

Evaluates the ADHV4710, 110V, High Voltage, 1A Current, Operational Amplifier

## Features and Benefits

- Enables easy evaluation of the ADHV4710
- Robust thermal management
- Galvanic isolation for LVDS interface
- Provision for user-defined circuit configurations
- Edge-mounted connectors and test point provisions

## Applications

- High voltage power amplifier (PA)
- High voltage SMU/VI source
- High voltage arbitrary waveform generator (AWG)
- Piezoelectric transducer drive
- Programmable power supplies

## Evaluation Kit Contents

- EVAL-ADHV4710SDZ evaluation board
- Aluminium heat sink
- Tubeaxial fan
- Mechanical components - screws and standoffs

## Hardware and Software Required

- SDP-K1 controller board, purchase separately
- ACE software
- EVAL-ADHV4710SDZ ACE plugin
- GC Electronics 10-8109 heat sink Z9 compound or equivalent
- 6 to 20 in-oz torque screwdriver (Tohnichi RTD20Z or equivalent)
- Kapton tape (Bertech KPT-1/2 or equivalent)

## General Description

This user guide describes the EVAL-ADHV4710SDZ board, which evaluates the ADHV4710 offered in a 12mm × 12mm, 80-lead thin quad flat package (TQFP) with an exposed pad at the top for a mountable heat sink. The evaluation board provides a platform for quick and easy evaluation of the ADHV4710 for various user-defined configurations.

The ADHV4710 is ideally suited for demanding applications such as piezo drivers, LCD/OLED panel formation, and programmable power supplies.

The ADHV4710 data sheet provides the full specifications of the ADHV4710 and details on the device's operation. Consult it in conjunction with the user guide.

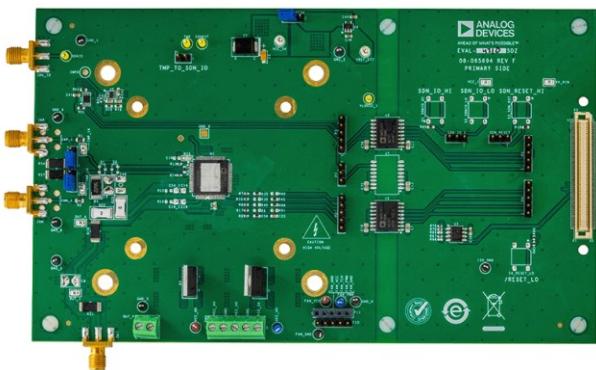



Figure 1. Front of ADHV4710 Evaluation Board

**Warning:** This high-voltage evaluation board contains exposed metal carrying lethal voltages when under power. Take all necessary steps to protect users during operation. For full precautions when using this high voltage evaluation board, see the [High Voltage Evaluation Board](#) section.

---

**TABLE OF CONTENTS**

---

|                                                       |    |
|-------------------------------------------------------|----|
| Features and Benefits .....                           | 1  |
| Applications .....                                    | 1  |
| Evaluation Kit Contents .....                         | 1  |
| Hardware and Software Required .....                  | 1  |
| General Description .....                             | 1  |
| Initial Setup .....                                   | 3  |
| Evaluation Board Software Installation .....          | 4  |
| Updating Installed Plugins .....                      | 4  |
| Configuring Hardware .....                            | 5  |
| Configuring Software .....                            | 10 |
| Sleep/Wake .....                                      | 10 |
| Shutdown Indicator .....                              | 10 |
| Shutdown Reset .....                                  | 10 |
| Protection Panel .....                                | 10 |
| Using the Top Bar .....                               | 11 |
| Using Macro .....                                     | 11 |
| SDP-K1 Recovery Tool .....                            | 12 |
| Quick Start .....                                     | 13 |
| Evaluation Board Hardware Features .....              | 15 |
| A. SPI Connectors .....                               | 15 |
| B. Compensation (COMP_H AND COMP_L) .....             | 15 |
| C. Thermal Monitor (TMP) and Thermal Management ..... | 15 |
| D. VLOGIC_OUT .....                                   | 15 |
| E. Galvanic Isolation .....                           | 15 |
| Troubleshooting Errors .....                          | 16 |
| Application-Specific Information .....                | 16 |
| Ordering Information .....                            | 17 |
| ADHV4710 Evaluation Board Schematics .....            | 22 |
| High Voltage Evaluation Board .....                   | 25 |
| Warnings, Restrictions, and Disclaimers .....         | 25 |
| Additional Resources .....                            | 25 |
| Revision History .....                                | 26 |

## Initial Setup

The complete ADHV4710 evaluation system includes the ADHV4710 evaluation board, SDP controller board, and the ADHV4710 ACE plugin. Plugins are product-specific applications downloaded and executed in the analysis/control/evaluation (ACE) software environment. The ADHV4710 evaluation board communicates with Microsoft Windows 10 operating system (OS) and ACE software through the SDP controller board. The ADHV4710 evaluation board and SDP controller board are ordered separately. The SDP boards that can interface with the ADHV4710 evaluation board: SDP-K1.

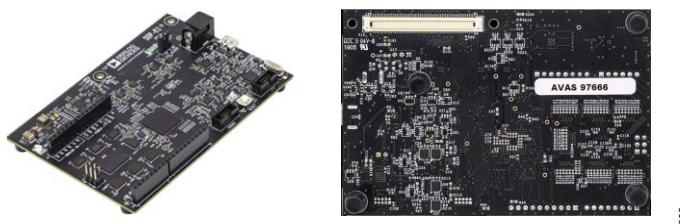



Figure 2. SDP-K1 Controller Board

The SDP-K1 controller board has the SDP 120-pin connectors and enables the configuration of the ADHV4710 for overcurrent, overvoltage, and overtemperature protection using the SPI communication protocol. However, if the user does not intend to use the SPI configuration of the device, the protection features of the device are disabled. In this case, connect the SDN\_IO to TMP using P1 so that the part turns off when the junction temperature exceeds 150°C. See [Evaluation Board Hardware Features](#) for more information on shutdown.

See the [Additional Resources](#) section for more information on the SDP controller boards. Refer to the ADHV4710 data sheet for more information on configuring the SPI communication protocol.

## Evaluation Board Software Installation

1. Download the ACE installer software from [www.analog.com/ace](http://www.analog.com/ace).
2. Install the ACE application and any other recommendations like SDP drivers.
3. Note: This might require a system reboot at the end. Ensure any open files are saved and any other running applications beforehand are closed.
4. Open the ACE platform. A successfully installed ACE application displays a list of preinstalled plugins of released ADI products.
5. Note: Reinstall the software if existing plugins are not shown.
6. Install **Board.ADHV471X** using the **Plugin Manager** in the ACE toolbar. Locate or search in the **Available Packages** section. Then, click **Install Selected**. On the **Start** tab, the package is now available on the list of installed ACE plugins.

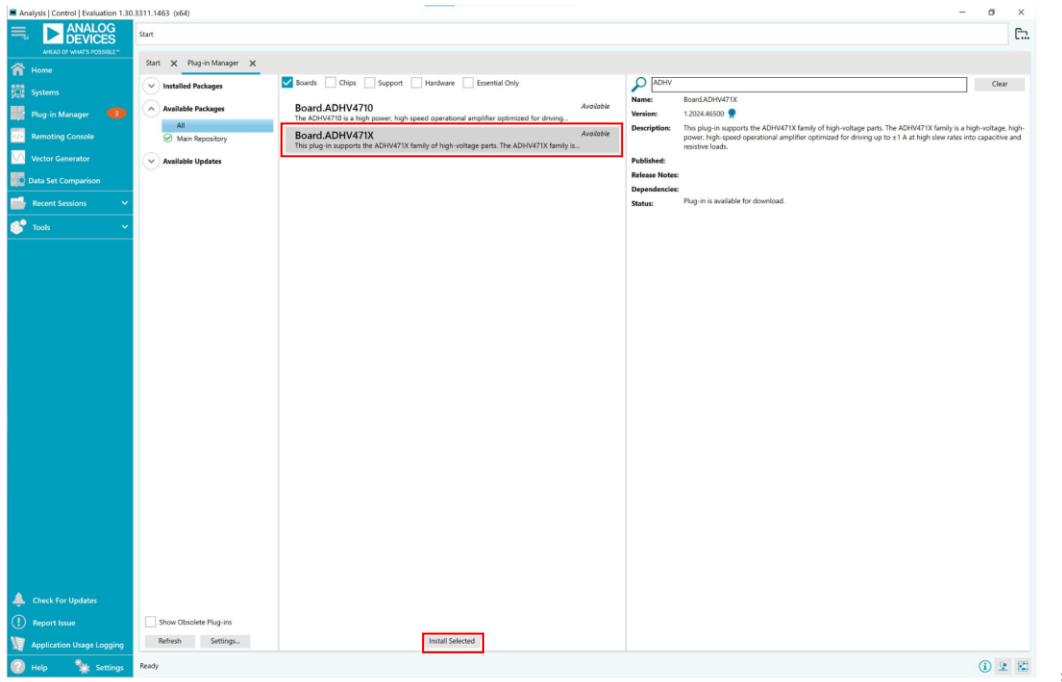
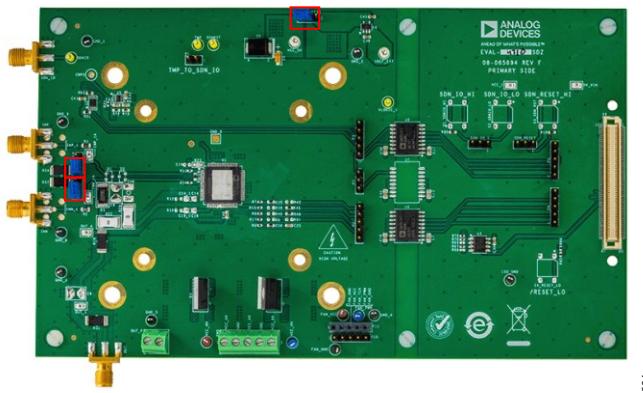



