A4011

A5011

A1011

A0011

A2010

A3010

A4010

A5010

A1010

A0010

A2001

A3001

A4001

A5001

A1001

A0001 A2000

0

A3000

A4000

A5000

0

A1000

A0000

A2001

A3001

A4001

A5001

0

0

A1001

A0001

A2010

A3010

A4010

A5010

0

0

A1010

A0010

A2011

A3011

A4011

A5011

0

0

A1011

A0011

Padded and Decomposed Tensor (8, 1, 2, 2)
KVEC=4

Logical Tensor (6, 1, 2, 2)

Sample memory layout
(Byte addressed, 64 bit

words, little endian)
KVEC=4

0
0
0
0
0
0
0
0

A2011

A2010

A2001

A2000

A5011

A5010

A5001

A5000

A1011

A1010

A1001

A1000

A4011

A4010

A4001

A4000

A0011

A0010

A0001

A0000

A3011

A3010

A3001

A3000

Base_addr + 56
Base_addr + 48
Base_addr + 40
Base_addr + 32
Base_addr + 24
Base_addr + 16
Base_addr +8
Base_addr

6 4 2 0

To enable the plugin to determine the appropriate output layout and offsets, the
compiler provides a DlaRuntimeOutputConfiguration object. One of the fields of
this object is the output_tensor_mapping field, which provides a mapping from
FPGA AI Suite IP tensor output to logical tensor output.

To show how the IP output tensor data is mapped to the logical output tensor for a
compiled graph, the FPGA AI Suite compiler creates the following CSV files:

• output_transform_dump_<graph-name>.csv

This file describes the tensor shape and offsets.

• output_transform_mapping_<graph-name>.csv

This file shows the element-wise mapping of the FPGA AI Suite output tensor to
the logical output tensor. This mapping is in the inverse of the input mapping
described in Input Transform Mapping on page 35. Refer to the example in that
topic for a description of the transform mapping CSV file.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

39

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.7. Feature Input and Output Streaming

The FPGA AI Suite can be configured to accept AXI-streaming (AXI4-Stream) input
features, produce AXI-streaming (AXI4-Stream) output features, or both. Only graphs
that fit entirely on the FPGA device are supported, You cannot use the OpenVINO
HETERO:FPGA,CPU plugin with streaming.

When input and output streaming is enabled, the system architecture can be
described as shown in the following diagram:

Figure 7. FPGA AI Suite IP with Input and Output Streaming

In

Filter/ Feature
Synchronizer

M

M

M

S

S

S

S

1

SS

Input Feeder &
Scratch Pad

S Feature Input

S Xbar_writeback_input

S

Fe
ed

er
 In

Co
nf

ig

M

M

M

PE Array

Filter(Ai) [KVEC x CVEC]

Feature (Bi) [1xCVEC]

PE ControlS

S

MDrain

∑[Si� (AiBi)] + C

Filter Scratch
Pad

Read Ports

MBiasDataOut

FilterReadAddrS

Exit FIFO

MS

M

In Out

Cr
ed

it

Fe
ed

er
 O

ut
Co

nf
ig

S

In

Activation

S Out

De
bu

g

S

Co
nf

ig

M

S

Pool

MS Out

De
bu

g

SS

Co
nfi

g

Auxiliary Crossbar
InS

S S

M

M M S

Co
nfi

g

M

Memory Mapped Debug CSR Network
MM

Config Network
MM M M

S Bias/Scale (C/Si) [KVEC x 1]
2x

1x

1x

M

M

S

BiasReadAddrS

MFilterDataOut S

M

1x

S

S

Streaming InputS

Input Streamer
M

CSR

Graph Parameters ROM

M

Co
nf

ig

S

M M

Output Streamer

AXI4-S
DLA DataSS

S
S

M

S

S

S

M

S

S

S

S

S S

S S S

MM

M

Int

Configuration ROM

S

M

S

M

AXI4-S

For more information about the configuration and operation of these streaming
interfaces, refer to the following sections:

• Input Streaming on page 40

• Output Streaming on page 42

2.7.1. Input Streaming

When input streaming is configured in the IP system architecture as described in
Parameter Group: input_stream_interface on page 29, and the
Activate_streaming DMA control register is set to 1, the FPGA AI Suite IP accepts
inputs through the AXI4-Stream signals that are exposed at the top-level instead of
being memory mapped. The exposed signals are as follows:

Table 8. FPGA AI Suite IP AXI4-Stream Input Interface Signals

Signal Source Width Description

ACLK Clock 1 Data source clock

ARESETn Reset 1 Data source active-low reset

TVALID Data source 1 Input signal that indicates whether the values in TDATA are valid.

TREADY FPGA AI Suite IP 1 Output signal that indicates whether the FPGA AI Suite IP is ready to accept
data.

TDATA Data source DATA_WIDTH Input data bus.

Schematically, the input streaming component is constructed as follows:

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

40

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Input Streamer Schematic View

Input Streamer

Layout
Transform

Feature Read CDC
FIFO

aclk
aresetn

tvalid

tready

if_ready

if_valid

if_data[CVEC*2]

dla_clk

tdata[DATA_WIDTH]

The streamed input tensor format must be in HWC, where channels is the fastest-
changing dimension. The HWC tensors are internally folded and vectorized to
CHWCvec tensors that the PE array can ingest (as described in Input Feature Tensor
In-Memory Format on page 33). Data also internally crosses from the source clock
domain to the FPGA AI Suite IP internal clock domain.

This subset of the AXI4 streaming protocol signals implements a streaming interface
where transfers take place whenever the TREADY and TVALID signals are asserted.
The input streaming interface does not implement the TSTRB or TKEEP signals, which
means that all data in a valid TDATA signal transfer must be valid unless it is the last
transfer. The TLAST signal is also unused at the input, because the FPGA AI Suite IP
tracks the state of the transfer internally.

Any data beyond the boundary of the input tensor in the final transfer of an input
feature that is not a multiple of DATA_WIDTH is ignored. The data stream producer is
responsible for padding features, if needed, so that adjacent features to not share the
same data transfer at the boundary.

The following timing example shows a 3x3x1 input tensor with monotonically
increasing pixel values and DATA_WIDTH of 4 bytes. Note the padding in the third
transfer.

