

# PAGE EEPROM FAMILY

## From 8- to 32-Mbit EEPROMs



### Page EEPROM combines robust data logging and firmware storage with best-in-class ultralow power performance.

The Page EEPROM devices are high-density, page-erasable SPI EEPROMs with **ultralow power performance**, ideal for battery-powered devices.

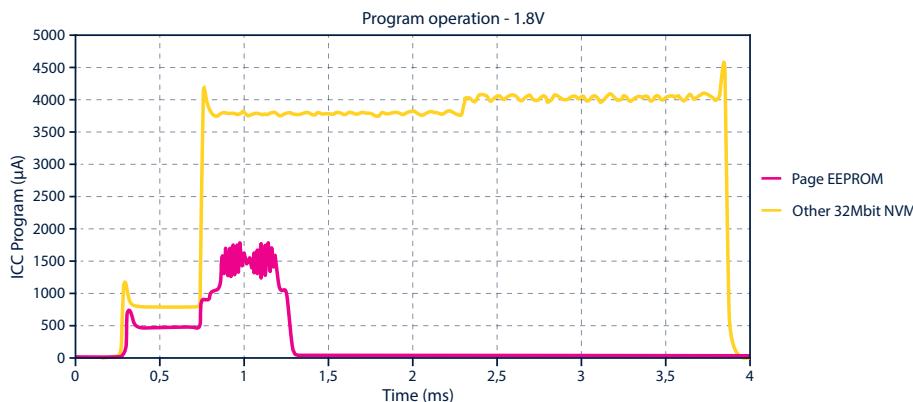
Page EEPROM combines EEPROM and Serial flash commands in one NVM for **more flexibility**. Its high endurance and error correction code (ECC) offer **excellent reliability**.

Page EEPROM addresses systems that typically require an external memory for **firmware management and data logging**.

#### KEY FEATURES

- 1.6 to 3.6 V
- -40 to +105 °C temperature
- 80 MHz Quad output SPI
- Write byte granularity
- Page program up to 512 bytes
- Page/sector/block erase
- 500k write cycle endurance
- Current peak below 3 mA
- Deep power down below 1µA
- Error Correction Code
- 100-year data retention

#### BENEFITS


- Power-saving for intensive use
- Lower downtime during FOTA
- Easy data logging

- Code integrity & high reliability
- Write byte flexibility

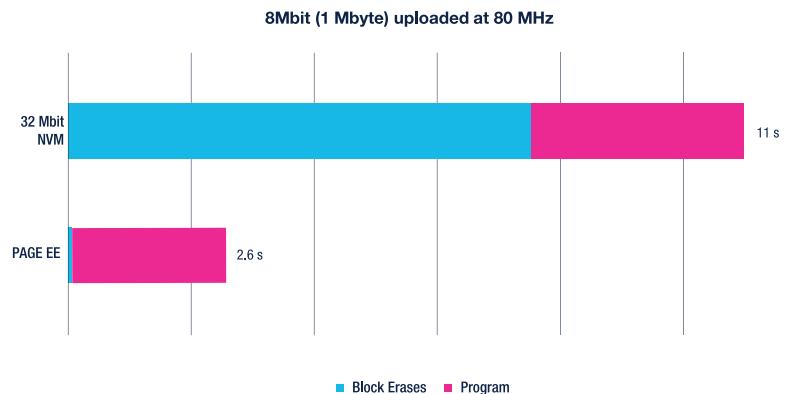
#### KEY APPLICATIONS

- Wearables
  - Smart watches
  - Fitness trackers
- Medical and Healthcare
  - Hearing aids
  - Glucose meters
  - Blood pressure monitors
  - Implantable devices
- Asset tracking
  - Goods guarantee
  - Real-time monitoring

## Ultralow power performance for size-constrained applications



Battery-powered modules, such as medical devices or sensor modules, often require compact batteries.


Page EEPROM offers a current peak control **below 3mA** for any SPI operation, as illustrated here on the left for the program operation.

Page EEPROM gives you more design freedom to **choose the right battery** for your application.

## Reduced downtime during FOTA

High-density NVM devices are used in systems to store the firmware package and its back-up. The memory performance during firmware updates over the air (FOTA) plays a significant role in reducing application downtime.

Thanks to fast block erase and program operations, the Page EEPROM can **reduce device downtime by 4** compared to standard Serial Flash devices.



## Ultra fast operations

| Operation                              | Time                  |
|----------------------------------------|-----------------------|
| Page Program 512 bytes                 | 1.2 ms                |
| Page Write 512 bytes                   | 2 ms                  |
| Page/Sector/Block/Chip (32 Mbit) Erase | 1.1 / 1.1 / 4 / 15 ms |
| Wake up time                           | 30 µs                 |

## Page EEPROM portfolio

| Part number | Memory size | Serial Interface | Supply (V) | Temperature range (°C)                          | Packages         |
|-------------|-------------|------------------|------------|-------------------------------------------------|------------------|
| M95P32-I/E  | 32 Mbit     | SPI              | 1.6 to 3.6 | -40 to 85 (industrial)<br>-40 to 105 (extended) | SO-8, DFN, WLCSP |
| M95P16-I/E  | 16 Mbit     |                  |            |                                                 |                  |
| M95P08-I/E  | 8 Mbit      |                  |            |                                                 |                  |



## Try out the Page EEPROM

This expansion board is designed for the M95P32 series SPI page EEPROM for data reading and writing.

Compatible with ZIO and Arduino UNO connectors.

## FIND OUT MORE



© STMicroelectronics - June 2023 - Printed in the United Kingdom - All rights reserved  
ST and the ST logo are registered and/or unregistered trademarks of STMicroelectronics International NV or its affiliates in the EU and/or elsewhere. In particular, ST and the ST logo are Registered in the US Patent and Trademark Office.

For additional information about ST trademarks, please refer to [www.st.com/trademarks](http://www.st.com/trademarks).

All other product or service names are the property of their respective owners.