Figure 3. Plugin Available Through ACE Plugin Manager

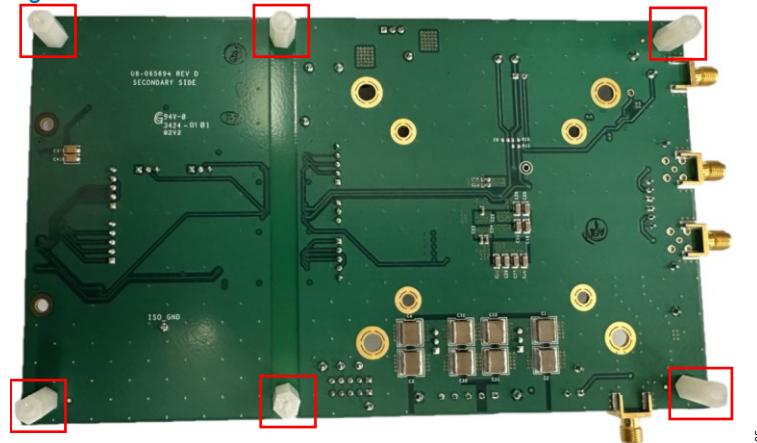
## Updating Installed Plugins

If an earlier version of the ADHV4710 plugin is installed already, update to the newest version by following these steps.


1. Go to **Plugin Manager** and select **Available Updates**.
2. Select **Board.ADHV471X** and click **Update Selected**.

## Configuring Hardware

To configure and test the ADHV4710 evaluation board, the following equipment is recommended:


- N6705B power supply or equivalent
- 34401A DMM or equivalent
- 33250A function generator or equivalent
- Oscilloscope, Tektronix DPO 3014 or equivalent
- GC Electronics 10-8109 heat sink Z9 compound or equivalent
- System development platform (EVAL-SDP-CK1Z)
- 6-20 in-oz torque screwdriver (Tohnichi RTD20Z or equivalent)
- Kapton tape (Bertech KPT-1/2 or equivalent)

1. Confirm the jumpers are in the factory default positions, as shown in [Figure 4](#).
  - a. Connect VCC\_5V to VREF\_5V through the EXT\_VREF5V three-pin header.
  - b. Connect INP to ground with a 50Ω termination through shunting pins 1 and 2 on P12 three-pin header.
  - c. Connect INN to ground through shunting pins 2 and 3 on P13 three-pin header.



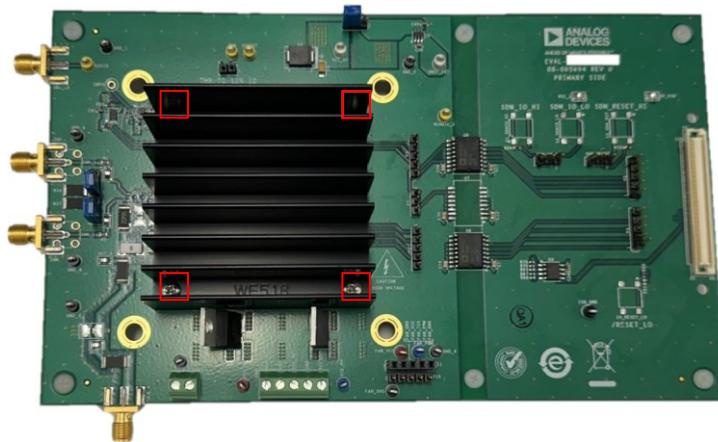
*Figure 4. ADHV4710 Evaluation Board Factory Default Jumper Position*

2. Secure the six plastic standoffs (PN 1902C) to the back of the board with six plastic screws (PN NY PMS 440 0025 PH), as seen in [Figure 5](#).



*Figure 5. Back of Evaluation Board with Plastic Standoffs*

3. Spread a thin layer of low-impedance thermal compound about one mil thick on top of the ADHV4710. Apply Kapton tape to the edges of the heat sink, as seen in [Figure 6](#), to not touch the ADHV4710. This is to prevent the heat sink from contacting


some surface mount components, located under the heat sink from becoming shorted, that creates unwanted connections. The heat sink is black anodized. However, black anodize can scratch easily, exposing aluminum as a good conductor.



006

Figure 6. Back of Heat Sink with Kapton Tape

4. Mount the heat sink and secure four screws (PN 9902) onto the board with four hex nuts (PN HNSS440), as shown in [Figure 7](#). Use a torque screwdriver to alternatively tighten the four screws, alternating diagonally like tightening lug nuts on a car tire, to 6 in-oz on each.



007

Figure 7. ADHV4710 Evaluation Board with Heat Sink

5. Secure the four fan standoffs (PN 2114-440-AL) onto the board with four screws (PN 9900) from the bottom of the board, as seen in [Figure 8](#).

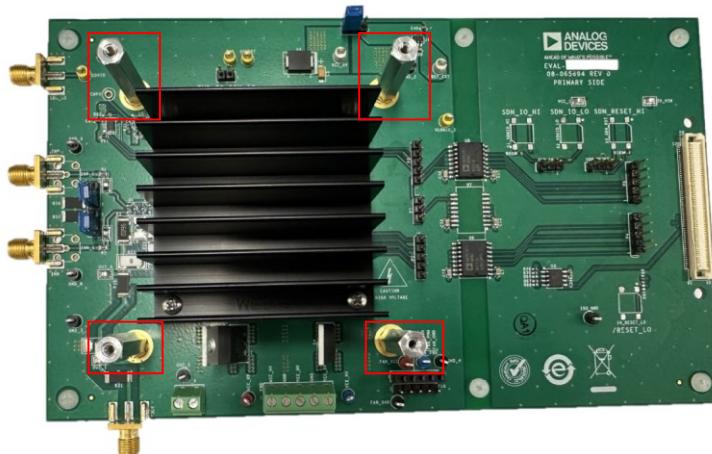
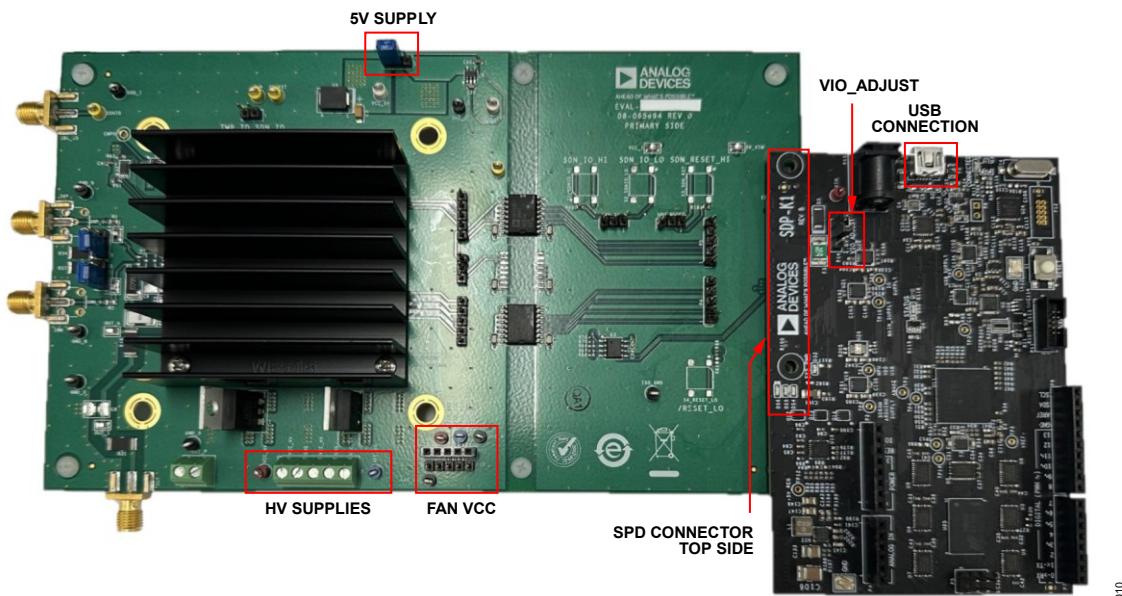