Figure 9. Streaming Input Waveform

The TREADY signal is asserted by the FPGA AI Suite IP whenever the IP is ready for a
new input feature and streaming has been activated in the CSR. The TREADY signal
comes from the input streamer module and is first asserted once the FPGA AI Suite IP
is configured and the input streamer FIFO is not full. The FPGA AI Suite IP accepts the
input feature as long as there is space in the FIFO and no backpressure from the
downstream system, which means the TREADY signal can be deasserted mid input
feature.

When the input streaming interface is enabled, it requires the input layout transform
to be enabled and configured as described in Parameter Group:
input_stream_interface on page 29.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

41

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When streaming data is received, it is converted from HWC format, where channels is
the fastest-changing dimension in the memory representation, to CHWCvec format,
where the input has been vectorized into Cvec-lines that can be input to the PE array.

The layout transform can be configured to either accept FP16 input data or uint8 input
data that is converted internally to FP16.

The input streaming module handles clock-domain crossing from the input stream
clock domain to that of the FPGA AI Suite IP and also handles width conversion from
DATA_WIDTH to CVEC.

2.7.2. Output Streaming

Use the output streaming component to stream output data from FPGA AI Suite IP to
a downstream module using an AXI4-Stream interface.

When the output streaming interface enabled, it produces data in HWC format (where
channels is the fastest changing dimension), on the output bus. The bus width is
configured in the architecture parameters as described in Parameter Group:
output_stream_interface on page 30. The data is converted from the FPGA AI Suite IP
internal clock domain to the clock domain of the AXI4-Stream receiver.

The following signals implement the output AXI4-Stream interface:

Table 9. FPGA AI Suite IP AXI4-Stream Output Interface Signals

Signal Source Width Description

clk_axi Clock 1 Downstream AXI clock

i_resetn_axi Reset 1 Downstream AXI active-low reset

o_ostream_axi_t_valid FPGA AI Suite IP 1 Output signal that indicates whether the values in
TDATA are valid

i_ostream_axi_t_ready Downstream AXI User 1 Output signal that indicates whether the AXI
receiver is ready to accept data

o_ostream_axi_t_data FPGA AI Suite IP DATA_WIDTH Output data bus

o_ostream_axi_t_strb FPGA AI Suite IP DATA_WIDTH/8 Output signal that indicates which bytes of TDATA
are valid

o_ostream_axi_t_last FPGA AI Suite IP 1 Indicates the last transmission for the current
frame

Data from the FPGA AI Suite IP is produced in CVEC multiples. When the number of
output channels is not a multiple of CVEC, the last AXI4-Stream transaction for a
single pixel in height/width dimensions might have only some valid elements that are
indicated by the o_ostream_axi_t_strb signal.

Consider the following example: Assume the output data tensor has a shape of
3x3x10 (HWC), with CVEC = 8 elements (each 16 bits), and AXI TDATA_WIDTH = 128
bits. For each pixel in the 3x3 surface, we need to produce 10 channels, which fit in
two AXI transactions. The first transaction has all valid elements
(o_ostream_axi_t_strb = 0xffff). The second transaction has only two valid
elements and the rest are zeros (o_ostream_axi_t_strb = 0x000f). The
downstream receiver of AXI transactions is responsible for intercepting the
o_ostream_axi_t_strb signal and processing only the valid elements.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

42

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The figure that follows demonstrates an example transaction flow with 3 input
transactions (I1, I2 and I3, each 128 bits) and three output AXI transactions (O1, O2,
and O3, each 128 bits). In this example the first and third 128-bit transactions are all
valid data (o_ostream_axi_t_strb =0xffff), but the second transaction has only 6
valid elements (16 valid bytes). For the second transaction, the
o_ostream_axi_t_strb =0x0fff (marked in red color). Notice that data transactions
happen only when the block is configured and ready to produce output.

2.8. DDR-Free Operation

To avoid use of external memory for storing graph weights and FPGA AI Suite IP
configurations during inference, you can store these parameters within the IP using
on-chip memory.

In this case, three types of memory initialization files (.mif) are required:

• ddrfree_filter_hw*.mif: Contains the graph filters.

• ddrfree_bias_scale_hw*.mif: Contains the graph biases and scaling factors.

• ddrfree_config.mif: Stores the FPGA AI Suite instructions for the compiled
graph.

These files are generated using the dla_compiler tool that takes the architecture
definition (.arch file) and the target neural network graph as inputs.

A total of K_VECTOR DDR-free filter .mif files are generated. Each file is postfixed
with an integer representing which PE the filter is to be loaded to.

Similarly, a total of K_VECTOR DDR-free bias and scale files are generated, using the
same postfix scheme to indicate the PE that should load this file.

The FPGA AI Suite IP requires a stream of instructions that describe the order in which
convolutions, activations, and other operations must be performed. This instruction
stream is stored in a single .mif file (ddrfree_config.mif).

These files are used to initialize read-only memories while building an FPGA bitstream,
which means that bitstreams are graph-specific for DDR-free operation.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

43

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You must also enable input and output streaming when using DDR-free operation. The
graph must have a large enough stream buffer depth to accommodate all of the
intermediate results during inference.

The dla_build_example_design.py command can build design examples with
DDR-free operation. The only streaming design example option currently supported is
the 0_STREAMING option. The design example created by this option targets an Agilex
7 FPGA I-Series Development Kit (DK-DEV-AGI027RBES).

To compile a bitstream with a DDR-free architecture, specify the directory that
contains the DDR-free .mif files with the –parameter_rom_dir option of the
dla_build_example_design.py command.

For details about creating the .mif file required for DDR-free operation, refer to
“Generating Artifacts for DDR-Free Operation” in the FPGA AI Suite Compiler
Reference Manual.

2. About the FPGA AI Suite IP

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

44

https://www.intel.com/content/www/us/en/docs/programmable/768972/current/generating-artifacts-for-ddr-free-operation.html
https://www.intel.com/content/www/us/en/docs/programmable/768972.html
https://www.intel.com/content/www/us/en/docs/programmable/768972.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. FPGA AI Suite IP Generation Utility
The FPGA AI Suite IP generation utility reads an input Architecture Description File
(.arch) and places generated IP into an IP library that can be imported into Platform
Designer or used directly in a pure RTL design. The generated IP is configured based
on the Architecture Description (.arch) File, which defines the following items:

• Top RTL parameters are set to reflect values in the Architecture Description File

• The Discovery ROM MIF is created to specify an architecture hash and FPGA AI
Suite compiler version string

The generation utility also copies all the required RTL files into a single directory. As
convenience options, the utility can also help to create .qsf files and wrappers for the
PCIe Example Design or to compile an instance of the IP with a dummy BSP interface.