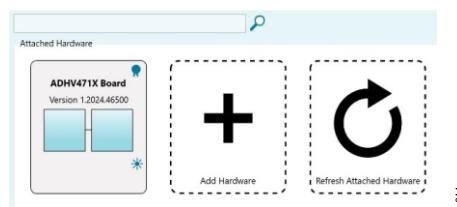

Figure 8. ADHV4710 Evaluation Board with Fan Standoffs Attached

6. Use four screws (PN 010440CD125) to secure the fan onto the standoffs. Then, attach the black wire of the fan to FAN\_GND and attach the red wire of the fan to FAN\_VCC of the female connector P11. See [Figure 9](#).




Figure 9. ADHV4710 Evaluation Board with Fan Attached

7. The board's default configuration is a noninverting op-amp with a gain of 57. The noninverting input (INP) is terminated with a  $50\Omega$  resistor due to the default position of jumper P12, where pins 1 and 2 are shorted. Jumper P13, in its default position (pins 2 and 3 shorted), provides a ground path for the INN\_SMAB net.
8. A load capacitor can be installed on the board at C8, or an off-board load using the OUT\_P test point. **Use caution when driving a load that the ADHV4710 does not exceed its maximum allowable temperature of  $150^\circ\text{C}$ .**
9. Connect the high-voltage supply through VEE\_HV, VCC\_HV, and GND ports. Make sure that the GND port is connected first before VEE\_HV and VCC\_HV. The recommended high voltage supply is  $\pm 50\text{V}$  for the ADHV4710. If available, set the current limit of the high-voltage supply to 1A. Confirm power connections are securely connected before turning on the power supplies to avoid damaging the board.
10. Connect a 5V supply at VCC\_5V test point. Make sure that the GND is connected first.
11. Connect a 12V supply to FAN\_VCC and set the 12V supply to have a current limit of 100mA.
12. Turn on the supplies at the same time. If supplies cannot be turned on simultaneously, turn on the HV supplies first, then the 5V supply.
13. Check the supply currents. Under normal operation, the VEE\_HV and VCC\_HV current should be  $\sim 8\text{mA}$  to  $+14\text{mA}$ . The 5V digital supply current should be  $\sim 10\text{mA}$  to  $+20\text{mA}$ .


**Table 1. Power Supply Limits**

| Supply | Expected Value |
|--------|----------------|
| VCC_HV | 8mA to 14mA    |
| VEE_HV | -8mA to -14mA  |
| VCC_5V | 10mA to 20mA   |
| TMP    | 1.7V to 2.2V   |

14. Turn off the supplies.
15. Mate the SDP-K1 board to EVAL-ADHV4710SDZ using P6 and the 120-pin connector at the primary side of the evaluation board. For a more secure connection, screw the boards together through the connector's mounting holes. See [Figure 10](#).

*Figure 10. ADHV4710 and SDP Board Connected to P6 on the Secondary Side*

16. Connect the SDP-K1 board to the host computer with the USB cable. The SDP-K1 is powered through the USB cable.
17. Change the digital logic level of the SDP-K1 from 1.8V to 3.3V by moving the shunt located at VIO\_Adjust, as shown in [Figure 10](#).
18. Turn on the supplies and run the ACE application. The ADHV4710 board plugin appears in the attached hardware section of the **Start** tab, as shown in [Figure 11](#). If the board does not appear under the attached hardware section, see item 1 in the [Troubleshooting Errors](#) section.

*Figure 11. ADHV4710 Plugin Start Tab*

19. Double-click the plugin to open the board view. A successful hardware connection is indicated by a green indicator in the **ADHV471X Board**.

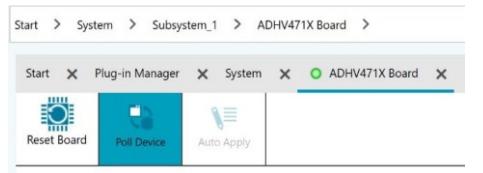



Figure 12. Successful Connection Indicator for SDP Connected Board

20. The ADHV4710 chip view can be accessed by double-clicking on the ADHV4710 symbol. This view provides a basic representation of the board's functionality. The main functions are labeled in the **Block Diagram View** or **Chip View**.

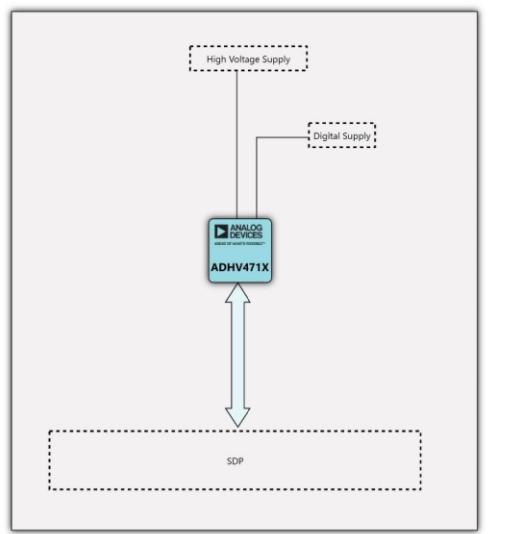



Figure 13. ADHV471X ACE Plugin Board View

## Configuring Software

This section describes the main functions of the block diagram. The ADHV4710 data sheet gives a full description of each register and its settings. Some blocks and their functions are described here.

### Sleep/Wake

This button toggles the ADHV4710 in and out of SLEEP mode.

### Shutdown Indicator

This button and LED indicator light up green in normal operation and red when the part goes into shutdown.

### Shutdown Reset

After a shutdown event due to a fault condition, reset the shutdown feature to turn the ADHV4710 back on. This button resets the shutdown feature by writing a 1 and then a 0 to bit[7] of 0x00.

### Protection Panel

This panel enables parameter protection individually. To enable protection for a given fault type, click the corresponding **Enable Protection** checkbox. Each fault type is mapped to an indicator on the graphical user interface (GUI). Also specify the corresponding thresholds in **Desired Value** fields to trigger an alarm and shut down the high voltage driver. To clear alarms, make sure the fault event is gone, and the part's shutdown feature is reset. Click **Clear All Alarms** to clear the alarm registers and indicators.

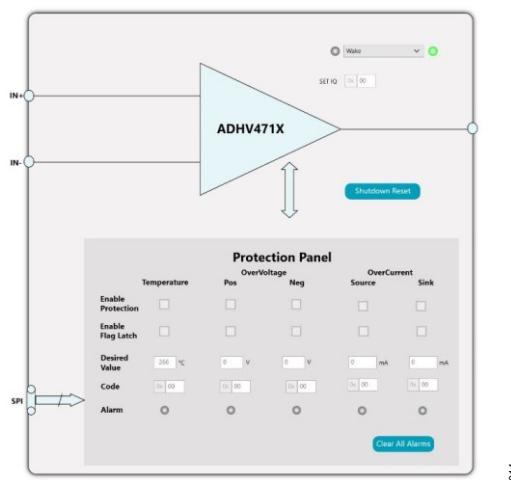



Figure 14. ADHV471X Plugin Chip View Block Diagram

014

## Using the Top Bar

- **Apply Changes:** Apply all values to the device and then read back all values from the device to ensure consistency with the GUI's indicators.
- **Read All:** Read all hardware registers from the device. Note that by clicking **Read All**, all software changes not applied to the device are removed.
- **Reset Chip:** Resets hardware to its default state.
- **Diff:** The ADHV4710 plugin does not use this.
- **Software Defaults:** Shows software default values. This can be helpful in going back to software defaults. These changes can be applied to the hardware by clicking **Apply Changes**. Note that by clicking **Read All**, all software changes not applied to the device are removed.
- **Memory Map Side-By-Side:** Shows the memory map of the ADHV471X side-by-side with the chip plugin. This can be useful in seeing what changes to the plugin bind with which hardware register.