The IP generation utility generates either an unlicensed or a licensed copy of the IP:

Unlicensed IP The unlicensed IP has a limit of 10000 inferences. After 10000
inferences, the unlicensed IP refuses to perform any additional
inference and a bit in the CSR is set. For details about the CSR
bit, refer to DMA Descriptor Queue on page 57.

Licensed IP The licensed IP has no inference limitation
The IP generation utility checks for an FPGA AI Suite IP license before generating the
IP. The utility prints messages to stdout that show the license status.

You can use either licensed and unlicensed IP for bitstream generation so that you can
fully test your design during the evaluation process.

3.1. IP Generation Utility Execution Flows

The IP generation utility (dla_create_ip command) has the following flows:

• Creating an IP Directory (--flow create_ip)

Use this flow to create a new FPGA AI Suite IP library directory, generate an IP,
and place it in the library.

• Adding an Architecture to an IP Directory (--flow add_arch)

Use this flow to generate an IP and place it in an existing FPGA AI Suite IP library
directory.

• Listing Architectures in an IP Directory (--flow list)

Use this flow to list the IPs in an existing IP library directory.

• Removing an Architecture from an IP Directory (--flow remove_arch)

Use this flow to remove an IP from an existing IP library directory.

768974 | 2025.02.24

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Creating an IP Directory

This flow is typically first flow that you use. It creates an FPGA AI Suite IP library
directory and adds an architecture as follows:

1. Creates the IP library directory and copies all contents from <ai_suite_root>/
fpga/ip_template/ into the new directory. The copied folder (<ip_template>)
contains some basic Tcl scripts and Platform Designer IP configurations.

2. Creates a <ip_directory>/Verilog directory and copies over RTL files that are
common to any generated FPGA AI Suite IP architecture.

These files are listed in static_files.tcl, which is used to ensure that other
flows (the Platform Designer flow and design assembly flows outside Platform
Designer) have access to the list of RTL source files.

3. Creates the following directory for each architecture-family pair to add to the IP
library:

<ip_directory>/Verilog/<architecture>_<family>

This location stores architecture-specific files.

4. Invokes an internal utility to read the architecture description file (.arch).

Output files are architecture-specific and are copied to the <ip_directory>/
Verilog/<architecture>_<family> directory.

5. For the specific architecture, creates a generated_files.tcl file and a
dla_ip.qsf file in the <ip_directory>/Verilog/
<architecture>_<family> directory.

Adding an Architecture to an Existing IP Directory

This flow adds a new architecture to an existing IP library directory as follows:

1. Creates a <ip_directory >/Verilog directory and copies over RTL files that are
common to any generated FPGA AI Suite IP architecture.

These files are listed in static_files.tcl, which is used to ensure that other
flows (the Platform Designer flow and design assembly flows outside Platform
Designer) have access to the list of RTL source files.

2. Creates the following directory for each architecture-family pair to add to the IP
library:

<ip_directory>/Verilog/<architecture>_<family>

This location stores architecture-specific files.

3. Invokes an internal utility to read the architecture description file (.arch).

Output files are architecture-specific and are copied to the <ip_directory>/
Verilog/<architecture>_<family> directory.

4. For the specific architecture, creates a generated_files.tcl file and a
dla_ip.qsf file in the <ip_directory>/Verilog/
<architecture>_<family> directory.

Listing Architectures in an IP Directory

This flow lists all available architectures in the IP library directory. The utility looks for
all <architecture_family> folders and displays them.

3. FPGA AI Suite IP Generation Utility

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

46

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Removing an Architecture from an IP Directory

This flow removes an architecture from an IP library directory. The utility looks for a
<architecture_family> folder and removes it.

3.2. IP Generation Utility Inputs

The only external inputs to the IP creation flow are FPGA AI Suite architecture
description files. The file format for architecture descriptions files is described in
Architecture Description File Format for Instance Parameterization on page 16.

The internal inputs to the scripts are:

• <ai_suite_root>/fpga/<modules>. Module folders that contain RTL source files.

• <ai_suite_root>/fpga/ip_template. Contains basic files used to create the IP in the
Platform Designer flow.

3.3. IP Generation Utility Outputs

The IP generation utility (dla_create_ip command) generates an FPGA AI Suite IP
directory as its output.

The default directory structure is as follows:

Entry point tcl script for the IP
Helper functions
Define shared RTLs to include in the IP

Shared files between architectures
Directory that stores architecture-specific files

Architecture-specific files
Contains the parameterization for the architecture
Defines architecture-specific files for Platform Designer flow
Defines architectures-specific files for Intel Quartus Prime flow
Architecture information used by runtime

Used by Platform Designer to recognize the IP

3.4. IP Generation Utility Command Line Options

The actions of the IP generation utility (dla_create_ip command) are controlled
primarily by the --flow option. Depending on your choice for the --flow option, you
might need to specify other command options.

The --flow Option

This option specifies the IP generation utility execution flow to run.

Syntax --flow <flow>

Where <flow> specifies the execution flow to run.

3. FPGA AI Suite IP Generation Utility

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

47

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Valid values • create_ip

For details, refer to The --flow create_ip Flow on page 49.

• add_arch

For details, refer to The --flow add_arch Flow on page 50.

• list

For details, refer to The --flow list Flow on page 51.

• remove_arch

For details, refer to The --flow remove_arch Flow on page
51.

Default
Value

create_ip

The --arch Option

This option specifies one or more FPGA AI Suite architecture description files (.arch)
to use in the flow.

If you specify this option, you cannot specify the --arch_dir option.

Syntax --arch <architecture> [<architecture2>]
[<architecture3] ...

For the create_ip and add_arch flows, specify a path to the architecture
description file or files to add to an IP library.

For the remove_arch flow, specify the name of the architecture description file or
files to remove from an IP library.

The --arch_dir Option

Use this option with the create_ip and add_arch flows to specify the path to a
directory that contains architecture description files. If you specify this option, the IP
generation utility adds each architecture in the specified directory to the FPGA AI Suite
IP library.

If you specify this option, you cannot specify the --arch option.

Syntax --arch_dir <path_to_arch_folder>

The --ip_dir Option

This option specifies the path of the FPGA AI Suite IP library directory to use in the
flow.

In the create_ip flow, this directory is created if it does not exist. For all other flows,
the specified IP library directory must exist.

3. FPGA AI Suite IP Generation Utility

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

48

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Syntax --ip_dir <ip_directory>

Default Value <ai_suite_root>/ip

The --unlicenced/--licenced Options

Generate an unlicensed or licensed copy of the FPGA AI Suite IP:

• Unlicensed IP: Unlicensed IP has a limit of 10000 inferences. After 10000
inferences, the unlicensed IP refuses to perform any additional inference and a bit
in the CSR is set. For details about the CSR bit, refer to DMA Descriptor Queue on
page 57.

• Licensed IP: Licensed IP has no inference limitation.

If you generate a licensed copy of the IP but do not have a license, then Quartus
cannot to generate a programming bitstream for your FPGA.

If neither option is specified, then the tool queries the lmutil license manager to
determine the correct option.

Syntax --unlicenced

--licenced

The --overwrite Option

For the create_ip flow, use this option to overwrite the IP library directory when you
specify an existing IP library directory.

If you specify an existing directory with the create_ip flow and do not specify the
--overwrite option, you are asked if you want to overwrite the directory.

Syntax --overwrite

3.4.1. The --flow create_ip Flow

The default flow for the IP generation utility (dla_create_ip command) is the
--flow create_ip flow. This flow creates a new IP library directory
(<ip_directory>).

To generate a new IP, provide one of the following options as the location of
architecture description file or files:

• Use the --arch option to specify one or more architecture description files
(.arch).

• Use the --arch_dir option to specify a directory that contains one or more
architecture description files. All architecture description files in the directory are
added to the IP library.

Use the --ip_dir option to specify the output FPGA AI Suite IP library directory. If
unspecified, the default value of <ai_suite_root>/ip is used as the IP library
directory.

3. FPGA AI Suite IP Generation Utility

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

49

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can specify the --overwrite option to overwrite the IP directory and create a
new IP if the IP directory already exists. If the --overwrite option is not set, the
script prompts you if want to overwrite the IP library directory.

Usage Synopsis

dla_create_ip [--flow create_ip] \
 --arch <path to .arch File> [<path to .arch file> ...] \
 [--ip_dir <ip_directory>] \
 [--overwrite]

dla_create_ip [--flow create_ip] \
 --arch_dir=<path to directory with .arch files> \
 [--ip_dir <ip_directory>] \
 [--overwrite]

Sample Call

dla_create_ip --flow create_ip \
 --arch=$COREDLA_ROOT/example_architectures/A10_Generic.arch \
 --overwrite \
 --ip_dir ./ip

Sample Output

===
 Start IP Creation Flow
===
Generate file path ip/intel_ai_ip/Verilog/Generic_A10
===
 IP Creation finished
===

3.4.2. The --flow add_arch Flow

The --flow add_arch flow adds additional generated IP to an existing IP library
directory (previously created with the --flow create_ip flow).

If you add an architecture that already exists in the IP library directory, the
architecture is overwritten with newly generated RTL files.

Usage Synopsis

dla_create_ip --flow add_arch \
 --arch <path to .arch file> \
 [--ip_dir <ip_directory>]

Sample Call

dla_create_ip --flow add_arch \
 --arch $COREDLA_ROOT/example_architectures/A10_Generic.arch \
 --ip_dir ./ip

Sample Output

===
 Adding Generic_A10 to the existing IP
===

3. FPGA AI Suite IP Generation Utility

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

50

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generate file path ./ip/intel_ai_ip/Verilog/Generic_A10

===
 Finished adding Generic_A10
===

3.4.3. The --flow list Flow

Use --flow list flow to list all available architecture in an IP library folder. An
architecture description file (.arch) specifies the target FPGA family device.

If an architecture has been added to the IP library with different FPGA families, those
architecture–FPGA family combinations are displayed as different architectures in the
IP folder.

Usage Synopsis

dla_create_ip --flow list [--ip_dir <ip_directory>]

Sample Call

dla_create_ip --flow list --ip_dir $COREDLA_ROOT/example_ip_cores

Sample Output

===
 Listing available architectures from <ai_suite_rootdir>/ip
===
1x1x16x16_fp11_sb30240_reluk16_poolk16_A10
1x1x16x16_fp11_sb30240_reluk16_A10

3.4.4. The --flow remove_arch Flow

Remove an architecture from the IP library with the --flow remove_arch flow.

If you specify an architecture description file that does not exist in the IP library, the
IP generation utility returns a warning.

Usage Synopsis

dla_create_ip --flow remove_arch \
 --arch <path to .arch file> \
 [--ip_dir <ip_directory>]

Sample Call

dla_create_ip --flow remove_arch \
 --arch A10_Generic.arch \
 --ip_dir ./ip

Sample Output

===
removing Generic_A10 from existing IP
===

3. FPGA AI Suite IP Generation Utility

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

51

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. FPGA AI Suite Ahead-of-Time Splitter Utility
Typically, the FPGA AI Suite runtime OpenVINO plugin provisions the control-and-
status registers (CSR) and memory needed to run inference. If you want to run
inference on the FPGA AI Suite IP without using the OpenVINO Inference Engine, you
can use the ahead-of-time (AOT) splitter utility (dla_aot_splitter) to extract the
raw data that is provisioned in memory.

An example system where you might not want to use the OpenVINO Inference Engine
is when you have an embedded soft processor that manages a FPGA AI Suite IP
instance in the FPGA fabric. The embedded system can provision DDR memory with
the files generate by the AOT splitter and configure the IP to use the provisioned data.

Review the source code provided in dla_aot_splitter_example to see how to use
the files that are generated by the splitter utility in an application that performs
inference without using the OpenVINO Inference Engine.

4.1. Files Generated by the FPGA AI Suite Ahead-of-Time (AOT)
Splitter Utility

The FPGA AI Suite AOT splitter utility converts a model and its associated input or
inputs compiled with the dla_compiler command into a set of files. The model must
target the OpenVINO HETERO:FPGA plugin.