Figure 15. ADHV471X Plugin Chip View Top Bar

## Using Macro

Macros can be used to save the previous states of the evaluation process. Macros can be accessed from the left sidebar under the **Tools** section. Macros can also be saved as a script and run again.

The following actions can be performed from the Macro's toolbar from left to right:

- **Record/Stop:** Record/stop recording commands.
- **Play:** Playback the recorded commands.
- **Edit Script:** Allows to make changes, skip commands, set breakpoints, and make notes for future use to a recorded Macro.
- **Save/Save As:** Allows to save the macro for future use.
- **Open:** Opens already recorded macros and plays them. This feature also allows macros to be shared among teams and helps the device return to a known state.
- **Close:** Closes an open Macro. Keep in mind the user can open multiple macros and play them as needed.
- **Delete:** Deletes a macro.
- **Generate:** The tool can generate the scripts in five different languages to port them into various other tools. The five programming language options available are ACE Macro, C#, MATLAB, Python, and ACE Hex.

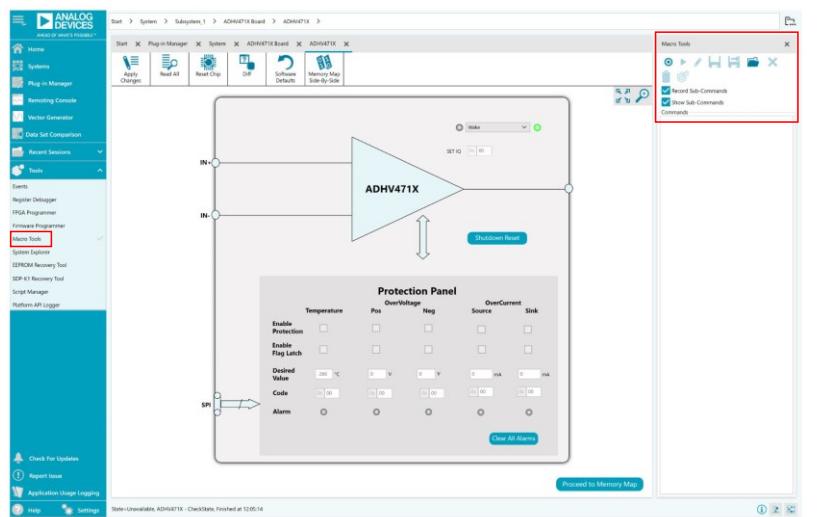



Figure 16. Accessing Macros from Tools and Generating Scripts

## SDP-K1 Recovery Tool

If the SDP-K1 firmware is not updated, ACE prompts to update the firmware. The **SDP-K1 Recovery Tool** can be accessed from the left sidebar under the **Tools** section. See *Figure 17*.

If necessary, follow these steps to update the SDP-K1 firmware:

1. Access the **SDP-K1 Recovery Tool** under the **Tools** section.
2. Check to see if the SDP-K1 is connected by clicking **Search** in the **SDP-K1 Recovery Tool View**.
3. Click on the SDP-K1's **Device ID** and press the **Blink "CONNECTED" LED** to verify the correct SDP-K1 is connected.
4. Press the **Standard** check box.
5. Press **Flash Firmware** to update the SDP-K1's firmware.

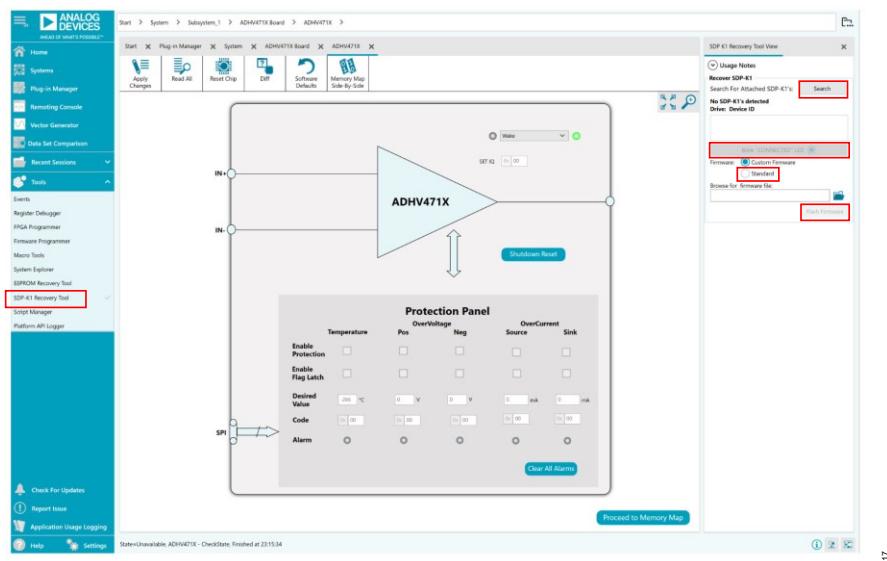



Figure 17. Accessing the SDP-K1 Recovery Tool

## Quick Start

Once the initial setup is complete, install the ACE software, and load the plugin. Follow these steps to generate a sample waveform and evaluate the ADHV4710 protection features.

1. With the INN input SMA terminated by a  $0\Omega$ /short circuit male termination load, the ADHV4710 is configured as a noninverting amplifier with a gain =  $+57\text{V/V}$ . Refer to the ADHV4710 data sheet to make sure the output headroom requirements are met. Recommended gain resistors are  $RF = 56\text{k}\Omega$  and  $RG = 1\text{k}\Omega$  for a gain of  $57\text{V/V}$ .
2. Ensure that GND is connected first. Then, power on the ADHV4710 by applying  $+50\text{V}$  to VCC\_HV,  $-50\text{V}$  to VEE\_HV, and  $5\text{V}$  to VCC\_5V. The high voltage power supplies and VCC\_5V can be brought up individually, in any order. If available, set the current limit of the high-voltage supply to  $1\text{A}$ . Confirm the power connections are securely connected before turning on the power supplies to avoid damaging the board. See the **Power Supply Sequencing** section in the ADHV4710 data sheet for additional information about power supply sequencing.
3. Apply an input sine wave of  $100\text{mVp-p}$  at  $1\text{kHz}$  with a  $50\%$  duty cycle at the INP SMA connector for a  $5.70\text{Vp-p}$  output. At higher frequencies, the DUT is in continuous slewing operation and thus, increased dynamic power dissipation is observed. Evaluate the ADHV4710 at  $1\text{kHz}$ .
4. Connect OUT\_1 test point or OUT SMA to an oscilloscope to check the output waveform.
5. Monitoring TMP pin voltage is recommended. Stop or slow down the input waveform immediately when the TMP reading is above  $2.5\text{V}$ . The  $2.5\text{V}$  voltage reading at TMP indicates  $150^\circ\text{C}$  junction temperature. Refer to the **Thermal Monitoring** section of the data sheet for more details.
6. Set overtemperature, overvoltage, and overcurrent protection on the ACE plugin by updating their corresponding **Desired Value** boxes, as shown in *Figure 18*. Check **Enable Protection** and **Enable Flag Latch** to monitor faults. Refer to the ADHV4710 data sheet for more information on the programmable thresholds, and fault monitoring/protection features.
7. When a programmed limit is exceeded, the ADHV4710 shuts down, and **Alarm** indicators on the plugin turn red. These indicators remain red unless the alarm event is resolved and intentionally cleared. To turn the ADHV4710 back on and clear the alarm indicators after the alarm event is resolved, click **Shutdown Reset** and **Clear All Alarms**. If **Enable Flag Latch** is not selected, alarm indicators clear as soon as the alarm event is resolved. Refer to the **Fault Monitoring and Protection** section of the ADHV4710 data sheet for more details.