The AOT splitter utility generates the following files:

• input.bin

This file is the layout transformed model input (or inputs) intended for direct
consumption by the FPGA AI Suite IP.

The splitter utility also provides input.mem as a plain-text representation of
input.bin. The plain-text file is suitable to be interpreted as C/C++ constants.

• config.bin

This file is the configuration word data stream that the FPGA AI Suite IP uses to
execute the model.

The splitter utility also provide config.mem as a plain-text representation of
config.bin. The plain-text file is suitable to be interpreted as C/C++ constants.

• filter.bin

This file contains the transformed weights of the model.

The splitter utility also provide filter.mem as a plain-text representation of
filter.bin. The plain-text file is suitable to be interpreted as C/C++ constants.

768974 | 2025.02.24

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• inter_size.mem

This file defines the intermediate buffer size. The intermediate buffer is a
temporary area of memory that must be allocated but not initialized.

• output_size.mem

This file defines the output buffer size. The output buffer is where the FPGA AI
Suite IP writes the results of the output layers of the model.

• arch_build.bin

This file contains the architecture file hash and build version.

The splitter utility also provide arch_build.mem as a plain-text representation of
filter.bin. The plain-text file is suitable to be interpreted as a C/C++ constant.

4.2. Building the FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility

The FPGA AI Suite AOT splitter utility is provided along with the example runtime
component. The utility is built when you build the example runtime.

To build the AOT splitter utility:

1. Build the FPGA AI Suite example runtime with the following commands:

cd $COREDLA_ROOT/runtime
rm -rf build_Release
./build_runtime.sh --target_de10_agilex

When the build finishes, the AOT splitter utility command (dla_aot_splitter)
is in the following directory:

$COREDLA_ROOT/runtime/build_Release/dla_aot_splitter/

The dla_aot_splitter executable generated by building the example runtime
remains the same regardless of any board- or device-specific options that you might
specify. However, the files generated by the utility are specific to the FPGA device
family and FPGA AI Suite architecture that you specify when compiling your inference
model with the dla_compiler command.

4.3. Running the FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility

Before you run the FPGA AI Suite AOT splitter utility, you must have the following files
ready:

• A model compiled by the dla_compiler command. The model must target the
HETERO:FPGA format and the output format must be open_vino_hetero.

For example, the following command compiles a model that targets a board with
an Agilex 7 device to a file called RN50_Performance_b1.bin:

cd $COREDLA_ROOT/demo/models/public/resnet-50-tf/FP32
dla_compiler \
 --march $COREDLA_ROOT/example_architectures/AGX7_Performance.arch \
 --network-file ./resnet-50-tf.xml \
 --foutput-format=open_vino_hetero \

4. FPGA AI Suite Ahead-of-Time Splitter Utility

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

53

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 --o $COREDLA_ROOT/demo/RN50_Performance_b1.bin \
 --branch=1 \
 --fanalyze-performance

• The input or inputs for model inference.

The AOT splitter utility outputs the artifacts to the current working directory. The
command line options must have a compiled model, model inputs, and a path to the
splitter utility plugins XML file.

To run the AOT splitter utility:

1. Change directories to where you want the output files from the AOT splitter utility
to go.

2. Run the splitter utility command as follows:

$COREDLA_ROOT/runtime/build_Release/dla_aot_splitter/dla_aot_splitter \
 -cm <full_path_to_compiled_model_file> \
 -i < XXX-delimited list of inference input files> \
 -plugins <full_path_to_plugins_aot_splitter.xml> \
 [-bgr]

The optional -bgr command option tells the AOT splitter to reverse the R, G, and
B input channels for images before the channels are passed to the model.

For example:

runtime/build_Release/dla_aot_splitter/dla_aot_splitter \
 -cm $COREDLA_ROOT/demo/RN50_Performance_b1.bin \
 -i $COREDLA_ROOT/demo/sample_images/val_00000000.bmp \
 -plugins \
 runtime/dla_aot_splitter/dla_aot_splitter_plugin/plugins_aot_splitter.xml
 -bgr

Running the splitter generates the following files:

• arch_build.mem and arch_build.bin

• config.mem and config.bin

• filter.mem and filter.bin

• input.mem and input.bin

• inter_size.mem

• output_size.mem

For a description of the files, refer to Files Generated by the FPGA AI Suite Ahead-
of-Time (AOT) Splitter Utility on page 52.

4. FPGA AI Suite Ahead-of-Time Splitter Utility

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

54

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.4. FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility Example
Application

To learn more about how to use the files generated by the AOT splitter utility, review
the dla_aot_splitter_example example application. This example application
uses a PCIe interface to interact with either the Terasic DE10-Agilex Development
Board.

Building the AOT Splitter Utility Example Application

You build the AOT splitter utility example application with the build_runtime.sh
script with the -aot_splitter_example option.

The CMake build for the example runs the dla_compiler command on a model and
the dla_aot_splitter command on the compiled model and model input.

The example application is built for a specific target board as follows:

• Terasic DE10-Agilex Development Board

export AOT_SPLITTER_EXAMPLE_MODEL=<path/to/model.xml>
export AOT_SPLITTER_EXAMPLE_INPUT=<path/to/image.bmp>
sh build_runtime.sh -aot_splitter_example -target_de10_agilex

Running the AOT Splitter Utility Example Application

Remember: The AOT splitter utility example application supports only the Terasic DE10-Agilex
Development Board.

After you build the example application, you can review its source code to learn how
to apply the files generated by the splitter to your system.

Run the example application with the following commands:

cd $COREDLA_ROOT/runtime/build_Release/dla_aot_splitter/
./dla_aot_splitter_example/dla_aot_splitter_example

4. FPGA AI Suite Ahead-of-Time Splitter Utility

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

55

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. CSR Map and Descriptor Queue
The CSR interface uses a 32-bit data path in which all accesses are aligned to 32 bits;
however the address is a byte address. The size of the CSR address space is 2048
bytes (11 bit addressable). The regions within the CSR address space are listed in the
table that follows.

Table 10. CSR Address Space Regions

Base Address Feature

0x000 Discovery ROM (512 word)

0x200 Interrupt Control

0x210 DMA Descriptor Queue

0x220 DMA Control Registers

0x240 Performance Registers

0x250 Debug Network Registers

0x260 DMA License Register on page 60

0x264 DMA Transaction Counters on page 60

Register and Bit Attribute Definitions

The following notation describes the CSR registers.

Table 11. Register and Bit Attribute Definitions

Attribute Expansion Description

RW Read/Write This bit can be read or written by software.

RO Read Only The bit is set by hardware only. Software can only read this bit. Writes have no effect.

RW1C Read/Write 1to Clear Software can read or clear this bit. Software must write 1 to clear this bit. Writing zero
to an RW1C bit has no effect.
A multibit RW1C field can exist. In that case, all bits in the field are cleared if a 1 is
written to any of the bits.

RsvdZ Reserved and zero Reserved for future RW1C implementations.
When you write to a register with RsvdZ bits, only write zeros to these bits.

5.1. Discovery ROM

The discovery ROM stores metadata. The metadata includes a hash for the
architecture that the IP corresponds to and the FPGA AI Suite version that was used to
create the IP.

768974 | 2025.02.24

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The host runtime can use this information to determine whether the incoming
inference job can be run on the IP instances. For example, if the architectures do not
match each other, then inference is not possible.

The layout of the discovery ROM is as follows:

Table 12. Discovery ROM Layout

Base Byte Address Length (in bytes) Feature

0x000 16 Hash of the Architecture Description File (.arch)

0x010 32 Human-readable FPGA AI Suite version string

5.2. Interrupt Control

The interrupt control feature registers are as follows:

Table 13. Interrupt Control Feature Registers

Register Offset Attribute Description

ICR 0x000 RW1C DMA Interrupt control register

IMR 0x004 RW DMA Interrupt mask register

The DMA optionally generates level sensitive interrupt signals in response to various
events.

The hardware sets the corresponding bit within the ICR register whenever such an
event occurs.

An interrupt is generated upon a 0-to-1 transition of a bit within ICR only if the
corresponding bit in the IMR is set to one. A 0-to-1 transition of a bit within the IMR
also generates an interrupt if the corresponding bit within the ICR is set to 1.

Table 14. Interrupt Control Register (ICR) Fields

Field Bit Description

Reserved 31:2 RsvdZ (Reserved; software must write 0)

Inference_complete 1 Indicates that an inference request has completed

Error 0 Indicates that an error condition has been triggered

Table 15. Interrupt Mask Register (IMR) Fields

Field Bit Description

Reserved 31:2 RsvdZ (Reserved; software must write 0)

Inference_complete_mask 1 Set to one to enable interrupt generation on inference completion

Error_mask 0 Set to one to enable interrupt generation on error condition

5.3. DMA Descriptor Queue

The DMA contains a single descriptor FIFO for enqueuing inference requests.
Descriptors potentially require multiple register writes and are added to the queue
upon writing to the desc_input_output_base_addr register.

5. CSR Map and Descriptor Queue

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

57

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The desc_cfg_filter_base_addr and desc_cfg_num_words are registers that
hold their value.

If you already enqueued a DMA descriptor and want to enqueue another descriptor
with the same values for the desc_cfg_filter_base_addr and
desc_cfg_num_words registers, then write to the
desc_input_output_base_addr register.

If you want to change the desc_cfg_filter_base_addr and
desc_cfg_num_words registers for the next descriptor, then you must set new
values before writing to the desc_input_output_base_addr register.

Table 16. DMA Descriptor Queue Registers

Register Offset Attribute Description

desc_cfg_filter_b
ase_addr

0x000 RW Base address pointer for the configuration buffer and for the filter buffer.
The filters are located at desc_cfg_filter_base_addr +
desc_cfg_num_words, which is encoded in the address provided to the
filter reader as configuration data.
Must be aligned to a multiple of the DDR word size.

desc_cfg_num_word
s - 2

0x004 RW Length of the configuration buffer - 2, in config words (64 bits – 32 for
instruction, 32 for data)

desc_input_output
_base_addr

0x008 RW Base address pointer for the input feature data to be used for inference,
and also the base address to place the output inference results into.
Must be aligned to a multiple of the DDR word size.
Writing to this register enqueues a descriptor into the internal DMA
descriptor queue.

desc_diagnostics 0x00C RO This register is useful for debugging. Production software should not
need to read from this.
Bit 0: Asserts if the descriptor queue overflows; this is a sticky bit which
only clears after reset.
Bit 1: Descriptor queue is full or almost full.
Bit 2: Asserts if the inference limit for an unlicensed IP is reached. When
asserted, inference requests are rejected.
All other bits are reserved.

5.4. DMA Control Registers

Table 17. DMA Control Registers

Register Offset Attribute Description

Intermediate_ddr_
base_address

0x000 RW Base address for the DDR intermediate data. This is a shared address
across all graphs. Only required to be set once upon startup. Must be
aligned to a multiple of the DDR word size.

Inference_complet
ion_count

0x004 RO Number of inference request completions by the FPGA AI Suite IP.

IP_reset 0x008 RW Write any non-zero value to this address to trigger a reset of the FPGA
AI Suite IP.
The value is automatically cleared upon reset.
Reading from this register always returns 0.

Activate_streamin
g

0x00C RW When streaming is enabled in the architecture, writing "1" to this
register makes the FPGA AI Suite IP begin queuing descriptors and start
listening for streaming inputs.

continued...

5. CSR Map and Descriptor Queue

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

58

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Offset Attribute Description

Writing "0" stops queuing descriptors and turns off the input streaming
interface.

5.5. Performance Registers

Hardware counters are provided to measure how many clock cycles that the IP is
active. A job is considered active after the first word of its descriptor is read from the
descriptor queue. A job is considered finished just before the done interrupt is raised
and the completion count is updated.

The IP and supporting host form an elastic pipeline in which multiple jobs can be in
flight. The IP tracks both the overall latency (for example, the length of time required
to process 100 jobs) as well as the average latency for each of those jobs. The
hardware tracks the total latency of every job but knowing the total number of jobs
software can compute the average.

64-bit counters mitigate against overflow. There is no synchronization between
reading the lower or upper 32 bits of a counter, therefore the software should not read
the counters while the IP is active.