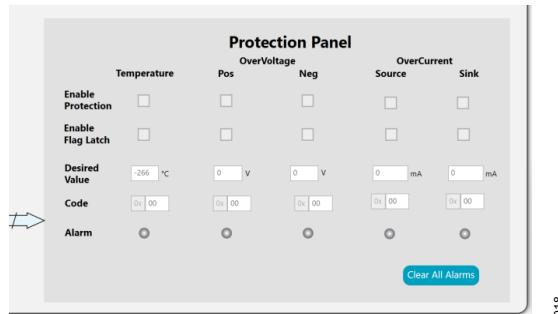



Figure 18. ADHV4710 Fault Protection Features

018

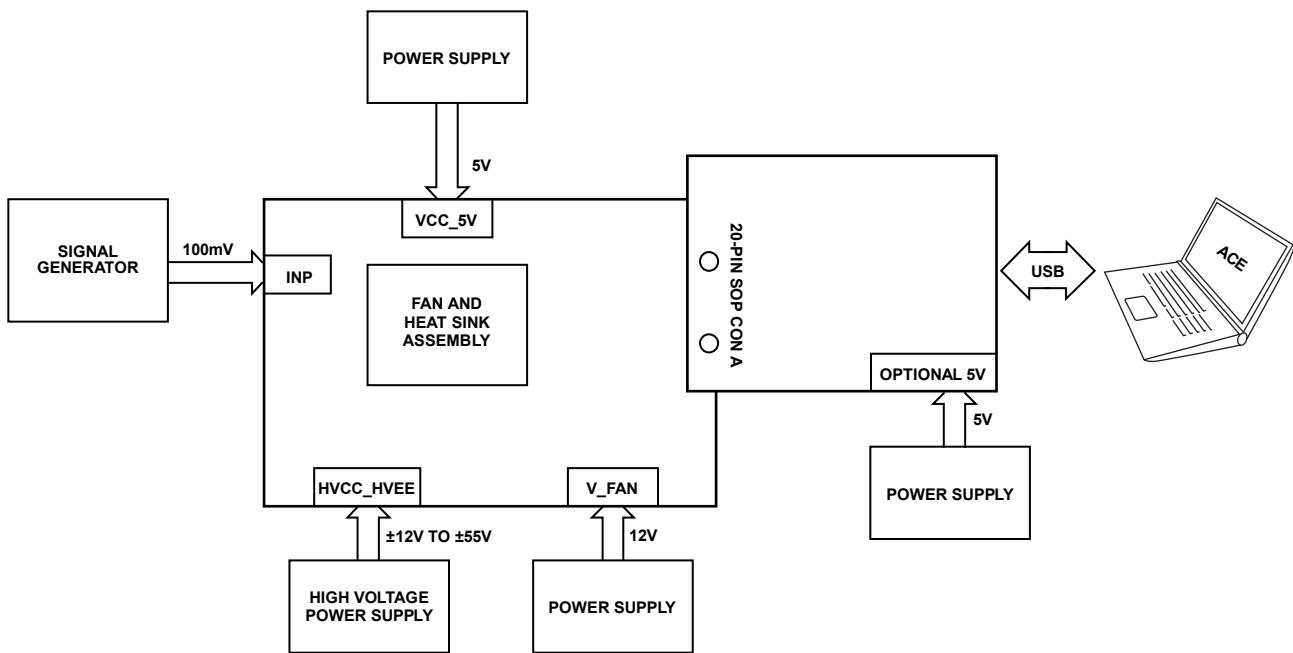



Figure 19. EVAL-ADHV4710SDZ Default Setup

## Evaluation Board Hardware Features

### A. SPI Connectors

In addition to the SDP connector, the EVAL-ADHV4710SDZ evaluation board includes a SPI breakout jumper for custom controller board operation.

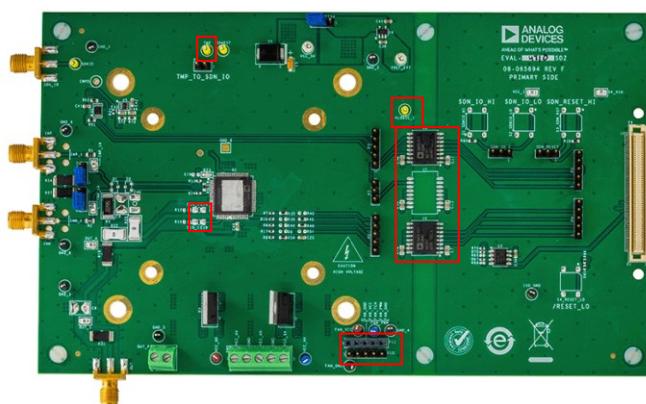
### B. Compensation (COMP\_H AND COMP\_L)

The EVAL-ADHV4710SDZ evaluation board includes provisions with 0603 footprints for compensation capacitors, COMP\_H and COMP\_L. These capacitors must be high voltage types to withstand the full-scale range of the output signal; minimum 250V capacitors are recommended when running on the +/-50V supplies.

### C. Thermal Monitor (TMP) and Thermal Management

The TMP pin can be used to monitor relative changes in die temperature. At a junction temperature of 25°C, the typical TMP pin voltage is 1.75V and changes at approximately 6mV/°C. More precise temperature readings can be achieved through a one-time room temperature calibration.

The TMP pin can be connected to the SDN\_IO pin for optional thermal shutdown by installing a 0Ω resistor at R11 or installing a shunt (65474-001LF) on P1 to connect TMP to SDN\_IO. The ADHV4710's thermal monitoring capability is independent of any overtemperature shutdown threshold and may be used whether TMP is strapped to SDN\_IO. If the ADHV4710 is powered on while the TMP pin is shorted to SDN\_IO, there is a possibility the ADHV4710 powers on in shutdown and needs a shutdown reset to exit the shutdown state.


### D. VLOGIC\_OUT

Test point VLOGIC\_1 connects to VLOGIC\_OUT on the ADHV4710. This pin is an output only. Do not drive this pin. Refer to the **Power Supplies and Decoupling** section of the ADHV4710 data sheet for more details.

### E. Galvanic Isolation

The EVAL-ADHV4710SDZ evaluation board includes provisions to protect from high voltages on the evaluation board when interfacing with the ADHV4710 for digital communication. In this process, all digital communication lines interfacing the SDP-K1 are moved from the main PCB area onto an electrically isolated portion of the PCB. The ADuM341E is used to isolate all digital communication lines from the SDP-K1 to the ADHV4710.

It is not recommended to power VCC\_1 with an external power supply. Instead, simply connect the SDP-K1 to the 120-pin SDP connector to power the isolation circuitry. The VCC\_1 connection should only be used to monitor the voltage powering the isolation circuitry.



020

Figure 20. Front of ADHV4710 Evaluation Board with Highlighted Hardware Features

## Troubleshooting Errors

The ADHV4710 board does not appear in the attached hardware section:

- Check for a firm connection between the SDP board and the evaluation board.
- Check the power of the SDP board and reconnect the USB.
- If still not working, try to reset the SDP board using the white reset button switch.

## Application-Specific Information

When using the fault monitoring and protection:

- a. Triggering the alarm requires the desired threshold to be met for a minimum duration (400ns) before a shutdown is initiated. When operating at a higher operating frequency, depending on the waveform, the threshold value may not be met for a long enough duration to trigger an alarm. See the ADHV4710 data sheet for more information regarding shutdown turn-on and turn-off times.
- b. Programming a desired threshold of 0 always causes the alarms flags to be in a high state as the protection circuitry inherently senses any noise on the output node, causing the alarm to constantly retrigger.