Table 18. Performance Registers

Register Offset Attribute Description

Total clocks active
(lower 32 bits)

0x000 RO On each clock cycle, if any IP job is active, increment the counter by
1.

Total clocks active
(upper 32 bits)

0x004 RO Same as above.

Total clocks for all jobs
(lower 32 bits)

0x008 RO On each clock cycle, if there are N IP jobs active, increment the
counter by N.

Total clocks for all jobs
(upper 32 bits)

0x00C RO Same as above.

5.6. Debug Network Registers

The debug network has the following registers available from the CSR:

Table 19. Debug Network Registers

Register Offset Attribute Description

DLA_DMA_CSR_OFFSET_DEBUG_NETWORK_ADDR 0x000 RO Address that the debug network uses
to issue a read request.

DLA_DMA_CSR_OFFSET_DEBUG_NETWORK_VALID 0x004 RO Indicates that a read response has
been received from the debug network.

DLA_DMA_CSR_OFFSET_DEBUG_NETWORK_DATA 0x008 RO Data from debug network.

5. CSR Map and Descriptor Queue

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

59

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.7. DMA License Register

Table 20. DMA License Register

Register Offset Attribute Description

license_flag 0x000 RO Indicates whether the IP is licensed:
• 0: unlicensed
• 1: licensed

5.8. DMA Transaction Counters

Hardware counters are provided to measure the number of data words accessed by
the DMA from the external DDR memory.

The counter values are separated into input feature reads, input weights and biases
reads, and output feature writes. The width of each memory word in bytes matches
the dma/ddr_data_bytes value in the architecture description file.

Table 21. DMA Transaction Counter Registers

Register Offset Attribute Description

Total number of input feature words
read by the FPGA AI Suite IP
(lower 32 bits)

0x000 RO This counter is incremented by 1 for every input
feature word transferred from the external memory
to the IP DMA on the AXI4 read bus.

Total number of input feature words
read by the FPGA AI Suite IP
(upper 32 bits)

0x004 RO Same as above.

Total number of input filter and biases
words read by the FPGA AI Suite IP
(lower 32 bits)

0x008 RO This counter is incremented by 1 for every filter-bias
word transferred from the external memory to the IP
DMA on the AXI4 read bus.

Total number of input filter and biases
words read by the FPGA AI Suite IP
(upper 32 bits)

0x00C RO Same as above.

Total number of output feature words
written by the FPGA AI Suite IP
(lower 32 bits)

0x010 RO This counter is incremented by 1 for every feature
word written to the external memory by the IP DMA
on the AXI4 write bus.

Total number of output feature words
written by the FPGA AI Suite IP
(upper 32 bits)

0x00C RO Same as above.

5. CSR Map and Descriptor Queue

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

60

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. FPGA AI Suite IP Reference Manual Archives
For the latest and previous versions of this reference manual, refer to FPGA AI Suite
IP Reference Manual. If an FPGA AI Suite software version is not listed, the reference
manual for the previous software version applies.

768974 | 2025.02.24

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/768974.html
https://www.intel.com/content/www/us/en/docs/programmable/768974.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

B. FPGA AI Suite IP Reference Manual Document Revision
History

Document Version FPGA AI
SuiteVersion

Changes

2025.02.24 2024.3 • Fixed typos in “Running the FPGA AI Suite Ahead-of-Time (AOT) Splitter
Utility” and “FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility
Example Application”.

2024.12.16 2024.3 • For Parameter: arch_precision in “Parameter Group: Global
Parameters”, corrected the number of operations per DSP for Agilex 7
devices with FP13AGX precision

• Fixed minor errors and typos.

2024.11.25 2024.3 • Updated “Model Performance” with Version 2024.3 values.
• Many of the layout_transform_params parameters have changed.

In most cases, the old parameters represented an exact value to apply
while the new parameters represent the maximum value to apply.

Old Parameter New Parmater

channels max_channels

feature_height max_feature_height

feature_width max_feature_width

feature_depth max_feature_depth

stride_height max_stride_height

stride_width max_stride_width

stride_depth max_stride_depth

pad_top max_pad_top

pad_left max_pad_left

pad_depth max_pad_depth

• Added the following new layout_transform_params parameters:
— max_filter_width
— max_filter_height
— max_filter_depth

• Removed the following layout_transform_params parameters:
— output_channels
— output_height
— output_width
— output_depth

continued...

768974 | 2025.02.24

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Document Version FPGA AI
SuiteVersion

Changes

2024.09.06 2024.2 • Replaced occurrences of “memoryless” with “DDR-free”.
• Renamed “FPGA AI Suite Software Reference Model” to “Software

Emulation of the FPGA AI Suite IP”.
• Replaced occurrences of “software reference model” with “software

emulation model”.

2024.07.31 2024.2 • Updated “Model Performance” with Version 2024.2 values
• Added “FPGA AI Suite Software Reference Model”
• Updated “FPGA AI Suite Layer/Primitive Ranges” as follows:

— Added Tanh
— Revised Max Pool window size range
— Revised pool max_windows_height/width valid range

• Updated “FPGA AI Suite IP Block Configuration” as follows:
— Added enable_parameter_rom
— Added enable_tanh

• Updated “Parameter Group: Global Parameters” as follows:
— Revised description of arch_precision parameter
— Added section Parameters: output_image_height_max,

output_image_width_max, output_channels_max
• Updated “Parameter Group: activation” to add Parameter:

activation/enable_tanh

• Added “Parameter Group: input_stream_interface”
• Added “Parameter Group: ouput_stream_interface”
• Added “Feature Input and Output Streaming”
• Added “Input Streaming”
• Added “Output Streaming”
• Added “Memoryless Operation”
• Updated"DMA Control Registers" as follows:

— Added IP_reset register
— Added Activate_streaming register

2024.03.29 2024.1 • Updated “Model Performance” with Version 2024.1 values
• Rebranded from “Intel FPGA AI Suite” to “FPGA AI Suite”.
• Added updates to support new dedicated layout transform module.
• Updated “FPGA AI Suite Layer / Primitive Ranges” as follows:

— Updated description of Softmax.
— Added Sigmoid.
— Added Swish.

• Updated “FPGA AI Suite IP Block Configuration” as follows:
— Expanded the ranges of the c_vector, pool k_vector, and

activation k_vector parameters.
— Added the enable_sigmoid parameter.
— Expanded the range of the arch_precision parameter.

• Updated “Parameter Group: Global Parameters” with additional
information about Agilex 5 device family support.

• Added activation/enable_sigmoid to “Parameter Group:
activation”.

• Added softmax/max_num_channels parameter description to
“Module: softmax”.

2023.12.01 2023.3 • Updated “Model Performance” with Version 2023.3 values
• Updated arch_precision parameter description in “Parameter group:

Global Parameters”.
• Added "Performance Registers".
• Added "Debug Network Registers".

continued...

B. FPGA AI Suite IP Reference Manual Document Revision History

768974 | 2025.02.24

Send Feedback FPGA AI Suite: IP Reference Manual

63

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version FPGA AI
SuiteVersion

Changes

• Added "PE scale precision" to “FPGA AI Suite IP Block Configuration”.
• Updated “Parameter Group: Global Parameters” for Agilex 5 support.
• Updated “Parameter Group: pe_array” for Agilex 5 support.

2023.09.08 2023.2.1 • Added Multilayer Perceptrons (MLPs) to supported models.

2023.07.03 2023.2 • Updated “Model Performance” with Version 2023.2 values and the
enabling of non-default Quartus Prime options (register merging).

• Added additional information about modifying the internal precision of a
graph for performance improvement in “Architecture Description File
Format for Instance Parameterization”.

2023.04.05 2023.1 • Added ChannelToSpace, DepthToSpace, and PixelShuffle to “FPGA AI
Suite Layer / Primitive Ranges”.

• Added enable_debug to “FPGA AI Suite IP Block Configuration and
Interfaces”.

• Added description of enable_round_clamp activation parameter where
needed.

• Added “Input Transform Mapping”.
• Added output transform mapping information to “Output Tensor In-

Memory Format”.
• Renamed thedlac command. The FPGA AI Suite compiler command is

now dla_compiler.
• Updated “Model Performance” with Version 2023.1 values.
• Updated the Intel Agilex product family name to "Intel Agilex® 7."

2023.02.03 2022.2 • Correct the description of the -bgr option of the AOT splitter utility.

2022.12.23 2022.2 • Added SqueezeNet to the list of supported models.
• Added the family architecture description file global parameter.
• Removed the --family IP generation utility command option.

2022.04.27 2022.1 • Removed references to HLS generation.
• Updated descriptions of parameters in the .arch file.
• Added a Model Performance section.

2021.09.10 2021.2 • Added information for Intel Agilexdevice support.
• Added information for MobileNet v3 support.

2021.04.30 2021.1 • Various corrections and updates.

2020.12.04 2020.2 • Renamed Intel FPGA AI Suite IP Core to Intel FPGA AI Suite IP".

2020.10.30 2020.1 • Initial release.

B. FPGA AI Suite IP Reference Manual Document Revision History

768974 | 2025.02.24

FPGA AI Suite: IP Reference Manual Send Feedback

64

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20FPGA%20AI%20Suite%20IP%20Reference%20Manual%20(768974%202025.02.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	FPGA AI Suite: IP Reference Manual
	Contents
	1. FPGA AI Suite IP Reference Manual
	2. About the FPGA AI Suite IP
	2.1. Supported Models
	2.1.1. MobileNet V2 differences between Caffe and TensorFlow models

	2.2. Model Performance
	2.2.1. Throughput on the MobileNetV1 model (and other very fast models)

	2.3. Software Emulation of the FPGA AI Suite IP
	2.4. FPGA AI Suite Layer / Primitive Ranges
	2.5. FPGA AI Suite IP Block Configuration
	2.5.1. Architecture Description File Format for Instance Parameterization
	2.5.2. Architecture Description File Parameters
	2.5.2.1. Parameter Group: Global Parameters
	2.5.2.2. Parameter Group: activation
	2.5.2.3. Parameter Group: pe_array
	2.5.2.4. Parameter Group: pool
	2.5.2.5. Parameter Group: depthwise
	2.5.2.6. Module: softmax
	2.5.2.7. Parameter Group: dma
	2.5.2.8. Parameter Group: xbar
	2.5.2.9. Parameter Group: filter_scratchpad
	2.5.2.10. Parameter Group: input_stream_interface
	2.5.2.11. Parameter Group: output_stream_interface
	2.5.2.12. Parameter Group: config_network
	2.5.2.13. Parameter Group: layout_transform_params

	2.6. IP Block Interfaces
	2.6.1. Clock and Reset
	2.6.2. AXI Interfaces
	2.6.3. AXI Interface Clock and Reset
	2.6.4. Input Feature Tensor In-Memory Format
	2.6.4.1. Multiple Input Graphs
	2.6.4.2. Input Folding
	2.6.4.3. Input Scale and Shift
	2.6.4.4. Input Transform Mapping
	2.6.4.5. Input Layout Transform Hardware

	2.6.5. Output Tensor In-Memory Format

	2.7. Feature Input and Output Streaming
	2.7.1. Input Streaming
	2.7.2. Output Streaming

	2.8. DDR-Free Operation

	3. FPGA AI Suite IP Generation Utility
	3.1. IP Generation Utility Execution Flows
	3.2. IP Generation Utility Inputs
	3.3. IP Generation Utility Outputs
	3.4. IP Generation Utility Command Line Options
	3.4.1. The --flow create_ip Flow
	3.4.2. The --flow add_arch Flow
	3.4.3. The --flow list Flow
	3.4.4. The --flow remove_arch Flow

	4. FPGA AI Suite Ahead-of-Time Splitter Utility
	4.1. Files Generated by the FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility
	4.2. Building the FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility
	4.3. Running the FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility
	4.4. FPGA AI Suite Ahead-of-Time (AOT) Splitter Utility Example Application

	5. CSR Map and Descriptor Queue
	5.1. Discovery ROM
	5.2. Interrupt Control
	5.3. DMA Descriptor Queue
	5.4. DMA Control Registers
	5.5. Performance Registers
	5.6. Debug Network Registers
	5.7. DMA License Register
	5.8. DMA Transaction Counters

	A. FPGA AI Suite IP Reference Manual Archives
	B. FPGA AI Suite IP Reference Manual Document Revision History