## Ordering Information

### Bill of Materials

| Item | Qty. | Reference Designator                                                 | Part Description                                                  | Manufacturer, Part No.               |
|------|------|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|
| 1    | 1    | U1                                                                   | IC-ADI high voltage high current amplifier                        | Analog Devices, ADHV4710BSVZ         |
| 2    | 6    | 5V_VIN, INN_1A, INP_1A, OUT_1, OUT_A, VCC_1                          | Connector-PCB SMT test points                                     | Keystone Electronics, 5015           |
| 3    | 8    | C1, C2, C3, C4, C30, C31, C32, C33                                   | Capacitor ceramic, 1.2µF, 250V, 10% X7R 2225                      | Kemet, C2225C125KARACTU              |
| 4    | 8    | C10, C11, C20, C21, C26, C27, C28, C29                               | Capacitor ceramic, 0.1µF, 250V, 10% X7R 1206 AEC-Q200             | Kemet, C1206X104KARACTU              |
| 5    | 14   | C12, C15, C22, C23, C24, C25, C34, C39, C40, C41, C42, C43, C44, C49 | Capacitor ceramic, 0.1µF, 16V, 10% X7R 0603                       | Yageo, CC0603KRX7R7BB104             |
| 6    | 6    | C7, C13, C16, C17, C35, C36                                          | Capacitor ceramic, 0.1µF, 50V, 5% X7R 0805                        | Kemet, C0805C104J5RACTU              |
| 7    | 2    | C14, C19                                                             | Do not install (DNI) (TBD_C1206). Use SYM_3 and/or SYM_4.         | TBD1206, TBD1206                     |
| 8    | 2    | C14_1, C19_1                                                         | Do not install (DNI) (TBD_C0805). Use SYM_3 and/or SYM_4.         | TBD0805, TBD0805                     |
| 9    | 2    | C6, C18                                                              | Do not install (DNI). Capacitor ceramic, 100pF, 50V, 10% X7R 0603 | Kemet, C0603C101K5RAC                |
| 10   | 3    | C5, C37, C45                                                         | Capacitor tantalum, 10µF, 16V, 10% 3216-18                        | Kemet, T491A106K016AT                |
| 11   | 1    | C46                                                                  | Do not install (DNI) (TBD_C1812). Use SYM_3 and/or SYM_4          | TBD1812, TBD1812                     |
| 12   | 2    | C8, C9                                                               | Non-preferred. Do not install (DNI). Use SYM_3 and/or SYM_4       | TBD0805, TBD1210, TBD1812            |
| 13   | 1    | CMPO                                                                 | Do not install (DNI). Connector-PCB test point yellow             | Components Corporation, TP-104-01-04 |

| Item | Qty. | Reference Designator                                              | Part Description                                                                | Manufacturer, Part No.                     |
|------|------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|
| 14   | 2    | D1, D2                                                            | Do not install (DNI). Diode switch dual                                         | ON Semiconductor, BAV199LT1G               |
| 15   | 2    | D3,D4                                                             | Diode switch-mode Schottky power rectifier, 250V, 40A to 220A                   | ON Semiconductor, MBR40250TG               |
| 16   | 1    | D5                                                                | Diode Schottky barrier rectifier, 3A                                            | Vishay, SS36-E3/57T                        |
| 17   | 6    | EXT_VREF5V, P7, P12, P13, SDN_IO_1, SDN_RESET                     | Connector-PCB berg HDR ST, male, 3P                                             | Samtec, TSW-103-08-G-S                     |
| 18   | 9    | FAN_GND, GND_1, GND_2, GND_3, GND_4, GND_5, GND_8, GND_9, ISO_GND | Connector-PCB test point black                                                  | Components Corporation, TP-104-01-00       |
| 19   | 2    | FAN_PWM, VEE_HV                                                   | Connector-PCB test point blue                                                   | Components Corporation, TP104-01-06        |
| 20   | 2    | FAN_VCC, VCC_HV                                                   | Connector-PCB test point red                                                    | Components Corporation, TP-104-01-02       |
| 21   | 1    | GND_7                                                             | Do not install (DNI). Connector-PCB test point black                            | Components Corporation, TP-104-01-00       |
| 22   | 4    | INN, INP, OUT, SDN_IO                                             | Connector-PCB coax SMA end launch                                               | Cinch Connectivity Solutions, 142-0701-801 |
| 23   | 2    | INN_1, INP_1                                                      | Do not install (DNI). Connector-PCB SMB PL, 0HZ to 4GHZ, 50Ω, ST                | Amphenol, 142134                           |
| 24   | 1    | OUT_P                                                             | Connector-PCB term block 2POS GRN                                               | Phoenix Contact, 1727010                   |
| 25   | 1    | P1                                                                | Connector-PCB header 2POS                                                       | Samtec, TSW-102-09-G-S                     |
| 26   | 5    | P2, P3, P4, P5, P10                                               | Connector-PCB berg HDR ST, male, 5P                                             | Samtec, TSW-105-08-G-S                     |
| 27   | 1    | P11                                                               | Connector-PCB 5POS female HDR/SKT single row ST, 2.54mm pitch, 10mm solder tail | Samtec, SSQ-105-03-G-S                     |
| 28   | 1    | P6                                                                | Connector-PCB vertical type rcpt-for SDP breakout board,                        | HRS, FX8-120S-SV(21)                       |

| Item | Qty. | Reference Designator | Part Description                                                                                                                | Manufacturer, Part No.               |
|------|------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|      |      |                      | for EMC test use<br>Alt_Symbols                                                                                                 |                                      |
| 29   | 1    | PWD                  | Connector-PCB term block 5POS GRN                                                                                               | Phoenix Contact, 1727049             |
| 30   | 1    | R1                   | Resistor, surface-mount device (SMD), 0Ω, 1/8W 0805 AEC-Q200                                                                    | Panasonic, ERJ-6GEY0R00V             |
| 31   | 5    | R7, R8, R9, R10, R17 | Resistor, surface-mount device (SMD), 0Ω jumper 1/16W 0402                                                                      | Yageo, RC0402JR-070RL                |
| 32   | 2    | R11, R15             | Do not install (DNI) (TBD_R0603). Use SYM_3 and/or SYM_4                                                                        | TBD0603, TBD0603                     |
| 33   | 2    | R12, R16             | Do not install (DNI). Obsolete - use E007502 ROHS-compliant equivalent, resistor, surface-mount device (SMD), 0Ω, 0603 AEC-Q200 | Vishay, CRCW0603000ZRT1              |
| 34   | 4    | R13, R14, R21, R85   | Resistor, surface-mount device (SMD), 0Ω, jumper 1/10W 0402 AEC-Q200                                                            | Panasonic, ERJ-2GE0R00X              |
| 35   | 4    | R18, R60, R72, R73   | Resistor, surface-mount device (SMD), 10KΩ, 1% 1/10W 0603 AEC-Q200                                                              | Panasonic, ERJ-3EKF1002V             |
| 36   | 2    | R19, R31             | Resistor, surface-mount device (SMD), 0Ω, 1W 2512 AEC-Q200                                                                      | Vishay, CRCW25120000Z0EG             |
| 37   | 1    | R2                   | Resistor, surface-mount device (SMD), 1KΩ, 1% 1/8W 0805 AEC-Q200                                                                | Panasonic, ERJ-6ENF1001V             |
| 38   | 2    | R20, R22             | Resistor, surface-mount device (SMD), 0Ω, jumper 2W 2512 AEC-Q200                                                               | Stackpole Electronics, HCJ2512ZT0R00 |

| Item | Qty. | Reference Designator         | Part Description                                                                           | Manufacturer, Part No.        |
|------|------|------------------------------|--------------------------------------------------------------------------------------------|-------------------------------|
| 39   | 1    | R23                          | Resistor, surface-mount device (SMD), 0Ω, 0.008W 0603                                      | Vishay, PZHT0603-0R00GT       |
| 40   | 6    | R35, R45, R48, R58, R61, R62 | Resistor, surface-mount device (SMD), 49.9KΩ, 1% 1/10W 0603 AEC-Q200                       | Panasonic, ERJ-3EKF4992V      |
| 41   | 3    | R6, R38, R40                 | Do not install (DNI). Resistor, surface-mount device (SMD), 0Ω, jumper 1/10W 0603 AEC-Q200 | Panasonic, ERJ-3GEY0R00V      |
| 42   | 2    | R42, R51                     | Do not install (DNI). Resistor, surface-mount device (SMD), 49.9KΩ, 1% 1/10W 0603 AEC-Q200 | Panasonic, ERJ-3EKF4992V      |
| 43   | 1    | R5                           | Resistor, surface-mount device (SMD), 56KΩ, 1% 2W 2512 AEC-Q200                            | TE Connectivity, CRGP2512F56K |
| 44   | 2    | R54, R57                     | Resistor, surface-mount device (SMD), 49.9Ω, 1% 1W 2512 AEC-Q200                           | Vishay, CRCW251249R9FKEG      |
| 45   | 2    | R67, R70                     | Resistor, surface-mount device (SMD), 100KΩ, 5% 1/10W 0402 AEC-Q200                        | Panasonic, ERJ-2GEJ104X       |
| 46   | 2    | R68, R69                     | Do not install (DNI). Resistor, surface-mount device (SMD), 0Ω, jumper 1/16W 0402          | Yageo, RC0402JR-070RL         |
| 47   | 1    | R76                          | Resistor, surface-mount device (SMD), 1MΩ, 1% 1/10W 0402 AEC-Q200                          | Panasonic, ERJ-2RKF1004X      |
| 48   | 1    | R86                          | Resistor, surface-mount device (SMD), 1KΩ, 1% 1/10W 0402 AEC-Q200                          | Panasonic, ERJ-2RKF1001X      |
| 49   | 1    | R <sub>SLEW</sub>            | Resistor, surface-mount device (SMD),                                                      | Vishay, CRCW06030000Z0EAHP    |

| Item | Qty. | Reference Designator                                       | Part Description                                                                 | Manufacturer, Part No.                      |
|------|------|------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|
|      |      |                                                            | 0Ω, jumper 1/3W<br>0603 AEC-Q200                                                 |                                             |
| 50   | 4    | S1_SDNIO_HI,<br>S2_SDNIO_LO,<br>S3_SDN_RST,<br>S4_RESET_LO | Do not install (DNI).<br>SW SM mechanical<br>keyswitch                           | Omron, B3S1000                              |
| 51   | 4    | SDNIO, SDNRST, TMP,<br>VLOGIC_1                            | Connector-PCB test<br>point yellow                                               | Components<br>Corporation, TP-104-01-<br>04 |
| 52   | 1    | U2                                                         | IC dual buffer with 3-<br>state outputs                                          | ON Semiconductor,<br>NL27WZ125USG           |
| 53   | 1    | U3                                                         | IC 32kbit serial<br>EEPROM                                                       | Microchip Technology,<br>24LC32A/SN         |
| 54   | 1    | U4                                                         | IC-ADI low power,<br>low noise VREF with<br>sink/source capability               | Analog Devices,<br>ADR365BUJZ               |
| 55   | 1    | U5                                                         | IC-ADI rail-to-rail,<br>fast, low power<br>TTL/CMOS COMP                         | Analog Devices,<br>ADCMP608BKSZ             |
| 56   | 2    | U6, U8                                                     | IC-ADI 5.7KV RMS<br>quad digital isolators                                       | Analog Devices,<br>ADUM341E1BRWZ            |
| 57   | 1    | U7                                                         | Do not install (DNI).<br>IC-ADI 5.0KV RMS<br>triple channel digital<br>isolators | Analog Devices,<br>ADUM230E0BRIZ            |
| 58   | 2    | VCC_5V, VREF_EXT                                           | Connector-PCB test<br>point white                                                | Components<br>Corporation, TP-104-01-<br>09 |

## ADHV4710 Evaluation Board Schematics

027

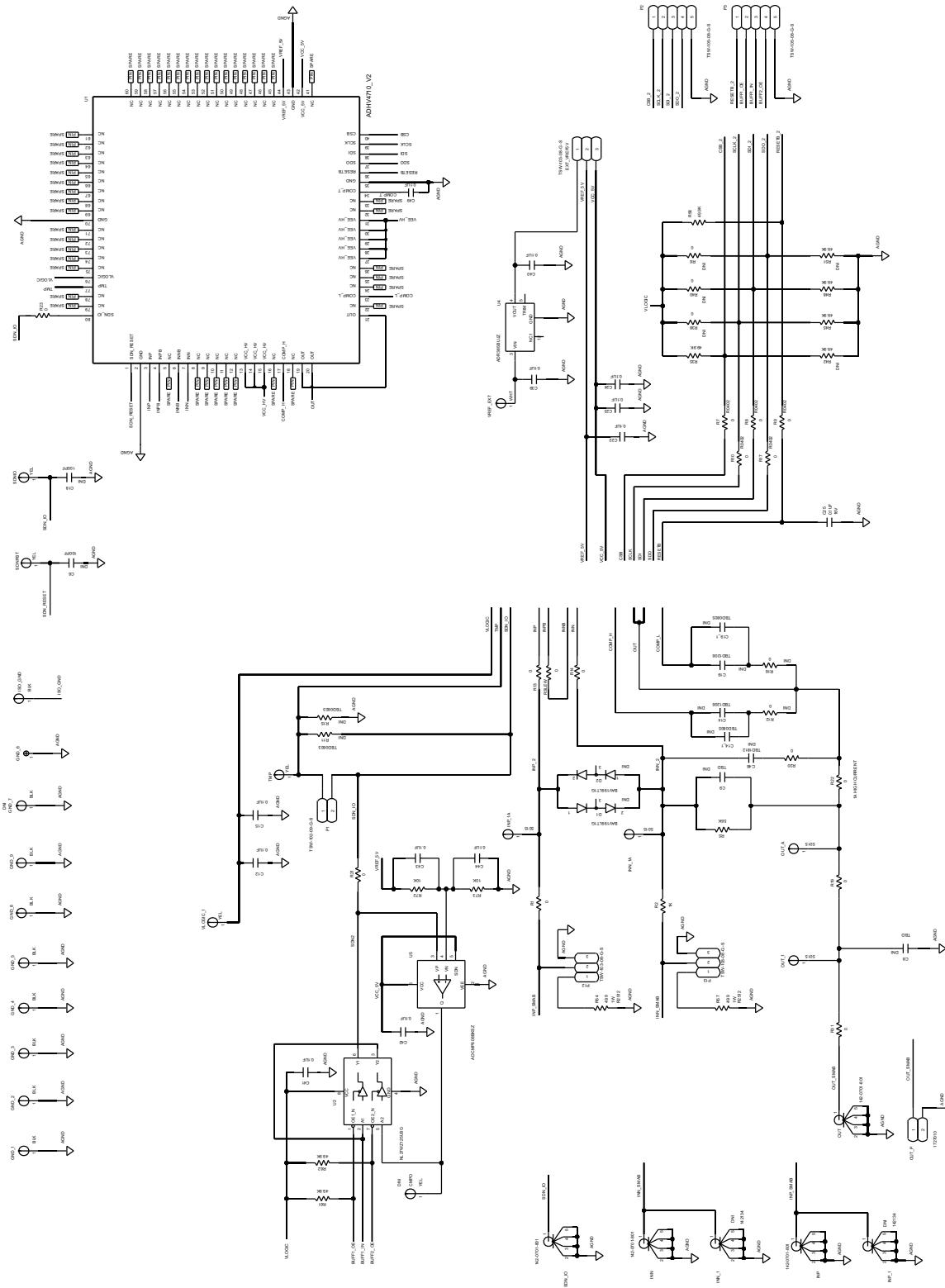
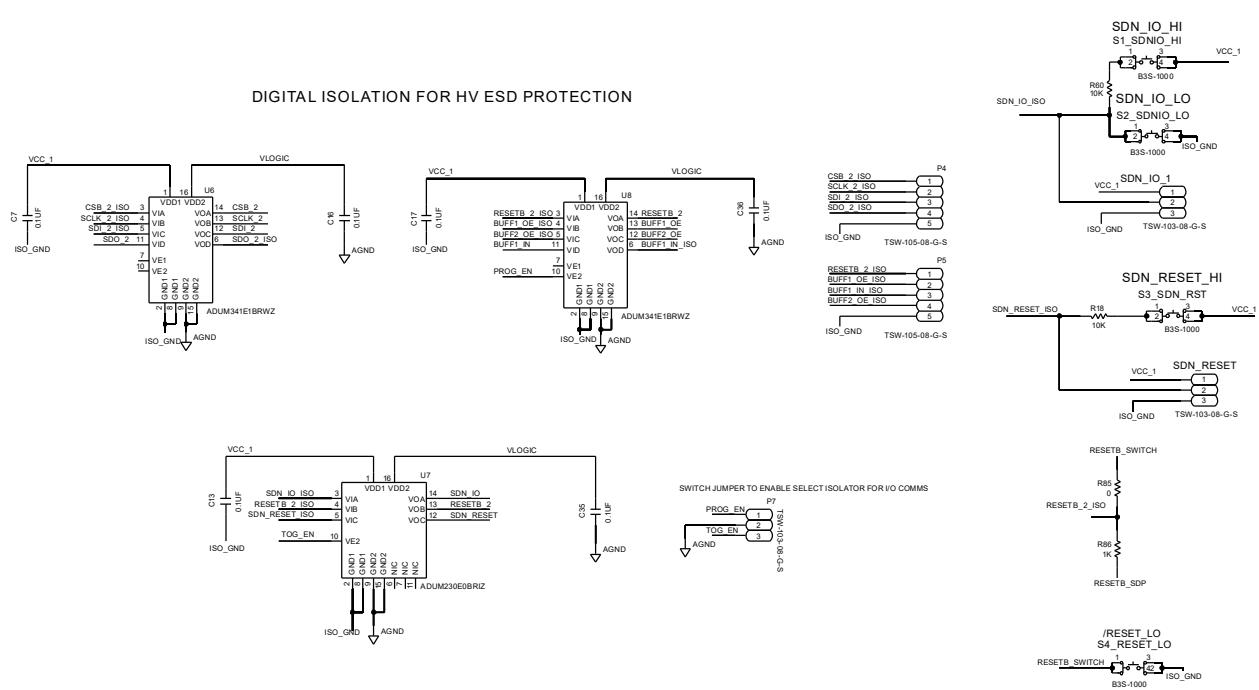




Figure 21. ADHV4710 Evaluation Board Schematic (Page 1)



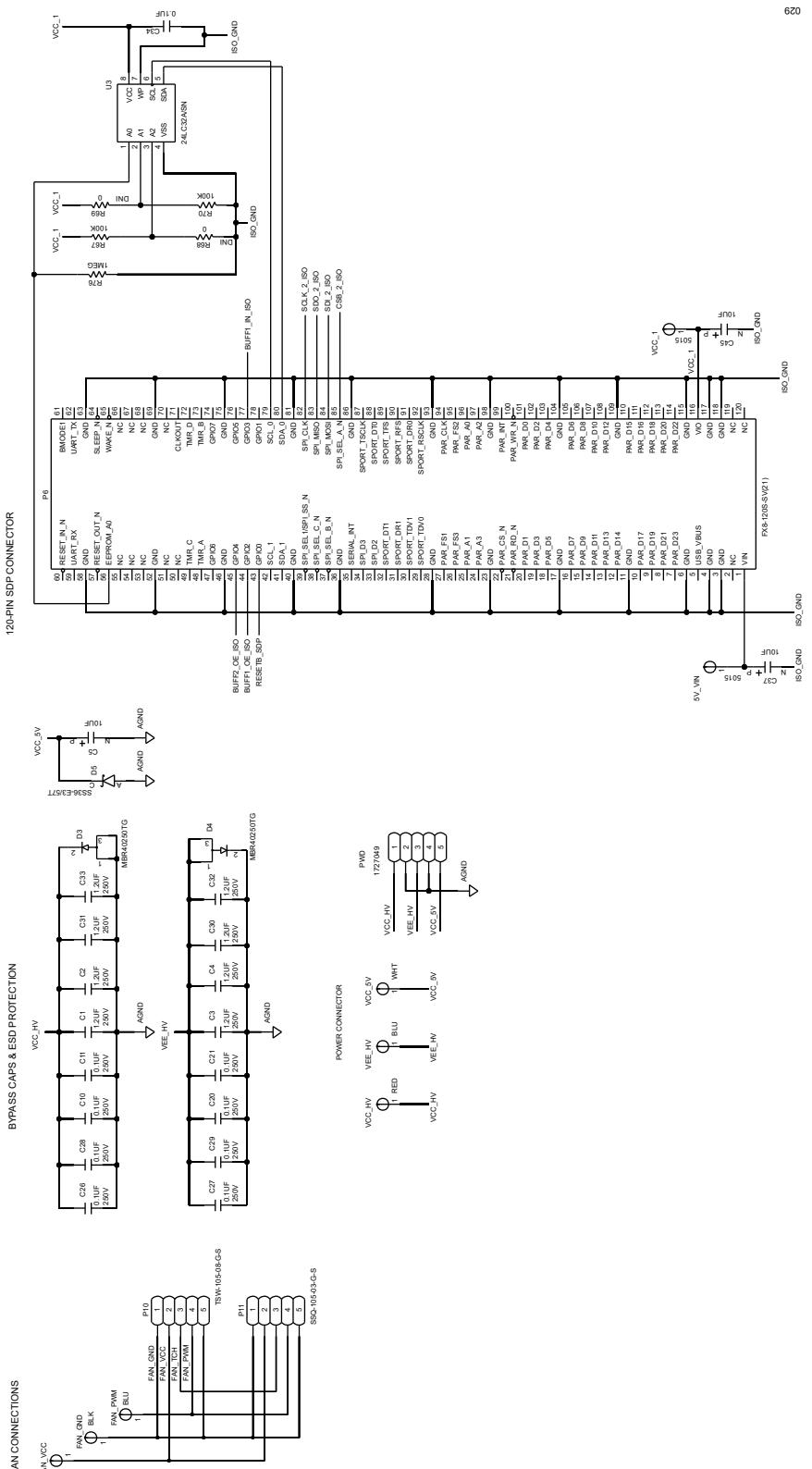



Figure 23. ADHV4710 Evaluation Board Schematic (Page 3)

## High Voltage Evaluation Board

**Warning:** This high voltage evaluation board contains exposed metal carrying lethal voltages when under power. Take all necessary steps to protect users during operation.

### Warnings, Restrictions, and Disclaimers

This evaluation board is for evaluation only, in laboratory or development environments, by professionals trained to handle high voltage devices. This evaluation board is not a finished electrical equipment and is not intended for consumer use. It is intended solely for preliminary feasibility evaluation in laboratory or development environments by technically qualified electronics experts familiar with the dangers and application risks associated with handling high voltage electrical components, systems, and subsystems. It is not to be used as all or part of a finished or end product.

Your responsibility and risk. You acknowledge, represent, and agree that:

- You have knowledge of all federal, state, and local regulatory requirements that relate to your products and that relate to your use (and/or that of your employees, affiliates, contractors, or designees) of the evaluation board for evaluation, testing, and other purposes.
- You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors, or designees, using the evaluation board. Further, you are responsible for ensuring that any interfaces (electronic and/or mechanical) between the evaluation board and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazards.
- You must employ reasonable safeguards to ensure that your use of the evaluation board does not result in any property damage, injury, or death, even if the evaluation board fails to perform as described or expected.
- You must properly dispose of or recycle the electronic components of the evaluation board to avoid injury to any other person.

### Key Instructions

It is important to operate this evaluation board within Analog Devices recommended specifications and environmental considerations per the user guidelines. Exceeding the specified evaluation board ratings (including but not limited to input and output voltage, current, power, temperature, and environmental ranges) may cause property damage, personal injury, or death. If there are questions concerning these ratings, contact an Analog Devices representative prior to connecting interface electronics or loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the evaluation board and/or interface electronics. Consult the evaluation board user guide prior to connecting any load to the evaluation board output. If there is uncertainty as to the load specification, contact an Analog Devices representative. During normal operation, some circuit components may generate significant heat, which may cause fire, melting, or burns. When placing measurement probes near these devices during normal operation, be aware that these devices may be hot. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics are to use the evaluation board.

### Agreement to Defend, Indemnify and Hold Harmless

You agree to defend, indemnify, and hold Analog Devices, its directors, officers, employees, and their representatives harmless from and against any and all claims, damages, losses, expenses, costs, and liabilities (collectively, "Claims") arising out of or in connection with any use of the evaluation board not in accordance with the terms of the agreement. This obligation applies whether claims arise under law of tort or contract or any other legal theory, and even if the evaluation board fails to perform as described or expected.

### Additional Resources

- [ACE Glossary](#)
- [ACE Getting Started](#)
- [ACE Quick Start Guide](#)
- [ACE Known Issue](#)
- [System Demonstration Platform \(SDP\) - Homepage](#)

## Revision History

| Revision Number | Revision Date | Description     | Pages Changed |
|-----------------|---------------|-----------------|---------------|
| 0               | 02/25         | Initial release | —             |

## Notes

ALL INFORMATION CONTAINED HEREIN IS PROVIDED “AS IS” WITHOUT REPRESENTATION OR WARRANTY. NO RESPONSIBILITY IS ASSUMED BY ANALOG DEVICES FOR ITS USE, NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM ITS USE. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENSE, EITHER EXPRESSED OR IMPLIED, IS GRANTED UNDER ANY ADI PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR ANY OTHER ADI INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS, IN WHICH ADI PRODUCTS OR SERVICES ARE USED. TRADEMARKS AND REGISTERED TRADEMARKS ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. ALL ANALOG DEVICES PRODUCTS CONTAINED HEREIN ARE SUBJECT TO RELEASE AND AVAILABILITY.